WO2019074336A1 - 분산성이 개선된 은 분말의 제조방법 - Google Patents

분산성이 개선된 은 분말의 제조방법 Download PDF

Info

Publication number
WO2019074336A1
WO2019074336A1 PCT/KR2018/012095 KR2018012095W WO2019074336A1 WO 2019074336 A1 WO2019074336 A1 WO 2019074336A1 KR 2018012095 W KR2018012095 W KR 2018012095W WO 2019074336 A1 WO2019074336 A1 WO 2019074336A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
solution
salt solution
reducing
silver salt
Prior art date
Application number
PCT/KR2018/012095
Other languages
English (en)
French (fr)
Inventor
권태현
우상덕
최영훈
김충호
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Publication of WO2019074336A1 publication Critical patent/WO2019074336A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Definitions

  • the present invention relates to a method for producing silver powder for use in electronic parts, and more particularly, to a method for producing a silver powder for conductive paste having improved dispersibility, which is used for electrodes for solar cells, internal electrodes of multilayer capacitors, And a manufacturing method thereof.
  • the conductive paste is a paste in which an electrically conductive paste (metal filler) is dispersed in a vehicle made of a resin binder and a solvent, and is used as a paste for forming an electric circuit, a ceramic capacitor And is widely used for forming external electrodes.
  • an electrically conductive paste metal filler
  • Silver powder used as a conductive filler is used in various fields such as electronics, chemistry, catalyst and the like by various methods such as chemical reduction, photoreduction and sonochemical methods. .
  • chemical reduction method it is a method suitable for use in terms of the form of the powder and the mass production efficiency. It is a method of reducing various kinds of reducing agents such as hydrazine, glycerol, ascorbic acid and aldehyde compounds Lt; / RTI >
  • silver nitrate silver nitrate
  • As a method for producing a conventional silver powder silver nitrate (silver nitrate) was added to " Dispersion Mechanisms of the Arabic Gum in the Preparation of Ultrafine Silver Powder (Korean Journal of Chemical Engineering., V.31 no.8, 2014, pp.1490-1495) AgNO 3 ) is reacted with ascorbic acid and arabic gum is used as a dispersant to improve the dispersibility in the production of silver powder.
  • additives such as fatty acid, fatty acid salt, surfactant, organic metal, chelating agent and protective colloid should be added.
  • fatty acid fatty acid salt
  • surfactant organic metal
  • organic metal chelating agent
  • protective colloid a short circuit occurs when the electrode is formed of a conductive paste using the silver paste.
  • a process of washing the impurities including the dispersing agent is additionally performed after the preparation of the powder, and since the physical properties such as the particle size of the silver powder produced by adding the dispersing agent are changed, There is a problem that it must be controlled at another stage.
  • an object of the present invention is to provide a method for producing a silver powder having improved dispersibility without adding an additive such as a dispersant.
  • the present invention relates to a silver salt solution producing step (S11) for adding silver nitrate solution, nitric acid and ammonia water to a solvent and mixing them to prepare a silver salt solution; A reducing solution preparation step (S2) of adding a reducing agent to the solvent and mixing to prepare a reducing solution; And a reducing reaction step (S31) in which the silver salt solution and the reducing solution are mixed and stirred to precipitate silver particles, wherein in the silver salt solution producing step (S11), the amount of the silver nitrate solution (S12), silver particles are precipitated by controlling the stirring speed in the reduction reaction step (S31) (S32), silver powder which improves the dispersibility of the silver powder without using a dispersant And a manufacturing method thereof.
  • the silver salt solution is prepared by increasing the addition amount of the silver nitrate solution in the silver salt solution producing step S11 and the silver particles are precipitated by reducing the stirring speed in the reducing reaction step S31 .
  • the silver salt solution preparation step (S12) may include adding silver nitrate solution (70 to 90 ml), nitric acid (3 to 10 ml) and ammonia water (90 to 110 ml) to 1000 ml of solvent to prepare silver salt solution
  • Step S32 is characterized in that the silver salt solution and the reducing solution are mixed and agitated at a stirring speed of 20 to 60 rpm to precipitate silver particles.
  • the reducing solution preparation step (S2) is a step of preparing a reducing solution having a concentration of 10 to 30 g / l by mixing a reducing agent in an amount of 40 to 50% of the silver content in the silver nitrate solution in the silver salt solution with a solvent .
  • the present invention is a silver powder produced without using a dispersant, wherein a diameter of each of 100 particles is measured using an SEM (Scanning Electron Microscope), and an SEM particle size measured by averaging is 0.5 to 2.0 ⁇ , wherein the powder has a D50 value ratio of not more than 2.0 as measured by PSA (Particle Size Analyzer) to the SEM particle size.
  • SEM Sccanning Electron Microscope
  • PSA Particle Size Analyzer
  • the silver powder has a D90 value of 3.0 or less as measured using a particle size analyzer (PSA) for the SEM particle size.
  • PSD particle size analyzer
  • the silver powder has a Dmax ratio of 8.0 or less measured by using a particle size analyzer (PSA) for the SEM particle size.
  • PSD particle size analyzer
  • the silver powder has a tap density of 5.5 to 6.0 g / cm < 3 >.
  • the present invention also provides a conductive paste containing the silver powder.
  • the present invention also provides a solar cell comprising an electrode formed using the conductive paste.
  • the present invention provides a method of manufacturing a silver powder with improved dispersibility without adding additives such as a dispersing agent. In the case of producing silver powder according to the manufacturing method of the present invention, And it is possible to provide an effect that only the dispersibility is improved while maintaining the characteristics of the silver powder to be produced.
  • Disconnection can be remarkably reduced when the solar cell electrode is formed using the conductive paste formed using the silver powder with improved dispersibility, and the efficiency of the manufactured solar cell is also excellent.
  • Figure 1 shows an SEM image of silver powder prepared according to an embodiment of the present invention.
  • Fig. 3 shows a single wire evaluation image of a solar cell manufactured according to an embodiment of the present invention and a comparative example.
  • FIG. 4 shows an image of a single wire evaluation in a severe condition of a solar cell manufactured according to an embodiment and a comparative example of the present invention.
  • the method for producing silver powder according to an embodiment of the present invention includes a silver salt solution producing step (S1), a reducing solution producing step (S2), and a reducing reaction step (S3).
  • the dispersibility is improved by reducing the reactivity of the reaction of precipitating the silver powder by adjusting the execution condition of each step, and even if the execution condition of each step is controlled, Is characterized by exhibiting physical properties such as particle size and the like of powder.
  • first performance condition a pre-conditioning performance condition
  • second performance condition a controlled performance condition
  • step (S1) for preparing a silver salt solution silver nitrate solution, nitric acid and ammonia water are sequentially added to a solvent such as water, and the solution is stirred and dissolved to prepare a silver salt solution.
  • concentration of the added silver nitrate solution is in the range of 300 g / L to 700 g / L.
  • 500 g / L silver nitrate solution silver nitrate solution.
  • the first performance condition (S11) is as follows.
  • a silver nitrate solution is added to 1000 ml of the solvent.
  • Nitric acid is added in a ratio of 3 to 10 ml per 1000 ml of the solvent.
  • 90 to 110 ml of ammonia water is added to 1000 ml of the solvent.
  • the second execution condition (S12) is as follows.
  • 70 to 90 ml of a silver nitrate solution is added to 1000 ml of the solvent.
  • Nitric acid is added in a ratio of 3 to 10 ml per 1000 ml of the solvent.
  • 90 to 110 ml of ammonia water is added to 1000 ml of the solvent.
  • the second performance condition is to increase the content of the silver nitrate solution by 1.2 to 2 times (volume ratio) in the first performance condition in the preparation of the silver salt solution.
  • 1.2 to 1.7 times Preferably 1.2 to 1.7 times, and more preferably 1.3 to 1.5 times.
  • the step (S2) of preparing a reducing solution according to an embodiment of the present invention is a step of preparing a reducing solution by dissolving one kind of reducing agent in a solvent or by mixing two or more kinds of reducing agents at a predetermined ratio and dissolving in a solvent,
  • the silver salt solution is mixed with the silver salt solution so as to reduce silver ions, thereby preparing a solution for precipitating silver particles.
  • the reducing solution preparing step (S2) one or two or more reducing agents are added to a solvent such as water at a predetermined ratio, and the mixture is stirred and dissolved to prepare a reducing solution.
  • concentration of the reducing solution to be produced is 10 to 30 g / l.
  • the reducing agent includes at least one selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin.
  • Hydroquinone is preferably used when one kind of reducing agent is used, and a reducing agent in an amount of 40 to 60% by weight of the silver content in the silver nitrate solution in the silver salt solution prepared in the silver salt solution producing step And mixed with a solvent to prepare a reducing solution.
  • a reducing agent in an amount of 45 to 55% by weight of the silver content contained in the silver nitrate solution in the silver salt solution prepared is mixed with a solvent so as to have the above concentration to prepare a reducing solution.
  • hydroquinone and ascorbic acid When two or more kinds of reducing agents are mixed and used, it is preferable to mix hydroquinone and ascorbic acid among them.
  • hydroquinone and ascorbic acid when hydroquinone and ascorbic acid are contained in the reducing solution, hydroquinone is mixed in an amount of 50 to 70% by weight and ascorbic acid in an amount of 30 to 50% by weight, and added to a solvent such as water in a concentration of 10 to 30 g / do.
  • a solvent such as water in a concentration of 10 to 30 g / do.
  • hydroquinone is mixed in an amount of 55 to 65 wt% and ascorbic acid in a ratio of 35 to 45 wt%, and the mixture is added to a solvent such as water in a concentration of 10 to 20 g / l. More preferably, hydroquinone is mixed at a ratio of 60 wt% and ascorbic acid at a ratio of 40 wt%, and the mixture is added to a solvent such as water at a concentration of 20 g / l.
  • the silver salt solution and the reducing solution are mixed at a predetermined ratio, and silver ions of the silver salt solution are reduced by a reducing solution to precipitate silver particles.
  • the reducing reaction step (S3) can be performed by slowly dropping the reducing solution prepared in the reducing solution producing step (S2) or by charging it in a batch while the silver salt solution prepared in the silver salt solution producing step (S1) is stirred.
  • the reduction reaction is completed in a short period of time in a batchwise manner, so that agglomeration of the particles can be prevented and the dispersibility can be increased.
  • the reducing solution is added to the silver salt solution within 10 seconds and then stirred for 5 to 20 minutes to cause a reduction reaction in which silver particles are precipitated from silver ions of the silver salt solution.
  • the first execution condition (S31) is as follows.
  • the mixture is stirred at a stirring speed of 100 to 200 rpm to cause a reduction reaction. It is preferable to stir at a stirring speed of 100 to 150 rpm, and more preferably, to stir at a stirring speed of 100 rpm.
  • the second execution condition (S32) is as follows.
  • the solution When a reducing solution is added to the silver salt solution, the solution is stirred at a stirring speed of 20 to 60 rpm to cause a reduction reaction. It is preferable to stir at a stirring speed of preferably 30 to 50 rpm, more preferably 40 rpm.
  • the second performance condition is to reduce the stirring speed in the reduction reaction by 0.2 to 0.8 times. Preferably by 0.4 to 0.8 times, and more preferably by 0.5 to 0.7 times.
  • the stirring speed is reduced within the above range, silver powder having improved dispersibility can be obtained without changing physical properties such as particle diameter and density of silver powder to be produced.
  • the silver particles dispersed in the aqueous solution or slurry after completion of the silver particle precipitation reaction through the reduction reaction step (S3) are separated by filtration or the like, (S4) to obtain a silver powder.
  • the supernatant of the dispersion is discarded, filtered using a centrifugal separator, and the filter material is washed with pure water. It is not excluded from the scope of the present invention to apply various methods for solid-liquid separation such as filter presses and decanters in addition to the centrifugal separator mentioned in the present invention.
  • the process of washing is done by completely removing the washing water from which the powder is washed. Thus reducing the water content to less than 10%.
  • the silver powder prepared according to the first performance condition had a spherical shape and the size of each of 100 powders was measured using a scanning electron microscope (SEM) and the average size was 0.5 to 2.0 ⁇ m
  • the silver powder prepared according to the second performance condition also has a spherical shape.
  • the diameter of each of 100 powders is measured using a scanning electron microscope (SEM), and the average size is 0.5 to 2.0 ⁇ m . That is, the shape and size range of the silver powder produced were maintained.
  • An indicator for improving the dispersibility of the silver powder produced according to the second execution condition, wherein the number of disconnection occurrences when the electrode of the solar cell is formed by manufacturing the conductive paste containing the silver powder prepared is an indirect
  • the ratio of the PSA D50 value to the SEM particle diameter, the ratio of the PSA Dmax value to the SEM particle diameter, and the tap density can be used as direct indicators. This will be described in the following experimental examples.
  • the present invention improves the dispersibility by intentionally reducing the reactivity due to the steric effect in the reduction reaction by controlling the external environment such as the volume and stirring speed of the silver nitrate solution as the base of the silver powder synthesis, , Organic matter content, etc., are characterized in that the characteristics of the powder are maintained.
  • a conductive paste comprising the silver powder produced.
  • the composition of the conductive paste includes 80 to 90% by weight of the silver powder, 5 to 10% by weight of the organic vehicle, 1 to 5% by weight of the glass frit, and 1 to 5% by weight of the additive. It is more preferable that the powder contains 85 to 90% by weight of the silver powder, 5 to 8% by weight of the organic vehicle, 2 to 4% by weight of the glass frit, and 1 to 3% by weight of the additive.
  • the organic vehicle is not limited, but organic binders, solvents, and the like may be included. Solvents may sometimes be omitted.
  • the organic vehicle is required to have a property of keeping the metal powder and the glass frit uniformly mixed.
  • the conductive paste becomes homogeneous, And a property to suppress the flow and to improve the discharging property and the plate separability of the conductive paste from the screen plate.
  • the organic binder contained in the organic vehicle is not limited, but examples of the cellulose ester compound include cellulose acetate and cellulose acetate butyrate.
  • examples of the cellulose ether compound include ethylcellulose, methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose
  • examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate, and the like.
  • examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate
  • examples of vinyl based ones include polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, and the like. At least one or more organic binders may be selected and used.
  • Examples of the solvent used for diluting the composition include alpha-terpineol, texanol, dioctyl phthalate, dibutyl phthalate, cyclohexane, hexane, toluene, benzyl alcohol, dioxane, diethylene glycol, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, and the like.
  • the composition, particle diameter and shape of the glass frit are not particularly limited. It is possible to use not only flexible glass frit but also lead-free glass frit.
  • the content and content of the glass frit are 5 to 29 mol% of PbO, 20 to 34 mol% of TeO 2 , 3 to 20 mol% of Bi 2 O 3 , 20 mol% or less of SiO 2 , 10 mol% or less of B 2 O 3 , 10 to 20 mol% of an alkali metal (Li, Na, K, etc.) and an alkaline earth metal (Ca, Mg, etc.)
  • the average particle diameter of the glass frit is not limited, but it may have a particle diameter in the range of 0.5 to 10 mu m, and a mixture of various particles having different average particle diameters may be used.
  • at least one kind of glass frit has an average particle diameter (D50) of not less than 2 mu m and not more than 10 mu m.
  • the conductive paste containing spherical silver powder having a large specific surface area prepared according to an embodiment of the present invention can increase the viscosity at the time of producing the paste and can be applied in applications where the sintering temperature is lowered The range can be extended.
  • the silver salt solution was added to the prepared silver salt solution in less than 10 seconds, followed by stirring at a rate of 100 rpm for 5 minutes to reduce silver ions present in the silver salt solution to prepare silver particles.
  • the supernatant of the mixed solution was discarded and the mixed solution was filtered using a centrifugal separator, and the filter material was washed with pure water and dried to obtain silver powder.
  • the silver salt solution was added to the prepared silver salt solution in less than 10 seconds, followed by stirring for 5 minutes at the stirring speed shown in Table 1 below to reduce the silver ions present in the silver salt solution to prepare silver particles.
  • the supernatant of the mixed solution was discarded and the mixed solution was filtered using a centrifugal separator, and the filter material was washed with pure water and dried to obtain silver powder.
  • the silver salt solution was added to the prepared silver salt solution in less than 10 seconds, followed by stirring for 5 minutes at the stirring speed shown in Table 1 below to reduce the silver ions present in the silver salt solution to prepare silver particles.
  • the supernatant of the mixed solution was discarded and the mixed solution was filtered using a centrifugal separator, and the filter material was washed with pure water and dried to obtain silver powder.
  • the filter material was washed with pure water and dried to obtain silver powder.
  • arabic gum is used as a dispersant, the powder is viscous and is kept sticky. Therefore, it is washed three times or more with excess caustic soda.
  • FIGS. 1 and 2 Scanning electron micrographs of the surface morphologies of the silver powders prepared in Example 1 and Comparative Example 11 are shown in FIGS. 1 and 2, respectively. The diameters of each of the 100 powders were measured, And the results are shown in Table 2.
  • the particle diameter at which the width is 10% from the largest particle diameter is expressed as D10 based on the entire width of the graph
  • the particle diameter at which the width is 50% from the largest particle diameter is expressed as D50
  • the particle diameter at which the width is 90% from the largest particle diameter (Dmax) is expressed as D90 based on the entire width of the graph.
  • Ignition loss was measured using TGA / DTA EXART 6600 manufactured by Seiko Instrument Co., Ltd. in the range of room temperature to 500 ° C at a heating rate of 10 ° C / min in the air.
  • the SEM size of the silver powder prepared according to the second performance condition was 0.82 to 1.54 ⁇ , and the size of the silver powder prepared according to the first performance condition was less than 0.5 ⁇ It can be seen almost the same size.
  • the ratio of the PSA D50 value to the SEM particle size is 2.0 or less
  • the ratio of the PSA D90 value to the SEM particle size is 3.0 or less
  • the ratio of the PSA Dmax value to the SEM particle size is 8.0 or less
  • the tap density of the silver powder prepared in accordance with the first execution condition (5.49g / cm 3) to improve the dispersibility have.
  • a conductive paste was obtained by mixing the above-prepared silver powder 88 wt%, glass frit 3 wt%, organic vehicle 6.5 wt%, and additive 2.5 wt% using a revolving vacuum type vacuum stirring defoaming device and using a triple roll.
  • the obtained conductive paste was pattern-printed on the entire surface of the wafer by a screen printing method of 50 ⁇ m mesh, and dried at 200 to 350 ° C. for 20 seconds to 30 seconds using a belt-type drying furnace. Then, Al paste was printed on the back side of the wafer and dried by the same method. The cells thus formed were fired at 500 to 900 ° C for 20 seconds to 30 seconds using a belt-type firing furnace to produce a solar cell.
  • the prepared cell was tested for conversion efficiency (Eff), short-circuit current (Isc), open-circuit voltage (Voc), curve factor (FF), line resistance (CtisPV-Celltest 3) Rser) is shown in Table 3 below.
  • the number of breakages immediately after firing was measured and shown in Table 3 below.
  • FIG. 3 and FIG. 4 show images showing severity of breakage of the solar cell at harsh conditions (temperature 85 ° C., humidity 85%).
  • Example 1 9.694 0.6403 20.38 79.51 0.00095 0
  • Example 2 6.689 0.6401 20.38 79.59 0.00094 0
  • Example 3 9.682 0.6411 20.42 79.70 0.00096 0
  • Example 4 9.691 0.6417 20.43 79.58 0.00095 0
  • Example 5 9.689 0.6408 20.4 79.60 0.00095 0
  • Example 6 9.696 0.6406 20.37 79.45 0.00105 0
  • Example 7 9.689 0.6416 20.44 79.63 0.00101 0
  • Example 8 9.676 0.6403 20.34 79.52 0.00118 0
  • Example 9 9.698 0.6415 20.42 79.48 0.00108 0
  • Comparative Example 2 9.316 0.6267 19.64 19.64

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

용매에 질산은 용액, 질산 및 암모니아수를 첨가하고 혼합하여 은 염 용액을 제조하는 은 염 용액 제조단계(S11); 용매에 환원제를 첨가하고 혼합하여 환원 용액을 제조하는 환원 용액 제조단계(S2); 및 상기 은 염 용액 및 상기 환원 용액을 혼합하고 교반하여 은 입자를 석출하는 환원 반응단계(S31);를 포함하는 은 분말 제조방법에 대하여, 상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 조절하여 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 조절하여 은 입자를 석출하여(S32), 제조되는 은 분말의 분산성을 개선하는 은 분말 제조방법관한 것으로, 분산제 등의 첨가제를 첨가하지 않고 제조되는 은 분말의 특성을 유지하면서 분산성을 개선시키는 방법을 제공할 수 있다.

Description

분산성이 개선된 은 분말의 제조방법
본 발명은 전자부품에 사용되는 은 분말의 제조방법에 관한 것으로서, 더욱 구체적으로는 태양전지용 전극이나 적층 콘덴서의 내부전극, 회로기판의 도체 패턴 등에 사용되는 분산성이 개선된 도전성 페이스트용 은 분말의 제조방법에 관한 것이다.
도전성 페이스트는 도막 형성이 가능한 도포 적성을 갖고 건조된 도막에 전기가 흐르는 페이스트로서, 수지계 바인더와 용매로 이루어지는 비히클 중에 도전성 필러(금속 필러)를 분산시킨 유동성 조성물이며, 전기 회로의 형성이나 세라믹 콘덴서의 외부 전극의 형성 등에 널리 사용되고 있다.
특히 도전성 필러로 사용되는 은 분말(silver powder)은 전자, 화학, 촉매 등 다양한 분야에서 사용되고 있으며, 화학 환원(chemical reduction), 광환원(photoreduction) 방법 및 초음파 화학(sonochemical) 방법 등 다양한 방법에 의해 제조된다. 화학 환원 방법의 경우 은 분말의 형태 및 대량 생산 효율 측면에서 사용되기 적합한 방법이며, 하이드라진(hydrazine), 글리세롤(glycerol), 아스코르빅산(ascorbic acid) 및 알데하이드(aldehyde) 화합물 등의 다양한 종류의 환원제를 사용한다.
종래의 은 분말을 제조하는 방법으로 “Dispersion mechanisms of Arabic gum in the preparation of ultrafine silver powder (Korean journal of chemical engineering., v.31 no.8, 2014년, pp.1490 - 1495)”에 질산은(AgNO3)과 아스코르브산을 반응시키고, 분산제로서 아라빅 검(Arabic gum)을 사용하여 은 분말을 제조하는데 있어서 분산성을 향상시키는 것이 개시되어 있다.
종래와 같이 분산성을 향상시키기 위해서는 지방산, 지방산염, 계면활성제, 유기 금속, 킬레이트 형성제 및 보호 콜로이드 등의 첨가물을 첨가하여야 하며, 상기와 같은 분산제를 첨가하지 않고 은 분말을 제조하는 경우, 분산제를 첨가하여 제조한 은 분말 대비 분산성이 떨어져 이를 이용한 도전성 페이스트로 전극을 형성하는 경우 단선(short)이 발생하는 문제점이 있었다.
또한 상기 분산제를 첨가하는 경우 은 분말 제조 후 분산제를 포함하는 불순물들을 세척하는 공정이 추가적으로 발생하게 되며, 분산제 첨가에 따라 제조되는 은 분말의 입도 등 그 물성이 변하기 때문에 원하는 은 분말의 특성을 얻기 위하여 다른 단계에서 이를 제어해야 하는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 분산제와 같은 첨가제를 첨가하지 않으면서도 분산성이 개선된 은 분말을 제조하는 방법을 제공하고자 하는 것이다.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 용매에 질산은 용액, 질산 및 암모니아수를 첨가하고 혼합하여 은 염 용액을 제조하는 은 염 용액 제조단계(S11); 용매에 환원제를 첨가하고 혼합하여 환원 용액을 제조하는 환원 용액 제조단계(S2); 및 상기 은 염 용액 및 상기 환원 용액을 혼합하고 교반하여 은 입자를 석출하는 환원 반응단계(S31);를 포함하는 은 분말 제조방법에 대하여, 상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 조절하여 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 조절하여 은 입자를 석출하여(S32), 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법을 제공한다.
또한 상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 증가시켜 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 감소시켜 은 입자를 석출하는(S32) 것을 특징으로 한다.
또한 상기 은 염 용액 제조단계(S12)는 용매 1000ml에 대하여 질산은 용액을 70 내지 90 ml, 질산을 3 내지 10 ml, 암모니아수는 90 내지 110 ml 비율로 첨가하여 은 염 용액을 제조하고, 상기 환원 반응단계(S32)는 은 염 용액과 환원 용액을 혼합하고 20 내지 60rpm 의 교반 속도로 교반하여 은 입자를 석출하는 것을 특징으로 한다.
또한 상기 환원 용액 제조단계(S2)는 상기 은 염 용액 내의 질산은 용액에 포함된 은 함량의 40 내지 50% 함량의 환원제를 용매와 혼합하여 10 내지 30 g/l 농도의 환원 용액을 제조하는 단계인 것을 특징으로 한다.
또한 본 발명은 분산제를 사용하지 않고 제조된 은분말로서, SEM(Scanning Electron Microscope)을 이용하여 입자 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 SEM 입경이 0.5 내지 2.0μm이고, 상기 은 분말은 상기 SEM 입경에 대한 PSA(Particle Size Analyzer)를 이용하여 측정한 D50 값의 비가 2.0 이하인 분산성이 개선된 은 분말을 제공한다.
또한 상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 D90 값의 비가 3.0 이하인 것을 특징으로 한다.
또한 상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 Dmax 값의 비가 8.0 이하인 것을 특징으로 한다.
또한 상기 은 분말의 탭 밀도는 5.5 내지 6.0g/cm3 인 것을 특징으로 한다.
또한 본 발명은 상기 은 분말을 포함하는 도전성 페이스트를 제공한다.
또한 본 발명은 상기 도전성 페이스트를 이용하여 형성된 전극을 포함하는 태양전지를 제공한다.
본 발명은 분산제와 같은 첨가제를 첨가하지 않고 분산성을 개선한 은 분말 제조방법을 제공하는 것으로서, 본 발명의 제조방법에 따라 은 분말을 제조하는 경우 분산제 등을 세척하는데 소모되는 비용을 절감할 수 있으며, 제조되는 은 분말의 특성을 그대로 유지하면서 분산성만이 개선되는 효과를 제공할 수 있다.
상기 제조된 분산성이 개선된 은 분말을 사용하여 형성된 도전성 페이스트를 이용하여 태양전지 전극을 형성하는 경우 단선을 현저하게 줄일 수 있으며, 제조된 태양전지의 효율 또한 우수한 효과를 제공한다.
도 1은 본 발명의 실시예에 따라 제조된 은 분말의 SEM 이미지를 나타낸 것이다.
도 2는 비교예에 따라 제조된 은 분말의 SEM 이미지를 나타낸 것이다.
도 3은 본 발명의 실시예 및 비교예에 따라 제조된 태양 전지의 단선 평가 이미지를 나타낸 것이다.
도 4는 본 발명의 실시예 및 비교예에 따라 제조된 태양 전지의 가혹조건에서의 단선 평가 이미지를 나타낸 것이다.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.
본 발명의 일실시예에 따른 은 분말의 제조방법은 은 염 용액 제조단계(S1), 환원 용액 제조단계(S2) 및 환원 반응단계(S3)를 포함하여 이루어진다. 본 발명은 상기 단계를 수행함에 있어서, 각 단계의 수행조건을 조절하여 은 분말이 석출되는 반응의 반응성을 줄임으로써 분산성을 향상시키되, 각 단계의 수행조건을 조절하더라도 조절 전 수행조건으로 제조된 은 분말과 동일한 입도 등의 물성을 나타내는 것을 특징으로 한다.
이하, 조절 전 수행조건(제1 수행조건)과 조절된 수행조건(제2 수행조건)으로 은 분말을 제조하는 방법을 구체적으로 설명한다.
1. 은 염 용액 제조단계(S1)
본 발명의 일실시예에 따른 은 염 용액 제조단계(S1)는 질산은 용액과 질산 및 암모니아수를 일정 비율로 혼합하여 은 염 용액을 제조하는 단계로서, 환원 반응을 통해 석출되는 은 입자의 소스가 되는 은 이온을 제공하는 용액을 제조하는 단계이다.
은 염 용액 제조단계(S1)는 물 등의 용매에 질산은 용액과 질산 및 암모니아수를 순차적으로 첨가한 후 교반하여 용해시켜 은 염 용액을 제조한다. 첨가되는 질산은 용액의 농도는 300g/L 내지 700g/L 범위 내인 것을 사용한다. 바람직하게는 400 내지 600g/L 범위 내가 좋고, 더욱 바람직하게는 500g/L 인 것이 좋다. 이하 500g/L 의 질산은 용액을 예로 들어 설명한다.
은 염 용액 제조단계(S1)에 있어서, 제1 수행조건(S11)은 다음과 같다.
용매 1000ml에 대하여 질산은 용액을 55 내지 65 ml 첨가한다. 바람직하게는 57 내지 62 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 60 ml인 것이 좋다. 용매 1000ml에 대하여 질산을 3 내지 10 ml 비율로 첨가한다. 바람직하게는 5 내지 8ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 5ml 첨가하는 것이 좋다. 용매 1000 ml에 대하여 암모니아수는 90 내지 110 ml 첨가한다. 바람직하게는 95 내지 100 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 96ml 첨가하는 것이 좋다.
은 염 용액 제조단계(S1)에 있어서, 제2 수행조건(S12)은 다음과 같다.
용매 1000ml에 대하여 질산은 용액을 70 내지 90 ml 첨가한다. 바람직하게는 75 내지 85 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 80 ml인 것이 좋다. 용매 1000ml에 대하여 질산을 3 내지 10 ml 비율로 첨가한다. 바람직하게는 5 내지 8ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 5ml 첨가하는 것이 좋다. 용매 1000 ml에 대하여 암모니아수는 90 내지 110 ml 첨가한다. 바람직하게는 95 내지 100 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 96ml 첨가하는 것이 좋다.
즉, 은 염 용액 제조단계(S1)에 있어서, 제2 수행조건은 은 염 용액을 제조하는데 있어서 제1 수행조건에서 질산은 용액의 함량을 1.2 내지 2배(부피비) 증가시키는 것이다. 바람직하게는 1.2 내지 1.7배 증가시키는 것이 좋고, 더욱 바람직하게는 1.3 내지 1.5배 증가시키는 것이 좋다. 상기 범위 내로 질산은 용액의 함량을 증가시키는 경우 제조되는 은 분말의 입경이나 밀도 등의 물성이 변화하지 않으면서 분산성이 향상된 은 분말을 얻을 수 있다.
2. 환원 용액 제조단계(S2)
본 발명의 일실시예에 따른 환원 용액 제조단계(S2)는 1종의 환원제를 용매에 녹여 환원 용액을 제조하거나 2종 이상의 환원제를 일정 비율로 혼합하여 용매에 녹여 환원 용액을 제조하는 단계로서, 상기 제조된 은 염 용액과 혼합되어 은 이온을 환원시켜 은 입자가 석출되도록 하는 용액을 제조하는 단계이다.
환원 용액 제조단계(S2)는 물 등의 용매에 1종 또는 2종 이상의 환원제를 일정 비율로 각각 첨가한 후 교반하여 용해시킨 후 혼합하여 환원 용액을 제조한다. 제조되는 환원 용액의 농도는 10 내지 30 g/l 이다. 바람직하게는 10 내지 20g/l 인 것이 좋고, 더욱 바람직하게는 20g/l인 것이 좋다.
환원제는 아스코르브산, 알칸올아민, 하이드로퀴논, 히드라진 및 포르말린으로 이루어지는 군으로부터 선택되는 1종 이상을 포함한다.
1종의 환원제를 사용하는 경우 하이드로퀴논을 사용하는 것이 좋고, 상기 은 염 용액 제조단계에서 제조된 은 염 용액 내의 질산은 용액에 포함된 은 함량의 40 내지 60 중량% 함량의 환원제를 상기 농도가 되도록 용매와 혼합하여 환원 용액을 제조한다. 바람직하게는 제조된 은 염 용액 내의 질산은 용액에 포함된 은 함량의 45 내지 55 중량% 함량의 환원제를 상기 농도가 되도록 용매와 혼합하여 환원 용액을 제조하는 것이 좋다.
2종 이상의 환원제를 혼합하여 사용하는 경우 바람직하게는 이 중에서 하이드로퀴논 및 아스코르브산을 혼합하여 사용하는 것이 좋다.
더욱 구체적으로 환원 용액에 하이드로퀴논 및 아스코르브산이 포함되는 경우 하이드로퀴논을 50 내지 70 중량%, 아스코르브산을 30 내지 50 중량% 비율로 혼합하여 물 등의 용매에 10 내지 30 g/l 농도가 되도록 첨가된다. 하이드로퀴논의 혼합량이 상기 범위보다 높아지고 아스코르브산의 혼합량이 상기 범위보다 낮아지면 제조되는 은 분말의 비표면적이 감소한다. 즉, 아스코르브산의 함량이 높아지면 비표면적이 증가하고, 하이드로퀴논과 아스코르브산이 상기 비율로 혼합될 때 높은 비표면적의 은 입자를 석출할 수 있다.
바람직하게는 하이드로퀴논을 55 내지 65 중량%, 아스코르브산을 35 내지 45 중량% 비율로 혼합하여 물 등의 용매에 10 내지 20 g/l 농도가 되도록 첨가하는 것이 좋다. 더욱 바람직하게는 하이드로퀴논을 60 중량%, 아스코르브산을 40 중량% 비율로 혼합하여 물 등의 용매에 20 g/l 농도가 되도록 첨가하는 것이 좋다.
3. 환원 반응단계(S3)
본 발명의 일실시예에 따른 환원 반응단계(S3)는 제조된 은 염 용액 및 환원 용액을 일정 비율로 혼합하여 환원 용액에 의해 은 염 용액의 은 이온을 환원시켜 은 입자를 석출하는 단계이다.
환원 반응단계(S3)는 은 염 용액 제조단계(S1)에서 제조된 은 염 용액을 교반하는 상태에서 환원 용액 제조단계(S2)에서 제조된 환원 용액을 천천히 적하하거나 일괄 투입하여 반응시킬 수 있다. 바람직하게는 일괄 투입하는 것이 빠른 시간 내에 환원 반응이 일괄 종료되어 입자끼리의 응집을 방지하고 분산성을 높일 수 있어 좋다. 더욱 구체적으로는 은 염 용액에 환원 용액을 10초 이내로 투입한 후 5 내지 20분간 교반하여 은 염 용액의 은 이온으로부터 은 입자를 석출하는 환원반응을 일으킨다.
환원 반응단계(S3)에 있어서, 제1 수행조건(S31)은 다음과 같다.
상기 은 염 용액에 환원 용액을 투입한 후 교반할 때, 100 내지 200rpm 의 교반 속도로 교반하여 환원반응이 일어나도록 한다. 바람직하게는 100 내지 150rpm의 교반 속도로 교반하는 것이 좋고, 더욱 바람직하게는 100rpm의 교반 속도로 교반하는 것이 좋다.
환원 반응단계(S3)에 있어서, 제2 수행조건(S32)은 다음과 같다.
상기 은 염 용액에 환원 용액을 투입한 후 교반할 때, 20 내지 60rpm 의 교반 속도로 교반하여 환원반응이 일어나도록 한다. 바람직하게는 30 내지 50rpm의 교반 속도로 교반하는 것이 좋고, 더욱 바람직하게는 40rpm의 교반 속도로 교반하는 것이 좋다.
즉, 환원 반응단계(S3)에 있어서, 제2 수행조건은 환원 반응 시 교반 속도를 0.2 내지 0.8배 감소시키는 것이다. 바람직하게는 0.4 내지 0.8배 감소시키는 것이 좋고, 더욱 바람직하게는 0.5 내지 0.7배 감소시키는 것이 좋다. 상기 범위 내로 교반 속도를 감소시키는 경우 제조되는 은 분말의 입경이나 밀도 등의 물성이 변화하지 않으면서 분산성이 향상된 은 분말을 얻을 수 있다.
4. 정제단계(S4)
본 발명의 일실시예에 따른 은 분말 제조방법은 환원 반응단계(S3)를 통해 은 입자 석출 반응을 완료한 후 수용액 또는 슬러리 내에 분산되어 있는 은 입자를 여과 등을 이용하여 분리하고 세척하는 정제단계(S4)를 더 포함하여 은 분말을 얻을 수 있다.
더욱 구체적으로는 석출된 은 입자가 분산된 분산액 중의 은 입자를 침강시킨 후, 분산액의 상등액을 버리고 원심분리기를 이용하여 여과하고, 여재를 순수로 세정한다. 본 발명에서 언급된 원심분리기 외에 필터프레스, 데칸터 등 고액 분리를 하기 위한 다양한 방법을 적용하는 것을 권리범위에서 제외하지 않는다. 세척을 하는 과정은 분말을 세척한 세척 수를 완전히 제거를 해야 이루어 진다. 따라서 함수율 10% 미만으로 감소시킨다.
상기 제1 수행조건에 따라 제조된 은 분말은 구형의 형상을 가지며, 주사전자현미경(SEM)을 이용하여 파우더 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 크기가 0.5 내지 2.0μm이었고, 상기 제2 수행조건에 따라 제조된 은 분말 역시 구형의 형상을 가지며, 주사전자현미경(SEM)을 이용하여 파우더 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 크기가 0.5 내지 2.0μm이었다. 즉, 제조된 은 분말의 형상 및 입도 범위가 유지되었다.
제2 수행조건에 따라 제조된 은 분말의 분산성이 개선되었음을 나타내기 위한 지표로서, 상기 제조된 은 분말을 포함하는 도전성 페이스트를 제조하여 태양전지의 전극을 형성하였을 때의 단선 발생 개수를 간접적인 지표로서 사용할 수 있으며, SEM 입경에 대한 PSA D50 값의 비, SEM 입경에 대한 PSA Dmax 값의 비, 및 탭 밀도(Tap density) 등을 직접적인 지표로서 사용할 수 있다. 이는 후술할 실험예를 통해 설명한다.
종래의 방법과 같이 첨가물을 넣어 분산성을 증가시킬 수는 있으나 이는 세척조건이 가혹하며 첨가물 투입 시 입도, 유기물 함량, 탭 밀도 등 은 분말의 특성이 완전히 달라지는 문제점이 있다.
본 발명은 은 분말 합성의 기저가 되는 질산은 용액의 부피와 교반속도 등의 외부환경을 조절하여 환원 반응 시 입체 효과(steric effect)에 의해 반응성을 의도적으로 감소시켜 분산성을 개선한 것으로서, SEM 입경, 유기물 함량 등 은 분말의 특성이 유지되는 것을 일 특징으로 한다.
또한 본 발명의 또 다른 측면에서, 제조된 은 분말을 포함하는 도전성 페이스트를 제공할 수 있다. 도전성 페이스트의 조성은 상기 제조된 은 분말 80 내지 90 중량%, 유기 비히클 5 내지 10 중량%, 유리 프릿 1 내지 5 중량%, 첨가제 1 내지 5 중량% 포함한다. 더욱 바람직하게는 상기 제조된 은 분말 85 내지 90 중량%, 유기 비히클 5 내지 8 중량%, 유리 프릿 2 내지 4 중량%, 첨가제 1 내지 3 중량% 포함하는 것이 좋다.
상기 유기 비히클로는 제한되지 않으나 유기 바인더와 용제 등이 포함될 수 있다. 때로는 용제가 생략될 수 있다.
유기 비히클은 금속 분말과 유리 프릿 등이 균일하게 혼합된 상태를 유지하는 특성이 요구되며, 예를 들면 스크린 인쇄에 의해 도전성 페이스트가 기재에 도포될 때에, 도전성 페이스트를 균질하게 하여, 인쇄 패턴의 흐려짐 및 흐름을 억제하고, 또한 스크린판으로부터의 도전성 페이스트의 토출성 및 판분리성을 향상시키는 특성이 요구된다.
유기 비히클에 포함되는 유기 바인더는 제한되지 않으나 셀룰로오스 에스테르계 화합물로 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트 등을 예로 들 수 있으며, 셀룰로오스 에테르 화합물로는 에틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시 플로필 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 메틸 셀룰로오스 등을 예로 들 수 있으며, 아크릴계 화합물로는 폴리 아크릴아미드, 폴리 메타 아크릴레이트, 폴리 메틸 메타 아크릴레이트, 폴리 에틸 메타 아크릴레이트 등을 예로 들 수 있으며, 비닐계로는 폴리비닐 부티랄, 폴리비닐 아세테이트 그리고 폴리비닐 알코올 등을 예로 들 수 있다. 상기 유기 바인더들은 적어도 1종 이상 선택되어 사용될 수 있다.
조성물의 희석을 위해 사용되는 용제로서는 알파-터피네올, 텍사놀, 디옥틸 프탈레이트, 디부틸 프탈레이트, 시클로헥산, 헥산, 톨루엔, 벤질알코올, 디옥산, 디에틸렌글리콜, 에틸렌 글리콜 모노 부틸 에테르, 에틸렌 글리콜 모노 부틸 에테르 아세테이트, 디에틸렌 글리콜 모노 부틸 에테르, 디에틸렌 글리콜 모노 부틸 에테르 아세테이트 등으로 이루어진 화합물 중에서 적어도 1종 이상 선택되어 사용되는 것이 좋다.
상기 유리 프릿의 조성이나 입경, 형상에 있어서 특별히 제한을 두지 않는다. 유연 유리 프릿뿐만 아니라 무연 유리 프릿도 사용 가능하다. 바람직하기로는 유리 프릿의 성분 및 함량으로서, 산화물 환산 기준으로 PbO는 5 ~ 29 mol%, TeO2는 20 ~ 34 mol%, Bi2O3는 3 ~ 20 mol%, SiO2 20 mol% 이하, B2O3 10 mol% 이하, 알칼리 금속(Li, Na, K 등) 및 알칼리 토금속(Ca, Mg 등)은 10 ~ 20 mol%를 함유하는 것이 좋다. 상기 각 성분의 유기적 함량 조합에 의해 전극 선폭 증가를 막고 고면저항에서 접촉저항을 우수하게 할 수 있으며, 단략전류 특성을 우수하게 할 수 있다.
유리 프릿의 평균 입경은 제한되지 않으나 0.5 내지 10㎛ 범위 내의 입경을 가질 수 있으며, 평균 입경이 다른 다종이 입자를 혼합하여 사용할 수도 있다. 바람직하기로는 적어도 1종의 유리 프릿은 평균 입경(D50)이 2㎛ 이상 10 ㎛ 이하인 것을 사용하는 것이 좋다. 이를 통해 소성 시 반응성이 우수해지고, 특히 고온에서 n층의 데미지를 최소화할 수 있으며 부착력이 개선되고 개방전압(Voc)을 우수하게 할 수 있다. 또한, 소성 시 전극의 선폭이 증가하는 것을 감소시킬 수 있다.
본 발명의 일실시예에 따라 제조된 구형의 비표면적이 큰 은 분말을 포함하는 도전성 페이스트는 페이스트 제조 시 점도를 증진시킬 수 있으며, 도전성 재료의 전극으로 사용하는 경우 소결 온도를 낮추어 적용 가능한 어플리케이션의 범위를 넓힐 수 있다.
실시예 및 비교예
(1) 제1 수행조건에 따른 은 분말 제조
순수 1000 ml 에 500 g/l 농도의 질산은 용액 60 ml 을 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액에 상기 제조된 환원 용액을 10초 이내로 모두 투입한 후 5분간 100rpm 속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다.
(2) 제2 수행조건에 따른 은 분말 제조(실시예 1 내지 9)
순수 1000 ml 에 500 g/l 농도의 질산은 용액을 하기 표 1에 나타낸 함량으로 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액에 상기 제조된 환원 용액을 10초 이내로 모두 투입한 후 5분간 하기 표 1에 나타낸 교반속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다.
(3) 비교예 1 내지 10
순수 1000 ml 에 500 g/l 농도의 질산은 용액을 하기 표 1에 나타낸 함량으로 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액에 상기 제조된 환원 용액을 10초 이내로 모두 투입한 후 5분간 하기 표 1에 나타낸 교반속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다.
(4) 비교예 11
순수 1000 ml 에 500 g/l 농도의 질산은 용액 60 ml을 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액, 환원 용액 및 분산제로서 아라빅검 1g을 10초 이내로 모두 투입한 후 5분간 100rpm 속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다. 분산제로 아라빅검을 사용한 경우 은 분말이 점도를 가지게 되어 끈적한 상태를 유지하기 때문에 과량의 가성소다를 이용하여 3회 이상 세척한다.
질산은(mL) 교반속도(rpm) 분산제 사용 여부
제1 수행조건 60 100 X
제2 수행조건 실시예 1 80 40 X
실시예 2 70 40 X
실시예 3 90 40 X
실시예 4 75 40 X
실시예 5 85 40 X
실시예 6 80 20 X
실시예 7 80 30 X
실시예 8 80 50 X
실시예 9 80 60 X
비교예 1 65 40 X
비교예 2 50 40 X
비교예 3 95 40 X
비교예 4 100 40 X
비교예 5 80 70 X
비교예 6 80 100 X
비교예 7 80 10 X
비교예 8 60 250 X
비교예 9 95 100 X
비교예 10 55 10 X
비교예 11 60 100 Arabic gum
실험예
(1) SEM(scanning electron microscope) 측정
실시예 1 및 비교예 11에 의해 제조된 은 분말의 표면 형상을 측정한 주사전자현미경 사진을 도 1 및 도 2에 각각 나타내었으며 분말 100개 각각의 지름 크기를 측정한 후 평균을 내어 SEM size 를 측정하였고, 그 결과를 표 2에 나타내었다.
(2) PSA(particle size analyzer) 측정
실시예 및 비교예에 의해 제조된 은 분말 0.03g을 에탄올 30ml에 투입 후, 초음파 1분 하여 에탄올에 은 분말을 분산시킨 후 입도 분석 장비에 투입하여 입도 분포를 측정하였다. 입경의 누적분포도에서, 그래프의 전체 넓이를 기준으로 가장 큰 입경으로부터 넓이가 10%인 입경을 D10으로 표현하며, 그래프의 전체 넓이를 기준으로 가장 큰 입경으로부터 넓이가 50%인 입경을 D50으로 표현하고, 그래프의 전체 넓이를 기준으로 가장 큰 입경(Dmax)으로부터 넓이가 90%인 입경을 D90으로 표현한다.
(3) 탭 밀도(Tap density) 측정
실시예 및 비교예에 의해 제조된 은 분말의 D50 대비 탭 밀도를 계산한 결과를 하기 표 2에 나타내었다.
(4) 유기물 함량 측정
세이코 인스트루먼트(Seiko instrument) 회사제 TG/DTA EXART6600을 이용하여, 공기 중, 승온 속도 10℃/min로 상온에서 500℃까지의 범위에서 TGA 분석을 행하여 유기물 함량(Ignition loss)을 측정하였다.
SEM(μm) PSA(μm) Tap density(g/cm3) 유기물 함량(%)
Average D10(/SEM Avr.) D50(/SEM Avr.) D90(/SEM Avr.) Dmax(/SEM Avr.)
제1 수행조건 1.24 1.26(1.02) 2.51(2.02) 4.03(3.25) 11(8.87) 5.49 0.72
실시예 1 1.19 1.22(1.03) 2.25(1.89) 3.45(2.90) 8.98(7.55) 5.51 0.67
실시예 2 1.22 1.24(1.02) 2.32(1.90) 3.56(2.92) 9.61(7.88) 5.64 0.51
실시예 3 1.21 1.22(1.01) 2.19(1.81) 3.60(2.98) 9.25(7.64) 5.68 0.42
실시예 4 1.27 1.21(0.95) 2.22(1.75) 3.67(2.89) 9.25(7.28) 5.68 0.46
실시예 5 1.02 1.07(1.05) 2.00(1.96) 3.12(3.00) 8.12(7.96) 5.72 0.87
실시예 6 1.54 1.65(1.07) 2.86(1.86) 3.74(2.43) 9.91(6.44) 5.53 0.92
실시예 7 1.35 1.36(1.01) 2.54(1.88) 3.48(2.58) 10.22(7.57) 5.61 0.72
실시예 8 0.97 1.02(1.05) 1.87(1.93) 2.88(2.97) 7.53(7.76) 5.87 0.73
실시예 9 0.82 0.88(1.07) 1.26(1.54) 2.37(2.89) 6.42(7.83) 5.98 0.56
비교예 1 1.20 1.24(1.03) 2.83(2.36) 4.01(3.34) 10.72(8.93) 5.44 0.84
비교예 2 1.26 1.27(1.01) 2.58(2.05) 3.97(3.15) 10.92(8.93) 5.45 0.73
비교예 3 1.38 1.37(0.99) 3.03(2.20) 4.56(3.30) 11.43(8.28) 5.37 0.59
비교예 4 1.94 2.01(1.04) 4.22(2.18) 5.85(3.02) 16.04(8.27) 5.34 0.64
비교예 5 1.43 1.43(1.00) 4.01(2.80) 5.67(3.97) 14.66(10.25) 5.12 0.97
비교예 6 1.17 1.09(0.93) 3.79(3.24) 4.23(3.62) 12.84(10.97) 4.83 0.62
비교예 7 1.71 1.77(1.04) 3.92(2.29) 5.31(3.11) 14.22(8.32) 5.46 1.07
비교예 8 0.78 0.81(1.04) 2.64(3.38) 4.37(5.60) 11.49(14.73) 4.72 0.94
비교예 9 1.36 1.34(0.99) 2.99(2.20) 5.41(3.98) 10.94(8.04) 5.41 0.74
비교예 10 1.47 1.50(1.02) 3.64(2.48) 6.23(4.24) 13.26(9.02) 5.16 0.68
비교예 11 0.93 1.03(1.11) 2.86(3.08) 3.72(4.00) 10.74(11.55) 4.99 3.21
상기 표 2에 나타나는 것과 같이 제2 수행조건에 따라 제조된 은 분말 입자의 SEM size는 0.82 내지 1.54μm 로서, 제1 수행조건에 따라 제조된 은 분말 입자의 크기와 0.5μm 이하의 크기 차이를 보여 거의 동일한 크기로 볼 수 있다.
그러나 상기 SEM 입자 크기에 대한 PSA D50 값의 비가 2.0 이하이고, SEM 입자 크기에 대한 PSA D90 값의 비가 3.0 이하이며, SEM 입자 크기에 대한 PSA Dmax 값의 비가 8.0 이하로서, 광산란에 의하여 다분산된 입자를 하나의 입자로 입도 분석이 이루어지는 PSA 입자 크기가 각각의 입자를 SEM 입자 크기와 차이가 적을수록 분산이 잘 된 것을 의미한다.
또한 본 발명에 따라 제조된 은 분말의 5.5 내지 6.0 g/cm3로서, 제1 수행조건에 따라 제조된 은 분말의 탭 밀도(5.49g/cm3)보다 증가하여 분산성이 개선된 것으로 볼 수 있다.
(5) 도전성 페이스트 및 태양전지의 제조
상기 제조된 은 분말 88 중량%, 유리 프릿 3 중량%, 유기 비히클 6.5 중량%, 첨가제 2.5 중량%를 자전공전식 진공 교반 탈포 장치로 혼합한 후 삼본롤을 사용함으로써, 도전성 페이스트를 얻었다.
상기 얻어진 도전성 페이스트를 wafer의 전면에 50㎛ 메쉬의 스크린 프린팅 기법으로 패턴 인쇄하고, 벨트형 건조로를 사용하여 200~350 ℃에서 20초에서 30초 동안 건조시켰다. 이후 Wafer의 후면에 Al paste를 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 500 내지 900 ℃사이로 20초에서 30초간 소성을 행하여 태양전지 Cell을 제작하였다.
(6) 변환효율 분석
상기 제조된 Cell은 태양전지 효율측정장비(Halm社, cetisPV-Celltest 3)를 사용하여, 변환효율(Eff), 단락전류(Isc), 개방전압(Voc), 곡선인자(FF), 선저항(Rser)을 하기 표 3에 나타내었다. 또한 소성 직후 단선 발생 개수를 측정하여 하기 표 3에 나타내었으며, 가혹조건(온도 85℃, 습도 85%) 에서의 태양전지 cell의 단선 정도를 나타낸 이미지를 도 3 및 도 4에 나타내었다.
Isc (A) Voc (V) Eff (%) FF (%) Rser (Ω) 단선 개수
제1 조건 9.494 0.6372 19.66 77.75 0.00185 7
실시예 1 9.694 0.6403 20.38 79.51 0.00095 0
실시예 2 6.689 0.6401 20.38 79.59 0.00094 0
실시예 3 9.682 0.6411 20.42 79.70 0.00096 0
실시예 4 9.691 0.6417 20.43 79.58 0.00095 0
실시예 5 9.689 0.6408 20.4 79.60 0.00095 0
실시예 6 9.696 0.6406 20.37 79.45 0.00105 0
실시예 7 9.689 0.6416 20.44 79.63 0.00101 0
실시예 8 9.676 0.6403 20.34 79.52 0.00118 0
실시예 9 9.698 0.6415 20.42 79.48 0.00108 0
비교예 1 9.384 0.6241 19.46 78.54 0.00196 7
비교예 2 9.316 0.6267 19.64 78.79 0.00205 6
비교예 3 9.398 0.6284 19.48 77.89 0.00284 8
비교예 4 9.365 0.6263 19.68 78.43 0.00199 8
비교예 5 9.363 0.6276 19.81 78.28 0.00274 9
비교예 6 9.335 0.6274 19.21 78.54 0.00275 5
비교예 7 9.343 0.6284 19.71 78.35 0.00213 8
비교예 8 9.398 0.6297 19.52 77.73 0.00234 7
비교예 9 9.341 0.6263 19.87 78.63 0.00217 7
비교예 10 9.396 0.6265 19.37 78.14 0.00189 6
비교예 11 9.263 0.6154 18.15 75.43 0.00384 23
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 용매에 질산은 용액, 질산 및 암모니아수를 첨가하고 혼합하여 은 염 용액을 제조하는 은 염 용액 제조단계(S11);
    용매에 환원제를 첨가하고 혼합하여 환원 용액을 제조하는 환원 용액 제조단계(S2); 및
    상기 은 염 용액 및 상기 환원 용액을 혼합하고 교반하여 은 입자를 석출하는 환원 반응단계(S31);를 포함하는 은 분말 제조방법에 대하여,
    상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 조절하여 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 조절하여 은 입자를 석출하여(S32), 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  2. 제1항에 있어서,
    상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 증가시켜 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 감소시켜 은 입자를 석출하여(S32), 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  3. 제1항에 있어서,
    상기 은 염 용액 제조단계(S12)는 용매 1000ml에 대하여 질산은 용액을 70 내지 90 ml, 질산을 3 내지 10 ml, 암모니아수는 90 내지 110 ml 비율로 첨가하여 은 염 용액을 제조하고,
    상기 환원 반응단계(S32)는 은 염 용액과 환원 용액을 혼합하고 20 내지 60rpm 의 교반 속도로 교반하여 은 입자를 석출하여, 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  4. 제1항에 있어서,
    상기 환원 용액 제조단계(S2)는 상기 은 염 용액 내의 질산은 용액에 포함된 은 함량의 40 내지 50% 함량의 환원제를 용매와 혼합하여 10 내지 30 g/l 농도의 환원 용액을 제조하는 단계인, 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  5. 분산제를 사용하지 않고 제조된 은분말로서,
    SEM(Scanning Electron Microscope)을 이용하여 입자 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 SEM 입경이 0.5 내지 2.0μm이고,
    상기 은 분말은 상기 SEM 입경에 대한 PSA(Particle Size Analyzer)를 이용하여 측정한 D50 값의 비가 2.0 이하인 분산성이 개선된 은 분말.
  6. 제5항에 있어서,
    상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 D90 값의 비가 3.0 이하인 분산성이 개선된 은 분말.
  7. 제5항에 있어서,
    상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 Dmax 값의 비가 8.0 이하인 분산성이 개선된 은 분말.
  8. 제5항에 있어서,
    상기 은 분말의 탭 밀도는 5.5 내지 6.0g/cm3 인 분산성이 개선된 은 분말.
  9. 제5항 내지 제8항 중 어느 한 항의 은 분말을 포함하는 도전성 페이스트.
  10. 제9항의 도전성 페이스트를 이용하여 형성된 전극을 포함하는 태양전지.
PCT/KR2018/012095 2017-10-13 2018-10-15 분산성이 개선된 은 분말의 제조방법 WO2019074336A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0132988 2017-10-13
KR1020170132988A KR102007856B1 (ko) 2017-10-13 2017-10-13 분산성이 개선된 은 분말의 제조방법

Publications (1)

Publication Number Publication Date
WO2019074336A1 true WO2019074336A1 (ko) 2019-04-18

Family

ID=66101623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012095 WO2019074336A1 (ko) 2017-10-13 2018-10-15 분산성이 개선된 은 분말의 제조방법

Country Status (2)

Country Link
KR (1) KR102007856B1 (ko)
WO (1) WO2019074336A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112371992A (zh) * 2020-10-16 2021-02-19 湖南诺尔得材料科技有限公司 核壳结构银粉的制备方法
CN117380966A (zh) * 2023-10-16 2024-01-12 上海银波生物科技有限公司 一种晶粒尺寸可控的多晶结构银粉的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270312A (ja) * 2006-03-31 2007-10-18 Mitsui Mining & Smelting Co Ltd 銀粉の製造方法及び銀粉
KR20170019727A (ko) * 2015-08-12 2017-02-22 엘에스니꼬동제련 주식회사 고온 소결형 도전성 페이스트용 은 분말의 제조방법
KR20170030929A (ko) * 2015-09-10 2017-03-20 엘에스니꼬동제련 주식회사 은 분말의 제조방법
JP2017508888A (ja) * 2014-08-12 2017-03-30 シュゾー スマート アドバンスト コーティング テクノロジーズ カンパニー リミテッド 金属粉末の調製方法
KR20170035578A (ko) * 2015-09-23 2017-03-31 엘에스니꼬동제련 주식회사 은 분말의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255377A (ja) * 2007-03-30 2008-10-23 Mitsubishi Materials Corp 銀微粒子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270312A (ja) * 2006-03-31 2007-10-18 Mitsui Mining & Smelting Co Ltd 銀粉の製造方法及び銀粉
JP2017508888A (ja) * 2014-08-12 2017-03-30 シュゾー スマート アドバンスト コーティング テクノロジーズ カンパニー リミテッド 金属粉末の調製方法
KR20170019727A (ko) * 2015-08-12 2017-02-22 엘에스니꼬동제련 주식회사 고온 소결형 도전성 페이스트용 은 분말의 제조방법
KR20170030929A (ko) * 2015-09-10 2017-03-20 엘에스니꼬동제련 주식회사 은 분말의 제조방법
KR20170035578A (ko) * 2015-09-23 2017-03-31 엘에스니꼬동제련 주식회사 은 분말의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112371992A (zh) * 2020-10-16 2021-02-19 湖南诺尔得材料科技有限公司 核壳结构银粉的制备方法
CN112371992B (zh) * 2020-10-16 2022-12-20 湖南中伟新银材料科技有限公司 核壳结构银粉的制备方法
CN117380966A (zh) * 2023-10-16 2024-01-12 上海银波生物科技有限公司 一种晶粒尺寸可控的多晶结构银粉的制备方法
CN117380966B (zh) * 2023-10-16 2024-05-07 上海镭立激光科技有限公司 一种晶粒尺寸可控的多晶结构银粉的制备方法

Also Published As

Publication number Publication date
KR20190041592A (ko) 2019-04-23
KR102007856B1 (ko) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2019088509A1 (ko) 표면 처리된 은 분말 및 이의 제조방법
WO2017026722A1 (ko) 고온 소결형 도전성 페이스트용 은 분말의 제조방법
WO2013141425A1 (ko) 태양전지용 전극 페이스트 조성물
WO2015178696A1 (ko) 전도성 조성물
WO2021194061A1 (ko) 점도 안정성이 향상된 전도성 페이스트용 은 분말 및 이의 제조방법
WO2020204450A1 (ko) 혼합 은 분말 및 이를 포함하는 도전성 페이스트
WO2019074336A1 (ko) 분산성이 개선된 은 분말의 제조방법
WO2011005026A2 (ko) 도전성 전극형성용 조성물
WO2011046360A2 (en) Aluminum paste for back electrode of solar cell
WO2010024625A2 (ko) 도전성 페이스트 조성물
WO2018080090A1 (ko) 표면 처리된 은 분말 및 이의 제조방법
WO2014182141A1 (ko) 구리 함유 입자 및 이의 제조방법
WO2020071841A1 (ko) 은 분말 및 이의 제조 방법
CN113903497B (zh) 一种隔离介质浆料及其制备方法
WO2012074314A2 (ko) 태양전지용 전극 페이스트 조성물, 그 제조방법 및 태양전지
WO2015160066A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2018070818A1 (ko) 태양전지 전극용 은 분말 및 이를 포함하는 도전성 페이스트
WO2020111900A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2020111903A1 (ko) 수축률 조절이 가능한 은 분말의 제조방법
WO2019088520A2 (ko) 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
WO2022097840A1 (ko) 탄성도가 우수한 전도성 페이스트용 은 분말 및 이의 제조방법
WO2020106120A1 (ko) 단분산 은 분말의 제조방법
WO2010032937A2 (ko) 전도성 금속 전극 형성용 잉크조성물 및 그 제조방법
WO2019088507A1 (ko) 은 분말 및 이의 제조방법
WO2020222542A1 (ko) 습식공정에 의해 제조되는 산화 안정성이 향상된 은 나노 분말 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866253

Country of ref document: EP

Kind code of ref document: A1