WO2017061764A1 - 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지 - Google Patents

태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지 Download PDF

Info

Publication number
WO2017061764A1
WO2017061764A1 PCT/KR2016/011133 KR2016011133W WO2017061764A1 WO 2017061764 A1 WO2017061764 A1 WO 2017061764A1 KR 2016011133 W KR2016011133 W KR 2016011133W WO 2017061764 A1 WO2017061764 A1 WO 2017061764A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
paste composition
front electrode
cell front
present
Prior art date
Application number
PCT/KR2016/011133
Other languages
English (en)
French (fr)
Inventor
이진권
강성구
김진현
심지명
김지현
송영준
박준걸
이혜성
강성학
임종찬
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Priority to CN201680058386.9A priority Critical patent/CN108431964B/zh
Publication of WO2017061764A1 publication Critical patent/WO2017061764A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell paste composition, a solar cell formed using the same.
  • a solar cell is a semiconductor device that converts solar energy into electrical energy.
  • the solar cell includes a semiconductor wafer, an antireflection film, a front electrode, and a rear electrode.
  • the solar cell induces the P-N junction photoelectric effect of the semiconductor wafer by the incident sunlight, and the electrons generated therefrom provide an electric current flowing through the electrode to the outside.
  • the front electrode is coated with a metal paste on one surface of the wafer to form the front electrode.
  • a paste composition containing a metal, glass frit, or the like is applied to a substrate by a general screen printing method or the like to form an electrode circuit having a specific shape, and is dried and baked to impart conductivity.
  • the front electrode since the front electrode is located at the top of the solar cell, it is required to develop a metal paste having excellent adhesion and low contact resistance because the electrical conductivity must be increased while minimizing shading loss.
  • glass frit which is an important composition of a metal paste, is active.
  • the glass frit causes an interfacial reaction with the antireflection film to etch the antireflection film, which is an oxidation-reduction reaction, in which some elements are reduced to produce by-products.
  • Conventional glass frit powder has a high content of lead oxide (PbO), and lead is reduced after an interfacial reaction, thereby causing environmental problems.
  • the present invention is to solve the above problems, to provide a paste composition for forming a solar cell front electrode having a low content of lead oxide, and having an excellent conversion efficiency.
  • the present invention provides a solar cell manufactured using the paste composition for solar cell front electrode of the present invention.
  • the present invention relates to a solar cell front electrode paste composition of high efficiency, the solar cell front electrode paste composition of the present invention
  • the glass frit of the present invention is SiO 2 , ZnO, Li 2 O, B 2 O 3 , Al 2 O 3 , CuO, Na 2 O, ZrO 2 , MgO, P 2 O 5 , CaO, BaO, SnO, SrO, It may further comprise one or more selected from the group consisting of K 2 O, TiO 2 and MnO 2 .
  • Glass frit of the present invention is TeO 2 20 to 60wt%, PbO 1 to 30wt%, ZnO 1 to 20wt%, Bi 2 O 3 1 to 30wt%, Li 2 O 0.1 to 5wt%, SiO 2 0.1 to 15wt% and B 2 O 3 It may comprise 0.1 to 10wt%.
  • Glass frit of the present invention may be included in 0.1 to 15wt% with respect to the paste composition.
  • the conductive metal powder of the present invention may include one or more selected from silver, gold, copper, nickel, aluminum, palladium, chromium, cobalt, tin, lead, zinc, iron, tungsten, magnesium, and alloys thereof.
  • the conductive metal powder may be included in an amount of 60 to 99.5 wt% based on the paste composition.
  • the organic vehicle of the present invention is an organic binder dissolved in a solvent, the organic vehicle may be included in 0.1 to 35% by weight relative to the paste composition.
  • the organic binder may include at least one selected from cellulose resins, acrylic resins, and polyvinyl resins.
  • the present invention may provide a solar cell front electrode and a solar cell including the same, which is manufactured from the paste composition for solar cell front electrode.
  • the paste composition for solar cell front electrode according to the present invention can be used for the production of the front electrode of the solar cell, there is little content of lead oxide has an environmentally friendly advantage.
  • the paste composition for solar cell front electrode according to the present invention has excellent etching ability and low contact resistance with an antireflection film, and thus the solar cell employing the solar cell front electrode formed thereon has high energy conversion efficiency.
  • a solar cell is a semiconductor device that converts solar energy into electrical energy, and means a semiconductor wafer, an antireflection film, a front electrode, and a back electrode.
  • the present invention relates to a paste composition for a solar cell front electrode
  • It relates to a paste composition for a solar cell front electrode comprising an organic vehicle.
  • the glass frit included in the paste composition for a front electrode of the present invention may induce an effect of etching the antireflection film during the firing process, improving adhesion between the conductive metal powder and the wafer, and lowering the firing temperature.
  • the glass frit causes an interfacial reaction with the antireflection film to etch the antireflection film, which is an oxidation-reduction reaction, in which some elements are reduced to be produced as by-products.
  • Conventional glass frit powder has a high content of lead oxide (PbO), and lead is reduced after an interfacial reaction, thereby causing environmental problems.
  • the front electrode paste composition of the present invention lowers the content of lead oxide used in the past, increases the content of ZnO and Bi 2 O 3 , and introduces an environmentally friendly and excellent etching ability for the front electrode paste composition.
  • the paste composition for the front electrode of the present invention contains TeO 2 to increase the adhesion between the substrate and the front electrode, and further improve the etching ability and lower the contact resistance with the antireflection film, thereby increasing the open voltage.
  • the glass frit of the present invention may include TeO 2 20 to 60wt%, PbO 1 to 30wt%, ZnO 1 to 20wt% and Bi 2 O 3 1 to 30wt% with respect to the total content of the glass frit in order to increase the light efficiency of the solar cell
  • TeO 2 20 to 60wt% PbO 1 to 30wt%
  • ZnO 1 to 20wt% ZnO 1 to 20wt%
  • Bi 2 O 3 1 to 30wt% with respect to the total content of the glass frit in order to increase the light efficiency of the solar cell
  • it is not limited thereto.
  • the glass frit of the present invention in order to improve the excitation voltage effect, SiO 2 , ZnO, Li 2 O, B 2 O 3 , Al 2 O 3 , CuO, Na 2 O, ZrO 2 , MgO, P 2 O 5 , It may further include one or more selected from the group consisting of CaO, BaO, SnO, SrO, K 2 O, TiO 2 and MnO 2 , more preferably Li 2 O, SiO 2 , B 2 O 3 can do.
  • the excitation voltage refers to a voltage necessary to give the minimum energy required to collide the atoms or molecules to excite, and has an effect of improving the solar cell efficiency.
  • the content of Li 2 O, SiO 2 , B 2 O 3 is not limited, but may preferably include 0.1 to 5 wt% of Li 2 O, 0.1 to 15 wt% of SiO 2 , and 0.1 to 10 wt% of B 2 O 3.
  • the glass frit of the present invention is preferably TeO 2 20 to 60wt%, PbO 1 to 30wt%, ZnO 1 to 20wt%, Bi 2 O 3 1 to 30wt%, Li 2 O 0.1 to 5wt%, SiO 2 0.1 To 15 wt%, and B 2 O 3 0.1 to 10 wt%.
  • the glass frit of the present invention may be composed of an oxygen polyhedron having an oxygen-containing network structure, specifically, a random network structure.
  • the softening point of the glass frit is preferably 300 to 500 ° C, and the viscosity of the glass melt is appropriate within the above range, which is preferable for forming the electrode, but is not limited thereto.
  • the glass frit of the present invention may have an excellent conversion efficiency, and may be included in an amount of 0.1 to 15 wt% based on the paste composition in order to prevent an increase in resistance and a decrease in solderability, but is not limited thereto.
  • the glass frit can be prepared using conventional methods.
  • the composition may be added in the above composition ratio, melted at 900 to 1300 ° C., and quenched.
  • the mixed composition may be ground by a ball mill disk mill or planetary mill to obtain a glass frit.
  • the glass frit may have an average particle diameter (D50) of 0.1 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m, but is not limited thereto.
  • D50 average particle diameter
  • the conductive metal powder of the present invention may be a metal powder that is commonly used to prepare the electrode of the solar cell, for example, silver, gold, copper, nickel, aluminum palladium, chromium, cobalt, tin, lead, zinc , Iron, tungsten, magnesium, and alloys thereof may include one or more, and may be silver (Ag), which preferably has excellent electrical conductivity and has strong interfacial bonding with a crystalline inorganic semiconductor such as silicon.
  • the purity of the conductive metal powder may be 80% or more, preferably 95% or more, but the silver powder is not particularly limited as long as it is a purity for satisfying the conditions normally required as the electrode.
  • the shape of the conductive metal powder may be applied without particular limitation as long as it is a shape known in the art.
  • spherical, flake, or a combination thereof may be used, but is not limited thereto.
  • the particle diameter of the conductive metal powder may be adjusted to an appropriate range in consideration of the desired firing rate and the influence of the process of forming the electrode.
  • the average particle diameter of the conductive metal powder may have a size of about 0.1 ⁇ m to 5 ⁇ m, but the present invention is not limited thereto.
  • the conductive metal powder does not have a low viscosity or phase separation of the paste, and is economically 60 to 99.5% by weight, preferably 70 to 99.5% by weight, more preferably 80 To 99.5% by weight of conductive metal powder.
  • the paste composition for a solar cell front electrode of the present invention may include an organic vehicle that serves to adjust the viscosity and serves as a dispersion medium of the solid particles.
  • the organic vehicle may be a binder solution in which an organic binder is dissolved in a solvent.
  • the organic binder of the present invention may be any organic binder commonly used, and may include one or more selected from cellulose resins, acrylic resins, and polyvinyl resins.
  • the organic binder may be methyl cellulose, ethyl cellulose, carboxymethyl cellulose, nitrocellulose, hydroxy cellulose, ethyl hydroxyethyl cellulose, polymethacrylate, acrylic acid ester, butyl acrylate, polyvinyl alcohol, poly Vinylpyrrolidone, polyvinyl butyral, and the like.
  • the solvent of the organic vehicle may be an organic solvent that dissolves an organic binder.
  • organic solvent that dissolves an organic binder.
  • Specific examples thereof include pine oil, diethylene glycol monoethyl acetate, diethyl glycol monobutyl ether, diethylene glycol monobutyl ether acetate, and ethylene glycol monobutyl ether.
  • the content of the organic binder contained in the organic vehicle of the present invention may include, but is not limited to, 10 to 30% by weight of the organic binder of the organic vehicle.
  • the organic vehicle of the present invention contains 0.1 to 35% by weight, more preferably 10 to 25% by weight, based on the total paste composition for solar cell front electrodes in order to easily disperse the conductive metal powder and maintain the high efficiency of the solar cell. It is preferred, but not limited to.
  • the paste composition for solar cell front electrodes of the present invention may further contain additives commonly known as necessary.
  • the additive may include one or more materials selected from thickeners, thixotropic agents, stabilizers, dispersants, thixotropic agents, leveling agents, antifoaming agents and the like.
  • the amount of the additive may be further included in about 0.1 to 10wt% with respect to the paste composition, but may be determined depending on the properties of the finally obtained paste composition for solar cell front electrodes.
  • the present invention can provide a solar cell front electrode formed using the paste composition.
  • the front electrode of the present invention may be formed through a process of printing, drying and firing the paste composition on a wafer substrate.
  • the printing method may use screen printing, gravure printing, offset printing, roll-to-roll printing, aerosol printing, jet printing, and the like, and is not particularly limited to such a printing method.
  • the present invention can provide a solar cell comprising the solar cell front electrode.
  • the solar cell of the present invention can greatly improve the power generation efficiency of the solar cell by providing excellent conversion efficiency and resistance characteristics.
  • a solar cell according to an embodiment of the present invention is as follows.
  • the semiconductor material used for the semiconductor layer may specifically be crystalline silicon, for example a silicon wafer may be used.
  • One of the first semiconductor layer and the second semiconductor layer may be a semiconductor layer doped with p-type impurities, and the other may be a semiconductor layer doped with n-type impurities.
  • P-type impurities may be doped with group III elements (B, Ga, In, etc.)
  • N-type impurities may be doped with group 5 elements (P, As, Sb, etc.).
  • a P-N junction is formed at an interface between the semiconductor layers, which is a part which receives sunlight and generates a current by a photovoltaic effect. Electrons and holes generated by the photovoltaic effect are attracted to the P layer and the N layer, respectively, and move to the electrodes bonded to the lower and upper layers, respectively, and loads on the electrodes to use the electricity generated therein.
  • An antireflection film may be formed on the second semiconductor layer.
  • the anti-reflection film reduces the reflectance of sunlight incident on the front surface of the solar cell. When the reflectance of the solar light is reduced, the amount of light reaching the P-N junction is increased to increase the short circuit current of the solar cell, and the conversion efficiency of the solar cell may be improved.
  • the anti-reflection film may be made of a light absorbing and insulating material, for example, silicon nitride (SiN x ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), oxidation Magnesium (MgO), cerium oxide (CeO 2 ), and combinations thereof, and may be formed in a single or multiple layers.
  • a light absorbing and insulating material for example, silicon nitride (SiN x ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), oxidation Magnesium (MgO), cerium oxide (CeO 2 ), and combinations thereof, and may be formed in a single or multiple layers.
  • a front electrode may be formed on the anti-reflection film, and a rear electrode may be formed on the rear surface of the semiconductor layer.
  • the electrode may be formed by printing a paste composition including a conductive metal powder on a semiconductor wafer and then performing heat treatment.
  • the antireflection film may be partially removed by chemical treatment. It may be deposited by CVD (chemical vapor deposition), PECVD (plasma enhanced chemical vapor deposition), sputtering, or other methods. By removing a portion of the antireflective film, electrical contact between the semiconductor substrate and the conductor of the paste composition can be improved.
  • the paste composition may be printed in a pattern on the antireflective film, for example in a bus bar with connection lines. Printing may be by screen printing, plating, extrusion, inkjet, shaped or multiple printing, or ribbons.
  • the paste composition may be heated to fire the conductive metal powder.
  • the firing temperature can be set to enable burnout of the organic material from the paste composition as well as any other organic material present. In one embodiment, the firing temperature may be between 750 and 950 ° C.
  • the components shown in Table 1 were mixed at the indicated ratios (wt%), and then melted at 1,100 ° C. for 30 minutes and then quenched by quenching with pure water (H 2 O).
  • the quenched glass melt was ground in an Attrition-mill grinder to produce a glass frit having an average particle diameter of 1.5 ⁇ .
  • Table 1 shows the components and contents of the glass frit corresponding to each example.
  • the paste compositions were each prepared using the glass frit prepared above. 90 wt% of the silver powder which has an average particle diameter of 2 micrometers was used for the conductive metal powder. Glass frit was used 2wt%.
  • As an organic binder cellulose ester (CAB of EASTMAN company) and ethyl cellulose resin (ECN company of AQUALON company) were used at 1 wt%, respectively.
  • 3 wt% BC (BUTYL CARBITOL) 3 wt% BC (Trimethyl Pentanyl Diisobutylate) 2 wt% Dibasic ester (Dibasic ester, TCI's Dimethyl adipate / dimethyl glutarate / dimethyl succinate mixture) was used.
  • a semiconductor layer having a 90 ⁇ / sq sheet resistance is formed by doping phosphorus (P) through a diffusion process using POCl 3 at 810 ° C. in a tube furnace using a 156 mm single crystal silicon wafer.
  • a silicon nitride film was deposited using a chemical vapor deposition method (PECVD method) using precursor SiH 4 and NH 3 to form a 70 nm thickness to form an antireflection film.
  • PECVD method chemical vapor deposition method
  • the rear electrode was coated with a thickness of 30 ⁇ m by screen printing using the above electrode paste composition containing aluminum powder, followed by drying in a drying furnace at 250 ° C. for 60 seconds.
  • the front electrode was applied to the thickness of 20 ⁇ m by the screen printing method using the paste composition prepared in Examples and Comparative Examples of the present invention and then dried for 60 seconds in a drying furnace of 200 °C.
  • the printed solar cell was produced in a belt firing furnace at 820 ° C. for 1 minute to produce a solar cell.
  • the characteristics evaluation results of the produced solar cells are shown in Table 2 below.
  • a solar cell was manufactured in the same manner as in Example 1 except that the components of the glass frit of Table 1 were different.
  • the characteristics evaluation results of the produced solar cells are shown in Table 2 below.
  • the characteristics of the 3bus bar structure, finegr line width of 50 ⁇ m, and the number of finer line 105 printed / fired solar cells were fabricated.
  • the electro-optical characteristics of the manufactured solar cells were measured, and the current density-voltage (J-V) characteristics were measured under an illumination of 100 mW / cm 2 (AM 1.5 G) by an Oriel 1000W solar simulator.
  • the measured value is expressed as energy conversion efficiency (%) through the following Equation 1.
  • the conversion efficiency refers to the ratio of the output of the solar cell to the incident light energy per unit area.
  • the series resistance value is calculated after measuring the simulator's J-V characteristics and used to understand the correlation with FF.
  • Voc represents the open circuit voltage (V)
  • Jsc represents the optical short circuit current (mA / cm 2)
  • fill factor is the fill factor (%)
  • Pin is the intensity of the incident light. 100 mW / cm 2 is shown.
  • Ribbon adhesion was evaluated using a 1.2mm wide module fabrication ribbon.
  • the completed ribbon is measured using IMADA's DS2-20N instrument. At this time, the angle of the ribbon and the solar cell maintains 180 degrees.
  • the embodiment of the present invention reduces the series resistance between the electrode and the solar cell substrate as compared to the comparative example. .
  • the open-circuit voltage and charge factor characteristics were improved, and it was found that the solar cell had an excellent energy conversion efficiency.
  • Example of the present invention has a stronger adhesive force than the comparative example. This is because it is impossible to modularize the solar cell when the ribbon adhesion is weak, it was confirmed that the solar cell module according to the paste composition of the present invention has excellent safety.

Abstract

본 발명은 태양전지 전면전극용 페이스트 조성물, 이를 이용하여 형성된 태양전지에 관한 것이다. 본 발명에 따른 태양전지 전면전극용 페이스트 조성물은 태양전지의 전면전극의 제조에 사용될 수 있으며, 산화납의 함유량이 적어 친환경적인 장점이 있다. 또한 본 발명에 따른 태양전지 전면전극용 페이스트 조성물은 우수한 에칭능력을 가지는 동시에 반사방지막과의 접촉저항도 낮아 이로 형성된 태양전지용 전면전극을 채용한 태양전지는 높은 에너지 전환효율을 가진다.

Description

태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지
본 발명은 태양전지 전면전극용 페이스트 조성물, 이를 이용하여 형성된 태양전지에 관한 것이다.
태양전지(solar cell)는 태양에너지를 전기에너지로 변환시켜 주는 반도체 소자로서, 반도체 웨이퍼, 반사방지막, 전면전극 및 후면전극으로 이루어져 있다. 태양전지는 입사되는 태양광에 의해 반도체 웨이퍼의 P-N 접합 광전 효과가 유도되고, 이로부터 발생된 전자들이 전극을 통해 외부로 흐르는 전류를 제공한다.
이 중 전면전극은 웨이퍼의 일면에 금속 페이스트를 도포하여 전면전극을 형성한다. 금속, 글래스 프릿 등을 포함하는 페이스트 조성물을 일반적인 스크린 프린팅 방법 등에 의해 기판에 도포하여 특정 형상의 전극 회로를 형성하고, 건조 및 소성함으로써 전도성을 부여한다.
특히, 전면전극은 태양전지의 가장 상부에 위치하므로, 빛 가림손실(shading loss)은 최소화하면서 전기 전도도는 증대시켜야 하기 때문에 우수한 접착력과 낮은 접촉 저항 특성을 갖는 금속 페이스트의 개발이 요구되고 있다. 이 중 금속 페이스트의 중요 조성물인 글래스 프릿(Glass frit)에 대한 연구가 활발하다.
글래스 프릿은 반사방지막과 계면 반응을 일으켜 반사방지막을 에칭하게 되는데, 이는 산화-환원 반응으로서 일부 원소가 환원되어 부산물로 생성된다. 종래의 글래스 프릿 분말은 산화납(PbO)의 함유량이 높아, 계면 반응 후 납이 환원되어 환경적으로 문제점이 있었다.
따라서, 친환경적이면서도 종래보다 더욱 우수한 변환 효율 및 저항 특성을 제공할 수 있는 태양전지 전면전극용 페이스트에 대한 요구는 계속되고 있는 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 산화납의 함유량을 낮추고, 우수한 변환효율을 가지는 태양전지 전면전극 형성용 페이스트 조성물을 제공하는 것이다.
또한 본 발명은 본 발명의 태양전지 전면전극용 페이스트 조성물을 이용하여 제조된 태양전지를 제공하는 것이다.
본 발명은 고효율의 태양전지 전면전극용 페이스트 조성물에 관한 것으로, 본 발명의 태양전지 전면전극용 페이스트 조성물은
전도성 금속 분말;
TeO2 20 내지 60wt%, PbO 1 내지 30wt%, ZnO 1 내지 20wt% 및 Bi2O3 1 내지 30wt%를 포함하는 글래스 프릿; 및
유기 비히클;을 포함하는 것이다.
본 발명의 상기 글래스 프릿은 SiO2, ZnO, Li2O, B2O3, Al2O3, CuO, Na2O, ZrO2, MgO, P2O5, CaO, BaO, SnO, SrO, K2O, TiO2 및 MnO2로 이루어진 군으로부터 선택되는 하나 이상을 더 포함할 수 있다.
본 발명의 글래스 프릿은 TeO2 20 내지 60wt%, PbO 1 내지 30wt%, ZnO 1 내지 20wt%, Bi2O3 1 내지 30wt%, Li2O 0.1 내지 5wt%, SiO2 0.1 내지 15wt% 및 B2O3 0.1 내지 10wt%를 포함할 수 있다.
본 발명의 글래스 프릿은 페이스트 조성물에 대하여, 0.1 내지 15wt%로 포함될 수 있다.
본 발명의 전도성 금속 분말은 은, 금, 구리, 니켈, 알루미늄, 팔라듐, 크롬, 코발트, 주석, 납, 아연, 철, 텅스텐, 마그네슘 및 이들의 합금에서 선택되는 하나 이상을 포함할 수 있다. 상기 전도성 금속 분말은 페이스트 조성물에 대하여, 60 내지 99.5 중량%로 포함될 수 있다.
본 발명의 상기 유기 비히클은 유기 바인더가 용매에 용해된 것이며, 상기 유기 비히클은 페이스트 조성물에 대하여, 0.1 내지 35 중량%로 포함될 수 있다. 상기 유기 바인더는 셀룰로오스계 수지, 아크릴계 수지 및 폴리비닐계 수지 중에서 선택되는 하나 이상을 포함할 수 있다.
본 발명은 상기 태양전지 전면전극용 페이스트 조성물로 제조되는 태양전지 전면전극 및 이를 포함하는 태양전지를 제공할 수 있다.
본 발명에 따른 태양전지 전면전극용 페이스트 조성물은 태양전지의 전면전극의 제조에 사용될 수 있으며, 산화납의 함유량이 적어 친환경적인 장점이 있다.
본 발명에 따른 태양전지 전면전극용 페이스트 조성물은 우수한 에칭능력을 가지는 동시에 반사방지막과의 접촉저항도 낮아 이로 형성된 태양전지용 전면전극을 채용한 태양전지는 높은 에너지 전환효율을 가진다.
이하 본 발명의 태양전지 전면전극용 페이스트 조성물을 상세히 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 발명에 있어, 태양전지(solar cell)는 태양에너지를 전기에너지로 변환시켜 주는 반도체 소자로서, 반도체 웨이퍼, 반사방지막, 전면전극 및 후면전극으로 이루어진 것을 의미한다.
본 발명은 태양전지 전면전극용 페이스트 조성물에 관한 것으로,
전도성 금속 분말;
TeO2 20 내지 60wt%, PbO 1 내지 30wt%, ZnO 1 내지 20wt% 및 Bi2O3 1 내지 30wt% 포함하는 글래스 프릿; 및
유기 비히클;을 포함하는 태양전지 전면전극용 페이스트 조성물에 관한 것이다.
본 발명의 전면전극용 페이스트 조성물에 포함되는 글래스 프릿은 소성 공정 중 반사 방지막을 에칭하고, 전도성 금속 분말과 웨이퍼 사이의 접착력을 향상시키고 소성 온도를 보다 낮추는 효과를 유도할 수 있다.
상기 글래스 프릿은 반사방지막과 계면 반응을 일으켜 반사방지막을 에칭하게 되는데, 이는 산화-환원 반응으로서 일부 원소가 환원되어 부산물로 생성될 수 있다. 종래의 글래스 프릿 분말은 산화납(PbO)의 함유량이 높아, 계면 반응 후 납이 환원되어 환경적으로 문제점이 있었다.
이에 본 발명의 전면전극용 페이스트 조성물은 기존의 사용하던 산화납의 함량을 낮추고, ZnO 및 Bi2O3 의 함유량을 높여 친환경적이며 에칭능력이 우수한 전면전극용 페이스트 조성물을 도입하였다.
또한, 본 발명의 전면전극용 페이스트 조성물은 TeO2를 함유함으로써 기판과 전면전극사이의 접착력을 높이는 동시에 에칭능력을 더욱 향상시키고 반사방지막과의 접촉저항을 낮추어 개방전압을 높일 수 있다.
본 발명의 글래스 프릿은 태양전지의 광효율을 높이기 위하여 글래스 프릿 전체 함유량에 대하여 TeO2 20 내지 60wt%, PbO 1 내지 30wt%, ZnO 1 내지 20wt% 및 Bi2O3 1 내지 30wt%를 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 상기 글래스 프릿은 여기 전압 효과의 개선을 위해, SiO2, ZnO, Li2O, B2O3, Al2O3, CuO, Na2O, ZrO2, MgO, P2O5, CaO, BaO, SnO, SrO, K2O, TiO2 및 MnO2로 이루어진 군으로부터 선택되는 하나 이상을 더 포함할 수 있으며, 보다 바람직하게는 Li2O, SiO2, B2O3를 더 포함할 수 있다.
상기 여기 전압이란, 원자나 분자를 충돌시켜 여기 하는데에 필요한 최소 에너지를 주기 위하여 필요한 전압을 말하는 것으로, 태양전지 효율을 개선 시키는 효과를 나타낸다.
상기 Li2O, SiO2, B2O3 함유량은 제한되는 것은 아니나, 바람직하게는 Li2O 0.1 내지 5wt%, SiO2 0.1 내지 15wt%, 및 B2O3 0.1 내지 10wt%를 포함할 수 있으며, 본 발명의 글래스 프릿은 바람직하게는 TeO2 20 내지 60wt%, PbO 1 내지 30wt%, ZnO 1 내지 20wt%, Bi2O3 1 내지 30wt%, Li2O 0.1 내지 5wt%, SiO2 0.1 내지 15wt%, 및 B2O3 0.1 내지 10wt%를 포함할 수 있다.
본 발명의 글래스 프릿은 산소를 포함하는 망목 구조(network structure), 구체적으로는 불규칙 망목 구조(random network structure)를 가지는 산소 다면체로 구성될 수 있다. 글래스 프릿의 연화점은 300 내지 500℃인 것이 좋고, 상기 범위내에서 유리 용융물의 점도가 적절하여 전극 형성에 바람직하나, 이에 제한되는 것은 아니다.
본 발명의 글래스 프릿은 우수한 변환 효율을 가지고, 저항 상승 및 납땜성저하를 방지하기 위해, 페이스트 조성물에 대하여 0.1 내지 15wt%로 포함될 수 있으나, 이에 제한되는 것은 아니다.
상기 글래스 프릿은 통상의 방법을 사용하여 제조할 수 있다. 예를 들면, 상기 조성비로 첨가하여 900 내지 1300℃의 조건에서 용융시키고, 급냉(quenching)할 수 있다. 혼합된 조성물을 볼밀(ball mill) 디스크밀(disk mill) 또는 플라네터리밀(planetary mill) 등에 의해 분쇄 하여 글래스 프릿을 얻을 수 있다.
글래스 프릿은 평균입경(D50)이 0.1 내지 5㎛, 바람직하게 는 0.5 내지 3㎛가 될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 상기 전도성 금속 분말은 태양전지의 전극을 제조하는데, 통상적으로 사용되는 금속 분말일 수 있으며, 예를 들면, 은, 금, 구리, 니켈, 알루미늄 팔라듐, 크롬, 코발트, 주석, 납, 아연, 철, 텅스텐, 마그네슘 및 이들의 합금에서 선택되는 하나 이상을 포함할 수 있으며, 바람직하게는 우수한 전기전도도를 가지며, 실리콘과 같은 결정질 무기 반도체와 강한 계면 결착이 이루어지는 은(Ag) 일 수 있다.
전도성 금속 분말, 바람직하게는 은 분말의 순도는 80% 이상, 바람직하게는 95% 이상인 은 분말을 사용할 수 있으나, 전극으로서 통상 요구되는 조건을 만족시키기 위한 순도라면 특별히 한정되는 것은 아니다.
전도성 금속 분말의 형상은 본 발명의 기술 분야에 알려진 형상이라면 특별히 제한되지 않고 적용될 수 있다. 예를 들면 구형, 플레이크(flake)형, 또는 이들의 조합을 사용할 수 있으나, 이에 제한되는 것은 아니다.
또한 전도성 금속 분말의 입경은 원하는 소성 속도와 전극을 형성하는 공정의 영향 등을 고려하여 적절한 범위로 조절될 수 있다. 본 발명에서는 접촉 저항이 낮아지는 효과를 나타내기 위해 상기 전도성 금속 분말의 평균입경은 약 0.1 내지 5㎛의 크기를 가질 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 태양전지 전면전극용 페이스트 조성물에 있어, 전도성 금속 분말은 페이스트의 점도가 낮아지거나 상분리가 되지 않고, 경제적인 측면에서 60 내지 99.5 중량%, 좋게는 70 내지 99.5 중량%, 보다 좋게는 80 내지 99.5 중량%의 전도성 금속 분말을 포함할 수 있다.
본 발명의 태양전지 전면전극용 페이스트 조성물은 점도를 조절하는 역할 및 고상 입자들의 분산매 역할을 하는 유기 비히클을 포함할 수 있다. 유기 비히클은 유기 바인더가 용매에 용해된 바인더 용액일 수 있다.
본 발명의 유기 바인더는 통상적으로 사용되는 유기 바인더이면 무방하며, 셀룰로오스계 수지, 아크릴계 수지 및 폴리비닐계 수지 중에서 선택되는 하나 이상을 포함할 수 있다.
구체적인 예로, 유기 바인더는 메틸셀룰로오스, 에틸셀룰오로스, 카르복시메틸셀룰로스, 니트로셀롤로오스, 하이드록시셀룰로오스, 에틸 하이드록시에틸 셀룰로오스, 폴리메타크릴레이트, 아크릴산 에스테르, 부틸아크릴레이트, 폴리비닐알콜, 폴리비닐피롤리돈, 폴리비닐부티랄 등에서 선택되는 하나 이상의 물질을 포함할 수 있다.
상기 유기 비히클의 용매는 유기 바인더를 용해하는 유기 용매일 수 있는데, 구체적인 예로, 파인유, 디에틸렌글리콜모노에틸아세테이트, 디에틸글리콜모노부틸에테르, 디에틸렌글리콜모노부틸에테르아세테이트, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노부틸에테르아세테이트, 테르피네올, 메틸 글루타르산, 디(2-에틸헥실)프탈레이트, 디에틸프탈레이트, 다이아이소노닐 아디프산, 이염기성 에스테르 등에서 선택되는 하나 이상의 용매일 수 있다.
본 발명의 유기 비히클에 함유되는 유기 바인더의 함량은, 유기 비히클의 10 내지 30 중량%의 유기 바인더를 함유할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 유기 비히클은 전도성 금속 분말을 용이하게 분산시키고 태양전지의 고효율을 유지하기 위해서 전체 태양전지 전면전극용 페이스트 조성물에 대하여, 0.1 내지 35 중량% 범위, 더욱 좋게는 10 내지 25 중량%로 포함된 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명의 태양전지 전면전극용 페이스트 조성물은 필요에 따라 통상적으로 알려져 있는 첨가제를 더 함유할 수 있다. 첨가제의 일 예로 증점제, 요변제, 안정화제, 분산제, 칙소제, 레벨링제, 소포제 등에서 선택되는 하나 이상의 물질을 포함할 수 있다. 첨가제의 양은 페이스트 조성물에 대하여 약 0.1 내지 10wt%로 더 포함될 수 있으나, 최종적으로 얻어지는 태양전지 전면전극용 페이스트 조성물의 특성에 의존하여 결정될 수 있다.
또한, 본 발명은 상기 페이스트 조성물을 이용하여 형성된 태양전지 전면전극을 제공할 수 있다.
본 발명의 전면전극은 상기 페이스트 조성물을 웨이퍼 기판 상에 인쇄하고 건조 및 소성하는 공정을 통하여 형성될 수 있다. 인쇄방법은 스크린 프린팅, 그라비아 프린팅, 오프셋 프린팅, 롤투롤 프린팅, 에어로졸 프린팅, 제트 프린팅 등을 이용할 수 있으며, 특별히 이러한 인쇄 방식에 제한되는 것은 아니다.
또한, 본 발명은 상기 태양전지 전면전극을 포함하는 태양전지를 제공할 수 있다. 본 발명의 태양전지는 우수한 변환 효율 및 저항 특성을 제공함으로써 태양전지의 발전 효율을 크게 향상시킬 수 있다.
본 발명의 일 실시예에 따른 태양전지는 다음과 같다.
제 1 반도체 층; 상기 제 1 반도체층 상부에 형성되는 제 2 반도체층; 상기 제 2 반도체층 상부에 형성되는 반사방지막; 상기 반사방지막을 관통하여 제 2 반도체층에 접속되는 전면 전극; 및 상기 반도체층의 배면에 형성되는 후면 전극을 포함한다.
상기 반도체 층에 사용되는 반도체 물질은 구체적으로 결정질 규소 일 수 있고, 예컨대 실리콘 웨이퍼가 사용될 수 있다. 상기 제 1 반도체 층 및 상기 제 2 반도체 층 중 하나는 p형 불순물로 도핑된 반도체 층일 수 있으며, 다른 하나는 n형 불순물로 도핑된 반도체 층일 수 있다. P형 불순물은 3족 원소(B, Ga, In 등)가 도핑되고, N형 불순물은 5족 원소(P, As, Sb 등)가 도핑될 수 있다.
상기 반도체층 사이 계면에 P-N 접합이 형성되고, 이는 태양광을 받아 광기전력효과에 의해 전류를 발생시키는 부분이다. 광기전력효과에 의해 발생된 전자와 정공은 각각 P층 및 N층으로 끌어 당겨져 각각 하부 및 상부와 접합된 전극으로 이동하며, 전극에 부하를 걸어 여기에서 발생한 전기를 이용할 수 있다.
상기 제 2반도체 층의 상부에는 반사방지막이 형성될 수 있다. 상기 반사방지막은 태양전지 전면으로 입사되는 태양광의 반사율을 감소시킨다. 태양광의 반사율이 감소되면 P-N접합까지 도달하는 광량이 증대되어 태양전지의 단락전류가 증가되고, 태양전지의 변환효율이 향상될 수 있다.
상기 반사방지막은 빛을 적게 흡수하고 절연성이 있는 물질로 만들어질 수 있으며, 예컨대 질화규소(SiNx), 산화규소(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화세륨(CeO2) 및 이들의 조합일 수 있으며, 단일 또는 복수 층으로 형성될 수 있다.
상기 반사방지막 상부에는 전면 전극이 형성될 수 있고, 상기 반도체층의 배면에는 후면 전극이 형성 될 수 있다. 상기 전극은 전도성 금속 분말을 포함하는 페이스트 조성물을 반도체 웨이퍼에 인쇄한 후 열처리를 수행하여 형성될 수 있다.
상기 반사방지막은 화학적 처리에 의해 일부를 제거할 수도 있다. CVD(화학 증착), PECVD(플라즈마 강화 화학 증착), 스퍼터링, 또는 다른 방법에 의해 침착될 수 있다. 반사방지막 일부의 제거에 의해, 반도체 기재와 페이스트 조성물의 전도체 사이의 전기접촉이 개선될 수 있다. 페이스트 조성물은 반사방지막 상에 패턴으로, 예를 들어, 접속 라인을 갖는 버스바(bus bar)로 인쇄될 수 있다. 인쇄는 스크린 인쇄, 도금, 압출, 잉크젯, 형상 또는 다중 인쇄(shaped or multiple printing), 또는 리본(ribbon)에 의해 이루어질 수 있다.
전극 형성 공정에서는, 페이스트 조성물을 가열하여 전도성 금속 분말을 소성할 수 있다. 전형적으로 소성 온도는 페이스트 조성물로부터 유기 물질 뿐만 아니라 존재하는 임의의 기타 유기 물질의 번아웃(burnout)이 가능하도록 설정할 수 있다. 일실시 형태에서, 소성 온도는 750 내지 950℃일 수 있다.
이하 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐이며, 본 발명이 이에 제한되는 것은 아니다.
[실시예 1 내지 6]
1. 글래스 프릿의 제조
하기 표 1에 기재된 성분들을 표시된 비율(중량%)로 혼합한 다음, 1,100℃에서 30분동안 용융시킨 후 순수(H2O)로 Quenching하여 급냉시켰다. 급냉된 유리 용융물은 Attrition-mill 분쇄기로 분쇄하여, 1.5㎛의 평균입경을 갖는 글래스 프릿을 제조하였다.
하기 표 1에 각 실시예에 해당하는 글래스 프릿의 성분 및 함량을 나타내었다.
2. 페이스트 조성물의 제조
상기에서 제조된 글래스 프릿을 사용하여 페이스트 조성물을 각각 제조하였다. 전도성 금속 분말은 2㎛의 평균입경을 갖는 은 분말을 90wt%를 사용하였다. 글래스 프릿은 2wt% 사용하였다. 유기 바인더로는 셀룰로오스 에스테르(EASTMAN사 CAB) 와 에틸 셀룰로오스 수지(AQUALON사 ECN)를 각각 1wt%로 사용하였다.
유기 용제로는 TXIB(Trimethyl Pentanyl Diisobutylate) 2wt% 디베이직 에스테르(Dibasic ester, TCI사 Dimethyl adipate /dimethyl glutarate/ dimethyl succinate 혼합물) 3wt% BC(BUTYL CARBITOL) 1wt%를 사용하였다.
3. 태양전지의 제조
태양전지의 제조는 156mm 단결정 실리콘 웨이퍼를 이용하여 관상로(tube furnace)에서 810℃로 POCl3을 사용하는 확산 공정을 통해 인(P)을 도핑하여 90Ω/sq 시트 저항을 가지는 반도체층을 형성하고, 상기 반도체층 상에 화학기상증착법(PECVD 방법)으로 전구체 SiH4와 NH3를 사용하여 실리콘 질화막을 증착하여 70nm두께로 형성하여 반사방지막을 형성하였다.
후면 전극에는 은 분말 대신, 알루미늄 분말 포함하는 상기의 전극 페이스트 조성물을 이용하여 후면에 스크린 프린팅법으로 30㎛두께로 도포한 후 250℃의 건조로에서 60초간 건조하였다. 전면전극은 본 발명의 실시예 및 비교예에서 제조된 페이스트 조성물을 이용하여 스크린 프린팅법으로 20㎛ 두께로 도포하고 이후 200℃의 건조로에서 60초간 건조하였다. 인쇄가 완료된 태양전지는 820℃의 벨트 소성로에서 1분간 소성과정을 진행하여 태양전지를 제작하였다. 제작된 태양전지의 특성 평가 결과를 하기 표 2에 나타내었다.
[비교예 1 내지 3]
하기 표 1의 글래스 프릿의 성분이 상이한 것을 제외하고는 실시예 1과 동일한 방법 및 조건으로 태양전지를 제조하였다. 제작된 태양전지의 특성 평가 결과를 하기 표 2에 나타내었다.
(단위:wt%) 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 비교예1 비교예2 비교예3
TeO2 58.7 49.3 49.3 54.3 59.3 53.7 65.3 55.3 39.3
PbO 10 15 15 15 15 20 0 0 15
ZnO 8 8 3 3 3 8 8 8 3
Bi2O3 15.6 20 25 20 15 10.6 20 30 35
SiO2 2 2 2 2 2 2 2 2 2
B2O3 2 2 2 2 2 2 0 0 2
Li2O 3.7 3.7 3.7 3.7 3.7 3.7 4.7 4.7 3.7
Total 100 100 100 100 100 100 100 100 100
[특성 평가]
1. 3bus bar 구조, finegr 선폭 50㎛, finer line 개수 105개의 패턴으로 인쇄/소성된 태양전지를 제작하여 특성 평가를 진행하였다. 제조된 태양전지의 전기 광학적 특성을 측정하였으며, 전류밀도-전압 (J-V)특성은 Oriel 1000W solar simulator에 의해 100 mW/㎠ (AM 1.5 G)의 조명하에서 측정하였다. 측정값을 하기 수학식 1을 통해 에너지 전환효율(%)로 나타내었다. 상기 전환효율은 단위면적당 입사하는 빛 에너지에 대한 태양전지의 출력의 비율을 의미한다.
직렬저항값은 시뮬레이터의 J-V 특성 측정 후 계산되어지며 FF 와 상관관계를 이해하는데 활용된다.
[수학식 1]
에너지전환효율(%) = 필팩터 ×(Jsc×Voc)/Pin
Voc는 개방전압(open circuit voltage, V)을 나타내고, Jsc는 광 단락전류 밀도(short circuit current, mA/㎠)를 나타내고, 필팩터는 충전인자(Fill factor, %), Pin은 입사광의 세기로 100 mW/㎠을 나타낸다.
2. 리본 접착력은 1.2mm 폭의 모듈 제작용 리본을 활용하여 평가하였다. 리본의 구성성분은 Pb/Sn=60/40 비율로 되어 있으며, KESTOR 955 flux를 표면에 입혀서 제작된 태양전지의 bus bar 상단에 납땜하여 부착시킨다.
KESTOR 955 flux 용액에 200mm 길이로 자른 리본을 1분간 담가 두었다가 100도에서 10분간 건조시켜서 준비한다. 이를 SEMTEK社 SCB-130B manual soldering 설비를 이용하여 태양전지에 부착시킨다. 납땜은 태양전지 busbar 상단에 flux가 입혀진 리본을 위치시키고, 300℃에서 1분간 가열하는 방식으로 진행한다.
부착이 완료된 리본은 IMADA社의 DS2-20N 장비를 이용하여 부착력을 측정한다. 이때, 리본과 태양전지의 각도는 180도를 유지한다.
실시예 1 실시예2 실시예3 실시예4 실시예5 실시예6 비교예1 비교예2 비교예3
전환효율 (%) 19.13 19.14 19.13 19 18.94 19.11 17.14 18.45 16.97
충전인자 (%) 78.09 78.00 78.94 77.75 77.45 78.09 71.38 75.40 69.86
직렬저항 (mΩ) 8.23 8.12 7.70 8.29 8.48 8.04 10.06 9.06 11.70
리본접착력 (N) 3.50 4.49 3.70 3.39 3.18 3.94 1.88 2.49 5.96
본 발명에 따른 태양전지 전면전극용 페이스트 조성물에 의해 제조된 태양전지는 표 2에 정리된 바와 같이, 본 발명의 실시예가 비교예에 비해 전극과 태양전지 기판 간의 직렬 저항이 감소함을 알 수 있었다. 이로 인해, 개방전압 및 충전인자 특성이 향상되어, 우수한 태양전지 에너지 전환효율을 가짐을 알 수 있었다.
또한 리본 접착력을 확인한 결과, 본 발명의 실시예가 비교예에 비해 강한 접착력을 가지고 있는 것을 확인하였다. 이는 리본 부착력이 약할 경우 태양전지를 모듈화가 불가능하기 때문에, 본 발명의 페이스트 조성물에 따른 태양전지 모듈은 우수한 안전성을 가지는 것을 확인할 수 있었다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (10)

  1. 전도성 금속 분말;
    TeO2 20 내지 60wt%, PbO 1 내지 30wt%, ZnO 1 내지 20wt% 및 Bi2O3 1 내지 30wt%를 포함하는 글래스 프릿; 및
    유기 비히클;을 포함하는 태양전지 전면전극용 페이스트 조성물.
  2. 제 1항에 있어서,
    상기 글래스 프릿은 SiO2, ZnO, Li2O, B2O3, Al2O3, CuO, Na2O, ZrO2, MgO, P2O5, CaO, BaO, SnO, SrO, K2O, TiO2 및 MnO2로 이루어진 군으로부터 선택되는 하나 이상을 더 포함하는 태양전지 전면전극용 페이스트 조성물.
  3. 제 2항에 있어서,
    상기 글래스 프릿은 TeO2 20 내지 60wt%, PbO 1 내지 30wt%, ZnO 1 내지 20wt%, Bi2O3 1 내지 30wt%, Li2O 0.1 내지 5wt%, SiO2 0.1 내지 15wt% 및 B2O3 0.1 내지 10wt%를 포함하는 태양전지 전면전극용 페이스트 조성물.
  4. 제 1항에 있어서,
    상기 글래스 프릿은 페이스트 조성물에 대하여, 0.1 내지 15중량%로 포함되는 것인 태양전지 전면전극용 페이스트 조성물.
  5. 제 1항에 있어서,
    상기 전도성 금속 분말은 은, 금, 구리, 니켈, 알루미늄, 팔라듐, 크롬, 코발트, 주석, 납, 아연, 철, 텅스텐, 마그네슘 및 이들의 합금에서 선택되는 하나 이상을 포함하는 태양전지 전면전극용 페이스트 조성물.
  6. 제 1항에 있어서,
    상기 전도성 금속 분말은 페이스트 조성물에 대하여, 60 내지 99.5 중량%로 포함되는 것인 태양전지 전면전극용 페이스트 조성물.
  7. 제 1항에 있어서,
    상기 유기 비히클은 페이스트 조성물에 대하여, 0.1 내지 35 중량%로 포함되는 것인 태양전지 전면전극용 페이스트 조성물.
  8. 제 1항에 있어서,
    상기 유기 비히클은 유기 바인더가 용매에 용해된 것인 태양전지 전면전극용 페이스트 조성물.
  9. 제 8항에 있어서,
    상기 유기 바인더는 셀룰로오스계 수지, 아크릴계 수지 및 폴리비닐계 수지 중에서 선택되는 하나 이상을 포함하는 태양전지 전면전극용 페이스트 조성물.
  10. 제 1항 내지 제 9항에서 선택되는 어느 한 항에 따른 태양전지 전면전극용 페이스트 조성물로 제조되는 태양전지.
PCT/KR2016/011133 2015-10-05 2016-10-05 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지 WO2017061764A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680058386.9A CN108431964B (zh) 2015-10-05 2016-10-05 用于太阳能电池正面电极的浆料组合物及利用该浆料组合物的太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0139737 2015-10-05
KR1020150139737A KR101693840B1 (ko) 2015-10-05 2015-10-05 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지

Publications (1)

Publication Number Publication Date
WO2017061764A1 true WO2017061764A1 (ko) 2017-04-13

Family

ID=57811263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011133 WO2017061764A1 (ko) 2015-10-05 2016-10-05 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지

Country Status (4)

Country Link
KR (1) KR101693840B1 (ko)
CN (1) CN108431964B (ko)
TW (1) TWI621600B (ko)
WO (1) WO2017061764A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428492A (zh) * 2018-02-28 2018-08-21 洛阳师范学院 太阳能电池正面电极浆料

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961946B1 (ko) * 2017-07-17 2019-03-25 한화큐셀앤드첨단소재 주식회사 유리프릿, 이를 포함하는 perc 태양전지 전극 형성용 페이스트, 및 perc 태양전지 전극
KR101972384B1 (ko) * 2017-09-08 2019-08-19 대주전자재료 주식회사 태양전지 전면전극용 페이스트 조성물 및 이의 제조방법
KR20190073210A (ko) * 2017-12-18 2019-06-26 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102220531B1 (ko) 2018-04-23 2021-02-24 삼성에스디아이 주식회사 전극 형성용 조성물 및 이로부터 제조된 전극과 태양전지
KR102655096B1 (ko) * 2019-04-26 2024-04-04 쌩-고벵 글래스 프랑스 코팅 물품 및 이의 제조 방법
CN110491545B (zh) * 2019-09-04 2021-05-18 南通天盛新能源股份有限公司 一种n型太阳能电池正面细栅浆料及其制备方法
KR102283727B1 (ko) * 2020-01-21 2021-08-02 박태호 글라스 프릿 및 이를 포함하는 태양전지 전극용 페이스트 조성물
CN111403079B (zh) * 2020-03-30 2021-07-23 成都银盛新材料有限公司 Perc晶体硅太阳能电池背面电极用导电浆料及制备方法
CN114464690B (zh) * 2020-08-28 2023-02-07 晶科能源股份有限公司 太阳能电池栅线结构和光伏组件
CN113772959B (zh) * 2021-09-14 2023-05-02 黄山市晶特美新材料有限公司 一种双玻太阳能电池组件用高反射低温结晶玻璃浆料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100084476A (ko) * 2009-01-16 2010-07-26 히다치 훈마츠 야킨 가부시키가이샤 저융점 유리조성물, 그것을 사용한 저융점 봉착재료 및 전자부품
KR20100125273A (ko) * 2008-01-30 2010-11-30 바스프 에스이 유리 프릿
KR20110064074A (ko) * 2009-12-07 2011-06-15 동우 화인켐 주식회사 신규한 유리 프릿, 전기소자 밀봉용 유리 프릿 페이스트 조성물, 및 상기 유리 프릿 페이스트 조성물을 사용하는 전기소자의 밀봉 방법
US20110232746A1 (en) * 2010-05-04 2011-09-29 E. I. Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
KR20140062573A (ko) * 2012-11-12 2014-05-26 제일모직주식회사 태양전지 전극용 페이스트 및 이로부터 제조된 전극

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100478301C (zh) * 2001-11-05 2009-04-15 旭硝子株式会社 玻璃陶瓷组合物
KR101178980B1 (ko) * 2005-04-04 2012-08-31 파나소닉 주식회사 전극 피복용 유리 조성물 및 그것을 함유하는 유리페이스트
KR101683882B1 (ko) 2009-12-24 2016-12-21 엘지이노텍 주식회사 고효율 실리콘 태양전지 전면전극 형성용 페이스트 조성물 및 이를 포함하는 실리콘 태양전지
JP4868079B1 (ja) * 2010-01-25 2012-02-01 日立化成工業株式会社 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
KR20130064659A (ko) * 2011-12-08 2013-06-18 제일모직주식회사 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
CN103915127B (zh) * 2013-01-03 2017-05-24 上海匡宇科技股份有限公司 用于表面高方阻硅基太阳能电池正面银浆及其制备方法
KR101566071B1 (ko) * 2013-03-27 2015-11-04 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
EP2913139B1 (en) * 2014-02-26 2019-04-03 Heraeus Precious Metals North America Conshohocken LLC A glass comprising molybdenum and lead in a solar cell paste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100125273A (ko) * 2008-01-30 2010-11-30 바스프 에스이 유리 프릿
KR20100084476A (ko) * 2009-01-16 2010-07-26 히다치 훈마츠 야킨 가부시키가이샤 저융점 유리조성물, 그것을 사용한 저융점 봉착재료 및 전자부품
KR20110064074A (ko) * 2009-12-07 2011-06-15 동우 화인켐 주식회사 신규한 유리 프릿, 전기소자 밀봉용 유리 프릿 페이스트 조성물, 및 상기 유리 프릿 페이스트 조성물을 사용하는 전기소자의 밀봉 방법
US20110232746A1 (en) * 2010-05-04 2011-09-29 E. I. Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
KR20140062573A (ko) * 2012-11-12 2014-05-26 제일모직주식회사 태양전지 전극용 페이스트 및 이로부터 제조된 전극

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428492A (zh) * 2018-02-28 2018-08-21 洛阳师范学院 太阳能电池正面电极浆料
CN108428492B (zh) * 2018-02-28 2020-01-14 洛阳师范学院 太阳能电池正面电极浆料

Also Published As

Publication number Publication date
TW201718424A (zh) 2017-06-01
CN108431964B (zh) 2022-07-08
TWI621600B (zh) 2018-04-21
KR101693840B1 (ko) 2017-01-09
CN108431964A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2017061764A1 (ko) 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지
WO2015037933A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
EP2250650B1 (en) Aluminum pastes and use thereof in the production of silicon solar cells
WO2014126293A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2017175902A1 (ko) 태양전지용 후면전극 페이스트 조성물
WO2011016594A1 (ko) 실리콘 태양전지 제조용 납 프리 유리 프릿 분말 및 그 제조방법과 이를 포함하는 금속 페이스트 조성물 및 실리콘 태양전지
WO2013085112A1 (ko) 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
WO2011046365A2 (ko) 은 페이스트 조성물 및 이를 이용한 태양전지
US10770601B2 (en) Electro-conductive paste, solar cell and method for producing solar cell
CN107258002B (zh) 银糊组合物、使用其形成的太阳能电池的前电极以及采用其的太阳能电池
WO2019088525A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2014098351A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2019088526A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2014196712A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2017160074A1 (ko) 태양전지용 무연 도전 페이스트
KR20190028038A (ko) 태양전지 전면전극용 페이스트 조성물 및 이의 제조방법
WO2013100254A1 (ko) 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지
WO2017183881A1 (ko) 태양전지 후면전극용 페이스트 조성물
WO2019088520A2 (ko) 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
KR102004490B1 (ko) 태양전지 후면전극용 페이스트 조성물
WO2019103278A1 (ko) 유리프릿, 이를 포함하는 perc 태양전지 전극 형성용 페이스트, 및 perc 태양전지 전극
TWI697015B (zh) 太陽能電池前電極用糊劑組合物及其製備方法
WO2021137570A1 (ko) 태양전지 전극용 도전성 페이스트 조성물 및 이를 사용하여 제조된 전극을 포함하는 태양전지
WO2018080093A1 (ko) 태양전지용 기판 및 이를 구비한 태양전지
WO2018097479A1 (ko) 태양전지 전극용 도전성 페이스트 조성물 및 이를 사용하여 제조된 전극을 포함하는 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853880

Country of ref document: EP

Kind code of ref document: A1