WO2013141425A1 - 태양전지용 전극 페이스트 조성물 - Google Patents

태양전지용 전극 페이스트 조성물 Download PDF

Info

Publication number
WO2013141425A1
WO2013141425A1 PCT/KR2012/002172 KR2012002172W WO2013141425A1 WO 2013141425 A1 WO2013141425 A1 WO 2013141425A1 KR 2012002172 W KR2012002172 W KR 2012002172W WO 2013141425 A1 WO2013141425 A1 WO 2013141425A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
paste composition
electrode paste
coating
silver
Prior art date
Application number
PCT/KR2012/002172
Other languages
English (en)
French (fr)
Inventor
박성용
정인범
양승진
이정웅
박기범
이병윤
이재욱
유재림
Original Assignee
(주)창성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)창성 filed Critical (주)창성
Priority to CN201280071695.1A priority Critical patent/CN104205243A/zh
Publication of WO2013141425A1 publication Critical patent/WO2013141425A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an electrode paste composition for forming an electrode of a solar cell, and in detail, by coating a coating powder on the outer surface of a metal powder to form a conductive filler, not only the cost is reduced but also the coating film density is increased.
  • the present invention relates to an electrode paste composition in which light conversion efficiency is increased and adhesion strength with a silicon substrate is increased by adjusting and applying a transition point and a softening point of an inorganic binder.
  • Solar cells are generally semiconductor devices that convert solar energy into electrical energy, and are being spotlighted as next-generation energy sources due to advantages such as infinite resources, simplicity of equipment, excellent durability, and environmental friendliness.
  • 1 is a cross-sectional view showing a solar cell.
  • the solar cell is formed of a p-type semiconductor substrate 102 having a thickness of 220 to 330 ⁇ m and an n-type silicon semiconductor, and is formed of an emitter layer 103 provided on one side of the p-type semiconductor substrate 101. ), An antireflection film 105 applied to the outer surface of the emitter layer 103 to prevent reflection loss of incident sunlight, a front electrode 107 formed on the outer surface of the antireflection film 105, and p The back electrode 109 is formed on the other side of the semiconductor substrate 101.
  • the p-type semiconductor substrate 102 and the emitter layer 103 will be referred to as a semiconductor substrate 101.
  • the generated electrons are moved to the front electrode 107 through the emitter layer 103 by the photovoltaic effect, and holes are moved to the back electrode 109 through the p-type semiconductor substrate 102 by the photovoltaic effect. That is, the solar cell 100 connects the front electrode 107 in which the electrons are collected and the rear electrode 109 in which the holes are collected by wires, thereby causing electric current to be generated.
  • the front electrode 107 is formed by patterning an electrode paste made of silver (Ag) powder on the antireflection film 105 and then performing a firing process.
  • the patterning process may be performed by screen printing, offset printing, photolithography, or the like.
  • the electrode paste composition (hereinafter, referred to as a conventional electrode paste composition) is typically a conductive filler formed of a metal powder, and an organic binder for imparting deformation and fluidity of the electrode paste composition.
  • an organic solvent which is a solvent for dissolving the organic binder, an inorganic binder for easily bonding to the surface of the antireflection film 105, and an additive for suppressing sintering.
  • Conventional electrode paste composition is configured to form the electrode of the solar cell through a printing step printed on the surface of the anti-reflection film 105, a drying step of drying the printed composition, and a firing step of firing the dried composition. Done.
  • the metal powder forming the conductive filler generally uses noble metal powders such as silver (Ag), gold (Au), and palladium (Pd), which have excellent conductivity. This causes an increasing problem.
  • the inorganic binder is generally composed of one of glass frit (glass powder), metal oxide, and a mixture of glass powder and metal oxide, and the glass powder is wetted by the anti-reflection film 105 during firing after printing.
  • the metal oxide generates a chemical reaction upon firing after printing, thereby chemically bonding to the antireflection film 105.
  • the front electrode 107 of the solar cell 100 configured as described above is formed through an interfacial reaction between a conventional electrode paste and an anti-reflection film 105, wherein silver (Ag) included in the conventional electrode paste is formed at a high temperature. When it becomes a liquid phase and recrystallizes again into a solid phase, it penetrates through the anti-reflection film 105 through the glass frit and comes into contact with the emitter layer 103, thereby moving current.
  • the filler that imparts conductivity of the electrode is generally formed of silver (Ag), gold (Au), and palladium (Pd), the conductivity is excellent, but as described above, the price of the solar cell is increased due to the increase in the raw material price. It causes an increasing problem.
  • metal powders such as aluminum (Al), nickel (Ni), and copper (Cu), which are inexpensive compared to the precious metal powders, has been studied, but aluminum (Al) and nickel (Ni) have been studied.
  • metal powders such as copper (Cu) not only reduce the electrical characteristics of the solar cell due to oxidation of the powder during firing, but also cause a problem in that the electrode efficiency decreases because the conductivity is lower than that of the silver (Ag) powder.
  • metal powders such as aluminum (Al), nickel (Ni), and copper (Cu)
  • Al aluminum
  • Ni nickel
  • Cu copper
  • metal powders such as aluminum (Al), nickel (Ni), and copper (Cu) have a problem that the electrode efficiency of a solar cell is lowered by increasing the resistance value of the electrode in proportion to the number of firing processes when repeated firing is performed. Is generated.
  • the present invention is to solve this problem, and to provide an electrode paste composition that the manufacturing cost is significantly reduced by configuring the conductive filler (Filer) with a metal powder coated with a coating powder.
  • Another object of the present invention is to provide an electrode paste composition in which the coating film density is increased during printing by forming the filler as a metal powder coated with a coating powder instead of pure silver (Ag) powder.
  • Another problem of the present invention is that the coating powder coated on the outer surface of the metal powder at the time of repeated firing prevents the oxidation of the metal powder, so that the resistance value does not increase significantly. It is to provide an electrode paste composition that can overcome the problem that the resistance value of the electrode sharply increases when.
  • another object of the present invention is to provide an electrode paste composition to increase the adhesion strength with the silicon substrate during printing by manufacturing the inorganic binder having a transition point of 300 ⁇ 600 °C and a softening point of 330 ⁇ 650 °C.
  • another object of the present invention is an electrode paste that the light conversion efficiency is further increased by the filler is composed of 80 ⁇ 90% by weight of the metal powder coated with the coating powder, and 10 ⁇ 30% by weight of silver (Ag) powder mixed therein To provide a composition.
  • the coating powder is silver (Ag) powder, nickel (Ni) powder, tin (Sn) powder, copper (Cu) powder, iron (Fe) powder, palladium (Pd) powder, aluminum (Al) powder, It is preferably one of gold (Au) powder, zinc (Zn) and platinum (Pt) powders.
  • the inorganic binder has a transition point of 300 to 600 °C, softening point of 330 ⁇ 650 °C, bismuth (Bi), silicon (Si), aluminum (Al), sodium (Na), zinc (Zn), barium ( Ba), magnesium (Mg), lead (Pb), thallium (Tl), copper (Cu), chromium (Cr), cobalt (Co), boron (B), cerium (Ce), Tl (thallium), calcium ( At least two or more of Ca) oxides are preferably glass frit mixed.
  • the solvent is preferably at least one selected from aromatic hydrocarbons, ethers, ketones, lactones, ether alcohols, esters and diesters.
  • the present invention further comprises an additive of 0.10 to 0.1% by weight, the additive is titanium (Ti), zinc (Zn), ruthenium (Ru), magnesium (Mg), palladium (Pd), zirconia (Zr), silicon It is preferred to be one of the (Si) oxides.
  • the average diameter of the conductive filler is preferably 0.1 ⁇ 30 ⁇ m.
  • another solution of the present invention comprises a conductive filler of 50.0 to 90.0% by weight, inorganic binder of 5.0 to 20.0% by weight, organic binder of 0.5 to 20.0% by weight, organic solvent of 4.5 to 20.0% by weight, Filler is 62.5 ⁇ 87.5 wt% coated metal powder consisting of a metal powder of 10.0 ⁇ 70.0% by weight, and a coating powder coated on the outer surface of the metal powder 30.0 ⁇ 90.0% by weight; 12.5 to 37.5 wt% of silver (Ag) powder mixed in the metal powder, wherein the metal powder is silver (Ag) powder, nickel (Ni) powder, tin (Sn) powder, copper (Cu) powder, iron It is one of (Fe) powder, palladium (Pd) powder, aluminum (Al) powder, gold (Au) powder, zinc (Zn) and platinum (Pt) powder.
  • the coating powder is silver (Ag) powder, nickel (Ni) powder, tin (Sn) powder, copper (Cu) powder, iron (Fe) powder, palladium (Pd) powder, aluminum (Al) powder, It is preferably one of gold (Au) powder, zinc (Zn) and platinum (Pt) powders.
  • the inorganic binder has a transition point of 300 to 600 °C, softening point of 330 ⁇ 650 °C, bismuth (Bi), silicon (Si), aluminum (Al), sodium (Na), zinc (Zn), barium ( Ba), magnesium (Mg), lead (Pb), thallium (Tl), copper (Cu), chromium (Cr), cobalt (Co), boron (B), cerium (Ce), Tl (thallium), calcium ( At least two or more of Ca) oxides are preferably glass frit mixed.
  • the solvent is preferably at least one selected from aromatic hydrocarbons, ethers, ketones, lactones, ether alcohols, esters and diesters.
  • the present invention further comprises an additive of 0.10 to 0.1% by weight, the additive is titanium (Ti), zinc (Zn), ruthenium (Ru), magnesium (Mg), palladium (Pd), zirconia (Zr), silicon It is preferred to be one of the (Si) oxides.
  • the average diameter of the conductive filler is preferably 0.1 ⁇ 30 ⁇ m.
  • the filler is a metal powder, silver powder, nickel powder, tin powder of one of nickel, tin, copper, iron, palladium, aluminum, gold, platinum and zinc powder Is formed of one of copper powder, iron powder, palladium powder, aluminum powder, gold powder and platinum powder and is coated with a metal powder to form a coating powder coated with a metal powder.
  • the manufacturing cost is significantly reduced compared to the paste composition.
  • the coating powder suppresses oxidation of the metal powder during firing, the resistance value does not increase, and thus electrode efficiency does not decrease.
  • according to the present invention can be fired at a low temperature, has a transition point of 300 ⁇ 600 °C, by applying an inorganic binder having a softening point of 330 ⁇ 650 °C by increasing the coating film density of the composition during printing to increase the light conversion efficiency And the adhesive strength with the ribbon is increased.
  • the coating film density and light conversion efficiency are further increased by forming a filler by mixing 10 to 30% by weight of silver (Ag) powder with 70 to 90% by weight of the metal powder coated with the coating powder.
  • 1 is a cross-sectional view showing a solar cell.
  • FIG. 2 is a flowchart illustrating a method of preparing a filler applied to an electrode paste composition according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a process of manufacturing a glass frit applied to an electrode paste composition according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a conductive filler applied to an electrode paste composition according to an embodiment of the present invention.
  • FIG. 5A is a photogram showing glass bleeding of a conventional electrode paste composition
  • (b) is a photogram showing glass bleeding of the present invention.
  • An electrode paste composition for a solar cell includes a conductive filler composed of a metal powder and a coating powder coated on the outer surface of the metal powder at a predetermined thickness, and to increase the adhesive strength between the silicon wafer substrate and the substrate.
  • An inorganic binder, an organic binder for increasing the viscosity of the composition, and an organic solvent for dissolving the organic binder is composed of 50.0 to 90.0 wt% of a filler, 5.0 to 20.0 wt% of an inorganic binder, 4.5 to 20.0 wt% of an organic solvent, and 0.5 to 10.0 wt% of an organic binder.
  • the electrode paste composition preferably further comprises 0.01 to 0.10% by weight of additives to suppress sintering of the composition.
  • Filler is made of a metal powder of a conductive material, and a coating powder is coated on the outer surface of each metal powder to a predetermined thickness.
  • the coating powder is coated on the outer surface of the metal powder through a known electroless plating process, and thus the method of coating the coating powder on the outer surface of the metal powder will be described in detail with reference to FIG. 2.
  • each of the metal powder and the coating powder is silver (Ag), nickel (Ni), tin (Sn), copper (Cu), iron (Fe), palladium (Pd), aluminum (Al), gold (Au), zinc It is formed from one of (Zn) and platinum (Pt) powders.
  • the coating powder may be formed of powder having a lower cost than that of the metal powder, thereby preparing a filler having similar electrode efficiency but lower cost than a filler formed of silver (Ag) powder.
  • the filler is composed of 10.0 to 70.0% by weight of the metal powder, 30.0 to 90.0% by weight of the coating powder.
  • the filler may be formed of particles of various shapes such as amorphous, spherical, plate-shaped, and square.
  • the filler is preferably formed to a thickness of 0.1 ⁇ m ⁇ 30 ⁇ m average diameter. If the average diameter of the filler is less than 0.1 ⁇ m, the dispersibility of the electrode paste is reduced, and if the average diameter of the filler is 30 ⁇ m or more, the density of the sintered coating film is lowered and the resistance value of the electrode is amplified.
  • the coating powder is preferably composed of a coating content of 30.0 ⁇ 90.0% by weight. If the coating content of the coating powder is less than 30.0% by weight, the metal powder content is increased to increase the manufacturing cost. If the coating powder coating content is more than 90.0% by weight, the coating powder content is precipitated separately, resulting in an increase in viscosity during paste production. Due to this, print characteristics are degraded.
  • the filler formed of the metal powder coated with the coating powder has a higher specific gravity than the conventional filler formed of the precious metal powder such as silver (Ag) powder and gold (Au) powder, the coating film density is increased during printing. As the film density increases, the light conversion efficiency, which is an important function of the solar cell, increases.
  • FIG. 2 is a flowchart illustrating a method of preparing a filler applied to an electrode paste composition according to an embodiment of the present invention.
  • an aqueous metal nitrate mixture solution is prepared in which the metal nitrate mixture is dissolved.
  • the metal nitrate mixture is nitrate ( )
  • a mixture of metals forming a coating powder applied to the filler For example, if the coating powder of the filler is formed of silver (Ag), the metal nitrate mixture may be silver nitrate ( (S10).
  • the metal powder applied to the filler is mixed with a reducing solution added with a reducing agent of hydrazine, popmalin, glucose, tartaric acid, and lotel salt to prepare a solution containing a metal powder having secured dispersibility.
  • a reducing solution added with a reducing agent of hydrazine, popmalin, glucose, tartaric acid, and lotel salt to prepare a solution containing a metal powder having secured dispersibility.
  • the mixing of the metal powder and the reducing solution is performed through stirring, ultrasonic waves, gas blowing, etc., which are known techniques (S50).
  • step 40 Injecting the metal ammonia complex compound prepared in step 40 (S40) to the reducing solution containing the metal powder prepared in step 50 (S50), and washing and drying according to a known electroless plating method after the addition. And a metal powder coated with a coating powder is prepared through a winding process (S60).
  • step 60 is a technique commonly used in the plating process, a detailed description thereof will be omitted.
  • the inorganic binder increases the adhesive strength of the coating of the filler to facilitate bonding to the silicon wafer substrate, and improves the sintering characteristics of the coating so that the post-processing process is easily performed.
  • the inorganic binder is preferably glass frits (hereinafter, referred to as glass frits).
  • Glass frit also contains bismuth (Bi), silicon (Si), aluminum (Al), sodium (Na), zinc (Zn), barium (Ba), magnesium (Mg), lead (Pb), thallium (Tl), copper (Cu), chromium (Cr), cobalt (Co), boron (B), cerium (Ce) and calcium (Ca) oxide of any one of the oxides or formed of a mixture mixed with at least two or more oxides desirable.
  • the glass frit is composed of 5.0 to 20.0% by weight of the electrode paste. If the glass frit is less than 5.0% by weight, the adhesive strength is weakened, resulting in a decrease in the adhesive strength with the silicon wafer substrate. If the glass frit is more than 20% by weight, the amount of filler is relatively decreased, so that the conductivity is the conductivity of the electrode paste. Not only does this fall, but the line resistance and the contact resistance of the electrode increase, so that the electrode efficiency decreases.
  • the glass frit is preferably formed so that the transition temperature (transition point), which is the temperature at which the state of the material changes to another state, has a size of 300 to 600 ° C. If the transition temperature is less than 300 °C glass frit flows around the electrode when firing the electrode hinders the formation of the electrode, if the transition point is more than 600 °C softening of the glass frit (Softening) is not enough occurs.
  • transition temperature transition point
  • the glass frit is preferably formed so that the softening temperature (softening point), which is the temperature at which the solid material melts by heat, has a size of 330 ° C to 650 ° C. If the softening point is less than 330 ° C, the shrinkage increases, so that the edge curl of the electrode becomes large, and if the softening point is more than 650 ° C, the silver coating metal powder does not sufficiently sinter and the resistance value increases. Is generated.
  • softening temperature softening point
  • the glass frit is not particularly limited in particle shape, but is preferably formed in a spherical shape, and is preferably 5.0 ⁇ m or less. If the average particle diameter of the glass frit exceeds 5.0 ⁇ m, the straightness of the print coating pattern and the plastic coating pattern during the printing coating operation is inferior.
  • FIG. 3 is a flowchart illustrating a process of manufacturing a glass frit applied to an electrode paste composition according to an embodiment of the present invention.
  • a glass powder having an average particle diameter of 200 ⁇ m is prepared by dry grinding the glass specimen prepared in step 110 (S110) using a disk mill for 30 minutes at 7000 rpm or more (S120).
  • step 120 100 g of the glass powder having an average particle diameter of 200 ⁇ m, 600 g of the zirconia ball having a diameter of 2 mm, and 100 g of pure water were mixed in step 120 (S120), and the mixture was wetted at 300 rpm for 30 minutes using a mono mill equipment.
  • a glass powder slurry is prepared by wet grinding (S130).
  • the glass powder slurry prepared through step 130 (S130) is dried at 100 ° C. for 12 hours to prepare a glass powder having a diameter of 10 ⁇ m or less (S140).
  • the glass powder slurry prepared in step 150 (S150) is dried at 200 ° C. or less for 12 hours to prepare a glass powder having an average diameter of 1 ⁇ m or less and a maximum diameter of 3 ⁇ m or less (S160).
  • the organic binder mechanically mixes the filler and the glass frit to determine the viscosity of the paste composition and the rheological properties that are characteristic of the deformation and flow of the composition so that the paste composition is easily printed onto the substrate.
  • the organic binder may be made of one of a thermoplastic binder or a thermosetting binder.
  • the organic binder is preferably a thermoplastic resin which generates a small amount of the organic binder component or its decomposition product in the coating powder during the heat treatment.
  • the thermoplastic binder may be one of acrylic, ethyl cellulose, polyester, polysulfone, phenoxy, and polyamide, or a mixture of at least two or more.
  • the thermosetting binder may be one of amino, epoxy, phenol or a mixture of at least two or more.
  • the organic binder is preferably composed of 0.4 to 10.0% by weight of the electrode paste composition. At this time, if the organic binder is less than 0.4% by weight, not only the viscosity is lowered after the paste composition is manufactured but also the adhesive strength is lowered after printing and drying. If the organic binder is 10.0% by weight or more, the amount of the organic binder is excessive when firing. The organic binder is not easily decomposed, so that the resistance value is increased, and the organic binder is not completely burned out during firing, and thus residual coal remains in the electrode.
  • the organic solvent dissolves the organic binder to control the viscosity of the electrode paste, and generally aromatic hydrocarbons, ethers, ketones, lactones, ether alcohols, etc. , Esters and diesters, or at least two or more mixtures.
  • the organic solvent is preferably composed of 4.5 ⁇ 20.0% by weight of the electrode paste may be composed of various weights according to the control of the viscosity.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a conductive filler applied to an electrode paste composition according to an embodiment of the present invention.
  • a filler comprising a metal powder coated with a coating powder applied to the present invention is prepared, and the method of coating the coating powder on the metal powder is described above in FIG. (S210).
  • the transition point has a 300 ⁇ 600 °C
  • the softening point to produce a glass frit of 5 to 20% by weight having a 330 ⁇ 650 °C wherein the method for producing the glass frit will be described in detail in Figure 3 will be described in detail It will be omitted (S220).
  • the filler prepared through the step 210 (S210), the glass frit manufactured through the step 220 (S220), and the mixing and stirring the vehicle manufactured via the step 230 (S230). At this time, it is preferable to stir including the additive 0.01 ⁇ 0.10% by weight so that sintering is suppressed (S240).
  • Impurities and particles having a large particle size are removed through filtering (S260).
  • step 260 the paste composition from which impurities are removed is degassed with a degassing apparatus to remove bubbles in the composition, thereby preparing an electrode paste composition according to an exemplary embodiment of the present invention (S270).
  • the electrode paste composition which is the second embodiment of the present invention, is composed of the same glass frit, organic binder, organic solvent and additives as in one embodiment, and a filler applied to the second embodiment. At this time, the weight percent of the filler, the glass frit, the organic binder, the organic solvent, and the additives is composed of the same weight percent as in one embodiment.
  • the filler applied to the second embodiment is composed of 70.0 to 90.0% by weight of the metal powder coated with the coating powder of one embodiment, and 10.0 to 30.0% by weight of pure silver (Ag) powder mixed with the metal powder coated with the coating powder.
  • Example 1 shows the structure and manufacturing method of the glass frit applied to one embodiment and the second embodiment of the present invention.
  • a glass composition having a basic composition based on a glass powder is placed in a platinum crucible, melted at 1200-1500 ° C. for one hour, and then rapidly cooled to prepare a glass specimen. Dry pulverization of the prepared glass specimen at 7000rpm or more using a disk mill equipment to prepare a glass powder having a final average particle size of 200 ⁇ m size and then mixed 600g zirconia ball diameter 2mm, 200g pure water and 100g glass powder and then Mono Wet grinding at 300rpm for 30 minutes with a Mill equipment to make a glass powder slurry, and dried at 100 °C for 12 hours to produce a glass powder of 10 ⁇ m size or less.
  • the prepared glass powder having a size of 10 ⁇ m or less is mixed again with 600 g of zirconia ball diameter and 160 g of pure water, and wet pulverized at 300 rpm for 30 minutes with a mono mill equipment, and dried at 200 ° C. for 12 hours to obtain a final average particle size 1 Glass powder having a maximum particle size of 3 ⁇ m or less was prepared.
  • Table 1 shows the composition, transition point (Tg) and softening point of the glass powder prepared in the same manner as described above.
  • Table 1 shows the transition temperature (Tg) and softening point by the composition of the glass powder.
  • a suitable combination of the glass frit composition may adjust the transition temperature (Tg) to 300 to 600 ° C.
  • Sample number GF1 is a comparative example, it can be seen that the transition temperature (Tg) is less than 300 °C because the melting point (melting point) of the glass is lowered as the weight percent of lead oxide (PbO) increases.
  • 80 wt% of the conductive filler obtained by coating 30 wt% silver (Ag) powder on the outer surface of the 70 wt% copper (Cu) powder, 6 wt% of the sample number GF1 shown in Table 1 above as a glass powder, and an organic solvent 8.9 weight%; 5% by weight of the organic binder and 0.1% by weight of the additive paste composition.
  • Example 3 to Example 6 is made of the same configuration as the conductive filler, organic solvent, organic binder and additives of Example 2
  • Example 3 is 6% by weight of the sample number GF3 in Table 1
  • Example 4 is the table Sample weight GF5 of 6
  • Example 5 is 6 wt% of the sample number GF7 of Table 1
  • Example 6 is 6 parts by weight of the sample number GF9 of Table 1 of the electrode paste composition.
  • Substrate adhesion test was printed on alumina substrate in 1mm * 1mm size, and then fired at 830 °C / 3sec. Solder paste and ribbon were dried at 250 ° C./10 min on both ends of the printed specimen, and the degree of tearing at both ends was measured at a speed of 1 mm / sec using a universal testing machine (INSTRON 3382).
  • Table 2 shows the adhesion properties according to the inorganic binder transition point (Tg) and the softening point (Sp). The composition of the glass powder and the substrate adhesion force according to the transition temperature are shown.
  • Table 2 is a table showing the adhesion properties according to the inorganic binder transition point (Tg) and softening point (Sp) composition of the glass powder and the substrate adhesion force according to the transition temperature.
  • FIG. 5 is a photograph showing glass dissolution generated when the transition temperature is 300 ° C. or lower or 600 ° C. or higher
  • FIG. 6 is a photograph showing glass bleeding generated when the transition temperature is 300 ° C. or lower or 600 ° C. or higher.
  • Example number GF1 glass frit having a transition temperature (Tg) of less than 300 °C.
  • Tg transition temperature of the glass frit
  • the glass frit melts at an early time so that the glass 50 is spread as shown in FIG. 2.
  • Example 6 looking at Example 6, it can be seen that the dissolution phenomenon of the glass 50 occurred when the glass frit (sample number GF9) having a transition temperature (Tg) of 650 ° C. or more was used. At this time, if the transition temperature (Tg) of the glass frit is 650 ° C. or more, the glass frit does not melt properly, and as shown in FIG. 5, the glass 50 elutes.
  • Tg transition temperature
  • Example 3 wherein the glass frit with a transition temperature of 349 ° C. and Example 5 with the glass frit with a transition temperature of 550 ° C., glass dissolution and glass bleeding did not occur. It can be seen that the adhesion is inferior in comparison.
  • the present invention can improve the adhesion rather than the electrode paste composition composed of a conductive filler formed of a conventional silver powder.
  • Table 3 shows the light efficiency increase effect according to the application of the present invention.
  • Comparative Example 3 made of the same configuration as shown in Table 3, wherein the conductive filler is made of silver powder only without a coating powder, and the conductive filler is made of a metal powder (copper powder) coated with a coating powder (silver powder)
  • Example 7 has a lower series resistance (Rs) value than Comparative Example 3, and as a result, the light conversion efficiency increases as the series resistance value decreases.
  • Rs series resistance
  • Example 7 comparing Example 7 and Example 8, it can be seen that the coating content of the silver (Ag) powder coated on the outer surface of the copper (Cu) powder at 80% compared to 70% is more excellent light conversion efficiency. . At this time, the same result can be obtained by comparing Example 9 and Example 10.
  • the glass frit has a transition temperature of 451 ° C. when the glass frit is made of the same configuration, and the glass frit is made of the sample number GF4 of Table 1 and the glass frit is made of the sample number GF5 of Table 1. It can be seen that the light conversion efficiency increases when using (When using Example 9). This is because in Example 7, the glass frit melts faster than in Example 9 and the glass penetrates, thereby lowering the parallel resistance. In this case, the same result can be obtained by comparing Example 8 and Example 10.
  • Examples 12 to 19 are made of the same configuration as in Example 11, but the metal powder coated with the coating powder (silver powder) is Example 12 is nickel, Example 13 is copper, Example 14 is tin, Example 15 is iron , Example 16 is palladium, Example 17 is aluminum, Example 18 is gold, Example 19 is an electrode paste composition consisting of platinum.
  • the film density test measured the coating film density of the specimen dried 110 °C / 30min after printing to 100um thickness on the PET film.
  • Table 4 shows the effect of increasing the light conversion efficiency according to the type of coating powder of the filler.
  • Comparative Example 6 which is formed only of silver (Ag) powder without a coating powder as shown in Table 4, it can be seen that the coating film density is 4.21 g / cm 3 and the light conversion efficiency is 15.23%.
  • An electrode paste composition comprising 6% by weight of sample number GF6 in Table 1, 8.9% by weight of an organic solvent, 5% by weight of an organic binder, and 0.1% by weight of an additive as a glass powder.
  • An electrode paste composition comprising 6% by weight of sample number GF6 in Table 1, 8.9% by weight of an organic solvent, 5% by weight of an organic binder, and 0.1% by weight of an additive as a glass powder.
  • An electrode paste composition comprising 6 wt% of sample No. GF6 in Table 1, 8.9 wt% of an organic solvent, 5 wt% of an organic binder, and 0.1 wt% of an additive as a glass powder.
  • Coating density test was measured using a Mirage SD-200L specimens dried 110 °C / 30 minutes after printing to 100um thickness on the PET film.
  • Table 5 shows the effect of increasing the light conversion efficiency according to the powder mixture application.
  • Comparative Example 7 in which a filler formed of copper (Cu) powder coated with silver (Ag) powder is applied as an embodiment of the present invention has a coating film density of 4.32 g / cm 3 and an optical conversion efficiency of 15.64%. As can be seen, it can be seen that the light conversion efficiency is increased compared to Comparative Example 6 consisting of only silver (Ag) powder.
  • Example 20 in which a filler obtained by mixing 10% by weight of silver (Ag) powder with a metal coating powder formed of copper (Cu) powder coated with silver (Ag) powder was applied as in the second embodiment of the present invention. Compared with Examples 6 and 7, it is found that the coating film density is increased, thereby increasing the light conversion efficiency.
  • Example 22 when the metal coating powder was mixed at 62.5% by weight and silver powder at 37.5% by weight (Example 22), the coating film density was increased the most, resulting in the most efficient light conversion efficiency. It can be seen that the increase.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 필러를 금속분말의 외면에 코팅분말을 피복시켜 필러를 형성함으로써 비용이 절감될 뿐만 아니라 낮은 비중을 갖기 때문에 도막밀도가 높아져 광변환효율이 증가되고, 무기바인더의 연화점 및 전이점을 변형시킴으로써 실리콘 기판과의 부착강도를 높임으로써 간단한 방법으로 고부가 가치를 창출할 수 있는 전극 페이스트 조성물을 제공하기 위한 것이다.

Description

태양전지용 전극 페이스트 조성물
본 발명은 태양전지의 전극을 형성하는 전극 페이스트 조성물에 관한 것으로서, 상세하게로는 금속분말의 외면에 코팅분말을 피복시켜 도전성 필러(Conductive filler)를 구성함으로써 비용이 절감될 뿐만 아니라 도막밀도가 높아져 광변환효율이 증가되고, 무기바인더의 전이점 및 연화점을 조절하여 적용함으로써 실리콘 기재와의 부착강도가 증가되는 전극 페이스트 조성물에 관한 것이다.
태양전지(Solar cell)는 일반적으로 태양광 에너지를 전기에너지로 변환시키는 반도체 소자로서, 자원의 무한성, 설비의 간편성, 우수한 내구성 및 환경 친화성 등의 장점으로 인해 차세대 에너지원으로서 각광받고 있다.
도 1은 태양전지를 나타내는 단면도이다.
도 1에 도시된 바와 같이 태양전지는 220 ~ 330㎛ 두께를 갖는 p형 반도체기판(102)과, n형 실리콘 반도체로 형성되어 p형 반도체기판(101)의 일측면에 설치되는 에미터층(103)과, 입사되는 태양광의 반사손실을 방지하기 위한 에미터층(103)의 외측면에 도포되는 반사방지막(105)과, 반사방지막(105)의 외측면에 형성되는 전면전극(107)과, p형 반도체기판(101)의 타측면에 형성되는 후면전극(109)으로 이루어진다. 이때 상기 p형 반도체기판(102)과 상기 에미터층(103)은 반도체기판(101)이라고 하기로 한다.
또한 태양전지(100)는 태양광이 입사되면 광기전력효과에 의해 불순물이 도핑된 반도체기판(101)에서 전자와 정공이 발생하고, 상세하게로는 에미터층(103)에서 복수개의 캐리어인 전자들이 발생되고, p형 반도체기판(102)에서 복수개의 캐리어인 정공들이 발생된다.
이때 발생된 전자는 광기전력효과에 의해 에미터층(103)을 통해 전면전극(107)으로, 정공은 광기전력효과에 의해 p형 반도체기판(102)을 통해 후면전극(109)으로 이동된다. 즉 태양전지(100)는 전자가 수집된 전면전극(107)과 정공이 수집된 후면전극(109)을 전선으로 연결함으로써 전류가 이동되어 전기에너지가 발생하게 된다.
또한 전면전극(107)은 은(Ag) 분말을 재료로 하는 전극 페이스트를 반사방지막(105)에 패터닝(Patterning)한 후 소성 공정(Firing)을 수행함으로써 형성된다. 이때 패터닝 공정은 스크린 인쇄(Screen process printing), 오프셋 인쇄(Offset printing) 및 포토리소그래피(Photolithography) 등과 같은 방법으로 수행된다.
또한 상기 전극 페이스트 조성물(이하, 종래의 전극 페이스트 조성물이라고 하기로 함)은 통상적으로 금속분말로 형성되는 도전성 필러(Conductive filer)와, 전극 페이스트 조성물의 변형성 및 유동성을 부여하는 유기바인더(Organic Binder)와, 유기바인더를 녹이는 용매인 유기용매와, 반사방지막(105)의 표면에 용이하게 결합되도록 하는 무기바인더(Inorganic Binder)와, 소결을 억제시키는 첨가제로 이루어진다.
이와 같이 구성되는 종래의 전극 페이스트 조성물은 반사방지막(105)의 표면에 인쇄되는 인쇄단계와, 인쇄된 조성물을 건조시키는 건조단계와, 건조된 조성물을 소성시키는 소성단계를 통해 태양전지의 전극을 형성하게 된다.
이때 도전성 필러를 형성하는 금속분말에는 일반적으로 전도율이 우수한 은(Ag), 금(Au) 및 팔라듐(Pd) 등의 귀금속 분말들을 사용하고 있으나, 이러한 귀금속 분말은 원자재 가격이 비싸기 때문에 태양전지의 비용이 증가하는 문제점을 발생시킨다.
또한 무기바인더는 일반적으로 글라스 프릿(Glass frit, 유리분말), 금속산화물 및 유리분말과 금속산화물의 혼합물들 중의 하나로 구성되고, 유리분말은 인쇄 후 소성 시 반사방지막(105)을 웨팅(Wetting)시켜 기계적인 결합력을 갖도록 하고, 금속산화물은 인쇄 후 소성 시 화학적 반응을 발생시켜 반사방지막(105)에 화학적 결합을 하게 된다.
이와 같이 구성되는 태양전지(100)의 전면전극(107)은 종래의 전극 페이스트와 반사방지막(105)과의 계면반응을 통해서 형성되며, 이때 종래의 전극 페이스트에 포함된 은(Ag)은 고온에서 액상이 되었다가 다시 고상으로 재결정될 때 유리 프릿을 매개로 하여 반사방지막(105)을 관통하여 에미터층(103)에 접촉하게 되고, 이에 따라 전류가 이동하게 된다.
이때 전극의 전도성을 부여하는 필러는 일반적으로 은(Ag), 금(Au) 및 팔라듐(Pd) 등으로 형성되기 때문에 전도율이 우수한 장점을 가지나 전술하였던 바와 같이 원자재 가격이 증가하여 태양전지의 가격이 증가하는 문제점을 발생시킨다.
이러한 문제점을 극복하기 위하여 상기 귀금속 분말들에 비해 비용이 저렴한 알루미늄(Al), 니켈(Ni) 및 구리(Cu) 등과 같은 금속분말로 필러를 형성하는 방법이 연구되었으나 알루미늄(Al), 니켈(Ni) 및 구리(Cu) 등의 금속분말은 소성 시 분말의 산화로 인하여 태양전지의 전기적 특성을 감소시킬 뿐만 아니라 은(Ag) 분말에 비해 전도율이 떨어지기 때문에 전극효율이 감소하는 문제점을 발생시킨다.
또한 알루미늄(Al), 니켈(Ni) 및 구리(Cu) 등과 같은 금속분말은 반복소성 작업이 수행되는 경우 한 번의 소성 공정 수행 시 금속의 산화도가 증폭하기 때문에 전극의 전도율이 급격하게 낮아지게 된다.
또한 알루미늄(Al), 니켈(Ni) 및 구리(Cu) 등과 같은 금속분말은 반복소성 작업이 수행되는 경우 소성 공정의 횟수에 비례하여 전극의 저항값을 증가시킴으로써 태양전지의 전극효율이 낮아지는 문제점이 발생된다.
본 발명은 이러한 문제를 해결하기 위한 것으로, 도전성 필러(Filer)를 코팅분말이 피복된 금속분말로 구성함으로써 제조비용이 현저하게 절감되는 전극 페이스트 조성물을 제공하기 위한 것이다.
또한 본 발명의 다른 해결과제는 필러를 순수 은(Ag) 분말이 아닌 코팅분말로 피복된 금속분말로 형성함으로써 인쇄 시 도막밀도가 증가되어 광변환효율을 높인 전극 페이스트 조성물을 제공하기 위한 것이다.
또한 본 발명의 또 다른 해결과제는 반복소성 시 금속분말의 외면에 피복된 코팅분말이 금속분말의 산화를 방지하여 저항값이 크게 증가하지 않기 때문에 종래에 코팅분말 없이 금속분말로 형성되는 필러를 구성할 때 전극의 저항값이 급격하게 증가하는 문제점을 극복할 수 있는 전극 페이스트 조성물을 제공하기 위한 것이다.
또한 본 발명의 또 다른 해결과제는 무기바인더가 300 ~ 600℃의 전이점과 330 ~ 650℃의 연화점을 갖도록 제조함으로써 인쇄 시 실리콘 기판과의 부착강도를 높인 전극 페이스트 조성물을 제공하기 위한 것이다.
또한 본 발명의 또 다른 해결과제는 필러가 코팅분말이 피복된 금속분말 80 ~ 90 중량%와, 이에 혼합되는 은(Ag) 분말 10 ~ 30 중량%로 구성됨으로써 광변환효율이 더욱 증가되는 전극 페이스트 조성물을 제공하기 위한 것이다.
상기 과제를 해결하기 위한 본 발명의 해결수단은 50.0 ~ 90.0 중량%의 도전성 필러와, 5.0 ~ 20.0 중량%의 무기바인더, 0.5 ~ 20.0 중량%의 유기바인더, 4.5 ~ 20.0 중량%의 유기용매를 포함하고, 상기 도전성 필러는 10.0 ~ 70.0 중량%의 금속분말; 상기 금속분말의 외면에 30.0 ~ 90.0 중량%로 피복되는 코팅분말을 포함하고, 상기 금속분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것이다.
또한 본 발명에서 상기 코팅분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것이 바람직하다.
또한 본 발명에서 상기 무기바인더는 전이점이 300 ~ 600℃, 연화점이 330 ~ 650℃이며, 비스무스(Bi), 규소(Si), 알루미늄(Al), 나트륨(Na), 아연(Zn), 바륨(Ba), 마그네슘(Mg), 납(Pb), 탈륨(Tl), 구리(Cu), 크롬(Cr), 코발트(Co), 붕소(B), 세륨(Ce), Tl(탈륨), 칼슘(Ca) 산화물들 중 적어도 2종 이상이 혼합되는 유리 원료(Glass frit)인 것이 바람직하다.
또한 본 발명에서 상기 용매는 방향족 탄화수소류, 에테르류, 케톤류, 락톤류, 에테르 알콜류, 에스테르류 및 디에스테르류들 중 선택된 1종 이상인 것이 바람직하다.
또한 본 발명에서 0.10 ~ 0.1 중량%의 첨가제를 더 포함하고, 상기 첨가제는 티타늄(Ti), 아연(Zn), 루테늄(Ru), 마그네슘(Mg), 팔라듐(Pd), 지르코니아(Zr), 규소(Si) 산화물들 중 어느 하나인 것이 바람직하다.
또한 본 발명에서 상기 도전성 필러의 평균직경은 0.1 ~ 30㎛인 것이 바람직하다.
또한 본 발명의 다른 해결수단은 50.0 ~ 90.0 중량%의 도전성 필러와, 5.0 ~ 20.0 중량%의 무기바인더, 0.5 ~ 20.0 중량%의 유기바인더, 4.5 ~ 20.0 중량%의 유기용매를 포함하고, 상기 도전성 필러는 10.0 ~ 70.0 중량%의 금속분말과, 상기 금속분말의 외면에 30.0 ~ 90.0 중량%로 피복되는 코팅분말로 이루어지는 62.5 ~ 87.5 중량%의 코팅 금속분말; 상기 금속분말에 혼합되는 12.5 ~ 37.5 중량%의 은(Ag) 분말을 포함하고, 상기 금속분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것이다.
또한 본 발명에서 상기 코팅분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것이 바람직하다.
또한 본 발명에서 상기 무기바인더는 전이점이 300 ~ 600℃, 연화점이 330 ~ 650℃이며, 비스무스(Bi), 규소(Si), 알루미늄(Al), 나트륨(Na), 아연(Zn), 바륨(Ba), 마그네슘(Mg), 납(Pb), 탈륨(Tl), 구리(Cu), 크롬(Cr), 코발트(Co), 붕소(B), 세륨(Ce), Tl(탈륨), 칼슘(Ca) 산화물들 중 적어도 2종 이상이 혼합되는 유리 원료(Glass frit)인 것이 바람직하다.
또한 본 발명에서 상기 용매는 방향족 탄화수소류, 에테르류, 케톤류, 락톤류, 에테르 알콜류, 에스테르류 및 디에스테르류들 중 선택된 1종 이상인 것이 바람직하다.
또한 본 발명에서 0.10 ~ 0.1 중량%의 첨가제를 더 포함하고, 상기 첨가제는 티타늄(Ti), 아연(Zn), 루테늄(Ru), 마그네슘(Mg), 팔라듐(Pd), 지르코니아(Zr), 규소(Si) 산화물들 중 어느 하나인 것이 바람직하다.
또한 본 발명에서 상기 도전성 필러의 평균직경은 0.1 ~ 30㎛인 것이 바람직하다.
상기 과제와 해결수단을 갖는 본 발명에 따르면 필러(Filler)를 니켈, 주석, 구리, 철, 팔라듐, 알루미늄, 금, 백금 및 아연 분말들 중 하나인 금속분말과, 은 분말, 니켈 분말, 주석 분말, 구리 분말, 철 분말, 팔라듐 분말, 알루미늄 분말, 금 분말 및 백금 분말들 중 하나로 형성되어 금속분말에 피복되는 코팅분말로 구성함으로써 종래의 우수한 전도율을 갖는 귀금속 분말로 형성된 필러가 적용되는 종래의 전극 페이스트 조성물에 비해 제조비용이 현저하게 절감된다.
또한 본 발명에 의하면 소성 시 코팅분말이 금속분말의 산화를 억제시킴으로써 저항값이 증가하지 않게 되고, 이에 따라 전극효율이 떨어지지 않게 된다.
또한 본 발명에 의하면 저온에서 소성이 가능하며, 300 ~ 600℃의 전이점을 갖으며, 330 ~ 650℃의 연화점을 갖는 무기바인더를 적용함으로써 인쇄 시 조성물의 도막밀도가 증가되어 광변환효율이 증가되고, 리본제와의 부착강도가 증가된다.
또한 본 발명에 의하면 코팅분말이 피복된 금속분말 70 ~ 90 중량%에 은(Ag) 분말 10 ~ 30 중량%를 혼합시켜 필러를 구성함으로써 도막밀도 및 광변환효율이 더욱 증가하게 된다.
도 1은 태양전지를 나타내는 단면도이다.
도 2는 본 발명의 일실시예인 전극 페이스트 조성물에 적용되는 필러의 제조방법을 나타내는 플로차트이다.
도 3은 본 발명의 일실시예인 전극 페이스트 조성물에 적용되는 유리프릿이 제조되는 과정을 나타내는 플로차트이다.
도 4는 본 발명의 일실시예인 전극 페이스트 조성물에 적용되는 도전성 필러의 제조방법을 나타내는 플로차트이다.
도 5의 (a)는 종래의 전극 페이스트 조성물의 글라스 번짐을 나타내는 실사진이고, (b)는 본 발명의 글라스 번짐을 나타내는 실사진이다.
도 6의 (a)는 종래의 전극 페이스트 조성물의 글라스 용출을 나타내는 실사진이고, (b)는 본 발명의 글라스 용출을 나타내는 실사진이다.
이하, 첨부된 도면을 참조하여 본 발명의 일실시예를 설명한다.
본 발명의 일실시예인 태양전지용 전극 페이스트 조성물은 금속분말과 상기 금속분말의 외면에 기 설정된 두께로 피복되는 코팅분말로 이루어지는 도전성 필러(Conductive filler)와, 실리콘 웨이퍼 기재와의 접착강도를 증가시키기 위한 무기바인더(Inorganic Binder)와, 조성물의 점성을 증가시키는 유기바인더(Organic Binder)와, 유기바인더를 용해시키는 유기용매로 구성된다. 이때 전극 페이스트 조성물은 필러(Filler) 50.0 ~ 90.0 중량%, 무기바인더 5.0 ~ 20.0 중량%, 유기용매 4.5 ~ 20.0 중량% 및 유기바인더 0.5 ~ 10.0 중량%로 구성된다.
또한 전극 페이스트 조성물은 조성물의 소결을 억제시키기 위해 0.01 ~ 0.10 중량%의 첨가제를 더 포함하는 것이 바람직하다.
필러(Filler)는 전도성 재질의 금속분말과, 금속분말 각각의 외면에 기 설정된 두께로 피복되는 코팅분말로 이루어진다. 이때 코팅분말은 공지된 무전해 도금(Electroless plating) 공정을 통해 금속분말의 외면에 피복되고, 이와 같이 금속분말 외면에 코팅분말을 피복시키는 방법은 후술되는 도 2에서 상세하게 설명하기로 한다.
또한 금속분말 및 코팅분말들 각각은 은(Ag), 니켈(Ni), 주석(Sn), 구리(Cu), 철(Fe), 팔라듐(Pd), 알루미늄(Al), 금(Au), 아연(Zn) 및 백금(Pt) 분말들 중 하나로 형성된다. 이때 코팅분말은 금속분말에 비해 원가가 저렴한 분말로 형성되도록 함으로써 종래에 은(Ag) 분말로 형성되는 필러에 비교하여 전극효율은 유사하나 비용이 적은 필러를 제조할 수 있게 된다.
또한 필러는 금속분말이 10.0 ~ 70.0 중량%로, 코팅분말이 30.0 ~ 90.0 중량%로 구성된다.
또한 필러는 무정형, 구형, 판상형, 각형 등과 같이 다양한 형상의 입자로 형성될 수 있다.
또한 필러는 평균직경이 0.1㎛ ~ 30㎛의 두께로 형성되는 것이 바람직하다. 만약 필러의 평균직경이 0.1㎛ 미만이면 전극 페이스트의 분산성이 절감되고, 만약 필러의 평균직경이 30㎛ 이상이면 소결도막의 밀도가 낮아져 전극의 저항값이 증폭하게 된다.
또한 코팅분말은 피복함량이 30.0 ~ 90.0 중량%로 구성되는 것이 바람직하다. 만약 코팅분말의 피복함량이 30.0 중량% 미만이면 금속분말의 함량이 증가하여 제조비용이 증가하게 되며, 코팅분말 피복함량이 90.0 중량% 이상이면 코팅분말의 함량이 별도로 석출되어 페이스트 제조 시 점도증가로 인해 인쇄특성이 저하된다.
이와 같이 코팅분말이 피복된 금속분말로 형성되는 필러는 은(Ag) 분말 및 금(Au) 분말 등과 같은 귀금속 분말로 형성되는 종래의 필러에 비교하여 높은 비중을 가지기 때문에 인쇄 시 도막밀도를 증가시키고, 도막밀도가 증가됨에 따라 태양전지의 중요한 기능인 광변환효율이 증가하게 된다.
도 2는 본 발명의 일실시예인 전극 페이스트 조성물에 적용되는 필러의 제조방법을 나타내는 플로차트이다.
질산금속 혼합물이 용해된 질산금속 혼합물 수용액을 제조한다. 이때 질산금속 혼합물은 질산(
Figure PCTKR2012002172-appb-I000001
)과, 필러에 적용되는 코팅분말을 형성하는 금속물을 혼합시킨 혼합물로 정의된다. 예를 들어 필러의 코팅분말이 은(Ag)으로 형성되는 경우 질산금속 혼합물은 질산은(
Figure PCTKR2012002172-appb-I000002
)이 된다(S10).
단계 10(S10)에서 제조된 질산금속 혼합물 수용액에 구연산, 호박산, 개미산, 살리실산들 중 하나 이상을 첨가함으로써 금속물-X계 복화합물인 중간체를 형성한다(S20).
단계 20(S20)에 의해 제조된 중간체에 수산화나트륨(NaOH)을 투입하여 금속물계 복산화물을 생성한다(S30).
단계 30(S30)에 의해 제조된 금속물계 복산화물에 암모니아수(
Figure PCTKR2012002172-appb-I000003
)를 투입하여 질산금속 암모니아 복화합물을 제조한다(S40).
또한 필러에 적용되는 금속분말을 히드라진, 포프말린, 글루코오스, 주석산, 롯셀염의 환원제가 첨가된 환원액에 투입하여 혼합시킴으로써 분산성이 확보된 금속분말이 포함된 용액을 제조한다. 이때 금속분말과 환원액의 혼합은 공지된 기술인 교반, 초음파, 가스 블로잉(Gas blowing) 등을 통해 이루어진다(S50).
단계 50(S50)에서 제조된 금속분말이 포함된 환원액에 단계 40(S40)을 통해 제조된 질산금속 암모니아 복화합물을 투입하며, 투입 후 공지된 무전해 도금(Electroless plating)방법에 따라 수세, 건조 및 권취 공정을 통해 코팅분말이 피복된 금속분말이 제조된다(S60).
이때 단계 60(S60)의 무전해 도금 법은 도금 공정에 있어서 통상적으로 사용되는 기술이기 때문에 상세한 설명은 생략하기로 한다.
무기바인더는 필러의 코팅물의 접착강도를 증가시켜 실리콘 웨이퍼 기재에 용이하게 결합되도록 하며, 코팅물의 소결 특성을 향상시킴으로써 후 가공 공정이 용이하게 수행되도록 한다.
또한 무기바인더는 공지된 글라스 프릿(Glass frits)(이하, 유리프릿이라고 하기로 함)인 것이 바람직하다.
또한 유리프릿은 비스무스(Bi), 규소(Si), 알루미늄(Al), 나트륨(Na), 아연(Zn), 바륨(Ba), 마그네슘(Mg), 납(Pb), 탈륨(Tl), 구리(Cu), 크롬(Cr), 코발트(Co), 붕소(B), 세륨(Ce) 및 칼슘(Ca) 산화물들 중 어느 하나의 산화물이거나 또는 적어도 2개 이상의 산화물로 혼합되는 혼합물로 형성되는 것이 바람직하다.
또한 유리프릿은 전극 페이스트의 5.0 ~ 20.0 중량%로 구성되도록 한다. 만약 유리프릿이 5.0 중량% 미만이면 접착강도가 약해져 실리콘 웨이퍼 기재와의 접착강도가 떨어지는 문제점이 발생되며, 만약 유리프릿이 20 중량% 이상이면 상대적으로 필러의 양이 줄어들게 되어 전도율이 전극 페이스트의 전도율이 떨어질 뿐만 아니라 전극의 선저항 및 접촉저항이 높아져 전극효율이 떨어지게 된다.
또한 유리프릿은 물질의 상태가 다른 상태로 변화되는 온도인 전이온도(전이점)가 300 ~ 600℃ 크기를 갖도록 형성되는 것이 바람직하다. 만약 전이온도가 300℃ 미만이면 전극 소성 시 유리프릿이 전극 주변으로 흘러내리게 되어 전극 형성을 방해하고, 전이점이 600℃ 이상이면 유리프릿의 연화(Softening)가 충분하게 발생하지 않는 문제점이 발생된다.
또한 유리프릿은 고형의 물질이 열에 의하여 녹는 온도인 연화온도(연화점)가 330℃ ~ 650℃ 크기를 갖도록 형성되는 것이 바람직하다. 만약 연화점이 330℃ 미만이면 수축률이 증가하기 때문에 전극의 엣지컬(Edge curl)이 커지는 문제점이 발생하고, 연화점이 650℃ 이상이면 은 코팅 금속분말의 소결이 충분히 일어나지 않아 저항값이 상승하는 문제점이 발생된다.
또한 유리프릿은 입자 형상이 특별히 한정되지 않으나 구형으로 형성되는 것이 바람직하고, 5.0㎛ 이하인 것이 바람직하다. 만약 유리프릿의 평균입경이 5.0㎛를 초과하면, 인쇄 도포작업 시 인쇄도막 패턴 및 소성도막 패턴의 직진성이 떨어지게 된다.
도 3은 본 발명의 일실시예인 전극 페이스트 조성물에 적용되는 유리프릿이 제조되는 과정을 나타내는 플로차트이다.
도 3에 도시된 바와 같이 산화물분말을 1200 ~ 1500℃의 온도로 한 시간 동안 용융시킨 후 용융된 유리분말을 급랭시켜 유리시편을 제조한다(S110).
단계 110(S110)을 통해 제조된 유리시편을 디스크 밀(Disk Mill) 장비를 이용하여 7000rpm이상에서 30분 동안 건식분쇄(Dry grinding)함으로써 평균입경 200㎛인 유리분말을 제조한다(S120).
단계 120(S120)에서 제조된 평균입경 200㎛인 유리분말 100g과, 직경 2mm인 지르코니아볼 600g과, 순수물 100g을 혼합한 후 혼합물을 모노 밀(Mono Mill) 장비를 이용하여 300rpm에서 30분간 습식분쇄(Wet grinding)함으로써 유리분말 슬러리를 제조한다(S130).
단계 130(S130)을 통해 제조된 유리분말 슬러리를 100℃에서 12시간 건조하여 10㎛ 이하의 직경인 을 갖는 유리분말을 제조한다(S140).
단계 140(S140)에서 제조된 10㎛ 이하의 직경을 갖는 유리분말 100g과, 직경 0.5mm의 지르코니아볼 600g과, 순수물 160g을 혼합하여 모노 밀 장비로 300rpm에서 30분간 습식분쇄 함으로써 유리분말 슬러리를 제조한다(S150).
단계 150(S150)에서 제조된 유리분말 슬러리를 200℃ 이하에서 12시간 건조하여 평균직경 1㎛이하이며, 최대직경 3㎛이하인 유리분말을 제조한다(S160).
유기바인더는 필러와 유리프릿을 기계적으로 혼합시켜 페이스트 조성물의 점도(Consistency) 및 조성물의 변형과 흐름에 관한 특성인 유변학적 특성을 결정함으로써 페이스트 조성물이 기재에 용이하게 인쇄되도록 한다.
또한 유기바인더는 열가소성 바인더 또는 열경화성 바인더들 중 하나로 이루어져도 무방하나 열처리 시 코팅분말에 유기바인더 성분이나 또는 그 분해 생성물의 양을 적게 발생시키는 열가소성 수지인 것이 바람직하다. 이때 열가소성 바인더는 아크릴(Acryl), 에틸 셀룰로오스(Ethyl cellulose), 폴리에스테르(Polyester), 폴리설폰(Polysulfone), 페녹시(Phenoxy), 폴리아미드계(Polyamide)들 중 하나이거나 또는 적어도 2개 이상의 혼합물로 구성될 수 있고, 열경화성 바인더는 아미노(Amino), 에폭시(Epoxy), 페놀(Phenol)들 중 하나이거나 또는 적어도 2개 이상의 혼합물로 구성될 수 있다.
또한 유기바인더는 전극 페이스트 조성물의 0.4 ~ 10.0 중량%로 구성되는 것이 바람직하다. 이때 만약 유기바인더가 0.4 중량% 미만이면 페이스트 조성물 제조 후 점도가 낮아질 뿐만 아니라 인쇄 및 건조 후에 접착력이 저하되는 문제점이 발생되며, 만약 유기바인더가 10.0 중량% 이상이면 소성 시 유기바인더의 양이 과다하여 유기바인더의 분해가 용이하게 이루어지지 않아 저항값이 높아질 뿐만 아니라 소성 시 유기바인더가 완전히 제거(Burn out)되지 않아 전극에 잔탄이 남는 문제점이 발생된다.
유기용매는 유기바인더를 용해시켜 전극 페이스트의 점성을 조절시키고, 일반적으로 방향족 탄화수소(Hydrocarbon)류, 에테르(Ether)류, 케톤(Ketone)류, 락톤(Lactone)류, 에테르 알콜(Ether alcohol)류, 에스트르(Ester)류 및 디에스테르류(Diester)들 중 하나이거나 또는 적어도 2개 이상의 혼합물로 이루어진다.
또한 유기용매는 전극 페이스트의 4.5 ~ 20.0 중량%로 구성되는 것이 바람직하나 점도의 조절에 따라 다양한 중량으로 구성될 수 있다.
도 4는 본 발명의 일실시예인 전극 페이스트 조성물에 적용되는 도전성 필러의 제조방법을 나타내는 플로차트이다.
본 발명에 적용되는 코팅분말이 피복된 금속분말로 구성되는 50.0 ~ 90.0 중량%의 필러를 제조하고, 이때 금속분말에 코팅분말을 피복시키는 방법은 도 2에서 전술하였기 때문에 상세한 설명은 생략하기로 한다(S210).
또한 전이점이 300 ~ 600℃을 갖으며, 연화점이 330 ~ 650℃를 갖는 5 ~ 20 중량%의 유리프릿을 제조하고, 이때 유리프릿을 제조하는 방법은 도 3에서 상세하게 설명하기 때문에 상세한 설명은 생략하기로 한다(S220).
유기바인더 0.5 ~ 10.0 중량%와, 유기용매 4.5 ~ 20 중량%를 혼합한 후 교반기(Planetary mixer)를 이용하여 용해시킴으로써 비어클을 제조한다(S230).
단계 210(S210)을 통해 제조된 필러와, 단계 220(S220)을 통해 제조된 유리프릿과, 단계 230(S230)을 통해 제조된 비어클을 혼합 교반한다. 이때 소결이 억제되도록 첨가제 0.01 ~ 0.10 중량%를 포함하여 교반시키는 것이 바람직하다(S240).
3롤 밀(3-Roll Mill)을 이용하여 단계 240(S240)을 통해 혼합 교반된 중간체를 기계적으로 혼합한다(S250).
필터링(Filtering)을 통해 불순물 및 입경이 큰 입자를 제거한다(S260).
단계 260(S260)을 통해 불순물이 제거된 페이스트 조성물을 탈포장치로 탈포하여 조성물 내의 기포를 제거함으로써 본 발명의 일실시예인 전극 페이스트 조성물을 제조한다(S270).
본 발명의 제2 실시예인 전극 페이스트 조성물은 일실시예와 마찬가지로 동일한 유리프릿, 유기바인더, 유기용매 및 첨가제들과, 제2 실시예에 적용되는 필러로 구성된다. 이때 필러, 유리프릿, 유기바인더, 유기용매 및 첨가제들의 중량%는 일실시예와 동일한 중량%로 구성된다.
제2 실시예에 적용되는 필러는 일실시예의 코팅분말이 피복된 금속분말 70.0 ~ 90.0 중량%와, 코팅분말이 피복된 금속분말에 혼합되는 순수 은(Ag) 분말 10.0 ~ 30.0 중량%로 이루어진다.
이와 같이 코팅분말이 피복된 금속분말과 순수 은(Ag) 분말을 혼합시키면 전도율이 높아질 뿐만 아니라 도막밀도가 증가하여 시리즈 저항(Rs)이 낮아지고, 이에 따라 태양전지의 특성에 있어서 중요한 광변환효율이 현저하게 증가된다.
이하, 본 발명의 일실시예인 전극 페이스트 조성물에 관해 실시예를 들어 더욱 상세하게 설명한다. 또한 다음의 실시예들은 설명의 목적을 위한 것으로, 본 발명의 보호범위를 제한하지 않는다.
다음의 실시예 1은 본 발명의 일실시예 및 제2 실시예에 적용되는 유리프릿의 구성 및 제조방법을 나타낸다.
[실시예 1]
Figure PCTKR2012002172-appb-I000004
계 유리분말을 기본조성으로 한 유리 조성물을 백금도가니에 넣고, 1200-1500℃에서 한 시간 용융 시킨 후 급랭하여 유리시편을 제조 한다. 상기 제조된 유리시편을 Disk mill 장비를 이용하여 7000rpm 이상에서 건식 분쇄하여 최종 평균입경 200㎛ 크기를 갖는 유리분말을 제조한 다음 직경 2mm 지르코니아볼 600g, 순수물 200g과 유리분말 100g을 혼합한 뒤 Mono Mill 장비로 300rpm에서 30분간 습식 분쇄하여 유리분말 슬러리를 만들고, 100℃에서 12시간 건조하여 10㎛ 이하 크기의 유리분말을 제조한다. 상기 제조된 10㎛ 이하 크기의 유리분말을 다시 직경 0.5mm 지르코니아볼 600g, 순수물 160g과 혼합하여 Mono Mill 장비로 300rpm에서 30분간 습식 분쇄하고, 200℃이하에서 12시간 건조하여 최종 평균입자크기 1㎛ 이하, 최대 입자크기 3㎛이하의 유리분말을 제조하였다.
상기와 같은 방법으로 제조한 유리분말의 조성, 전이점(Tg) 및 연화점을 표 1에 도시하였다.
표 1은 유리분말의 조성에 의한 전이온도(Tg) 및 연화점을 나타낸 것이다.
표 1
Figure PCTKR2012002172-appb-T000001
* 상기 조성물의 함량은 중량% 임
표 1에 도시된 바와 같이 유리프릿 조성물의 적절한 조합으로 전이온도(Tg)를 300 ~ 600℃로 조절할 수 있다.
시료번호 GF1은 비교예로서, 산화납(PbO)의 중량%가 증가함에 따라 글라스의 멜팅 포인트(Melting point)가 낮아지기 때문에 전이온도(Tg)가 300℃ 미만인 것을 알 수 있다.
[실시예 2]
70 중량%의 구리(Cu) 분말의 외면에 30 중량%의 은(Ag) 분말을 피복시켜 얻은 도전성 필러 80 중량%와, 유리분말로서 상기 표 1의 시료번호 GF1 6중량%와, 유기용매 8.9 중량%; 유기바인더 5 중량%와, 첨가제 0.1 중량%를 전극 페이스트 조성물.
[실시예 3 ~ 실시예 6]
실시예 3 ~ 실시예 6은 실시예 2의 도전성 필러, 유기용매, 유기바인더 및 첨가제와 동일한 구성으로 이루어지되 실시예 3은 상기 표 1의 시료번호 GF3 6 중량%로, 실시예 4는 상기 표 1의 시료번호 GF5 6중량%로, 실시예 5는 상기 표 1의 시료번호 GF7 6 중량%로, 실시예 6은 상기 표 1의 시료번호 GF9 6 중량%로 구성되는 전극 페이스트 조성물.
[실험예 1]
기판 부착력 테스트는 알루미나 기판에 1mm*1mm size로 인쇄 후, 830℃/3sec 소성하였다. 인쇄된 시편의 양단에 솔더페이스트와 리본제를 250℃/10min 건조하여, 만능재료 시험기(INSTRON 3382)를 사용하여 1mm/sec의 속도로 양단의 뜯김 정도를 측정하였다.
표 2는 무기바인더 전이점(Tg) 및 연화점(Sp)에 따른 부착력 특성유리분말의 조성 및 전이온도에 따른 기판 부착력을 나타내는 것이다.
표 2
Figure PCTKR2012002172-appb-T000002
표 2는 무기바인더 전이점(Tg) 및 연화점(Sp)에 따른 부착력 특성유리분말의 조성 및 전이온도에 따른 기판 부착력을 나타내는 표이다.
도 5는 전이온도가 300℃이하 또는 600℃이상일 때 발생되는 글라스 용출을 나타내는 실사진이고, 도 6은 전이온도가 300℃이하 또는 600℃이상일 때 발생되는 글라스 번짐을 나타내는 실사진이다.
도 5의 (a)에는 표 2의 비교예 1이 적용되었고, (b)에는 표 2의 실시예 3이 적용되었다.
표 2의 비교예 1과 실시예 2를 살펴보면 전이온도(Tg)가 300℃ 미만인 유리프릿(시료번호 GF1)을 사용할 때 글라스(50) 번짐 현상이 발생하는 것을 알 수 있다. 이때 유리프릿의 전이온도(Tg)가 300℃ 미만이면 너무 이른 시간에 유리프릿이 녹기 때문에 도 2에 도시된 바와 같이 글라스(50)가 번지게 된다.
또한 실시예 6을 살펴보면 전이온도(Tg)가 650℃ 이상인 유리프릿(시료번호 GF9)을 사용할 때 글라스(50) 용출 현상이 발생한 것을 알 수 있다. 이때 유리프릿의 전이온도(Tg)가 650℃ 이상이면 유리프릿이 적정하게 녹지 않아 도 5에 도시된 바와 같이 글라스(50)가 용출하게 된다.
또한 전이온도(Tg)가 451℃인 유리프릿이 적용된 비교예 2와 실시예 4를 비교하면 코팅분말의 구성없이 은(Ag) 분말로 형성된 필러가 적용된 비교예 2의 부착력은 42인데 반해, 본 발명의 일실시예인 구리(Cu) 분말의 외면에 은(Au) 분말을 피복시킨 필러가 적용된 실시예 4의 부착력은 62인 것을 알 수 있다. 즉 단순히 은 분말로만 도전성 필러를 구성하는 것에 비해 구리 분말의 외면에 은 분말을 피복시켜 도전성 필러를 구성할 때 기판과의 부착력이 향상되는 것을 알 수 있다.
또한 전이온도가 349℃인 유리프릿이 적용된 실시예 3과, 전이온도가 550℃인 유리프릿이 적용된 실시예 5를 실시예 4에 비교하면 글라스 용출 및 글라스 번짐 현상은 발생되지 않았으나 실시예 4에 비교하여 부착력이 떨어지는 것을 알 수 있다. 이와 같이 유리프릿의 조성물을 적절하게 조합함으로써 본 발명은 종래의 은 분말로 형성되는 도전성 필러로 구성되는 전극 페이스트 조성물에 비해 오히려 부착력을 향상시킬 수 있다.
[실시예 7]
70 중량%의 구리(Cu) 분말의 외면에 30 중량%의 은(Ag) 분말을 피복시킨 필러 70 중량%와, 유리분말로서 상기 표 1의 시료번호 GF4 6중량%와, 유기용매 18.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실시예 8]
70 중량%의 구리(Cu) 분말의 외면에 30 중량%의 은(Ag) 분말을 피복시킨 필러 80 중량%와, 유리분말로서 상기 표 1의 시료번호 GF4 6중량%와, 유기용매 18.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실시예 9]
70 중량%의 구리(Cu) 분말의 외면에 30 중량%의 은(Ag) 분말을 피복시킨 도전성 필러 70 중량%와, 유리분말로서 상기 표 1의 시료번호 GF5 6중량%와, 유기용매 18.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실시예 10]
70 중량%의 구리(Cu) 분말의 외면에 30 중량%의 은(Ag) 분말을 피복시킨 도전성 필러 80 중량%와, 유리분말로서 상기 표 1의 시료번호 GF5 6중량%와, 유기용매 8.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실험예 2]
표 3은 본 발명의 적용에 따른 광효율 증대효과를 나타낸 것이다.
표 3
Figure PCTKR2012002172-appb-T000003
표 3에 도시된 바와 같이 동일한 구성으로 이루어지되 도전성 필러가 코팅분말 없이 은 분말로만 이루어지는 비교예 3과, 도전성 필러가 코팅분말(은분말)이 피복된 금속분말(구리분말)로 이루어지는 실시예 7을 비교하면, 실시예 7이 비교예 3에 비해 시리즈 저항(Rs) 값이 더 낮고, 이에 따라 시리즈 저항값이 낮아짐에 따라 광변환효율이 증가하는 것을 알 수 있다. 이때 비교예 4와 실시예 8 및 비교예 5와 실시예 10을 비교하여도 동일한 결과를 얻을 수 있다.
또한 실시예 7과 실시예 8을 비교하면 구리(Cu) 분말의 외면에 피복되는 은(Ag) 분말의 피복함량이 70%에 비해 80%로 피복되는 것이 광변환효율이 더 우수한 것을 알 수 있다. 이때 실시예 9와 실시예 10을 비교하여도 동일한 결과를 얻을 수 있다.
또한 동일한 구성으로 이루어지되 유리프릿이 상기 표1의 시료번호 GF4로 구성되는 실시예 7과 유리프릿이 상기 표1의 시료번호 GF5로 구성되는 실시예 9를 비교하면 전이온도가 451℃인 유리프릿을 사용할 때(실시예 9를 사용할 때) 광변환효율이 증가하는 것을 알 수 있다. 왜냐하면 실시예 7은 실시예 9에 비해 유리프릿이 빨리 녹아 글라스가 침투하여 병렬저항이 낮아지기 때문이다. 이때 실시예 8과 실시예 10을 비교하여도 동일한 결과를 얻을 수 있다.
[실시예 11]
75 중량%의 은(Ag) 분말의 외면에 25 중량%의 은(Ag) 분말을 피복시킨 도전성 필러 80 중량%와, 유리분말로서 상기 표 1의 시료번호 GF5 6중량%와, 유기용매 8.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실시예 12 내지 19]
실시예 12 내지 19는 실시예 11과 동일한 구성으로 이루어지되 코팅분말(은 분말)이 피복되는 금속분말이 실시예 12는 니켈, 실시예 13은 구리, 실시예 14는 주석, 실시예 15는 철, 실시예 16은 팔라듐, 실시예 17은 알루미늄, 실시예 18은 금, 실시예 19는 백금으로 이루어지는 전극 페이스트 조성물.
[실험예 3]
도막밀도 테스트는 PET 필름 위에 100um 두께로 인쇄 후 110℃/30min 건조된 시편의 도막밀도를 측정하였다.
표 4는 필러의 코팅분말의 종류에 따른 광변환효율 증대효과를 나타내는 것이다.
표 4
Figure PCTKR2012002172-appb-T000004
상기 표 4에서와 같이 코팅분말 없이 은(Ag) 분말로만 형성되는 비교예 6을 살펴보면 도막밀도가 4.21g/㎤이고, 광변환효율이 15.23%인 것을 알 수 있다.
또한 실시예 11 내지 19의 전극 페이스트 조성물들을 살펴보면 은(Ag) 분말에 비해 도전율이 떨어지는 금속분말의 외면에 은 분말을 피복시키더라도 조성물의 조합을 통해 도막밀도를 높임으로써 오히려 비교예 6에 비해 광변환효율이 증가하는 것을 알 수 있다.
[실시예 20]
은(Ag) 분말 12.5 중량%와, 30 중량%의 은(Ag) 분말이 피복되는 70 중량%의 구리(Cu) 분말로 형성되는 금속 코팅분말 87.5 중량%들이 혼합되는 도전성 필러 80 중량%와, 유리분말로서 상기 표 1의 시료번호 GF6 6중량%와, 유기용매 8.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실시예 21]
은(Ag) 분말 25 중량%와, 30 중량%의 은(Ag) 분말이 피복되는 70 중량%의 구리(Cu) 분말로 형성되는 금속 코팅분말 75 중량%들이 혼합되는 도전성 필러 80 중량%와, 유리분말로서 상기 표 1의 시료번호 GF6 6중량%와, 유기용매 8.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실시예 22]
은(Ag) 분말 37.5 중량%와, 30 중량%의 은(Ag) 분말이 피복되는 70 중량%의 구리(Cu) 분말로 형성되는 금속코팅 분말 62.5 중량%들이 혼합되는 도전성 필러 80 중량%와, 유리분말로서, 상기 표 1의 시료번호 GF6 6중량%와, 유기용매 8.9 중량%와, 유기바인더 5 중량%와, 첨가제 0.1 중량%를 포함하는 전극 페이스트 조성물.
[실험예 4]
도막밀도 테스트는 PET 필름 위에 100um 두께로 인쇄 후 110℃/30min 건조된 시편을 Mirage사의 SD-200L을 이용하여 측정하였다.
표 5는 분말 혼합 적용에 따른 광변환효율 증대효과를 나타내는 것이다.
표 5
Figure PCTKR2012002172-appb-T000005
표 5를 살펴보면, 코팅분말 없이 은 분말로만 형성되는 도전성 필러가 적용되는 비교예 6은 도막밀도가 4.21g/㎤이며, 광변환효율은 15.23%인 것을 알 수 있다.
또한 본 발명의 일실시예와 같이 은(Ag) 분말이 피복된 구리(Cu) 분말로 형성되는 필러가 적용되는 비교예 7은 도막밀도가 4.32g/㎤이며, 광변환효율은 15.64%인 것을 알 수 있으며, 단순히 은(Ag) 분말로만 이루어지는 비교예 6에 비해 광변환효율이 증가하는 것을 알 수 있다.
또한 본 발명의 제2 실시예와 같이 은(Ag) 분말이 피복된 구리(Cu)분말로 형성되는 금속 코팅분말에 은(Ag) 분말 10 중량%를 혼합시킨 필러가 적용되는 실시예 20을 비교예 6과 7에 비교하면 도막밀도가 증가하며, 이에 따라 광변환효율이 증가하는 것을 알 수 있다.
실시예 20과 실시예 21, 실시예 22를 비교하면 금속 코팅분말이 62.5 중량%, 은 분말이 37.5 중량%로 혼합될 때(실시예 22) 도막밀도가 가장 크게 증가하여 광변환효율이 가장 효율적으로 증가하는 것을 알 수 있다.
즉 상기 표 5의 결과에서 알 수 있듯이, 혼합분말을 통해 도막밀도를 증가시켜 태양전지 특성 중 가장 중요한 광변환효율을 향상시킬 수 있게 된다.

Claims (12)

  1. 50.0 ~ 90.0 중량%의 도전성 필러와, 5.0 ~ 20.0 중량%의 무기바인더, 0.5 ~ 20.0 중량%의 유기바인더, 4.5 ~ 20.0 중량%의 유기용매를 포함하고,
    상기 도전성 필러는
    10.0 ~ 70.0 중량%의 금속분말;
    상기 금속분말의 외면에 30.0 ~ 90.0 중량%로 피복되는 코팅분말을 포함하고,
    상기 금속분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것을 특징으로 하는 전극 페이스트 조성물.
  2. 청구항 1에서, 상기 코팅분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것을 특징으로 하는 전극 페이스트 조성물.
  3. 청구항 1 또는 2에서, 상기 무기바인더는 전이점이 300 ~ 600℃, 연화점이 330 ~ 650℃이며, 비스무스(Bi), 규소(Si), 알루미늄(Al), 나트륨(Na), 아연(Zn), 바륨(Ba), 마그네슘(Mg), 납(Pb), 탈륨(Tl), 구리(Cu), 크롬(Cr), 코발트(Co), 붕소(B), 세륨(Ce), Tl(탈륨), 칼슘(Ca) 산화물들 중 적어도 2종 이상이 혼합되는 유리 원료(Glass frit)인 것을 특징으로 하는 전극 페이스트 조성물.
  4. 청구항 3에서, 상기 용매는 방향족 탄화수소류, 에테르류, 케톤류, 락톤류, 에테르 알콜류, 에스테르류 및 디에스테르류들 중 선택된 1종 이상인 것을 특징으로 하는 전극 페이스트 조성물.
  5. 청구항 3에서, 0.10 ~ 0.1 중량%의 첨가제를 더 포함하고,
    상기 첨가제는 티타늄(Ti), 아연(Zn), 루테늄(Ru), 마그네슘(Mg), 팔라듐(Pd), 지르코니아(Zr), 규소(Si) 산화물들 중 어느 하나인 것을 특징으로 하는 전극 페이스트 조성물.
  6. 청구항 5에서, 상기 도전성 필러의 평균직경은 0.1 ~ 30㎛인 것을 특징으로 하는 전극 페이스트 조성물.
  7. 50.0 ~ 90.0 중량%의 도전성 필러와, 5.0 ~ 20.0 중량%의 무기바인더, 0.5 ~ 20.0 중량%의 유기바인더, 4.5 ~ 20.0 중량%의 유기용매를 포함하고,
    상기 도전성 필러는
    10.0 ~ 70.0 중량%의 금속분말과, 상기 금속분말의 외면에 30.0 ~ 90.0 중량%로 피복되는 코팅분말로 이루어지는 62.5 ~ 87.5 중량%의 코팅 금속분말;
    상기 금속분말에 혼합되는 12.5 ~ 37.5 중량%의 은(Ag) 분말을 포함하고,
    상기 금속분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것을 특징으로 하는 전극 페이스트 조성물.
  8. 청구항 7에서, 상기 코팅분말은 은(Ag) 분말, 니켈(Ni) 분말, 주석(Sn) 분말, 구리(Cu) 분말, 철(Fe) 분말, 팔라듐(Pd) 분말, 알루미늄(Al) 분말, 금(Au) 분말, 아연(Zn) 및 백금(Pt) 분말들 중 어느 하나인 것을 특징으로 하는 전극 페이스트 조성물.
  9. 청구항 7 또는 8에서, 상기 무기바인더는 전이점이 300 ~ 600℃, 연화점이 330 ~ 650℃이며, 비스무스(Bi), 규소(Si), 알루미늄(Al), 나트륨(Na), 아연(Zn), 바륨(Ba), 마그네슘(Mg), 납(Pb), 탈륨(Tl), 구리(Cu), 크롬(Cr), 코발트(Co), 붕소(B), 세륨(Ce), Tl(탈륨), 칼슘(Ca) 산화물들 중 적어도 2종 이상이 혼합되는 유리 원료(Glass frit)인 것을 특징으로 하는 전극 페이스트 조성물.
  10. 청구항 9에서, 상기 용매는 방향족 탄화수소류, 에테르류, 케톤류, 락톤류, 에테르 알콜류, 에스테르류 및 디에스테르류들 중 선택된 1종 이상인 것을 특징으로 하는 전극 페이스트 조성물.
  11. 청구항 7에서, 0.10 ~ 0.1 중량%의 첨가제를 더 포함하고,
    상기 첨가제는 티타늄(Ti), 아연(Zn), 루테늄(Ru), 마그네슘(Mg), 팔라듐(Pd), 지르코니아(Zr), 규소(Si) 산화물들 중 어느 하나인 것을 특징으로 하는 전극 페이스트 조성물.
  12. 청구항 11에서, 상기 도전성 필러의 평균직경은 0.1 ~ 30㎛인 것을 특징으로 하는 전극 페이스트 조성물.
PCT/KR2012/002172 2012-03-23 2012-03-26 태양전지용 전극 페이스트 조성물 WO2013141425A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280071695.1A CN104205243A (zh) 2012-03-23 2012-03-26 太阳能电池用电极糊组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0029808 2012-03-23
KR1020120029808A KR101315105B1 (ko) 2012-03-23 2012-03-23 태양전지용 전극 페이스트 조성물

Publications (1)

Publication Number Publication Date
WO2013141425A1 true WO2013141425A1 (ko) 2013-09-26

Family

ID=49222861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002172 WO2013141425A1 (ko) 2012-03-23 2012-03-26 태양전지용 전극 페이스트 조성물

Country Status (3)

Country Link
KR (1) KR101315105B1 (ko)
CN (1) CN104205243A (ko)
WO (1) WO2013141425A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700428A (zh) * 2014-01-13 2014-04-02 常州时创能源科技有限公司 硅太阳能电池电极用导电浆料及其制备方法
EP2797083A1 (en) * 2013-04-25 2014-10-29 LG Electronics, Inc. Paste composite for forming electrode of solar cell
JP2018518003A (ja) * 2015-04-24 2018-07-05 チャン スン カンパニー、リミテッド チップ部品用の電極用ペースト組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693078B1 (ko) * 2014-05-15 2017-01-05 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102306435B1 (ko) 2014-08-25 2021-09-28 엘지전자 주식회사 태양 전지 전극용 페이스트 조성물 및 태양 전지
KR102061718B1 (ko) 2017-10-30 2020-01-02 엘에스니꼬동제련 주식회사 표면 처리된 은 분말 및 이의 제조방법
EP3657516B1 (de) 2018-11-21 2022-03-02 Heraeus Nexensos GmbH Verbesserte edelmetall-pasten für siebgedruckte elektrodenstrukturen
KR20210111912A (ko) * 2020-03-02 2021-09-14 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. 태양전지 전극 형성용 조성물 및 이로부터 형성된 태양전지 전극
CN113035406B (zh) * 2021-03-10 2022-08-26 安徽华封电子科技有限公司 一种用于低温共烧陶瓷基板的过渡导体浆料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240464A (ja) * 1993-02-19 1994-08-30 Showa Denko Kk 銀被覆銅粉およびこれを用いた導電性組成物
JP2008111175A (ja) * 2006-10-31 2008-05-15 Fujikura Kasei Co Ltd 複合金属粉とその製造方法および導電性ペースト
KR100895414B1 (ko) * 2007-08-31 2009-05-07 (주)창성 은 코팅분말을 포함하는 전극용 전도성 페이스트 조성물 및그 제조방법
KR20090048313A (ko) * 2007-11-08 2009-05-13 제일모직주식회사 은이 코팅된 알루미늄 분말을 포함하는 전극형성용 조성물과 이를 이용하여 제조되는 전극

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138549A (ja) * 1993-11-15 1995-05-30 Tatsuta Electric Wire & Cable Co Ltd 導電性接着剤
JPH09282935A (ja) * 1996-04-09 1997-10-31 Hitachi Chem Co Ltd 銀めっき銅粉
US6663799B2 (en) * 2000-09-28 2003-12-16 Jsr Corporation Conductive metal particles, conductive composite metal particles and applied products using the same
JP4389148B2 (ja) * 2002-05-17 2009-12-24 日立化成工業株式会社 導電ペースト
CN101118932A (zh) * 2007-09-03 2008-02-06 华东理工大学 太阳能电池正面电极用导电浆料
US20090211626A1 (en) * 2008-02-26 2009-08-27 Hideki Akimoto Conductive paste and grid electrode for silicon solar cells
JP5633285B2 (ja) * 2010-01-25 2014-12-03 日立化成株式会社 電極用ペースト組成物及び太陽電池
WO2012033303A2 (en) * 2010-09-08 2012-03-15 Dongjin Semichem Co., Ltd. Zno-based glass frit composition and aluminum paste composition for back contacts of solar cell using the same
CN102280161B (zh) * 2011-08-18 2013-08-28 陈晓东 一种晶硅太阳能电池正面电极用导电浆料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240464A (ja) * 1993-02-19 1994-08-30 Showa Denko Kk 銀被覆銅粉およびこれを用いた導電性組成物
JP2008111175A (ja) * 2006-10-31 2008-05-15 Fujikura Kasei Co Ltd 複合金属粉とその製造方法および導電性ペースト
KR100895414B1 (ko) * 2007-08-31 2009-05-07 (주)창성 은 코팅분말을 포함하는 전극용 전도성 페이스트 조성물 및그 제조방법
KR20090048313A (ko) * 2007-11-08 2009-05-13 제일모직주식회사 은이 코팅된 알루미늄 분말을 포함하는 전극형성용 조성물과 이를 이용하여 제조되는 전극

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2797083A1 (en) * 2013-04-25 2014-10-29 LG Electronics, Inc. Paste composite for forming electrode of solar cell
CN103700428A (zh) * 2014-01-13 2014-04-02 常州时创能源科技有限公司 硅太阳能电池电极用导电浆料及其制备方法
CN103700428B (zh) * 2014-01-13 2016-06-15 常州时创能源科技有限公司 硅太阳能电池电极用导电浆料及其制备方法
JP2018518003A (ja) * 2015-04-24 2018-07-05 チャン スン カンパニー、リミテッド チップ部品用の電極用ペースト組成物

Also Published As

Publication number Publication date
KR101315105B1 (ko) 2013-10-07
KR20130107766A (ko) 2013-10-02
CN104205243A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013141425A1 (ko) 태양전지용 전극 페이스트 조성물
WO2014126293A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2015037798A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR101159787B1 (ko) ZnO계 글래스 프릿 조성물 및 이를 이용한 태양전지의 후면 전극용 알루미늄 페이스트 조성물
WO2013070049A1 (en) Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
CN114334216B (zh) 一种厚膜导体浆料
JP2013089600A (ja) 厚膜銀ペーストと半導体デバイスの製造においてのその使用
WO2013085112A1 (ko) 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
WO2010117207A2 (en) Paste and solar cell using the same
WO2017061764A1 (ko) 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지
CN109961871B (zh) 一种用于丝印烧结形成透明导体的浆料和应用
JP2015170601A (ja) 太陽電池の電極のために使用される導電性ペースト
WO2019088525A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2015160066A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2019088509A1 (ko) 표면 처리된 은 분말 및 이의 제조방법
WO2016137059A1 (en) Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it
WO2015163570A1 (ko) 금속입자
WO2013141426A1 (ko) 태양전지용 전극 페이스트 조성물
WO2020111900A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2015160067A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2015160065A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2019088520A2 (ko) 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
WO2019074336A1 (ko) 분산성이 개선된 은 분말의 제조방법
WO2010071266A1 (ko) 환경친화형 태양전지 전극용 페이스트 및 이를 이용한 태양전지
CN114758812A (zh) 晶体硅太阳能电池用背银浆及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872133

Country of ref document: EP

Kind code of ref document: A1