WO2019075875A1 - 有机胺盐发泡剂 - Google Patents

有机胺盐发泡剂 Download PDF

Info

Publication number
WO2019075875A1
WO2019075875A1 PCT/CN2017/114589 CN2017114589W WO2019075875A1 WO 2019075875 A1 WO2019075875 A1 WO 2019075875A1 CN 2017114589 W CN2017114589 W CN 2017114589W WO 2019075875 A1 WO2019075875 A1 WO 2019075875A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
group
compound
organic
halogen
Prior art date
Application number
PCT/CN2017/114589
Other languages
English (en)
French (fr)
Inventor
毕戈华
毕玉遂
Original Assignee
山东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东理工大学 filed Critical 山东理工大学
Priority to AU2017436626A priority Critical patent/AU2017436626B2/en
Priority to RU2020115026A priority patent/RU2778681C2/ru
Priority to CA3078648A priority patent/CA3078648C/en
Priority to KR1020227033484A priority patent/KR102540982B1/ko
Priority to EP17929390.7A priority patent/EP3719064A4/en
Priority to JP2020520754A priority patent/JP7036913B2/ja
Priority to US16/753,064 priority patent/US11634552B2/en
Priority to KR1020207012331A priority patent/KR102528271B1/ko
Publication of WO2019075875A1 publication Critical patent/WO2019075875A1/zh
Priority to JP2022032567A priority patent/JP2022088402A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C241/00Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C241/02Preparation of hydrazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C243/10Hydrazines
    • C07C243/12Hydrazines having nitrogen atoms of hydrazine groups bound to acyclic carbon atoms
    • C07C243/14Hydrazines having nitrogen atoms of hydrazine groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • C08G18/163Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2045Heterocyclic amines; Salts thereof containing condensed heterocyclic rings
    • C08G18/2063Heterocyclic amines; Salts thereof containing condensed heterocyclic rings having two nitrogen atoms in the condensed ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • C08G18/5027Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups directly linked to carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • C08J2203/164Perhalogenated unsaturated hydrocarbons, e.g. F2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/184Binary blends of expanding agents of chemical foaming agent and physical blowing agent, e.g. azodicarbonamide and fluorocarbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/204Ternary blends of expanding agents of chemical foaming agent and physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the present invention relates to a composite blowing agent comprising a hexafluorobutene and an organic alcohol amine salt compound, and its use in a material such as a foamed material such as a polyurethane foam or a PVC foamed material or a polystyrene foam.
  • the invention also relates to a polyurethane foaming process using carbon dioxide in combination with an organic amine, which uses gaseous carbon dioxide, liquid carbon dioxide and/or supercritical carbon dioxide as a blowing agent, and belongs to the field of polyurethane foams.
  • the present invention also relates to a process for preparing a low water content of a carbonated amine salt, and more particularly to a process for the cyclic production of a low water content of a carbonate amine salt.
  • polyurethane rigid foam As a new polymer material, polyurethane rigid foam is light in quality, high in strength and has very low thermal conductivity. It is a high-quality thermal insulation material widely used in refrigerating and heat preservation, especially chemical weapons refrigerating and heat preservation, building energy saving, solar energy, Industries such as automobiles and refrigerators, such as refrigerators and freezers.
  • the most important raw material in the production of polyurethane rigid foams is a blowing agent. At present, these blowing agents are all chlorofluorocarbons except cyclopentane. Due to their destruction of the ozone layer, governments have already signed the "Montreal Protocol" international convention to restrict and phase out and ban such products. China is also a signatory to the agreement for production and use.
  • HCFC-141b difluorodichloroethane
  • cyclopentane the second-generation chlorofluorocarbon blowing agent HCFC-141b (monofluorodichloroethane) and cyclopentane.
  • the developed countries such as Europe and the United States have already banned the use of HCFC-141b.
  • the Chinese government will The consumption of HCFC-141b is frozen at the consumption level in 2009 and 2010. In 2015, it eliminated 20% of the consumption, and promised to completely ban production and use until 2025.
  • the developed countries in Europe and America use the third.
  • blowing agents pentafluoropropane (HFC-245fa) and pentafluorobutane (HFC-365) have high GWP (greenhouse effect potential) and serious damage to the atmospheric ozone layer.
  • Europe and the United States will ban the use of third-generation foaming agents by 2017.
  • Honeywell has developed a fourth-generation physical foaming agent, chlorotrifluoropropene (LBA), but the product is expensive, and ODP (potential value for damage to the ozone layer) is zero, but GWP Still higher, relatively environmentally friendly than the third generation.
  • these physical foaming agents other than cyclopentane are the main culprit in destroying the ozone layer of the atmosphere, because they contain chlorine and fluorine, and will be eliminated.
  • the prior art discloses direct use of CO 2 as a polyurethane blowing agent, but in view of the escape of CO 2 gas and its poor solubility in the raw material MDI and polyester polyol and/or polyether polyol, the CO 2 gas is The foaming composition is not uniformly dispersed, and the foaming process is not easily controlled.
  • the prior art discloses directly using a small amount of water as a polyurethane blowing agent, but in view of the hydrogen bonding of water molecules and the poor solubility of water in polyester polyols and/or polyether polyols, water molecules are microscopically Drop form exists in foaming In compositions such as polyether polyol components, local overreaction and foaming are caused in the foamed material. If water is used as the blowing agent, more urea bonds are contained in the polyurethane foam, which greatly affects the strength and thermal insulation properties of the foam. In addition, if the amount of water used as a blowing agent is slightly increased, the performance and dimensional stability of the polyurethane foam are significantly affected. If water is the sole blowing agent, the polyurethane foam will suffer from shrinkage, scorching, and insequential heat insulation.
  • the foaming agents of the prior art cannot be dispersed into the foaming composition at the molecular level, thereby causing uneven distribution of cells and uneven size of the cells, ultimately affecting the strength properties and thermal insulation of the foamed material. nature.
  • hexafluorobutene (boiling point about 33 ° C, trade name FEA-1100) is used as a polyurethane foaming agent in the prior art, however, its production cost and selling price, and polyurethane foam prepared by using it as a foaming agent.
  • the material still has insufficient performance, especially in the low temperature or ultra-low temperature conditions, the thermal insulation performance is significantly reduced and the deformation at low temperature or ultra-low temperature (because the foaming agent becomes liquid, the vapor pressure in the cell becomes low, the bubble phenomenon Prominent) is very serious.
  • the prior art discloses a method of producing a polyurethane foam by foaming liquid CO 2 or foaming using supercritical carbon dioxide, in which CO 2 or supercritical carbon dioxide is directly used as a polyurethane foaming agent.
  • CO 2 gas is a naturally occurring gas in the atmosphere, non-combustible, non-toxic and environmentally friendly, it is a very environmentally friendly and safe foaming technology.
  • the prior art in view of the escape of CO 2 gas and its low solubility in the raw material MDI and polyester polyol and/or polyether polyol, in order to increase the amount of CO 2 dissolved in the above raw materials to meet the foaming demand, the prior art must be used.
  • Ultra-high liquid CO 2 operating pressure under normal conditions, the material pressure is higher than 25 MPa, which is very demanding on equipment, is not convenient for practical industrial production applications, and the foaming process is not easy to control. Further, in view of the CO 2 gas solubility in the foamable composition is not good, resulting in most of the CO 2 gas can not be uniformly dispersed in the foamable composition, resulting in non-uniform and non-uniform cell size distribution of the cells, Ultimately affect the strength properties and thermal insulation properties of the foamed material.
  • Chinese Patent Application No. 201610393108.0 discloses a carbonated amine salt and a method thereof, however, the obtained alcoholic alcohol amine product still contains a high water content, and cannot be removed by a distillation method or by a vacuum devolatilization method. Because its decomposition temperature is around 60 ° C, and CO 2 is removed from the molecule during the process of removing moisture. However, how to prepare a low water content of a carbonate amine salt is still a difficulty in the art.
  • the inventors of the present application unexpectedly found that when a hexafluorobutene is combined with an organic alcohol amine salt mixture (MAA) as a polyurethane foaming agent, the obtained polyurethane foam material not only has a better temperature at normal temperature. Insulation performance, and good resistance to deformation and thermal insulation at low or ultra-low temperatures. This is for polyurethane foam in the deep cold field The application in it is of great significance.
  • MAA organic alcohol amine salt mixture
  • a composite blowing agent i.e., a composite blowing agent comprising a hexafluorobutene and an organic alcohol amine salt compound
  • a composite blowing agent comprising:
  • the alcohol amine salt mixture (MAA) comprises an organic alcohol amine salt compound which is an organic amine salt compound having the following general formula (I):
  • B m+ contains or each B m+ is independently: a +1 valent ammonium ion, a +1 valence hydrazine Ions (H 3 + N-NH 2 ), +2 valence cesium ions (H 3 + N-NH 3 + ), and/or, having m - + NR 3 R 4 H groups and/or - + a cation of one or more organic amines (B) of the NR 3 H-group;
  • a n- is selected from one or two or three of the following anions:
  • R 3 or R 4 is independently selected from the group consisting of: H, R, a C 1 -C 7 aliphatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen, C 3 -C 7 optionally substituted by a hydroxyl group or an amino group or a halogen. a cycloaliphatic hydrocarbon group, or a C 6 -C 10 aromatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen;
  • the compound of the formula (I) has at least one (for example one or two) R-bonded R groups (ie -NR groups), and the alcoholamine salt mixture (MAA) contains 50 a salt of a monoalcoholamine (e.g., monoethanolamine and/or monopropanolamine) and a glycolamine (e.g., diethanolamine, ethanol propanolamine, and/or dipropylene) at -99 wt% (the balance being water and optional impurities) a salt of an alcoholamine) based on the total weight of the alcohol amine salt mixture (MAA);
  • a monoalcoholamine e.g., monoethanolamine and/or monopropanolamine
  • a glycolamine e.g., diethanolamine, ethanol propanolamine, and/or dipropylene
  • R group is selected from one or more of the following groups:
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, C 1 - optionally substituted by hydroxy or amino or halogen. a C 7 aliphatic hydrocarbon group, a C 3 -C 7 cycloaliphatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen, or a C 6 -C 10 aromatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen;
  • the content of water in the alcohol amine salt mixture (MAA) is >0 wt% to 40 wt%
  • the organic amine compound (B) is an organic amine compound having 2 to 50 carbon atoms
  • the weight ratio of the hexafluorobutene to the alcohol amine salt mixture (MAA) in the composite blowing agent is from 0.1 to 10:1.
  • a n- is (b) carbonate: CO 3 2- ; or A n- is (b) carbonate (CO 3 2- ) and (c) formate (HCOO - ) and / or (d) combination or mixture between - bicarbonate (HO-COO).
  • (1a)H[OCH(R 1a )CH(R 2a )] q - is H(OCH 2 CH 2 ) q -, H(OCH 2 CH(CH 3 )) q -, H(OCH(CH 3 )CH 2 ) q -, H(OCH 2 CH(C 6 H 5 )) q -, H(OCH(C 6 H 5 )CH 2 ) q -, H(OCH 2 CH (CH 2 Cl)) q -, H(OCH(CH 2 Cl)CH 2 ) q - or H(OCH 2 CH(CBr 3 )) q -.
  • the weight ratio of the hexafluorobutene to the alcohol amine salt mixture (MAA) in the composite blowing agent is from 0.2 to 5:1, more preferably from 0.3 to 4:1, still more preferably from 0.4 to 3:1, still more preferably 0.5. -2:1, more preferably 0.7-1.3:1.
  • the water is present in the alcohol amine salt mixture (MAA) in an amount of from 5 to 35 wt%, preferably from 10 to 30 wt%, more preferably from 15 to 25 wt%.
  • MAA alcohol amine salt mixture
  • the alcohol amine salt mixture (MAA) contains from 60 to 98% by weight, preferably from 70 to 97% by weight, more preferably from 80 to 96% by weight, of the salt of the monoolamine (for example monoethanolamine and/or monopropanolamine) and the diolamine Salts such as diethanolamine, ethanol propanolamine and/or dipropanolamine.
  • the monoolamine for example monoethanolamine and/or monopropanolamine
  • the diolamine Salts such as diethanolamine, ethanol propanolamine and/or dipropanolamine.
  • the monoolamine salt is, for example, ammonium carbonate ethanolamine salt or bis(ethanolamine) carbonate.
  • the diolamine salt is, for example, ammonium carbonate (diethanolamine) salt, carbonic acid (ethanolamine) (diethanolamine) salt or bis(diethanolamine) carbonate.
  • the alcoholamine salt mixture (MAA) has a pH of from 7.5 to 10, preferably from 7.8 to 9.5, more preferably from 8 to 9.0.
  • the total content of the compound of the formula (I) (i.e., the organic alcohol amine salt compound) and water is 70-100% based on the total weight of the alcohol amine salt mixture (MAA), preferably 80-99.5%, more preferably 85-99.0%.
  • the above organic alcohol amine salt compound is a monoalcoholamine (for example, monoethanolamine and/or monopropanolamine) and/or a glycolamine (for example, diethanolamine, ethanol propanolamine and/or dipropanolamine) and an anion.
  • a salt formed wherein the anion is one or two or three selected from the group consisting of:
  • monoalcoholamine and/or glycolamine means: a monoalcoholamine, a diolamine, or a mixture of a monoalcoholamine and a diolamine.
  • the above alcohol amine salt mixture (MAA) is obtained by using the first raw material and the second raw material in the presence of water (preferably, the amount of water is 70-250 wt%, preferably 85-200 wt% based on the weight of the first raw material) More preferably, it is 100-170% by weight, More preferably 110-160% by weight), optionally prepared in the presence of a catalyst, wherein the first starting material is selected from one or more of the following compounds (for example two or three):
  • the second raw material is one or more selected from the group consisting of the following epoxides (for example, two or three):
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, a C 1 -C 7 aliphatic hydrocarbon group optionally substituted by hydroxy or amino or halogen, optionally by hydroxy or An amino or halogen-substituted C 3 -C 7 cycloaliphatic hydrocarbon group, or a C 6 -C 10 aromatic hydrocarbon group optionally substituted by a hydroxy group or an amino group or a halogen;
  • the organic amine compound (M) described therein is an organic amine compound selected from the group consisting of:
  • the organic amine compound (B) is an organic amine compound having an NR group, and the organic amine compound (B) having an NR group is formed on ammonia or in the organic amine compound
  • the at least one N atom of (M) is formed by substitution of one or more of the above R groups, wherein the definition of R is the same as defined above.
  • the organic amine (B) has from m to m + 3 primary, secondary and/or tertiary amine groups, and optionally has a quaternary ammonium group.
  • the organic amine compound (B) is an organic amine compound having 2 to 20 carbon atoms.
  • B m+ is a combination or mixture of two or more of the above organic amine cations.
  • the organic amine compound (B) is an organic amine compound having 3 to 12 carbon atoms.
  • R 3 or R 4 are independently selected from the group consisting of: H, R, a C 1 -C 4 aliphatic hydrocarbon group optionally substituted by a hydroxy or amino group or a halogen, a cyclobutyl group or a ring optionally substituted by a hydroxy group or an amino group or a halogen.
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, methyl or optionally hydroxy Or an amino or halogen substituted ethyl group, or a propyl or isopropyl group optionally substituted by a hydroxy group or an amino group or a halogen, a cyclohexyl group optionally substituted by a hydroxy group or an amino group or a halogen, or, optionally, a hydroxy group or an amino group or a halogen group Substituted phenyl or methylphenyl.
  • R 1a , R 2a , R 3a or R 4a are each independently selected from the group consisting of: H, methyl, chloromethyl, bromomethyl, ethyl, cyclohexyl, or phenyl.
  • its alkali metal and alkaline earth metal have a mass content of from 0 to 200 ppm.
  • the compound of formula (I) contains on average from 1.3 to 5 R groups per molecule, for example from 1.4 to 4 (for example 3) R groups, preferably from 1.5 to 2 R groups.
  • the above epoxide is: ethylene oxide, propylene oxide, epichlorohydrin, epibromopropane, butylene oxide, or epichlorohydrin or styrene oxide, or any two of them Or a mixture of multiples.
  • the above catalyst is ammonia water.
  • a polyurethane foaming composition comprising:
  • 0.1 to 100% by weight preferably 1 to 80% by weight, more preferably 3 to 60% by weight (for example, 10% by weight, 15% by weight, 20% by weight, 30% by weight, 40% by weight, 50% by weight) of the above composite foaming agent;
  • a physical blowing agent other than hexafluorobutene preferably 0-40% by weight, more preferably 0.2-30% by weight (for example, 0.5% by weight, 1.0% by weight, 1.5% by weight, 2.0% by weight, 5% by weight, 10% by weight, or 20% by weight) a physical blowing agent other than hexafluorobutene;
  • 0.0-99.9 wt% preferably 20.0-99 wt%, more preferably 40-97 wt% (for example, 90 wt%, 85 wt%, 80 wt%, 70 wt%, 60 wt%, 50 wt%) of a polymer polyol; wherein The weight percentage is based on the total weight of the polyurethane foaming composition.
  • a polyurethane foaming composition comprising:
  • the organic alcohol amine salt compound is an organic amine salt compound having the following general formula (I):
  • B m+ contains or each B m+ is independently: a +1 valent ammonium ion, a +1 valence hydrazine Ions (H 3 + N-NH 2 ), +2 valence cesium ions (H 3 + N-NH 3 + ), and/or, having m - + NR 3 R 4 H groups and/or - + a cation of one or more organic amines (B) of the NR 3 H-group;
  • a n- is selected from one or two or three of the following anions:
  • R 3 or R 4 is independently selected from the group consisting of: H, R, a C 1 -C 7 aliphatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen, C 3 -C 7 optionally substituted by a hydroxyl group or an amino group or a halogen. a cycloaliphatic hydrocarbon group, or a C 6 -C 10 aromatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen;
  • the compound of the formula (I) has at least one (for example one or two) R groups bonded to N (ie -N-R groups);
  • R group is selected from one or more of the following groups:
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, C 1 - optionally substituted by hydroxy or amino or halogen. a C 7 aliphatic hydrocarbon group, a C 3 -C 7 cycloaliphatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen, or a C 6 -C 10 aromatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen;
  • organic amine compound (B) is an organic amine compound having 2 to 50 carbon atoms
  • the organoalcoholamine salt compound is a monoalcoholamine (for example monoethanolamine and/or monopropanolamine) and/or a glycolamine (for example diethanolamine, ethanol propanolamine and/or dipropanolamine) and an anion
  • a monoalcoholamine for example monoethanolamine and/or monopropanolamine
  • a glycolamine for example diethanolamine, ethanol propanolamine and/or dipropanolamine
  • anion is one or two or three selected from the group consisting of:
  • the organic alcohol amine salt compound contains 50 to 100% by weight (60 to 98% by weight, preferably 70 to 96% by weight, more preferably 80 to 94% by weight) of a monoalcoholamine (for example, monoethanolamine and/or monopropanolamine). Salts and glycolamines (eg diethanolamine, ethanol propanol) The salt of the amine and/or dipropanolamine is based on the total weight of the organic alcohol amine salt compound.
  • a monoalcoholamine for example, monoethanolamine and/or monopropanolamine.
  • Salts and glycolamines eg diethanolamine, ethanol propanol
  • the salt of the amine and/or dipropanolamine is based on the total weight of the organic alcohol amine salt compound.
  • the weight ratio of hexafluorobutene to the organic alcohol amine salt compound in the polyurethane foaming composition is from 0.2 to 5:1, more preferably from 0.3 to 4:1, still more preferably from 0.4 to 3:1, more preferably 0.5-2:1, more preferably 0.7-1.3:1.
  • the polyurethane foaming composition contains a total of 0.2-8 wt%, 0.4-6 wt%, 0.5-5 wt%, preferably 0.7-4 wt%, further preferably 1-3 wt% water.
  • the foaming composition further comprises: a foam stabilizer, a catalyst, a flame retardant, and the like.
  • a foam stabilizer e.g., a foam stabilizer, a catalyst, a flame retardant, and the like.
  • auxiliaries are commonly used in the field of polyurethanes.
  • the propanolamine comprises: 3-hydroxypropylamine, 2-hydroxypropylamine (i.e., isopropanolamine), and/or 2-aminopropanol.
  • the polymer polyol is selected from the group consisting of polyether polyols, polyester polyols, polyether-polyester polyols, polycarbonate diols, polycarbonate-polyester polyols, polycarbonate-polyether polyols , polybutadiene polyol or polysiloxane polyol.
  • the polymer polyol generally has an average functionality of from 2 to 16, preferably from 2.5 to 10, more preferably from 3 to 8.
  • the polymer polyol is a combined polyether (polyol).
  • the physical blowing agent is selected from at least one of the group consisting of n-pentane, isopentane, cyclopentane, other alkanes having a boiling point in the range of 0-100 ° C, HCFC-141b, HFC-245fa, HFC-365mfc, LBA, other chlorofluorocarbons, methyl formate, boiling in the range of 0-100 °C.
  • a polyurethane foam material which comprises the above-mentioned polyurethane foaming composition with a polyisocyanate monomer, an isocyanate-terminated prepolymer, or a polyisocyanate monomer and an isocyanate-terminated pre- The mixture of the two polymers is mixed and reacted to form.
  • the decomposition temperature of the compound of the formula (I) of the present invention is generally between 45 and 120 ° C, preferably between 50 and 70 ° C, or its decomposition temperature is between 45 and 70 ° C when exposed to isocyanate.
  • an alcohol amine salt mixture (MAA) is used interchangeably with a compound or a mixture of compounds of the formula (I).
  • the object of the present invention is to provide a novel polyurethane foaming technology, improve the conventional liquid CO 2 foaming technology, and improve the pressure of equipment in the conventional liquid CO 2 foaming.
  • the distribution of the pores is uneven and the size of the pores is uneven.
  • the miscibility between CO 2 and the polymer polyol or isocyanate is not good, it is difficult for CO 2 to be uniformly dispersed in the starting material for foaming.
  • a high pressure mixer is often used, and the pressure is, for example, 4 to 7 MPa at the time of mixing, and uniform mixing cannot be achieved by stirring under high pressure.
  • the invention relates to an organic amine compound or a mixture thereof as a CO 2 solubilizing agent, and can be used as a catalyst, a crosslinking agent or a chain extender, in the polyurethane liquid CO 2 foaming process, and in a foaming material such as polyurethane Application in the use of refrigerator freezer foam materials, polyurethane intermittent board foam materials, polyurethane continuous sheet foam materials, polyurethane spray foam materials, polyurethane solar foam materials.
  • the organic amines (OA) are added as a solubilizing agent in the polyurethane foaming composition, the solubility of the CO 2 in the foaming composition is obviously improved, and the gaseous CO 2 is used .
  • Foaming technology especially when using liquid CO 2 foaming technology for foaming, can achieve homogeneous mixing of foaming composition and CO 2 using lower operating pressure conditions to achieve foaming demand.
  • the inventors of the present application have unexpectedly discovered that the organic amine in the composition reacts with most of the CO 2 dissolved in the composition under liquid CO 2 conditions to form an organic amine-CO 2 adduct, which is in the liter.
  • the above adduct can be activated by NCO groups contained in isocyanate monomers such as MDI and TDI to rapidly release CO 2 gas. .
  • the foaming composition such as polyether polyol or polyester polyol
  • most of the CO 2 can be sufficiently dissolved in the foaming composition (such as polyether polyol or polyester polyol) or has good mutual solubility with the foaming composition.
  • CO 2 can be uniformly dispersed in the foaming composition to uniformly foam, especially when the organic amine is uniformly mixed in the white material before the white and black materials are mixed and foamed,
  • the uniform mixing and dispersion of CO 2 in the white material can be achieved without stirring under high pressure. Therefore, the distribution of cells in the prepared polyurethane foam is relatively uniform, and the size of the cells is relatively uniform.
  • the decomposition products produced by the decomposition of the organic amine-CO 2 adduct of the present invention to release CO 2 are organic amine compounds, which are suitable as polyurethane crosslinking agents, chain extenders and catalysts for use in materials, which are improved.
  • Foam strength and dimensional stability, etc. reduce the use of other catalysts.
  • the prepared polyurethane foam has excellent deformation resistance and excellent heat insulating properties under cryogenic conditions. Therefore, the present invention has been completed based on the above several aspects.
  • organic amine as a CO 2 solubilizer means an organic amine which can form an adduct with CO 2 under liquid CO 2 conditions to increase the solubility of CO 2 in the composition.
  • a polyurethane foaming method for use in combination with carbon dioxide and an organic amine, the method comprising: pre-polymerizing a polyurethane foaming composition (referred to as “white material”) and a polyisocyanate monomer and/or isocyanate-terminated
  • white material a polyurethane foaming composition
  • black material a polyisocyanate monomer and/or isocyanate-terminated
  • black material a mixer for mixing and then the resulting mixture is foamed.
  • carbon dioxide eg under pressure
  • the two materials ie, white and black
  • the mixer for mixing (or before the two materials are conveyed into the mixer) (eg, under pressure)
  • it is continuously added to the polyurethane foaming composition (ie "white material") or to the polyisocyanate monomer and / or isocyanate-terminated prepolymer (ie "black") or simultaneously to the polyurethane
  • the polyisocyanate monomer and/or the isocyanate terminated prepolymer wherein the carbon dioxide is gaseous carbon dioxide, liquid carbon dioxide, subcritical carbon dioxide (subcritical) and/or supercritical (supercritical) dioxide.
  • Carbon ie, the carbon dioxide described herein is one or more selected from the group consisting of gaseous carbon dioxide, liquid carbon dioxide, subcritical carbon dioxide, or supercritical carbon dioxide];
  • the polyurethane foaming composition comprises:
  • 0-8 wt% preferably 0.3-6 wt%, more preferably 0.5-5 wt%, more preferably 0.7-4 wt% water, and
  • weight percentage is based on the total weight of the polyurethane foaming composition.
  • the organic amine (OA) is selected from the group consisting of primary amine compound (I), secondary amine compound (II), tertiary amine compound (III), hydroxylamine, polyalkylene polyamine, or hydroxy substitution or C 1
  • the organic amine (OA) is selected from the group consisting of primary amine compound (I), secondary amine compound (II), tertiary amine compound (III), hydroxylamine, polyalkylene polyamine, or hydroxy substitution or C 1
  • the organic amine (OA) is selected from the group consisting of primary amine compound (I), secondary amine compound (II), tertiary amine compound (III), hydroxylamine, polyalkylene polyamine, or hydroxy substitution or C 1
  • the organic amine (OA) is selected from the group consisting of primary amine compound (I), secondary amine compound (II), tertiary amine compound (III), hydroxylamine, polyalkylene polyamine, or hydroxy substitution or C 1
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a C 1 -C 8 hydrocarbon group, a C 1 -C 8 hydroxyalkyl group, a C 1 -C 4 hydroxy alkoxy group C 1 -C a hydrocarbon group, a C 1 -C 6 aminoalkyl group or a C 1 -C 3 alkylamino group C 1 -C 4 hydrocarbon group; preferably, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are each independently C 1- C 4 hydrocarbyl group, C 1 -C 4 hydroxy hydrocarbyl group, C 1 -C 3 hydroxy alkoxy C 1 -C 3 hydrocarbyl group, C 1 -C 4 aminohydrocarbyl group or C 1 -C 2 alkylamino group C 1 - C 3 hydrocarbon group; more preferably, R 1, R 2, R 3, R 4, R 5, R 6 are each independently C 1 -C 2 hydrocarby
  • the hydrocarbon group is preferably an alkyl group.
  • the alkoxy group is preferably an alkoxy group.
  • the polymer polyol is selected from the group consisting of polyether polyols, polyester polyols, polyether-polyester polyols, polycarbonate diols, polycarbonate-polyester polyols, polycarbonate-polyethers Polyol, polybutadiene polyol or polysiloxane polyol; more preferably, the polymer polyol is a combined polyether polyol.
  • Average of polymer polyols eg combined polyether polyols
  • the functionality is generally from 2 to 16, preferably from 2.5 to 10, more preferably from 3 to 8.
  • the polyalkylene polyamine described above is selected from the group consisting of diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, tripropylenetetramine or tetra One or more of propylene pentamine.
  • the foaming method described above is a supercritical carbon dioxide foaming method or a subcritical carbon dioxide foaming method using supercritical carbon dioxide or subcritical carbon dioxide.
  • the physical blowing agent is selected from at least one of the group consisting of n-pentane, isopentane, cyclopentane, other alkanes having a boiling point in the range of 0-100 ° C, HCFC-141b, HFC-245fa, HFC-365mfc, LBA, hexafluorobutene, other chlorofluorocarbons having a boiling point in the range of 0-100 ° C, or methyl formate.
  • ammonia and/or hydrazine is added to the polyurethane foaming composition in the form of ammonia or hydrazine hydrate, and the resulting polyurethane foaming composition contains a total of 0.4-8 wt%, 0.5-7 wt%, preferably 0.6-6 wt. %, further preferably 0.7 to 5% by weight of water, based on the total weight of the polyurethane foaming composition.
  • the polyurethane foaming composition further comprises: a foam stabilizer, a polyurethane catalyst, and a flame retardant.
  • the organic primary amine (I) is one or more selected from the group consisting of:
  • R 1 is a C 1 -C 8 hydrocarbon group, such as methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, decylamine , dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, tetracosylamine, unsubstituted or substituted (eg halogen substituted) aniline, Unsubstituted or substituted (e.g., halogen substituted) benzylamine, cyclohexylamine, methylcyclohexylamine, cyclohexylmethylamine, N-methylcyclohexylamine or N-methylbenzylamine, and the like.
  • R 1 is a C 1 -C 8 hydrocarbon group, such as methylamine,
  • R 1 is a C 1 -C 8 hydroxy hydrocarbon group, such as ethanolamine, propanolamine, butanolamine, chloroethanolamine, oxydiethylamine, and the like.
  • R 1 is a C 1 -C 6 aminohydrocarbyl group, such as ethylenediamine, propylenediamine, butanediamine or pentanediamine or hexamethylenediamine, and the like.
  • the organic primary amine (I) is one or more selected from the group consisting of:
  • the organic secondary amine (II) is one or more selected from the group consisting of:
  • R 2 , R 3 are a C 1 -C 8 hydrocarbyl secondary amine, ie a monoamine having a secondary amino group, such as dimethylamine, diethylamine, methylethylamine, dipropylamine, Methylpropylamine, ethylpropylamine, dibutylamine, ethylbutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, dimercapto Amine, di(dodecyl)amine, di(tetradecyl)amine, di(hexadecyl)amine, di(octadecyl)amine, di(octadecyl)amine or di(II) Tetradecylamine and the like.
  • a monoamine having a secondary amino group such as dimethylamine, diethylamine, methylethylamine, dipropylamine, Meth
  • R 2 , R 3 are a C 1 -C 8 hydroxyalkyl group, such as diethanolamine, ethanol propanolamine, dipropanolamine, hydroxyethyl hydroxyisopropylamine, dihydroxyisopropylamine, or Hydroxychloropropylamine and the like.
  • R 2 is a C 1 -C 8 hydrocarbon group and R 3 is a C 1 -C 8 hydroxyalkyl group, such as N-methylethanolamine, N-ethylethanolamine, N-isopropylhydroxyisopropylamine, or N-ethylhydroxyisopropylamine and the like.
  • the organic secondary amine (II) is diethanolamine, ethanol propanolamine, dipropanolamine or N-methylethanolamine.
  • the tertiary amine compound (III) is one or more selected from the group consisting of:
  • R 4 , R 5 , and R 6 are each independently a C 1 -C 8 hydrocarbon group (aliphatic group, cycloaliphatic group, aromatic group) or a C 1 -C 8 hydroxyalkyl group or a C 1 -C 6 aminoalkyl group;
  • Classes (tertiary amines) such as triethylamine, N,N-dimethylcyclohexylamine, N,N-dimethylethanolamine, N,N-dimethylbenzylamine, triethylenediamine, triethanolamine, N-ethyldiethanolamine, or tris(aminoethyl)amine, and the like.
  • the tertiary amine compound (III) is triethanolamine.
  • the decomposition temperature of the carbonic acid amine salt formed by the carbon dioxide and the organic amine (OA) is generally between 50 and 70 ° C, preferably Between 55-65 ° C.
  • the polyurethane foaming composition has a pH of from 7.2 to 10, preferably from 7.4 to 9.5, preferably from 7.5 to 9, more preferably from 7.8 to 8.5.
  • the polyurethane foaming composition further comprises: 0.1 to 5% by weight, preferably 0.3 to 4.5% by weight, more preferably 0.5 to 4% by weight, still more preferably 0.8 to 3% by weight (for example, 1.2% by weight or 1.8% by weight or 2.5% by weight)
  • An organic carbonate (OA) salt that is, a carbonate of the above organic amine (OA). That is, a small amount of an organic amine (OA) carbonate is previously mixed in the polyurethane foaming composition.
  • the carbonic acid organic amine (OA) salt is a carbonic acid organic alcohol amine salt.
  • a stream of a polyurethane foaming composition ie, a foaming composition or white
  • a stream of polyisocyanate monomer and/or isocyanate-terminated prepolymer ie, the isocyanate stream or black
  • the pressure mixer is a foaming device having a pressure mixing zone or a mixer, such as a polyurethane high pressure foaming machine or a polyurethane high pressure spraying machine.
  • the above organic amine (OA) is an alcohol amine, preferably one or more selected from the group consisting of monoethanolamine, monopropanolamine, monoisopropanolamine, methylamine, ethylamine or propylamine.
  • the organic carbonate (OA) salt is selected from the group consisting of (ammonium) carbonate (monoethanolamine) salt, bis(ethanolamine) carbonate, carbonic acid (ethanolamine) (propanolamine) salt, bis(propanolamine) carbonate, carbonic acid.
  • Di(isopropanolamine) salt di(methylamine) carbonate, di(ethylamine) carbonate, di(propylamine) carbonate, carbonic acid (methylamine) (ethylamine) salt, carbonic acid
  • gaseous carbon dioxide, liquid carbon dioxide, subcritical carbon dioxide or supercritical carbon dioxide are separately stored in a pressure vessel.
  • the gas carbon dioxide, liquid carbon dioxide, subcritical carbon dioxide and/or supercritical carbon dioxide are fed as a stream into the polyurethane foaming composition (ie, foaming composition or white material) prior to mixing and foaming, or input Into the polyisocyanate monomer and / or isocyanate-terminated prepolymer (ie, isocyanate stream or black), or simultaneously into the white and black, and then the two streams enter the pressure mixer mixing.
  • the stream of the white material and the stream of the black material are output after being mixed for foaming to prepare a polyurethane foam.
  • the polyurethane foaming process of the present invention is particularly suitable for spray foaming or cast foaming.
  • the polyurethane foaming composition (white material) and the polyisocyanate monomer and/or the isocyanate-terminated prepolymer (black material) are separately in separate containers (preferably pressure vessels) before being conveyed into the pressure mixer. Storage; and the polyurethane foaming composition has been uniformly mixed before being conveyed into the pressure mixer to uniformly mix the organic amine (OA), preferably the alcoholamine, in the polyurethane foaming composition.
  • OA organic amine
  • a polyisocyanate monomer and/or an isocyanate-terminated prepolymer means: a polyisocyanate monomer, an isocyanate-terminated prepolymer, or a mixture of a polyisocyanate monomer and an isocyanate-terminated prepolymer or Conjugate.
  • the above organic amine (OA) is an alcohol amine, preferably selected from the group consisting of monoethanolamine, monopropanolamine, monoisopropanolamine, A One or more of an amine, ethylamine or propylamine.
  • the organic carbonate (OA) salt is selected from the group consisting of (ammonium) carbonate (monoethanolamine) salt, bis(ethanolamine) carbonate, carbonic acid (ethanolamine) (propanolamine) salt, bis(propanolamine) carbonate, carbonic acid.
  • Di(isopropanolamine) salt di(methylamine) carbonate, di(ethylamine) carbonate, di(propylamine) carbonate, carbonic acid (methylamine) (ethylamine) salt, carbonic acid
  • gaseous carbon dioxide, liquid carbon dioxide, subcritical carbon dioxide or supercritical carbon dioxide referred to as carbon dioxide
  • a blowing agent or as a primary blowing agent eg when other physical blowing agents are included
  • organic amines It is called a co-blowing agent.
  • Subcritical state carbon dioxid means, for example, a critical pressure in which the pressure is not lower than (ie, equal to or higher than) carbon dioxide and liquid carbon dioxide at a temperature lower than the critical temperature (refers to carbon dioxide) In a liquid state in which the pressure is equal to or higher than the critical pressure of carbon dioxide and the temperature is lower than the critical temperature).
  • “supercritical (state) carbon dioxide” means that the pressure is not lower than the critical pressure of carbon dioxide and the temperature is not lower than the critical temperature of carbon dioxide (refers to carbon dioxide in which the pressure is not lower than the critical pressure of carbon dioxide and The temperature is not lower than the critical temperature).
  • a liquid state, aqueous alcohol amine salt mixture obtained by carrying out a reaction of ammonium carbonate or a cesium carbonate salt with an epoxide in the presence of water as a solvent or a dispersion medium
  • a part or all of itself can be used as a solvent or dispersion medium for further preparation of a mixture of an ammonium carbonate salt or a cesium carbonate salt and an epoxide to prepare a liquid state, lower water alcohol amine salt mixture.
  • a reaction is carried out by adding a first raw material and a second raw material thereto, optionally in the presence of a catalyst, to obtain a liquid state and a water content (W2) ratio step (1).
  • the water content (W1) of the obtained product is further reduced (for example, an alcohol amine salt mixture having a water content W2 of less than 50% by weight, such as a water content W2 of 10 to 50% by weight, such as 15 to 30% by weight) (MAA2) ;
  • first starting material is one or more selected from the group consisting of:
  • the second raw material is one or more selected from the group consisting of the following epoxides:
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, a C 1 -C 7 aliphatic hydrocarbon group optionally substituted by hydroxy or amino or halogen, optionally by hydroxy or An amino or halogen-substituted C 3 -C 7 cycloaliphatic hydrocarbon group, or a C 6 -C 10 aromatic hydrocarbon group optionally substituted by a hydroxy group or an amino group or a halogen;
  • the organic amine compound (M) described therein is an organic amine compound selected from the group consisting of:
  • the amount of water used in step (1) is from 60 to 250% by weight, preferably from 80 to 200% by weight, more preferably from 100 to 170% by weight, more preferably from 110 to 160% by weight, based on the weight of the first raw material.
  • the method further comprises:
  • the method further comprises:
  • the formed reaction mixture is allowed to react to obtain a liquid state and its water content (W4) is further lowered (for example, its water content) than the water content (W3) of the product (MAA3) obtained in the step (3).
  • W4 is less than 30% by weight, such as 2-30% by weight, more preferably 3-25% by weight, more preferably 3.5-20% by weight, such as 7% by weight or 12% by weight, of the alcoholamine salt mixture (MAA4).
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, methyl or ethyl optionally substituted by hydroxy or amino or halogen, or propyl or iso are optionally substituted by hydroxy or amino or halogen.
  • R 1a , R 2a , R 3a or R 4a are each independently selected from the group consisting of: H, methyl, chloromethyl, bromomethyl, ethyl, cyclohexyl, or phenyl.
  • the water content (W2) of the alcohol amine salt mixture (MAA2) obtained in the step (2) is 30-85% (preferably 35-) of the water content (W1) of the alcohol amine salt mixture (MAA1) obtained in the step (1). 80%, more preferably 40-75%, such as 50% or 60%).
  • the water content (W3) of the alcohol amine salt mixture (MAA3) obtained in the step (3) is 30-85% of the water content (W2) of the alcohol amine salt mixture (MAA2) obtained in the step (2) ( It is preferably 35-80%, more preferably 40-75%, such as 50% or 60%).
  • the water content (W4) of the alcohol amine salt mixture (MAA4) obtained in the step (4) is 30-80% of the water content (W3) of the alcohol amine salt mixture (MAA3) obtained in the step (3) ( It is preferably 35-75%, more preferably 40-70%, such as 50% or 60%).
  • the epoxide is: ethylene oxide, propylene oxide, epichlorohydrin, epibromohydrin, butylene oxide, or epichlorohydrin or styrene oxide, or a mixture of any two or more of them.
  • the catalyst is ammonia water.
  • steps (1) and (2) or for steps (1), (2) and (3), or for steps (1), (2), (3) and 4)
  • steps (1), (2), (3) and 4 can be carried out independently in the same or different places or in the same or different workshops.
  • step (1) is performed in one city and step (2) is performed in another city.
  • a blowing agent mixture comprising the above alcohol amine salt mixture and a physical foaming agent.
  • the alcohol amine salt mixture is one or more selected from the group consisting of an alcohol amine salt mixture (MAA1), (MAA2), (MAA3) or (MAA4), preferably, the alcohol amine salt mixture is selected from the group consisting of alcohols.
  • the physical blowing agent is selected from at least one of the group consisting of n-pentane, isopentane, cyclopentane, or boiling point.
  • alkanes in the range of 0-100 ° C HCFC-141b, HFC-245fa, HFC-365mfc, LBA, FEA-1100 (hexafluorobutene), or other chlorofluorocarbons boiling in the range of 0-100 ° C, Or methyl formate.
  • the prepared polyurethane foam material not only has better heat insulation performance at normal temperature, but also has good low temperature or ultra low temperature. Deformation resistance and thermal insulation properties. Applications in the cryogenic field have significant advantages.
  • an alcohol amine salt mixture (MAA) in combination with hexafluorobutene as a polyurethane foaming agent, during the foaming process, the front stage is foamed with hexafluorobutene, and the latter stage is composed of an alcohol amine salt mixture (MAA).
  • the compound of the general formula (I) decomposes and releases carbon dioxide for secondary foaming, and the foaming process exhibits a "bimodal" type process, and the two gases strongly support the cells and avoid blistering, so that the cell size in the foam is relatively It is uniform, and by the crosslinking and chain extension of the decomposition product (alcoholamine) of the compound of the general formula (I), the microstructure in the foam is enhanced, and the deformation resistance is outstanding.
  • the dimensional change rate or shrinkage rate of the polyurethane foam prepared by using the composite foaming agent of the invention as a foaming agent is ⁇ 0.3% or even ⁇ 0.2% (according to the Chinese national standard GB/T 8811-2008, the placement time can be As required by the standard).
  • the thermal conductivity w/m ⁇ k (10 ° C) or w/m ⁇ k (22.5 ° C) is between 0.01830 and 0.01895, preferably 0.01850- Between 0.01885.
  • the thermal conductivity of prior art polyurethane foams at this density is generally above 0.01900, more typically above 0.02200.
  • the compressive strength of the foam of the present invention is in the range of 110-220 KPa, preferably 150-200 Kpa.
  • the above advantages become more prominent and obvious by previously adding a small amount of an organic carbonate salt, particularly a carbonate amine salt, to the white material.
  • an organic carbonate salt particularly a carbonate amine salt
  • the obtained foam material is under deep cooling conditions (for example, -160 ° C) has excellent deformation resistance and excellent thermal insulation properties. Since carbon dioxide is sufficiently absorbed by the white material, the pressure in the foaming operation is greatly reduced.
  • the foaming composition of the present invention comprising an organic amine (OA) (for example, an organic amine compound of the formula (I), (II) or (III)) is stable on the one hand at room temperature and on the other hand in polyurethane During the bubble process, the carbon dioxide gas can be released at a reasonable rate when the foaming reaction system is heated, so that the foamed material has desirable properties such as distribution density of cells and size uniformity of cells.
  • OA organic amine
  • Carbonic acid amine salts formed by carbon dioxide and organic amines can be uniformly dissolved or distributed at a molecular level in polymer polyols such as polyether polyols and/or polyester polyols to ensure uniformity of foaming and avoid local excessive foaming. .
  • An organic amine of the invention for example an organic amine compound of the formula (I), (II) or (III)
  • an organic amine especially when comprising a part of a tertiary amine compound, by carbon dioxide and an organic amine (especially a tertiary amine compound)
  • the formed amine carbonate salt especially the tertiary amine carbonate salt
  • produces a decomposition product which is suitable as a catalyst to promote the polyurethane foaming process after the release of CO 2 .
  • the organic amine of the present invention is not easily volatilized, does not contain metal ions (metal ions are corrosive to metal substrates), and all or most of them replace chlorofluorocarbon foaming agents, and therefore are important for environmental protection. Meaning and foaming The effect is significantly better than that of the prior art when other blowing agents are used.
  • an organic amine (OA) for example, an organic amine compound of the formula (I), (II) or (III)
  • a chlorofluorocarbon such as HCFC-141b or HFC-365mfc
  • the thermal insulation properties of the foam can be significantly improved compared to the chlorofluorocarbon blowing agent.
  • a specific polyether polyol which is preferably miscible or miscible with the relevant blowing agent is usually selected around a blowing agent or a specific chlorofluorocarbon blowing agent, and the blowing agent of the present invention is used without selecting a specific one.
  • Polyether polyols or polyester polyols have a wide range of utility, and various types of polyester polyols and/or polyether polyols can be used in the foaming composition.
  • an auxiliary agent such as a polyether suitable for the polyurethane foaming agent prepared by the present invention is selected, better performance can be obtained.
  • a polyurethane foam prepared by using an organic amine for example, an organic amine compound of the formula (I), (II) or (III)
  • an organic amine for example, an organic amine compound of the formula (I), (II) or (III)
  • the dimensional change rate or shrinkage ratio of the production is ⁇ 5%, preferably ⁇ 3%, more preferably ⁇ 1%, more preferably ⁇ 0.5% (according to the Chinese national standard GB/T 8811-2008, but the standing time is 5 months).
  • the present invention is capable of producing an alcoholamine salt compound having a low water content, and when it is used for preparing a polyurethane foam material, the adverse effect of water on the foaming reaction is avoided. It is also suitable for use as a blowing agent in combination with a physical blowing agent.
  • the physical blowing agent is selected from at least one of the group consisting of n-pentane, isopentane, cyclopentane, or other alkanes having a boiling point in the range of 0-100 ° C, HCFC-141b, HFC-245fa, HFC -365mfc, LBA, FEA-1100 (hexafluorobutene), or other chlorofluorocarbons having a boiling point in the range of 0-100 ° C, or methyl formate.
  • Example 1 is a scanning electron micrograph (SEM) of the foam of Example 2.
  • Example 2 is a scanning electron micrograph (SEM) of the foam of Example 1A.
  • Figure 3 is a scanning electron micrograph (SEM) of the foam of Comparative Example 1A.
  • the conventional polyether polyols and polyester polyols used in the preparation of polyurethane foams or in foaming compositions are selected from the following varieties: polyethers 4110, 450, 400A, MN500, SU380, SA380, 403, SA460, G350; polyester CF6320, DM2003, YD6004, AKS7004, CF6255.
  • catalysts are selected from: 33LV (A-33): 33% triethyl Dipropylene glycol solution of enediamine, N,N-dimethylethanolamine, N,N-dimethylbenzylamine, 70% bis(dimethylaminoethyl)ether dipropylene glycol solution, 70% potassium octoate in two Ethylene glycol solution, dibutyltin dilaurate, PT303, PT304, potassium acetate, PC-8 (N,N-dimethylcyclohexylamine), PC-5, PC-41, triethanolamine, JXP-508, JXP -509, TMR-2, TMR-3, TMR-4.
  • Common flame retardants TCPP, TCEP, DMMP, ammonium chloride, aluminum hydroxide powder, DM1201, DM1301, tetrabromophthalic anhydride diol.
  • Commonly used silane surfactants DC8545, AK-158, AK-8805, AK-8812, AK-8809, AK-8818, AK-8860, DCI990, DC5188, DC6070, DC3042, DC3201.
  • Non-silane surfactant LK-221, LK-443.
  • SAFETY INSTRUCTION In the present invention, where it is involved in the use of an epoxy compound, for safety reasons, the reaction must be carried out under an inert gas (such as nitrogen or argon) before and after the reactants are added to the reactor to prevent explosion. . Further, in the case of adding ethylene oxide, for the sake of safety, it is preferred to add it to the reactor in portions, and the propylene oxide may be added to the reactor at one time or in batches.
  • the reactor is typically a pressure reactor equipped with a cooling unit unless otherwise stated.
  • the epoxy compound is slowly added to the reactor in batches, and the relatively safe epoxy compounds are slowly added to the reactor in batches to control the reaction conditions such as the reaction rate to ensure safety. . Hydrazine hydrate is also a flammable and explosive toxic compound, so it must be carried out in accordance with the relevant requirements and regulations.
  • the properties of the foam were tested in accordance with the Chinese National Standard GB/T 26689-2011 (rigid polyurethane foam for refrigerators and freezers).
  • the size of the sample is typically 10*10*2.5 cm.
  • the thermal conductivity is carried out in accordance with GB/T 10294-2008 or GB/T 10295-2008.
  • the average temperature is 10 ° C, and the temperature difference between the hot and cold plates is 15 to 20 ° C.
  • the apparent (core) density was tested in accordance with GB/T 6343-2009.
  • Low temperature dimensional stability is tested at -30 °C ⁇ 2 °C according to GB/T8811-2008.
  • the compressive strength was tested in accordance with GB/T 8813-2008.
  • the closed cell ratio ie, the percentage of closed cell volume
  • the content of alkali metal and alkaline earth metal ions was measured by an atomic absorption spectrophotometer (Seiko Instruments, Inc.; SAS/727) to be below the detection limit. By gas chromatography, the molar ratio of monopropanolamine to dipropanolamine was 1:0.18.
  • Compound A-1 contained about 74% by weight of a salt of both monopropanolamine and dipropanolamine. It also contains a portion of the water. Further, the compound A-1 contains about 55 wt% of monopropanolamine and dipropanolamine (the residue is analyzed after heating the compound A-1 to release carbon dioxide), based on the total weight of the compound A-1 before decomposition by heating. .
  • Compound A-1 is a transparent or clear liquid which is stable at room temperature or under ambient conditions. It is suitable as a polyurethane foaming agent.
  • the basic characteristics of HFC-245fa, LBA and pentafluorobutane are as follows:
  • the GWP greenhouse effect potential
  • the decomposition temperature is relatively high, overcoming some low boiling point (less than 20 ° C) physical blowing agents such as HFC-245fa, LBA.
  • Many disadvantages such as pentafluorobutane, such as GWP is much larger than 1, lower boiling point, and more volatile, while the compound A-1 of the present invention has a GWP equal to 1, a relatively high boiling point, is not volatile, and an ODP (destruction of the ozone layer).
  • the potential value is 0, does not destroy the atmospheric ozone layer; it is not volatile and easy to transport and store.
  • the reaction time ensures that the reaction is completed in a molar ratio.
  • Compound A-2 was obtained.
  • the decomposition temperature is in the range of 45-70 °C.
  • Liquid chromatography analysis and gas chromatography analysis indicated that Compound A-2 was a mixture containing various alcohol amines.
  • the water content was 20.5 wt%.
  • Liquid chromatography analysis and gas chromatography analysis indicated that Compound B-1 was a mixture containing various alcohol amines. The content of alkali metal and alkaline earth metal ions was measured by an atomic absorption spectrophotometer (Seiko Instruments, Inc.; SAS/727) to be below the detection limit. By gas chromatography, the molar ratio of monopropanolamine to dipropanolamine was 1:0.28.
  • Compound B-1 contained about 79% by weight of a salt of both monopropanolamine and dipropanolamine. Compound B-1 contained about 59% by weight of monopropanolamine and dipropanolamine (the residue was analyzed after heating Compound A-1 to release carbon dioxide) based on the total weight of Compound B-1 before decomposition by heating.
  • the reaction was continued for 8 hours, then the temperature was lowered to 50 ° C, the vacuum was controlled to remove unnecessary water and unreacted propylene oxide under a reduced pressure of 600 mHg or less, and the temperature was lowered to 40 ° C or lower, and the vacuum was released to release the product.
  • Compound B-3 was obtained.
  • the decomposition temperature is between 45 and 70 °C.
  • Example C-1 was repeated except that 15 kg of propylene oxide was used instead of 12 kg of ethylene oxide, and propylene oxide was not added to the reactor in batches, but was added in one portion.
  • Compound C-2 was obtained.
  • the inventors have unexpectedly discovered that when compound D-1 is mixed with a polyether polyol and/or a polyester polyol, for example, a foaming composition ("white material") is formulated, compound D-1 dissolved in the white material
  • the decomposition temperature can be increased to 45-65 °C. This allows the compound D-1 to have a suitable decomposition temperature and, therefore, is suitable for use in polyurethane foaming.
  • the sample was taken, and after cutting with a blade, the cell was observed by magnifying 100 times with SEM. As shown in Figure 1, the cell diameter was 207 microns.
  • the sample was taken, and after cutting with a blade, the cell was observed by magnifying 100 times with SEM.
  • the cell diameter was 209 microns.
  • Example 1 was repeated except that only 9 parts by weight of hexafluorobutene was used as a blowing agent.
  • Example 2 was repeated except that only 9 parts by weight of the compound B-1 prepared in the above Example B-1 was used as a foaming agent.
  • test data in the above list is the test data made by the foam samples prepared by the conventional foaming box and the self-made foaming model. It is a manually prepared free foam sample.
  • the shrinkage rate (dimension change rate) is measured according to the Chinese national standard GB/T 8811-2008.
  • the product of the present invention is particularly outstanding for the thermal conductivity at cryogenic (-160 ° C).
  • thermal conductivity w/m ⁇ k (-160 ° C) under deep cooling
  • TA Company's thermal conductivity meter FOX200LT (EKO) was used.
  • Test standard ASTM-C518 (or ISO-8301). Sample size and thickness: 200mm ⁇ 200mm, 0 ⁇ 50mm.
  • Example 1 of the present invention had a low shrinkage rate by visual inspection.
  • the dimensional stability of the product of Example 1 at cryogenic (-160 ° C) was 0.98%, and the dimensional stability at 100 ° C was 0.72%.
  • the product of Comparative Example 1 was very deformed and the shrinkage rate was almost 40%.
  • polyurethane high pressure foaming machine for example, a polyurethane high pressure foaming machine manufactured by Wenzhou Zecheng Electromechanical Equipment Co., Ltd. or a GZ (Y) series polyurethane high pressure manufactured by Henan Jinlong Polyurethane Thermal Insulation and Anticorrosive Equipment Co., Ltd. can be used.
  • Foaming machine for the polyurethane high-pressure sprayer used in the embodiment, for example, a polyurethane high-pressure sprayer of QD120 type, QD220 type or QD320 type manufactured by Jinan Guosheng Machinery Equipment Co., Ltd. or a REACTOR H-VR type polyurethane high pressure manufactured by GRACO of the United States can be used. Sprayer.
  • polyether polyol SA460 produced by Binhua Group of Binzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City), 10 parts by weight of toluene diamine polyether (from Shandong Bluestar Dongda Chemical Co., Ltd.), 5 parts by weight of B Amine (ie organic amine), 1 part by weight of water, 1 part by weight of foam stabilizer DC3201 (manufactured by American Air Chemical Company), 1 part by weight of ammonia water (27% concentration), 12.5 parts by weight of flame retardant TCPP (Jiangsu Jacques Chemical Co., Ltd.) and 2 parts by weight of catalyst A33 (33LV, manufactured by American Air Chemical Company) are uniformly mixed to obtain a
  • isocyanate MDI (PM200, Yantai Wanhua Chemical Group Co., Ltd.) was sent as an isocyanate raw material (ie, "black material") to a pressure vessel for storage.
  • Supercritical CO 2 is introduced into the pressure vessel filled with white material, maintained at a pressure of 3.5 MPa, temperature of 30 ° C, and 200 rpm for ten minutes to allow the supercritical fluid to fully penetrate and diffuse in the polymer material to form a polymerization.
  • the supercritical fluid homogeneous system the continuous decrease of pressure was observed, indicating that the white material has a good absorption effect on carbon dioxide.
  • the white material and the black material are respectively output from the pressure container for storing the white material and the pressure container for storing the black material to the supercritical CO 2 reactor for mixing, and the resulting mixture is discharged through a pressure relief valve and then output for casting foaming. .
  • a polyurethane foam is obtained.
  • polyether polyol 2010 produced by Binhua Group of Binzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City, Shandongzhou City), 10 parts by weight of toluene diamine polyether (from Shandong Bluestar Dongda Chemical Co., Ltd.), 6.5 parts by weight Propylamine (ie organic amine), 1 part by weight of water, 1 part by weight of foam stabilizer DC3201 (manufactured by American Air Chemical Company), 1 part by weight of ammonia water (27% concentration), 12.5 parts by weight of flame retardant TCPP (produced by Jiangsu Yake Chemical Co., Ltd.) and 2 parts by weight of catalyst A33 (33LV, manufactured by American Air Chemical Company) were uniformly mixed to obtain
  • isocyanate MDI (PM200, Yantai Wanhua Chemical Group Co., Ltd.) was sent as an isocyanate raw material (ie, "black material") to a pressure vessel for storage.
  • Supercritical CO 2 is introduced into the pressure vessel filled with white material, maintained at a pressure of 3.5 MPa, temperature of 30 ° C, and 200 rpm for ten minutes to allow the supercritical fluid to fully penetrate and diffuse in the polymer material to form a polymerization.
  • the supercritical fluid homogeneous system the continuous decrease of pressure was observed, indicating that the white material has a good absorption effect on carbon dioxide.
  • the white material and the black material are respectively output from the pressure container for storing the white material and the pressure container for storing the black material to the supercritical CO 2 reactor for mixing, and the resulting mixture is discharged through a pressure relief valve and then output for casting foaming. .
  • a polyurethane foam is obtained.
  • isocyanate MDI (PM200, Yantai Wanhua Chemical Group Co., Ltd.) was used as a raw material of isocyanate, that is, "black material”.
  • a polyurethane high pressure foaming machine is used as the foaming device.
  • the above white material i.e., combined polyether polyol
  • the above black material i.e., isocyanate raw material
  • Supercritical CO 2 is introduced into the pressure vessel filled with white material, maintained at a pressure of 3.5 MPa, temperature of 30 ° C, and 200 rpm for ten minutes to allow the supercritical fluid to fully penetrate and diffuse in the polymer material to form a polymerization.
  • supercritical CO 2 was introduced into a pressure vessel containing black material, and maintained at a pressure of 3.5 MPa, a temperature of 30 ° C, and 200 rpm for ten minutes.
  • two gear pumps are used to respectively output the white material and the black material from the pressure container for storing the white material (polyether polyol) and the pressure container for storing the black material (isocyanate) to the spray gun mixing chamber for rapid mixing, and the spray gun switch is opened for spraying.
  • Foaming A polyurethane foam is obtained.
  • isocyanate MDI (PM200, Yantai Wanhua Chemical Group Co., Ltd.) was used as a raw material of isocyanate, that is, "black material”.
  • the above white material i.e., combined polyether polyol
  • the above black material i.e., isocyanate raw material
  • Supercritical CO 2 is introduced into the pressure vessel filled with white material, maintained at a pressure of 3.5 MPa, temperature of 30 ° C, and 200 rpm for ten minutes to allow the supercritical fluid to fully penetrate and diffuse in the polymer material to form a polymerization.
  • the supercritical fluid homogeneous system the continuous decrease of pressure was observed, indicating that the white material has a good absorption effect on carbon dioxide.
  • two gear pumps are used to respectively output the white material and the black material from the pressure container for storing the white material (polyether polyol) and the pressure container for storing the black material (isocyanate) to the spray gun mixing chamber for rapid mixing, and the spray gun switch is opened for pouring.
  • Foaming A polyurethane foam is obtained.
  • Example 4A was repeated except that 2 parts by weight of bis(ethanolamine) carbonate was used instead of 2 parts by weight of bis(ethanolamine) carbonate, and 2 parts by weight of hexafluorobutene was further added to the white material.
  • Example 1A was repeated except that no ethylamine was added to the white material.
  • Example 4A was repeated except that no organic amine (i.e., monoethanolamine and bis(ethanolamine) carbonate) was added to the white material.
  • organic amine i.e., monoethanolamine and bis(ethanolamine) carbonate
  • the shrinkage rate (dimension change rate) is measured according to the Chinese national standard GB/T 8811-2008, but the placement time is 5 months.
  • thermal conductivity w/m ⁇ k (-160 ° C) under deep cooling
  • TA Company's thermal conductivity meter FOX200LT (EKO) was used.
  • Test standard ASTM-C518 (or ISO-8301). Sample size and thickness: 200mm ⁇ 200mm, 0 ⁇ 50mm.
  • the foam of the inventive embodiment 1A (Fig. 2) has a more uniform cell size and a larger cell size than that of Comparative Example 1A (Fig. 3). It is explained that in the present invention, the amount of carbon dioxide absorbed is larger, and carbon dioxide is more uniformly distributed in the white material.
  • Part III A sixth embodiment in accordance with the invention
  • gas chromatography For the measurement of the content of various alcoholamines (for example, monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine or tripropanolamine) in the alcoholamine salt compound, gas chromatography can be employed.
  • the gas chromatograph is equipped with a hydrogen flame ionization detector (FID), and the compound of the general formula (I) has a mass concentration of about 10 mg/mL, which is a standard solution.
  • FID hydrogen flame ionization detector
  • the first stage is a first stage
  • control the feed rate of propylene oxide in order to control the pressure in the reactor is not higher than 0.6 MPa, slowly increase the temperature under constant stirring, the temperature control reaction at 65 ° C for 13 hours, the reaction is completed, The temperature was slowly lowered to 45 ° C, then the vacuum was released, and after cooling to below 40 ° C, the reactant was discharged to obtain the compound A1-MAA1 (i.e., the alcohol amine salt mixture MAA).
  • the molar ratio of monopropanolamine to dipropanolamine in the compound A1-MAA1 was 1:0.17.
  • Compound A1-MAA1 contains about 67% by weight of a salt of both monopropanolamine and dipropanolamine.
  • a sample of 5 kg of the compound A1-MAA1 was heated at 66 ° C for 5 minutes to decompose and release carbon dioxide to obtain a residue. The residue was then subjected to rectification using a small laboratory rectification column to separate 1.65 kg of water, and the water content of the compound A1-MAA1 was found to be 33 wt%.
  • the temperature is controlled at 65 ° C for 15 hours, the reaction is completed, the temperature is slowly lowered to 45 ° C, and then the vacuum is released, and the temperature is lowered to below 40 ° C.
  • the reactant was evolved to obtain the compound A1-MAA2 (i.e., the alcohol amine salt mixture MAA).
  • the molar ratio of monopropanolamine to dipropanolamine in the compound A1-MAA2 was 1:0.35.
  • the compound A1-MAA2 contains about 83% by weight of a salt of both monopropanolamine and dipropanolamine.
  • a sample of 5 kg of the compound A1-MAA2 was heated at 66 ° C for 5 minutes to decompose and release carbon dioxide to obtain a residue.
  • the residue was then subjected to rectification using a small laboratory rectification column to separate 0.85 kg of water, and the water content of the compound A1-MAA2 was measured to be 17 wt%.
  • the third phase is the third phase
  • the temperature is controlled at 65 ° C for 15 hours, the reaction is completed, the temperature is slowly lowered to 45 ° C, and then the vacuum is released, and the temperature is lowered to below 40 ° C. Release the reactants and obtain Compound A1-MAA3 (i.e., alcohol amine salt mixture MAA).
  • the molar ratio of the monopropanolamine to the dipropanolamine was 1:0.58.
  • the compound A1-MAA3 contains about 91% by weight of a salt of both monopropanolamine and dipropanolamine.
  • a sample of 5 kg of the compound A1-MAA3 was heated at 66 ° C for 5 minutes to decompose and release carbon dioxide to obtain a residue.
  • the residue was then subjected to rectification using a small laboratory rectification column to separate 0.425 kg of water, and the water content of the compound A1-MAA3 was found to be 8.5 wt%.
  • the temperature is controlled at 65 ° C for 15 hours, the reaction is completed, the temperature is slowly lowered to 45 ° C, and then the vacuum is released, and the temperature is lowered to below 40 ° C.
  • the reactant was evolved to obtain the compound A1-MAA4 (i.e., the alcohol amine salt mixture MAA).
  • the molar ratio of monopropanolamine to dipropanolamine in the compound A1-MAA4 was 1:0.82.
  • Compound A1-MAA4 contains about 95.7 wt% of a salt of both monopropanolamine and dipropanolamine.
  • a sample of 5 kg of the compound A1-MAA4 was heated at 66 ° C for 5 minutes to decompose and release carbon dioxide to obtain a residue.
  • the residue was then subjected to rectification using a small laboratory rectification column to separate 0.215 kg of water, and the water content of the compound A1-MAA4 was found to be 4.3 wt%.
  • the first stage is a first stage
  • the molar ratio of monopropanolamine to dipropanolamine in the compound A2-MAA1 was 1:0.28.
  • Compound A2-MAA1 contains about 73.3 wt% of a salt of both monopropanolamine and dipropanolamine.
  • a sample of 5 kg of the compound A2-MAA1 was heated at 66 ° C for 5 minutes to decompose and release carbon dioxide to obtain a residue.
  • the residue was then subjected to rectification using a small laboratory rectification column to separate 1.33 kg of water, and the water content of the compound A1-MAA1 was determined to be 26.6 wt%.
  • the reaction is completed, slowly reduce the temperature to 45 ° C, then release the vacuum, cool down to below 40 ° C and then release the reactants to obtain the compound A2-MAA2 (ie , alcohol amine salt mixture MAA).
  • the molar ratio of the monopropanolamine to the dipropanolamine was 1:0.41.
  • Compound A2-MAA2 contains about 83% by weight of a salt of both monopropanolamine and dipropanolamine.
  • a sample of 5 kg of the compound A2-MAA2 was heated at 66 ° C for 5 minutes to decompose and release carbon dioxide to obtain a residue.
  • the residue was then subjected to rectification using a small laboratory rectification column to separate 0.666 kg of water, and the water content of the compound A2-MAA2 was determined to be 13.3 wt%.
  • the third phase is the third phase
  • the reaction is completed, slowly reduce the temperature to 45 ° C, then release the vacuum, cool down to below 40 ° C and then release the reactants to obtain the compound A2-MAA3 (ie , alcohol amine salt mixture MAA).
  • the molar ratio of monopropanolamine to dipropanolamine in the compound A2-MAA3 was 1:0.52.
  • Compound A2-MAA3 contains about 93.3 wt% of a salt of both monopropanolamine and dipropanolamine.
  • a sample of 5 kg of the compound A2-MAA3 was heated at 66 ° C for 5 minutes to decompose and release carbon dioxide to obtain a residue.
  • the residue was then subjected to rectification using a small laboratory rectification column to separate 0.333 kg of water, and the water content of the compound A2-MAA3 was found to be 6.66 wt%.
  • Example 1B was repeated except that only 9 parts by weight of hexafluorobutene was used as a blowing agent.
  • test data in the above list is the test data made by the foam samples prepared by the conventional foaming box and the self-made foaming model. It is a manually prepared free foam sample.
  • the shrinkage rate (dimension change rate) is measured according to the Chinese national standard GB/T 8811-2008.
  • the low water content alcohol amine salt mixture (MAA) combined with hexafluorobutene can increase the compressive strength and also lower the thermal conductivity at normal temperature, compared with Comparative Example 1.
  • the dimensional stability of the foam is remarkably improved.
  • the product of the present invention is particularly outstanding for the thermal conductivity at cryogenic (-160 ° C).
  • thermal conductivity w/m ⁇ k (-160 ° C) under deep cooling
  • TA Company's thermal conductivity meter FOX200LT (EKO) was used.
  • Test standard ASTM-C518 (or ISO-8301). Sample size and thickness: 200mm ⁇ 200mm, 0 ⁇ 50mm.
  • Example 1B of the present invention had a low shrinkage rate by visual inspection.
  • the product of Example 1B has a dimensional stability of 0.97% at cryogenic (-160 ° C) and a dimensional stability at 100 ° C of 0.75%.
  • the product of Comparative Example 1B was very deformed and the shrinkage rate was almost 45%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

公开了有机胺盐发泡剂,即一种复合聚氨酯发泡剂,它包括:1)六氟丁烯;和2)一种醇胺盐混合物(MAA),该醇胺盐混合物(MAA)包含具有以下通式(I)的有机胺盐化合物:An-[Bm+]p(I);其中An-是选自于下列阴离子中的一种或两种或三种:(b)碳酸根:CO3 2-;(c)甲酸根:HCOO-;(d)碳酸氢根:HO-COO-。还公开了二氧化碳与有机胺结合使用的聚氨酯发泡方法,其中将二氧化碳加入到聚氨酯发泡用的组合物中。还公开了从碳酸铵和环氧化物制备低含水量的碳酸醇胺盐的方法,其中液态醇胺盐混合物作为反应原料的分散介质或作为溶剂。

Description

有机胺盐发泡剂 技术领域
本发明涉及包含六氟丁烯和有机醇胺盐化合物的复合发泡剂,及其在发泡材料如聚氨酯泡沫体或PVC发泡材料或聚苯乙烯发泡等材料中的应用。本发明还涉及二氧化碳与有机胺相结合使用的聚氨酯发泡方法,该方法使用气体二氧化碳、液体二氧化碳和/或超临界二氧化碳作为发泡剂,属于聚氨酯泡沫材料领域。本发明还涉及制备低水含量的碳酸醇胺盐的方法,更具体地说,涉及循环制备低水含量的碳酸醇胺盐的方法。
技术背景
聚氨酯硬泡作为一种高分子新材料,其质量轻、强度高并具有极低的热导率,是优质的绝热保温材料,广泛应用于冷藏保温、尤其化学武器冷藏保温、建筑节能、太阳能、汽车、冰箱冰柜等家电等产业。聚氨酯硬泡生产中最重要的原料是发泡剂。目前这些发泡剂除了环戊烷以外都是含氯氟烃物质,由于它们对大气臭氧层的破坏所以各国政府早已签订了“蒙特利尔协定书”的国际公约,限制和逐步淘汰、禁止该类产品的生产和使用,中国也是该协定书的签约国。
目前中国还在使用的是第二代含氯氟烃发泡剂HCFC-141b(一氟二氯乙烷)和环戊烷,欧美等发达国家早已禁止使用HCFC-141b,中国政府2013年就将HCFC-141b的消费量冻结在2009年和2010年的消费水平上,2015年淘汰冻结20%的消费量,并承诺提前至2025年完全禁止生产和使用,目前欧美等发达国家使用的是第三代发泡剂五氟丙烷(HFC-245fa)和五氟丁烷(HFC-365),第二、三代发泡剂的GWP(温室效应潜能值)都很高,对大气臭氧层的破坏严重,因此欧美将在2017年以前禁止第三代发泡剂的使用。为此美国霍尼韦尔公司又开发出了第四代物理发泡剂一氯三氟丙烯(LBA),但该产品价格昂贵,ODP(对臭氧层的破坏的潜能值)虽然为零,但GWP仍然较高,比第三代相对环保。总之除了环戊烷以外的这些物理发泡剂都是破坏大气臭氧层的罪魁祸首,因为都含氯氟元素,都将被淘汰。
现有技术公开了直接将CO2作为聚氨酯发泡剂,但是,鉴于CO2气体的逃逸和它在原料MDI和聚酯多元醇和/或聚醚多元醇中的溶解度不好,使得CO2气体在发泡组合物中无法均匀地分散,并且发泡过程不容易控制。
另外,现有技术公开了直接将少量的水作为聚氨酯发泡剂,但是,鉴于水分子的氢键作用和水在聚酯多元醇和/或聚醚多元醇中的溶解度不好,水分子以微滴的形式存在于发泡 组合物(如聚醚多元醇组分)中,在发泡材料中造成局部过度反应和发泡。如果用水作为发泡剂,则在聚氨酯泡沫材料中包含较多的脲键,大大影响泡沫材料的强度和绝热性能。此外,如果作为发泡剂的水的用量稍稍提高,则会显著影响到聚氨酯泡沫体的性能和尺寸稳定性。如果将水作为唯一的发泡剂,则聚氨酯泡沫体会遭遇收缩、焦烧和绝热性能差的问题(shrinkage,scorching,inadequate heat insulation)。
总之,现有技术中的发泡剂无法以分子水平被分散到发泡组合物中,从而造成泡孔的分布不均匀和泡孔的尺寸不均匀,最终影响到发泡材料的强度性能和绝热性质。
另外,现有技术中使用六氟丁烯(沸点约33℃,商品名FEA-1100)作为聚氨酯发泡剂,但是,它的生产成本和销售价格以及用它作为发泡剂所制备的聚氨酯泡沫材料在性能上仍然有不足,尤其在低温或超低温条件下的绝热性能显著下降以及在低温或超低温下的变形(由于发泡剂变成液体,使得泡孔内的蒸汽压变低,瘪泡现象突出)非常严重。
另外,现有技术公开了使用液态CO2发泡或使用超临界二氧化碳发泡以制备聚氨酯泡沫的方法,其中直接将CO2或超临界二氧化碳作为聚氨酯发泡剂。鉴于CO2气体是大气中天然存在的气体,不燃、无毒且环保,这是一种非常环保且安全的发泡技术。但是,鉴于CO2气体的逃逸和它在原料MDI和聚酯多元醇和/或聚醚多元醇中的低溶解度,为了提高CO2在上述原料中的溶解量达到发泡需求,现有技术必须使用超高的液态CO2操作压力,一般情况下物料压力高于25MPa,对设备要求很高,不便于实际工业生产应用,并且发泡过程不容易控制。另外,鉴于CO2气体在发泡组合物中的溶解度不好,导致大部分CO2气体在发泡组合物中无法均匀地分散,从而造成泡孔的分布不均匀和泡孔的尺寸不均匀,最终影响到发泡材料的强度性能和绝热性质。
中国专利申请201610393108.0公开了碳酸醇胺盐及其方法,然而,所获得的碳酸醇胺产物中仍然含有较高的水含量,并且无法通过蒸馏方法或通过真空脱挥发分的方法来脱除水分,因为它的分解温度在60℃左右,并且在脱除水分的过程中同时从分子中脱除了CO2。然而,如何制备低水含量的碳酸醇胺盐仍然是本领域的难点。
发明内容
为克服现有技术中存在的缺点,本发明的发明目的是提供一种用于聚氨酯泡沫材料的复合发泡剂。
本申请的发明人出乎预料地发现,当将六氟丁烯与有机醇胺盐混合物(MAA)相结合作为聚氨酯发泡剂时,所获得的聚氨酯泡沫材料不仅具有更好的在常温下的绝热性能,而且具有良好的在低温或超低温下的抗变形性能和绝热性能。这对于聚氨酯泡沫材料在深冷领域 中的应用具有重大意义。
根据本发明的第一个实施方案,提供一种复合发泡剂(即包含六氟丁烯和有机醇胺盐化合物的复合发泡剂),它包括:
1)六氟丁烯;和
2)一种醇胺盐混合物(MAA,alkanolamine),
该醇胺盐混合物(MAA)包含有机醇胺盐化合物,该有机醇胺盐化合物是具有以下通式(I)的有机胺盐化合物:
An-[Bm+]p     (I)
式中,An-是作为CO2给体的具有-n价的阴离子,其中n=1或2;Bm+包含或各Bm+独立地是:+1价的铵离子,+1价的肼离子(H3 +N-NH2),+2价的肼离子(H3 +N-NH3 +),和/或,具有m个的-+NR3R4H基团和/或-+NR3H-基团的一种或多种有机胺(B)的阳离子;
其中m=1-5;
Figure PCTCN2017114589-appb-000001
其中An-是选自于下列阴离子中的一种或两种或三种:
(b)碳酸根:CO3 2-
(c)甲酸根:HCOO-
(d)碳酸氢根:HO-COO-
其中,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
前提条件是:所述通式(I)的化合物具有至少一个(例如一个或两个)与N键接的R基团(即-N-R基团),并且,醇胺盐混合物(MAA)含有50-99wt%(余量是水和任选的杂质)的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)的盐,基于醇胺盐混合物(MAA)的总重量;
其中该R基团选自于下列基团中的一种或多种:
(1a)H[OCH(R1a)CH(R2a)]q-;
(2a)H[OCH(R1a)CH(R2a)CH(R3a)]q-;或
(3a)H[OCH(R1a)CH(R2a)CH(R3a)CH(R4a)]q-;
其中q的值或平均值是q=1-3(例如2);R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7 环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
其中:在醇胺盐混合物(MAA)中水的含量为>0wt%至40wt%,和,所述有机胺化合物(B)是具有2-50个碳原子的有机胺化合物;
其中,在复合发泡剂中六氟丁烯与醇胺盐混合物(MAA)的重量之比是0.1-10:1。
优选,An-是(b)碳酸根:CO3 2-;或者,An-是(b)碳酸根(CO3 2-)与(c)甲酸根(HCOO-)和/或(d)碳酸氢根(HO-COO-)之间的结合物或混合物。
优选,在上述复合发泡剂中,(1a)H[OCH(R1a)CH(R2a)]q-是H(OCH2CH2)q-、H(OCH2CH(CH3))q-、H(OCH(CH3)CH2)q-、H(OCH2CH(C6H5))q-、H(OCH(C6H5)CH2)q-、H(OCH2CH(CH2Cl))q-、H(OCH(CH2Cl)CH2)q-或H(OCH2CH(CBr3))q-。
优选,在复合发泡剂中六氟丁烯与醇胺盐混合物(MAA)的重量之比是0.2-5:1,更优选0.3-4:1,更优选0.4-3:1,更优选0.5-2:1,更优选0.7-1.3:1。
优选,在醇胺盐混合物(MAA)中水的含量为5-35wt%,优选10-30wt%,更优选15-25wt%。
优选,该醇胺盐混合物(MAA)含有60-98wt%,优选70-97wt%,更优选80-96wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)的盐。
在本申请中,该单醇胺盐例如是碳酸铵乙醇胺盐,碳酸二(乙醇胺)盐。在本申请中,该二醇胺盐例如是碳酸铵(二乙醇胺)盐,碳酸(乙醇胺)(二乙醇胺)盐或碳酸二(二乙醇胺)盐。
优选,醇胺盐混合物(MAA)的pH为7.5-10,优选7.8-9.5,更优选8-9.0。
优选,在醇胺盐混合物(MAA)中,通式(I)化合物(即该有机醇胺盐化合物)和水的总含量是基于醇胺盐混合物(MAA)总重量的70-100%,优选80-99.5%,更优选85-99.0%。
优选,上述有机醇胺盐化合物是单醇胺(例如单乙醇胺和/或单丙醇胺)和/或二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)与阴离子所形成的盐,其中该阴离子是选自于下列阴离子中的一种或两种或三种:
(b)碳酸根:CO3 2-
(c)甲酸根:HCOO-
(d)碳酸氢根:HO-COO-
这里,单醇胺和/或二醇胺是指:单醇胺,二醇胺,或单醇胺与二醇胺的混合物。
优选,上述醇胺盐混合物(MAA)是通过第一原料与第二原料在水存在下(优选,水的用量是以第一原料的重量为基础计算的70-250wt%、优选85-200wt%、更优选100-170wt%、 更优选110-160wt%),任选地在催化剂存在下,进行反应所制备的,其中第一原料是选自于下列这些化合物中的一种或多种(例如两种或三种):
H2N-COONH4
(NH4)2CO3,碳酸肼,碳酸铵肼,或碳酸有机胺类化合物(M)盐,
HCOONH4,甲酸肼,或甲酸有机胺类化合物(M)盐,
HO-COONH4,碳酸氢肼,或有机胺类化合物(M)的碳酸氢盐;
第二原料是选自于下列这些环氧化物中的一种或多种(例如两种或三种):
Figure PCTCN2017114589-appb-000002
或苯乙烯氧化物;其中R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
其中所述的有机胺类化合物(M)是选自下列这些中的有机胺类化合物:
C1-C24烃基胺类;
二(C1-C16烃基)胺类;
C2-C14亚烃基二胺类;
C4-C16多亚烷基多胺类;
具有三个伯胺基的C3-C18有机三胺类或具有四个伯胺基的C5-C18有机四胺类;或
C2-C10醇胺类。
在本申请中,优选,有机胺化合物(B)是具有N-R基团的有机胺类化合物,并且,具有N-R基团的有机胺化合物(B)是通过在氨上或在所述有机胺类化合物(M)的至少一个N原子上被上述一个或多个R基团所取代而形成的,其中R的定义与以上所定义的相同。
优选,q=1-2.5、更优选q=1-2.0,按q的平均值计算。
一般,有机胺(B)具有m至m+3个的伯胺、仲胺和/或叔胺基团,和任选地具有季铵基团。
优选,所述有机胺化合物(B)是具有2-20个碳原子的有机胺化合物。
优选,Bm+是两种以上的上述有机胺阳离子的结合或混合物。
优选,所述有机胺化合物(B)是具有3-12个碳原子的有机胺化合物。
优选,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C4脂肪族烃基,任选被羟基或氨基或卤素取代的环丁基或环己基,或,任选被羟基或氨基或卤素取代 的苯基或甲基苯基;并且,R1a、R2a、R3a或R4a各自独立地选自:H,甲基或任选被羟基或氨基或卤素取代的乙基,或任选被羟基或者氨基或卤素取代的丙基或异丙基,任选被羟基或氨基或卤素取代的环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基。
优选,R1a、R2a、R3a或R4a各自独立地选自:H,甲基,氯甲基,溴甲基,乙基,环己基,或,苯基。
优选,在复合发泡剂中,它的碱金属和碱土金属的质量含量为0-200ppm。
优选,通式(I)的化合物平均每分子含有1.3-5个R基团,例如1.4-4个(例如3个)R基团,优选1.5-2个R基团。
优选,上述环氧化物是:环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷、或环氧氯丁烷或苯乙烯氧化物,或它们中任何两种或多种的混合物。
上述催化剂是氨水。
根据本发明的第二个实施方案,还提供聚氨酯发泡组合物,它包含:
0.1-100重量%、优选1-80重量%、更优选3-60wt%(例如,10wt%,15wt%,20wt%,30wt%,40wt%,50wt%)的以上所述的复合发泡剂;
0-50重量%、优选0-40重量%、更优选0.2-30重量%(例如,0.5wt%,1.0wt%,1.5wt%,2.0wt%,5wt%,10wt%,或20wt%)的除六氟丁烯以外的物理发泡剂;
0-6重量%、优选0.5-5重量%、更优选0.7-4重量%的水,和
0.0-99.9重量%、优选20.0-99重量%、更优选40-97wt%(例如,90wt%,85wt%,80wt%,70wt%,60wt%,50wt%)的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量。
另外,根据本发明的第三个实施方案,还提供聚氨酯发泡组合物,它包含:
0.1-10重量%、优选0.3-8重量%、更优选0.5-6wt%的的六氟丁烯;
0.2-90重量%、优选1-80重量%、更优选3-70wt%的有机醇胺盐化合物;
0-50重量%、优选0.2-40重量%、更优选0.5-30重量%的除六氟丁烯以外的物理发泡剂;
0.1-10重量%、优选0.3-9重量%、更优选0.5-8重量%的水,和
0.0-99.6重量%、优选20.0-98.2重量%、更优选40-96.5wt%的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量;
其中:所述有机醇胺盐化合物是具有以下通式(I)的有机胺盐化合物:
An-[Bm+]p       (I)
式中,An-是作为CO2给体的具有-n价的阴离子,其中n=1或2;Bm+包含或各Bm+独立地是:+1价的铵离子,+1价的肼离子(H3 +N-NH2),+2价的肼离子(H3 +N-NH3 +),和/或,具有m个的-+NR3R4H基团和/或-+NR3H-基团的一种或多种有机胺(B)的阳离子;
其中m=1-5;
Figure PCTCN2017114589-appb-000003
其中An-是选自于下列阴离子中的一种或两种或三种:
(b)碳酸根:CO3 2-
(c)甲酸根:HCOO-
(d)碳酸氢根:HO-COO-
其中,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
前提条件是:所述通式(I)的化合物具有至少一个(例如一个或两个)与N键接的R基团(即-N-R基团);
其中该R基团选自于下列基团中的一种或多种:
(1a)H[OCH(R1a)CH(R2a)]q-;
(2a)H[OCH(R1a)CH(R2a)CH(R3a)]q-;或
(3a)H[OCH(R1a)CH(R2a)CH(R3a)CH(R4a)]q-;
其中q的值或平均值是q=1-3(例如2);R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
其中所述有机胺化合物(B)是具有2-50个碳原子的有机胺化合物;
优选的是,有机醇胺盐化合物是单醇胺(例如单乙醇胺和/或单丙醇胺)和/或二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)与阴离子所形成的盐,其中该阴离子是选自于下列阴离子中的一种或两种或三种:
(b)碳酸根:CO3 2-
(c)甲酸根:HCOO-
(d)碳酸氢根:HO-COO-
优选,所述有机醇胺盐化合物含有50-100wt%(60-98wt%,优选70-96wt%,更优选80-94wt%)的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺、乙醇丙醇 胺和/或二丙醇胺)的盐,基于所述有机醇胺盐化合物的总重量。
优选,在聚氨酯发泡组合物中六氟丁烯与所述有机醇胺盐化合物的重量之比是0.2-5:1,更优选0.3-4:1,更优选0.4-3:1,更优选0.5-2:1,更优选0.7-1.3:1。
优选,所述聚氨酯发泡组合物含有总共0.2-8wt%,0.4-6wt%、0.5-5wt%、优选0.7-4wt%、进一步优选1-3wt%的水。
优选,所述的发泡组合物进一步包含:泡沫稳定剂、催化剂和阻燃剂等。这些助剂是聚氨酯领域中常用的。
在本申请中,丙醇胺包括:3-羟基丙胺,2-羟基丙胺(即异丙醇胺),和/或2-氨基丙醇。
优选,聚合物多元醇选自:聚醚多元醇、聚酯多元醇、聚醚-聚酯多元醇、聚碳酸酯二醇、聚碳酸酯-聚酯多元醇、聚碳酸酯-聚醚多元醇、聚丁二烯多元醇或聚硅氧烷多元醇。聚合物多元醇的平均官能度一般为2-16,优选为2.5-10,更优选3-8。优选,聚合物多元醇是组合聚醚(多元醇)。
优选,所述物理发泡剂选自下组中的至少一种:正戊烷,异戊烷,环戊烷,沸点在0-100℃范围内的其它烷烃,HCFC-141b,HFC-245fa,HFC-365mfc,LBA,沸点在0-100℃范围内的其它氟氯烃,甲酸甲酯。
根据本发明的第四个实施方案,还提供聚氨酯泡沫材料,其通过以上所述的聚氨酯发泡组合物与多异氰酸酯单体,异氰酸酯封端的预聚物,或多异氰酸酯单体与异氰酸酯封端的预聚物两者的混合物进行混合后发生反应而形成。
本发明的通式(I)化合物的分解温度一般是在45-120℃之间,优选50-70℃之间,或者,当接触到异氰酸酯时它的分解温度是在45-70℃之间。
在本申请中,醇胺盐混合物(MAA)与通式(I)的化合物或化合物混合物可互换使用。
另外,根据本发明的第五个实施方案,提供二氧化碳与有机胺结合使用的一种聚氨酯发泡方法:
为克服现有技术中存在的缺点,本发明的发明目的是提供一种新型聚氨酯发泡技术,改进了传统的液态CO2发泡技术,且改善了传统液态CO2发泡中设备压力过大,孔泡的分布不均匀和孔泡的尺寸不均匀等问题。因为,一方面,CO2与聚合物多元醇或异氰酸酯之间的混溶性不好,CO2难以在发泡用的起始原料中均匀地分散。尤其,另一方面,采用CO2发泡,往往使用高压混合器,在混合时压力例如达到4-7MPa,在高压下无法通过搅拌来实 现均匀混合。
本发明涉及作为CO2增溶剂,而且可以作为催化剂、交联剂或扩链剂的有机胺类化合物或其混合物,在聚氨酯液态CO2发泡过程中的应用,及其在发泡材料如聚氨酯冰箱冰柜泡沫体材料、聚氨酯间歇板泡沫体材料、聚氨酯连续板泡沫体材料、聚氨酯喷涂泡沫体材料、聚氨酯太阳能泡沫体材料中的用途中的应用。
本发明涉及的发泡技术中,由于在聚氨酯发泡组合料中加入有机胺(OA,organic amines)作为增溶剂,明显提升了CO2在发泡组合料中的溶解性,使用气态CO2发泡技术、尤其使用液态CO2发泡技术进行发泡时,使用较低的操作压力条件即可达到发泡组合料与CO2的均相混合,达到发泡需求。本申请的发明人意外地发现,组合料中的有机胺在液态CO2条件下,与组合料中溶解的大部分CO2反应生成了有机胺-CO2加合物,上述加合物在升高温度条件下容易分解产生CO2气体,甚至在较低的温度下进行发泡时,上述加合物能够被异氰酸酯单体如MDI和TDI所含的NCO基团激活,快速释放出CO2气体。另外,由于上述加合物的形成,使得大部分CO2能够充分溶于发泡组合料(如聚醚多元醇或聚酯多元醇)中或与发泡组合料之间有很好的互溶性,本发明的发泡技术中CO2能够均匀地分散于发泡组合物中以便均匀地发泡,尤其当在白料和黑料混合和发泡之前有机胺预先均匀混合在白料中时,无需在高压下搅拌就能实现CO2在白料中的均匀混合和分散,因此,在所制备的聚氨酯泡沫体中泡孔的分布也比较均匀,并且泡孔的尺寸比较均匀。另外,本发明的有机胺-CO2加合物分解释放出CO2之后所产生的分解产物为有机胺化合物,它们适合作为聚氨酯交联剂、扩链剂和催化剂应用于材料当中,既提高了泡沫强度和尺寸稳定性等,又减少了其他催化剂的使用。特别是,当使用醇胺作为有机胺时,所制备的聚氨酯泡沫材料具有优异的在深冷条件下抗形变性能和优异的绝热性能。因此,基于上述几个方面,完成了本发明。
在本申请中,“作为CO2增溶剂的有机胺”是指在液态CO2条件下可以与CO2形成加合物提高CO2在组合料中溶解性的有机胺。
根据本发明,提供二氧化碳与有机胺结合使用的一种聚氨酯发泡方法,该方法包括:将聚氨酯发泡组合物(称作“白料”)和多异氰酸酯单体和/或异氰酸酯封端的预聚物(称作“黑料”)两者作为单独的物料流股分别输送到(优选,连续地被输送到)混合器(优选为压力混合器)中进行混合和然后让所形成的混合物发泡,其中在两股物料(即白料与黑料)(例如连续地)进入混合器中进行混合之前(或在两股物料被输送进入到混合器中之前)将二氧化碳(例如在压力下)(优选,连续地)加入到聚氨酯发泡组合物(即“白料”)中或加入到多异氰酸酯单体和/或异氰酸酯封端预聚物(即“黑料”)中或同时加入到聚氨酯发泡组合物中和多异氰酸酯单体和/或异氰酸酯封端预聚物中,其中二氧化碳是气体二氧化碳、液体二氧化碳、亚临界二氧化碳(subcritical)和/或超临界(supercritical)二氧化碳[即,这里所述的二氧化碳是选自于气体二氧化碳、液体二氧化碳、亚临界二氧化碳(subcritical)或超临界(supercritical)二氧化碳中的一种或多种];
所述聚氨酯发泡组合物包含:
60.0-99.0重量%、优选70.0-96重量%、更优选80-95wt%(例如85wt%)的聚合物多元醇,
1-40重量%、优选2-35重量%、优选3-30重量%、更优选5-20wt%(例如7wt%、12wt%或15wt%)的有机胺(OA,organic amines),
0-50重量%、优选0-40重量%、更优选0-30重量%的除二氧化碳以外的物理发泡剂,
0-8重量%、优选0.3-6重量%、更优选0.5-5重量%、更优选0.7-4重量%的水,和
0-8重量%、优选0.5-6重量%、更优选1-5wt%的氨和/或肼,
其中,所述重量百分比基于聚氨酯发泡组合物的总重量。
在本申请中,“任选”是指进行或不进行。
这里,“在两股物料(即白料与黑料)(例如连续地)进入混合器中进行混合之前(或在两股物料被输送进入到混合器中之前)将二氧化碳(例如在压力下)(优选,连续地)加入到聚氨酯发泡组合物(即“白料”)中或加入到多异氰酸酯单体和/或异氰酸酯封端预聚物(即“黑料”)中或同时加入到聚氨酯发泡组合物中和多异氰酸酯单体和/或异氰酸酯封端预聚物中” 是指:在两股物料(即白料与黑料)(例如连续地)进入混合器中进行混合之前(或在两股物料被输送进入到混合器中之前)的某一个位置(例如在两种物料各自的输送管路中或在两种物料各自的贮存容器中),将二氧化碳(例如在压力下)(非连续地或连续地)加入到聚氨酯发泡组合物(即“白料”)中或加入到多异氰酸酯单体和/或异氰酸酯封端预聚物(即“黑料”)中或同时加入到聚氨酯发泡组合物中和多异氰酸酯单体和/或异氰酸酯封端预聚物中。
其中:所述有机胺(OA)是选自于伯胺化合物(I),仲胺化合物(II),叔胺化合物(III),羟胺,多亚烷基多胺,或,羟基取代或C1-C3烷基取代的多亚烷基多胺中的一种或多种:
Figure PCTCN2017114589-appb-000004
式中R1,R2,R3,R4,R5,R6各自独立是C1-C8烃基、C1-C8羟基烃基、C1-C4羟基烃氧基C1-C4烃基、C1-C6氨基烃基或C1-C3烷基胺基C1-C4烃基;优选,R1,R2,R3,R4,R5,R6各自独立是C1-C4烃基、C1-C4羟基烃基、C1-C3羟基烃氧基C1-C3烃基、C1-C4氨基烃基或C1-C2烷基胺基C1-C3烃基;更优选,R1,R2,R3,R4,R5,R6各自独立是C1-C2烃基、C1-C3羟基烃基、C1-C3羟基烃氧基C1-C3烃基、C1-C3氨基烃基或C1-C2烷基胺基C1-C2烃基。
在本申请中,烃基优选是烷基。烃氧基优选是烷氧基。
优选,所述聚合物多元醇选自:聚醚多元醇、聚酯多元醇、聚醚-聚酯多元醇、聚碳酸酯二醇、聚碳酸酯-聚酯多元醇、聚碳酸酯-聚醚多元醇、聚丁二烯多元醇或聚硅氧烷多元醇;更优选,聚合物多元醇是组合聚醚多元醇。聚合物多元醇(例如组合聚醚多元醇)的平均 官能度一般为2-16,优选为2.5-10,更优选3-8。
优选,以上所述的多亚烷基多胺是选自于二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、二亚丙基三胺、三亚丙基四胺或四亚丙基五胺中的一种或多种。
优选,以上所述的发泡方法是使用超临界二氧化碳或亚临界二氧化碳的超临界二氧化碳发泡方法或亚临界二氧化碳发泡方法。
一般,所述物理发泡剂选自下组中的至少一种:正戊烷,异戊烷,环戊烷,沸点在0-100℃范围内的其它烷烃,HCFC-141b,HFC-245fa,HFC-365mfc,LBA,六氟丁烯,沸点在0-100℃范围内的其它氟氯烃,或甲酸甲酯。
一般,氨和/或肼是以氨水或水合肼的形式添加在聚氨酯发泡组合物中,并且使得所形成的聚氨酯发泡组合物含有总共0.4-8wt%、0.5-7wt%、优选0.6-6wt%、进一步优选0.7-5wt%的水,重量百分比基于聚氨酯发泡组合物的总重量。
优选,聚氨酯发泡组合物还包含:泡沫稳定剂、聚氨酯催化剂和阻燃剂。
优选,有机伯胺(I)是选自于下列之中的一种或多种:
其中R1为C1-C8烃基的伯胺类,例如甲胺,乙胺,丙胺,丁基胺,戊基胺,己基胺,庚基胺,辛基胺,壬基胺,癸基胺,十二烷基胺,十四烷基胺,十六烷基胺,十八烷基胺,二十烷基胺,二十四烷基胺,未取代或取代(如卤素取代)的苯胺,未取代或取代(如卤素取代)的苄基胺,环己基胺,甲基环己基胺,环己基甲基胺,N-甲基环己基胺或N-甲基苄胺等等。
其中R1为C1-C8羟基烃基的伯胺类,例如乙醇胺,丙醇胺,丁醇胺,氯乙醇胺,氧代双乙胺,等等。
其中R1为C1-C6氨基烃基的伯胺类,例如乙二胺,丙二胺,丁二胺或戊二胺或己二胺,等等。
更优选,有机伯胺(I)是选自下列之中的一种或多种:
甲胺,乙胺,丙胺,乙醇胺,丙醇胺,氧代双已胺,乙二胺,丙二胺,等等。
优选,有机仲胺(II)是选自于下列之中的一种或多种:
其中R2,R3是C1-C8烃基的仲胺类,即具有一个仲胺基的单胺类,例如二甲胺,二乙基胺,甲基乙基胺,二丙基胺,甲基丙基胺,乙基丙基胺,二丁基胺,乙基丁基胺,二戊基胺,二己基胺,二庚基胺,二辛基胺,二壬基胺,二癸基胺,二(十二烷基)胺,二(十四烷基)胺,二(十六烷基)胺,二(十八烷基)胺,二(二十烷基)胺或二(二十四烷基)胺等等。
其中R2,R3是C1-C8羟基烃基的胺类,例如二乙醇胺,乙醇丙醇胺,二丙醇胺,羟乙基羟异丙基胺,二羟异丙基胺,或二羟氯丙基胺等等。
其中R2为C1-C8烃基,R3为C1-C8羟基烃基的胺类,例如N-甲基乙醇胺,N-乙基乙醇胺,N-异丙基羟异丙基胺,或N-乙基羟异丙基胺等等。
更优选,有机仲胺(II)是二乙醇胺,乙醇丙醇胺,二丙醇胺或N-甲基乙醇胺。
优选,叔胺化合物(III)是选自于下列之中的一种或多种:
其中R4,R5,R6各自独立是C1-C8烃基(脂肪族基、环脂肪族基、芳香族基)或C1-C8羟基烃基或C1-C6氨基烃基的胺类(叔胺类),例如三乙胺,N,N-二甲基环己胺,N,N-二甲基乙醇胺,N,N-二甲基苄胺,三乙烯二胺,三乙醇胺,N-乙基二乙醇胺,或三(氨基乙基)胺,等等。
更优选,叔胺化合物(III)是三乙醇胺。
在发泡过程中,二氧化碳与包含有机胺(OA)的聚氨酯发泡组合物混合时,二氧化碳与有机胺(OA)所形成的碳酸胺盐的分解温度一般是在50-70℃之间,优选55-65℃之间。
优选,聚氨酯发泡组合物的pH值为7.2-10,优选7.4-9.5,优选7.5-9,更优选7.8-8.5。
所述聚氨酯发泡组合物还包含:0.1-5重量%、优选0.3-4.5重量%、更优选0.5-4wt%、更优选0.8-3wt%(例如1.2wt%或1.8wt%或2.5wt%)的碳酸有机胺(OA)盐,即,上述有机胺(OA)的碳酸盐。也就是说,在所述聚氨酯发泡组合物中预先混入了少量的碳酸有机胺(OA)盐。优选,碳酸有机胺(OA)盐是碳酸有机醇胺盐。
优选,在聚氨酯发泡方法中,将聚氨酯发泡组合物的一股料流(即,发泡组合物或白料)与多异氰酸酯单体和/或异氰酸酯封端的预聚物的一股料流(即,异氰酸酯料流或黑料)在压力混合器中进行混合。优选的是,该压力混合器是具有压力混合区或具有混合器的发泡设备,所述发泡设备例如是聚氨酯高压发泡机或聚氨酯高压喷涂机。
优选,上述有机胺(OA)是醇胺类,优选是选自于单乙醇胺,单丙醇胺,单异丙醇胺,甲胺,乙胺或丙胺中的一种或多种。
优选,碳酸有机胺(OA)盐是选自于碳酸(铵)(单乙醇胺)盐,碳酸二(乙醇胺)盐,碳酸(乙醇胺)(丙醇胺)盐,碳酸二(丙醇胺),碳酸二(异丙醇胺)盐,碳酸二(甲基胺)盐,碳酸二(乙基胺)盐,碳酸二(丙基胺)盐,碳酸(甲基胺)(乙基胺)盐,碳酸(甲基胺)(丙基胺)盐,碳酸(乙基胺)(丙基胺)盐中的一种或多种。
在聚氨酯发泡方法中,气体二氧化碳、液体二氧化碳、亚临界二氧化碳或超临界二氧化碳分别被贮存在压力容器中。在混合和发泡之前,将气体二氧化碳、液体二氧化碳、亚临界二氧化碳和/或超临界二氧化碳作为一股料流输入到聚氨酯发泡组合物(即,发泡组合物或白料)中,或输入到多异氰酸酯单体和/或异氰酸酯封端的预聚物(即,异氰酸酯料流或黑料)中,或同时输入到白料和黑料中,然后这两股料流进入到压力混合器中进行混合。白料的料流和黑料的料流(优选在压力下)在混合之后被输出来进行发泡,从而制备聚氨酯泡沫材料。本发明的聚氨酯发泡方法尤其适合于喷涂发泡或浇注发泡。
一般,在被输送到压力混合器中之前,聚氨酯发泡组合物(白料)和多异氰酸酯单体和/或异氰酸酯封端的预聚物(黑料)分别在单独的容器(优选压力容器)中贮存;并且在被输送到压力混合器中之前聚氨酯发泡组合物已经混合均匀以使得有机胺(OA)(优选醇胺)均匀混合在聚氨酯发泡组合物中。
在本申请中,多异氰酸酯单体和/或异氰酸酯封端的预聚物是指:多异氰酸酯单体,异氰酸酯封端的预聚物,或多异氰酸酯单体与异氰酸酯封端的预聚物两者的混合物或结合物。
优选,上述有机胺(OA)是醇胺类,优选是选自于单乙醇胺,单丙醇胺,单异丙醇胺,甲 胺,乙胺或丙胺中的一种或多种。
优选,碳酸有机胺(OA)盐是选自于碳酸(铵)(单乙醇胺)盐,碳酸二(乙醇胺)盐,碳酸(乙醇胺)(丙醇胺)盐,碳酸二(丙醇胺),碳酸二(异丙醇胺)盐,碳酸二(甲基胺)盐,碳酸二(乙基胺)盐,碳酸二(丙基胺)盐,碳酸(甲基胺)(乙基胺)盐,碳酸(甲基胺)(丙基胺)盐,碳酸(乙基胺)(丙基胺)盐中的一种或多种。
在本申请中,气体二氧化碳、液体二氧化碳、亚临界二氧化碳或超临界二氧化碳,简称二氧化碳,被称作发泡剂或被称作主发泡剂(例如当包含其它物理发泡剂时),有机胺被称作助发泡剂。
在本申请中,关于亚临界(态)二氧化碳和超临界(态)二氧化碳的定义,参见JP2011213854A,JP2009256484A,JP2002047325A,JP2002327439A,JP2016188329A和JP2016188330A。“亚临界(状态)二氧化碳”(subcritical state carbon dioxid)是指,例如,其中压力不低于(即等于或高于)二氧化碳的临界压力和温度低于临界温度时的液体二氧化碳(refers to carbon dioxide in a liquid state in which the pressure is equal to or higher than the critical pressure of carbon dioxide and the temperature is lower than the critical temperature)。“超临界(态)二氧化碳”是指,其中压力不低于二氧化碳的临界压力和温度不低于临界温度时的二氧化碳(refers to carbon dioxide in which the pressure is not lower than the critical pressure of carbon dioxide and the temperature is not lower than the critical temperature)。这些日本专利被全文引入本申请中供参考。
另外,根据本发明的第六个实施方案,提供一种制备碳酸醇胺盐的方法:
本申请的发明人出乎预料地发现,在由碳酸铵盐或碳酸肼盐与环氧化物在作为溶剂或分散介质的水存在下进行反应所获得的液体状态的、含水的醇胺盐混合物的一部分或全部能够本身作为溶剂或分散介质进一步用于碳酸铵盐或碳酸肼盐与环氧化物的反应中制备液体状态的、水含量更低的醇胺盐混合物。依次类推,最终能够制备水含量较低(例如5-10wt%)的醇胺盐混合物。
根据本发明,提供一种制备碳酸醇胺盐的方法,该方法包括:
(1)将第一原料与第二原料在水的存在下,任选地在催化剂的存在下,进行反应,获得液体状态的、水含量(W1)低于60wt%(例如20-60wt%,如25-40wt%)的醇胺盐混合物(MAA1);和
(2)将步骤(1)中获得的液态醇胺盐混合物(MAA1)的一部分或全部作为分散介质或作 为溶剂,通过在其中添加第一原料和第二原料进行混合,任选地在催化剂的存在下,让所形成的反应混合物进行反应,获得液体状态的且其水含量(W2)比步骤(1)所获得的产物的水含量(W1)进一步降低(例如其水含量W2低于50wt%,如,其水含量W2为10-50wt%,如15-30wt%)的醇胺盐混合物(MAA2);
其中第一原料是选自于下列这些化合物中的一种或多种:
H2N-COONH4
(NH4)2CO3,碳酸肼,碳酸铵肼,或碳酸有机胺类化合物(M)盐,
HCOONH4,甲酸肼,或甲酸有机胺类化合物(M)盐,
HO-COONH4,碳酸氢肼,或有机胺类化合物(M)的碳酸氢盐;
第二原料是选自于下列这些环氧化物中的一种或多种:
Figure PCTCN2017114589-appb-000005
或苯乙烯氧化物;其中R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
其中所述的有机胺类化合物(M)是选自下列这些中的有机胺类化合物:
C1-C24烃基胺类;
二(C1-C16烃基)胺类;
C2-C14亚烃基二胺类;
C4-C16多亚烷基多胺类;
具有三个伯胺基的C3-C18有机三胺类或具有四个伯胺基的C5-C18有机四胺类;或C2-C10醇胺类。
优选,在步骤(1)中水的用量是以第一原料的重量为基础计算的60-250wt%、优选80-200wt%、更优选100-170wt%、更优选110-160wt%。
优选,所述方法进一步包括:
(3)将步骤(2)中获得的液态醇胺盐混合物(MAA2)的一部分或全部作为分散介质或作为溶剂,通过在其中添加上述第一原料和上述第二原料进行混合,任选地在催化剂的存在下,让所形成的反应混合物进行反应,获得液体状态的且其水含量(W3)比步骤(2)所获得的产物(MAA2)的水含量(W2)进一步降低(例如其水含量W3低于40wt%,如,6-40wt%,如7-20wt%)的醇胺盐混合物(MAA3)。
优选,所述方法进一步包括:
(4)将步骤(3)中获得的液态醇胺盐混合物(MAA3)的一部分或全部作为分散介质或作为溶剂,通过在其中添加上述第一原料和上述第二原料进行混合,任选地在催化剂的存在下,让所形成的反应混合物进行反应,获得液体状态的且其水含量(W4)比步骤(3)所获得的产物(MAA3)的水含量(W3)进一步降低(例如其水含量W4低于30wt%,如,2-30wt%,更优选3-25wt%,更优选3.5-20wt%,例如7wt%或12wt%)的醇胺盐混合物(MAA4)。
在上述方法中,优选的是:
R1a、R2a、R3a或R4a各自独立地选自:H,甲基或任选被羟基或氨基或卤素取代的乙基,或任选被羟基或者氨基或卤素取代的丙基或异丙基,任选被羟基或氨基或卤素取代的环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基;优选的是,其中R1a、R2a、R3a或R4a各自独立地选自:H,甲基,氯甲基,溴甲基,乙基,环己基,或,苯基。
在上述方法中,优选的是:
步骤(2)中获得的醇胺盐混合物(MAA2)的水含量(W2)是步骤(1)中获得的醇胺盐混合物(MAA1)的水含量(W1)的30-85%(优选35-80%,更优选40-75%,例如50%或60%)。
进一步优选,步骤(3)中获得的醇胺盐混合物(MAA3)的水含量(W3)是步骤(2)中获得的醇胺盐混合物(MAA2)的水含量(W2)的30-85%(优选35-80%,更优选40-75%,例如50%或60%)。
进一步优选,步骤(4)中获得的醇胺盐混合物(MAA4)的水含量(W4)是步骤(3)中获得的醇胺盐混合物(MAA3)的水含量(W3)的30-80%(优选35-75%,更优选40-70%,例如50%或60%)。
在上述方法中,优选,该环氧化物是:环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷、或环氧氯丁烷或苯乙烯氧化物,或它们中任何两种或多种的混合物。
在上述方法中,优选,催化剂是氨水。
在上述方法中,对于步骤(1)和(2)而言,或对于步骤(1)、(2)和(3)而言,或对于步骤(1)、(2)、(3)和(4)而言,这些步骤独立地能够在相同或不同的地方或在相同或不同的车间进行。例如步骤(1)在一个城市进行,步骤(2)在另一个城市进行。
根据本发明,还提供一种发泡剂混合物,它包括上述醇胺盐混合物和物理发泡剂。其中,该醇胺盐混合物是选自于醇胺盐混合物(MAA1)、(MAA2)、(MAA3)或(MAA4)中的一种或多种,优选,该醇胺盐混合物是选自于醇胺盐混合物(MAA2)、(MAA3)或(MAA4)中的一种或多种。所述物理发泡剂选自下组中的至少一种:正戊烷,异戊烷,环戊烷,或沸点 在0-100℃范围内的其它烷烃,HCFC-141b,HFC-245fa,HFC-365mfc,LBA,FEA-1100(六氟丁烯),或沸点在0-100℃范围内的其它氟氯烃,或甲酸甲酯。
对于本申请中未详细描述的内容,可以参考CN107089927A或CN107089910A,它们的说明书中的内容被引入本申请中供参考。
本发明的有益技术效果或优点
A)在本发明的第一个至第四个实施方案中:
1、通过将醇胺盐混合物(MAA)与六氟丁烯相结合用作聚氨酯发泡剂,所制备聚氨酯泡沫材料不仅在常温下具有更良好的绝热性能,而且,具有良好的在低温或超低温下的抗变形性能和绝热性能。在深冷领域中的应用具有重大的优势。
2、通过将醇胺盐混合物(MAA)与六氟丁烯相结合用作聚氨酯发泡剂,在发泡过程中,前段由六氟丁烯发泡,后段由醇胺盐混合物(MAA)中的通式(I)化合物分解释放二氧化碳进行二次发泡,发泡过程呈现“双峰”型过程,两种气体有力地支撑泡孔、避免瘪泡,使得泡沫材料中的泡孔尺寸相对均匀,并且通过通式(I)化合物分解产物(醇胺)的交联和扩链作用,泡沫内的微观结构得到增强,抗变形的性能非常突出。
3、用本发明的复合发泡剂作为发泡剂所制备的聚氨酯泡沫材料的尺寸变化率或收缩率≤0.3%、甚至≤0.2%(按照中国国家标准GB/T 8811-2008,放置时间可按照该标准中所要求)。另外,例如在34-42Kg/m3的泡沫体密度下,导热系数w/m·k(10℃)或w/m·k(22.5℃)是在0.01830-0.01895之间,优选是在0.01850-0.01885之间。而现有技术的聚氨酯泡沫体在此密度下的导热系数一般高于0.01900,更通常是高于0.02200。另外,在此密度范围内,本发明泡沫体的压缩强度是在110-220Kpa范围,优选150-200Kpa范围。
B)在本发明的第五个实施方案中:
1、通过预先在发泡组合物(白料)中均匀混合有机胺(OA),在使用二氧化碳发泡时,在高压下无需使用搅拌设备进行较长时间的均匀混合,在白料与黑料在较高的压力下被输入压力混合器中混合时就能实现二氧化碳在白料中的快速均匀混合和分散(例如在喷涂发泡时混合时间为0.1-10秒,如0.2-2秒),而且能够在白料中吸收更多的二氧化碳,导致所获得的聚氨酯泡沫材料具有均匀分布的泡孔,并且泡孔的大小非常均匀,而且泡孔的平均尺寸比使用普通的超临界发泡技术所获得的泡沫材料的泡孔尺寸更大,几乎达到1.5-4倍。特 别是,通过在白料中预先添加少量的碳酸有机胺盐、尤其碳酸醇胺盐,上述优点变得更突出和明显。尤其,当在白料中预先混入醇胺时或当过预先在发泡组合物(白料)中均匀混合少量的碳酸有机醇胺(OA)盐,所获得的泡沫材料在深冷条件下(例如-160℃)具有优异的抗变形性能和优异的绝热性能。因为二氧化碳被白料充分吸收,因而大幅度降低了发泡操作中的压力。
2、本发明的包含有机胺(OA)(例如通式(I)、(II)或(III)的有机胺化合物)的发泡组合物一方面在室温下贮存稳定,另一方面在聚氨酯发泡过程中当发泡反应体系升温时能够以合理的速度释放二氧化碳气体,以使得发泡材料具有理想的性能,如泡孔的分布密度,泡孔的尺寸均匀性。
3、二氧化碳与有机胺所形成的碳酸胺盐能够以分子水平均匀地溶解或分布在聚合物多元醇如聚醚多元醇和/或聚酯多元醇,确保发泡的均匀性,避免局部过度发泡。
4、对于二氧化碳与有机胺所形成的碳酸胺盐而言,在液态CO2发泡过程分解释放出CO2之后所产生的某些分解产物即伯和/或仲胺的化合物仍然含有至少一个活性氢,它们适合作为扩链剂和/或交联剂,本发明的通式(I)(II)(III)化合物既作为“发泡点”又作为“扩链点”和/或“交联点”,显著增强了泡孔的力学强度和机械强度,所获得的聚氨酯泡沫体具有良好的尺寸稳定性,聚氨酯泡沫体成品在放置几个月、甚至1年之后肉眼几乎没有观察到收缩现象,无塌泡或瘪泡现象。尤其在较高的温度(如40-70℃)下放置较长时间例如(10天)之后仍然具有良好的尺寸稳定性。
5、本发明的有机胺(例如通式(I)、(II)或(III)的有机胺化合物),尤其当包含一部分的叔胺化合物时,由二氧化碳与有机胺(尤其叔胺化合物)所形成的碳酸胺盐(尤其碳酸叔胺盐)在释放出CO2之后所产生的分解产物适合作为催化剂促进聚氨酯发泡过程。
6、本发明的有机胺不容易挥发,不含金属离子(金属离子对金属基材有腐蚀性),并且全部或大部分替代氯氟烃发泡剂,因此,对于环境保护而言具有重要的意义,并且发泡的 效果明显优于现有技术中使用其它发泡剂时的发泡效果。
7、有机胺(OA)(例如通式(I)、(II)或(III)的有机胺化合物)与氯氟烃如HCFC-141b,或HFC-365mfc混合用作发泡剂时,与单独使用氯氟烃发泡剂相比,能够显著提高泡沫材料的绝热性能。目前,通常围绕发泡剂或特定的氯氟烃发泡剂来选择与相关发泡剂互溶性或混溶性较好的特定聚醚多元醇,而使用本发明的发泡剂,无需选择特定的聚醚多元醇或聚酯多元醇,实用范围广泛,在发泡组合物中能够使用各种类型的聚酯多元醇和/或聚醚多元醇。另一方面,如果选择适合本发明制备的聚氨酯发泡剂的聚醚等助剂会获得更好的性能。
8、有机胺(例如通式(I)、(II)或(III)的有机胺化合物)作为CO2增溶剂所制备的聚氨酯泡沫材料(此泡沫材料为采用手工搅拌在实验室自制方模中制作)的尺寸变化率或收缩率≤5%,优选≤3%,更优选≤1%,更优选≤0.5%(按照中国国家标准GB/T 8811-2008,但放置时间为5个月)。
C)在本发明的第六个实施方案中:
本发明能够制备水含量较低的醇胺盐化合物,当它用于制备聚氨酯泡沫材料时,避免了水对于发泡反应的不利影响。而且适合于与物理发泡剂结合用作发泡剂。所述物理发泡剂选自下组中的至少一种:正戊烷,异戊烷,环戊烷,或沸点在0-100℃范围内的其它烷烃,HCFC-141b,HFC-245fa,HFC-365mfc,LBA,FEA-1100(六氟丁烯),或沸点在0-100℃范围内的其它氟氯烃,或甲酸甲酯。
附图说明
图1是实施例2的泡沫体的扫描电子显微镜照片(SEM)。
图2是实施例1A的泡沫体的扫描电子显微镜照片(SEM)。
图3是对比例1A的泡沫体的扫描电子显微镜照片(SEM)。
具体实施方式
下面结合实施例对本发明做进一步的描述。
在本申请中,用于制备聚氨酯泡沫体或用于发泡组合物中的常用聚醚多元醇和聚酯多元醇选自下列品种:聚醚4110、450、400A、MN500、SU380、SA380、403、SA460、G350;聚酯CF6320、DM2003、YD6004、AKS7004、CF6255。常用催化剂选自:33LV(A-33):33%三乙 烯二胺的二丙二醇溶液、N,N-二甲基乙醇胺、N,N-二甲基苄胺、70%双(二甲胺基乙基)醚的二丙二醇溶液、70%辛酸钾于二乙二醇溶液、二月桂酸二丁基锡、PT303、PT304、醋酸钾、PC-8(N,N-二甲基环己胺)、PC-5、PC-41、三乙醇胺、JXP-508、JXP-509、TMR-2、TMR-3、TMR-4。常用阻燃剂:TCPP、TCEP、DMMP、氯化铵、氢氧化铝粉末、DM1201、DM1301、四溴苯酐二醇。常用硅烷表面活性剂:DC8545、AK-158、AK-8805、AK-8812、AK-8809、AK-8818、AK-8860、DCI990、DC5188、DC6070、DC3042、DC3201。非硅烷表面活性剂:LK-221,LK-443。
安全说明:在本发明中凡是涉及使用环氧化合物的情况,为了安全起见,在将反应物加入反应器之前和之后必须经过惰性气体(如氮气或氩气)处理和保护下进行反应,防止爆炸。另外,对于加入环氧乙烷的情况,为了安全起见,优选的是分批加入反应器中,而环氧丙烷可以一次性加入反应器中,也可以分批。反应器一般为装有冷却设备的压力反应器,除非另有说明。环氧化合物要分批地慢慢地加入到反应器中,而对于那些相对安全的环氧化合物也要分批分次地慢慢地加入到反应器中,控制反应速度等反应条件,确保安全。水合肼也是易燃易爆的有毒的化合物,因此在使用的时候也必须按照相关要求和规定进行。
在实施例中根据中国国家标准GB/T 26689-2011(冰箱、冰柜用硬质聚氨酯泡沫塑料)测试泡沫体的各项性能。样品的尺寸一般为10*10*2.5cm。
导热系数按照GB/T 10294-2008或GB/T 10295-2008进行。平均温度为10℃,冷热板温差15~20℃。表观(芯)密度按照GB/T 6343-2009测试。低温尺寸稳定性按照GB/T8811-2008,在-30℃±2℃下测试。压缩强度按照GB/T 8813-2008进行测试。闭孔率(即闭孔体积百分率)按照GB/T 10799-2008进行测试。
对于通式(I)的化合物或化合物混合物中各种醇胺(例如单乙醇胺、二乙醇胺、三乙醇胺、单丙醇胺、二丙醇胺或三丙醇胺)的含量的测量方法,可采用气相色谱法。其中气相色谱仪配有氢火焰离子化检测器(FID),通式(I)化合物的质量浓度为大约10mg/mL,为标准溶液。气相色谱条件:HP-5毛细管色谱柱(30m×0.32mm i.d.×0.25μm,5%phenyl methyl-siloxane);柱温为程序升温,初始温度为80℃,保持3min后以25℃/min的速率升至250℃,保持5min;进样口温度250℃;检测器温度260℃;载气为高纯氮,流速为1.5mL/min;燃气为氢气,流速为30mL/min;助燃气为空气,流速为300mL/min;尾吹气为氮气,流速为25mL/min;进样方式为分流进样,分流比:30:1;进样量为1μL。
第一部分:根据本发明的第一个至第四个实施方案
A)从氨基酸铵盐制备通式(I)化合物
实施例A-1
将1.4吨的氨基甲酸铵(分子量78.07)、1.2吨的水加入到带有冷却水夹套的不锈钢高压反应釜(在下面的其它实施例中简称反应器)中,开动搅拌器,使得氨基甲酸铵溶解,用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共1.90吨的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在70℃以下反应15小时,反应完成,慢慢降低温度到50℃后控制真空度在600毫米汞柱以下(优选低于500mmHg)慢慢脱除不必要的水(例如达到低于20wt%的水含量)和未反应的环氧丙烷,然后放掉真空,降温到40℃以下后放出反应物,获得化合物A-1(即,醇胺盐混合物MAA)。粘度200厘泊,pH=9,化合物A-1的分解温度为45-70℃(从45℃开始极其缓慢地分解,峰值分解温度为57-62℃)。用原子吸收分光光度计(Seiko Instruments,Inc.;SAS/727)测定碱金属和碱土金属离子的含量为低于检测极限。气相色谱分析,单丙醇胺与二丙醇胺的摩尔比是1:0.18。化合物A-1含有约74wt%的单丙醇胺和二丙醇胺两者的盐。还含有一部分的水。另外,化合物A-1含有约55wt%的单丙醇胺和二丙醇胺(在加热化合物A-1以释放二氧化碳之后对残留物进行分析),基于加热分解之前的化合物A-1的总重量。
化合物A-1是一种在室温下或在环境条件比较稳定的透明或澄清液体,适合作为聚氨酯发泡剂,它与HFC-245fa、LBA、五氟丁烷的基本特性对比如下表:
  化合物A-1 HFC245fa 五氟丁烷 LBA
ODP 0 0 0 0
GWP 1 1030.01 793.98 5.00
沸点(℃) 45℃开始慢分解 15.3 40.2 19.3
从上表可以看出,化合物A-1的GWP(温室效应潜能值)等于1,分解温度比较高,克服了某些低沸点(低于20℃的)物理发泡剂如HFC-245fa、LBA、五氟丁烷等的很多缺点,如GWP远大于1、沸点比较低、易挥发,而本发明化合物A-1的GWP等于1、沸点比较高、不易挥发,并且ODP(对臭氧层的破坏的潜能值)为0,不会破坏大气臭氧层;不易挥发便于运输和存储。
实施例A-2
将1kg的氨基甲酸铵、1.1kg的水加入到反应器中,在搅拌下溶解,用氮气吹扫反应器,然后加入2.1kg的环氧丙烷到透明的石英玻璃反应器中,开动搅拌,在不断搅拌下慢慢升温,控温在50-60℃之间,压力不高于0.6MPa条件下进行反应,当反应进行到大约2小时时突然出现了奇妙的现象:混浊、不透明的混合物瞬间变成透明或澄明溶液,继续反 应8小时,然后降温到50℃,在真空度为600毫米汞柱以下脱出不必要的水和未反应的环氧丙烷,降温到40℃以下后放出产物。反应时间确保反应按照摩尔比完成。获得化合物A-2。粘度200厘泊,pH=9.1,分解温度在45-70℃范围。液相色谱分析以及气相色谱分析,表明化合物A-2是包含多种醇胺的混合物。水含量为20.5wt%。
实施例A-3
将7kg的碳酸铵和7kg的氨基甲酸铵、15kg的水加入到反应器中,在搅拌下溶解,用氮气吹扫反应器,然后再分批加入32kg的环氧丙烷,在不断搅拌下慢慢升温,控温在45-70℃之间,控制压力不高于0.6MPa,反应10小时,然后降温到50℃,控温在50℃以下,真空度为600毫米汞柱以下脱出不必要的水和未反应的环氧丙烷,降温到40℃以下后放掉真空、放出产物,即获得化合物A-3。粘度大约250厘泊,pH=9,分解温度在45-70℃范围。
实施例A-4
将16kg的氨基甲酸一乙醇胺盐、18kg的水加入到反应器中,用氮气清扫反应器,搅拌溶解,分批加入13kg的环氧丙烷到反应器中,开动搅拌,控制压力不高于0.6MPa,在不断搅拌下慢慢升温,当温度升高到70℃时控温反应5小时,然后降低温度到50℃以下,控制真空度600毫米汞柱以下脱除不必要的水和未反应的环氧丙烷,降温到40℃以下后放掉真空、放出产物,即可获得化合物A-4。粘度280厘泊。pH=9。分解温度在45-70℃范围。
实施例A-5
将21kg的氨基甲酸二亚乙基三胺盐、15kg的水加入到反应器中,搅拌溶解,用氮气吹扫反应器,在搅拌下,控制压力不高于0.6MPa,温度在45-70℃之间,分批加入16kg的环氧丙烷到反应器中,加完环氧丙烷后控温反应5小时,然后降温到50℃下,真空度在600毫米汞柱以下减压下脱除不必要的水和未反应的环氧丙烷,降温到40℃以下后放掉真空、放出产物即可获得化合物A-5。粘度大约350厘泊。pH=9,分解温度在45-70℃范围。
实施例A-6
将1.2kg的碳酸铵和1.2kg的氨基甲酸铵、2.7kg的水加入到反应器中,在搅拌下溶解,用氮气吹扫反应器,然后再加入7.1kg的苯乙烯氧化物(styrene oxide,分子量120.15),在不断搅拌下慢慢升温,控温在45-70℃之间,控制压力不高于0.6MPa,反应10小时,然后降温到50℃,控温在50℃以下,真空度为600毫米汞柱以下脱出不必要的水,降温到40℃以下后放掉真空、放出产物,即获得化合物A-6。粘度大约460厘泊,pH=9,分解温度在45-70℃范围。
B)从碳酸铵或碳酸肼盐制备通式(I)化合物
实施例B-1
将16kg的碳酸铵(分子量96)和15.5kg的水加入到反应器中,开动搅拌,使得碳酸铵溶解,用氮气吹扫反应器,加入28kg的环氧丙烷,开动搅拌,控制压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在70℃以下反应12小时,反应完成,慢慢降低温度到50℃后控制真空度在600毫米汞柱以下慢慢脱除不必要的水和未反应的环氧丙烷,然后放掉真空,降温到40℃以下后放出反应物,获得化合物获得化合物B-1。粘度大约300厘泊,pH=8.9,化合物B-1的分解温度为45-70℃。液相色谱分析以及气相色谱分析,表明化合物B-1是包含多种醇胺的混合物。用原子吸收分光光度计(Seiko Instruments,Inc.;SAS/727)测定碱金属和碱土金属离子的含量为低于检测极限。气相色谱分析,单丙醇胺与二丙醇胺的摩尔比是1:0.28。化合物B-1含有约79wt%的单丙醇胺和二丙醇胺两者的盐。化合物B-1含有约59wt%的单丙醇胺和二丙醇胺(在加热化合物A-1以释放二氧化碳之后对残留物进行分析),基于加热分解之前的化合物B-1的总重量。
实施例B-2
将0.95kg的碳酸肼(以50wt%浓度的碳酸肼水溶液形式使用,该水溶液的体积为1.8L)、0.8kg的水加入到反应器中,在搅拌下溶解30分钟,用氮气吹扫反应器,然后分批加入1.8kg的环氧丙烷到透明的石英玻璃反应器中,开动搅拌,在不断搅拌下慢慢升温,控温在50-70℃之间,压力不高于0.6MPa条件下进行反应,当反应进行到大约2小时左右回出现奇妙的现象:混浊、不透明的混合物瞬间变成透明或澄明溶液,继续反应5小时,然后降温到50℃,在真空度为600毫米汞柱以下脱出一部分的水和未反应的环氧丙烷,降温到40℃以下后放出产物。反应时间确保反应按照摩尔比完成。获得化合物B-2。pH=9.1,分解温度在45-70℃范围。
实施例B-3
将10kg的碳酸铵、11kg的水加入到透明的石英玻璃反应器中,搅拌溶解,用氮气吹扫反应器,在不断搅拌下,控制温度在45-70℃之间,控制压力不高于0.6MPa,将22kg的环氧丙烷加入到反应器中,加完后控温反应,当反应进行到大约2小时左右时突然出现了奇妙的现象:混浊、不透明的混合物瞬间变成透明或澄明溶液,继续反应8小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水和未反应的环氧丙烷,降温到40℃以下后放掉真空、放出产物即可。获得化合物B-3。粘度大约为340厘泊。pH=9.1。分解温度在45-70℃。
C)制备具有甲酸根(HCOO-)的通式(I)化合物
实施例C-1
将15kg的甲酸铵、1kg的甲胺催化剂,10kg的水、5kg的乙二醇加入到反应器中,开动搅拌,用氮气吹扫反应器,控制压力不高于0.5MPa,控温在120℃以下,将12kg的环氧乙烷分批加入到反应器中,反应5小时。反应完成后降温,然后控制真空度为600毫米汞柱以下,温度100℃以下减压脱除不必要的水和未反应的环氧乙烷,去掉真空,降温到50℃以下后放出产品即可。获得化合物C-1。粘度为大约200厘泊,pH=8.5,分解温度高于100℃。
实施例C-2
重复实施例C-1,只是使用15kg的环氧丙烷代替12kg的环氧乙烷,并且环氧丙烷不是分批次加入反应器中,而是一次性加入其中。获得化合物C-2。粘度为大约350厘泊,pH=8.6,分解温度高于100℃。
D)制备具有碳酸氢根(HO-COO-)的通式(I)化合物
实施例D-1
将10kg的碳酸氢铵(分子量79.06)、9.0kg的水和1kg乙二胺加入到透明的石英玻璃反应器中,搅拌溶解(允许存在不溶解的碳酸氢铵),用氮气吹扫反应器,密封反应器,然后在不断搅拌下,控制温度在45-65℃之间,控制压力不高于0.6MPa,将20kg的环氧丙烷分批加入到反应器中,加完后控温反应10小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水和未反应的环氧丙烷,降温到40℃以下后放掉真空、放出产物即可。获得化合物D-1。粘度大约为250厘泊。pH=8,分解温度在36-42℃。
发明人意外地发现,当将化合物D-1与聚醚多元醇和/或聚酯多元醇混合,例如配制发泡组合物(“白料”)时,溶解在白料中的化合物D-1的分解温度能够提高至45-65℃。这使得化合物D-1具有合适的分解温度,因此,适合用于聚氨酯发泡。
应用实施例
实施例1
将5重量份的作为发泡剂的由以上实施例A-1制备的化合物A-1、4重量份的六氟丁烯(杜邦公司,商品名FEA-1100)、50重量份的聚醚多元醇4110(由山东省滨州市的滨化集团生产)、1重量份的泡沫稳定剂DC3201(美国空气化工公司生产)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司生产)和2重量份催化剂A33(33LV,美国空气化工公司生产)混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200,烟台万华化学集团股份有限公司),经搅拌均匀后发泡制得聚氨酯泡沫材料。
实施例2
将3重量份的作为发泡剂的由以上实施例B-1制备的化合物B-1和、6重量份的六氟丁烯(杜邦公司,商品名FEA-1100)、30重量份的聚醚多元醇4110、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)和1重量份的泡沫稳定剂DC3201、12.5重量份的阻燃剂TCPP和2重量份催化剂A33混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
取样品,用刀片切片后利用SEM放大100倍观察泡孔。如图1中所示,泡孔直径为207微米。
实施例3
将3重量份的作为发泡剂的由以上实施例B-1制备的化合物B-1和2重量份的作为发泡剂的由以上实施例B-2制备的化合物B-2和4重量份的作为发泡剂的六氟丁烯(杜邦公司,商品名FEA-1100)、30重量份的聚醚多元醇4110、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)和1重量份的泡沫稳定剂DC3201、12.5重量份的阻燃剂TCPP和2重量份催化剂A33混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
取样品,用刀片切片后利用SEM放大100倍观察泡孔。泡孔直径为209微米。
实施例4
将3重量份的作为发泡剂的由以上实施例B-2制备的化合物B-2和2重量份的作为发泡剂的由以上实施例C-2制备的化合物C-2、2重量份的作为发泡剂的由以上实施例D-1制备的化合物D-1和2重量份的作为发泡剂的六氟丁烯(杜邦公司,商品名FEA-1100)、50重量份的聚醚多元醇4110(山东滨州市滨化集团)、1重量份的泡沫稳定剂DC3201(美国空气化工)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司)和2重量份催化剂A33(33LV,美国空气化工)混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫材料。
对比例1
重复实施例1,只是仅仅采用9重量份的六氟丁烯作为发泡剂。
对比例2
重复实施例2,只是仅仅采用9重量份的由以上实施例B-1制备的化合物B-1作为发泡剂。
表1:聚氨酯泡沫体的性能
Figure PCTCN2017114589-appb-000006
Figure PCTCN2017114589-appb-000007
说明:以上列表中的检测数据是采用常规发泡箱和自制发泡模型制备的泡沫样品所做的检测数据,是手工制备的自由泡样品。
其中收缩率(尺寸变化率)按照中国国家标准GB/T 8811-2008测量。
从表1中数据可以清楚看出,醇胺盐混合物(MAA)与六氟丁烯相结合,能够降低常温下导热系数,与对比例1相比。另外,泡沫材料的尺寸稳定性显著提高。
对于深冷(-160℃)下导热系数,本发明的产品表现尤为突出。对于深冷下导热系数w/m·k(-160℃),采用TA公司的热导率仪FOX200LT(EKO)。测试标准:ASTM-C518(或ISO-8301)。样品规格及厚度:200mm×200mm,0~50mm。
另外,深冷(-160℃)下,通过目测,本发明的实施例1产品的收缩率较低。根据GB/T29046,实施例1的产品的深冷(-160℃)下尺寸稳定性是0.98%,在100℃下的尺寸稳定性是0.72%。而对比例1的产品变形非常严重,收缩率几乎达到40%。
第二部分:根据本发明的第五个实施方案
对于在实施例中使用的聚氨酯高压发泡机,例如,可以使用温州市泽程机电设备有限公司制造的聚氨酯高压发泡机或河南金龙聚氨酯保温防腐设备有限公司制造的GZ(Y)系列聚氨酯高压发泡机。对于在实施例中使用的聚氨酯高压喷涂机,例如可以使用济南国臻机械设备有限公司制造的QD120型、QD220型或QD320型的聚氨酯高压喷涂机或者美国GRACO公司制造的REACTOR H-VR型聚氨酯高压喷涂机。
实施例1A
将40重量份的聚醚多元醇SA460(由山东省滨州市的滨化集团生产)、10重量份的甲苯二胺聚醚(由山东蓝星东大化工有限责任公司)、5重量份的乙胺(即有机胺)、1重量份的水、1重量份的泡沫稳定剂DC3201(美国空气化工公司生产)、1重量份的氨水(27%浓度)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司生产)和2重量份催化剂A33(33LV,美国空气化工公司生产)混合均匀后获得透明的发泡组合物,即“白料”,或称作组合聚醚多元醇。然后将“白料”输送到压力容器中贮存。
将80份异氰酸酯MDI(PM200,烟台万华化学集团股份有限公司)作为异氰酸酯原料(即“黑料”)输送到压力容器中贮存。
向装有白料的压力容器中通入超临界CO2,在3.5MPa压力,温度30℃,200转速条件下保持十分钟,让超临界流体在聚合物物料中进行充分渗透和扩散,形成聚合物-超临界流体均相体系,观察到压力的持续下降,说明白料对于二氧化碳有良好的吸收作用。然后分别从贮存白料的压力容器和贮存黑料的压力容器中输出白料和黑料到超临界CO2反应器中进行混合,将所得混合物经由泄压阀泄压后输出,进行浇注发泡。获得聚氨酯泡沫材料。
实施例2A
将40重量份的聚醚多元醇2010(由山东省滨州市的滨化集团生产)、10重量份的甲苯二胺聚醚(由山东蓝星东大化工有限责任公司)、6.5重量份的单丙醇胺(即有机胺)、1重量份的水、1重量份的泡沫稳定剂DC3201(美国空气化工公司生产)、1重量份的氨水(27%浓度)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司生产)和2重量份催化剂A33(33LV,美国空气化工公司生产)混合均匀后获得透明的发泡组合物,即“白料”,或称作组合聚醚多元醇。然后将“白料”输送到压力容器中贮存。
将80份异氰酸酯MDI(PM200,烟台万华化学集团股份有限公司)作为异氰酸酯原料(即“黑料”)输送到压力容器中贮存。
向装有白料的压力容器中通入超临界CO2,在3.5MPa压力,温度30℃,200转速条件下保持十分钟,让超临界流体在聚合物物料中进行充分渗透和扩散,形成聚合物-超临界流体均相体系,观察到压力的持续下降,说明白料对于二氧化碳有良好的吸收作用。然后分别从贮存白料的压力容器和贮存黑料的压力容器中输出白料和黑料到超临界CO2反应器中进行混合,将所得混合物经由泄压阀泄压后输出,进行浇注发泡。获得聚氨酯泡沫材料。
实施例3A
在白料和黑料中同时通入超临界CO2
将40重量份的聚醚多元醇SA460(由山东省滨州市的滨化集团生产)、10重量份的甲苯二胺聚醚(由山东蓝星东大化工有限责任公司)、6重量份的单乙醇胺(即有机胺)、1重量份的水、1重量份的泡沫稳定剂DC3201(美国空气化工公司生产)、0.3重量份的N,N-二甲基环己胺(美国空气化工)、1.5重量份的辛酸钾、1重量份的氨水(27%浓度)、12重量份的阻燃剂TCEP(三氯乙基磷酸酯)和2重量份的阻燃剂DMMP(甲基膦酸二甲酯)混合均匀后获得透明的发泡组合物,即“白料”,或称作组合聚醚多元醇。
将80份异氰酸酯MDI(PM200,烟台万华化学集团股份有限公司)作为异氰酸酯原料,即“黑料”。
采用聚氨酯高压发泡机作为发泡设备。
将上述白料(即,组合聚醚多元醇)和上述黑料(即异氰酸酯原料)分别加压注入聚氨酯高压发泡机的相对应贮存容器中,调节压力至3.5MPa。
开启聚氨酯高压发泡机的加热器开关,并设定加热温度30℃及设置保温模式。
向装有白料的压力容器中通入超临界CO2,在3.5MPa压力,温度30℃,200转速条件下保持十分钟,让超临界流体在聚合物物料中进行充分渗透和扩散,形成聚合物-超临界流体均相体系,观察到压力的持续下降,说明白料对于二氧化碳有良好的吸收作用。与此同时,向装有黑料的压力容器中通入超临界CO2,在3.5MPa压力,温度30℃,200转速条件下保持十分钟。然后采用两个齿轮泵分别从贮存白料(聚醚多元醇)的压力容器和贮存黑料(异氰酸酯)的压力容器中输出白料和黑料到喷枪混合室进行快速混合,开启喷枪开关进行喷涂发泡。获得聚氨酯泡沫材料。
实施例4A
将40重量份的聚醚多元醇SU380(由山东省滨州市的滨化集团生产)、10重量份的甲苯二胺聚醚(由山东蓝星东大化工有限责任公司)、5重量份的单乙醇胺(即有机胺)、2重量份的碳酸二(乙醇胺)盐(即有机胺)、1重量份的水、1重量份的泡沫稳定剂DC3201(美国空气化工公司生产)、0.3重量份的N,N-二甲基环己胺(美国空气化工)、1.5重量份的辛酸钾、1重量份的氨水(27%浓度)、12重量份的阻燃剂TCEP(三氯乙基磷酸酯)和2重量份的阻燃剂DMMP(甲基膦酸二甲酯)混合均匀后获得透明的发泡组合物,即“白料”,或称作组合聚醚多元醇。
将80份异氰酸酯MDI(PM200,烟台万华化学集团股份有限公司)作为异氰酸酯原料,即“黑料”。
采用为聚氨酯高压喷涂机作为发泡设备。
将上述白料(即,组合聚醚多元醇)和上述黑料(即异氰酸酯原料)分别加压注入聚氨酯高压发泡机的相对应贮存容器中,调节压力至3.2MPa。
开启聚氨酯高压发泡机的加热器开关,并设定加热温度20℃及设置保温模式。
向装有白料的压力容器中通入超临界CO2,在3.5MPa压力,温度30℃,200转速条件下保持十分钟,让超临界流体在聚合物物料中进行充分渗透和扩散,形成聚合物-超临界流体均相体系,观察到压力的持续下降,说明白料对于二氧化碳有良好的吸收作用。然后采用两个齿轮泵分别从贮存白料(聚醚多元醇)的压力容器和贮存黑料(异氰酸酯)的压力容器中输出白料和黑料到喷枪混合室进行快速混合,开启喷枪开关进行浇注发泡。获得聚氨酯泡沫材料。
实施例5A
重复实施例4A,只是代替2重量份的碳酸二(乙醇胺)盐而使用1重量份的碳酸二(乙醇胺)盐,此外在白料中进一步添加2重量份的六氟丁烯。
实施例6A
重复实施例2A,只是在白料中不通入超临界CO2,仅仅向装有黑料的压力容器中通入超临界CO2,在3.5MPa压力,温度30℃,200转速条件下保持十分钟。获得聚氨酯泡沫材料。
对比例1A
重复实施例1A,只是在白料中不添加乙胺。
对比例2A
重复实施例4A,只是在白料中不添加有机胺(即,单乙醇胺和碳酸二(乙醇胺)盐)。
表1
Figure PCTCN2017114589-appb-000008
Figure PCTCN2017114589-appb-000009
其中收缩率(尺寸变化率)按照中国国家标准GB/T 8811-2008测量,只是放置时间为5个月。
对于深冷下导热系数w/m·k(-160℃),采用TA公司的热导率仪FOX200LT(EKO)。测试标准:ASTM-C518(或ISO-8301)。样品规格及厚度:200mm×200mm,0~50mm。
从附图2和附图3中可以看出,与对比例1A(图3)相比,本发明实施例1A的泡沫体(图2)的泡孔尺寸更均匀,且泡孔尺寸更大。说明,在本发明中二氧化碳的吸收量更大,并且二氧化碳在白料中分布更均匀。
第三部分:根据本发明的第六个实施方案
对于醇胺盐化合物中各种醇胺(例如单乙醇胺、二乙醇胺、三乙醇胺、单丙醇胺、二丙醇胺或三丙醇胺)的含量的测量方法,可采用气相色谱法。其中气相色谱仪配有氢火焰离子化检测器(FID),通式(I)化合物的质量浓度为大约10mg/mL,为标准溶液。气相色谱条件:HP-5毛细管色谱柱(30m×0.32mm i.d.×0.25μm,5%phenyl methyl-siloxane);柱温为程序升温,初始温度为80℃,保持3min后以25℃/min的速率升至250℃,保持5min;进样口温度250℃;检测器温度260℃;载气为高纯氮,流速为1.5mL/min;燃气为氢气,流速为30mL/min;助燃气为空气,流速为300mL/min;尾吹气为氮气,流速为25mL/min;进样方式为分流进样,分流比:30:1;进样量为1μL。
制备例1B
第一阶段:
将14kg的氨基甲酸铵(分子量78.07)、17kg的水加入到带有冷却水夹套的不锈钢高 压反应釜(在下面的其它实施例中简称反应器)中,开动搅拌器,使得氨基甲酸铵溶解,用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共19kg的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在65℃以下反应13小时,反应完成,慢慢降低温度到45℃,然后释放真空,降温到40℃以下后放出反应物,获得化合物A1-MAA1(即,醇胺盐混合物MAA)。粘度320厘泊,pH=9,化合物A1-MAA1的分解温度为59-61℃。气相色谱分析,在化合物A1-MAA1中,单丙醇胺与二丙醇胺的摩尔比是1:0.17。化合物A1-MAA1含有约67wt%的单丙醇胺和二丙醇胺两者的盐。将5kg的化合物A1-MAA1的样品在66℃下加热5分钟,分解释放二氧化碳而获得残留物。然后对残留物用小型实验室精馏塔进行精馏,分离出1.65kg的水,测得化合物A1-MAA1的水含量为33wt%。
第二阶段:
将11kg的氨基甲酸铵(分子量78.07)、25kg的以上第一阶段的化合物A1-MAA1加入到带有冷却水夹套的不锈钢高压反应釜中,开动搅拌器,使得氨基甲酸铵分散和溶解于作为分散介质的化合物A1-MAA1中,用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共14kg的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在65℃以下反应15小时,反应完成,慢慢降低温度到45℃,然后释放真空,降温到40℃以下后放出反应物,获得化合物A1-MAA2(即,醇胺盐混合物MAA)。粘度430厘泊,pH=9,化合物A1-MAA2的分解温度为59-61℃。气相色谱分析,在化合物A1-MAA2中,单丙醇胺与二丙醇胺的摩尔比是1:0.35。化合物A1-MAA2含有约83wt%的单丙醇胺和二丙醇胺两者的盐。将5kg的化合物A1-MAA2的样品在66℃下加热5分钟,分解释放二氧化碳而获得残留物。然后对残留物用小型实验室精馏塔进行精馏,分离出0.85kg的水,测得化合物A1-MAA2的水含量为17wt%。
第三阶段:
将11kg的氨基甲酸铵(分子量78.07)、25kg的以上第二阶段的化合物A1-MAA2加入到带有冷却水夹套的不锈钢高压反应釜中,开动搅拌器,使得氨基甲酸铵分散和溶解于作为分散介质的化合物A1-MAA2中,用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共14kg的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在65℃以下反应15小时,反应完成,慢慢降低温度到45℃,然后释放真空,降温到40℃以下后放出反应物,获得 化合物A1-MAA3(即,醇胺盐混合物MAA)。粘度730厘泊,pH=9,化合物A1-MAA3的分解温度为59-61℃。气相色谱分析,在化合物A1-MAA3中,单丙醇胺与二丙醇胺的摩尔比是1:0.58。化合物A1-MAA3含有约91wt%的单丙醇胺和二丙醇胺两者的盐。将5kg的化合物A1-MAA3的样品在66℃下加热5分钟,分解释放二氧化碳而获得残留物。然后对残留物用小型实验室精馏塔进行精馏,分离出0.425kg的水,测得化合物A1-MAA3的水含量为8.5wt%。
第四阶段:
将11kg的氨基甲酸铵(分子量78.07)、25kg的以上第三阶段的化合物A1-MAA3加入到带有冷却水夹套的不锈钢高压反应釜中,开动搅拌器,使得氨基甲酸铵分散和溶解于作为分散介质的化合物A1-MAA3中,用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共14kg的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在65℃以下反应15小时,反应完成,慢慢降低温度到45℃,然后释放真空,降温到40℃以下后放出反应物,获得化合物A1-MAA4(即,醇胺盐混合物MAA)。粘度810厘泊,pH=9,化合物A1-MAA4的分解温度为59-61℃。气相色谱分析,在化合物A1-MAA4中,单丙醇胺与二丙醇胺的摩尔比是1:0.82。化合物A1-MAA4含有约95.7wt%的单丙醇胺和二丙醇胺两者的盐。将5kg的化合物A1-MAA4的样品在66℃下加热5分钟,分解释放二氧化碳而获得残留物。然后对残留物用小型实验室精馏塔进行精馏,分离出0.215kg的水,测得化合物A1-MAA4的水含量为4.3wt%。
制备例2B
第一阶段:
将16kg的碳酸铵(分子量96)和16kg的水加入到反应器中,开动搅拌,使得碳酸铵溶解,用氮气吹扫反应器,加入28kg的环氧丙烷,开动搅拌,控制压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在60℃以下反应15小时,反应完成,慢慢降低温度到40℃后释放真空,放出反应物,获得化合物A2-MAA1(即,醇胺盐混合物MAA)。粘度290厘泊,pH=9,化合物A2-MAA1的分解温度为59-61℃。气相色谱分析,在化合物A2-MAA1中,单丙醇胺与二丙醇胺的摩尔比是1:0.28。化合物A2-MAA1含有约73.3wt%的单丙醇胺和二丙醇胺两者的盐。将5kg的化合物A2-MAA1的样品在66℃下加热5分钟,分解释放二氧化碳而获得残留物。然后对残留物用小型实验室精馏塔进行精馏,分离出1.33kg的水,测得化合物A1-MAA1的水含量为26.6wt%。
第二阶段:
将9kg的碳酸铵(分子量96)、25kg的以上第一阶段的化合物A2-MAA1加入到反应器中,开动搅拌器,使得碳酸铵分散和溶解于作为分散介质的化合物A2-MAA1中,用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共16kg的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在65℃以下反应15小时,反应完成,慢慢降低温度到45℃,然后释放真空,降温到40℃以下后放出反应物,获得化合物A2-MAA2(即,醇胺盐混合物MAA)。粘度430厘泊,pH=9,化合物A2-MAA2的分解温度为59-61℃。气相色谱分析,在化合物A2-MAA2中,单丙醇胺与二丙醇胺的摩尔比是1:0.41。化合物A2-MAA2含有约83wt%的单丙醇胺和二丙醇胺两者的盐。将5kg的化合物A2-MAA2的样品在66℃下加热5分钟,分解释放二氧化碳而获得残留物。然后对残留物用小型实验室精馏塔进行精馏,分离出0.666kg的水,测得化合物A2-MAA2的水含量为13.3wt%。
第三阶段:
将9kg的碳酸铵(分子量96)、25kg的以上第二阶段的化合物A2-MAA2加入到反应器中,开动搅拌器,使得碳酸铵分散和溶解于作为分散介质的化合物A2-MAA2中,用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共16kg的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在65℃以下反应15小时,反应完成,慢慢降低温度到45℃,然后释放真空,降温到40℃以下后放出反应物,获得化合物A2-MAA3(即,醇胺盐混合物MAA)。粘度540厘泊,pH=9,化合物A2-MAA3的分解温度为59-61℃。气相色谱分析,在化合物A2-MAA3中,单丙醇胺与二丙醇胺的摩尔比是1:0.52。化合物A2-MAA3含有约93.3wt%的单丙醇胺和二丙醇胺两者的盐。将5kg的化合物A2-MAA3的样品在66℃下加热5分钟,分解释放二氧化碳而获得残留物。然后对残留物用小型实验室精馏塔进行精馏,分离出0.333kg的水,测得化合物A2-MAA3的水含量为6.66wt%。
应用实施例
实施例1B
将5重量份的作为发泡剂的由以上制备例1B制备的化合物A1-MAA4(水含量为4.3wt%)、4重量份的六氟丁烯(杜邦公司,商品名FEA-1100)、50重量份的聚醚多元醇4110(由山东省滨州市的滨化集团生产)、1重量份的泡沫稳定剂DC3201(美国空气化工公司生产)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司生产)和2重量份催化剂A33(33LV, 美国空气化工公司生产)混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200,烟台万华化学集团股份有限公司),经搅拌均匀后发泡制得聚氨酯泡沫材料。
实施例2B
将3重量份的作为发泡剂的由以上制备例2B制备的化合物A2-MAA3(水含量为6.66wt%)、6重量份的六氟丁烯(杜邦公司,商品名FEA-1100)、30重量份的聚醚多元醇4110、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)和1重量份的泡沫稳定剂DC3201、12.5重量份的阻燃剂TCPP和2重量份催化剂A33混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
对比例1B
重复实施例1B,只是仅仅采用9重量份的六氟丁烯作为发泡剂。
表1:聚氨酯泡沫体的性能
Figure PCTCN2017114589-appb-000010
说明:以上列表中的检测数据是采用常规发泡箱和自制发泡模型制备的泡沫样品所做的检测数据,是手工制备的自由泡样品。
其中收缩率(尺寸变化率)按照中国国家标准GB/T 8811-2008测量。
从表1中数据可以清楚看出,低水含量的醇胺盐混合物(MAA)与六氟丁烯相结合,能够提高压缩强度,另外还能够降低常温下导热系数,与对比例1相比。另外,泡沫材料的尺寸稳定性显著提高。
对于深冷(-160℃)下导热系数,本发明的产品表现尤为突出。对于深冷下导热系数w/m·k(-160℃),采用TA公司的热导率仪FOX200LT(EKO)。测试标准:ASTM-C518(或 ISO-8301)。样品规格及厚度:200mm×200mm,0~50mm。
另外,深冷(-160℃)下,通过目测,本发明的实施例1B产品的收缩率较低。根据GB/T29046,实施例1B的产品的深冷(-160℃)下尺寸稳定性是0.97%,在100℃下的尺寸稳定性是0.75%。而对比例1B的产品变形非常严重,收缩率几乎达到45%。

Claims (32)

  1. 一种复合发泡剂,它包括:
    1)六氟丁烯;和
    2)一种醇胺盐混合物(MAA),
    该醇胺盐混合物(MAA)包含有机醇胺盐化合物,该有机醇胺盐化合物是具有以下通式(I)的有机胺盐化合物:
    An- [Bm+]p   (I)
    式中,An-是作为CO2给体的具有-n价的阴离子,其中n=1或2;
    Bm+包含或各Bm+独立地是:+1价的铵离子,+1价的肼离子(H3 +N-NH2),+2价的肼离子(H3 +N-NH3 +),和/或,具有m个的-+NR3R4H基团和/或-+NR3H-基团的一种或多种有机胺(B)的阳离子;
    其中m=1-5;
    Figure PCTCN2017114589-appb-100001
    其中An-是选自于下列阴离子中的一种或两种或三种:
    (b)碳酸根:CO3 2-
    (c)甲酸根:HCOO-
    (d)碳酸氢根:HO-COO-
    其中,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
    前提条件是:所述通式(I)的化合物具有至少一个(例如一个或两个)与N键接的R基团(即-N-R基团),并且,醇胺盐混合物(MAA)含有50-99wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)的盐,基于醇胺盐混合物(MAA)的总重量;
    其中该R基团选自于下列基团中的一种或多种:
    (1a)H[OCH(R1a)CH(R2a)]q-;
    (2a)H[OCH(R1a)CH(R2a)CH(R3a)]q-;或
    (3a)H[OCH(R1a)CH(R2a)CH(R3a)CH(R4a)]q-;
    其中q的值或平均值是q=1-3(例如2);R1a、R2a、R3a或R4a各自独立地选自:H,任 选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
    其中:在醇胺盐混合物(MAA)中水的含量为>0wt%至40wt%,和,所述有机胺化合物(B)是具有2-50个碳原子的有机胺化合物;
    其中,在复合发泡剂中六氟丁烯与醇胺盐混合物(MAA)的重量之比是0.1-10:1。
  2. 根据权利要求1所述的复合发泡剂,其中:
    (1a)H[OCH(R1a)CH(R2a)]q-是H(OCH2CH2)q-、H(OCH2CH(CH3))q-、H(OCH(CH3)CH2)q-、H(OCH2CH(C6H5))q-、H(OCH(C6H5)CH2)q-、H(OCH2CH(CH2Cl))q-、H(OCH(CH2Cl)CH2)q-或H(OCH2CH(CBr3))q-,和/或
    在复合发泡剂中六氟丁烯与醇胺盐混合物(MAA)的重量之比是0.2-5:1,更优选0.3-4:1,更优选0.4-3:1,更优选0.5-2:1,更优选0.7-1.3:1。
  3. 根据权利要求1或2所述的复合发泡剂,其中:在醇胺盐混合物(MAA)中水的含量为5-35wt%(优选10-30wt%,更优选15-25wt%)以及该醇胺盐混合物(MAA)含有60-98wt%(优选70-97wt%,更优选80-96wt%)的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)的盐;和/或
    所述醇胺盐混合物(MAA)的pH为7.5-10(优选7.8-9.5,更优选8-9.0);和/或
    该有机醇胺盐化合物是单醇胺(例如单乙醇胺和/或单丙醇胺)和/或二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)与阴离子所形成的盐,其中该阴离子是选自于下列阴离子中的一种或两种或三种:
    (b)碳酸根:CO3 2-
    (c)甲酸根:HCOO-
    (d)碳酸氢根:HO-COO-
  4. 根据权利要求1-3中任何一项所述的复合发泡剂,其中:在醇胺盐混合物(MAA)中,通式(I)化合物和水的总含量是基于醇胺盐混合物(MAA)总重量的70-100%,优选80-99.5%,更优选85-99.0%。
  5. 根据权利要求1-4中任何一项所述的复合发泡剂,其中该醇胺盐混合物(MAA)是通过第一原料与第二原料在水存在下,任选地在催化剂存在下,进行反应所制备的,其中第一原料是选自于下列这些化合物中的一种或多种:
    H2N-COONH4
    (NH4)2CO3,碳酸肼,碳酸铵肼,或碳酸有机胺类化合物(M)盐,
    HCOONH4,甲酸肼,或甲酸有机胺类化合物(M)盐,
    HO-COONH4,碳酸氢肼,或有机胺类化合物(M)的碳酸氢盐;
    第二原料是选自于下列这些环氧化物中的一种或多种:
    或苯乙烯氧化物;其中R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
    其中所述的有机胺类化合物(M)是选自下列这些中的有机胺类化合物:
    C1-C24烃基胺类;
    二(C1-C16烃基)胺类;
    C2-C14亚烃基二胺类;
    C4-C16多亚烷基多胺类;
    具有三个伯胺基的C3-C18有机三胺类或具有四个伯胺基的C5-C18有机四胺类;或
    C2-C10醇胺类;
    优选,水的用量是以第一原料的重量为基础计算的70-250wt%、优选85-200wt%、更优选100-170wt%、更优选110-160wt%。
  6. 根据权利要求5所述的复合发泡剂,其中有机胺化合物(B)是具有N-R基团的有机胺类化合物,并且,具有N-R基团的有机胺化合物(B)是通过在氨上或在所述有机胺类化合物(M)的至少一个N原子上被上述一个或多个R基团所取代而形成的,其中R的定义与权利要求1中相同。
  7. 根据权利要求1-6中任何一项所要求的复合发泡剂,其中q=1-2.5,优选q=1-2.0,按q的平均值计算;;和/或
    所述有机胺化合物(B)是具有2-20个碳原子(优选3-12个碳原子)的有机胺化合物。
  8. 根据权利要求1-7中任何一项所述的复合发泡剂,其中R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C4脂肪族烃基,任选被羟基或氨基或卤素取代的环丁基或环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基;并且,R1a、R2a、R3a或R4a各自独立地选自:H,甲基或任选被羟基或氨基或卤素取代的乙基,或任选被羟基或者氨基或卤素取代的丙基或异丙基,任选被羟基或氨基或卤素取代的环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基。
  9. 根据权利要求8所述的复合发泡剂,其中R1a、R2a、R3a或R4a各自独立地选自:H,甲基,氯甲基,溴甲基,乙基,环己基,或,苯基。
  10. 根据权利要求1-9中任何一项所述的复合发泡剂,其特征在于它的碱金属和碱土金属的质量含量为0-200ppm;和/或,通式(I)的化合物平均每分子含有1.3-5个R基团,例如1.4-4个R基团,优选1.5-2个R基团。
  11. 根据权利要求5-10中任何一项所述的复合发泡剂,其中该环氧化物是:环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷、或环氧氯丁烷或苯乙烯氧化物,或它们中任何两种或多种的混合物;和/或
    催化剂是氨水。
  12. 聚氨酯发泡组合物,它包含:
    0.1-100重量%、优选1-80重量%、更优选3-60wt%的根据权利要求1-11中任何一项所述的复合发泡剂;
    0-50重量%、优选0-40重量%、更优选0.2-30重量%的除六氟丁烯以外的物理发泡剂;
    0-6重量%、优选0.5-5重量%、更优选0.7-4重量%的水,和
    0.0-99.9重量%、优选20.0-99重量%、更优选40-97wt%的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量。
  13. 聚氨酯发泡组合物,它包含:
    0.1-10重量%、优选0.3-8重量%、更优选0.5-6wt%的的六氟丁烯;
    0.2-90重量%、优选1-80重量%、更优选3-70wt%的有机醇胺盐化合物;
    0-50重量%、优选0.2-40重量%、更优选0.5-30重量%的除六氟丁烯以外的物理发泡剂;
    0.1-10重量%、优选0.3-9重量%、更优选0.5-8重量%的水,和
    0.0-99.6重量%、优选20.0-98.2重量%、更优选40-96.5wt%的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量;
    其中:所述有机醇胺盐化合物是具有以下通式(I)的有机胺盐化合物:
    An- [Bm+]p   (I)
    式中,An-是作为CO2给体的具有-n价的阴离子,其中n=1或2;
    Bm+包含或各Bm+独立地是:+1价的铵离子,+1价的肼离子(H3 +N-NH2),+2价的肼离子(H3 +N-NH3 +),和/或,具有m个的-+NR3R4H基团和/或-+NR3H-基团的一种或多种有机胺(B)的阳离子;
    其中m=1-5;
    Figure PCTCN2017114589-appb-100003
    其中An-是选自于下列阴离子中的一种或两种或三种:
    (b)碳酸根:CO3 2-
    (c)甲酸根:HCOO-
    (d)碳酸氢根:HO-COO-
    其中,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
    前提条件是:所述通式(I)的化合物具有至少一个(例如一个或两个)与N键接的R基团(即-N-R基团);
    其中该R基团选自于下列基团中的一种或多种:
    (1a)H[OCH(R1a)CH(R2a)]q-;
    (2a)H[OCH(R1a)CH(R2a)CH(R3a)]q-;或
    (3a)H[OCH(R1a)CH(R2a)CH(R3a)CH(R4a)]q-;
    其中q的值或平均值是q=1-3(例如2);R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
    其中所述有机胺化合物(B)是具有2-50个碳原子的有机胺化合物;
    优选的是,有机醇胺盐化合物是单醇胺(例如单乙醇胺和/或单丙醇胺)和/或二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)与阴离子所形成的盐,其中该阴离子是选自于下列阴离子中的一种或两种或三种:
    (b)碳酸根:CO3 2-
    (c)甲酸根:HCOO-
    (d)碳酸氢根:HO-COO-
  14. 根据权利要求13所述的聚氨酯发泡组合物,其中所述有机醇胺盐化合物含有50-100wt%(60-98wt%,优选70-96wt%,更优选80-94wt%)的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺、乙醇丙醇胺和/或二丙醇胺)的盐,基于所述有机醇胺盐化合物的总重量;和/或
    在聚氨酯发泡组合物中六氟丁烯与所述有机醇胺盐化合物的重量之比是0.2-5:1,更优选0.3-4:1,更优选0.4-3:1,更优选0.5-2:1,更优选0.7-1.3:1。
  15. 聚氨酯泡沫材料,其通过权利要求12或13或14所述的聚氨酯发泡组合物与多异氰酸酯单体,异氰酸酯封端的预聚物,或多异氰酸酯单体与异氰酸酯封端的预聚物两者的混合物进行混合后发生反应而形成。
  16. 二氧化碳与有机胺结合使用的聚氨酯发泡方法,该方法包括:将聚氨酯发泡组合物和多异氰酸酯单体和/或异氰酸酯封端的预聚物作为单独的物料流股分别输送到混合器中进行混合和然后让所形成的混合物发泡,其中在两股物料混合之前或在两股物料输送到混合器中之前,将二氧化碳加入到聚氨酯发泡组合物中或加入到多异氰酸酯单体和/或异氰酸酯封端预聚物中或同时加入到聚氨酯发泡组合物中和多异氰酸酯单体和/或异氰酸酯封端预聚物中,其中二氧化碳是气体二氧化碳、液体二氧化碳、亚临界二氧化碳和/或超临界二氧化碳;
    所述聚氨酯发泡组合物包含:
    60.0-99.0重量%、优选70.0-96重量%、更优选80-95wt%的聚合物多元醇,
    1-40重量%、优选2-35重量%、更优选3-30wt%的有机胺(OA),
    0-50重量%、优选0-40重量%、更优选0-30重量%的除二氧化碳以外的物理发泡剂,
    0-8重量%、优选0.3-6重量%、更优选0.5-5重量%的水,和
    0-8重量%、优选0.5-6重量%、更优选1-5wt%的氨和/或肼,
    其中,所述重量百分比基于聚氨酯发泡组合物的总重量;
    其中:所述有机胺(OA)是选自于伯胺化合物(I),仲胺化合物(II),叔胺化合物(III),羟胺,多亚烷基多胺,或,羟基取代或C1-C3烷基取代的多亚烷基多胺中的一种或多种:
    Figure PCTCN2017114589-appb-100004
    式中R1,R2,R3,R4,R5,R6各自独立是C1-C8烃基、C1-C8羟基烃基、C1-C4羟基烃氧基C1-C4烃基、C1-C6氨基烃基或C1-C3烷基胺基C1-C4烃基;优选,R1,R2,R3,R4,R5,R6各自独立是C1-C4烃基、C1-C4羟基烃基、C1-C3羟基烃氧基C1-C3烃基、C1-C4氨基烃基或C1-C2烷基胺基C1-C3烃基;更优选,R1,R2,R3,R4,R5,R6各自独立是C1-C2烃基、C1-C3羟基烃基、C1-C3羟基烃氧基C1-C3烃基、C1-C3氨基烃基或C1-C2烷基胺基C1-C2烃基。
  17. 根据权利要求16所述的聚氨酯发泡方法,其中聚合物多元醇选自:聚醚多元醇、聚酯多元醇、聚醚-聚酯多元醇、聚碳酸酯二醇、聚碳酸酯-聚酯多元醇、聚碳酸酯-聚醚多元醇、聚丁二烯多元醇或聚硅氧烷多元醇;优选,聚合物多元醇是组合聚醚多元醇;和/或
    多亚烷基多胺是选自于二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、二亚丙基三胺、三亚丙基四胺或四亚丙基五胺中的一种或多种。
  18. 根据权利要求16所述的聚氨酯发泡方法,其中该方法是使用超临界二氧化碳或亚临界二氧化碳的超临界二氧化碳发泡方法或亚临界二氧化碳发泡方法。
  19. 根据权利要求16-18中任何一项所述的聚氨酯发泡方法,其中所述物理发泡剂选自下组中的至少一种:正戊烷,异戊烷,环戊烷,沸点在0-100℃范围内的其它烷烃,HCFC-141b,HFC-245fa,HFC-365mfc,LBA,六氟丁烯,沸点在0-100℃范围内的其它氟氯烃,或甲酸甲酯。
  20. 根据权利要求16-19中任何一项所述的聚氨酯发泡方法,其中氨和/或肼是以氨水或水合肼的形式添加在聚氨酯发泡组合物中,并且使得所形成的聚氨酯发泡组合物含有总共0.4-8wt%、0.5-7wt%、优选0.6-6wt%、进一步优选0.7-5wt%的水,重量百分比基于聚氨酯发泡组合物的总重量。
  21. 根据权利要求16-20中任何一项所述的聚氨酯发泡方法,其中:聚氨酯发泡组合物还包含:泡沫稳定剂、聚氨酯催化剂和阻燃剂,和/或
    聚氨酯发泡组合物的pH值为7.2-10,优选7.4-9.5,优选7.5-9,更优选7.8-8.5。
  22. 根据权利要求16-21中任何一项所述的聚氨酯发泡方法,其中所述聚氨酯发泡组合物还包含:0.1-5重量%、优选0.3-4.5重量%、更优选0.5-4wt%、更优选0.8-3wt%(例如1.2wt%或1.8wt%或2.5wt%)的碳酸有机胺(OA)盐,即,上述有机胺(OA)的碳酸盐;优选,碳酸有机胺(OA)盐是碳酸有机醇胺盐。
  23. 根据权利要求16-22中任何一项所述的聚氨酯发泡方法,其中将聚氨酯发泡组合物的一股料流与多异氰酸酯单体和/或异氰酸酯封端的预聚物的一股料流输送到压力混合器中进行混合;优选的是,该压力混合器是具有压力混合区的聚氨酯高压发泡机或聚氨酯高压喷涂机。
  24. 根据权利要求16-23中任何一项所述的聚氨酯发泡方法,其中上述有机胺(OA)是醇胺类,优选是选自于单乙醇胺,单丙醇胺,单异丙醇胺,甲胺,乙胺或丙胺中的一种或多种;和/或
    碳酸有机胺(OA)盐是选自于碳酸(铵)(单乙醇胺)盐,碳酸二(乙醇胺)盐,碳酸(乙醇胺)(丙醇胺)盐,碳酸二(丙醇胺),碳酸二(异丙醇胺)盐,碳酸二(甲基胺)盐,碳酸二(乙基胺)盐,碳酸二(丙基胺)盐,碳酸(甲基胺)(乙基胺)盐,碳酸(甲基胺)(丙基胺)盐,碳酸(乙基胺)(丙基胺)盐中的一种或多种。
  25. 根据权利要求16-24中任何一项所述的聚氨酯发泡方法,其中在被输送到压力混合器中之前,聚氨酯发泡组合物和多异氰酸酯单体和/或异氰酸酯封端的预聚物分别在单独的容器(优选压力容器)中贮存;并且在被输送到压力混合器中之前聚氨酯发泡组合物已经混合均匀以使得有机胺(OA)(优选醇胺)预先均匀混合在聚氨酯发泡组合物中。
  26. 制备碳酸醇胺盐的方法,该方法包括:
    (1)将第一原料与第二原料在水的存在下,任选地在催化剂的存在下,进行反应,获得液体状态的、水含量(W1)低于60wt%(例如20-60wt%)的醇胺盐混合物(MAA1);和
    (2)将步骤(1)中获得的液态醇胺盐混合物(MAA1)的一部分或全部作为分散介质或作为溶剂,通过在其中添加第一原料和第二原料进行混合,任选地在催化剂的存在下,让所形成的反应混合物进行反应,获得液体状态的且其水含量(W2)比步骤(1)所获得的产物的水含量(W1)进一步降低(例如其水含量W2低于50wt%,如,其水含量W2为10-50wt%)的醇胺盐混合物(MAA2);
    其中第一原料是选自于下列这些化合物中的一种或多种:
    H2N-COONH4
    (NH4)2CO3,碳酸肼,碳酸铵肼,或碳酸有机胺类化合物(M)盐,
    HCOONH4,甲酸肼,或甲酸有机胺类化合物(M)盐,
    HO-COONH4,碳酸氢肼,或有机胺类化合物(M)的碳酸氢盐;
    第二原料是选自于下列这些环氧化物中的一种或多种:
    Figure PCTCN2017114589-appb-100005
    或苯乙烯氧化物;其中R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基;
    其中所述的有机胺类化合物(M)是选自下列这些中的有机胺类化合物:
    C1-C24烃基胺类;
    二(C1-C16烃基)胺类;
    C2-C14亚烃基二胺类;
    C4-C16多亚烷基多胺类;
    具有三个伯胺基的C3-C18有机三胺类或具有四个伯胺基的C5-C18有机四胺类;或
    C2-C10醇胺类。
  27. 根据权利要求26所述的方法,其中,在步骤(1)中水的用量是以第一原料的重量为基础计算的60-250wt%、优选80-200wt%、更优选100-170wt%、更优选110-160wt%。
  28. 根据权利要求26或27所述的方法,其中,所述方法进一步包括:
    (3)将步骤(2)中获得的液态醇胺盐混合物(MAA2)的一部分或全部作为分散介质或作为溶剂,通过在其中添加上述第一原料和上述第二原料进行混合,任选地在催化剂的存在下,让所形成的反应混合物进行反应,获得液体状态的且其水含量(W3)比步骤(2)所获得的产物(MAA2)的水含量(W2)进一步降低(例如其水含量W3低于40wt%,如,6-40wt%)的醇胺盐混合物(MAA3)。
  29. 根据权利要求28所述的方法,其中,所述方法进一步包括:
    (4)将步骤(3)中获得的液态醇胺盐混合物(MAA3)的一部分或全部作为分散介质或作为溶剂,通过在其中添加上述第一原料和上述第二原料进行混合,任选地在催化剂的存在下,让所形成的反应混合物进行反应,获得液体状态的且其水含量(W4)比步骤(3)所获得的产物(MAA3)的水含量(W3)进一步降低(例如其水含量W4低于30wt%,如,2-30wt%,更优选3-25wt%,更优选3.5-20wt%,例如7wt%或12wt%)的醇胺盐混合物(MAA4)。
  30. 根据权利要求26-29中任何一项所述的方法,其中:
    R1a、R2a、R3a或R4a各自独立地选自:H,甲基或任选被羟基或氨基或卤素取代的乙基,或任选被羟基或者氨基或卤素取代的丙基或异丙基,任选被羟基或氨基或卤素取代的环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基;优选的是,其中R1a、R2a、R3a或R4a各自独立地选自:H,甲基,氯甲基,溴甲基,乙基,环己基,或,苯基;
    和/或
    步骤(2)中获得的醇胺盐混合物(MAA2)的水含量(W2)是步骤(1)中获得的醇胺盐混合物(MAA1)的水含量(W1)的30-85%(优选35-80%,更优选40-75%,例如50%或60%);进一步优选,步骤(3)中获得的醇胺盐混合物(MAA3)的水含量(W3)是步骤(2)中获得的醇胺盐混合物(MAA2)的水含量(W2)的30-85%(优选35-80%,更优选40-75%,例如50%或60%);进一步优选,步骤(4)中获得的醇胺盐混合物(MAA4)的水含量(W4)是步骤(3)中获得的醇胺盐混合物(MAA3)的水含量(W3)的30-80%(优选35-75%,更优选40-70%,例如50%或60%)。
  31. 根据权利要求26-30中任何一项所述的方法,其中,该环氧化物是:环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷、或环氧氯丁烷或苯乙烯氧化物,或它们中任何两种或多种的混合物;和/或
    催化剂是氨水;和/或
    对于步骤(1)和(2)而言,或对于步骤(1)、(2)和(3)而言,或对于步骤(1)、(2)、(3)和(4)而言,这些步骤独立地能够在相同或不同的地方或在相同或不同的车间进行。
  32. 一种发泡剂混合物,它包括醇胺盐混合物和物理发泡剂,其中,该醇胺盐混合物是选自于权利要求26-31中所述的醇胺盐混合物(MAA1)、(MAA2)、(MAA3)或(MAA4)中的一种或多种;优选,该醇胺盐混合物是选自于权利要求26-31中所述的醇胺盐混合物(MAA2)、(MAA3)或(MAA4)中的一种或多种;所述物理发泡剂选自下组中的至少一种:正戊烷,异戊烷,环戊烷,或沸点在0-100℃范围内的其它烷烃,HCFC-141b,HFC-245fa,HFC-365mfc,LBA,FEA-1100(即六氟丁烯),或沸点在0-100℃范围内的其它氟氯烃,或甲酸甲酯。
PCT/CN2017/114589 2017-10-19 2017-12-05 有机胺盐发泡剂 WO2019075875A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2017436626A AU2017436626B2 (en) 2017-10-19 2017-12-05 Organic amine salt foamer
RU2020115026A RU2778681C2 (ru) 2017-10-19 2017-12-05 Вспенивающий агент из органической аминовой соли
CA3078648A CA3078648C (en) 2017-10-19 2017-12-05 Organic amine salt foaming agent
KR1020227033484A KR102540982B1 (ko) 2017-10-19 2017-12-05 유기 아민염 발포제
EP17929390.7A EP3719064A4 (en) 2017-10-19 2017-12-05 Organic amine salt foamer
JP2020520754A JP7036913B2 (ja) 2017-10-19 2017-12-05 有機アミン塩発泡剤
US16/753,064 US11634552B2 (en) 2017-10-19 2017-12-05 Organic amine salt foamer
KR1020207012331A KR102528271B1 (ko) 2017-10-19 2017-12-05 유기 아민염 발포제
JP2022032567A JP2022088402A (ja) 2017-10-19 2022-03-03 有機アミン塩発泡剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710980334.3A CN109679130B (zh) 2017-10-19 2017-10-19 包含六氟丁烯和有机醇胺盐化合物的复合发泡剂
CN201710980334.3 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019075875A1 true WO2019075875A1 (zh) 2019-04-25

Family

ID=66173484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114589 WO2019075875A1 (zh) 2017-10-19 2017-12-05 有机胺盐发泡剂

Country Status (8)

Country Link
US (1) US11634552B2 (zh)
EP (1) EP3719064A4 (zh)
JP (2) JP7036913B2 (zh)
KR (2) KR102540982B1 (zh)
CN (1) CN109679130B (zh)
AU (1) AU2017436626B2 (zh)
CA (1) CA3078648C (zh)
WO (1) WO2019075875A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029134B (zh) * 2019-06-04 2023-01-24 毕戈华 含有碳酸二烷基酯和醇胺盐的聚氨酯复合发泡剂
CN112029140B (zh) * 2019-06-04 2023-08-11 毕戈华 含有碳酸二烷基酯的聚氨酯复合发泡剂
WO2022160439A1 (zh) * 2021-01-27 2022-08-04 山东理工大学 用于聚氨酯硬质泡沫的碳酸醇胺盐发泡剂组合物
WO2023043480A1 (en) 2021-09-14 2023-03-23 Nike Innovate C.V. Foamed articles and methods of making the same
WO2023048754A1 (en) 2021-09-21 2023-03-30 Nike Innovate C.V. Foamed articles and methods of making the same
WO2023086114A1 (en) * 2021-11-12 2023-05-19 Nike Innovate C.V. Foamed articles and methods of making the same
CN116731382A (zh) * 2023-05-16 2023-09-12 四川大学 一种二氧化碳型潜发泡剂的溶剂

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047325A (ja) 2000-05-23 2002-02-12 Nippon Polyurethane Ind Co Ltd 建築用硬質イソシアヌレートスプレーフォームの製造方法
JP2002327439A (ja) 2001-05-01 2002-11-15 Nippon Polyurethane Ind Co Ltd 盛土の施工方法及び土木用ポリウレタンフォームの製造方法
JP2009256484A (ja) 2008-04-17 2009-11-05 Achilles Corp 硬質ポリウレタンフォームの製造方法
JP2011213854A (ja) 2010-03-31 2011-10-27 Achilles Corp 硬質ポリウレタンフォームの製造方法並びに組成物
CN105601978A (zh) * 2015-11-10 2016-05-25 南京红宝丽聚氨酯有限公司 一种硬质聚氨酯泡沫
JP2016188329A (ja) 2015-03-30 2016-11-04 旭有機材株式会社 ポリウレタンフォームの製造法及びそれによって得られたポリウレタンフォーム
JP2016188330A (ja) 2015-03-30 2016-11-04 旭有機材株式会社 ポリウレタンフォームの製造方法及びそれによって得られたポリウレタンフォーム
CN107089916A (zh) * 2016-06-02 2017-08-25 淄博正华发泡材料有限公司 甲酸有机胺盐类化合物及其作为发泡剂的用途
CN107089927A (zh) 2016-06-02 2017-08-25 山东理工大学 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途
CN107089910A (zh) 2016-06-02 2017-08-25 山东理工大学 碳酸有机胺盐类化合物及其作为发泡剂的用途
CN107253919A (zh) * 2017-05-11 2017-10-17 山东理工大学 肼基醇胺盐类化合物及其制备方法和用途

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2399142A (en) * 1942-06-22 1946-04-23 Girdler Corp Thermal dissociation of monoethanolamine salts
US4284728A (en) * 1980-05-05 1981-08-18 Basf Wyandotte Corporation HR foams made with reactive polyol compositions having improved stability
US4542214A (en) * 1982-03-04 1985-09-17 Air Products And Chemicals, Inc. Carbamate and carbonate salts of tertiary amines
DE3607964A1 (de) * 1986-03-11 1987-09-17 Bayer Ag Verfahren zur herstellung eines zelligen polyurethans
US4906672A (en) * 1988-07-29 1990-03-06 Pmc, Inc. Blowing agents for polyurethane foam
JP2885896B2 (ja) * 1990-07-06 1999-04-26 サンアプロ株式会社 ウレタン発泡体用触媒
DE4121161A1 (de) * 1991-06-27 1993-01-07 Basf Ag Verfahren zur herstellung von urethan- oder urethan- und isocyanuratgruppen enthaltenden hartschaumstoffen und treibmittel enthaltende emulsionen hierfuer
US5665287A (en) * 1993-07-14 1997-09-09 Foaming Technologies Cardio Bv Froth process for continous manufacture of polyurethane foam slab-stocks
CZ287435B6 (en) * 1993-11-04 2000-11-15 Bayer Ag Process for preparing foam polyurethane shaped parts without use of fluorochlorinated hydrocarbons
DE4405061A1 (de) * 1994-02-17 1995-08-24 Bayer Ag Verfahren zur Isolierung von Rohren mit Polyurethan-Hartschaumstoffen nach dem Rotationsgußverfahren
US5789451A (en) 1996-07-29 1998-08-04 The Dow Chemcial Company Alkanolamine/carbon dioxide adduct and polyurethane foam therewith
JP2002293862A (ja) * 2001-03-30 2002-10-09 Bridgestone Corp 照明器具用パッキン材
JP3808006B2 (ja) 2002-05-29 2006-08-09 住化バイエルウレタン株式会社 意匠面に使用されるインストルメントパネル用インテグラルスキンポリウレタンフォームの製造方法
JP4154654B2 (ja) * 2002-09-13 2008-09-24 アキレス株式会社 硬質ポリウレタンフォームの製造方法
DE602005009505D1 (de) 2004-03-11 2008-10-16 Dow Global Technologies Inc Gebundene, hochreaktive polyurethan-hartschaumstoffe
US7714030B2 (en) 2005-09-15 2010-05-11 Dow Global Technologies Inc. Attached, high reactivity rigid polyurethane foams containing oxazolidone groups
GB0705685D0 (en) * 2007-03-24 2007-05-02 Nauer Fritz Ag Polyurethane foam
DE102008008391A1 (de) 2008-02-09 2009-08-13 Bayer Materialscience Ag Geschäumte, lichtechte Polyurethanformteile
JP5145998B2 (ja) * 2008-02-14 2013-02-20 東ソー株式会社 ポリウレタンフォーム用ポリオール組成物及びポリウレタンフォームの製造方法
JP2009214220A (ja) * 2008-03-10 2009-09-24 Toyo Tire & Rubber Co Ltd 研磨パッド
CA2752263A1 (en) * 2009-03-06 2010-09-10 Solvay Fluor Gmbh Use of unsaturated hydrofluorocarbons
CN102803325A (zh) * 2009-04-24 2012-11-28 东曹株式会社 用于制造聚氨酯泡沫的发泡性添加剂、以及使用该发泡性添加剂的硬质聚氨酯泡沫的制造方法
JP2011037951A (ja) * 2009-08-07 2011-02-24 Tosoh Corp ポリウレタンフォーム製造用の発泡性添加剤、及びそれを用いた硬質ポリウレタンフォームの製造方法
US20140171527A1 (en) * 2011-02-21 2014-06-19 Honeywell International Inc. Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same
BR112014002392B1 (pt) 2011-08-01 2020-11-10 Basf Se processo para produzir espumas de poliuretano rígidas, uso de uma mistura de agente de sopro, e, espuma de poliuretano rígida
CN107250196B (zh) * 2015-02-24 2020-05-12 阿基里斯株式会社 硬质聚氨酯泡沫
US20160262490A1 (en) 2015-03-13 2016-09-15 Honeywell International Inc. Foams, foamable compositions and methods of making integral skin foams
JP6921505B2 (ja) 2016-11-25 2021-08-18 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 連続気泡性硬質ポリウレタンフォームの製造方法
CA2963751A1 (en) 2017-02-13 2018-08-13 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
CN107099100A (zh) 2017-03-15 2017-08-29 国网山东省电力公司日照供电公司 一种基于微胶囊导入技术的电缆用屏蔽材料的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047325A (ja) 2000-05-23 2002-02-12 Nippon Polyurethane Ind Co Ltd 建築用硬質イソシアヌレートスプレーフォームの製造方法
JP2002327439A (ja) 2001-05-01 2002-11-15 Nippon Polyurethane Ind Co Ltd 盛土の施工方法及び土木用ポリウレタンフォームの製造方法
JP2009256484A (ja) 2008-04-17 2009-11-05 Achilles Corp 硬質ポリウレタンフォームの製造方法
JP2011213854A (ja) 2010-03-31 2011-10-27 Achilles Corp 硬質ポリウレタンフォームの製造方法並びに組成物
JP2016188329A (ja) 2015-03-30 2016-11-04 旭有機材株式会社 ポリウレタンフォームの製造法及びそれによって得られたポリウレタンフォーム
JP2016188330A (ja) 2015-03-30 2016-11-04 旭有機材株式会社 ポリウレタンフォームの製造方法及びそれによって得られたポリウレタンフォーム
CN105601978A (zh) * 2015-11-10 2016-05-25 南京红宝丽聚氨酯有限公司 一种硬质聚氨酯泡沫
CN107089916A (zh) * 2016-06-02 2017-08-25 淄博正华发泡材料有限公司 甲酸有机胺盐类化合物及其作为发泡剂的用途
CN107089927A (zh) 2016-06-02 2017-08-25 山东理工大学 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途
CN107089910A (zh) 2016-06-02 2017-08-25 山东理工大学 碳酸有机胺盐类化合物及其作为发泡剂的用途
CN107253919A (zh) * 2017-05-11 2017-10-17 山东理工大学 肼基醇胺盐类化合物及其制备方法和用途

Also Published As

Publication number Publication date
EP3719064A1 (en) 2020-10-07
JP2020537702A (ja) 2020-12-24
KR20220137156A (ko) 2022-10-11
KR102528271B1 (ko) 2023-05-02
US20200291199A1 (en) 2020-09-17
CN109679130B (zh) 2021-09-07
CA3078648C (en) 2023-03-28
JP7036913B2 (ja) 2022-03-15
AU2017436626B2 (en) 2021-11-18
CA3078648A1 (en) 2019-04-25
EP3719064A4 (en) 2022-06-29
AU2017436626A1 (en) 2020-04-16
RU2020115026A3 (zh) 2021-11-19
US11634552B2 (en) 2023-04-25
CN109679130A (zh) 2019-04-26
KR102540982B1 (ko) 2023-06-07
RU2020115026A (ru) 2021-11-19
KR20200060475A (ko) 2020-05-29
JP2022088402A (ja) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2019075875A1 (zh) 有机胺盐发泡剂
CN107522892B (zh) 碳酸氢有机胺盐类化合物及其作为发泡剂的用途
CN109867767B (zh) 二氧化碳与有机胺相结合使用的聚氨酯发泡方法
WO2017206693A1 (zh) 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途
CN109422907B (zh) 包含多胺和醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN107253919B (zh) 肼基醇胺盐类化合物及其制备方法和用途
CN107312192B (zh) 有机醇胺盐类化合物及其作为发泡剂的用途
CN109422912B (zh) 碱性多胺醇胺发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
RU2778681C2 (ru) Вспенивающий агент из органической аминовой соли
CN109422914B (zh) 多胺乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途
CN109422910B (zh) 包含原甲酸醇胺盐和碳酸醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422911B (zh) 包含原甲酸醇胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
WO2019006911A1 (zh) 羟丙基化碳酸铵盐化合物混合物和复合发泡剂
CN109422904B (zh) 包含仲胺和醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422916B (zh) 包含仲胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
CN109422906B (zh) 乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途
CN109422908B (zh) 包含多胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
CN109422898B (zh) 包含叔胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
CN109422901B (zh) 碱性醇胺发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
CN109422903B (zh) 包含仲胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
CN109422896B (zh) 包含伯胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
CN109422897B (zh) 包含伯胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
CN109422899B (zh) 包含叔胺和醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422913B (zh) 包含多胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
CN109422894B (zh) 包含叔胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3078648

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020520754

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017436626

Country of ref document: AU

Date of ref document: 20171205

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207012331

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017929390

Country of ref document: EP

Effective date: 20200519