WO2013085112A1 - 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극 - Google Patents

태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극 Download PDF

Info

Publication number
WO2013085112A1
WO2013085112A1 PCT/KR2012/002354 KR2012002354W WO2013085112A1 WO 2013085112 A1 WO2013085112 A1 WO 2013085112A1 KR 2012002354 W KR2012002354 W KR 2012002354W WO 2013085112 A1 WO2013085112 A1 WO 2013085112A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass frit
weight
solar cell
paste composition
weight percent
Prior art date
Application number
PCT/KR2012/002354
Other languages
English (en)
French (fr)
Inventor
최영욱
김동준
김은경
송대섭
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201280059408.5A priority Critical patent/CN103959393A/zh
Priority to US14/362,736 priority patent/US20140373904A1/en
Publication of WO2013085112A1 publication Critical patent/WO2013085112A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a paste composition for a solar cell electrode and an electrode prepared therefrom.
  • the present invention provides a paste composition for a solar cell electrode and an electrode manufactured therefrom, which have improved solar cell efficiency by minimizing damage to a pn junction and reducing contact resistance under high sheet resistance.
  • Solar cells generate electrical energy using the photoelectric effect of pn junctions that convert photons of sunlight into electricity.
  • front and rear electrodes are formed on the upper and lower surfaces of the semiconductor wafer or substrate on which the pn junction is formed.
  • the photovoltaic effect of the pn junction is induced by solar light incident on the semiconductor wafer, and electrons generated therefrom provide a current flowing through the electrode to the outside.
  • the electrode of such a solar cell may be formed on the wafer surface by applying, patterning, and firing an electrode paste composition.
  • the thickness of the emitter is continuously thinned to increase the efficiency of the solar cell, it may cause a shunting phenomenon that may degrade the performance of the solar cell.
  • the area of the solar cell is gradually increased to increase the efficiency of the solar cell, which may increase the contact resistance of the solar cell, thereby reducing the efficiency of the solar cell.
  • Another object of the present invention is to provide a paste composition for a solar cell electrode having high solar cell efficiency even under various sheet resistances.
  • Another object of the present invention is to provide an electrode made of the paste composition.
  • a paste composition for a solar cell electrode includes a conductive powder, a glass frit, and an organic vehicle, wherein the glass frit includes about 1-20% by weight of TeO2 in a glass frit including PbO, SiO2, and TeO2. Can be.
  • the glass frit may include about 40-80 wt% of PbO and about 5-20 wt% of SiO 2.
  • the glass frit further comprises at least one selected from the group consisting of Al 2 O 3, ZrO 2, P 2 O 5, ZnO, Bi 2 O 3, Na 2 O, B 2 O 3, Ta 2 O 5, Fe 2 O 3, Cr 2 O 3, Co 2 O 3, Li 2 O, Li 2 CO 3, MgO and MnO 2. can do.
  • the glass frit may comprise about 40-80 weight percent PbO, about 5-20 weight percent SiO2, about 1-20 weight percent TeO2 and about 1-20 weight percent B2O3.
  • the glass frit comprises about 40-80 weight percent PbO, about 5-20 weight percent SiO2, about 1-20 weight percent TeO2, about 1-10 weight percent Al2O3, about 0.1-1 weight percent ZrO2, ZnO About 1-10% by weight and about 1-5% by weight Na2O.
  • the glass frit may have an average particle diameter (D50) of about 0.1 ⁇ m-5 ⁇ m.
  • the composition may comprise about 60-90 weight percent conductive powder, about 1-10 weight percent glass frit and about 7-30 weight percent organic vehicle.
  • Another electrode of the present invention may be formed of the paste composition for a solar cell electrode.
  • the present invention provides a paste composition for a solar cell electrode that does not affect pn junction even under various sheet resistances.
  • the present invention provides a solar cell paste composition having high solar cell efficiency even under various sheet resistances.
  • FIG. 1 is a schematic diagram schematically showing a structure of a solar cell manufactured using a paste according to an embodiment of the present invention.
  • the paste composition for a solar cell electrode which is an aspect of the present invention, may include a conductive powder, a glass frit, and an organic vehicle.
  • the composition may comprise about 60-90 weight percent conductive powder, about 1-10 weight percent glass frit, and about 7-30 weight percent organic vehicle.
  • the conductive powder is silver (Ag), gold (Au), palladium (Pd), platinum (Pt), copper (Cu), chromium (Cr), cobalt (Co), aluminum (Al), tin (Sn), lead ( Pb), zinc (Zn), iron (Fe), iridium (Ir), osmium (Os), rhodium (Rh), tungsten (W), molybdenum (Mo), nickel (Ni), magnesium (Mg), etc. may be used.
  • the said electroconductive powder can use 1 type, or 2 or more types of mixed forms, and can also use the form in which 2 or more types were alloyed.
  • the conductive powder includes silver particles, and may further include nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn), or copper (Cu) in addition to the silver particles.
  • the conductive powder may have a spherical shape, a plate shape, or an amorphous shape.
  • the conductive powder may be a mixture of conductive powders having different particle shapes.
  • the conductive powder may have an average particle diameter (D50) of about 0.1 ⁇ m-3 ⁇ m.
  • D50 average particle diameter
  • the average particle diameter was measured using a 1064LD model manufactured by CILAS after dispersing the conductive powder in isopropyl alcohol (IPA) at 25 ° C. for 3 minutes with ultrasonic waves. Within this range, the contact resistance and the wire resistance can be lowered. Preferably about 0.5 ⁇ m-2 ⁇ m.
  • the conductive powder may be a mixture of conductive powders having different average particle diameters (D50).
  • the conductive powder may be included in about 60-90% by weight of the paste composition. Within this range, it is possible to prevent the conversion efficiency from lowering due to an increase in the resistance, and to prevent pasting from becoming difficult due to the relative decrease in the amount of the organic vehicle. Preferably about 70-88% by weight, more preferably about 80-85% by weight.
  • the glass frit serves to etch the anti-reflection film during the baking process of the paste, to produce crystals of the conductive particles in the emitter region to melt the conductive particles to lower the resistance, and to allow the conductive powder to adhere strongly to the wafer or substrate. do.
  • Glass frit includes PbO, SiO 2 and TeO 2, and TeO 2 may be included in about 1-20% by weight of the glass frit.
  • TeO2 When TeO2 is less than 1% by weight, Ag solidity due to TeO2 may be reduced, resulting in an increase in contact resistance.
  • TeO2 When TeO2 is more than 20% by weight, the reactivity with the silicon interface is weakened by the TeO2 excess charge, thereby increasing the contact resistance.
  • PbO may be included at about 40-80 weight percent. In the above range, it is possible to secure the pn junction stability under various sheet resistance and increase the solar cell efficiency. Preferably, PbO may be included at about 50-70% by weight.
  • SiO 2 may be included at about 5-20% by weight. In the above range, it is possible to ensure the pn junction stability under various sheet resistance and increase the solar cell efficiency. Preferably, SiO 2 may be included at about 5-18% by weight.
  • the weight ratio (PbO / TeO2) of PbO to TeO2 in the glass frit may be about 2-6, preferably about 3-6, more preferably about 3-5.5.
  • the weight ratio of TeO 2 to SiO 2 in the glass frit may be about 0.1-3.6, preferably about 0.8-3.6.
  • Glass frit contains at least one selected from the group consisting of Al2O3, ZrO2, P2O5, ZnO, Bi2O3, Na2O, B2O3, Ta2O5, Fe2O3, Cr2O3, Co2O3, Li2O, Li2CO3, MgO and MnO2 in addition to PbO, SiO2 and TeO2 It may further include as.
  • the composition of each component included in the glass frit can be adjusted in consideration of the efficiency of the electrode or the stability at high temperature.
  • B 2 O 3 may be included in about 1-20%, preferably about 1-10%, more preferably about 1-7% by weight of the glass frit.
  • Al 2 O 3 may be included in about 1-10% by weight, preferably about 5-10% by weight of the glass frit.
  • ZrO 2 may be included in about 0.1-1% by weight, preferably about 0.5-1% by weight of the glass frit.
  • ZnO may be included in about 1-10% by weight, preferably about 2-8% by weight of the glass frit.
  • Na 2 O may be included in about 1-5% by weight, preferably about 1-3% by weight of the glass frit.
  • the glass frit may include PbO, SiO 2, TeO 2, and B 2 O 3.
  • the glass frit may comprise about 40-80 weight percent PbO, about 5-20 weight percent SiO2, about 1-20 weight percent TeO2 and about 1-20 weight percent B2O3.
  • the glass frit may include PbO, SiO 2, TeO 2, Al 2 O 3, ZrO 2, ZnO, Li 20, Li 2 CO 3, and Na 2 O.
  • the glass frit contains about 40-80% PbO, about 5-20% SiO2, about 1-20% TeO2, about 1-10% Al2O3, about 0.1-1% ZrO2, about ZnO -10 weight percent, about 1-10 weight percent Li2O, about 1-10 weight percent Li2CO3, and about 1-5 weight percent Na2O.
  • the glass frit may include PbO, SiO 2, TeO 2, Al 2 O 3, ZrO 2, ZnO, and Na 2 O.
  • the glass frit has about 40-80% PbO, 5-20% SiO2, 1-20% TeO2, 1-10% Al2O3, 0.1-1% ZrO2, ZnO about 1 -10 wt%, and about 1-5 wt% Na2O.
  • the glass frit may use a crystallized glass frit or an amorphous glass frit, and any of a leaded glass frit, a lead free glass frit, or a mixture thereof may be used.
  • Glass frits can be prepared from metal oxides such as PbO, ZnO and the like described above using conventional methods.
  • the above-described PbO, ZnO and the like are mixed in the above content range.
  • Mixing can be performed using a ball mill or planetary mill.
  • the mixed composition is melted at conditions of about 900 ° C.-1300 ° C. and quenched at about 25 ° C.
  • the obtained result can be pulverized by a disk mill, planetary mill or the like to obtain a glass frit.
  • the glass frit may have an average particle diameter (D50) of about 0.1 ⁇ m-5 ⁇ m, preferably about 0.5 ⁇ m-3 ⁇ m, more preferably about 2 ⁇ m-3 ⁇ m.
  • the average particle diameter (D50) is measured using a 1064LD model manufactured by CILAS after dispersing the glass frit at 25 ° C. for 3 minutes with isopropyl alcohol (IPA).
  • Glass frit may be included in about 1-10% by weight of the paste composition. Within this range, the sinterability, adhesion and resistance of the conductive powder may be increased to prevent the conversion efficiency from being lowered, and the amount of glass frit remaining after firing may be excessively distributed to increase the resistance and lower the solderability. You can stop it. Preferably about 1-7% by weight, more preferably about 3-7% by weight.
  • the organic vehicle may comprise an organic binder that imparts liquid properties to the paste.
  • organic binder examples include an acrylic copolymer copolymerized with cellulose polymers such as ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose or hydroxyethyl hydroxypropyl cellulose, and acrylic monomers having hydrophilic properties such as carboxyl groups, polyvinyl resins, and the like. Although these can be used individually or in mixture of 2 or more types, respectively, It is not limited to these.
  • the organic vehicle may further contain a solvent.
  • the organic vehicle may be a solution in which the organic binder is dissolved in a solvent.
  • the organic vehicle may comprise about 5% -40% by weight organic binder and about 60% -95% solvent. Preferably about 6% to 30% by weight of the organic binder and about 70% to 94% by weight of the solvent.
  • an organic solvent having a boiling point of about 120 ° C. or more may be used.
  • a carbitol solvent such as a carbitol solvent, aliphatic alcohols, ester type, a cellosolve solvent, a hydrocarbon solvent
  • the solvent may be butyl carbitol, butyl carbitol acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, aliphatic alcohol, terpineol, ethylene glycol, ethylene glycol mono butyl ether, butylcellosolve acetate , Texanol or mixtures thereof.
  • the organic vehicle may be included in about 7-30% by weight of the paste composition.
  • the dispersion may not be smooth or the viscosity may be too high after the paste is manufactured to prevent the printing from being impossible, and the resistance may be increased and the problems that may occur during the firing process may be prevented.
  • the paste composition of the present invention may further include conventional additives as necessary in order to improve the flow characteristics, process characteristics and stability in addition to the above components.
  • the additive may be used alone or in combination of two or more of a dispersant, thixotropic agent, plasticizer, viscosity stabilizer, antifoaming agent, pigment, ultraviolet stabilizer, antioxidant, coupling agent and the like. They are added at about 0.1% to 5% by weight in the paste composition but can be changed as necessary.
  • Another aspect of the present invention relates to an electrode formed from the solar cell electrode paste and a solar cell including the same.
  • 1 illustrates a structure of a solar cell according to an embodiment of the present invention.
  • the pastes are printed and fired on a wafer 100 or a substrate including a p layer 101 and an n layer 102 as an emitter to form a back electrode 210 and a front electrode 230.
  • the paste may be printed on the back side of the wafer and then dried at a temperature of about 200 ° C. to 400 ° C. for about 10 to 60 seconds to perform a preliminary preparation step for the back electrode.
  • the paste may be printed on the entire surface of the wafer and then dried to perform a preliminary preparation step for the front electrode. Thereafter, a firing process may be performed at about 400 ° C. to 950 ° C., preferably about 850 ° C. to 950 ° C., for about 30 seconds to 50 seconds to form a front electrode and a rear electrode.
  • Example 1-3 and Comparative Example 1-3
  • PbO, SiO 2, TeO 2, Al 2 O 3, ZrO 2, ZnO, Li 2 O, Na 2 O and B 2 O 3 were mixed to the content (unit: wt%) described in Table 1 below, melted at 1200 ° C., and quenched at 25 ° C. The obtained product was ground with a disk mill to obtain a glass frit having an average particle diameter (D50) of 2 ⁇ m.
  • Example 1 PbO SiO2 TeO2 Al2O3 ZrO2 ZnO Li2O Na2O B2O3
  • Example 2 70 10.13 13.23 - - - - 6.64
  • Example 2 70 5.13 18.23 - - - - 6.64
  • Example 3 50.25 17.34 15 8.86 0.63 6.02 - 1.9 -
  • Comparative Example 1 50 10.13 38.23 - - - - - 1.64
  • Comparative Example 2 80 10.13 0.5 - - - - - 9.37 Comparative Example 3 65.25 17.34 - 8.86 0.63 6.02 1.78 0.12 -
  • the paste compositions prepared in Examples and Comparative Examples were applied by rolling with a scraper on a screen printing plate.
  • a squeeze was printed onto a wafer of momocrystalline form with an average sheet resistance of 65 kPa while being discharged to the wire portion of the screen printing plate. After drying the printed wafer for 20 to 30 seconds at 300 ° C.
  • BTU firing furnace 6 zone temperature 950 ° C, belt speed after firing efficiency (%) was calculated at 250 ipm, the results are shown in Table 2.
  • the solar cell electrode paste composition of the present invention was high in solar cell efficiency.
  • Comparative Example 1-3 containing less than 1% by weight or more than 20% by weight of TeO 2 solar cell efficiency is lower than the present invention.
  • the present invention provides a paste composition for a solar cell electrode that does not affect pn junction even under various sheet resistances.
  • the present invention provides a solar cell paste composition having high solar cell efficiency even under various sheet resistances.

Abstract

본 발명은 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극에 관한 것이다. 본 발명은 도전성 분말, 유리 프릿 및 유기 비히클을 포함하고, 상기 유리 프릿은 PbO, SiO2 및 TeO2를 포함하고, 상기 TeO2는 상기 유리 프릿 중 약 1-20중량%로 포함되는 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극에 관한 것이다.

Description

태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
본 발명은 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극에 관한 것이다. 본 발명은 고 면저항 하에서 pn 접합(pn junction)에 대한 피해를 최소화하고 접촉 저항을 줄임으로써 태양전지 효율을 높인 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극을 제공하였다.
태양전지는 태양광의 포톤(photon)을 전기로 변환시키는 pn 접합의 광전 효과를 이용하여 전기 에너지를 발생시킨다. 태양전지는 pn 접합이 구성되는 반도체 웨이퍼 또는 기판 상·하면에 각각 전면 전극과 후면 전극이 형성되어 있다. 태양전지는 반도체 웨이퍼에 입사되는 태양광에 의해 pn 접합의 광전 효과가 유도되고, 이로부터 발생된 전자들이 전극을 통해 외부로 흐르는 전류를 제공한다. 이러한 태양전지의 전극은 전극용 페이스트 조성물의 도포, 패터닝 및 소성에 의해, 웨이퍼 표면에 형성될 수 있다.
최근 태양전지의 효율을 증가시키기 위해 에미터(emitter)의 두께가 지속적으로 얇아짐에 따라, 태양전지의 성능을 저하시킬 수 있는 션팅(shunting) 현상을 유발시킬 수 있다. 또한, 태양전지의 효율을 증가시키기 위해 태양전지의 면적을 점차 증가시키고 있는데, 이는 태양전지의 접촉저항을 높여 태양전지의 효율을 감소시킬 수 있다.
또한, 다양한 면저항의 웨이퍼의 증가에 따라 소성 온도의 변동폭이 커지고 이에 따라 넓은 소성 온도에서도 열안정성을 확보할 수 있는 페이스트 조성물에 대한 요구가 높아지고 있다.
따라서, 다양한 면저항 하에서 pn 접합에 대한 피해를 최소화함으로써 pn 접합 안정성을 확보할 수 있고 태양전지 효율을 높일 수 있는 전극용 페이스트 조성물을 개발할 필요가 있다.
본 발명의 목적은 다양한 면저항 하에서도 pn 접합에 영향을 주지 않는 태양전지 전극용 페이스트 조성물을 제공하는 것이다.
본 발명의 다른 목적은 다양한 면저항 하에서도 태양전지 효율이 높은 태양전지 전극용 페이스트 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 페이스트 조성물로 제조된 전극을 제공하는 것이다.
본 발명의 일 관점인 태양전지 전극용 페이스트 조성물은 도전성 분말, 유리 프릿 및 유기 비히클을 포함하고, 상기 유리 프릿은 PbO, SiO2 및 TeO2를 포함하는 유리 프릿에서 TeO2는 약 1-20중량%로 포함될 수 있다.
일 구체예에서, 상기 유리 프릿 중 PbO는 약 40-80중량%, SiO2는 약 5-20중량%로 포함될 수 있다.
일 구체예에서, 상기 유리 프릿은 Al2O3, ZrO2, P2O5, ZnO, Bi2O3, Na2O, B2O3, Ta2O5, Fe2O3, Cr2O3, Co2O3, Li2O, Li2CO3, MgO 및 MnO2로 이루어진 군으로부터 선택되는 1종 이상을 더 포함할 수 있다.
일 구체예에서, 상기 유리 프릿은 약 PbO 40-80중량%, SiO2 약 5-20중량%, TeO2 약 1-20중량% 및 B2O3 약 1-20중량%를 포함할 수 있다.
일 구체예에서, 상기 유리 프릿은 PbO 약 40-80중량%, SiO2 약 5-20중량%, TeO2 약 1-20중량%, Al2O3 약 1-10중량%, ZrO2 약 0.1-1중량%, ZnO 약 1-10중량% 및 Na2O 약 1-5중량%를 포함할 수 있다.
일 구체예에서, 상기 유리 프릿은 평균입경(D50)이 약 0.1㎛-5㎛가 될 수 있다.
일 구체예에서, 상기 조성물은 도전성 분말 약 60-90중량%, 유리 프릿 약 1-10중량% 및 유기 비히클 약 7-30중량%를 포함할 수 있다.
본 발명의 다른 관점인 전극은 상기 태양전지 전극용 페이스트 조성물로 형성될 수 있다.
본 발명은 다양한 면저항 하에서도 pn 접합에 영향을 주지 않는 태양전지 전극용 페이스트 조성물을 제공하였다. 본 발명은 다양한 면저항 하에서도 태양전지 효율이 높은 태양전지 전극용 페이스트 조성물을 제공하였다.
도 1은 본 발명의 일 실시예에 따른 페이스트를 이용하여 제조되는 태양전지의 구조를 간략히 도시한 개략도이다.
본 발명의 일 관점인 태양전지 전극용 페이스트 조성물은 도전성 분말, 유리 프릿 및 유기 비히클을 포함할 수 있다.
일 예에서, 조성물은 도전성 분말 약 60-90중량%, 유리 프릿 약 1-10중량%, 유기 비히클 약 7-30중량%를 포함할 수 있다.
도전성 분말
도전성 분말은 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 구리(Cu), 크롬(Cr), 코발트(Co), 알루미늄(Al), 주석(Sn), 납(Pb), 아연(Zn), 철(Fe), 이리듐(Ir), 오스뮴(Os), 로듐(Rh), 텅스텐(W), 몰리브덴(Mo), 니켈(Ni), 마그네슘(Mg) 등이 사용될 수 있다. 상기 도전성 분말은 1종 또는 2종 이상의 혼합 형태를 사용할 수 있고, 2종 이상이 합금된 형태를 사용할 수도 있다. 바람직하게는, 도전성 분말은 은 입자를 포함하고, 은 입자 이외에 니켈(Ni), 코발트(Co), 철(Fe), 아연(Zn) 또는 구리(Cu)를 추가로 포함할 수 있다.
도전성 분말은 입자 형상이 구형, 판상형, 무정형 형상을 가질 수 있다
도전성 분말은 서로 다른 입자 형상을 갖는 도전성 분말의 혼합물을 사용할 수도 있다.
도전성 분말은 평균입경(D50)이 약 0.1㎛-3㎛일 수 있다. 상기 평균입경은 이소프로필알코올(IPA)에 도전성 분말을 초음파로 25℃에서 3분 동안 분산시킨 후 CILAS社에서 제작한 1064LD 모델을 사용하여 측정된 것이다. 상기 범위 내에서, 접촉 저항과 선 저항이 낮아지는 효과를 가질 수 있다. 바람직하게는 약 0.5㎛-2㎛이 될 수 있다.
도전성 분말은 서로 다른 평균입경(D50)을 갖는 도전성 분말의 혼합물을 사용할 수도 있다.
도전성 분말은 페이스트 조성물 중 약 60-90중량%로 포함될 수 있다. 상기 범위에서, 저항의 증가로 변환 효율이 낮아지는 것을 막을 수 있고, 유기 비히클 양의 상대적인 감소로 페이스트화가 어려워지는 것을 막을 수 있다. 바람직하게는 약 70-88중량%, 더 바람직하게는 약 80-85중량%로 포함될 수 있다.
유리 프릿
유리 프릿은 페이스트의 소성 공정 중 반사 방지막을 에칭하고, 도전성 입자를 용융시켜 저항이 낮아질 수 있도록 에미터 영역에 도전성 입자의 결정을 생성시키고 도전성 분말이 웨이퍼 또는 기판에 강하게 접착할 수 있도록 하는 역할을 한다.
유리 프릿은 PbO, SiO2 및 TeO2를 포함하고, TeO2는 유리 프릿 중 약1-20중량%로 포함될 수 있다. TeO2가 1중량% 미만인 경우, TeO2에 의한 Ag 고형도가 작아져서 접촉저항이 증가할 수 있다. TeO2가 20중량% 초과인 경우, TeO2 과량 투입에 의해 실리콘 계면과의 반응성이 약해져서 접촉저항이 증가할 수 있다. 바람직하게는 약 10-20중량%, 더 바람직하게는 약 13-19중량%로 포함될 수 있다.
유리 프릿에서, PbO는 약 40-80중량%로 포함될 수 있다. 상기 범위에서, 다양한 면저항 하에서 pn 접합 안정성을 확보할 수 있고 태양전지 효율을 높일 수 있다. 바람직하게는, PbO는 약 50-70중량%로 포함될 수 있다.
유리 프릿에서, SiO2는 약 5-20중량%로 포함될 수 있다. 상기 범위일 경우, 다양한 면저항 하 pn 접합 안정성을 확보할 수 있고 태양전지 효율을 높일 수 있다. 바람직하게는, SiO2는 약 5-18중량%로 포함될 수 있다.
유리 프릿 중 TeO2에 대한 PbO의 중량비(PbO/TeO2)는 약 2-6, 바람직하게는 약 3-6, 더 바람직하게는 약 3-5.5가 될 수 있다.
유리 프릿 중 SiO2에 대한 TeO2의 중량비(TeO2/SiO2)는 약 0.1-3.6, 바람직하게는 약 0.8-3.6이 될 수 있다.
유리 프릿은 PbO, SiO2 및 TeO2 이외에, Al2O3, ZrO2, P2O5, ZnO, Bi2O3, Na2O, B2O3, Ta2O5, Fe2O3, Cr2O3, Co2O3, Li2O, Li2CO3, MgO 및 MnO2로 이루어진 군으로부터 선택되는 1종 이상을 잔량으로 더 포함할 수 있다. 유리 프릿에 포함되는 각 성분의 조성은 전극의 효율 또는 고온에서의 안정성을 고려하여 조절할 수 있다.
B2O3는 유리 프릿 중 약 1-20중량%, 바람직하게는 약 1-10중량%, 더 바람직하게는 약 1-7중량%로 포함될 수 있다.
Al2O3는 유리 프릿 중 약 1-10중량%, 바람직하게는 약 5-10중량%로 포함될 수 있다.
ZrO2는 유리 프릿 중 약 0.1-1중량%, 바람직하게는 약 0.5-1중량%로 포함될 수 있다.
ZnO는 유리 프릿 중 약 1-10중량%, 바람직하게는 약 2-8중량%로 포함될 수 있다.
Na2O는 유리 프릿 중 약 1-5중량%, 바람직하게는 약 1-3중량%로 포함될 수 있다.
일 실시예에서, 유리 프릿은 PbO, SiO2, TeO2 및 B2O3을 포함할 수 있다. 바람직하게는, 유리 프릿은 PbO 약 40-80중량%, SiO2 약 5-20중량%, TeO2 약 1-20중량% 및 B2O3 약 1-20중량%를 포함할 수 있다.
다른 실시예에서, 유리 프릿은 PbO, SiO2, TeO2, Al2O3, ZrO2, ZnO, Li20, Li2CO3 및 Na2O를 포함할 수 있다. 바람직하게는, 유리 프릿은 PbO 약 40-80중량%, SiO2 약 5-20중량%, TeO2 약 1-20중량%, Al2O3 약 1-10중량%, ZrO2 약 0.1-1중량%, ZnO 약 1-10중량%, Li2O 약 1-10중량%, Li2CO3 약 1-10중량% 및 Na2O 약 1-5중량%를 포함할 수 있다.
또 다른 실시예에서, 유리 프릿은 PbO, SiO2, TeO2, Al2O3, ZrO2, ZnO 및 Na2O를 포함할 수 있다. 바람직하게는, 유리 프릿은 PbO 약 40-80중량%, 약 SiO2 5-20중량%, 약 TeO2 1-20중량%, 약 Al2O3 1-10중량%, ZrO2 약 0.1-1중량%, ZnO 약 1-10중량%, 및 Na2O 약 1-5중량%를 포함할 수 있다.
유리 프릿은 결정화 유리 프릿 또는 비결정화 유리 프릿을 사용할 수 있고, 유연 유리 프릿, 무연 유리 프릿 또는 이들의 혼합물 중 어느 것도 사용가능 하다.
유리 프릿은 통상의 방법을 사용하여 상기 기술된 PbO, ZnO 등의 금속 산화물로부터 제조할 수 있다. 예를 들면, 상기 기술된 PbO, ZnO 등을 상기 함량 범위로 혼합한다. 혼합은 볼 밀(ball mill) 또는 플라네터리 밀(planetary mill)을 사용하여 혼합할 수 있다. 혼합된 조성물을 약 900℃-1300℃의 조건에서 용융시키고, 약 25℃에서 켄칭(quenching)한다. 얻은 결과물을 디스크 밀(disk mill), 플라네터리 밀 등에 의해 분쇄하여 유리 프릿을 얻을 수 있다.
유리 프릿은 평균입경(D50)이 약 0.1㎛-5㎛, 바람직하게는 약 0.5㎛-3㎛, 더 바람직하게는 약 2㎛-3㎛가 될 수 있다. 평균입경(D50)은 이소프로필알코올(IPA)에 유리 프릿을 초음파로 25℃에서 3분 분산 후 CILAS 社 에서 제작한 1064LD 모델을 사용하여 측정된 것이다.
유리 프릿은 페이스트 조성물 중 약 1-10중량%로 포함될 수 있다. 상기 범위 내에서, 전도성 분말의 소결성, 부착력 및 저항이 높아져 변환효율이 저하되는 것을 막을 수 있고, 소성 후 남아 있는 유리 프릿의 양이 과다하게 분포되어 저항 상승 및 납땜성을 저하시킬 수 있는 가능성을 막을 수 있다. 바람직하게는 약 1-7중량%, 더 바람직하게는 약 3-7중량%로 포함될 수 있다.
유기 비히클
유기 비히클(vehicle)은 페이스트에 액상 특성을 부여하는 유기 바인더(binder)를 포함할 수 있다.
유기 바인더로는 에틸셀룰로오즈, 히드록시에틸셀룰로오즈, 히드록시프로필 셀룰로오즈 또는 히드록시에틸히드록시프로필셀룰로오즈 등의 셀룰로오즈계 고분자, 카르복실기 등의 친수성을 가지는 아크릴 단량체로 공중합시킨 아크릴계 공중합체, 폴리비닐계 수지 등 이들 각각 단독 또는 2종 이상 혼합하여 사용할 수 있지만, 이들에 제한되는 것은 아니다.
유기 비히클은 용제를 더 포함할 수 있다. 이 경우 유기 비히클은 용제에 유기 바인더를 용해시킨 용액이 될 수 있다. 유기 비히클은 유기 바인더 약 5중량%-40중량%와 용제 약 60중량%-95중량%를 포함할 수 있다. 바람직하게는 유기 바인더 약 6중량%-30중량%와 용제 약 70중량%-94중량%를 포함할 수 있다.
용제로는 약 120℃ 이상의 비점을 갖는 유기 용제가 사용될 수 있다. 구체적으로는, 카비톨 용매, 지방족 알코올류, 에스테르계, , 셀로솔브 용매, 탄화수소 용매 등 전극 제조에 통상적으로 사용하는 것을 사용할 수 있다. 예를 들면, 용매는 부틸 카비톨, 부틸 카비톨 아세테이트, 메틸 셀로솔브, 에틸 셀로솔브, 부틸 셀로솔브, 지방족 알코올, 터핀올(terpineol), 에틸렌 글리콜, 에틸렌 글리콜 모노 부틸 에테르, 부틸셀로솔브 아세테이트, 텍사놀(texanol) 또는 이들의 혼합물을 포함할 수 있다.
유기 비히클은 페이스트 조성물 중 약 7-30중량%로 포함될 수 있다. 상기 범위 내에서, 분산이 원활히 되지 않거나 페이스트 제조 후 점도가 너무 높아져 인쇄가 불가능하게 되는 것을 막을 수 있고, 저항이 높아지고 소성 공정시 발생할 수 있는 문제점을 차단할 수 있다. 바람직하게는 약 10-25중량%, 더 바람직하게는 약 10-15중량%로 포함될 수 있다.
본 발명의 페이스트 조성물은 상기한 구성 요소 외에 유동 특성, 공정 특성 및 안정성을 향상시키기 위하여 필요에 따라 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제는 분산제, 요변제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제, 커플링제 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다. 이들은 페이스트 조성물 중 약 0.1중량%~5중량%로 첨가되지만 필요에 따라 변경할 수 있다.
본 발명의 다른 관점은 상기 태양전지 전극용 페이스트로부터 형성된 전극 및 이를 포함하는 태양전지에 관한 것이다. 도 1은 본 발명의 한 구체예에 따른 태양전지의 구조를 나타낸 것이다.
도 1을 참조하면, p층(101) 및 에미터로서의 n층(102)을 포함하는 웨이퍼(100) 또는 기판 상에, 상기 페이스트들을 인쇄하고 소성하여 후면 전극(210) 및 전면 전극(230)을 형성할 수 있다. 예컨대, 페이스트를 웨이퍼의 후면에 인쇄 도포한 후, 대략 200℃ 내지 400℃ 온도로 대략 10 내지 60초 정도 건조하여 후면 전극을 위한 사전 준비 단계를 수행할 수 있다. 또한, 웨이퍼의 전면에 페이스트를 인쇄한 후 건조하여 전면 전극을 위한 사전 준비단계를 수행할 수 있다. 이후에, 약 400℃ 내지 950℃, 바람직하게는 약 850℃ 내지 950℃에서 약 30초 내지 50초 정도 소성하는 소성 과정을 수행하여 전면 전극 및 후면 전극을 형성할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
하기 실시예와 비교예에서 사용한 성분의 구체적인 사양은 다음과 같다.
(A)도전성 분말로 평균입경(D50)이 2㎛인 구형의 은 분말(Dowa Hightech社, AG-4-8)을 사용하였다. (B)유리 프릿으로 PbO, SiO2, TeO2, Al2O3, ZrO2, ZnO, Li2O, Na2O 및 B2O3로부터 선택된 물질로부터 제조된 유리 프릿을 사용하였다. (C)유기 비히클로 에틸셀룰로오스(Dow Chemical社, STD4)와 부틸 카비톨을 사용하였다.
실시예 1-3 및 비교예 1-3
PbO, SiO2, TeO2, Al2O3, ZrO2, ZnO, Li2O, Na2O 및 B2O3를 하기 표 1에 기재된 함량(단위:중량%)으로 혼합하고 1200℃에서 용융시키고, 25℃에서 켄칭하였다. 얻은 결과물을 디스크 밀로 분쇄하여 평균입경(D50)이 2㎛인 유리 프릿을 얻었다.
얻은 유리 프릿 5중량부에 도전성 분말 84중량부, 및 에틸셀룰로오스 1중량부를 부틸 카비톨 10중량부에 넣고 60℃에서 용해시킨 유기 비히클 11중량부를 투입하여 믹싱한 후, 3롤 혼련기로 혼합 분산시켜, 태양전지 전극용 페이스트 조성물을 제조하였다.
표 1
PbO SiO2 TeO2 Al2O3 ZrO2 ZnO Li2O Na2O B2O3
실시예 1 70 10.13 13.23 - - - - - 6.64
실시예 2 70 5.13 18.23 - - - - - 6.64
실시예 3 50.25 17.34 15 8.86 0.63 6.02 - 1.9 -
비교예 1 50 10.13 38.23 - - - - - 1.64
비교예 2 80 10.13 0.5 - - - - - 9.37
비교예 3 65.25 17.34 - 8.86 0.63 6.02 1.78 0.12 -
실험예:페이스트 조성물과 전극의 물성 평가
상기 실시예와 비교예에서 제조한 페이스트 조성물을 스크린 인쇄판 위에서 스크래퍼로 롤링하여 도포시켰다. 스퀴즈로 스크린 인쇄판의 화선부로 토출시키면서 평균 면저항 65Ω의 단결정(momocrystalline) 형태의 웨이퍼에 인쇄하였다. 상기 인쇄된 웨이퍼를 300 oC에서 20 ~30 초 정도 건조한 후 BTU 소성로 6 zone 온도 950 oC, belt speed 250 ipm에서 소성후 효율(%)을 산출하고, 그 결과를 표 2에 나타내었다.
표 2
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
효율(%) 17.86 16.09 16.57 3.52 15.26 14.57
상기 표 2에서 나타난 바와 같이, 본 발명의 태양전지 전극용 페이스트 조성물은 태양전지 효율이 높았다. 반면에 TeO2를 1중량% 미만 또는 20중량% 초과로 포함하는 비교예 1-3은 태양 전지 효율이 본 발명에 비해 낮았다.
본 발명은 다양한 면저항 하에서도 pn 접합에 영향을 주지 않는 태양전지 전극용 페이스트 조성물을 제공하였다. 본 발명은 다양한 면저항 하에서도 태양전지 효율이 높은 태양전지 전극용 페이스트 조성물을 제공하였다.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (11)

  1. 도전성 분말, 유리 프릿 및 유기 비히클을 포함하고,
    상기 유리 프릿은 PbO, SiO2 및 TeO2를 포함하고, 상기 TeO2는 상기 유리 프릿 중 약 1-20중량%로 포함되는 태양전지 전극용 페이스트 조성물.
  2. 제1항에 있어서, 상기 유리 프릿 중 PbO는 약 40-80중량%, SiO2는 약 5-20중량%로 포함되는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 유리 프릿은 Al2O3, ZrO2, P2O5, ZnO, Bi2O3, Na2O, B2O3, Ta2O5, Fe2O3, Cr2O3, Co2O3, Li2O, Li2CO3, MgO 및 MnO2로 이루어진 군으로부터 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 유리 프릿은 PbO 약 40-80중량%, SiO2 약 5-20중량%, TeO2 약 1-20중량% 및 B2O3 약 1-20중량%를 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 유리 프릿은 PbO 약 40-80중량%, SiO2 약 5-20중량%, TeO2 약 1-20중량%, Al2O3 약 1-10중량%, ZrO2 약 0.1-1중량%, ZnO 약 1-10중량%, Li2O 약 1-10중량%, Li2CO3 약 1-10중량% 및 Na2O 약 1-10중량%를 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 유리 프릿은 PbO 약 40-80중량%, SiO2 약 5-20중량%, TeO2 약 1-20중량%, Al2O3 약 1-10중량%, ZrO2 약 0.1-1중량%, ZnO 약 1-10중량%, 및 Na2O 약 1-5중량%를 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 유리 프릿은 평균입경(D50)이 약 0.1㎛-5㎛인 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 도전성 분말은 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 구리(Cu), 크롬(Cr), 코발트(Co), 알루미늄(Al), 주석(Sn), 납(Pb), 아연(Zn), 철(Fe), 이리듐(Ir), 오스뮴(Os), 로듐(Rh), 텅스텐(W), 몰리브덴(Mo), 니켈(Nickel) 및 ITO(인듐틴옥사이드)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 조성물은 도전성 분말 약 60-90중량%, 유리 프릿 약 1-10중량% 및 유기 비히클 약 7-30중량%를 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 조성물은 분산제, 요변제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1종 이상 더 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트 조성물.
  11. 제1항 내지 제10항 중 어느 한 항의 태양전지 전극용 페이스트 조성물로 제조된 전극.
PCT/KR2012/002354 2011-12-08 2012-03-30 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극 WO2013085112A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280059408.5A CN103959393A (zh) 2011-12-08 2012-03-30 用于太阳能电池电极的糊料组合物和由此生产的电极
US14/362,736 US20140373904A1 (en) 2011-12-08 2012-03-30 Paste composition for solar cell electrode and electrode produced therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110131376A KR20130064659A (ko) 2011-12-08 2011-12-08 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
KR10-2011-0131376 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013085112A1 true WO2013085112A1 (ko) 2013-06-13

Family

ID=48574449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002354 WO2013085112A1 (ko) 2011-12-08 2012-03-30 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극

Country Status (4)

Country Link
US (1) US20140373904A1 (ko)
KR (1) KR20130064659A (ko)
CN (1) CN103959393A (ko)
WO (1) WO2013085112A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103854721A (zh) * 2014-03-25 2014-06-11 中希集团有限公司 一种太阳能电池正面金属化银浆及其制备方法
EP2897131A1 (en) * 2014-01-17 2015-07-22 Heraeus Precious Metals North America Conshohocken LLC Lead-bismuth-tellurium-silicate inorganic reaction system having improved adhesion properties
EP2897132A1 (en) * 2014-01-17 2015-07-22 Heraeus Precious Metals North America Conshohocken LLC Lead-tellurium inorganic reaction systems
CN105939976A (zh) * 2014-01-28 2016-09-14 东进世美肯株式会社 玻璃组合物和使用该玻璃组合物的太阳能电池用电极组合物

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648245B1 (ko) * 2013-09-04 2016-08-12 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
JP6142756B2 (ja) * 2013-10-02 2017-06-07 セントラル硝子株式会社 ガラス粉末材料
KR101400133B1 (ko) * 2013-11-28 2014-05-28 덕산하이메탈(주) 은 페이스트 조성물 및 이를 이용하여 제조된 태양전지
KR101600874B1 (ko) * 2014-05-16 2016-03-09 덕산하이메탈(주) 은 페이스트 조성물 및 이를 이용하여 제조된 태양전지
JP5941588B2 (ja) * 2014-09-01 2016-06-29 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP6360250B2 (ja) * 2015-03-09 2018-07-18 東芝三菱電機産業システム株式会社 太陽電池の製造方法
CN104998596A (zh) * 2015-07-13 2015-10-28 江苏凯力克钴业股份有限公司 一种液相合成制备纯相四氧化三钴的生产装置
KR101706539B1 (ko) * 2015-09-16 2017-02-15 주식회사 휘닉스소재 태양 전지 전극 형성용 유리 프릿 조성물, 이를 사용하여 형성된 태양 전지용 전극, 및 상기 전극을 포함하는 태양 전지
KR101693840B1 (ko) * 2015-10-05 2017-01-09 대주전자재료 주식회사 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지
KR20180046810A (ko) * 2016-10-28 2018-05-09 삼성에스디아이 주식회사 태양전지용 핑거 전극 및 이의 제조방법
WO2019041455A1 (zh) * 2017-08-31 2019-03-07 无锡帝科电子材料股份有限公司 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284754A (ja) * 2000-03-30 2001-10-12 Kyocera Corp ガラスセラミック回路基板
JP2007294677A (ja) * 2006-04-25 2007-11-08 Sharp Corp 太陽電池電極用導電性ペースト
JP2009099781A (ja) * 2007-10-17 2009-05-07 Central Glass Co Ltd 導電性ペースト材料
KR20100075661A (ko) * 2008-08-07 2010-07-02 교토 에렉스 가부시키가이샤 태양전지소자의 전극형성용 도전성 페이스트, 태양전지소자 및 그 태양전지소자의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559509B2 (ja) * 2009-10-28 2014-07-23 昭栄化学工業株式会社 太陽電池電極形成用導電性ペースト
US8895843B2 (en) * 2010-05-04 2014-11-25 E I Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
TW201245361A (en) * 2011-03-24 2012-11-16 Du Pont Conductive paste composition and semiconductor devices made therewith
US8771554B2 (en) * 2011-10-20 2014-07-08 E I Du Pont De Nemours And Company Thick film silver paste containing Al2O3 and lead-tellurium—oxide and its use in the manufacture of semiconductor devices
KR20140022511A (ko) * 2012-08-13 2014-02-25 제일모직주식회사 태양전지 전극용 페이스트, 이로부터 제조된 전극 및 이를 포함하는 태양전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284754A (ja) * 2000-03-30 2001-10-12 Kyocera Corp ガラスセラミック回路基板
JP2007294677A (ja) * 2006-04-25 2007-11-08 Sharp Corp 太陽電池電極用導電性ペースト
JP2009099781A (ja) * 2007-10-17 2009-05-07 Central Glass Co Ltd 導電性ペースト材料
KR20100075661A (ko) * 2008-08-07 2010-07-02 교토 에렉스 가부시키가이샤 태양전지소자의 전극형성용 도전성 페이스트, 태양전지소자 및 그 태양전지소자의 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2897131A1 (en) * 2014-01-17 2015-07-22 Heraeus Precious Metals North America Conshohocken LLC Lead-bismuth-tellurium-silicate inorganic reaction system having improved adhesion properties
EP2897132A1 (en) * 2014-01-17 2015-07-22 Heraeus Precious Metals North America Conshohocken LLC Lead-tellurium inorganic reaction systems
TWI609002B (zh) * 2014-01-17 2017-12-21 賀利氏貴金屬北美康舍霍肯有限責任公司 具有改良黏著性質之鉛-鉍-碲-矽酸鹽無機反應系統
US10115836B2 (en) 2014-01-17 2018-10-30 Heraeus Precious Metals North America Conshohocken Llc Lead-bismuth-tellurium-silicate inorganic reaction system having improved adhesion properties
US10224438B2 (en) 2014-01-17 2019-03-05 Heraeus Precious Metals North America Conshohocken, Llc Lead-tellurium inorganic reaction systems
CN105939976A (zh) * 2014-01-28 2016-09-14 东进世美肯株式会社 玻璃组合物和使用该玻璃组合物的太阳能电池用电极组合物
CN103854721A (zh) * 2014-03-25 2014-06-11 中希集团有限公司 一种太阳能电池正面金属化银浆及其制备方法

Also Published As

Publication number Publication date
CN103959393A (zh) 2014-07-30
US20140373904A1 (en) 2014-12-25
KR20130064659A (ko) 2013-06-18

Similar Documents

Publication Publication Date Title
WO2013085112A1 (ko) 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
KR101600652B1 (ko) 태양전지 전극용 페이스트 및 이로부터 제조된 전극
WO2014126293A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2015037933A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR20140022511A (ko) 태양전지 전극용 페이스트, 이로부터 제조된 전극 및 이를 포함하는 태양전지
KR101447271B1 (ko) 태양전지 전극용 페이스트 조성물, 이를 이용하여 형성된 전극 및 이를 포함하는 태양전지
WO2014157800A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2015037798A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR20120028789A (ko) 태양전지 전극용 페이스트 및 이를 이용하여 제조되는 태양전지
WO2017061764A1 (ko) 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지
WO2017175902A1 (ko) 태양전지용 후면전극 페이스트 조성물
WO2014098351A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2014196712A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2019088525A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2019088526A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2016137059A1 (en) Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it
KR20160057583A (ko) 태양전지 전극용 페이스트 및 이로부터 제조된 전극
KR20150027652A (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
EP3367391A1 (en) Paste composition used for preparing solar cell electrode, solar cell electrode, and solar cell
WO2017160074A1 (ko) 태양전지용 무연 도전 페이스트
EP2474040A2 (en) Aluminum paste for a back electrode of solar cell
WO2017183881A1 (ko) 태양전지 후면전극용 페이스트 조성물
WO2017074150A1 (ko) 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지
WO2019088520A2 (ko) 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
WO2012148021A1 (ko) 실리콘 태양전지의 저 휨 고특성 구현용 알루미늄 페이스트 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14362736

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12856196

Country of ref document: EP

Kind code of ref document: A1