WO2019078093A1 - 電極積層体、全固体積層型二次電池及びその製造方法 - Google Patents

電極積層体、全固体積層型二次電池及びその製造方法 Download PDF

Info

Publication number
WO2019078093A1
WO2019078093A1 PCT/JP2018/037997 JP2018037997W WO2019078093A1 WO 2019078093 A1 WO2019078093 A1 WO 2019078093A1 JP 2018037997 W JP2018037997 W JP 2018037997W WO 2019078093 A1 WO2019078093 A1 WO 2019078093A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
layer
solid
Prior art date
Application number
PCT/JP2018/037997
Other languages
English (en)
French (fr)
Inventor
真二 今井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18869215.6A priority Critical patent/EP3699983A4/en
Priority to CN201880066870.5A priority patent/CN111213261B/zh
Priority to JP2019549235A priority patent/JP6895533B2/ja
Priority to KR1020207009969A priority patent/KR102323927B1/ko
Publication of WO2019078093A1 publication Critical patent/WO2019078093A1/ja
Priority to US16/833,670 priority patent/US20200227757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode stack, an all solid stacked secondary battery, and a method of manufacturing the same.
  • the all solid lithium ion secondary battery has a negative electrode, a positive electrode, and an inorganic solid electrolyte layer sandwiched between the negative electrode and the positive electrode, and enables charge and discharge by reciprocating lithium ions between the two electrodes. It is a storage battery.
  • This all-solid-state lithium ion secondary battery is expected to be applied to an electric car or a large storage battery, and high energy density is being studied.
  • As a technique for improving the energy density a technique of thinning the current collector, a technique of not forming (stacking) the negative electrode active material layer in advance, and the like are being studied.
  • an all solid stacked secondary battery is proposed in which the negative electrode active material layer is formed using lithium ions contained in the positive electrode active material layer or the like during charging, instead of providing the negative electrode active material layer constituting the negative electrode beforehand.
  • Patent Document 1 a technology in which an electrode and an electrolyte are arranged in series is also studied.
  • Patent Document 2 an all solid bipolar secondary battery provided with a plurality of bipolar electrodes formed by laminating a positive electrode active material layer, a current collector and a negative electrode active material layer in this order has been proposed (Patent Document 2).
  • the present invention provides an electrode laminate capable of suppressing the occurrence of a short circuit and discharge deterioration even when having a thinned negative electrode collector by being used as an electrode of an all solid laminated secondary battery. To be a task.
  • Another object of the present invention is to provide an all solid laminated secondary battery exhibiting a high energy density and hardly causing short circuit and discharge deterioration, and a method of manufacturing the same.
  • the inventor of the present invention has made an electrode laminate in which a positive electrode active material layer is laminated on the other surface of a negative electrode current collector on which the negative electrode active material can be deposited on one surface.
  • a positive electrode active material layer is laminated on the other surface of a negative electrode current collector on which the negative electrode active material can be deposited on one surface.
  • the inventors sequentially laminated a plurality of the above electrode stacks through a solid electrolyte layer and charged in a constrained pressure state, the thin layer negative electrode current collector and the solid electrolyte layer were deformed following the positive electrode active material layer. It has been found that the negative electrode active material layer can be formed on the negative electrode current collector without impairing the firm adhesion with the above.
  • the present invention has been further studied based on these findings and has been completed.
  • the electrode laminated body which is a thin-layer body which has a thickness of 15 micrometers or less, and was laminated
  • a current collector for a negative electrode capable of depositing a negative electrode active material on one surface, and a positive electrode active material comprising a positive electrode active material and a solid electrolyte laminated on the other surface of the current collector for the negative electrode
  • the electrode laminated body which is a thin layer which the current collector for negative electrodes has thickness of 15 micrometers or less, and was laminated
  • ⁇ Aspect 2> An electrode laminate having a current collector for the negative electrode capable of precipitating a negative electrode active material on one surface, and a concavo-convex forming particle layer laminated on the other surface of the current collector for the negative electrode ,
  • the electrode laminated body which is a thin layer which the current collector for negative electrodes has a thickness of 15 micrometers or less, and was laminated
  • the all-solid-stacked secondary battery which has at least one electrode laminated body as described in ⁇ 3> said ⁇ 1> or ⁇ 2>.
  • the electrode stack is stacked on the solid electrolyte layer, and at least one of the positive electrode active material in the electrode stack and the solid electrolyte in the solid electrolyte layer has a metal element belonging to periodic table 1 group or group 2
  • At least one layer of the ⁇ 5> solid electrolyte layer is a thermally molten material of an electronic insulating material which is solid at 100 ° C. and thermally melted at a temperature range of 200 ° C.
  • the all solid laminated secondary battery as described in ⁇ 4> containing.
  • the all-solid laminated secondary battery as described in ⁇ 4> or ⁇ 5> which has a negative electrode active material layer between one surface of a ⁇ 6> electrode laminated body, and a solid electrolyte layer.
  • ⁇ 7> A method for producing an all solid laminated secondary battery as described in ⁇ 6> above, The manufacturing method of the all solid laminated secondary battery which carries out lamination
  • the present invention can provide an electrode laminate capable of suppressing the occurrence of a short circuit and the discharge deterioration even when having a thinned current collector by being used as an electrode of an all solid laminated secondary battery.
  • the present invention can provide an all solid stacked secondary battery exhibiting a high energy density and hardly causing a short circuit or a discharge deterioration, and a method of manufacturing the same.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid laminated secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing the all solid stacked secondary battery according to another preferred embodiment of the present invention.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • (meth) acrylic when described, it means methacrylic and / or acrylic.
  • (meth) acryloyl when describing as "(meth) acryloyl”, it means methacryloyl and / or acryloyl.
  • the expression of a compound is used in the meaning including the salt thereof and the ion thereof in addition to the compound itself.
  • the all solid laminated secondary battery of the present invention has at least one electrode laminate of the present invention as an (internal) electrode.
  • the electrode laminate in the case of having one electrode laminate, the electrode laminate is laminated on the upper surface and the lower surface of the layer configuration (cell unit) laminated with the solid electrolyte layer And a drive electrode on which an external voltage acts.
  • a layer configuration in which the plurality of electrode stacks are stacked via the solid electrolyte layer, and the top and bottom surfaces of this layer configuration And a drive electrode.
  • the positive electrode and the negative electrode are arranged in multiple layers via the solid electrolyte layer.
  • the electrode laminate of the present invention is a component used for an all solid laminated secondary battery, and is used as an (internal) electrode of the all solid laminated secondary battery.
  • the all solid laminated secondary battery of the present invention is a metal element in which at least one of the positive electrode active material and the inorganic solid electrolyte belongs to the first group or the second group of the periodic table in that the negative electrode active material layer can be formed by charging. What has is preferable.
  • the electrode laminate and the all solid laminated secondary battery of the present invention are ions of metals belonging to Periodic Table 1 Group (alkali metal ions) or Periodic Table Group 2 accumulated in the current collector for the negative electrode during charging. Utilizing the phenomenon that a part of metal ions (alkaline earth metal ions) belonging to 1) are combined with electrons and deposited as a metal on the current collector for the negative electrode (including the interface with the solid electrolyte or the air gap). A negative electrode active material layer is formed. That is, the electrode laminate and the all solid laminated secondary battery of the present invention cause the metal deposited on the current collector for the negative electrode to function as a negative electrode active material layer.
  • metallic lithium is said to have a theoretical capacity of 10 times or more as compared with graphite generally used as a negative electrode active material. Therefore, by depositing metal lithium on the negative electrode and laminating the solid electrolyte layer on the deposited metal lithium, a layer of metal lithium can be formed on the current collector for the negative electrode, and high energy density can be obtained. It becomes possible to realize a secondary battery.
  • a battery in which the negative electrode active material layer is not formed (stacked) in advance exhibits high energy density because the thickness can be further reduced.
  • the negative electrode active material layer is formed in the electrode laminate and the all solid laminated secondary battery of the present invention by charging.
  • the uncharged embodiment (the embodiment in which the negative electrode active material is not deposited) and the charged embodiment (the embodiment in which the negative electrode active material is deposited) And both aspects are included.
  • the all solid laminated secondary battery in a form in which the negative electrode active material layer is not formed in advance means that the negative electrode active material layer is not formed in the layer forming step in battery manufacture, as described above, The negative electrode active material layer is formed between the solid electrolyte layer and the current collector for the negative electrode by charging.
  • the configuration of the electrode laminate and the all solid laminated secondary battery of the present invention is not particularly limited except for the configuration specified in the present invention, and a known configuration relating to the all solid laminated secondary battery can be adopted.
  • the preferable aspect of the all-solid-state laminated secondary battery of this invention is demonstrated in connection with the preferable aspect of the electrode laminated body of this invention.
  • symbol means the same component (member).
  • FIGS. 1 and 2 are schematic views for facilitating the understanding of the present invention, and the all solid laminated secondary battery shown in FIGS. 1 and 2 has the size or relative size relationship of each member, etc. The size may be changed for convenience of explanation, and the actual relationship is not shown as it is.
  • FIG. 1 is a cross-sectional view schematically showing an all solid laminated secondary battery (all solid laminated lithium ion secondary battery) 1A according to a preferred embodiment of the present invention.
  • the all solid stacked secondary battery 1A of the present embodiment is a battery in which four electrode stacks are stacked via a solid electrolyte.
  • the electrode laminate 10 has a negative electrode active material layer 13A on one surface of the negative electrode current collector 11A, and a concavo-convex forming particle layer 12 on the other surface.
  • the electrode stacks 30A to 30C respectively have negative electrode active material layers 33A to 33C on one surface of the negative electrode current collectors 31A to 31C and positive electrode active material layers 32A to 32C on the other surface.
  • the all solid stack type secondary battery 1A is viewed from the negative electrode 2 side, the electrode stack 10, the solid electrolyte layer 20A, the electrode stack 30A, the solid electrolyte layer 20B, the electrode stack 30B, the solid electrolyte layer 20C, the electrode stack 30C, solid electrolyte layer 20D, and positive electrode 3 are provided in this order.
  • negative electrode current collectors 11A and 31A to 31C of the four electrode laminates respectively have negative electrode active material layers 13A and 33A to 33C made of a deposited metal (lithium metal in this example). Each layer is in contact with each other and has a stacked structure.
  • the electrode laminate 10 is in contact with the negative electrode 2 (negative electrode current collector) with the particle layer 12 for forming unevenness, and the electrode laminates 30A to 30C are solid on both surface sides respectively It is sandwiched by the electrolyte layer and not in contact with the negative electrode 2 and the positive electrode 3, and is referred to as a so-called bipolar electrode or internal electrode (with or without the negative electrode active material layer).
  • the negative electrode 2 and the positive electrode 3 which are connected to the operation part 6 and on which an external voltage acts are referred to as drive electrodes.
  • the all solid stacked secondary battery 1A has four cell units each including a solid electrolyte and an active material layer on the solid electrolyte side of two electrode stacks stacked on either side of the solid electrolyte.
  • the first cell unit 5A includes the negative electrode active material layer 13A of the electrode stack 10, the solid electrolyte layer 20A, and the positive electrode active material layer 32A of the electrode stack 30A.
  • the second cell unit 5B includes the negative electrode active material layer 33A of the electrode stack 30A, the solid electrolyte layer 20B, and the positive electrode active material layer 32B of the electrode stack 30B.
  • the third cell unit 5C includes the negative electrode active material layer 33B of the electrode stack 30B, the solid electrolyte layer 20C, and the positive electrode active material layer 32C of the electrode stack 30C.
  • the fourth cell unit 5D is composed of the negative electrode active material layer 33C of the electrode stack 30C, the solid electrolyte layer 20D, and the positive electrode active material layer 32 of the positive electrode 3.
  • a plurality of components for example, electrode stacks may be all the same or different.
  • the all solid stacked secondary battery 1A functions as a secondary battery as follows. That is, in each cell unit, at the time of charging, electrons (e ⁇ ) are supplied to the negative electrode side or the negative electrode active material layer side, and lithium is deposited and accumulated there. On the other hand, at the time of discharge, lithium accumulated on the negative electrode side or the negative electrode active material layer side becomes lithium ions (Li + ) and is returned to the positive electrode side or the positive electrode active material layer side. Electrons are supplied to the electrode stack 10 via the external circuit 6 at the time of charging, and electrons are returned to the positive electrode 3 via the external circuit 6 at the time of discharge in the entire solid-state stack type secondary battery 1A.
  • the all solid stacked secondary battery 1A has the above-described structure, so that electrons flow with high energy density. In addition, short circuit and discharge deterioration are less likely to occur.
  • the all solid stack type secondary battery 1A shows a secondary battery in which the negative electrode active material layers 13A and 33A to 33C are already charged, but as described above, the all solid stack type secondary battery of the present invention
  • the battery also includes a secondary battery in which the negative electrode active material layers 13A and 33A to 33C are not formed.
  • FIG. 2 is a cross-sectional view schematically showing an all solid laminated secondary battery (all solid laminated lithium ion secondary battery) 1B according to another preferred embodiment of the present invention.
  • the electrode stacks for the all-solid-stacked secondary battery 1A are the current collectors for negative electrode 11A and 31A to 31C and the particle layer 12 for forming unevenness or positive electrode active.
  • the difference is that the auxiliary current collectors 14 and 34A to 34C are provided between the material layers 32A to 32C, but the configuration is the same as that of the all solid stacked secondary battery 1A except this point.
  • the electrode laminate of the present invention comprises a current collector for the negative electrode on which the negative electrode active material can be deposited on one surface, a positive electrode active material layer laminated on the other surface of the current collector for the negative electrode, or irregularities. And a particle layer.
  • This electrode laminate includes a negative electrode current collector having a surface on which the negative electrode active material can be deposited, and a positive electrode active material layer or unevenness formed on the back surface (the other surface with respect to the above surface) of the negative electrode dielectric. It can also be said that it has a particle layer.
  • the positive electrode active material layer or the concavo-convex forming particle layer may be laminated adjacent to the other surface, or may be laminated via another layer such as an auxiliary current collector described later.
  • the current collector for the negative electrode is laminated following the surface shape of the positive electrode active material layer or the particle layer for forming asperities (they are deformed along the surface shape).
  • that the current collector for the negative electrode is laminated following the surface shape of the positive electrode active material layer or the particle layer for forming unevenness (hereinafter referred to as the positive electrode active material layer etc.)
  • the positive electrode active material layer etc. Means that it has a (surface) shape that follows the surface shape of the positive electrode active material layer etc. In other words, it has a (surface) shape corresponding to the surface shape of the positive electrode active material layer etc.
  • the shape following or corresponding to the shape is not limited to a shape in which the current collector for the negative electrode closely adheres to the surface shape of the positive electrode active material layer or the like without any gap. In the range which does not impair, the shape in which a space
  • the current collector for the negative electrode is usually deformed into a shape in which a space is formed between the current collector and the surface of the positive electrode active material layer etc.
  • the degree is, for example, the positive electrode active material layer side or the particle layer side for forming unevenness
  • the closest contact distance between the peak of the current collector that has been deformed in a convex direction and the positive electrode active material particle or the particle for forming unevenness is about 0.1 to 10 ⁇ m.
  • the deformation state or deformation amount of the current collector for the negative electrode is determined by the material, thickness or hardness of the current collector for the negative electrode, the material of the positive electrode active material or the particles for forming asperities, the particle diameter or hardness, and the pressure or pressure during pressing or restraint pressurization. Further, the pressure can be appropriately set by an intermediate layer or the like provided between the positive electrode active material and the current collector.
  • the wave shape of the current collector for the negative electrode in the region of 200 ⁇ m The maximum amplitude is preferably 0.1 times or more, more preferably 0.2 times or more, and further preferably 0.22 times or more with respect to the average particle diameter of the positive electrode active material and the like. preferable.
  • SEM scanning electron microscope
  • the maximum amplitude of the waviness is a low-frequency component (long-period wave shape) with a length (period) of 5 times or more the average particle diameter of the positive electrode active material or the like in a 200 ⁇ m region in the image observed by SEM.
  • the maximum amplitude of the high frequency component (a shape of a wave having a short period whose length is less than 5 times the average particle diameter of the positive electrode active material) after removing.
  • the average particle diameter of the positive electrode active material and the like here is determined as an average value by measuring the diameter (equivalent area diameter) of 100 arbitrary positive electrode active material particles or particles for forming unevenness in the image observed by SEM. Average particle size.
  • the surface is usually flat, and so is a solid electrolyte or solid electrolyte layer
  • the flat surface is the contact surface.
  • the current collector for the negative electrode is a thin layer, it is deformed following the surface shape of the positive electrode active material layer, and the surface on which the solid electrolyte layer is laminated is also the positive electrode active material layer.
  • the current collector for the negative electrode used in the present invention may be a current collector having a surface on which the negative electrode active material can be deposited, ie, a current collector on which the negative electrode active material can be deposited on at least one surface.
  • the back surface may also be capable of depositing the negative electrode active material.
  • a current collector for the negative electrode a thin layer formed of a material on which the negative electrode active material can be deposited can be mentioned.
  • the material for forming the current collector for the negative electrode may be any material as long as the negative electrode active material can be deposited during charging of the all solid laminated secondary battery, and a material which is difficult to form an alloy with lithium is preferable, and further an electron conductor Is preferred.
  • a material for example, in addition to copper, copper alloy, stainless steel, nickel and titanium, a surface of stainless steel treated with nickel or titanium (a thin film formed) is preferable, among them, Stainless steel and nickel are more preferable.
  • the shape of the current collector for the negative electrode is usually in the form of a film sheet, but for example, in the case of having an auxiliary current collector to be described later, the negative electrode active material layer laminated via the current collector for the negative electrode As long as contact with the positive electrode active material layer can be prevented, in addition to the film sheet, a net, a punched body, a lath body, a porous body, a foam, a molded body of a fiber group, and the like can be used.
  • the thickness of the current collector for the negative electrode is 15 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less in terms of its deformability.
  • the lower limit of the thickness is not particularly limited, but is usually 3 ⁇ m or more.
  • the current collector for the negative electrode preferably has a ten-point average surface roughness Rz of 1.5 ⁇ m or less, more preferably less than 1.5 ⁇ m, and 1.3 ⁇ m or less on the surface on which the negative electrode active material can be deposited. It is more preferable to be present, and particularly preferably 1.1 ⁇ m or less.
  • the thinned current collector is usually not surface treated and has a flat surface in order to maintain mechanical properties.
  • the ten-point average surface roughness (Rz) of the current collector for the negative electrode is the third and lowest valley bottom from the highest peak within the range of 200 ⁇ m in length from the cross-sectional curve in accordance with JIS B 0601: 2001. It can be measured as the distance between two parallel lines passing through the third from.
  • the current collector for the negative electrode may have an auxiliary current collector on the other surface on which a positive electrode active material layer described later is formed.
  • the auxiliary current collector is selected to have a property not to inhibit the deformation of the current collector for the negative electrode, and an electron conductor is more preferable.
  • aluminum, aluminum alloy, copper, copper alloy, titanium and the like aluminum or the surface treated with carbon (a thin film formed) is preferable, and among them, aluminum and aluminum alloy are more preferable.
  • the hardness, thickness and surface roughness of the auxiliary current collector are not particularly limited as long as they have the above-mentioned characteristics. The thickness can be set to, for example, 10 to 20 ⁇ m.
  • an electrode laminate having a positive electrode active material layer is generally used as an internal electrode as shown in FIGS. 1 and 2.
  • the positive electrode active material layer contains a positive electrode active material and a solid electrolyte, and optionally contains other components.
  • the positive electrode active material is a substance capable of inserting and releasing ions of a metal belonging to periodic group 1 or group 2, and the positive electrode active material used in the all solid laminated secondary battery of the present invention is reversibly Preferred are those capable of inserting and releasing lithium ions.
  • the positive electrode active material is preferably one having a metal element belonging to Group 1 or Group 2 of the periodic table in that the negative electrode active material layer can be formed by charging.
  • Such a positive electrode active material is not particularly limited as long as it has the above-described characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li such as sulfur, a complex of sulfur and metal, Good. Above all, it is preferable to use a transition metal oxide as the positive electrode active material in that the hardness is higher than that of the current collector for the negative electrode and the current collector for the negative electrode can be deformed, and the transition metal element M a (Co, More preferred is a transition metal oxide having one or more elements selected from Ni, Fe, Mn, Cu and V).
  • an element M b (an element of Group 1 (Ia) other than lithium, an element of Group 1 (Ia) of the metal periodic table, an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount (100 mol%) of the transition metal element M a . It is more preferable to be synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
  • transition metal oxide examples include a transition metal oxide having a (MA) layered rock salt type structure, a transition metal oxide having a (MB) spinel type structure, a (MC) lithium-containing transition metal phosphate compound, (MD And the like) lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicate compounds.
  • MA transition metal oxide having a
  • MB transition metal oxide having a (MB) spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD And the like lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure MA
  • LiCoO 2 lithium cobaltate [LCO]
  • LiNi 2 O 2 lithium nickelate
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 lithium nickel cobalt aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 nickel manganese manganese cobaltate [NMC]
  • LiNi 0.5 Mn 0.5 O 2 manganese And lithium nickel oxide
  • transition metal oxides having a (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 and the like.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 etc. Cobalt phosphates and monoclinic Nasacon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 and Li 2 CoSiO 4 .
  • transition metal oxides having a (MA) layered rock salt type structure are preferable, and LCO or NMC is more preferable.
  • the positive electrode active material is preferably in the form of particles also in the positive electrode active material layer, and in this case, the average particle diameter D50 (median diameter) of the positive electrode active material is preferably 1 ⁇ m or more.
  • the average particle diameter D50 of the positive electrode active material is 1 ⁇ m or more, the current collector for the negative electrode can be deformed following the surface shape of the positive electrode active material layer.
  • the average particle diameter D50 is more preferably 2 ⁇ m or more, and still more preferably 5 ⁇ m or more, from the viewpoint of adhesion to the inorganic solid electrolyte due to deformation.
  • the upper limit of the average particle diameter D50 is not particularly limited, but may be usually 50 ⁇ m or less, and for example, 20 ⁇ m or less is preferable.
  • a usual pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution and an organic solvent.
  • the average particle diameter D50 of the positive electrode active material particles can be measured using a laser diffraction / scattering type particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, still more preferably 50 to 85% by mass, and 55 to 80% by mass Is particularly preferred.
  • the thickness of the positive electrode active material layer is not particularly limited, but is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m to less than 500 ⁇ m, and still more preferably 50 ⁇ m to less than 500 ⁇ m.
  • the inorganic solid electrolyte contained in the positive electrode active material layer may be used singly or in combination of two or more.
  • the content of the inorganic solid electrolyte in the positive electrode active material layer is not particularly limited, but the total content with the positive electrode active material is preferably 5% by mass or more, and more preferably 10% by mass or more. It is more preferably 20% by mass or more, still more preferably 50% by mass or more, particularly preferably 70% by mass or more, and most preferably 90% by mass or more.
  • the upper limit is not particularly limited as long as it is 100% by mass or less, and for example, it is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and 99% by mass or less Is particularly preferred.
  • the positive electrode active material layer may contain, as other components, a conductive additive, a binder for binding the inorganic solid electrolyte and the positive electrode active material, etc., a dispersant, a lithium salt, an ionic liquid, and the like.
  • a conductive additive for binding the inorganic solid electrolyte and the positive electrode active material, etc.
  • a dispersant for binding the inorganic solid electrolyte and the positive electrode active material, etc.
  • a lithium salt a lithium salt
  • an ionic liquid an ionic liquid
  • an electrode laminate having a concavo-convex forming particle layer is preferably disposed adjacent to the negative electrode 2 as shown in FIGS. 1 and 2.
  • the concavo-convex forming particle layer may be a layer (concave-convex forming particle layer) containing the concavo-convex forming particles that can be deformed following the surface shape of the current collector by forming the concavities on the negative electrode current collector. It may contain other ingredients.
  • the concavo-convex forming particles do not necessarily have to form a layer, and may be dispersed or scattered as long as they exist in a state in which the current collector for the negative electrode can be deformed.
  • the particles for forming unevenness may be particles for forming unevenness which can be deformed by forming unevenness on the current collector for the negative electrode, and an electron conductor is preferable.
  • the material for forming the particles include those exhibiting hardness higher than that of the current collector for the negative electrode, and specifically, steel beads, stainless steel beads, stainless nano powder, etc. are mentioned in addition to the above-mentioned positive electrode active material. Be Among them, stainless beads are preferred.
  • the particle diameter of the unevenness forming particles is not particularly limited, but is preferably the same as that of the above-described positive electrode active material.
  • the thickness and surface roughness of the concavo-convex forming particle layer are not particularly limited. For example, the thickness can be set to 1 to 100 ⁇ m.
  • a negative electrode active material layer is formed which is made of a metal (in this embodiment, a lithium metal in the present embodiment) belonging to group
  • the negative electrode active material layer is usually formed on the surface of the current collector for the negative electrode, between the current collector for the negative electrode and the solid electrolyte layer (the interface between the current collector for the negative electrode and the solid electrolyte, or the current collector for the negative electrode Deposit in the void defined by the solid electrolyte).
  • the deposited metal does not have to be layered, but is dispersed or dispersed in the interface or void. It may be The formation (deposition of metal) and the deposition state of the negative electrode active material layer can be confirmed by observing the cross section with an electron microscope or the like.
  • the thickness of the negative electrode active material layer depends on the charge and discharge amount, and can not be uniquely determined. That is, the amount of metal deposition increases by charging, and the metal deposited by discharge becomes ions and disappears. An example of the thickness at the maximum charge may be 1 to 10 ⁇ m.
  • the thickness of a negative electrode active material layer be an average distance from the one surface of the collector for negative electrodes to the metal which precipitated in the observation image by SEM.
  • the method of producing the electrode stack will be described in conjunction with the production of the all solid stacked secondary battery.
  • the solid electrolyte layer is disposed between the two electrode stacks. Specifically, the solid electrolyte layer is disposed between the current collector for the negative electrode in one electrode stack and the positive electrode active material layer in the other electrode stack. In addition, as shown in FIG. 1, it is also disposed at a position necessary to function as a battery, for example, on the drive electrode side.
  • the solid electrolyte layer contains a solid electrolyte, preferably an electronically insulating material, and optionally the above-mentioned other components.
  • the solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions in its inside.
  • An organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) or the like, an organic electrolyte represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or the like because it does not contain an organic substance as a main ion conductive material It is clearly distinguished from electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • inorganic electrolyte salts such as LiPF 6 , LiBF 4 , LiFSI, LiCl
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Periodic Table Group 1 or Group 2, and one having no electron conductivity is generally used.
  • the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the inorganic solid electrolyte is preferably one having a metal element belonging to Group 1 or Group 2 of the periodic table in that the negative electrode active material layer can be formed by charging.
  • a solid electrolyte material to be applied to this type of product can be appropriately selected and used.
  • the inorganic solid electrolyte generally (i) a sulfide-based inorganic solid electrolyte and / or (ii) an oxide-based inorganic solid electrolyte is used, and a sulfide-based inorganic solid electrolyte is preferable.
  • These inorganic solid electrolytes are softer than the positive electrode active material and the current collector for the negative electrode, and adhere closely following the deformation of the negative electrode current collector.
  • a sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Periodic Table 1 Group or Group 2 and And compounds having electron insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte contains at least Li, S and P as elements and preferably has lithium ion conductivity, but depending on the purpose or case, other than Li, S and P. It may contain an element.
  • L a1 M b1 P c1 S d1 A e1 formula (I)
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of respective elements, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • 1 to 9 is preferable, and 1.5 to 7.5 is more preferable.
  • 0 to 3 is preferable, and 0 to 1 is more preferable as b1.
  • 2.5 to 10 are preferable and 3.0 to 8.5 of d1 are more preferable.
  • 0 to 5 is preferable, and 0 to 3 is more preferable as e1.
  • composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compound at the time of producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramicized), or only part of it may be crystallized.
  • a Li—P—S-based glass containing Li, P and S, or a Li—P—S-based glass ceramic containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), single phosphorus, single sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, It can be produced by the reaction of at least two or more of LiI, LiBr, LiCl) and sulfides of elements represented by M (for example, SiS 2 , SnS, GeS 2 ).
  • Li 2 S lithium sulfide
  • phosphorus sulfide for example, diphosphorus pentasulfide (P 2 S 5 )
  • single phosphorus single sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • M for example, SiS 2 , SnS, GeS 2 .
  • the ratio of Li 2 S to P 2 S 5 in the Li-P-S-based glass and Li-P-S-based glass ceramic is preferably a molar ratio of Li 2 S: P 2 S 5 of 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. There is no particular upper limit, but it is practical to be 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method for example, a mechanical milling method, a solution method and a melt quenching method can be mentioned. It is because processing at normal temperature becomes possible, and simplification of the manufacturing process can be achieved.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O), and has ion conductivity of a metal belonging to Periodic Table Group 1 or 2 and And compounds having electron insulating properties are preferred.
  • the oxide-based inorganic solid electrolyte preferably has an ion conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S It is particularly preferable to be at least / cm.
  • the upper limit is not particularly limited, but it is practical to be 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li, P and O phosphorus compounds containing Li, P and O.
  • Li 3 PO 4 lithium phosphate
  • LiPON in which part of oxygen of lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the inorganic solid electrolyte is preferably in the form of particles.
  • the average particle diameter D50 of the inorganic solid electrolyte particles is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the measurement of the average particle diameter D50 of the inorganic solid electrolyte particles is performed in the following procedure.
  • the inorganic solid electrolyte particles are diluted with water (heptane for water labile substances) in a 20 mL sample bottle to dilute the 1 wt% dispersion.
  • the diluted dispersed sample is irradiated with 1 kHz ultrasound for 10 minutes, and used immediately thereafter for the test.
  • a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by HORIBA
  • data acquisition is carried out 50 times using a quartz cell for measurement at a temperature of 25 ° C. Get D50.
  • JIS Z 8828 2013 "Particle diameter analysis-dynamic light scattering method" as necessary. Make five samples per level and adopt the average value.
  • the inorganic solid electrolyte may be used singly or in combination of two or more.
  • the content of the inorganic solid electrolyte in the solid electrolyte layer is at least 5% by mass in consideration of reduction of interface resistance and maintenance of reduced interface resistance when used in an all solid laminated secondary battery Is more preferably 10% by mass or more, still more preferably 20% by mass or more, still more preferably 50% by mass or more, and particularly preferably 70% by mass or more. Most preferably, it is at least%.
  • the upper limit is not particularly limited as long as it is 100% by mass or less, and for example, it is preferably 99.9% by mass or less and 99.5% by mass or less from the same viewpoint as setting of the lower limit. More preferably, it is particularly preferably 99% by mass or less.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably such that the total content of the active material and the inorganic solid electrolyte is in the above range.
  • At least one of the solid electrolyte layers is one surface-side region of the current collector for the negative electrode (preferably a gap between the solid electrolytes)
  • it contains a hot melt of the electronically insulating material.
  • the electron insulating material exhibiting such a function, a material which is solid at 100 ° C.
  • thermally melt in a temperature range of 200 ° C. or less means to thermally melt in a temperature range of 200 ° C. or less under one atmospheric pressure.
  • thermal melt of the electronic insulating material thereafter, by cooling and solidifying the thermal melt of the electronic insulating material, it is possible to create a state in which the thermal melt of the electronic insulating material is embedded substantially without gaps along the shape between the inorganic solid electrolyte materials .
  • electrolyte materials refers to the property of not allowing electrons to pass.
  • the material when referring to the “electronic insulating material”, it is preferable that the material has a conductivity of 10 ⁇ 9 S / cm or less at a measurement temperature of 25 ° C.
  • the surface side region may contain, in addition to the electron insulating material, other materials capable of blocking the growth of dendrite. That is, in the present invention, “a thermally molten material of an electronically insulating material” means a thermally molten material of only an electronically insulating material, an electronically insulating material, and another material other than the electronically insulating material It is a meaning including the form which is the thermal fusion thing which combined B. As another material, for example, aluminum oxide, silicon oxide, boron nitride, cerium oxide, diamond, zeolite and the like can be mentioned. The other material is usually fine particles, and the volume average particle size thereof is preferably 1 ⁇ m or less, more preferably 700 nm or less.
  • the presence of these materials in the surface side area makes it easy for the hot melt to infiltrate into the gaps between the solid electrolytes by capillary action, thereby further enhancing the dendrite blocking action.
  • the surface side region includes another material in addition to the electronic insulating material, the content of the other material is 15 parts by mass or less with respect to 100 parts by mass of the inorganic solid electrolyte material in the solid electrolyte layer Is preferable, and 10 parts by mass or less is more preferable.
  • the electrically insulating material is preferably a harder material than dendrite in the solid state to block dendrite growth.
  • the electron insulating material include sulfur, reformed sulfur, iodine, and a mixture of sulfur and iodine.
  • sulfur and / or reformed sulfur can be suitably used.
  • Sulfur means elemental sulfur (including sulfur itself as well as those present in multimers).
  • the reformed sulfur is obtained by kneading the sulfur and the modifier.
  • pure sulfur and an olefin compound which is a reforming additive can be kneaded to obtain a reformed sulfur in which a part of the sulfur is reformed into a sulfur polymer.
  • the presence of sulfur or modified sulfur in the surface area can physically block dendrites (alkali metals or alkaline earth metals) that have grown to this surface area.
  • dendrites alkali metals or alkaline earth metals
  • contact between dendrite and sulfur can also cause reaction between dendrite and sulfur.
  • reaction products also coexist in the surface side region. This reaction product is an electron-insulating compound harder than dendrite metal and can therefore block dendrite growth.
  • gap is a form containing the compound containing the alkali metal and / or the compound containing alkaline-earth metal which arose by said reaction.
  • the thickness of the inorganic solid electrolyte layer is not particularly limited, but is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m to less than 700 ⁇ m, and still more preferably 50 ⁇ m to less than 700 ⁇ m.
  • the negative electrode to be the drive electrode may be formed of an electron conductor.
  • the negative electrode may be provided adjacent to the electrode stack 10 as shown in FIGS. 1 and 2 or may be provided adjacent to the inorganic solid electrolyte layer as in the example.
  • the negative electrode may be a single layer or multiple layers.
  • the materials mentioned above for the negative electrode current collector and the auxiliary current collector can be used without particular limitation. Among them, aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., aluminum, copper, copper alloy or stainless steel having carbon, nickel, titanium or silver treated on its surface is preferred, aluminum, Copper, copper alloys and stainless steel are more preferred.
  • the shape of the negative electrode is usually in the form of a film sheet, but it is also possible to use a net, a punch, a lath body, a porous body, a foam, a molded body of a fiber group, and the like.
  • the thickness of the negative electrode (current collector) is not particularly limited, but is preferably 1 to 500 ⁇ m. In addition, it is also preferable to make the negative electrode uneven by surface treatment.
  • the positive electrode to be the drive electrode may be formed of an electron conductor.
  • This positive electrode may be made of a current collector for the positive electrode, but as shown in FIGS. 1 and 2, it has the current collector 35 for the positive electrode and the positive electrode active material layer 32, and is adjacent to the solid electrolyte layer. It is preferable to be provided.
  • the positive electrode current collector may be a single layer or multiple layers.
  • the materials listed for the above negative electrode can be used without particular limitation. Among them, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium etc., aluminum or stainless steel treated with carbon, nickel, titanium or silver (a thin film formed) is preferable, among which aluminum is preferable.
  • the shape of the current collector for the positive electrode is usually in the form of a film sheet, but a net, a punch, a lath body, a porous body, a foam, a molded body of a fiber group or the like can also be used.
  • the thickness of the positive electrode current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable to make the surface of the positive electrode current collector surface uneven by surface treatment.
  • the positive electrode active material layer which comprises a positive electrode is synonymous with the positive electrode active material layer which comprises the said electrode laminated body, and its preferable form is also the same.
  • functional layers or members may be appropriately interposed or disposed between or outside each layer of the negative electrode, the electrode laminate, the solid electrolyte layer, and the positive electrode.
  • Each layer may be composed of a single layer or multiple layers.
  • the all solid stacked secondary batteries 1A and 1B each have three electrode stacks 30A to 30C, but the present invention is not limited to this, and one, two or four or more You may have an electrode laminated body.
  • the upper limit of the number of electrode stacks included in the all-solid-state stack type secondary battery is appropriately set according to the application, energy density and the like, but may be 11, for example.
  • the electrode stack 10 is provided. However, in the present invention, the electrode stack 10 is not provided and the solid electrolyte layer 20A is adjacent to the negative electrode 2 It can also be taken.
  • the cell unit 5A includes the negative electrode 2 or the negative electrode current collector, the solid electrolyte layer 20A, and the positive electrode active material layer 32A of the electrode stack 30A.
  • the electrode stack and the all solid stack type secondary battery can be manufactured by sequentially stacking the materials for forming the respective layers, and preferably by pressing during and / or after each layer lamination.
  • the surface shape of the positive electrode active material layer or the particle layer for forming unevenness is transferred to the current collector for the negative electrode by pressing, and the current collector for the negative electrode is the positive electrode active material layer It becomes a thin layer deformed in a concavo-convex shape or a wavy shape following the surface shape of Furthermore, the surface shape of the solid electrolyte layer is also deformed following the deformation of the current collector for the negative electrode.
  • the adhesiveness between each layer in the positive electrode active material layer or the particle layer for forming unevenness, the current collector for the negative electrode, and the solid electrolyte layer is improved.
  • the deformed shape of the negative electrode current collector corresponds to the surface shapes of the positive electrode active material layer and the like and the solid electrolyte layer, High adhesion between each layer can be obtained.
  • Production of the electrode stack and the all solid stacked secondary battery may be performed under air, under dry air (dew point -20 ° C or less) or in an inert gas (eg, argon gas, helium gas, nitrogen gas). You may go in the environment.
  • the materials and the like used in the method for producing the electrode laminate and the all solid stacked secondary battery are as described above.
  • the material may be solid such as powder, or may be paste-like. When using a paste-like material, each layer can be formed by coating and drying.
  • the solid electrolyte composition which forms a solid electrolyte layer contains the said electronic-insulation material, after superposing
  • the preferable manufacturing method of an electrode laminated body and an all-solid-state laminated secondary battery is demonstrated concretely.
  • This preferable manufacturing method is a method in which the electrode stack is stacked on the solid electrolyte layer, and the entire obtained stack is charged in a stacking direction and charged.
  • the plurality of electrode stacks are sequentially stacked via the solid electrolyte layer, and the entire obtained stack is pressed in the stacking direction to charge Do.
  • the electrode laminate used in this method may be prepared in advance as a laminate for an electrode in which a positive electrode active material layer or a particle layer for forming unevenness is laminated on a current collector for negative electrode, and the production of all solid laminated secondary battery It may be produced in the process. In the present invention, it is preferable to manufacture an electrode stack in the manufacturing process of the all solid laminated secondary battery.
  • the lamination method may carry out lamination formation of a plurality of layers simultaneously (multilayers of materials are continuously stacked and formed at one time and formed), lamination formation is carried out one layer at a time (formation is carried out for every layer) (Pressing and forming the material of the layer to be formed) is preferable in that mixing of the material can be prevented.
  • the stacking order of the solid electrolyte layer and the electrode stack is not particularly limited as long as the layer configuration can function as an all solid stacked secondary battery, and two electrode stacks stacked via the solid electrolyte layer
  • the surface on which the negative electrode active material in one electrode stack can be deposited (the above one surface) and the positive electrode active material layer in the other electrode stack are stacked in the order of facing through the solid electrolyte layer. Focusing on each layer, a positive electrode active material layer or a particle layer for forming unevenness, a negative electrode current collector (which becomes a layer configuration of one electrode laminate), a solid electrolyte layer, a positive electrode active material layer and a negative electrode current collector (Layer structure of the other electrode stack)) or in the reverse order thereof.
  • the number of stacked layers of the solid electrolyte layer and the electrode stack is set according to the number of electrode stacks (cell units) incorporated in the all-solid-state stack type secondary battery to be manufactured. In a preferable manufacturing method, it laminates suitably according to layer composition of a cathode and an anode.
  • conditions such as press pressure enable deformation of the above-mentioned current collector for negative electrode and positive electrode active material layer. It is not particularly limited as long as For example, the following press pressure can be mentioned.
  • press pressure can be mentioned.
  • 10 to 300 MPa is preferable, and 50 to 150 MPa is more preferable.
  • 100 to 700 MPa is preferable, and 200 to 600 MPa is more preferable.
  • pressing the electrode laminate 10 to 300 MPa is preferable, and 50 to 150 MPa is more preferable.
  • the pressing pressure in the case of simultaneously forming a plurality of layers simultaneously is, for example, preferably 30 to 600 MPa, and more preferably 100 to 300 MPa.
  • the pressurizing method is also not particularly limited, and a known method such as a method using a hydraulic cylinder press can be applied.
  • the entire laminate obtained in this manner is charged in a stacking direction with restraint pressure.
  • an alkali metal or an alkaline earth metal can be deposited on the surface of the current collector for the negative electrode to form a negative electrode active material layer.
  • the restraint pressure at this time is not particularly limited, but is preferably 0.05 to 20 MPa, and more preferably 1 to 10 MPa. Alkali metal or alkaline earth metal precipitates well on the current collector for the negative electrode when the restraint pressure is in this range, and it becomes easy to be dissolved at the time of discharge, and the battery performance is excellent (discharge deterioration) Difficult). In addition, a short circuit due to dendrite can be prevented.
  • the method for charging the laminate is also not particularly limited, and examples thereof include known methods.
  • the charging conditions are appropriately set according to the all solid stacked secondary battery.
  • the charge voltage may be charge voltage defined by one cell unit ⁇ the number of stacked cell units
  • the charge current may be a current value defined by one cell unit.
  • This charge can also be performed by initialization which is preferably performed after manufacturing or before using the all solid stacked secondary battery.
  • the electrode stack and the all solid laminated secondary battery of the present invention are manufactured.
  • the all-solid-state stack type secondary battery may be released from restraint pressurization, it is preferable from the viewpoint that discharge degradation can be prevented from being restrained pressurization during use.
  • the negative electrode active material layer for example, Li foil
  • the negative electrode active material layer is also deposited on the previously stacked negative electrode active material layer.
  • the all solid laminated secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, for example, when installed in an electronic device, a laptop computer, a pen input computer, a mobile computer, an e-book player, a mobile phone, a cordless handset, a pager, a handy terminal, a mobile fax, a mobile phone Examples include copying, portable printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini-discs, electric shavers, transceivers, electronic organizers, calculators, portable tape recorders, radios, backup power supplies, memory cards and the like.
  • Other consumer products include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game machines, road conditioners, watches, strobes, cameras, medical devices (pace makers, hearing aids, shoulder machines, etc.), etc. . Furthermore, it can be used for various military and space applications. It can also be combined with a solar cell.
  • Reference Example 2 Preparation of Positive Electrode Active Material Mixture (Composition) Inorganic Solid Electrolyte Composition 6 Synthesized in Reference Example 1 in which 180 pieces of zirconia beads having a diameter of 3 mm were charged into a 45 mL container made of zirconia (manufactured by Fritsch). Added .8g. To this was added 3.2 g of a positive electrode active material LCO, this container was set in a planetary ball mill P-7 (manufactured by Fritsch), stirring was continued for 10 minutes at a temperature of 25 ° C. and a rotational speed of 100 rpm to prepare a positive electrode active material mixture. did.
  • the average particle diameter D50 (by the above measurement method) of the positive electrode active material used was 10 ⁇ m.
  • Example 1 Production of All Solid Stacked Secondary Battery
  • the all solid stacked secondary battery 1A shown in FIG. 1 was produced.
  • the electrode laminate 10 instead of the electrode laminate 10, only the negative electrode current collector was provided, and the number of laminations of the electrode laminate was 1.
  • 100 mg of the sulfide-based inorganic solid electrolyte (LPS) synthesized in Reference Example 1 is placed in a cylinder with an inner diameter of 10 mm made of Macor (registered trademark), and pressed at 130 MPa to (first) solid electrolyte layer 20A was preformed.
  • LPS sulfide-based inorganic solid electrolyte
  • the positive electrode active material mixture synthesized in Reference Example 2 is put on the surface of the solid electrolyte layer 20A, and then the current collector for the negative electrode (diameter 10 mm, stainless steel foil) on the surface of the positive electrode active material mixture. , Thickness of 5 ⁇ m, ten-point average surface roughness Rz: 0.5 ⁇ m of the negative electrode formation scheduled surface (one surface).
  • 25 mg of the LPS synthesized in Reference Example 1 is again placed on the current collector for the negative electrode, and pressed at 130 MPa to form the (first) positive electrode active material layer 32A and the (second) solid electrolyte layer 20B. It was temporarily formed.
  • the electrode stack 30A having the current collector 31A for the negative electrode laminated in accordance with the surface shape of the positive electrode active material layer 32A was formed inside the cylinder.
  • the negative current collector (diameter 10 mm, stainless steel foil, thickness 5 ⁇ m, negative electrode formation planned surface (one surface) Average surface roughness Rz: 0.5 ⁇ m).
  • the negative electrode current collector and the temporary molded body were pressed at 550 MPa using a stainless steel piston. This negative electrode current collector corresponds to the negative electrode 2 and is hardly deformed.
  • a cell unit 5A (having a thickness of 705 ⁇ m) having a negative electrode current collector that is hardly deformed, a (first) solid electrolyte layer 20A having a thickness of about 600 ⁇ m, and a positive electrode active material layer 32A;
  • a pellet in which a cell unit 5B (thickness 255 ⁇ m) having a (second) solid electrolyte layer 20B having a thickness of about 150 ⁇ m and a positive electrode active material layer 32B was laminated was obtained inside a cylinder.
  • the pellet has a configuration in which a solid electrolyte layer 20A, an electrode current collector 30A (a positive electrode active material layer 32A and a current collector for a negative electrode 31A), and a solid electrolyte layer 20B are stacked in this order.
  • a stainless steel piston is disposed on each of the two surfaces of the pellet in the cylinder obtained in this way, and is tightened with four bolts, thereby manufacturing the all solid stacked secondary battery 1A of Example 1 as a battery for evaluation.
  • Constraint pressure was 0.6 Nm torque pressure and 8 MPa surface pressure.
  • the evaluation battery was placed in a stainless steel container (Ar atmosphere) and sealed. All operations using sulfide solid electrolyte particles in the above production were performed in a dry Ar atmosphere glove box.
  • Example 2 Production of All Solid Laminated Secondary Battery
  • the collector for the negative electrode stainless steel foil, thickness 5 ⁇ m
  • the current collector 31A for the negative electrode is formed by using a current collector (stainless steel foil, thickness 10 ⁇ m, ten-point average surface roughness Rz of the planned negative surface (one surface): 0.6 ⁇ m)
  • the all solid laminated secondary battery 1A of Example 2 was produced.
  • Example 3 Production of All Solid Stacked Secondary Battery
  • an all solid stacked secondary battery 1B shown in FIG. 2 was produced.
  • the electrode laminate 10 instead of the electrode laminate 10, only the negative electrode current collector was provided, and the number of laminations of the electrode laminate was 1.
  • an auxiliary current collector was used on the other surface (between the positive electrode active material layer 32A) of the current collector for a negative electrode (stainless steel foil, thickness 5 ⁇ m).
  • Three all solid laminated secondary batteries 1B were manufactured.
  • Test Example 1 Confirmation of Following Deformation of Negative Electrode Current Collector An arbitrary cross section of each of the manufactured evaluation batteries was subjected to an ion milling apparatus: IM 4000 (manufactured by Hitachi High-Technologies Corporation) using an acceleration voltage of 4.0 kV and a discharge voltage of 1. Argon ion milling was performed by irradiating an argon ion beam under the conditions of 5 V and a gas flow rate of 0.1 ml / min. The section after the treatment is observed by SEM, and it is defined as the maximum amplitude of the high frequency component after removing the low frequency component having a length of 5 times or more of the average particle diameter of the positive electrode active material in the 200 ⁇ m region.
  • the maximum amplitude (height of the maximum unevenness) was measured and compared with the average particle size of the used positive electrode active material.
  • Table 1 shows the height of the maximum unevenness as a magnification with respect to the average particle size of the positive electrode active material.
  • the average particle diameter of the positive electrode active material was determined by the following method from the image observed by SEM. In the image observed by SEM, the diameters of arbitrary 100 positive electrode active material particles were measured and determined as an average value.
  • Test Example 2 Evaluation of Short Circuit Charge / discharge measurement was performed using each of the manufactured evaluation batteries. The measurement conditions were: 25 ° C., potential range 5.0 to 8.5 V, current density 0.11 mA / cm 2 , and CC charge and discharge. In the case where an internal short circuit occurred, charging was not completed, and in that case, charging was completed in 20 hours and discharged. The presence or absence of the internal short circuit was judged based on the presence or absence of a sudden voltage drop during charging. In the evaluation of the short circuit, it was determined as the charge / discharge cycle characteristics whether the presence or absence of the occurrence of the internal short circuit or the number of the occurrence cycle correspond to any of the following evaluation criteria. -Evaluation criteria for charge and discharge cycle characteristics- A: No short circuit in 3 cycles or more B: Short circuit in 1 cycle or more and less than 3 cycles C: Short circuit in 1 cycle or less
  • the first discharge capacity is a product of a current value and a time until the voltage value decreases to 5.0 V by performing constant current discharge at a current density of 0.11 mA / cm 2 in the first discharge (current value ⁇ time ).
  • the capacity ratio of the initial discharge capacity to the initial charge capacity measured in this manner was calculated, and it was determined which of the following evaluation criteria this capacity ratio [initial discharge capacity / initial charge capacity] falls under.
  • C 70% ⁇ capacity ratio [initial discharge capacity / initial charge capacity]
  • Test Example 4 Evaluation of Mass Energy Density
  • the mass of the positive electrode active material layer, the mass of the positive electrode active material in the positive electrode active material layer, the mass of the current collector, and the solid electrolyte layer The mass of the solid electrolyte was calculated respectively. From each mass obtained, the mass ratio was calculated according to the following equation, and used as an index of mass energy density. The mass energy density of each evaluation battery was evaluated by determining which of the following evaluation criteria the calculated mass ratio falls under.
  • Mass ratio mass of positive electrode active material / (mass of positive electrode active material layer + mass of current collector + mass of solid electrolyte)
  • the mass of the positive electrode active material layer, the mass of the positive electrode active material and the mass of the solid electrolyte layer are respectively the total amount and Do.
  • the mass of the current collector is a total amount of a plurality of current collectors (including a current collector for the negative electrode and a current collector for the positive electrode).
  • the negative electrode current collector has the surface shape of the positive electrode active material layer.
  • the energy density, the short circuit and the discharge capacity (discharge deterioration) are excellent.
  • the present invention can be effectively configured as a stacked secondary battery, and even if the thickness of the negative electrode current collector is reduced to further improve the energy density, the occurrence of a short circuit and the discharge deterioration can be effectively suppressed. .

Abstract

一方の表面に負極活物質が析出可能な負極用集電体と、負極用集電体の、他方の表面に積層された正極活物質層又は凹凸形成用粒子層とを有する電極積層体であって、負極用集電体が、15μm以下の厚みを有し、正極活物質層又は凹凸形成用粒子層の表面形状に追従して積層した薄層体である電極積層体、及び、これを用いた全固体積層型二次電池及びその製造方法。

Description

電極積層体、全固体積層型二次電池及びその製造方法
 本発明は、電極積層体、全固体積層型二次電池及びその製造方法に関する。
 全固体リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた無機固体電解質層とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。この全固体リチウムイオン二次電池は、電気自動車又は大型蓄電池等への応用が期待されており、高エネルギー密度化が検討されている。
 エネルギー密度を向上させる技術として、集電体を薄層化する技術、負極活物質層を予め形成(積層)しない技術等が検討されている。例えば、負極を構成する負極活物質層を予め設けるのではなく、充電時に、正極活物質層等に含まれるリチウムイオンを用いて負極活物質層を形成する全固体積層型二次電池が提案されている(特許文献1)。
 また、別の技術として、電極と電解質を直列に配した構造とする技術も検討されている。例えば、正極活物質層と集電体と負極活物質層とをこの順で積層してなるバイポーラ型電極を複数備えた全固体バイポーラ二次電池が提案されている(特許文献2)。
特開2016-35867号公報 特開2008-103285号公報
 近年、全固体積層型二次電池は技術開発が急速に進展しており、エネルギー密度の更なる向上が求められている。負極活物質層を予め形成(積層)するのではなく充電により形成する方法において、負極を形成する集電体(負極用集電体)を薄層化すると、全固体積層型二次電池、とりわけ全固体積層型二次電池の(質量当たりの)エネルギー密度の向上が期待できる。しかし、本発明者が検討を進めたところ、薄層化した集電体を用いて充電により負極活物質層を形成した全固体積層型二次電池は、析出した負極活物質により短絡が発生しやすくなる。しかも、充放電、とりわけ充放電を繰り返すことによって、電池容量が低下する(放電劣化する)という新たな問題が生じることが分かった。
 本発明は、全固体積層型二次電池の電極として用いられることにより、薄層化した負極用集電体を有していても、短絡の発生と放電劣化とを抑制できる電極積層体を提供することを課題とする。また、本発明は、高いエネルギー密度を示し、短絡も放電劣化も発生しにくい全固体積層型二次電池及びその製造方法を提供することを課題とする。
 本発明者は、種々検討を重ねた結果、一方の表面に負極活物質が析出可能な負極用集電体の、他方の表面に正極活物質層を積層した電極積層体において、負極用集電体を特定厚みに設定して正極活物質層の表面形状に追従して積層させることにより、積層型全固体積層型二次電池に用いた際に、エネルギー密度を高めるとともに、短絡及び放電劣化の発生を抑制できることを見出した。また、本発明者は、固体電解質層を介して複数の上記電極積層体を順次積層して拘束加圧状態で充電すると、正極活物質層に追従変形した薄層負極集電体と固体電解質層との強固な密着を損なうことなく負極集電体上に負極活物質層を形成できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>一方の表面に負極活物質が析出可能な負極用集電体と、この負極用集電体の、他方の表面に積層された、正極活物質及び固体電解質を含有する正極活物質層、又は凹凸形成用粒子層とを有する電極積層体であって、
 負極用集電体が、15μm以下の厚みを有し、正極活物質層又は凹凸形成用粒子層の表面形状に追従して積層した薄層体である、電極積層体。
 すなわち、上記<1>に規定の電極積層体は下記の2態様を包含する。
<態様1>一方の表面に負極活物質が析出可能な負極用集電体と、この負極用集電体の、他方の表面に積層された、正極活物質及び固体電解質を含有する正極活物質層、又は凹凸形成用粒子層とを有する電極積層体であって、
 負極用集電体が、15μm以下の厚みを有し、正極活物質層の表面形状に追従して積層した薄層体である、電極積層体。
<態様2>一方の表面に負極活物質が析出可能な負極用集電体と、負極用集電体の、他方の表面に積層された凹凸形成用粒子層とを有する電極積層体であって、
 負極用集電体が、15μm以下の厚みを有し、凹凸形成用粒子層の表面形状に追従して積層した薄層体である、電極積層体。
<2>負極用集電体の一方の表面が、1.5μm以下の十点平均表面粗さRzを有する<1>に記載の電極積層体。
<3>上記<1>又は<2>に記載の電極積層体を少なくとも1つ有する全固体積層型二次電池。
<4>電極積層体が固体電解質層に積層され、電極積層体中の正極活物質及び固体電解質層中の固体電解質の少なくとも一方が周期律表第一族若しくは第二族に属する金属元素を有する、<3>に記載の全固体積層型二次電池。
<5>固体電解質層の少なくとも1層が、負極用集電体の一方の表面側領域に、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料の熱溶融物を含む<4>に記載の全固体積層型二次電池。
<6>電極積層体の一方の表面と固体電解質層との間に負極活物質層を有する<4>又は<5>に記載の全固体積層型二次電池。
<7>上記<6>に記載の全固体積層型二次電池の製造方法であって、
 固体電解質層と電極積層体を積層し、得られた積層物全体を積層方向に拘束加圧して充電する、全固体積層型二次電池の製造方法。
<8>負極用集電体の一方の表面が、1.5μm以下の十点平均表面粗さRzを有する、<7>に記載の全固体積層型二次電池の製造方法。
 本発明は、全固体積層型二次電池の電極として用いられることにより、薄層化した集電体を有していても短絡の発生と放電劣化とを抑制できる電極積層体を提供できる。また、本発明は、高いエネルギー密度を示し、短絡も放電劣化も発生しにくい全固体積層型二次電池及びその製造方法を提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は本発明の好ましい実施形態に係る全固体積層型二次電池を模式化して示す縦断面図である。 図2は本発明の別の好ましい実施形態に係る全固体積層型二次電池を模式化して示す縦断面図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリル」と記載するときは、メタアクリル及び/又はアクリルを意味する。また、「(メタ)アクリロイル」と記載するときは、メタアクリロイル及び/又はアクリロイルを意味する。
 本明細書において、化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのものの他、その塩、そのイオンを含む意味に用いる。
[全固体積層型二次電池]
 本発明の全固体積層型二次電池は、本発明の電極積層体を(内部)電極として少なくとも1つ有している。本発明の全固体積層型二次電池は、電極積層体を1つ有する場合、電極積層体が固体電解質層と積層された層構成(セルユニット)と、この層構成の上面及び下面に積層される、外部電圧が作用する駆動電極とを有している。本発明の全固体積層型二次電池は、電極積層体を複数有する場合、複数の電極積層体が固体電解質層を介して積層された層構成と、この層構成の上面及び下面に積層される駆動電極とを有している。換言すると、本発明の全固体積層型二次電池は、正極と負極(いずれも駆動電極と内部電極を含む。)とが固体電解質層を介して複数積層して配置されている。本発明の電極積層体は、全固体積層型二次電池に用いられる構成要素であって、全固体積層型二次電池の(内部)電極として用いられる。
 本発明の全固体積層型二次電池は、充電により負極活物質層を形成できる点で、正極活物質及び無機固体電解質の少なくとも一方が、周期律表第一族又は第二族に属する金属元素を有するものが好ましい。
 本発明の電極積層体及び全固体積層型二次電池は、充電時に負極用集電体に蓄積した、周期律表第一族に属する金属のイオン(アルカリ金属イオン)又は周期律表第二族に属する金属のイオン(アルカリ土類金属イオン)の一部が電子と結合し、金属として負極用集電体上(固体電解質との界面又は空隙を含む。)に析出する現象を利用して、負極活物質層を形成する。すなわち、本発明の電極積層体及び全固体積層型二次電池は、負極用集電体上に析出した金属を負極活物質層として機能させるものである。例えば金属リチウムは、負極活物質として汎用されている黒鉛に比べて10倍以上の理論容量を有するとされている。したがって、負極に金属リチウムを析出させてこの析出した金属リチウムに固体電解質層を積層した形態とすることにより、負極用集電体上に金属リチウムの層を形成することができ、高エネルギー密度の二次電池を実現することが可能になる。また、負極活物質層を予め形成(積層)しない形態の電池は、厚みをより薄くできるために、高いエネルギー密度を示す。
 このように、本発明の電極積層体及び全固体積層型二次電池は、充電により、負極活物質層が形成される。したがって、本発明の電極積層体及び全固体積層型二次電池は、未充電の態様(負極活物質が析出していない態様)と、既充電の態様(負極活物質が析出している態様)との両態様を包含する。なお、本発明において、負極活物質層を予め形成しない形態の全固体積層型二次電池とは、あくまで電池製造における層形成工程において負極活物質層を形成しないことを意味し、上記の通り、負極活物質層は、充電により固体電解質層と負極用集電体との間に形成されるものである。
 本発明の電極積層体及び全固体積層型二次電池は、本発明で規定する構成以外の構成は特に限定されず、全固体積層型二次電池に関する公知の構成を採用できる。
 以下、本発明の全固体積層型二次電池の好ましい態様について、本発明の電極積層体の好ましい態様と併せて、説明する。
 図1及び図2において、同じ符号は同じ構成要素(部材)を意味する。
 図1及び図2は、本発明の理解を容易にするための模式図であり、図1及び図2に示される全固体積層型二次電池は各部材のサイズ又は相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。
 図1は、本発明の好ましい実施形態に係る全固体積層型二次電池(全固体積層型リチウムイオン二次電池)1Aを模式化して示す断面図である。本実施形態の全固体積層型二次電池1Aは、固体電解質を介して4つの電極積層体を積層した電池である。電極積層体10は、負極用集電体11Aの一方の表面に負極活物質層13A、他方の表面に凹凸形成用粒子層12を有している。電極積層体30A~30Cは、それぞれ、負極用集電体31A~31Cそれぞれの一方の表面に負極活物質層33A~33C、他方の表面に正極活物質層32A~32Cを有している。
 この全固体積層型二次電池1Aは、負極2側からみて、電極積層体10、固体電解質層20A、電極積層体30A、固体電解質層20B、電極積層体30B、固体電解質層20C、電極積層体30C、固体電解質層20D、正極3を、この順に有している。また、4つの電極積層体それぞれの負極用集電体11A及び31A~31C上には析出した金属(この例ではリチウム金属)からなる負極活物質層13A及び33A~33Cを有している。各層はそれぞれ接触しており、積層した構造をとっている。
 全固体積層型二次電池1Aにおいて、電極積層体10は凹凸形成用粒子層12で負極2(負極集電体)に接しており、電極積層体30A~30Cは、それぞれ、両表面側で固体電解質層に挟まれて負極2及び正極3に接しておらず、(負極活物質層の有無にかかわらず)所謂バイポーラ電極又は内部電極といわれる。なお、作動部位6に接続され、外部電圧が作用する負極2及び正極3を駆動電極という。
 この全固体積層型二次電池1Aは、固体電解質と、これを挟んで積層された2つの電極積層体それぞれの固体電解質側の活物質層とからなるセルユニットを4つ有している。1つ目のセルユニット5Aは、電極積層体10の負極活物質層13Aと、固体電解質層20Aと、電極積層体30Aの正極活物質層32Aとからなる。2つ目のセルユニット5Bは、電極積層体30Aの負極活物質層33Aと、固体電解質層20Bと、電極積層体30Bの正極活物質層32Bとからなる。同様に、3つ目のセルユニット5Cは、電極積層体30Bの負極活物質層33Bと、固体電解質層20Cと、電極積層体30Cの正極活物質層32Cとからなる。また、4つ目のセルユニット5Dは、電極積層体30Cの負極活物質層33Cと、固体電解質層20Dと、正極3の正極活物質層32とからなる。
 全固体積層型二次電池1Aにおいて、複数存在する構成要素、例えば電極積層体は、全てが同じものであってもよく、異なるものであってもよい。
 全固体積層型二次電池1Aは、以下のようにして、二次電池として機能する。
 すなわち、各セルユニットにおいて、充電時には、負極側又は負極活物質層側に電子(e)が供給され、そこにリチウムが析出し、蓄積される。一方、放電時には、負極側又は負極活物質層側に蓄積されたリチウムが、リチウムイオン(Li)となり、正極側又は正極活物質層側に戻される。全固体積層型二次電池1A全体としては、充電時に外部回路6を介して電極積層体10に電子が供給され、放電時に外部回路6を介して正極3に電子が戻される。
 全固体積層型二次電池1Aは、上述のような構造を有することで、高いエネルギー密度で電子が流れる。また、短絡も放電劣化も発生しにくくなる。
 全固体積層型二次電池1Aは、既に充電され、負極活物質層13A及び33A~33Cが形成された二次電池を示しているが、上述のように、本発明の全固体積層型二次電池は、負極活物質層13A及び33A~33Cが形成されていない二次電池も包含する。
 図2は、本発明の別の好ましい実施形態に係る全固体積層型二次電池(全固体積層型リチウムイオン二次電池)1Bを模式化して示す断面図である。本実施形態の全固体積層型二次電池1Bは、全固体積層型二次電池1Aに対して、電極積層体が負極用集電体11A及び31A~31Cと凹凸形成用粒子層12又は正極活物質層32A~32Cとの間に補助集電体14及び34A~34Cを備えている点で異なるが、この点以外は、全固体積層型二次電池1Aと同様に構成されている。
 以下、本発明の光電変換素子が備える部材及び化合物の好ましい態様について、説明する。
<電極積層体>
 本発明の電極積層体は、一方の表面に負極活物質が析出可能な負極用集電体と、この負極用集電体の、他方の表面に積層された正極活物質層、又は凹凸形成用粒子層とを有している。この電極積層体は、負極活物質が析出可能な表面を有する負極集電体と、この負極誘電体の裏面(上記表面に対して他方の表面)に積層された正極活物質層又は凹凸形成用粒子層とを有しているということもできる。正極活物質層又は凹凸形成用粒子層は、他方の表面に隣接して積層されてもよく、他の層、例えば後述する補助集電体を介して積層されてもよい。
 電極積層体は、負極用集電体が正極活物質層又は凹凸形成用粒子層の表面形状に追従して積層されている(表面形状に沿って変形している)。本発明において、負極用集電体が正極活物質層又は凹凸形成用粒子層(以下、正極活物質層等という。)の表面形状に追従して積層されているとは、負極用集電体が正極活物質層等の表面形状に追従した(表面)形状を有していることを意味し、換言すると、正極活物質層等の表面形状に対応した(表面)形状をなしている。本発明において、追従した形状又は対応した形状とは、負極用集電体が正極活物質層等の表面形状に完全に追従又は対応して間隙なく密着する形状に限られず、本発明の作用効果を損なわない範囲で正極活物質層等の表面との間に空隙が存在する形状をも包含する。負極用集電体は、通常、正極活物質層等の表面との間に空隙が形成される形状に変形しており、その程度は、例えば、正極活物質層側又は凹凸形成用粒子層側に向かって集電体が凸に変形した頂点と、正極活物質粒子又は凹凸形成用粒子との最近接距離が0.1~10μm程度である。
 負極用集電体の変形状態又は変形量は、負極用集電体の材質、厚み若しくは硬さ、正極活物質若しくは凹凸形成用粒子の材質、粒径若しくは硬さ、プレス又は拘束加圧時の圧力又は時間、更には正極活物質と集電体間との間に設けられる中間層等により、適宜に設定できる。
 電極積層体において、変形した負極用集電体のうねり(電極積層体の任意の断面を走査型電子顕微鏡(SEM)で観察したときに、200μmの領域において負極用集電体の波うち形状)の最大振幅は、正極活物質等の平均粒径に対して、0.1倍以上であることが好ましく、0.2倍以上であることがより好ましく、0.22倍以上であることが更に好ましい。これにより、集電体に析出するリチウムデンドライトの塊による応力集中を緩和し、固体電解質層のクラック発生を防ぐことができる。
 SEMによる観察においては、任意の断面をアルゴンイオンミリング処理した試験体を用いる。
 うねりの最大振幅とは、SEMで観察した画像中の200μmの領域において、正極活物質等の平均粒径に対して5倍以上の長さ(周期)の低周波成分(長周期の波うち形状)を除去した後の高周波成分(正極活物質の平均粒径に対して5倍未満の長さを周期とする短周期の波うち形状)の最大振幅として定義される。また、ここでいう正極活物質等の平均粒径は、SEMで観察した画像において任意の正極活物質粒子若しくは凹凸形成用粒子100個の直径(等面積換算径)を測定し、平均値として求めた平均粒子径である。
 全固体積層型二次電池の集電体として、エネルギー密度を高めるため、厚みが15μm以下の負極用集電体を採用すると、その表面は通常平坦であるため、固体電解質又は固体電解質層とは平坦な面が接触面となっている。接触面の界面に、拘束圧力下でリチウムデンドライトが析出すると、析出したリチウムデンドライトと固体電解質との界面に応力が集中し、固体電解質にクラックが発生する恐れがある。しかし、本発明では、負極用集電体は、薄層体であるため、正極活物質層の表面形状に追従して変形しており、しかも固体電解質層が積層される表面も正極活物質層の表面形状に追従した形状になっている。そのため、負極用集電体が平坦な表面を有していても、集電体が上記高周波成分を最大振幅とするうねりに変形することで、リチウムデンドライトの析出と溶解による、局所的体積膨張収縮に対する柔軟性が生まれる。その結果、リチウムデンドライトによる短絡の発生と、充放電による界面剥離の発生に起因する放電劣化の発生とを抑制できる。
 - 負極用集電体 -
 本発明に用いる負極用集電体は、負極活物質が析出可能な表面を有する集電体、すなわち少なくとも一方の表面に負極活物質が析出可能な集電体であればよく、他方の表面(裏面)も負極活物質が析出可能となっていてもよい。このような負極用集電体は、負極活物質が析出しうる材料で形成された薄層体が挙げられる。
 負極用集電体を形成する材料としては、全固体積層型二次電池の充電時に負極活物質が析出しうる材料であればよく、リチウムと合金を形成しにくい材料が好ましく、更に電子伝導体が好ましい。このような材料として、例えば、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、ステンレス鋼の表面にニッケル又はチタンを処理させたもの(薄膜を形成したもの)が好ましく、その中でも、ステンレス鋼、ニッケルがより好ましい。
 負極用集電体の形状は、通常、フィルムシート状のものが使用されるが、例えば後述する補助集電体を有する場合など、負極用集電体を介して積層される負極活物質層と正極活物質層との接触を防止できる限り、フィルムシート状以外にも、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 負極用集電体の厚みは、その変形性の点で、15μm以下であり、好ましくは10μm以下であり、より好ましくは8μm以下である。厚みの下限値は、特に限定されないが、通常、3μm以上である。
 負極用集電体は、負極活物質が析出可能な表面の十点平均表面粗さRzが1.5μm以下であることが好ましく、1.5μm未満であることがより好ましく、1.3μm以下であることが更に好ましく、1.1μm以下であることが特に好ましい。薄層化した集電体は、機械的特性を保持するため、通常、表面処理されず、平坦な表面を有している。本発明では、上述のように、負極用集電体の変形により正極活物質層との高い密着性を確保できるから、上記厚みの薄層体を用いることができる。これにより、エネルギー密度の向上と、短絡及び放電劣化の発生とを高い水準で両立できる。
 負極用集電体の十点平均表面粗さ(Rz)は、JIS B 0601:2001に準じて、断面曲線から基準となる長さ200μm分の範囲内において最大の山頂から3番目、最低の谷底から3番目を通る二本の平行線の間隔として、測定することができる。
 - 補助集電体 -
 本発明において、負極用集電体は、後述する正極活物質層が形成される他方の表面に補助集電体を有していてもよい。この補助集電体は、負極用集電体の変形を阻害しない特性を有するものが選択され、更に電子伝導体が好ましい。例えば、アルミニウム、アルミニウム合金、銅、銅合金、及びチタンなどの他に、アルミニウム又は表面にカーボンを処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 補助集電体の、硬度、厚み及び表面粗さは、いずれも、上記特性を有するものであれば特に限定されない。厚みとしては、例えば、10~20μmに設定できる。
 - 正極活物質層 -
 本発明において、正極活物質層を有する電極積層体は、図1及び図2に示されるように、通常、内部電極として用いられる。
 正極活物質層は、正極活物質と固体電解質とを含有し、所望により他の成分を含有する。
 正極活物質は、周期律表第一族又は第二族に属する金属のイオンの挿入放出が可能な物質であり、本発明の全固体積層型二次電池に用いられる正極活物質は可逆的にリチウムイオンを挿入及び放出できるものが好ましい。この正極活物質は、充電により負極活物質層を形成できる点で、周期律表第一族又は第二族に属する金属元素を有するものが好ましい。このような正極活物質としては、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄等のLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、負極用集電体よりも硬度が高く負極用集電体を変形させることがきる点で、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、充電により負極活物質層を形成できる点で、Li元素を有するものが好ましく、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質は、正極活物質層中においても粒子状であることが好ましく、この場合、正極活物質の平均粒径D50(メジアン径)は1μm以上であることが好ましい。正極活物質の平均粒径D50が1μm以上であると、負極用集電体を正極活物質層の表面形状に追従して変形させることができる。変形による無機固体電解質との密着性の点で、平均粒径D50は、2μm以上がより好ましく、5μm以上が更に好ましい。平均粒径D50の上限値は、特に制限されないが、通常50μm以下とすることができ、例えば、20μm以下が好ましい。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の平均粒径D50は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質の、正極活物質層中における含有量は、特に限定されず、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量が更に好ましく、55~80質量%が特に好ましい。
 正極活物質層の厚みは、特に制限されないが、10~1,000μmが好ましく、20μm以上500μm未満がより好ましく、50μm以上500μm未満であることが更に好ましい。
 正極活物質層が含有する無機固体電解質の詳細については、後述する。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の、正極活物質層中における含有量は、特に制限されないが、正極活物質との合計含有量としては、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、50質量%以上であることがより一層好ましく、70質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。上限としては、100質量%以下であれば特に制限されず、例えば、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 正極活物質層は、他の成分として、導電助剤、無機固体電解質と正極活物質等とを結着させるバインダー、分散剤、リチウム塩、イオン液体等を含有していてもよい。これらの各成分は、全固体積層型二次電池の正極活物質層又は無機固体電解質層に通常用いられるものを用いることができる。
 - 凹凸形成用粒子層 -
 本発明において、凹凸形成用粒子層を有する電極積層体は、図1及び図2に示されるように、好ましくは負極2に隣接して配置される。
 凹凸形成用粒子層は、負極用集電体に凹凸を形成することにより、自身の表面形状に追従して変形させ得る凹凸形成用粒子を含有する層(凹凸形成粒子層)であればよく、他の成分を含有していてもよい。凹凸形成用粒子は、必ずしも層を形成している必要はなく、負極用集電体を変形しうる状態で存在していれば、分散又は散在していてもよい。
 この凹凸形成用粒子は、負極用集電体に凹凸を形成して変形させ得る凹凸形成用の粒子であればよく、電子伝導体が好ましい。粒子を形成する材料としては、負極用集電体よりも高い硬度を示すものが挙げられ、具体的には、上記正極活物質の他にも、スチールビーズ、ステンレスビーズ、ステンレスナノパウダー等が挙げられる。中でもステンレスビーズが好ましい。
 凹凸形成用粒子の粒径は、特に限定されないが、上述の正極活物質と同じであることが好ましい。
 凹凸形成用粒子層の厚み及び表面粗さは、特に限定されないが、例えば、厚みとしては、1~100μmに設定できる。
 - 負極活物質層 -
 本発明の全固体積層型二次電池が充電されると、上述の通り、負極用集電体の一方の表面(負極活物質が析出可能な表面)上に、析出した、周期律表第1族若しくは第2族に属する金属(本形態ではリチウム金属)からなる負極活物質層が形成される。
 負極活物質層は、負極用集電体の表面上、通常、負極用集電体と固体電解質層との間(負極用集電体及び固体電解質との界面、又は、負極用集電体及び固体電解質で画成される空隙)に、析出する。したがって、負極活物質層は、上記界面又は空隙に存在して負極活物質層側に電子を供給できれば、析出した金属が層状になっている必要はなく、上記界面又は空隙に分散又は散在した状態であってもよい。負極活物質層の形成(金属の析出)及び析出状態は、断面を電子顕微鏡等で観察することにより、確認できる。
 負極活物質層の厚みは、充放電量に依存し、一義的に決定できない。すなわち、充電により金属の析出量が増加し、放電により析出した金属がイオンとなって消失する。最大充電時の厚みとして一例を挙げると、1~10μmとすることができる。なお、負極活物質層の厚みは、SEMによる観察画像において、負極用集電体の一方の表面から析出した金属までの平均距離とする。
 電極積層体の作成方法は、全固体積層型二次電池の製造と併せて説明する。
<固体電解質層>
 固体電解質層は、2つの電極積層体の間に配置される。具体的には、一方の電極積層体における負極用集電体と、他方の電極積層体における正極活物質層との間に固体電解質層が配置される。また、図1に示されるように、電池として機能させるのに必要な位置、例えば、駆動電極側にも配置される。
 固体電解質層は、固体電解質と、好ましくは電子絶縁性材料と、所望により上記他の成分とを含有する。
 固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液やポリマー中でカチオン及びアニオンが解離又は遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第一族又は第二族に属する金属のイオン伝導性を有する。この無機固体電解質は、充電により負極活物質層を形成できる点で、周期律表第一族又は第二族に属する金属元素を有するものが好ましい。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質として、一般的には(i)硫化物系無機固体電解質及び/又は(ii)酸化物系無機固体電解質が用いられ、硫化物系無機固体電解質が好ましい。
 これらの無機固体電解質は、正極活物質及び負極用集電体よりも柔らかく、負極集電体の変形に追従して密着する。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第一族又は第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合比を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質粒子の平均粒径D50は、特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。無機固体電解質粒子の平均粒径D50の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、平均粒径D50を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の、固体電解質層中における含有量は、全固体積層型二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、50質量%以上であることがより一層好ましく、70質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。上限としては、100質量%以下であれば特に制限されず、例えば、下限値の設定と同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、固体電解質組成物が上記活物質を含有する場合、固体電解質組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 - 電子絶縁性材料 -
 全固体積層型二次電池が有する固体電解質層のうち少なくとも1つの固体電解質層、好ましくは全ての固体電解質層は、負極用集電体の一方の表面側領域(好ましくは固体電解質間の空隙)に、電子絶縁性材料の熱溶融物を含んでいることが好ましい。これにより、固体電解質層中に存在する無機固体電解質間の空隙のうち少なくとも一部が上記熱溶融物により塞がれ、この熱溶融物により埋められた空隙がリチウムデンドライトの成長をブロックして短絡の発生を防止できる。
 このような機能を奏する電子絶縁性材料は、100℃において固体(すなわち融点が100℃越え)である一方、200℃以下の温度領域で熱溶融する物性のものを用いる。「200℃以下の温度領域で熱溶融する」とは、1気圧下において、200℃以下の温度領域で熱溶融することを意味する。このような電子絶縁性材料を用いることにより、無機固体電解質と電子絶縁性材料とを含む混合物を用いて層を形成した後、電子絶縁性材料が溶融する温度まで容易に加熱することができ、この加熱により、溶融した電子絶縁性材料を毛細管現象によって無機固体電解質材料間の空隙へと移動させることができる。その後冷却して電子絶縁性材料の熱溶融物を固化させることにより、無機固体電解質材料間の形状に沿って事実上隙間なく、電子絶縁性材料の熱溶融物を埋め込んだ状態を作り出すことができる。
 ここで「電子絶縁性」とは、電子を通過させない性質をいう。本発明において、「電子絶縁性材料」という場合、測定温度25℃において導電率が10-9S/cm以下の材料であることが好ましい。
 本発明において、表面側領域は電子絶縁性材料の他に、デンドライトの成長をブロック可能な他の材料を含んでもよい。すなわち、本発明において、「電子絶縁性材料の熱溶融物」とは、電子絶縁性材料のみの熱溶融物である形態の他、電子絶縁性材料と、電子絶縁性材料以外の他の材料とを組み合わせた熱溶融物である形態を含む意味である。他の材料として、例えば、酸化アルミニウム、酸化ケイ素、窒化ホウ素、酸化セリウム、ダイヤモンド、ゼオライト等を挙げることができる。他の材料は通常は微粒子であり、その体積平均粒子径は1μm以下が好ましく、700nm以下がより好ましい。これらの材料を表面側領域に存在させることにより、熱溶融物が毛細管現象によって固体電解質間の隙間に染み込みやすくなり、デンドライトのブロック作用をより高めることができる。
 表面側領域が電子絶縁性材料に加えて他の材料を含む場合、固体電解質層中において、無機固体電解質材料の含有量100質量部に対し、他の材料の含有量を15質量部以下とすることが好ましく、10質量部以下とすることがより好ましい。
 電子絶縁性材料は、デンドライトの成長をブロックするために、固体状態においてデンドライトよりも硬い材料であることが好ましい。
 上記電子絶縁性材料としては、硫黄、改質硫黄、ヨウ素、硫黄とヨウ素の混合物等を挙げることができ、中でも、硫黄及び/又は改質硫黄を好適に用いることができる。硫黄は単体硫黄(硫黄そのもののほか多量体で存在するものも含む。)を意味する。
 また、改質硫黄は、硫黄と改質剤とを混練して得られるものである。例えば、純硫黄と改質添加剤であるオレフィン系化合物とを混練し、硫黄の一部を硫黄ポリマーに改質した改質硫黄を得ることができる。表面側領域に硫黄又は改質硫黄が存在することにより、この表面側領域へと成長してきたデンドライト(アルカリ金属又はアルカリ土類金属)を物理的にブロックすることができる。
 また、デンドライトと硫黄とが接触することにより、デンドライトと硫黄との反応も生じ得る。例えば金属リチウムのデンドライトと硫黄とが接触すると、2Li+S→LiSの反応が生じ、デンドライトの成長が止まる。このような反応が生じると、表面側領域中には反応生成物も共存した状態となる。この反応生成物はデンドライト金属よりも硬い電子絶縁性の化合物であるため、デンドライトの成長をブロックすることができる。すなわち、上記空隙は、上記の反応により生じたアルカリ金属を含む化合物及び/又はアルカリ土類金属を含む化合物を含有する形態であることも好ましい。このような形態をとることにより、表面側領域をより確実に塞ぐ効果も期待できる。
 無機固体電解質層の厚みは、特に限定されないが、10~1,000μmであることが好ましく、20μm以上700μm未満であることがより好ましく、50μm以上700μm未満であることが更に好ましい。
<負極>
 駆動電極となる負極は、電子伝導体で形成されていればよい。この負極は、図1及び図2に示すように電極積層体10に隣接して設けられても、実施例のように無機固体電解質層に隣接して設けられてもよい。負極は単層でもよく、複層でもよい。
 負極を形成する材料は、上記負極用集電体及び補助集電体で挙げた材料を特に限定されることなく用いることができる。中でも、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金、又は、ステンレス鋼の表面にカーボン、ニッケル、チタン若しくは銀を処理したものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 負極の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 負極(集電体)の厚みは、特に限定されないが、1~500μmが好ましい。また、負極は、表面処理により凹凸を付けることも好ましい。
<正極>
 駆動電極となる正極は、電子伝導体で形成されていればよい。この正極は、正極用集電体からなるものでもよいが、図1及び図2に示すように、正極用集電体35と正極活物質層32とを有し、固体電解質層に隣接して設けられることが好ましい。正極用集電体は単層でもよく、複層でもよい。
 正極用集電体を形成する材料は、上記負極で挙げた材料を特に限定されることなく用いることができる。中でも、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム若しくはステンレス鋼の表面にカーボン、ニッケル、チタン若しくは銀を処理したもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 正極用集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 正極用集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、正極用集電体表面は、表面処理により凹凸を付けることも好ましい。
 正極を構成する正極活物質層は、上記電極積層体を構成する正極活物質層と同義であり、好ましい形態も同じである。
 本発明において、負極、電極積層体、固体電解質層及び正極の各層の間又はその外側には、機能性の層又は部材等を適宜介在又は配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
 全固体積層型二次電池1A及び1Bにおいては、いずれも、3つの電極積層体30A~30Cを有しているが、本発明はこれに限定されず、1つ、2つ又は4つ以上の電極積層体を有していてもよい。全固体積層型二次電池が有する電極積層体数の上限は、用途又はエネルギー密度等に応じて適宜に設定されるが、例えば、11個とすることができる。また、全固体積層型二次電池1A及び1Bにおいては、電極積層体10を備えているが、本発明においては、電極積層体10を備えず、固体電解質層20Aが負極2に隣接した構成を採ることもできる。この場合、セルユニット5Aは、負極2又は負極集電体と、固体電解質層20Aと、電極積層体30Aの正極活物質層32Aとからなる。
[電極積層体及び全固体積層型二次電池の製造]
 電極積層体及び全固体積層型二次電池は、各層を形成する材料を順次積層し、好ましくは、各層積層時及び/又は順次積層後にプレスすることにより、製造できる。プレスにより、正極活物質層若しくは凹凸形成用粒子層の表面形状(正極活物質若しくは凹凸形成用粒子の粒子形状)が負極用集電体に転写され、負極用集電体は正極活物質層等の表面形状に追従した凹凸状又は波うち状に変形した薄層体となる。更にこの負極用集電体の変形に追従して固体電解質層の表面形状も変形する。これにより、正極活物質層若しくは凹凸形成用粒子層、負極用集電体及び固体電解質層における各層間の密着性が向上する。特に、平坦な表面を有する薄層化された負極用集電体を用いても、負極用集電体の変形形状が正極活物質層等及び固体電解質層の表面形状に対応しているため、各層間における高い密着性が得られる。
 負極活物質層を有する電極積層体及び全固体積層型二次電池を製造する場合、更に、拘束加圧した状態で充電する。
 電極積層体及び全固体積層型二次電池の製造は、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれの環境で行ってもよい。
 電極積層体及び全固体積層型二次電池の製造方法に用いる材料等は上述の通りである。材料は粉末等の固体であってもよく、ペースト状であってもよい。ペースト状の材料を用いる場合、塗布乾燥して各層を形成できる。
 固体電解質層を形成する固体電解質組成物が上記電子絶縁性材料を含有する場合、固体電解質組成物を重ね合わせた後に電子絶縁性材料が溶融する温度に加熱する。この加熱はプレスと同時に行ってもよい。
 電極積層体及び全固体積層型二次電池の好ましい製造方法を具体的に説明する。
 この好ましい製造方法は、電極積層体が固体電解質層に積層され、得られた積層物全体を積層方向に拘束加圧して充電する方法である。複数の電極積層体を有する全固体積層型二次電池を製造する場合、固体電解質層を介して複数の電極積層体を順次積層し、得られた積層物全体を積層方向に拘束加圧して充電する。
 この方法に用いる電極積層体は、負極用集電体上に正極活物質層若しくは凹凸形成用粒子層を積層した電極用積層物を予め作製してもよく、全固体積層型二次電池の製造過程において作製してもよい。本発明においては、全固体積層型二次電池の製造過程において電極積層体を作製することが好ましい。また、積層方法は、複数層を同時に積層形成(複数層分の材料を連続して積み重ねて1度にプレスして形成)してもよいが、1層ずつ積層形成(1層毎に、形成する層の材料をプレスして形成)することが、材料の混入を防止できる点で、好ましい。
 固体電解質層と電極積層体との積層順は、全固体積層型二次電池として機能する層構成となる順であれば特に限定されず、固体電解質層を介して積層される2つの電極積層体において、一方の電極積層体における負極活物質が析出可能な表面(上記一方の表面)と、他方の電極積層体における正極活物質層とが固体電解質層を介して対面する順で積層される。各層に着目すると、正極活物質層若しくは凹凸形成用粒子層、負極集電体(これにより一方の電極積層体の層構成となる)、固体電解質層、正極活物質層及び負極集電体(これにより他方の電極積層体の層構成となる)の順、又は、これと逆順で、積層される。
 固体電解質層と電極積層体との積層数は、製造する全固体積層型二次電池に組み込む電極積層体(セルユニット)の数に応じて、設定される。
 好ましい製造方法においては、負極及び正極の層構成に応じて、適宜に積層される。
 好ましい製造方法において、1層ずつ積層形成する方法(各層をプレスして成形する場合)において、プレス圧力等の条件は、上述の負極用集電体及び正極活物質層の変形が可能となる条件であれば特に限定されない。例えば、下記のプレス圧力が挙げられる。
 正極活物質をプレスする場合:10~300MPaが好ましく、50~150MPaがより好ましい。
 固体電解質をプレスする場合:100~700MPaが好ましく、200~600MPaがより好ましい。
 電極積層体をプレスする場合:10~300MPaが好ましく、50~150MPaがより好ましい。
 好ましい製造方法において、複数層を同時に積層形成する場合のプレス圧力は、例えば、30~600MPaが好ましく、100~300MPaがより好ましい。
 加圧方法も、特に限定されず、油圧シリンダープレス機を用いる方法等、公知の方法を適用することができる。
 次いで、このようにして得られた積層物全体を積層方向に拘束加圧して充電する。これにより、負極用集電体の表面上にアルカリ金属又はアルカリ土類金属を析出させて、負極活物質層を形成することができる。このときの拘束加圧圧力は、特に限定されないが、0.05~20MPaが好ましく、1~10MPaがより好ましい。拘束加圧圧力がこの範囲内にあると、アルカリ金属又はアルカリ土類金属が負極用集電体上に良好に析出し、かつ放電時に溶解しやすくなって電池性能に優れたもの(放電劣化しにくいもの)となる。また、デンドライトによる短絡を防止できる。
 積層物を充電する方法も、特に限定されず、公知の方法が挙げられる。充電条件は、全固体積層型二次電池に応じて適宜に設定される。具体的には、充電電圧は1つのセルユニットで規定される充電電圧×セルユニットの積層数とし、充電電流は1つのセルユニットで規定される電流値とすればよい。
 この充電は、全固体積層型二次電池を製造後又は使用前に好ましく行われる初期化によって、行うこともできる。
 このようにして、本発明の電極積層体及び全固体積層型二次電池が製造される。全固体積層型二次電池は拘束加圧を解かれてもよいが、使用中も拘束加圧されていることが放電劣化を防止できる点で好ましい。
 上記好ましい製造方法においては、全ての負極活物質層を充電により形成する態様を説明したが、電極積層体として負極活物質層(例えばLi箔)を予め積層したものを用いることができる。この場合、予め積層した負極活物質層にも負極活物質が析出する。
[全固体積層型二次電池の用途]
 本発明の全固体積層型二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
[参考例1] 硫化物系無機固体電解質の合成
 アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製の遊星ボールミルP-7(商品名)にこの容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス)6.20gを得た。このLi-P-S系ガラス(LPS)の平均粒径D50(上記測定方法による)は8μmであった。
[参考例2] 正極活物質合剤(組成物)の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを180個投入し、参考例1で合成した無機固体電解質組成物6.8gを加えた。これに正極活物質LCOを3.2g加え、この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで10分間攪拌を続け、正極活物質合剤を調製した。
 用いた正極活物質の平均粒径D50(上記測定方法による)は10μmであった。
[実施例1] 全固体積層型二次電池の製造
 本例では、図1に示す全固体積層型二次電池1Aを製造した。ただし、電極積層体10の代わりに負極集電体のみを設け、かつ電極積層体の積層数を1とした。
 まず、マコール(登録商標)製の内径10mmのシリンダの中に、参考例1で合成した硫化物系無機固体電解質(LPS)を100mg入れ、130MPaでプレスして、(第1)固体電解質層20Aを仮成形した。
 次に、固体電解質層20Aの表面上に、参考例2で合成した正極活物質合材を20mg入れ、次いで、正極活物質合材の表面に、負極用集電体(直径10mm、ステンレス鋼箔、厚み5μm、負極形成予定面(一方の表面)の十点平均表面粗さRz:0.5μm)を配置した。次に、負極用集電体の上に、参考例1で合成したLPSを再度25mg入れて、130MPaでプレスして、(第1)正極活物質層32A及び(第2)固体電解質層20Bを仮成形した。こうして、正極活物質層32Aの表面形状に追従して積層した負極用集電体31Aを有する電極積層体30Aを、シリンダ内部に形成した。
 次いで、固体電解質20Bの表面上に参考例2で合成した正極活物質合材を再度20mg入れ、130MPaでプレスして(第2)正極活物質層32Bを仮成形した。
 更に、固体電解質層20Aの他方(正極活物質層32Aとは反対側)の表面に、負極集電体(直径10mm、ステンレス鋼箔、厚み5μm、負極形成予定面(一方の表面)の十点平均表面粗さRz:0.5μm)を配置した。その後、負極集電体及び仮成形体をステンレス製のピストンを使って550MPaでプレスした。この負極集電体は、負極2に相当し、ほとんど変形していない。
 こうして、ほとんど変形していない負極集電体と、厚みが約600μmの(第1)固体電解質層20Aと正極活物質層32Aとを有するセルユニット5A(厚み705μm)と、負極用集電体31Aと、厚みが約150μmの(第2)固体電解質層20Bと、正極活物質層32Bとを有するセルユニット5B(厚み255μm)が積層されたペレットを、シリンダ内部に得た。このペレットは、固体電解質層20Aと、電極集電体30A(正極活物質層32A及び負極用集電体31A)と、固体電解質層20Bとがこの順で積層された構成を有している。
 こうして得られた、シリンダ内のペレットの両表面それぞれにステンレス鋼製のピストンを配置し、ボルト4本で締め付けることで、評価用電池としての実施例1の全固体積層型二次電池1Aを製造した(拘束加圧圧は、トルク圧0.6Nm、面圧8MPaであった。)。
 その後、評価用電池を、ステンレス鋼製の容器(Ar雰囲気)に入れて密閉した。
 上記製造において、硫化物固体電解質粒子を用いる作業は、いずれも、乾燥Ar雰囲気のグローブボックス中で行った。
[実施例2] 全固体積層型二次電池の製造
 実施例1の全固体積層型二次電池の製造において、上記負極用集電体(ステンレス鋼箔、厚み5μm)に代えて、負極用集電体(ステンレス鋼箔、厚み10μm、負極形成予定面(一方の表面)の十点平均表面粗さRz:0.6μm)を用いて負極用集電体31Aを形成したこと以外は、実施例1の全固体積層型二次電池の製造と同様にして、実施例2の全固体積層型二次電池1Aを製造した。
[実施例3] 全固体積層型二次電池の製造
 本例では、図2に示す全固体積層型二次電池1Bを製造した。ただし、電極積層体10の代わりに負極集電体のみを設け、かつ電極積層体の積層数を1とした。
 実施例1の全固体積層型二次電池の製造において、上記負極用集電体(ステンレス鋼箔、厚み5μm)の他方の表面上(正極活物質層32Aとの間)に、補助集電体(アルミニウム箔、厚み20μm)を積層して負極用集電体31A及び補助集電体34Aを形成したこと以外は、実施例1の全固体積層型二次電池の製造と同様にして、実施例3の全固体積層型二次電池1Bを製造した。
[比較例1] 全固体積層型二次電池の製造
 実施例1の全固体積層型二次電池の製造において、上記負極用集電体(ステンレス鋼箔、厚み5μm)に代えて、負極用集電体(ステンレス鋼箔、厚み20μm、負極形成予定面(一方の表面)の十点平均表面粗さRz:0.8μm)を用いたこと以外は、実施例1の全固体積層型二次電池の製造と同様にして、比較例1の全固体積層型二次電池を製造した。
[試験例1] 負極集電体の追従変形確認
 製造した各評価用電池の任意の断面をイオンミリング装置:IM4000(日立ハイテクノロジーズ社製)を用いて、加速電圧4.0kV、放電電圧1.5V、ガス流量0.1ml/minの条件で、アルゴンイオンビームを照射してアルゴンイオンミリング処理した。
 処理後の断面をSEMで観察して、200μmの領域における、正極活物質の平均粒径の5倍以上の長さの低周波成分を除去した後の高周波成分の最大振幅として定義される、うねりの最大振幅(最大凹凸の高さ)を測定し、用いた正極活物質の平均粒径と比較した。表1には、最大凹凸の高さを、正極活物質の平均粒径に対する倍率として、示した。
 ここで、正極活物質の平均粒径は、SEMで観察した画像から下記方法により求めた。SEMで観察した画像において、任意の100個の正極活物質粒子の直径を測定し、平均値として求めた。
[試験例2] 短絡の評価
 製造した各評価用電池を用いて、充放電測定を行った。測定条件は、25℃、電位範囲5.0~8.5V、電流密度0.11mA/cm、CC充放電とした。内部短絡が起きた場合には、充電が終了しないため、その場合は20時間で充電を終了させ、放電させた。
 内部短絡の有無は、充電時の急激な電圧降下の有無により判断した。
 短絡の評価は、充放電サイクル特性として、内部短絡の発生の有無又は発生サイクル数が下記の評価基準のいずれに該当するかを判定した。
-充放電サイクル特性の評価基準-
 A:3サイクル以上でも短絡なし
 B:1サイクル以上3サイクル未満で短絡
 C:1サイクル未満で短絡
[試験例3] 放電容量(放電劣化)の評価
 製造した各評価用電池を用いて、初めて充放電する際の容量(それぞれ初回充電容量及び初回放電容量という。)をそれぞれ測定して、下記評価基準に基づいて放電劣化を評価した。
 初回充電容量は、初回の充電において、電圧が8.5Vに上昇するまでは電流密度0.11mA/cmにて一定電流充電を行い、その後は電圧8.5Vにて一定電圧充電を行って電流密度が0.011mA/cmに低下するまでの、電流値と時間との積(電流値×時間)とした。
 初回放電容量は、初回の放電において、電流密度0.11mA/cmにて一定電流放電を行い、電圧値が5.0Vに低下するまでの、電流値と時間との積(電流値×時間)とした。
 このようにして測定した、初回充電容量に対する初回放電容量の容量比を算出し、この容量比[初回放電容量/初回充電容量]が下記の評価基準のいずれに該当するかを判定した。
-放電劣化の評価基準-
 A:      容量比[初回放電容量/初回充電容量] >80%
 B: 80%≧ 容量比[初回放電容量/初回充電容量] >70%
 C: 70%≧ 容量比[初回放電容量/初回充電容量]
[試験例4] 質量エネルギー密度の評価
 製造した各評価用電池における、正極活物質層の質量、正極活物質層中の正極活物質の質量、集電体の質量、及び固体電界質層中の固体電解質の質量を、それぞれ算出した。得られた各質量から、下記式により、質量比を算出して、質量エネルギー密度の指標とした。算出した質量比が下記評価基準のいずれに該当するかを判定して、各評価用電池の質量エネルギー密度を評価した。
 
質量比=正極活物質の質量/(正極活物質層の質量+集電体の質量+固体電界質の質量)
 
 本試験例において、各評価用電池が正極活物質層及び固体電界質層を複数含む場合、正極活物質層の質量、正極活物質の質量及び固体電界質層の質量は、それぞれ、合計量とする。また、集電体の質量は、複数の集電体(負極用集電体及び正極用集電体を含む。)の合計量とする。
-質量エネルギー密度の評価基準-
 A:       質量比 > 0.18
 B:0.18 ≧ 質量比 > 0.17
 C:0.17 ≧ 質量比
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、厚みが大きい負極集電体を用いた比較例1の全固体積層型二次電池は、負極集電体の変形が十分ではなく、エネルギー密度、短絡及び放電容量(放電劣化)のいずれも十分ではない。
 これに対して、本発明で規定する特定厚みの負極集電体を用いた実施例1~3の全固体積層型二次電池は、いずれも、負極集電体が正極活物質層の表面形状に追従して積層しており、エネルギー密度、短絡及び放電容量(放電劣化)のいずれも優れている。このように、本発明は、積層型二次電池として構成し、更に負極集電体を薄くしてエネルギー密度の更なる向上を指向しても短絡の発生と放電劣化とを効果的に抑制できる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年10月20日に日本国で特許出願された特願2017-203674に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1A、1B 全固体積層型二次電池
2 負極
3 正極
5A~5D セルユニット
6 作動部位
10 電極積層体
 11A、31A~31C 負極用集電体
 12 凹凸形成用粒子層
 13A、33A~33C 負極活物質層
 14、34A~34C 補助集電体
20A~20D 固体電解質層
30A~30C 電極積層体
 32、32A~32C 正極活物質層
35 正極用集電体

Claims (8)

  1.  一方の表面に負極活物質が析出可能な負極用集電体と、該負極用集電体の、他方の表面に積層された、正極活物質及び固体電解質を含有する正極活物質層、又は凹凸形成用粒子層とを有する電極積層体であって、
     前記負極用集電体が、15μm以下の厚みを有し、前記正極活物質層又は前記凹凸形成用粒子層の表面形状に追従して積層した薄層体である、電極積層体。
  2.  前記負極用集電体の前記一方の表面が、1.5μm以下の十点平均表面粗さRzを有する請求項1に記載の電極積層体。
  3.  請求項1又は2に記載の電極積層体を少なくとも1つ有する全固体積層型二次電池。
  4.  前記電極積層体が固体電解質層に積層され、前記電極積層体中の前記正極活物質及び前記固体電解質層中の固体電解質の少なくとも一方が周期律表第一族若しくは第二族に属する金属元素を有する、請求項3に記載の全固体積層型二次電池。
  5.  前記固体電解質層の少なくとも1層が、前記負極用集電体の一方の表面側領域に、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料の熱溶融物を含む請求項4に記載の全固体積層型二次電池。
  6.  前記電極積層体の前記一方の表面と前記固体電解質層との間に負極活物質層を有する請求項4又は5に記載の全固体積層型二次電池。
  7.  請求項6に記載の全固体積層型二次電池の製造方法であって、
     前記固体電解質層と前記電極積層体を積層し、得られた積層物全体を積層方向に拘束加圧して充電する、全固体積層型二次電池の製造方法。
  8.  前記負極用集電体の前記一方の表面が、1.5μm以下の十点平均表面粗さRzを有する、請求項7に記載の全固体積層型二次電池の製造方法。
PCT/JP2018/037997 2017-10-20 2018-10-11 電極積層体、全固体積層型二次電池及びその製造方法 WO2019078093A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18869215.6A EP3699983A4 (en) 2017-10-20 2018-10-11 ELECTRODE LAMINATE, FULLY LAMINATED SECONDARY CELL AND METHOD OF MANUFACTURING THEREOF
CN201880066870.5A CN111213261B (zh) 2017-10-20 2018-10-11 电极层叠体、全固态层叠型二次电池及其制造方法
JP2019549235A JP6895533B2 (ja) 2017-10-20 2018-10-11 電極積層体、全固体積層型二次電池及びその製造方法
KR1020207009969A KR102323927B1 (ko) 2017-10-20 2018-10-11 전극 적층체, 전고체 적층형 이차 전지 및 그 제조 방법
US16/833,670 US20200227757A1 (en) 2017-10-20 2020-03-30 Electrode laminate, all-solid state laminated secondary battery, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017203674 2017-10-20
JP2017-203674 2017-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/833,670 Continuation US20200227757A1 (en) 2017-10-20 2020-03-30 Electrode laminate, all-solid state laminated secondary battery, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019078093A1 true WO2019078093A1 (ja) 2019-04-25

Family

ID=66173222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037997 WO2019078093A1 (ja) 2017-10-20 2018-10-11 電極積層体、全固体積層型二次電池及びその製造方法

Country Status (6)

Country Link
US (1) US20200227757A1 (ja)
EP (1) EP3699983A4 (ja)
JP (1) JP6895533B2 (ja)
KR (1) KR102323927B1 (ja)
CN (1) CN111213261B (ja)
WO (1) WO2019078093A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510231A (ja) * 2018-01-09 2021-04-15 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン リチウムイオン伝導性固体電解質により被覆された集電体
EP3869592A1 (en) * 2020-02-18 2021-08-25 Samsung SDI Co., Ltd. Negative electrode and solid state secondary battery including the same
CN113948709A (zh) * 2020-07-16 2022-01-18 丰田自动车株式会社 硫化物全固体电池
CN117254129A (zh) * 2023-11-17 2023-12-19 宁德时代新能源科技股份有限公司 二次电池和用电装置
WO2024069204A1 (ja) * 2022-09-27 2024-04-04 日産自動車株式会社 全固体電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024877B2 (en) * 2018-12-04 2021-06-01 TeraWatt Technology Inc. Anode-free solid-state battery cells with anti-dendrite and interface adhesion controlled functional layers
JP7456365B2 (ja) * 2020-12-11 2024-03-27 トヨタ自動車株式会社 全固体電池
US11271247B1 (en) * 2020-12-15 2022-03-08 WATTRII, Inc. Solid-state battery and method of forming same
JP7334201B2 (ja) * 2021-03-01 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極および該電極の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164897A (ja) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd バイポーラ電池
JP2008103285A (ja) 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 全固体バイポーラ電池
JP2011100623A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 積層型電池
JP2011204510A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 全固体型リチウムイオン二次電池
WO2012164642A1 (ja) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 バイポーラ全固体電池
JP2016035867A (ja) 2014-08-04 2016-03-17 トヨタ自動車株式会社 リチウム固体二次電池およびその製造方法
JP2017203674A (ja) 2016-05-11 2017-11-16 富士ゼロックス株式会社 変化度合い導出装置、変化度合い導出方法及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3652195B2 (ja) * 1999-12-24 2005-05-25 京セラ株式会社 固体電解質型燃料電池セル
JP5176262B2 (ja) * 2005-03-18 2013-04-03 日産自動車株式会社 非水電解質電池用電極の製造方法
JP2007109636A (ja) * 2005-09-14 2007-04-26 Nissan Motor Co Ltd 電池用電極
JP4622803B2 (ja) * 2005-10-25 2011-02-02 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池、並びにそれらの製造方法
JP5143700B2 (ja) * 2007-10-24 2013-02-13 パナソニック株式会社 電気化学素子用電極およびそれを用いた電気化学素子
JPWO2011148824A1 (ja) * 2010-05-25 2013-07-25 住友電気工業株式会社 非水電解質電池、およびその製造方法
JP5276158B2 (ja) * 2010-12-27 2013-08-28 古河電気工業株式会社 リチウムイオン二次電池、該電池用負極電極、該電池負極集電体用電解銅箔
JP2013191388A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 積層構造電池
JP6670641B2 (ja) * 2016-03-08 2020-03-25 富士フイルム株式会社 電極用材料、これを用いた全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164897A (ja) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd バイポーラ電池
JP2008103285A (ja) 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 全固体バイポーラ電池
JP2011100623A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 積層型電池
JP2011204510A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 全固体型リチウムイオン二次電池
WO2012164642A1 (ja) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 バイポーラ全固体電池
JP2016035867A (ja) 2014-08-04 2016-03-17 トヨタ自動車株式会社 リチウム固体二次電池およびその製造方法
JP2017203674A (ja) 2016-05-11 2017-11-16 富士ゼロックス株式会社 変化度合い導出装置、変化度合い導出方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3699983A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510231A (ja) * 2018-01-09 2021-04-15 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン リチウムイオン伝導性固体電解質により被覆された集電体
EP3869592A1 (en) * 2020-02-18 2021-08-25 Samsung SDI Co., Ltd. Negative electrode and solid state secondary battery including the same
CN113948709A (zh) * 2020-07-16 2022-01-18 丰田自动车株式会社 硫化物全固体电池
US20220021000A1 (en) * 2020-07-16 2022-01-20 Toyota Jidosha Kabushiki Kaisha Sulfide all-solid-state battery
CN113948709B (zh) * 2020-07-16 2024-02-13 丰田自动车株式会社 硫化物全固体电池
WO2024069204A1 (ja) * 2022-09-27 2024-04-04 日産自動車株式会社 全固体電池
CN117254129A (zh) * 2023-11-17 2023-12-19 宁德时代新能源科技股份有限公司 二次电池和用电装置

Also Published As

Publication number Publication date
CN111213261B (zh) 2023-07-07
US20200227757A1 (en) 2020-07-16
EP3699983A1 (en) 2020-08-26
JPWO2019078093A1 (ja) 2020-10-22
CN111213261A (zh) 2020-05-29
KR20200051020A (ko) 2020-05-12
EP3699983A4 (en) 2020-12-23
KR102323927B1 (ko) 2021-11-08
JP6895533B2 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6895533B2 (ja) 電極積層体、全固体積層型二次電池及びその製造方法
TWI395360B (zh) 全固體電池
JP5516755B2 (ja) 電極体および全固体電池
JP6912658B2 (ja) 全固体二次電池及びその製造方法
JP2010245024A (ja) 全固体二次電池
JP6799713B2 (ja) 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法
JP6966502B2 (ja) 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法
JP7064613B2 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
US20210013544A1 (en) Solid electrolyte sheet, negative electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery
WO2019054184A1 (ja) 全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法
US20200006718A1 (en) All-solid state secondary battery and manufacturing method therefor
JP6948382B2 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シート
WO2020196040A1 (ja) 全固体リチウムイオン二次電池とその製造方法、及び負極用積層シート
JP7119214B2 (ja) 全固体二次電池及びその製造方法
JP6920413B2 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
JP2023048393A (ja) 固体電池及び固体電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549235

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009969

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018869215

Country of ref document: EP

Effective date: 20200520