WO2017175902A1 - 태양전지용 후면전극 페이스트 조성물 - Google Patents

태양전지용 후면전극 페이스트 조성물 Download PDF

Info

Publication number
WO2017175902A1
WO2017175902A1 PCT/KR2016/003766 KR2016003766W WO2017175902A1 WO 2017175902 A1 WO2017175902 A1 WO 2017175902A1 KR 2016003766 W KR2016003766 W KR 2016003766W WO 2017175902 A1 WO2017175902 A1 WO 2017175902A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
glass frit
back electrode
weight
electrode paste
Prior art date
Application number
PCT/KR2016/003766
Other languages
English (en)
French (fr)
Inventor
이진권
이성은
오형록
강현수
임종찬
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Priority to CN201680085441.3A priority Critical patent/CN109478573A/zh
Publication of WO2017175902A1 publication Critical patent/WO2017175902A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a glass frit for a solar cell, a back electrode paste, and a solar cell formed using the same.
  • the solar cell absorbs the light energy generated by the sun and generates current and voltage with the photovoltaic effect of generating electrons and holes. It has a semiconductor substrate (substarte) and an emitter layer to be made pn junction, the front electrode which is energized with the emitter is formed on the emitter, and the other surface facing the light incident surface is energized with the substrate The back electrode is formed.
  • the light absorbed by the solar cell has various wavelengths, and thus the refractive index is different according to the wavelength, so there is a wavelength range that can be absorbed well.
  • long-wavelength light has a small refractive index, which is poorly absorbed and penetrates solar cells.
  • it may be provided with a passivation layer that serves to increase the absorption of light by reflecting the transmitted light to pass through the solar cell again.
  • Passive Emitter and Rear Contact Type (PERC) solar cells have a passivation layer on the back of the wafer, which increases the absorption of light incident on the solar cell and reduces the loss of recombination of generated electrons and holes. You can prevent it.
  • the passivation layer is generally composed of an aluminum oxide layer (Al 2 O 3 LAYER) and a silicon nitride layer (SiNx LAYER), the aluminum oxide layer generates a fixed negative charge on the back of the solar cell.
  • the negative charge helps to move the holes generated in the solar cell to the rear electrode, thereby reducing the amount of recombination of the generated electrons and holes to collect more electrons and holes to open the voltage (Voc) can be improved, and solar cell efficiency is increased.
  • the structure of the passivation layer is maintained even after the firing process (approximately 800 ° C. heat treatment process) in manufacturing the PERC solar cell.
  • the passivation layer contacts the aluminum electrode and the back electrode at the back side of the wafer, and the glass frit component present in each electrode damages the passivation layer during the firing process.
  • the glass frit in the electrode is an essential component that the electrode adheres to the solar cell, the aluminum electrode and the rear electrode require a specific glass frit composition capable of realizing the necessary adhesion without damaging the passivation layer.
  • the present invention has been made in order to solve the above problems, the glass frit of the solar cell back electrode that can improve the electrode adhesion without the structural damage does not occur even after the firing process during the solar cell manufacturing and the solar cell back including the same It is an object to provide an electrode paste.
  • an object of the present invention is to provide a solar cell using the back electrode paste containing the glass frit.
  • the present invention provides a glass frit composition of a solar cell back electrode comprising a copper oxide-silicon oxide (CuO-SiO 2 ) compound.
  • the copper oxide-silicon oxide (CuO-SiO 2 ) compound may be included in an amount of 15 to 70% by weight based on the total weight of the glass frit composition.
  • Glass frit composition of the solar cell back electrode according to an embodiment of the present invention may further comprise Bi 2 O 3 and MnO 2 .
  • Glass frit composition of the solar cell back electrode according to an embodiment of the present invention Bi 2 O 3 10 to 80% by weight, SiO 2 It may include 5 to 30% by weight, MnO 2 3 to 30% by weight and 10 to 40% by weight CuO.
  • Glass frit composition of the solar cell back electrode according to an embodiment of the present invention may have a softening point (Ts) of 450 to 800 °C.
  • the glass frit may have an average particle diameter of 0.5 to 5.0 ⁇ m.
  • the present invention also provides a solar cell back electrode paste comprising (a) a conductive powder, (b) a glass frit containing a copper oxide-silicon oxide (CuO-SiO 2 ) compound, and (c) an organic vehicle.
  • a solar cell back electrode paste comprising (a) a conductive powder, (b) a glass frit containing a copper oxide-silicon oxide (CuO-SiO 2 ) compound, and (c) an organic vehicle.
  • the glass frit may further include Bi 2 O 3 and MnO 2 .
  • the glass frit is Bi 2 O 3 10 to 80 wt%, SiO 2 5 to 30% by weight, MnO 2 3 to 30% by weight and CuO may be to include 10 to 40% by weight.
  • Solar cell back electrode paste according to an embodiment of the present invention may include 0.1 to 6% by weight of the glass frit relative to the total weight.
  • the glass frit may have an average particle diameter of 0.5 to 5.0 ⁇ m.
  • the conductive powder is silver, gold, copper, nickel, aluminum, palladium, platinum, chromium, cobalt, tin, zinc, iron, iridium, rhodium, tungsten, One or more selected from molybdenum and alloys thereof.
  • the organic vehicle may be an organic binder including at least one selected from a cellulose resin, an acrylic resin, and a polyvinyl resin.
  • the present invention provides a solar cell having a conventional type or a PERC type (Passivated Emitter and Rear Cell type) structure including the back electrode paste.
  • PERC type Passivated Emitter and Rear Cell type
  • the glass frit composition of the solar cell back electrode according to the present invention has the advantage of preventing the structural damage due to the firing process during solar cell manufacturing, and can significantly improve the adhesion between the electrode and the substrate.
  • the present invention has an advantage that can provide a solar cell that can implement a high energy conversion efficiency using the back electrode paste containing the glass frit composition.
  • FIG. 1 briefly illustrates an aspect of a PERC solar cell.
  • the present invention is applicable to a solar cell having a conventional type or a PERC type (Passivated Emitter and Rear Cell type) structure.
  • the solar cell exemplified below is a PERC type, and the present invention is not necessarily applied to a PERC type solar cell.
  • the PERC type solar cell has a passivation on the back side, which can increase the absorption rate of light in the long wavelength region, reduce the recombination of electrons and holes, and increase the short circuit current (Isc) and open voltage (Voc). Can improve the efficiency.
  • passivation can reduce substrate damage, increase acid doping, increase open voltage, and increase current density.
  • FIG. 1 is a schematic view of an aspect of a PERC solar cell, and includes a p-type silicon substrate 10, a p-type semiconductor layer 31, and an n-type semiconductor layer 30 including an n-type semiconductor portion 30 on a front surface thereof.
  • a front electrode 60 electrically connected to the back electrode 70 and a rear electrode 70 electrically connected to the silicon substrate 10, and the anti-reflection film 40 and the silicon substrate 10 on the n-type semiconductor layer.
  • the BSF layer 20 can be formed in the.
  • a passivation layer 50 is formed on the rear surface by replacing aluminum on the rear surface with a silicon oxide film.
  • a portion of the passivation layer 50 is removed to form a metal electrode directly on silicon.
  • the glass frit component included in the back electrode paste may be damaged by etching the passivation layer during the baking process. If the passivation layer is damaged, it may cause a decrease in efficiency due to an open voltage drop and an increase in resistance.
  • the inventors of the present invention are aware of the above process problems and have developed a technique for preventing damage to the passivation layer at the bonding interface between the back electrode and the passivation layer. This is not limited to the improvement of the passivation layer, it is possible to prevent the structure damage in the process according to the solar cell, and to improve the adhesion of the electrode or the substrate includes a technology that can maximize the solar cell efficiency through this.
  • the glass frit composition of the back electrode paste for solar cells according to the present invention is characterized in that it comprises a copper oxide-silicon oxide-based (CuO-SiO 2 ) compound.
  • the copper oxide (CuO) may improve adhesion between the back electrode and the solder ribbon without damaging the passivation layer in combination with silicon oxide (SiO 2 ).
  • the copper oxide-silicon oxide-based compound may be included 15 to 70% by weight based on the total weight of the glass frit composition, preferably 25 to 50% by weight, more preferably 30 to 40% by weight.
  • the glass frit composition of the solar cell back electrode includes Bi 2 O 3 in a copper oxide-silicon oxide compound. And MnO 2 may be further included. That is, the glass frit composition of the solar cell back electrode according to the present invention may include a combination of Bi 2 O 3 , SiO 2 , MnO 2 and CuO.
  • the Bi 2 O 3 lowers the softening point of the glass frit so that it can be easily melted even at a sufficiently low temperature, so that the Bi 2 O 3 can be stably melted even in a fast firing process of the solar field, and the SiO 2 enhances adhesion to the solar cell substrate. By doing so, the synergistic effect of the desired physical properties can be realized in combination with other components.
  • the glass frit composition according to an embodiment of the present invention is preferably Bi 2 O 3 10 to 80 wt%, SiO 2 It may include 5 to 30% by weight, MnO 2 3 to 30% by weight and 10 to 40% by weight CuO.
  • the glass frit designed according to the present invention may prevent damage of the passivation layer, thereby preventing the recombination loss of electrons and holes, and increasing the light absorption to increase the light conversion efficiency.
  • the glass frit composition of the solar cell back electrode according to the present invention can prevent the passivation layer from being damaged by the glass frit during the firing process, the temperature of the highest point in the solar cell manufacturing process is a heat treatment process of about 800 °C.
  • the glass frit meshes with these firing conditions, and the combination of each of the components is important.
  • the glass frit composition of the present invention can improve the solar cell efficiency by maximizing the synergistic effect that can be obtained by the passivation layer, especially in the PERC solar cell by adjusting the content of the component in a specific range. have.
  • Glass frit composition according to an embodiment of the present invention may be included in the Bi 2 O 3 10 to 80% by weight, preferably 50 to 80% by weight, more preferably 55 to 65% by weight relative to the total weight of the glass frit.
  • SiO 2 may be included 5 to 30% by weight, preferably 5 to 20% by weight, more preferably 5 to 15% by weight.
  • MnO 2 may contain 3 to 30% by weight, preferably 5 to 20% by weight, more preferably 5 to 10% by weight, and CuO is 10 to 40% by weight, based on 100 parts by weight of the glass frit. 15 to 30% by weight, more preferably 20 to 25% by weight may be included.
  • the glass frit composition according to the present invention does not contain lead and is environmentally friendly, and may have a softening point (Ts) of 450 to 800 ° C, preferably 500 to 750 ° C.
  • the glass transition temperature (Tg) of the glass frit composition may be from 300 °C to 800 °C, preferably 400 °C to 600 °C.
  • the glass frit may further include a metal oxide or a metal halide in a range that does not reduce the desired effect.
  • a metal oxide or a metal halide in a range that does not reduce the desired effect.
  • the present invention provides a back electrode paste for a PERC solar cell comprising the glass frit composition described above. Specifically, the present invention provides a back electrode paste for a PERC solar cell comprising (a) a conductive powder, (b) a glass frit containing Bi 2 O 3 , SiO 2 , MnO 2 and CuO, and (c) an organic vehicle. do.
  • the conductive powder is a powder of a metal that gives electrical properties, silver (Ag), gold (Au), copper (Ci), nickel (Ni), aluminum (Al), palladium (Pd), Platinum (Pt), Chromium (Cr), Cobalt (Co), Tin (Sn), Zinc (Zn), Iron (Fe), Iridium (Ir), Rhodium (Rh), Tungsten (W), Molybdenum (Mo), etc. May be used, and any metal powder having good conductivity may be used without particular limitation.
  • it is selected from silver, gold, copper, nickel, aluminum and alloys containing one or more thereof. More preferably, silver (Ag) is more preferably used in view of not oxidizing even when the firing treatment is carried out in the air and maintaining excellent conductivity.
  • the conductive powder may be spherical.
  • the present invention is not limited thereto, and may be a non-spherical shape such as a flake shape, a plate shape, an amorphous shape, or a mixture of one or more spherical shapes or their non-spherical shapes.
  • the particle diameter of the conductive powder can be adjusted to an appropriate range in consideration of the desired sintering speed and the influence of the process of forming the electrode.
  • the average particle diameter of the conductive powder may be 0.5 to 5 ⁇ m, more preferably 0.7 to 2 ⁇ m. More preferably, conductive powders having different average particle diameters may be mixed and used.
  • the conductive powder may be contained 30 to 79% by weight, preferably 35 to 70% by weight based on the total weight of the components constituting the paste. If the conductive powder is less than 30% by weight, the viscosity of the paste may be lowered to cause phase separation, and the thickness of the electrode may be thinned to increase the resistance. When the conductive powder is more than 79% by weight, the viscosity becomes high, making printing difficult and costly. There is a problem that is raised.
  • the glass frit is used to improve the electrical characteristics of the solar cell in combination with the passivation layer in the PERC solar cell as described above, includes a specific component, and comprises a conductive powder and an organic vehicle By forming a paste to prevent damage to the passivation layer, it is possible to maximize the efficiency of the solar cell by increasing the adhesion.
  • the glass frit may be in the content range of the paste composition, preferably 0.1 to 6% by weight, more preferably 0.5 to 4% by weight. If the content range is satisfied, the reactivity at the interface is good, does not penetrate the passivation layer while implementing excellent adhesion, and the efficiency is excellent because the open voltage does not fall.
  • the glass frit has an average particle diameter of 0.5 to 5.0 ⁇ m, preferably 0.7 to 3 ⁇ m. If the above range is satisfied, pinhole defects may be prevented from occurring during electrode formation.
  • the metal compound may be further included in the paste within a range that does not reduce the desired effect.
  • the metal compound is preferably V 2 O 5 , ZnO, B 2 O 3 , PbO, BaO, SrO, WO 3 , Mo 2 O 3 , TeO 2 , Nb 2 O 3 , GeO 2 , Ga 2 O 3 , In 2 O 3 , NiO, CoO, B 2 O 3 , CaO, MgO, SrO, MnO, SeO 2 , MoO 3 , WO 3 , Y 2 O 3 , As 2 O 3 , La 2 O 3 , Nd 2 O 3 , Bi 2 O 3 , Ta 2 O 5 , FeO, HfO 2 , Cr 2 O 3 , CdO, Sb 2 O 3 , PbF 2 , ZrO 2 , Mn 2 O 3 , P 2 O 5 , Pr 2 O 3 , Gd 2 O 3 , Sm 2 O
  • the organic vehicle (vehicle) imparts viscosity and rheological properties to the printability to the composition through physical mixing with the inorganic component of the solar cell paste.
  • the organic vehicle may be an organic vehicle that is commonly used in solar cell electrode pastes, and may be, for example, a mixture of a polymer and a solvent.
  • Trimethyl Pentanyl Diisobutylate TXIB
  • Dibasic ester Dibasic ester
  • BC BTYL CARBITOL
  • Butyl Carbitol Acetate Butyl Carbitol
  • Butyl Cellulsolve Butyl Cellulose Acetate
  • Propylene Glycol Monomethyl Ether Dipropylene Glycol monomethyl ether, dimethyl adipate, dimethyl glutarate, propylene glycol monomethyl ether propionate, ethyl ether propionate, terpineol, propylene glycol monomethyl ether acetate, dimethylamino formaldehyde, methyl ethyl
  • Polymethacrylates of cellulose resins such as ethylcellulose, methylcellulose, nitrocellulose, cellulose esters, rosins or alcohol
  • the organic vehicle is 20 to 69% by weight, preferably 30 to 65% by weight based on the total weight of the paste.
  • the solar cell back electrode paste of the present invention may further include a conventional additive in order to improve the flow characteristics, process characteristics and stability in addition to the above-described components.
  • the additives include, but are not limited to, dispersants, thickeners, thixotropic agents, leveling agents, plasticizers, viscosity stabilizers, antifoaming agents, pigments, ultraviolet stabilizers, antioxidants, coupling agents, and the like.
  • the dispersant may include, but is not limited to, LUBRISOL Corporation SOLSPERSE, BYK Corporation DISPERBYK-180, 110, 996, and 997.
  • the thickener may include, but is not limited to, BYK-410, 411, and 420 of BYK Corporation.
  • the thixotropic agent may include, but is not limited to, ELEMENTIS Corporation THIXATROL MAX, BYK Corporation ANTI-TERRA-203, 204, 205, LONZA Corporation ACRAWAC C, and the like.
  • the leveling agent may include, but is not limited to, BYK-3932 P, BYK-378, BYK-306, BYK-3440, and the like.
  • the organic additive may be contained in an amount of about 1 to 20% by weight based on 100% by weight of the total conductive paste composition.
  • the present invention provides a solar cell having a conventional type or a PERC type (Passivated Emitter and Rear Cell type) structure including the above-mentioned back electrode paste.
  • PERC type Passivated Emitter and Rear Cell type
  • a PERC solar cell comprises a substrate of a first conductivity type; An emitter layer of a second conductivity type formed on the substrate; An anti-reflection film formed on the emitter layer; And a front electrode connected to the emitter layer through the anti-reflection film, and a passivation layer, a back electrode, and an aluminum electrode on a rear surface of the substrate.
  • the substrate of the first conductivity type is selected from P-type or N-type
  • the emitter layer of the second conductivity type is selected to have the opposite conductivity type as the substrate.
  • Group 3 elements are doped with impurities to form the P + layer
  • Group 5 elements are doped with impurities to form the N + layer.
  • B, Ga, In may be doped to form a P + layer
  • P, As, Sb may be doped to form an N + layer.
  • a P-N junction is formed at an interface between the substrate and the emitter layer, which is a part that receives sunlight and generates a current by the photovoltaic effect. The electrons and holes generated by the photovoltaic effect are attracted to the P layer and the N layer, respectively, and move to the electrodes bonded to the lower substrate and the upper emitter layer, respectively.
  • the anti-reflection film reduces the reflectance of sunlight incident on the front surface of the solar cell.
  • the amount of light reaching the P-N junction is increased to increase the short circuit current of the solar cell, and the conversion efficiency of the solar cell is improved.
  • the anti-reflection film may have a single film selected from a silicon nitride film, a silicon nitride film including hydrogen, a silicon oxide film, a silicon oxynitride film, or a combination of two or more, but not limited thereto.
  • the front electrode, the back electrode, and the aluminum electrode may be manufactured by a known method, and are preferably formed by screen printing.
  • the passivation layer is formed on the back of the substrate, and may be formed of aluminum oxide (Al 2 O 3 ), and may be formed of silicon oxide (SiO 2 ) or silicon nitride (SiN).
  • the passivation layer may be formed to a thickness of 1 to 50nm. It may be deposited by atomic layer deposition (ALD) or plasma enhanced chemical vapor deposition (PECVD).
  • the back electrode may be formed by applying the screen printing on the back of the passivation layer.
  • the back electrode uses a solar cell back electrode paste according to the present invention.
  • the paste is dried and then calcined through a heat treatment process.
  • the back electrode collects holes, which are charges moving from the substrate, and outputs them to an external device.
  • the components corresponding to the glass frit were added to the reactor and mixed, and they were melted at 1100 ° C. for 30 minutes and quenched by quenching with pure water (H 2 O).
  • the quenched glass melt was ground in a ball mill to produce a glass frit having an average particle diameter of 2 ⁇ m.
  • the prepared glass frit was used to prepare a solar cell back electrode paste according to the present invention.
  • Silver powder was used as the conductive powder.
  • the silver powder contains 35% by weight of silver particles (Daejoo) with an average particle diameter of 0.6 ⁇ m, 10% by weight of silver particles (Daejoo) with an average particle diameter of 1.2 ⁇ m, and 5.0% by weight of silver particles (Daejoo company) with an average particle diameter of 0.2 ⁇ m.
  • Glass frit was used in 1.4 weight%.
  • Ethyl cellulose resin (DOW Corporation STD-45) and ethyl cellulose resin (DOW Corporation STD-200) were each used as a binder at 1.3 wt%, and as a solvent, texanol (2,2,4-trimethyl-1,3).
  • a glass frit was carried out in the same manner as in Example 1 except that 1.0 wt% of glass frit and 20.4 wt% of terpineol were used.
  • the glass frit was carried out in the same manner as in Example 1 except that 0.6 wt% of glass frit and 20.8 wt% of terpineol were used.
  • a glass frit was carried out in the same manner as in Example 1 except that 1.8 wt% of glass frit and 19.6 wt% of terpineol were used.
  • Example 2 The same procedure as in Example 1 was conducted except that 2.0 wt% of glass frit and 19.4 wt% of terpineol were used.
  • the glass frit was carried out in the same manner as in Example 1 except for changing the components and contents according to Table 1.
  • Phosphorus (P) was doped by a diffusion process using POCl 3 in a tube furnace (850 ° C.) using a crystalline silicon wafer to form an emitter layer having 80 ⁇ / sq sheet resistance.
  • a silicon nitride film was deposited on the emitter layer by using chemical vapor deposition (PECVD) to form a silicon nitride film using precursor SiH 4 and NH 3 to form an antireflection film.
  • the front electrode paste (DAEJOO V89-11) was applied to the upper surface of the antireflection film and dried. Thereafter, the back electrode paste prepared above was coated on the back surface of the silicon substrate and dried at 250 ° C. for 2 minutes.
  • an aluminum electrode (DAEJOO DPA-3200) was applied to the silicon substrate on which the back electrode was printed, and then dried at 250 ° C. for 2 minutes.
  • the front electrode, the back electrode, and the aluminum electrode coating were carried out in a pattern by screen printing (using ASYS COMPANY printer).
  • the obtained solar cell silicon substrate was simultaneously fired at a maximum temperature of about 800 ° C. under a condition of IN-OUT about 1 minute in a belt type firing furnace to produce a desired solar cell.
  • the electrical characteristics (I-V characteristics) of the manufactured solar cells were tested using a solar simulator manufactured by ORIEL. Ten samples were prepared for each paste, and the average value of the ten samples was used, and the characteristics of the manufactured solar cells are shown in Table 2.
  • the manufactured electrode measured the conversion efficiency (Eff,%), the open voltage (Voc, V), the curve factor (FF,%) of the solar cell using a solar cell efficiency measuring equipment (pasna, CT-801).
  • the conversion efficiency and the open-circuit voltage are set as reference values based on the result value according to Example 1, and the measured values are converted into the reference values to represent relative comparison values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

본 발명의 일 실시예에 따른 PERC형 태양전지는 전면에 n형 반도체층를 포함하는 p형 실리콘 기판; p형 반도체층, 상기 n형 반도체층에 전기적으로 연결되는 전면전극; 및 상기 실리콘 기판에 전기적으로 연결되는 후면전극을 포함한다. 여기서 후면전극 페이스트의 유리 프릿 조성물은 산화구리-산화규소계(CuO-SiO2) 화합물을 포함하는 것을 특징으로 한다. 상기 산화구리(CuO)는 상기 산화규소(SiO2)와의 조합으로 패시베이션층을 손상시키지 않으면서 후면전극과 솔더리본 간의 접착력을 향상시킬 수 있다.

Description

태양전지용 후면전극 페이스트 조성물
본 발명은 태양전지용 유리 프릿, 후면전극 페이스트 및 이를 이용하여 형성된 태양전지에 관한 것이다.
태양전지는 태양에서 발생하는 광에너지를 흡수하여 전자와 정공을 발생하는 광기전 효과로 전류, 전압을 생성한다. 이는 pn 접합이 이루어지는 반도체 기판(substarte)과 에미터층(emmitter layer)을 구비하며, 에미터 상부에는 상기 에미터와 통전되는 전면 전극이 형성되고, 광입사면과 대향되는 다른 면에는 기판과 통전되는 후면 전극이 형성된다.
태양전지에 흡수되는 빛은 다양한 파장을 가지고 있어 파장에 따라 굴절률이 다르므로 흡수가 잘 되는 파장 범위가 존재한다. 대체로, 장파장의 빛은 굴절률이 작아 흡수가 잘 되지 않고 태양전지를 투과한다. 이에, 투과되는 빛들을 반사시켜 태양전지를 다시 통과하게 함으로써 빛의 흡수를 증가시키는 역할을 하는 패시베이션층을 구비하기도 한다.
PERC형(Passivated Emitter and Rear Contact Type) 태양전지는 웨이퍼 후면에 패시베이션층(Passivation Layer)을 구비한 것으로, 태양전지에 입사되는 빛의 흡수율을 증가시키고, 생성된 전자와 정공의 재결합에 따른 손실을 방지할 수 있다. 이때, 패시베이션층은 일반적으로 알루미늄산화물 층(Al2O3 LAYER)과 실리콘질화물 층(SiNx LAYER)으로 이루어지며, 알루미늄산화물 층은 태양전지 후면에서 fixed negative charge를 발생시킨다. 상기 음전하(negative charge)는 태양전지에서 발생된 정공을 후면 전극으로 이동하는 것을 도와주고, 이에 따라 발생된 전자와 정공이 재결합되는 양을 줄여주어 더욱 많은 전자와 정공을 수집할 수 있도록 함으로써 개방전압(Voc)을 향상시킬 수 있고, 태양전지 효율을 증대시킨다.
또한, PERC형 태양전지는 제조 시 소성 공정(약 800℃ 열처리공정) 이후에도 패시베이션층의 구조가 유지되는 것이 중요하다. 패시베이션층은 웨이퍼의 후면부에서 알루미늄 전극과 후면전극과 접촉하는데, 각 전극 내에 존재하는 유리 프릿(glass frit) 성분이 소성 공정 중 패시베이션층에 손상을 준다.
전극 내에 유리 프릿은 전극이 태양전지와 접착하는 역할을 하는 반드시 필요한 성분이므로, 알루미늄 전극과 후면전극은 패시베이션층에 손상을 주지 않으면서 필요한 접착력을 구현할 수 있는 특정한 유리 프릿 조성이 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 태양전지 제조 시 소성 공정 이후에도 구조상 손상이 발생하지 않고, 전극 부착력을 향상시킬 수 있는 태양전지용 후면전극의 유리 프릿 및 이를 포함하는 태양전지용 후면전극 페이스트를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 유리 프릿을 함유한 후면전극 페이스트를 이용하여 태양전지를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 산화구리-산화규소계(CuO-SiO2) 화합물을 포함하는 태양전지용 후면전극의 유리 프릿 조성물을 제공한다. 이때, 상기 산화구리-산화규소계(CuO-SiO2) 화합물은 유리 프릿 조성물 전체 중량에 대하여 15 내지 70중량% 포함될 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극의 유리 프릿 조성물은 Bi2O3 및 MnO2 를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극의 유리 프릿 조성물은 Bi2O3 10 내지 80중량%, SiO2 5 내지 30중량%, MnO2 3 내지 30중량% 및 CuO 10 내지 40중량%를 포함할 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극의 유리 프릿 조성물은 연화점(Ts)이 450 내지 800℃인 것일 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극의 유리 프릿 조성물에 있어서, 상기 유리 프릿은 평균입경이 0.5 내지 5.0㎛인 것일 수 있다.
또한, 본 발명은 (a) 전도성 분말, (b) 산화구리-산화규소계(CuO-SiO2) 화합물을 함유하는 유리 프릿 및 (c) 유기 비히클을 포함하는 태양전지용 후면전극 페이스트를 제공한다.
본 발명의 일 실시예에 따른 태양전지용 후면전극 페이스트에 있어서, 상기 유리 프릿은 Bi2O3 및 MnO2 를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극 페이스트에 있어서, 상기 유리 프릿은 Bi2O3 10 내지 80중량%, SiO2 5 내지 30중량%, MnO2 3 내지 30중량% 및 CuO 10 내지 40중량% 포함하는 것일 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극 페이스트는 전체 중량에 대하여 유리 프릿을 0.1 내지 6중량% 포함할 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극 페이스트에 있어서, 상기 유리 프릿은 평균입경이 0.5 내지 5.0㎛인 것일 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극 페이스트에 있어서, 상기 전도성 분말은 은, 금, 구리, 니켈, 알루미늄, 팔라듐, 백금, 크롬, 코발트, 주석, 아연, 철, 이리듐, 로듐, 텅스텐, 몰리브덴 및 이들의 합금에서 선택되는 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 따른 태양전지용 후면전극 페이스트에 있어서, 상기 유기 비히클은 셀룰로오스계 수지, 아크릴계 수지 및 폴리비닐계 수지 중에서 선택되는 하나 이상을 포함하는 유기 바인더가 용매에 용해된 것일 수 있다.
또한, 본 발명은 상기의 후면전극 페이스트를 포함하는 일반형(Conventional type) 또는 PERC형(Passivated Emitter and Rear Cell type) 구조를 갖는 태양전지를 제공한다.
본 발명에 따른 태양전지용 후면전극의 유리 프릿 조성물은 태양전지 제조 시 소성 공정으로 인하여 구조상 손상되는 것을 방지하고, 전극 및 기판 사이의 접착력을 획기적으로 향상시킬 수 있는 이점이 있다.
또한, 본 발명은 상기의 유리 프릿 조성물을 함유한 후면전극 페이스트를 이용하여 높은 에너지 전환효율을 구현할 수 있는 태양전지를 제공할 수 있는 이점이 있다.
도 1은 PERC형 태양전지의 일 양태를 간략하게 나타낸 것이다.
(부호의 설명)
10 : 실리콘 기판, 20 : BSF층,
30: n형 반도체층, 31: p형 반도체층
40: 반사방지막, 50: 패시베이션층,
60: 전면전극, 70: 후면전극
이하, 본 발명의 태양전지용 후면전극의 유리 프릿 조성물, 이를 함유한 후면전극 페이스트 및 상기 페이스트를 포함하여 제조되는 태양전지에 대하여 상세히 설명한다. 본 발명은 하기의 실시예에 의해 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이고, 첨부된 특허 청구범위에 의해 한정되는 보호범위를 제한하고자 하는 것은 아니다. 이때, 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다.
본 발명은 일반형(Conventional type) 또는 PERC형(Passivated Emitter and Rear Cell type) 구조를 갖는 태양전지에 적용 가능한 것이다. 이 중 하기에 예시하는 태양전지는 PERC형인 것으로, 본 발명을 반드시 PERC형 태양전지에 한정하여 적용하는 것은 아니다.
PERC형 태양전지는 후면에 패시베이션(passivation)을 가지고 있어, 장파장 영역의 빛의 흡수율을 높일 수 있고, 전자와 정공의 재결합을 감소시켜 단락전류(Isc) 및 개방전압(Voc)을 높임으로써 태양전지의 효율을 향상시킬 수 있다. 또한, 이러한 패시베이션은 기판 손상을 줄이고 산의 도핑 수준을 높여(heavy doping) 개방전압을 증가시키고, 전류밀도를 높일 수 있다.
도 1은 PERC형 태양전지의 일 양태를 간략하게 나타낸 것으로서, 전면에 n형 반도체부(30)를 포함하는 p형 실리콘 기판(10), p형 반도체층(31), n형 반도체층(30)에 전기적으로 연결되는 전면전극(60) 및 실리콘 기판(10)에 전기적으로 연결되는 후면전극(70)을 포함하며, 상기 n형 반도체층의 상부에 반사방지막(40)과 실리콘 기판(10)에 BSF층(20)이 형성될 수 있다. 특히, PERC형 태양전지는 후면의 알루미늄을 실리콘 산화막으로 대치하여 후면에 패시베이션층(passivation layer)(50)이 형성된다. 또한, 상기 패시베이션층(50) 일부분을 제거하여 금속전극을 직접 실리콘에 형성한다.
이때, 소성 공정 중에 후면전극용 페이스트에 포함된 유리 프릿 성분이 패시베이션층을 에칭(etching)하여 손상을 일으킬 수 있다. 패시베이션층이 손상을 입게 되면 개방전압 저하 및 저항 상승으로 인한 효율저하의 원인이 된다.
본 발명의 발명자는 상기와 같은 공정 상 문제점을 인식하고, 후면전극과 패시베이션층 사이의 접합 계면에서의 패시베이션층의 손상을 방지하는 기술을 개발하게 되었다. 이는 패시베이션층 개선에 제한되는 것이 아니고, 태양전지 제조에 따른 공정에서 구조 손상을 방지하고, 전극 또는 기판의 접착력을 향상시킬 수 있어 이를 통해 태양전지 효율을 극대화할 수 있는 기술을 포함한다.
본 발명에 따른 태양전지용 후면전극 페이스트의 유리 프릿 조성물은 산화구리-산화규소계(CuO-SiO2) 화합물을 포함하는 것을 특징으로 한다. 상기 산화구리(CuO)는 산화규소(SiO2)와의 조합으로 패시베이션층을 손상시키지 않으면서 후면전극과 솔더리본 간의 접착력을 향상시킬 수 있다. 이때, 산화구리-산화규소계 화합물은 유리 프릿 조성물 전체 중량에 대하여 15 내지 70중량% 포함될 수 있으며, 바람직하게는 25 내지 50중량%, 보다 바람직하게는 30 내지 40중량% 포함되는 것이 더욱 좋다.
상기 태양전지용 후면전극의 유리 프릿 조성물은 다른 양태로, 산화구리-산화규소계 화합물에 Bi2O3 및 MnO2 를 더 포함하는 것일 수 있다. 즉, 본 발명에 따른 태양전지용 후면전극의 유리 프릿 조성물은 Bi2O3, SiO2, MnO2 및 CuO의 조합으로 이루어진 것을 포함할 수 있다.
상기 Bi2O3는 유리 프릿의 연화점을 낮추어서 충분히 낮은 온도에서도 쉽게 용융이 가능하도록 함으로써 태양전의 빠른 소성 공정에서도 안정적으로 용융될 수 있도록 하며, 상기 SiO2는 태양전지 기판과의 접착력을 강화시키는 역할을 하여, 다른 성분과의 조합으로 목적하는 물성의 상승 효과를 구현할 수 있다.
이때, 본 발명의 일 실시예에 따른 유리 프릿 조성물은 바람직하게는 Bi2O3 10 내지 80중량%, SiO2 5 내지 30중량%, MnO2 3 내지 30중량% 및 CuO 10 내지 40중량%를 포함할 수 있다. 상기 범위를 만족하는 경우 본 발명에 따라서 설계된 유리 프릿이 패시베이션층의 손상을 방지함으로써 전자와 정공의 재결합 손실을 방지하고, 광 흡수율을 높임으로써 광변환 효율을 증대시킬 수 있어 더욱 좋다.
본 발명에 따른 태양전지용 후면전극의 유리 프릿 조성물은 패시베이션층이 태양전지 제조공정 상 최고점의 온도가 약 800℃의 열처리공정인 소성 공정을 거치는 과정에서 유리 프릿에 의해 손상되는 것을 방지할 수 있다. 이에, 유리 프릿은 이러한 소성 조건과 맞물려 그 성분 하나하나의 조합이 중요하다.
따라서, 본 발명의 상기 유리 프릿 조성물은 구성성분의 함량을 특정 범위로 조절하여 사용함으로써, 특히 PERC형 태양전지에서 패시베이션층으로 하여금 얻을 수 있는 상승 효과를 극대화하여 태양전지 효율을 획기적으로 향상시킬 수 있다.
본 발명의 일 실시예에 따른 유리 프릿 조성물은 유리 프릿 전체 중량에 대하여, Bi2O3가 10 내지 80중량%, 바람직하게는 50 내지 80중량%, 보다 바람직하게는 55 내지 65중량% 포함될 수 있으며, SiO2가 5 내지 30중량%, 바람직하게는 5 내지 20중량%, 보다 바람직하게는 5 내지 15중량% 포함될 수 있다. 또한, MnO2가 3 내지 30중량%, 바람직하게는 5 내지 20중량%, 보다 바람직하게는 5 내지 10중량% 함유될 수 있으며, CuO가 유리 프릿 100중량부에 대하여 10 내지 40중량%, 바람직하게는 15 내지 30중량%, 보다 바람직하게는 20 내지 25중량% 포함될 수 있다.
본 발명에 따른 유리 프릿 조성물은 납을 함유하지 않아 환경친화적이며, 연화점(Ts)이 450 내지 800℃, 바람직하게는 500 내지 750℃인 것일 수 있다. 또한, 상기 유리 프릿 조성물의 유리전이온도(Tg)는 300℃ 내지 800℃, 바람직하게는 400℃ 내지 600℃인 것일 수 있다. 본 발명의 유리 프릿 조성물은 상기의 연화점 및 유리전이온도의 범위를 만족하는 경우 목적하는 물성의 효과 달성에 더욱 좋다.
본 발명에서 상기 유리 프릿은 목적하는 효과를 저하시키지 않는 범위에서 금속 산화물 또는 금속 할라이드를 더 포함할 수 있다. 일예로, 바람직하게는 V2O5, ZnO, B2O3, BaO, SrO, WO3, Mo2O3, TeO2, Nb2O3, Li2O, GeO2, Ga2O3, In2O3, NiO, CoO, B2O3, CaO, MgO, SrO, MnO, SeO2, MoO3, WO3, Y2O3, As2O3, La2O3, Nd2O3, Bi2O3, Ta2O5, FeO, HfO2, Cr2O3, CdO, Sb2O3, PbF2, ZrO2, Mn2O3, P2O5, Pr2O3, Gd2O3, Sm2O3, Dy2O3, Eu2O3, Ho2O3, Yb2O3, Lu2O3, CeO2, BiF3, SnO, Ag2O, Nb2O5, TiO2, Rb2O, Na2O, K2O, Cs2O, Lu2O3, SnO2 및 Tl2O3 및중에서 선택되는 어느 하나 이상의 금속 산화물 또는 NaCl, KBr, NaI, ZnF2 등의 금속 할라이드를 더 포함할 수 있으며, 이에 제한되지 않는다.
본 발명은 상술한 유리 프릿 조성물을 포함하는 PERC형 태양전지용 후면전극 페이스트를 제공한다. 구체적으로, 본 발명은 (a) 전도성 분말, (b) Bi2O3, SiO2, MnO2 및 CuO를 함유하는 유리 프릿 및 (c) 유기 비히클을 포함하는 PERC형 태양전지용 후면전극 페이스트를 제공한다.
본 발명에서 (a) 전도성 분말은 전기적 특성을 부여하는 금속의 분말인 것으로, 은(Ag), 금(Au), 구리(Ci), 니켈(Ni), 알루미늄(Al), 팔라듐(Pd), 백금(Pt), 크롬(Cr), 코발트(Co), 주석(Sn), 아연(Zn), 철(Fe), 이리듐(Ir), 로듐(Rh), 텅스텐(W), 몰리브덴(Mo) 등을 사용할 수 있으며, 양호한 전도성을 가지는 금속 분말이라면 특별히 제한되지 않고 사용할 수 있다. 바람직하게는 은, 금, 구리, 니켈, 알루미늄 및 이들을 하나 이상 포함하는 합금 중에서 선택된 것이 좋다. 보다 바람직하게는 소성 처리를 대기 중에서 실시하는 경우에도 산화되지 않고, 우수한 전도성을 유지할 수 있는 측면에서 은(Ag)을 사용하는 것이 더욱 좋다.
상기 전도성 분말은 구형인 것을 사용할 수 있다. 하지만 이에 제한되지 않고, 플레이크(flake)형, 판상형, 무정형 등의 비구형상일 수 있으며, 구형상 또는 이들의 비구형상이 어느 하나 이상되어 혼합된 것이 사용될 수 있다.
상기 전도성 분말의 입경은 원하는 소결 속도와 전극을 형성하는 공정에 따른 영향 등을 고려하여 적절한 범위로 조절할 수 있다. 바람직하게는 전도성 분말의 평균입경은 0.5 내지 5㎛, 보다 바람직하게는 0.7 내지 2㎛인 것일 수 있다. 더욱 좋게는 서로 다른 평균입경을 갖는 전도성 분말을 혼합하여 사용할 수 있다.
본 발명에서 전도성 분말은 페이스트를 이루는 성분 전체 중량에 대하여 30 내지 79중량%, 바람직하게는 35내지 70 중량% 함유될 수 있다. 상기 전도성 분말이 30중량% 미만인 경우에는 페이스트의 점도가 낮아져 상분리가 일어날 수 있고, 전극의 막 두께가 얇아져 저항이 증가할 수 있으며, 79중량%를 초과하는 경우에는 점도가 높아져 인쇄가 어려워지고 비용이 상승되는 문제점이 있다.
본 발명에서 (b) 유리 프릿은 앞서 상술한 바와 같이 PERC형 태양전지에서 패시베이션층과의 조합으로 태양전지의 전기적 특성을 향상시키기 위해 사용되는 것으로, 특정 성분을 포함하고, 전도성 분말 및 유기 비히클과 페이스트를 이루어 패시베이션층의 손상을 방지시키고, 접착성을 높여 태양전지의 효율을 극대화할 수 있다.
이때, 상기 유리 프릿은 페이스트 전체 조성물 내 함량범위가 바람직하게는 0.1 내지 6중량%, 보다 바람직하게는 0.5 내지 4중량%일 수 있다. 상기 함량 범위를 만족하는 경우 계면에서의 반응성이 좋고, 우수한 접착력을 구현하면서도 패시베이션층에 침투하지 않으며, 개방전압 하락되지 않아 효율이 우수하다.
한편, 상기 범위를 벗어나면 전도성 분말의 소결성 및 접착력이 떨어지고 저항이 높아져 태양전지의 효율을 저하시킬 수 있다.
또한, 상기 유리 프릿은 평균입경이 0.5 내지 5.0㎛, 바람직하게는 0.7 내지 3㎛인 것이 좋다. 상기 범위를 만족하는 경우 전극 형성 시 핀홀 불량이 발생하는 것을 방지할 수 있어 좋다.
또한, 본 발명의 일 실시예에 따르면 목적하는 효과를 저하시키지 않는 범위 내에서 페이스트에 금속 화합물을 더 포함할 수 있다. 상기 금속 화합물로는 바람직하게는 V2O5, ZnO, B2O3, PbO, BaO, SrO, WO3, Mo2O3, TeO2, Nb2O3, GeO2, Ga2O3, In2O3, NiO, CoO, B2O3, CaO, MgO, SrO, MnO, SeO2, MoO3, WO3, Y2O3, As2O3, La2O3, Nd2O3, Bi2O3, Ta2O5, FeO, HfO2, Cr2O3, CdO, Sb2O3, PbF2, ZrO2, Mn2O3, P2O5, Pr2O3, Gd2O3, Sm2O3, Dy2O3, Eu2O3, Ho2O3, Yb2O3, Lu2O3, CeO2, BiF3, SnO, Ag2O, Nb2O5, TiO2, Rb2O, Cs2O, Lu2O3, SnO2, Tl2O3 및 금속 할라이드 중에서 선택되는 어느 하나 이상을 더 포함할 수 있다. 상기 금속 할라이드는 일예로,NaCl, KBr, NaI, ZnF2 등을 들 수 있으며, 반드시 이에 제한되지 않는다.
본 발명에서 (c) 유기 비히클(vehicle)은 태양전지용 페이스트의 무기성분과 물리적 혼합을 통하여 조성물에 인쇄성을 좋게 하도록 점도 및 유변학적 특성을 부여한다.
상기 유기 비히클은 통상적으로 태양전지 전극 페이스트에 사용되는 유기 비히클이 사용될 수 있으며, 일예로 고분자와 용매의 혼합물일 수 있다. 바람직하게는 TXIB(Trimethyl Pentanyl Diisobutylate), 디베이직 에스테르(Dibasic ester), BC(BUTYL CARBITOL), 부틸카비톨아세테이트, 부틸카비톨, 부틸셀루솔브, 부틸셀루솔브아세테이트, 프로필렌글리콜 모노메틸에테르, 디프로필렌글리콜모노메틸에테르, 디메틸 아디페이트, 디메틸 글루타레이트, 프로필렌글리콜모노메틸에테르프로피오네이트, 에틸에테르프로피오네이트, 테르피네올(terpineol), 프로필렌글리콜모노메틸에테르아세테이트, 디메틸아미노포름알데히드, 메틸에틸케톤, 감마 부티로락톤, 에틸락테이트 및 텍사놀(Texanol) 중에서 선택된 하나 이상의 용매 중에 에틸셀룰로스, 메틸셀룰로스, 니트로셀룰로스, 셀룰로오스 에스테르 등의 셀룰로스계 수지, 로진(rosin) 또는 알콜의 폴리메타크릴레이트, 아크릴산 에스테르 등의 아크릴계 수지 및 폴리비닐 알코올, 폴리비닐 부티랄 등의 폴리비닐계 수지 중에서 선택된 하나 이상의 수지를 첨가한 것일 수 있다.
상기 유기 비히클은 페이스트 전체 중량에 대하여 20 중량% 내지 69중량%, 바람직하게는 30 내지 65중량%인 것이 좋다. 상기 범위를 만족하는 경우 전도성 분말을 용이하게 분산시키고, 소성 후 잔류 탄소에 의한 저항증가로 태양전지의 변환효율이 저하되는 것을 방지할 수 있다.
본 발명의 태양전지용 후면전극 페이스트는 상술한 구성 요소 이외에 유동 특성, 공정 특성 및 안정성을 향상시키기 위하여 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제로는 분산제, 증점제, 요변제, 레벨링제, 가소제, 점도안정화제, 소포제, 안료, 자외선 안정제, 산화방지제, 커플링제 등을 들 수 있으며, 이에 제한되는 것은 아니다.
상기 분산제로는 LUBRISOL사 SOLSPERSE, BYK사의 DISPERBYK-180, 110, 996, 및 997 등을 들 수 있으나 이에 한정되지는 않는다. 상기 증점제로는 BYK사의 BYK-410, 411, 420 등을 들 수 있으나 이에 한정되지는 않는다. 상기 요변제로는 ELEMENTIS사 THIXATROL MAX, BYK사의 ANTI-TERRA-203, 204, 205, LONZA사 ACRAWAC C 등을 들 수 있으나 이에 한정되지는 않는다. 상기 레벨링제로는 BYK사의 BYK-3932 P, BYK-378, BYK-306, BYK-3440 등을 들 수 있으나 이에 한정되지는 않는다. 유기 첨가제는 도전 페이스트 조성물 전체 100중량%에 대하여, 약 1 내지 20중량%로 함유될 수 있다.
본 발명은 상술한 후면전극 페이스트를 포함하는 일반형(Conventional type) 또는 PERC형(Passivated Emitter and Rear Cell type) 구조를 갖는 태양전지를 제공한다.
이 중, 본 발명의 일 실시예에 따른 PERC형 태양전지는 제1 전도성 타입의 기판; 상기 기판상에 형성된 제2 전도성 타입의 에미터층; 상기 에미터층 상에 형성된 반사방지막; 상기 반사방지막을 관통하여 상기 에미터층에 접속되는 전면전극과, 상기 기판의 배면에 페이베이션층과 후면전극, 알루미늄전극을 포함한다.
상기 제1 전도성 타입의 기판은 P형 또는 N형에서 선택되며, 제2 도성 타입의 에미터층은 기판과 반대 도전형을 가지는 것으로 선택된다. P+층의 형성을 위해서는 3족 원소가 불순물로 도핑되고, N+층의 형성을 위해서는 5족 원소가 불순물로 도핑된다. 예를 들어, P+층 형성을 위해 B, Ga, In이 도핑되고, N+층 형성을 위해 P, As, Sb가 도핑될 수 있다. 상기 기판 및 에미터층 사이 계면에 P-N접합이 형성되고, 이는 태양광을 받아 광기전력효과에 의해 전류를 발생시키는 부분이다. 광기전력효과에 의해 발생된 전자와 정공은 각각 P층 및 N층으로 끌어 당겨져 각각 기판 하부 및 에미터층 상부와 접합된 전극으로 이동하며, 전극에 부하를 걸어 여기에서 발생한 전기를 이용할 수 있다.
상기 반사방지막은 태양전지 전면으로 입사되는 태양광의 반사율을 감소시킨다. 태양광의 반사율이 감소되면 P-N접합까지 도달하는 광량이 증대되어 태양전지의 단락전류가 증가되고, 태양전지의 변환효율이 향상된다. 반사방지막은 일예로, 실리콘 질화막, 수소를 포함한 실리콘 질화막, 실리콘 산화막, 실리콘 산화질화막에서 선택된 어느 하나의 단일막 또는 2개 이상이 조합된 다중막 구조를 가질 수 있으나, 이에 한정되는 것은 아니다.
상기 전면전극과 후면전극, 알루미늄전극은 공지된 방법으로 제조가능하며, 바람직하게는 스크린 인쇄법에 의해 형성된다.
상기 패시베이션층은 기판의 후면에 형성되는 것으로, 알루미늄 산화물(Al2O3)로 형성하며, 실리콘 산화물(SiO2) 또는 실리콘질화물(SiN)로 형성될 수 있다. 상기 패시베이션층은 1 내지 50nm의 두께로 형성될 수 있다. 이는 원자층증착법(ALD, Atomic Layer Deposition) 또는 플라즈마강화 화학기상증착법(PECVD, Plasma Enhanced CVD)에 의하여 증착될 수 있다.
후면전극은 패시베이션층의 후면에 스크린 인쇄를 통하여 도포하여 형성될 수 있다. 상기 후면전극은 본 발명에 따른 태양전지용 후면전극 페이스트를 이용한다. 상기 페이스트를 건조한 후 열처리 공정을 통하여 소성되어 형성된다. 상기 후면전극은 기판으로부터 이동하는 전하인 정공을 수집하여 외부 장치로 출력한다.
이하 본 발명에 따른 태양전지용 후면전극 페이스트에 대한 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.
(실시예 1)
표 1에 따른 조성에 따라 유리 프릿에 해당하는 성분들을 반응기에 투입하여 혼합하고, 이를 1100℃에서 30분 동안 용융하여 순수(H2O)로 켄칭(Quenching)하여 급냉시켰다. 급냉된 유리 용융물은 볼밀(Ball-mill)로 분쇄하여, 2㎛의 평균입경을 갖는 유리 프릿을 제조하였다.
제조된 유리 프릿을 사용하여 본 발명에 따른 태양전지용 후면전극 페이스트를 제조하였다.
전도성 분말로는 은 분말을 사용하였다. 은 분말은 평균입경이 0.6㎛인 은 입자(Daejoo사) 35중량%와 평균입경이 1.2㎛인 은 입자(Daejoo사) 10중량%와 평균입경이 0.2㎛인 은 입자(Daejoo사) 5.0중량%를 혼합하여 사용하였다. 유리 프릿은 1.4중량% 사용하였다. 바인더로는 에틸 셀룰로오스 수지(DOW사 STD-45)와 에틸 셀룰로오스 수지(DOW사 STD-200)를 각각 1.3중량%로 사용하였으며, 용매로는 텍사놀(2,2,4-trimethyl-1,3-pentanediol monoisobutyrate) 25중량% 및 테르피네올(4-Trimethyl-3-cyclohexene-1-methanol) 20중량%를 사용하였으며, 첨가제로는 요변성 조정제(LONZA사 ACRAWAX C) 1.0중량%를 첨가하였다.
(실시예 2)
유리 프릿을 1.0중량%, 테르피네올을 20.4중량% 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(실시예 3)
유리 프릿을 0.6중량%, 테르피네올을 20.8중량% 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(실시예 4)
유리 프릿을 1.8중량%, 테르피네올을 19.6중량% 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(실시예 5)
유리 프릿을 2.0중량%, 테르피네올을 19.4중량% 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(실시예 6 내지 11)
유리 프릿의 성분 및 함량을 표 1에 따라 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(비교예 1)
유리 프릿의 성분 중 CuO 및 MnO2를 포함하지 않고, 성분 및 함량을 표 1에 따라 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(비교예 2)
유리 프릿의 성분 중 CuO 및 MnO2를 포함하지 않고, 알칼리금속 산화물 성분 함량을 표 1에 따라 변경한 것을 제외하고는 실시예 3과 동일한 방법으로 실시하였다.
(비교예 3)
유리 프릿의 성분 중 Bi2O3, CuO 및 MnO2를 포함하지 않고, PbO의 함량을 표 1에 따라 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(비교예 4)
유리 프릿의 성분 중 SiO2를 포함하지 않고, 성분 및 함량을 표 1에 따라 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
(태양전지의 제조)
결정질 실리콘 웨이퍼를 이용하여 관상로(tube furnace,850℃)에서 POCl3을 사용하는 확산 공정을 통해 인(P)을 도핑하여 80Ω/sq 시트 저항을 가지는 에미터층을 형성하였다. 상기 에미터층 상에 화학기상증착법(PECVD 방법)으로 전구체 SiH4와 NH3를 사용하여 실리콘 질화막을 증착하여 70nm두께로 형성하여 반사방지막을 형성하였다. 반사방지막의 상면에 전면전극 페이스트(DAEJOO V89-11)를 도포하고 건조하였다. 이후, 상기 실리콘 기판 후면에 앞서 제조된 후면전극 페이스트를 도포한 후 250℃에서 2분 동안 건조하였다. 이후, 상기 후면전극이 인쇄된 상기 실리콘 기판에 알루미늄전극(DAEJOO DPA-3200)을 도포한 후 250℃에서 2분 동안 건조하였다. 이때, 전면전극 및 후면전극, 알루미늄전극 도포는 스크린 인쇄(ASYS COMPANY사 인쇄기 이용)하여, 일정한 패턴으로 실시하였다.
얻어진 태양전지 실리콘 기판을 벨트타입 소성로에서 최고점의 온도 약 800℃에서 IN-OUT 약 1분의 조건으로 동시에 소성하여 목적하는 태양전지를 제조하였다.
제조된 태양전지의 전기적 특성(I-V특성)을 ORIEL사 제조의 솔라 시뮬레이터 를 사용하여 테스트하였다. 각 페이스트 당 10매의 샘플을 제조하고 10매 샘플의 평균치를 사용하였으며, 제조된 태양전지의 특성을 표 2에 나타내었다.
(평가)
(1) 태양전지의 효율(변환효율, 개방전압, 곡선인자)
제조된 전극은 태양전지효율 측정장비(pasna사, CT-801)을 이용하여 태양전지의 변환효율(Eff, %), 개방전압(Voc, V), 곡선인자(FF, %)를 측정하였다. 이때, 변환효율 및 개방전압은 실시예 1에 따른 결과값을 100으로 하여 기준값으로 정하고, 측정한 값을 상기 기준값으로 환산하여 상대 비교한 값을 나타낸 것이다.
(2) 전극 부착력
제조된 태양전지의 후면전극과 솔더리본 간의 접착력 측정을 위해 리본너비와 성분이 1.5mm, Sn/Pb=60/40 (KOSBON사)인 태양전지 리본을 사용하였다. 또한, 리본의 납땜을 위해 955 soldering flux(KESTER사)를 사용하였으며, 납땜온도는 350℃, 플레이트의 온도는 25℃에서 진행하였다. 솔더리본을 후면전극과 납땜 한 후 push-pull gauge(IMADA사)를 사용하여 리본과 180°의 각도로 잡아당겨 접착력(N)을 측정하였다. 접착력을 측정한 결과, 2.5 N/mm의 기준을 만족하는 경우 ○, 만족하지 못하는 경우 ×로 표기하였다.
유리 프릿성분(wt%) 실시예
1 2 3 4 5 6 7 8
Bi2O3 58.8 58.8 58.8 58.8 58.8 57.1 55.5 53.9
SiO2 9.8 9.8 9.8 9.8 9.8 12.4 14.9 17.3
MnO2 7.8 7.8 7.8 7.8 7.8 7.6 7.4 7.2
CuO 23.6 23.6 23.6 23.6 23.6 22.9 22.3 21.7
조성물 내 유리 프릿함량(wt%) 1.4 1.0 0.6 1.4 1.4 1.4 1.4 1.4
변환효율(%) 100.0 100.4 100.6 99.7 99.0 101.0 101.4 100.2
개방전압(V) 100.0 100.3 100.3 100.0 99.5 100.5 100.8 99.8
전극 부착력
유리 프릿성분(wt%) 실시예 비교예
9 10 11 1 2 3 4
Bi2O3 56.0 53.5 51.1 81.0 65.6 - 58.0
SiO2 9.3 8.9 8.5 1.0 9.8 2.0 -
MnO2 7.4 7.1 6.8 - - - 7.8
CuO 27.2 30.6 33.6 - - - 20.0
ZnO - - - 11.4 2.9 - -
PbO - - - - - 75.0 -
Al2O3 - - - - 2.9 3.0 -
B2O3 - - - 6.7 11.8 20.0 14.2
Li2O - - - - - - -
K2O - - - - 6.9 - -
Na2O - - - - 0.1 - -
조성물 내 유리프릿 함량(wt%) 1.4 1.4 1.4 1.4 1.4 1.4 1.4
변환효율(%) 99.8 100.4 99.6 98.5 98.8 97.5 98.4
개방전압(V) 100.0 100.5 99.8 98.8 99.1 98.1 98.8
전극 부착력
이상과 같이 본 발명에서는 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (14)

  1. 산화구리-산화규소계(CuO-SiO2) 화합물을 포함하는 태양전지용 후면전극의 유리 프릿 조성물.
  2. 제1항에 있어서,
    상기 산화구리-산화규소계(CuO-SiO2) 화합물은 조성물 전체 중량에 대하여 15 내지 70중량% 함유되는 태양전지용 후면전극의 유리 프릿 조성물.
  3. 제1항에 있어서,
    Bi2O3 및 MnO2 를 더 포함하는 태양전지용 후면전극의 유리 프릿 조성물.
  4. 제3항에 있어서,
    상기 유리 프릿 조성물은 Bi2O3 10 내지 80중량%, SiO2 5 내지 30중량%, MnO2 3 내지 30중량% 및 CuO 10 내지 40중량% 포함하는 태양전지용 후면전극의 유리 프릿 조성물.
  5. 제1항에 있어서,
    상기 유리 프릿 조성물은 유리전이온도(Tg)가 300℃ 내지 800℃인 태양전지용 후면전극의 유리 프릿 조성물.
  6. 제1항에 있어서,
    상기 유리 프릿은 평균입경이 0.5 내지 5.0㎛인 태양전지용 후면전극의 유리 프릿 조성물.
  7. (a) 전도성 분말,
    (b) 산화구리-산화규소계(CuO-SiO2) 화합물을 함유하는 유리 프릿 및
    (c) 유기 비히클
    을 포함하는 태양전지용 후면전극 페이스트.
  8. 제7항에 있어서,
    상기 유리 프릿은 Bi2O3 및 MnO2 를 더 포함하는 태양전지용 후면전극 페이스트.
  9. 제7항에 있어서,
    상기 유리 프릿은 Bi2O3 10 내지 80중량%, SiO2 5 내지 30중량%, MnO2 3 내지 30중량% 및 CuO 10 내지 40중량% 포함하는 태양전지용 후면전극 페이스트.
  10. 제7항에 있어서,
    상기 페이스트는 유리 프릿이 전체 조성물 0.1 내지 6중량% 포함되는 태양전지용 후면전극 페이스트.
  11. 제7항에 있어서,
    상기 유리 프릿은 평균입경이 0.5 내지 5.0㎛인 태양전지용 후면전극 페이스트.
  12. 제7항에 있어서,
    상기 전도성 분말은 은, 금, 구리, 니켈, 알루미늄, 팔라듐, 백금, 크롬, 코발트, 주석, 아연, 철, 이리듐, 로듐, 텅스텐, 몰리브덴 및 이들의 합금에서 선택되는 하나 이상을 포함하는 태양전지용 후면전극 페이스트.
  13. 제7항에 있어서,
    상기 유기 비히클은 셀룰로오스계 수지, 아크릴계 수지 및 폴리비닐계 수지 중에서 선택되는 하나 이상을 포함하는 유기 바인더가 용매에 용해된 것인 태양전지용 후면전극 페이스트.
  14. 제7항 내지 제13항 중에서 선택되는 어느 하나의 후면전극 페이스트를 이용하여 형성되는 일반형(Conventional type) 또는 PERC형(Passivated Emitter and Rear Cell type) 구조를 갖는 태양전지.
PCT/KR2016/003766 2016-04-06 2016-04-11 태양전지용 후면전극 페이스트 조성물 WO2017175902A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680085441.3A CN109478573A (zh) 2016-04-06 2016-04-11 太阳能电池用背面电极糊组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160042325A KR101736773B1 (ko) 2016-04-06 2016-04-06 태양전지용 후면전극 페이스트 조성물
KR10-2016-0042325 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175902A1 true WO2017175902A1 (ko) 2017-10-12

Family

ID=59053551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003766 WO2017175902A1 (ko) 2016-04-06 2016-04-11 태양전지용 후면전극 페이스트 조성물

Country Status (4)

Country Link
KR (1) KR101736773B1 (ko)
CN (1) CN109478573A (ko)
TW (1) TWI631088B (ko)
WO (1) WO2017175902A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646903A (zh) * 2019-03-27 2021-11-12 东洋铝株式会社 导电性膏组合物及使用了该导电性膏组合物的晶体硅太阳能电池单元
CN114639505A (zh) * 2022-05-19 2022-06-17 江苏聚盈新材料科技有限公司 一种高拉力无外挂太阳能电池用正面导电银浆料及其制备方法
CN117727487A (zh) * 2024-02-08 2024-03-19 浙江晶科新材料有限公司 一种太阳能电池的导电浆料及其制备方法、太阳能电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101981660B1 (ko) * 2017-07-21 2019-05-23 주식회사 휘닉스소재 태양 전지 전극 형성용 유리 프릿, 상기 유리 프릿을 포함하는 페이스트 조성물
KR102004490B1 (ko) * 2017-09-18 2019-07-26 대주전자재료 주식회사 태양전지 후면전극용 페이스트 조성물
KR20190058113A (ko) * 2017-11-21 2019-05-29 한화큐셀앤드첨단소재 주식회사 유리프릿, 이를 포함하는 perc 태양전지 전극 형성용 페이스트, 및 perc 태양전지 전극
KR20200066068A (ko) * 2018-11-30 2020-06-09 엘에스니꼬동제련 주식회사 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
TWI722603B (zh) * 2019-10-16 2021-03-21 道登電子材料股份有限公司 低溫度係數電阻膏體材料及低溫度係數電阻膜體之製備方法
CN111739676B (zh) * 2020-08-13 2022-12-06 浙江奕成科技有限公司 一种perc太阳能电池用背面导电银浆及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069699A (ko) * 2007-09-27 2010-06-24 가부시키가이샤 무라타 세이사쿠쇼 Ag 전극 페이스트, 태양전지 셀 및 그 제조방법
US20110120535A1 (en) * 2009-11-25 2011-05-26 E.I. Du Pont De Nemours And Company Aluminum pastes and use thereof in the production of passivated emitter and rear contact silicon solar cells
KR20140022511A (ko) * 2012-08-13 2014-02-25 제일모직주식회사 태양전지 전극용 페이스트, 이로부터 제조된 전극 및 이를 포함하는 태양전지
KR20140147409A (ko) * 2013-06-19 2014-12-30 제일모직주식회사 전극 형성용 조성물, 이를 이용하여 제조된 전극 및 이를 포함하는 플라즈마 디스플레이 패널
KR20150031142A (ko) * 2013-09-13 2015-03-23 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158504B2 (en) * 2008-05-30 2012-04-17 E. I. Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices—organic medium components
CN102803171A (zh) * 2009-06-17 2012-11-28 旭硝子株式会社 电极形成用玻璃料以及使用其的电极形成用导电糊料、太阳能电池
KR20120025950A (ko) * 2010-09-08 2012-03-16 주식회사 동진쎄미켐 ZnO계 글래스 프릿 조성물 및 이를 이용한 태양전지의 후면 전극용 알루미늄 페이스트 조성물
US20120312369A1 (en) * 2011-06-13 2012-12-13 E I Du Pont De Nemours And Company Thick film paste containing bismuth-based oxide and its use in the manufacture of semiconductor devices
US9039937B1 (en) * 2013-12-17 2015-05-26 Samsung Sdi Co., Ltd. Composition for solar cell electrodes and electrode fabricated using the same
US9349883B2 (en) * 2014-06-19 2016-05-24 E I Du Pont De Nemours And Company Conductor for a solar cell
CN104658634B (zh) * 2015-02-03 2017-01-18 四川银河星源科技有限公司 一种晶体硅太阳能电池背电极银浆及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069699A (ko) * 2007-09-27 2010-06-24 가부시키가이샤 무라타 세이사쿠쇼 Ag 전극 페이스트, 태양전지 셀 및 그 제조방법
US20110120535A1 (en) * 2009-11-25 2011-05-26 E.I. Du Pont De Nemours And Company Aluminum pastes and use thereof in the production of passivated emitter and rear contact silicon solar cells
KR20140022511A (ko) * 2012-08-13 2014-02-25 제일모직주식회사 태양전지 전극용 페이스트, 이로부터 제조된 전극 및 이를 포함하는 태양전지
KR20140147409A (ko) * 2013-06-19 2014-12-30 제일모직주식회사 전극 형성용 조성물, 이를 이용하여 제조된 전극 및 이를 포함하는 플라즈마 디스플레이 패널
KR20150031142A (ko) * 2013-09-13 2015-03-23 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646903A (zh) * 2019-03-27 2021-11-12 东洋铝株式会社 导电性膏组合物及使用了该导电性膏组合物的晶体硅太阳能电池单元
CN114639505A (zh) * 2022-05-19 2022-06-17 江苏聚盈新材料科技有限公司 一种高拉力无外挂太阳能电池用正面导电银浆料及其制备方法
CN114639505B (zh) * 2022-05-19 2022-08-09 江苏聚盈新材料科技有限公司 一种高拉力无外挂太阳能电池用正面导电银浆料及其制备方法
CN117727487A (zh) * 2024-02-08 2024-03-19 浙江晶科新材料有限公司 一种太阳能电池的导电浆料及其制备方法、太阳能电池
CN117727487B (zh) * 2024-02-08 2024-05-07 浙江晶科新材料有限公司 一种太阳能电池的导电浆料及其制备方法、太阳能电池

Also Published As

Publication number Publication date
KR101736773B1 (ko) 2017-05-29
TW201736303A (zh) 2017-10-16
CN109478573A (zh) 2019-03-15
TWI631088B (zh) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2017175902A1 (ko) 태양전지용 후면전극 페이스트 조성물
WO2015037933A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2017061764A1 (ko) 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지
WO2014126293A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2013085112A1 (ko) 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
WO2011016594A1 (ko) 실리콘 태양전지 제조용 납 프리 유리 프릿 분말 및 그 제조방법과 이를 포함하는 금속 페이스트 조성물 및 실리콘 태양전지
WO2011046365A2 (ko) 은 페이스트 조성물 및 이를 이용한 태양전지
WO2011078629A2 (en) Glass frit, paste composition, and solar cell
WO2019088525A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2016137059A1 (en) Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it
WO2014157800A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2014098351A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2017160074A1 (ko) 태양전지용 무연 도전 페이스트
WO2019088526A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
KR102004490B1 (ko) 태양전지 후면전극용 페이스트 조성물
WO2015160066A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2017183881A1 (ko) 태양전지 후면전극용 페이스트 조성물
WO2013100254A1 (ko) 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지
WO2019088520A2 (ko) 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
WO2019103278A1 (ko) 유리프릿, 이를 포함하는 perc 태양전지 전극 형성용 페이스트, 및 perc 태양전지 전극
WO2020111900A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2015160067A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2019017656A1 (ko) 유리프릿, 이를 포함하는 perc 태양전지 전극 형성용 페이스트, 및 perc 태양전지 전극
WO2019088521A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2018080093A1 (ko) 태양전지용 기판 및 이를 구비한 태양전지

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898006

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898006

Country of ref document: EP

Kind code of ref document: A1