EP2897132A1 - Lead-tellurium inorganic reaction systems - Google Patents
Lead-tellurium inorganic reaction systems Download PDFInfo
- Publication number
- EP2897132A1 EP2897132A1 EP15151442.9A EP15151442A EP2897132A1 EP 2897132 A1 EP2897132 A1 EP 2897132A1 EP 15151442 A EP15151442 A EP 15151442A EP 2897132 A1 EP2897132 A1 EP 2897132A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reaction system
- inorganic reaction
- preferred
- irs
- electroconductive paste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052714 tellurium Inorganic materials 0.000 title claims abstract description 33
- 238000007130 inorganic reaction Methods 0.000 title claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 116
- 239000011701 zinc Substances 0.000 claims abstract description 41
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 30
- 229910052745 lead Inorganic materials 0.000 claims abstract description 11
- 102000005717 Myeloma Proteins Human genes 0.000 claims abstract description 7
- 108010045503 Myeloma Proteins Proteins 0.000 claims abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 66
- 229910052710 silicon Inorganic materials 0.000 claims description 66
- 239000010703 silicon Substances 0.000 claims description 66
- 239000011133 lead Substances 0.000 claims description 48
- 150000001875 compounds Chemical class 0.000 claims description 39
- 238000010304 firing Methods 0.000 claims description 37
- 239000003981 vehicle Substances 0.000 claims description 33
- 239000013528 metallic particle Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 27
- -1 poly(ethyleneglycol) Polymers 0.000 claims description 27
- 239000011777 magnesium Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000011230 binding agent Substances 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 21
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 20
- 229910052709 silver Inorganic materials 0.000 claims description 19
- 239000004332 silver Substances 0.000 claims description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 17
- 239000004094 surface-active agent Substances 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 150000002739 metals Chemical class 0.000 claims description 14
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 13
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052787 antimony Inorganic materials 0.000 claims description 10
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 239000011135 tin Substances 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052788 barium Inorganic materials 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 7
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 239000011574 phosphorus Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 claims description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 239000013008 thixotropic agent Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 4
- 150000004770 chalcogenides Chemical class 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 150000004820 halides Chemical class 0.000 claims description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 4
- 229940116411 terpineol Drugs 0.000 claims description 4
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 claims description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 claims description 3
- 239000001856 Ethyl cellulose Substances 0.000 claims description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical class CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 3
- 239000005639 Lauric acid Substances 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 235000021314 Palmitic acid Nutrition 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920001249 ethyl cellulose Polymers 0.000 claims description 3
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 229920001568 phenolic resin Chemical class 0.000 claims description 3
- 239000005011 phenolic resin Chemical class 0.000 claims description 3
- 229920000515 polycarbonate Chemical class 0.000 claims description 3
- 239000004417 polycarbonate Chemical class 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 claims description 2
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 claims description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Chemical class C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 claims description 2
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Chemical class O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 claims description 2
- 229920002125 Sokalan® Chemical class 0.000 claims description 2
- 239000006117 anti-reflective coating Substances 0.000 claims description 2
- 239000012964 benzotriazole Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229920002037 poly(vinyl butyral) polymer Chemical class 0.000 claims description 2
- 239000004584 polyacrylic acid Chemical class 0.000 claims description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Chemical class OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 claims description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 claims 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical class [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims 1
- 150000002942 palmitic acid derivatives Chemical class 0.000 claims 1
- 229920001225 polyester resin Chemical class 0.000 claims 1
- 239000004645 polyester resin Chemical class 0.000 claims 1
- 229920013716 polyethylene resin Chemical class 0.000 claims 1
- 229920005749 polyurethane resin Chemical class 0.000 claims 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 71
- 239000010410 layer Substances 0.000 description 58
- 239000002245 particle Substances 0.000 description 47
- 239000011521 glass Substances 0.000 description 45
- 239000000758 substrate Substances 0.000 description 41
- 235000012431 wafers Nutrition 0.000 description 34
- 239000000463 material Substances 0.000 description 24
- 239000000654 additive Substances 0.000 description 22
- 239000002019 doping agent Substances 0.000 description 17
- 239000007858 starting material Substances 0.000 description 17
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- 239000000523 sample Substances 0.000 description 16
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 15
- 238000000576 coating method Methods 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 13
- 239000011575 calcium Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 11
- 230000003667 anti-reflective effect Effects 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 9
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 9
- 239000000395 magnesium oxide Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000002161 passivation Methods 0.000 description 8
- 239000011787 zinc oxide Substances 0.000 description 8
- 229910003069 TeO2 Inorganic materials 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 6
- 238000000407 epitaxy Methods 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 125000004185 ester group Chemical group 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000005476 soldering Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 229910052712 strontium Inorganic materials 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 125000001033 ether group Chemical group 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910011255 B2O3 Inorganic materials 0.000 description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229940093476 ethylene glycol Drugs 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000006069 physical mixture Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- BNRRFUKDMGDNNT-JQIJEIRASA-N (e)-16-methylheptadec-2-enoic acid Chemical compound CC(C)CCCCCCCCCCCC\C=C\C(O)=O BNRRFUKDMGDNNT-JQIJEIRASA-N 0.000 description 2
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- 101100518501 Mus musculus Spp1 gene Proteins 0.000 description 2
- 235000021360 Myristic acid Nutrition 0.000 description 2
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 238000012993 chemical processing Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 229910021476 group 6 element Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 235000020778 linoleic acid Nutrition 0.000 description 2
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000002457 octadec-9-ynoyl group Chemical group C(CCCCCCCC#CCCCCCCCC)(=O)* 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Chemical group 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002635 polyurethane Chemical class 0.000 description 2
- 239000004814 polyurethane Chemical class 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 150000003378 silver Chemical class 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 150000003509 tertiary alcohols Chemical class 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Chemical group 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- QNHZQZQTTIYAQM-UHFFFAOYSA-N chromium tungsten Chemical compound [Cr][W] QNHZQZQTTIYAQM-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000011157 data evaluation Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- FPHIOHCCQGUGKU-UHFFFAOYSA-L difluorolead Chemical compound F[Pb]F FPHIOHCCQGUGKU-UHFFFAOYSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002338 electrophoretic light scattering Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical class [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical class [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052696 pnictogen Inorganic materials 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229910001848 post-transition metal Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- FJOLTQXXWSRAIX-UHFFFAOYSA-K silver phosphate Chemical compound [Ag+].[Ag+].[Ag+].[O-]P([O-])([O-])=O FJOLTQXXWSRAIX-UHFFFAOYSA-K 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- KZJPVUDYAMEDRM-UHFFFAOYSA-M silver;2,2,2-trifluoroacetate Chemical compound [Ag+].[O-]C(=O)C(F)(F)F KZJPVUDYAMEDRM-UHFFFAOYSA-M 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229920006352 transparent thermoplastic Polymers 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical class F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
- H01L31/02008—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
- H01B1/16—Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/28—Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/30—Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
- B05D1/305—Curtain coating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/002—Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/004—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/122—Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/10—Frit compositions, i.e. in a powdered or comminuted form containing lead
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
- C03C8/18—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/006—Anti-reflective coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/186—Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
- H01L31/1864—Annealing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- an electroconductive paste composition utilized in solar panel technology especially for forming front side electrical contacts, includes conductive particles, an organic vehicle, and the PTZ, PTM, and/or PTMZ IRS of the invention.
- Solar cells are devices that convert the energy of light into electricity using the photovoltaic effect. Solar power is an attractive green energy source because it is sustainable and produces only non-polluting by-products. Accordingly, a great deal of research is currently being devoted to developing solar cells with enhanced efficiency while continuously lowering material and manufacturing costs.
- a solar cell When light hits a solar cell, a fraction of the incident light is reflected by the surface and the remainder is transmitted into the solar cell. The photons of the transmitted light are absorbed by the solar cell, which is usually made of a semiconducting material such as silicon. The energy from the absorbed photons excites electrons of the semiconducting material from their atoms, generating electron-hole pairs. These electron-hole pairs are then separated by p-n junctions and collected by conductive electrodes applied on the solar cell surface.
- Solar cells typically have electroconductive pastes applied to both their front and back surfaces.
- a front side paste which typically includes silver, is screen printed onto the front side of the substrate to serve as a front electrode.
- a typical electroconductive paste contains conductive metallic particles, glass frit, and an organic vehicle.
- the glass frit etches through an antireflection coating, such as a silicon nitride coating, on the surface of the silicon substrate upon firing, helping to build electrical contact between the conductive particles and the silicon substrate.
- an antireflection coating such as a silicon nitride coating
- glass frits which include relatively high amounts of lead oxide and bismuth oxide may damage the antireflection layer and degrade the p-n junction of the substrate. As a result, the electrical performance of the solar cell may be reduced.
- glass frits are known to have wide melting temperature ranges, making their behavior strongly dependent on their composition and processing parameters. As such, the ability to predict glass processing parameters and behavior under fast firing processes is difficult with known glass frits.
- an IRS which optimizes contact between the electroconductive paste and the underlying substrate so as to achieve improved solar cell efficiency, without being so aggressive that it damages the antireflection layer and p-n junction, is needed. Further, an IRS having more predictable processing behaviors is also desirable.
- the invention provides a lead inorganic reaction system (IRS) containing zinc and/or an alkaline earth metal which, when used in an electroconductive paste, improves electrical contact with the underlying substrate. Moreover, due to the improved contact performance from the inclusion of zinc and/or an alkaline earth metal in the IRS, the lead content can be reduced and more predictable processing parameters can be achieved.
- IRS lead inorganic reaction system
- One aspect of the invention is an inorganic reaction system comprising a lead-tellurium-zinc composition of Formula (I): Pb a -Te b -Zn f -M d -O e , wherein 0 ⁇ a, b, d, or f ⁇ 1, the sum of a, b, d and f is 1, 0 ⁇ d ⁇ 0.5, 0 ⁇ f ⁇ 0.2, a:b is between about 10:90 and about 90:10, (a+f+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Zn, and M components.
- Formula (I): Pb a -Te b -Zn f -M d -O e wherein 0 ⁇ a, b, d, or f ⁇ 1, the sum of a, b, d and f is 1,
- the invention also provides a solar cell module comprising electrically interconnected solar cells according to the invention.
- Another aspect of the invention is a method of producing a solar cell, including the steps of providing a silicon wafer having a front side and a backside, applying the electroconductive paste of the invention to the silicon wafer, and firing the silicon wafer.
- the invention relates to PTZ, PTM, and PTMZ inorganic reaction systems. While not limited to such an application, the IRS compositions, or combinations thereof, may be used in an electroconductive paste composition such as those used in silicon solar cells.
- the electroconductive paste composition preferably comprises conductive metallic particles, an organic vehicle, and at least one of the PTZ, PTM, or PTMZ IRS compositions.
- the electroconductive paste composition may comprise one or more additional additives.
- the IRS may include a combination of multiple PTZ, PTM and PTMZ glass compositions, PTZ, PTM and PTMZ glass compositions with PTZ, PTM and PTMZ -containing compounds, or PTZ, PTM and PTMZ -containing compounds (e.g., organometallic compounds, salts) that form a PTZ, PTM and PTMZ IRS during physical processing (e.g., mechanochemical processing, milling, grinding) or chemical processing (e.g., firing, thermal decomposition, photo or radiochemical decomposition).
- the elements forming the PTZ, PTM and PTMZ may be present in a single component or distributed among two or more components, which may be amorphous or crystalline or partially crystalline.
- Such pastes When applied to silicon solar cells, such pastes may be used to form an electrical contact layer or electrode, either on the front side or backside of the silicon wafer.
- the electroconductive paste is used on the front side of a silicon wafer for a solar cell and includes silver conductive particles, the IRS composition(s) of the invention, and an organic vehicle.
- the invention relates to an IRS for use, for example, in an electroconductive paste composition.
- the IRS serves multiple functions when used in an electroconductive paste composition.
- the IRS provides a delivery media for the conductive particles, allowing them to migrate from the paste to the interface of the semiconductor substrate.
- the IRS system also provides a reaction media for the paste components to undergo physical and chemical reactions at the interface when subjected to elevated temperatures.
- Physical reactions include, but are not limited to, melting, dissolving, diffusing, sintering, precipitating, and crystallizing.
- Chemical reactions include, but are not limited to, synthesis (forming new chemical bonds) and decomposition, reduction and oxidation, and phase transitioning.
- the IRS also acts as an adhesion media that provides bonding between the conductive particles and the semiconductor substrate, thereby improving electrical contact performance during the lifetime of the solar device.
- existing glass frit compositions can result in high contact resistance at the interface of the electroconductive paste and the silicon wafer, due to the insulative properties of the glass.
- the IRS of the invention provides the desired delivery, reactivity, and adhesion media, but also lowers contact resistance and improves overall cell performance.
- the IRS provides improved Ohmic and Schottky contact between the conductive particles and the semiconductor substrate (e.g., silicon substrate) in the solar cell.
- the IRS is a reactive media with respect to the silicon and creates active areas on the silicon substrate that improve overall contact, such as through direct contact or tunneling.
- the improved contact properties provide better Ohmic contact and Schottky contact, and therefore better overall solar cell performance.
- the inclusion of zinc and/or an alkaline earth metal in the IRS is believed to improve the contact properties of the electroconductive paste.
- the combination of the IRS components provides a paste with a widened range of glass transition temperatures, softening temperatures, melting temperatures, crystallization temperatures, and flowing temperatures, thus broadening the processing window of the resulting paste. This allows the resulting electroconductive paste to have improved compatibility with a wide variety of substrates.
- the IRS may include glass material(s), ceramic material(s), any other compound(s) known in the art to form a reactive matrix at an elevated temperature.
- the IRS may include at least one substantially amorphous glass frit.
- the IRS may incorporate crystalline phases or compounds, or a mixture of amorphous, partially crystalline, and/or crystalline materials.
- the IRS may also include other oxides or compounds known in the art.
- glass matrix formers or glass modifiers such as germanium oxide, vanadium oxide, molybdenum oxides, niobium oxides, indium oxides, other alkaline and alkaline earth metal (e.g., K, Rb, Cs, Ca, Sr, and Ba) compounds, rare earth oxides (e.g., La 2 O 3 , cerium oxides), phosphorus oxides or metal phosphates, and metal halides (e.g., lead fluorides and zinc fluorides) may also be used as additives to adjust properties such as the glass transition temperature of the IRS.
- the IRS may contain a combination of at least one glass and at least one oxide or additive.
- the PTZ IRS may be expressed by the following formula: Pb a -Te b -Zn f -M d -O e (Formula I)
- 0 ⁇ a, b, d, or f ⁇ 1 the sum of a, b, d and f is 1, 0 ⁇ d ⁇ 0.5, 0 ⁇ f ⁇ 0.2
- M is one or more metals which can act as glass formers
- the variable "e" charge balances the Pb a -Te b -Zn f -M d components.
- M may be any metal including, but not limited to, alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, lead and any combinations thereof.
- M is lithium, boron, silicon, or any combination thereof
- the ratio of lead to tellurium, or a:b is between about 10:90 and about 90:10. More preferably, the a:b ratio is between about 20:80 and about 80:20.
- the ratio of tellurium to zinc, or b:f is preferably between about 5:95 and about 95:5. More preferably the b:f ratio is between about 1:1 and about 20:1.
- the ratio of lead and zinc to tellurium, or (a+f+d):b is preferably between about 10:90 to about 90:10, more preferably between about 20:80 to about 40:60.
- the ratio of lead to zinc, or a:f: is preferably between about 10:90 to about 90:10. More preferably, the a:f ratio is between about 30:70 to about 70:30.
- Formula I is preferably formulated as a one-glass composition, whereby the starting components of the IRS (Pb, Te, Zn, and additional metal) all chemically react to form one complex compound or composite, instead of a glass having a physical mixture of various oxides.
- the zinc component may be included outside of Formula I as an additive to the IRS.
- the PTZ IRS may be expressed by the following formula: Pb a -Te b -Zn f -Bi g -M d -O e (Formula IA)
- the ratio a:g is between about 10:90 and about 90:10. More preferably, the a:g ratio is between about 15:85 and about 85:15.
- the ratio ofg:b is preferably between about 5:95 and about 95:5. More preferably, the g:b ratio is between about 10:90 and about 80:20.
- the ratio f:g is preferably between about 10:90 and about 90:10. More preferably, the f:g ratio is between about 15:85 and about 85:10.
- Formula IA may be formulated as a one-glass composition according to the same parameters set forth above for Formula I.
- the PTM IRS may be expressed by the following formula: Pb a -Te b -(Mg w -Ca x -Sr y -Ba z )-M d -O e (Formula II)
- M may be any element or component including, but not limited to, alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, halides, chalcogenides, lead and any combinations thereof.
- M is lithium, boron, silicon, or any combination thereof.
- the ratio of lead to tellurium, or a:b is between about 10:90 and 90:10. More preferably, the a:b ratio is between about 1:10 and about 10:1.
- the ratio of tellurium to the Mg-Ca-Sr-Ba component, or b:c is preferably between about 5:95 and about 95:5. More preferably, the b:c ratio is between about 1:1 and about 20:1.
- the ratio of lead and the Mg-Ca-Sr-Ba component to tellurium, or (a+c+d):b is preferably between about 10:90 to about 90:10, and more preferably between about 20:80 to about 40:60.
- the ratio of lead to the Mg-Ca-Sr-Ba component, or a:c is preferably between about 10:90 to about 90:10. More preferably, the a:c ratio is between 30:70 to about 70:30.
- Formula II is preferably formulated as a one-glass composition, whereby the starting components of the IRS (Pb, Te, Zn, Mg, or Ca, Sr, Ba, and additional metal) all chemically react to form one complex compound or composite, instead of a glass having a physical mixture of various oxides.
- the Mg-Ca-Sr-Ba component may be included outside of Formula II as an additive to the IRS.
- the PTM IRS may be expressed by the following formula: Pb a -Te b -(Mg w -Ca x -Sr y -Ba z ) c -Bi g -M d -O e (Formula IIA)
- the ratio a:g is between about 10:90 and about 90:10. More preferably, the a:g ratio is between about 15:85 and about 85:15.
- the ratio ofg:b is preferably between about 5:95 and about 95:5. More preferably, the g:b ratio is between about 10:90 and about 80:20.
- the ratio f:g is preferably between about 10:90 and about 90:10. More preferably, the f:g ratio is between about 15:85 and about 85:10.
- Formula IIA may be formulated as a one-glass composition according to the same parameters set forth above for Formula II.
- c is less than or equal to about 0.2, and preferably less than or equal to about 0.1. At the same time, “c” is at least 0.05.
- the variable "d' is less than or equal to 0.4.
- the variable "f” is preferably less than 0.1.
- M may be any element including, but not limited to, alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, lead, halides, chalcogenides, and any combinations thereof.
- M is lithium, boron, silicon, or any combination thereof.
- the ratio of lead to tellurium, or a:b is between about 10:90 and about 90:10. More preferably, the a:b ratio is between about 15:85 and about 30:70.
- the ratio of tellurium to the Mg-Ca-Sr-Ba component, or b:c is preferably between about 5:95 and about 95:5. More preferably, the b:c ratio is between about 1:1 and about 20:1.
- the ratio of lead to the Mg-Ca-Sr-Ba component, or a:c is preferably between 10:90 and 90:10. More preferably, the a:c ratio is between 1:10 and 10:1.
- the ratio of the Mg-Ca-Sr-Ba component to the zinc component, or c:f is between about 1:1 and about 20:1.
- the ratio of tellurium to zinc, or b:f is preferably between about 5:95 and about 95:5. More preferably the b:f ratio is between about 1:1 and about 20:1.
- the ratio of lead and the Mg-Ca-Sr-Ba component and zinc and other elements to tellurium, or (a+c+d+f):b is preferably between about 10:90 and about 90:10, more preferably between about 20:80 and about 40:60.
- Formula III is preferably formulated as a one-glass composition, whereby the starting components of the IRS (Pb, Te, Zn, Mg, or Ca, Sr, Ba, Zn and additional metal) all chemically react to form one complex compound or composite, instead of a glass having a physical mixture of various oxides.
- the Mg-Ca-Sr-Ba and/or zinc components may be included outside of Formula III as an additive to the IRS.
- the PTMZ IRS may be expressed by the following formula: Pb a -Te b -(Mg w -Ca x -Sr y -Ba z ) c -Bi g -Zn f -M d -O e (Formula IIIA)
- the ratio a:g is between about 10:90 and about 90:10. More preferably, the a:g ratio is between about 15:85 to about 85:15.
- the ratio of g:b is preferably between about 5:95 and about 95:5. More preferably, the g:b ratio is between about 10:90 and about 80:20.
- the ratio f:g is preferably between about 10:90 to about 90:10. More preferably, the f:g ratio is between about 15:85 to about 85:10.
- Formula IIIA may be formulated as a one-glass composition according to the same parameters set forth above for Formula III.
- the IRS may include a combination of multiple glass compositions, such as combinations of Formulas I, II or III, glass compositions with PTZ, PTM, or PTMZ-containing compounds, or compounds (e.g., organometallic compounds, salts) that form a PTZ, PTM or PTMZ IRS during physical processing (e.g., mechanochemical processing, milling, grinding) or chemical processing (e.g., firing, thermal decomposition, photo or radiochemical decomposition).
- physical processing e.g., mechanochemical processing, milling, grinding
- chemical processing e.g., firing, thermal decomposition, photo or radiochemical decomposition.
- the IRS may be formed of crystalline or partially crystalline starting materials.
- the elements froming the IRS may be present in a single component or distributed amount two or more components.
- the starting materials used to prepare the IRS compositions are lead oxide (e.g., PbO), tellurium oxide (e.g., TeO 2 ), and oxides of zinc and/or the alkaline earth metals, such as zinc oxide (e.g, ZnO) and magnesium oxide (e.g., MgO).
- lead oxide e.g., PbO
- tellurium oxide e.g., TeO 2
- oxides of zinc and/or the alkaline earth metals such as zinc oxide (e.g, ZnO) and magnesium oxide (e.g., MgO).
- any known lead, tellurium, zinc, and magnesium-containing compositions which may be used to formulate a PTZ, PTM, or PTMZ system according to Formulas I, II and III may be used.
- the starting materials used to prepare the IRS comprise at least about 5 wt% lead-containing compound (e.g., PbO), and preferably at least about 8 wt% lead-containing compound, based upon 100% total weight of the IRS.
- the composition comprises no more than about 45% lead-containing compound, preferably no more than about 40 wt%, and most preferably no more than about 38 wt%.
- the materials preferably include at least 20 wt% tellurium-containing compound (e.g., TeO 2 ), and preferably at least about 30 wt%, based upon 100% total weight of the starting materials used to prepare the IRS.
- the materials preferably include no more than about 70 wt% tellurium-containing compound, and preferably no more than about 60 wt%.
- the starting materials preferably include no more than about 15 wt% of such compound, and preferably no more than about 10 wt%, based upon 100% total weight of the IRS.
- the starting materials may include at least about 0.1 wt% of such compound, and preferably at least about 0.3 wt%, based upon 100% total weight of the IRS.
- Suitable compounds include, but are not limited to, compounds of alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, halides, chalcogenides, and any combinations thereof.
- the starting materials containing these metals are metal oxides, such as, for example Li 2 O, Na 2 O, SiO 2 , Al 2 O 3 , MoO 3 , MgO, Cr 2 O 3 , P 2 O 5 , B 2 O 3 , and Ag 2 O.
- Metal halides such as AgI or PbF 2 , may also be used.
- the IRS includes lithium, boron, silicon, or any combination thereof.
- the IRS includes bismuth, as set forth more fully herein. If present, the starting materials of the IRS include at least about 0.1 wt% of the above-referenced elements. At the same time, they include no more than about 30 wt%, and preferably no more than about 20 wt%, based upon 100% total weight of the IRS.
- the IRS may be formed by any method known in the art, including solid state synthesis, melting and quenching, or other Chimie Douce (soft chemistry) processes.
- a typical melting and quenching process the first step is to mix the appropriate amounts of the starting materials (usually in powder form). This mixture is then heated in air or in an oxygen-containing atmosphere to form a melt. The melt is then quenched, and then it is ground, ball milled, and screened, in order to provide a mixture with the desired particle size.
- components in powder form may be mixed together in a V-comb blender. The mixture is then heated (e.g., to around 800-1200°C) for about 30-40 minutes such that the starting materials may react to form a one-glass system.
- the IRS is then quenched, taking on a sand-like consistency.
- This coarse powder is milled, such as in a ball mill or jet mill, until a fine powder results.
- the IRS particles may be milled to an average particle size (d 50 ) of about 0.01-20 ⁇ m, preferably about 0.1-5 ⁇ m.
- the IRS particles may be formed as nano sized particles having a d 50 ranging from about 5 to about 100 nm.
- Chimie Douce (soft chemistry) processes are carried out at temperatures of about 20°C to about 500°C. Chimie Douce reactions are topotactic, meaning that structural elements of the reactants are preserved in the product, but the composition changes. Such processes include, but are not limited to, sol-gel processes, precipitation, hydrothermal/solvothermal processes, and pyrolysis.
- Solid state synthesis may also be used to prepare the IRS system described herein.
- raw starting materials are sealed in a fused quartz tube or tantalum or platinum tube under vacuum, and then heated to about 700-1200°C. The materials dwell at this elevated temperature for about 12-48 hours and then are slowly cooled (about 0.1°C/minute) to room temperature.
- solid state reactions may be carried out in an alumina crucible in air.
- Yet another process for preparing the IRS system is co-precipitation.
- the metal elements are reduced and co-precipitated with other metal oxides or hydroxides to form a solution containing metal cations by adjusting the pH levels or by incorporating reducing agents.
- the precipitates of these metals, metal oxides or hydroxides are then dried and fired under vacuum at about 400-800°C to form a fine powder.
- a desired electroconductive paste is one which is highly conductive, so as to optimize the resulting solar cell's electrical performance.
- the electroconductive paste composition is generally comprised of metallic particles, organic vehicle, and at least one of the IRS compositions discussed herein.
- the electroconductive paste comprises: (i) at least about 50 wt% and no more than about 95 wt% metallic particles; (ii) at least about 1 wt% and no more than about 10 wt% IRS; and (iii) at least about 1 wt% and no more than about 25 wt% organic vehicle, based upon 100% total weight of the paste.
- the electroconductive paste of the invention includes at least one of the IRS compositions of the invention, as set forth herein.
- the electroconductive paste includes at least about 0.1 wt% of the IRS, and preferably at least about 0.5 wt%.
- the paste includes no more than about 10 wt% of the IRS, preferably no more than about 5 wt%, and most preferably no more than about 3 wt%, based upon 100% total weight of the paste.
- the IRS should have a glass transition temperature range (Tg) below the desired firing temperature of the electroconductive paste.
- Preferred IRS components have a T g range of at least about 250°C, preferably at least 300°C, and most preferably at least 350°C.
- preferred IRS materials have a T g range of no more than about 750°C, preferably no more than about 700°C, and most preferably no more than about 650°C, when measured using thermomechanical analysis.
- the glass transition temperature may be determined using a DSC apparatus, TA Instruments SDT Q600 Simultaneous TGA/DSC (TA Instruments). For the measurements and data evaluation, the measurement software TA Universal Analysis 2000, V 4.5A is applied.
- Alumina sample cups (commercially available from TA Instruments) with a diameter of 6.8 mm and a volume of about 90 ⁇ l are used. An amount of about 20-50 mg of the sample is weighted into the sample pan with an accuracy of 0.01 mg.
- the empty reference pan and the sample pan are placed in the apparatus, the oven is closed, and the measurement started.
- a heating rate of 10-50 °C/min is employed from a starting temperature of 25°C to an end temperature of 1000°C.
- the balance in the instrument is always purged with nitrogen (N 2 5.0) and the oven is purged with synthetic air (80% N 2 and 20% O 2 from Linde) with a flow rate of 50 ml/min.
- the first step in the DSC signal is evaluated as glass transition using the software described above and the determined onset value is taken as the temperature for T g .
- IRS solid particles can exhibit a variety of shapes, sizes, and coating layers. For example, a large number of shapes of IRS solid particles are known to the person skilled in the art. Some examples include spherical, angular, elongated (rod or needle like), and flat (sheet like, flakes). IRS solid particles may also be present as a combination of particles of different shapes (e.g., spheres and flakes). Glass particles with a shape, or combination of shapes, which favor advantageous adhesion of the produced electrode are preferred.
- the median particle diameter d 50 is a characteristic of particles well known to the person skilled in the art.
- D 50 is the median diameter or the medium value of the particle size distribution. It is the value of the particle diameter at 50% in the cumulative distribution.
- Particle size distribution may be measured via laser diffraction, dynamic light scattering, imaging, electrophoretic light scattering, or any other method known in the art.
- a Horiba LA-910 Laser Diffraction Particle Size Analyzer connected to a computer with the LA-910 software program is used to determine the particle size distribution of the glass frit.
- the relative refractive index of the glass frit particle is chosen from the LA-910 manual and entered into the software program.
- the test chamber is filled with deionized water to the proper fill line on the tank.
- the solution is then circulated by using the circulation and agitation functions in the software program. After one minute, the solution is drained. This is repeated an additional time to ensure the chamber is clean of any residual material.
- the chamber is then filled with deionized water for a third time and allowed to circulate and agitate for one minute. Any background particles in the solution are eliminated by using the blank function in the software. Ultrasonic agitation is then started, and the glass frit is slowly added to the solution in the test chamber until the transmittance bars are in the proper zone in the software program. Once the transmittance is at the correct level, the laser diffraction analysis is run and the particle size distribution of the glass is measured and given as d50.
- the median particle diameter d 50 of the IRS particles is at least about 0.1 ⁇ m, and preferably no more than about 20 ⁇ m, more preferably no more than about 5 ⁇ m, more preferably no more than about 2 ⁇ m, and most preferably no more than about 1 ⁇ m.
- the IRS particles may be present with a surface coating. Any such coating known in the art and suitable in the context of the invention can be employed on the IRS particles. Preferred coatings are those coatings which promote improved adhesion characteristics of the electroconductive paste. If such a coating is present, it is preferred for that coating to be present in an amount of no more than 10 wt%, preferably no more than about 8 wt%, more preferably no more than about 5 wt%, more preferably no more than about 3 wt%, and most preferably no more than about 1 wt%, in each case based on the total weight of the IRS component.
- IRS particles have a specific surface area of at least about 0.1 m 2 /g and no more than about 15 m 2 /g, preferably at least about 1 m 2 /g and no more than about 10 m 2 /g.
- Methods of measuring specific surface area are known in the art. As set forth herein, all surface area measurements were performed using the BET (Brunauer-Emmett-Teller) method via a Monosorb MS-22 analyzer (manufactured by Quantachrome Instruments of Boynton Beach, Florida) which operates according to the SMART method. Samples are prepared for analysis in the built-in degas station. Flowing gas sweeps away impurities, resulting in a clean surface upon which adsorption may occur.
- BET Brunauer-Emmett-Teller
- Monosorb MS-22 analyzer manufactured by Quantachrome Instruments of Boynton Beach, Florida
- the sample can be heated to a user-selectable temperature with the supplied heating mantle.
- Digital temperature control and display are mounted on the instrument front panel.
- the sample cell is transferred to the analysis station. Quick connect fittings automatically seal the sample cell during transfer.
- analysis commences. A dewar flask filled with coolant is automatically raised, immersing the sample cell and causing adsorption.
- the instrument detects when adsorption is complete (2-3 minutes), automatically lowers the dewar flask, and gently heats the sample cell back to room temperature using a built-in hot-air blower. As a result, the desorbed gas signal is displayed on a digital meter and the surface area is directly presented on a front panel display.
- the entire measurement (adsorption and desorption) cycle typically requires less than six minutes.
- the technique uses a high sensitivity, thermal conductivity detector to measure the change in concentration of an adsorbate/inert carrier gas mixture as adsorption and desorption proceed. When integrated by the on-board electronics and compared to calibration, the detector provides the volume of gas adsorbed or desorbed.
- a built-in microprocessor ensures linearity and automatically computes the sample's BET surface area in m2/g.
- the electroconductive paste also comprises conductive metallic particles.
- the electroconductive paste may comprise at least about 50 wt% metallic particles, preferably at least about 60 wt%, more preferably at least about 70 wt%, and most preferably at least about 80 wt%, based upon 100% total weight of the paste. At the same time, the paste preferably comprises no more than about 95 wt% of metallic particles, based upon 100% total weight of the paste.
- All metallic particles known in the art, and which are considered suitable in the context of the invention, may be employed as the metallic particles in the electroconductive paste.
- Preferred metallic particles are those which exhibit conductivity and which yield electrodes having high efficiency and fill factor, and low series and grid resistance.
- Preferred metallic particles are elemental metals, alloys, metal derivatives, mixtures of at least two metals, mixtures of at least two alloys or mixtures of at least one metal with at least one alloy.
- Preferred metals include at least one of silver, aluminum, gold, copper, and nickel, and alloys or mixtures thereof.
- the metallic particles comprise silver.
- the metallic particles comprise silver and aluminum.
- Suitable silver derivatives include, for example, silver alloys and/or silver salts, such as silver halides (e.g., silver chloride), silver nitrate, silver acetate, silver trifluoroacetate, silver orthophosphate, and combinations thereof.
- the metallic particles comprise a metal or alloy coated with one or more different metals or alloys, for example, silver particles coated with aluminum.
- the metallic particles can exhibit a variety of shapes, sizes, and coating layers.
- a large number of shapes are known in the art. Some examples are spherical, angular, elongated (rod or needle like) and flat (sheet like, flakes).
- Metallic particles may also be present as a combination of particles of different shapes (e.g., spheres and flakes).
- Metallic particles with a shape, or combination of shapes, which favor improved conductivity are preferred.
- One way to characterize such shapes without considering the surface nature of the particles is through the following parameters: length, width and thickness. In the context of the invention, the length of a particle is given by the length of the longest spatial displacement vector, both endpoints of which are contained within the particle.
- the width of a particle is given by the length of the longest spatial displacement vector perpendicular to the length vector defined above both endpoints of which are contained within the particle.
- the thickness of a particle is given by the length of the longest spatial displacement vector perpendicular to both the length vector and the width vector, both defined above, both endpoints of which are contained within the particle.
- metallic particles with shapes as uniform as possible are preferred (i.e. shapes in which the ratios relating the length, the width and the thickness are as close as possible to 1; preferably at least 0.7, more preferably at least 0.8, and most preferably at least 0.9, and preferably no more than about 1.5, preferably no more than about 1.3, and most preferably no more than about 1.2).
- metallic particles in this embodiment are spheres and cubes, or combinations thereof, or combinations of one or more thereof with other shapes.
- metallic particles are preferred which have a shape of low uniformity, preferably with at least one of the ratios relating the dimensions of length, width and thickness being above about 1.5, more preferably above about 3 and most preferably above about 5.
- Preferred shapes according to this embodiment are flake shaped, rod or needle shaped, or a combination of flake shaped, rod or needle shaped with other shapes.
- the median particle diameter d 50 , as set forth herein, of the metallic particles is at least about 0.1 ⁇ m, and preferably no more than about 10 ⁇ m, preferably no more than about 8 ⁇ m, more preferably no more than about 7 ⁇ m, and most preferably no more than about 5 ⁇ m.
- preferable metallic particles have a specific surface area of at least about 0.1 m 2 /g and no more than about 10 m 2 /g.
- silver powders having a specific surface area of at least about 0.2 m 2 /g, preferably at least 0.5 m 2 /g, and at the same time no more than about 5 m 2 /g are used.
- the specific surface area is measured according to the parameters set forth herein.
- the metallic particles may be present with a surface coating. Any such coating known in the art, and which is considered to be suitable in the context of the invention, may be employed on the metallic particles.
- Preferred coatings are those coatings which promote the adhesion characteristics of the resulting electroconductive paste. If such a coating is present, it is preferred that the coating be no more than about 10 wt%, preferably no more than about 8 wt%, and most preferably no more than about 5 wt%, based on 100% total weight of the metallic particles.
- the electroconductive paste of the invention also comprises an organic vehicle.
- the organic vehicle is present in the electroconductive paste in an amount of at least about 0.01 wt% and no more than about 50 wt%, preferably no more than about 30 wt%, and most preferably no more than about 20 wt%, based upon 100% total weight of the paste.
- Preferred organic vehicles in the context of the invention are solutions, emulsions or dispersions based on one or more solvents, preferably organic solvent(s), which ensure that the components of the electroconductive paste are present in a dissolved, emulsified or dispersed form.
- Preferred organic vehicles are those which provide optimal stability of the components of the electroconductive paste and endow the paste with a viscosity allowing effective printability.
- the organic vehicle comprises an organic solvent and one or more of a binder (e.g., a polymer), a surfactant and a thixotropic agent, or any combination thereof.
- a binder e.g., a polymer
- the organic vehicle comprises one or more binders in an organic solvent.
- Preferred binders in the context of the invention are those which contribute to the formation of an electroconductive paste with favorable stability, printability, viscosity and sintering properties. All binders which are known in the art, and which are considered to be suitable in the context of this invention, may be employed as the binder in the organic vehicle. Preferred binders (which often fall within the category termed "resins") are polymeric binders, monomeric binders, and binders which are a combination of polymers and monomers. Polymeric binders can also be copolymers wherein at least two different monomeric units are contained in a single molecule.
- Preferred polymeric binders are those which carry functional groups in the polymer main chain, those which carry functional groups off of the main chain and those which carry functional groups both within the main chain and off of the main chain.
- Preferred polymers carrying functional groups in the main chain are for example polyesters, substituted polyesters, polycarbonates, substituted polycarbonates, polymers which carry cyclic groups in the main chain, poly-sugars, substituted poly-sugars, polyurethanes, substituted polyurethanes, polyamides, substituted polyamides, phenolic resins, substituted phenolic resins, copolymers of the monomers of one or more of the preceding polymers, optionally with other comonomers, or a combination of at least two thereof.
- the binder may be polyvinyl butyral or polyethylene.
- Preferred polymers which carry cyclic groups in the main chain are for example polyvinylbutylate (PVB) and its derivatives and poly-terpineol and its derivatives or mixtures thereof.
- Preferred poly-sugars are for example cellulose and alkyl derivatives thereof, preferably methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, propyl cellulose, hydroxypropyl cellulose, butyl cellulose and their derivatives and mixtures of at least two thereof.
- Other preferred polymers are cellulose ester resins, e.g., cellulose acetate propionate, cellulose acetate buyrate, and any combinations thereof.
- Preferred polymers which carry functional groups off of the main polymer chain are those which carry amide groups, those which carry acid and/or ester groups, often called acrylic resins, or polymers which carry a combination of aforementioned functional groups, or a combination thereof.
- Preferred polymers which carry amide off of the main chain are for example polyvinyl pyrrolidone (PVP) and its derivatives.
- Preferred polymers which carry acid and/or ester groups off of the main chain are for example polyacrylic acid and its derivatives, polymethacrylate (PMA) and its derivatives or polymethylmethacrylate (PMMA) and its derivatives, or a mixture thereof.
- Preferred monomeric binders are ethylene glycol based monomers, terpineol resins or rosin derivatives, or a mixture thereof.
- Preferred monomeric binders based on ethylene glycol are those with ether groups, ester groups or those with an ether group and an ester group, preferred ether groups being methyl, ethyl, propyl, butyl, pentyl hexyl and higher alkyl ethers, the preferred ester group being acetate and its alkyl derivatives, preferably ethylene glycol monobutylether monoacetate or a mixture thereof.
- Alkyl cellulose preferably ethyl cellulose, its derivatives and mixtures thereof with other binders from the preceding lists of binders or otherwise are the most preferred binders in the context of the invention.
- the binder may be present in an amount of at least about 0.1 wt%, and preferably at least about 0.5 wt%, based upon 100% total weight of the organic vehicle.
- the binder may be present in an amount of no more than about 10 wt%, preferably no more than about 8 wt%, and more preferably no more than about 7 wt%, based upon 100% total weight of the organic vehicle.
- Preferred solvents are components which are removed from the paste to a significant extent during firing. Preferably, they are present after firing with an absolute weight reduced by at least about 80% compared to before firing, preferably reduced by at least about 95% compared to before firing. Preferred solvents are those which contribute to favorable viscosity, printability, stability and sintering characteristics. All solvents which are known in the art, and which are considered to be suitable in the context of this invention, may be employed as the solvent in the organic vehicle.
- Preferred solvents are those which exist as a liquid under standard ambient temperature and pressure (SATP) (298.15 K, 25 °C, 77 °F), 100 kPa (14.504 psi, 0.986 atm), preferably those with a boiling point above about 90 °C and a melting point above about -20 °C.
- SATP standard ambient temperature and pressure
- Preferred solvents are polar or non-polar, protic or aprotic, aromatic or non-aromatic.
- Preferred solvents are mono-alcohols, di-alcohols, poly-alcohols, mono-esters, di-esters, poly-esters, mono-ethers, di-ethers, poly-ethers, solvents which comprise at least one or more of these categories of functional group, optionally comprising other categories of functional group, preferably cyclic groups, aromatic groups, unsaturated bonds, alcohol groups with one or more O atoms replaced by heteroatoms, ether groups with one or more O atoms replaced by heteroatoms, esters groups with one or more O atoms replaced by heteroatoms, and mixtures of two or more of the aforementioned solvents.
- Preferred esters in this context are di-alkyl esters of adipic acid, preferred alkyl constituents being methyl, ethyl, propyl, butyl, pentyl, hexyl and higher alkyl groups or combinations of two different such alkyl groups, preferably dimethyladipate, and mixtures of two or more adipate esters.
- Preferred ethers in this context are diethers, preferably dialkyl ethers of ethylene glycol, preferred alkyl constituents being methyl, ethyl, propyl, butyl, pentyl, hexyl and higher alkyl groups or combinations of two different such alkyl groups, and mixtures of two diethers.
- Preferred alcohols in this context are primary, secondary and tertiary alcohols, preferably tertiary alcohols, terpineol and its derivatives being preferred, or a mixture of two or more alcohols.
- Preferred solvents which combine more than one different functional groups are 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, often called texanol, and its derivatives, 2-(2-ethoxyethoxy)ethanol, often known as carbitol, its alkyl derivatives, preferably methyl, ethyl, propyl, butyl, pentyl, and hexyl carbitol, preferably hexyl carbitol or butyl carbitol, and acetate derivatives thereof, preferably butyl carbitol acetate, or mixtures of at least two of the aforementioned.
- the organic solvent may be present in an amount of at least about 60 wt%, and more preferably at least about 70 wt%, and most preferably at least about 80wt%, based upon 100% total weight of the organic vehicle. At the same time, the organic solvent may be present in an amount of no more than about 99 wt%, more preferably no more than about 95 wt%, based upon 100% total weight of the organic vehicle.
- the organic vehicle may also comprise one or more surfactants and/or additives.
- Preferred surfactants are those which contribute to the formation of an electroconductive paste with favorable stability, printability, viscosity and sintering properties. All surfactants which are known in the art, and which are considered to be suitable in the context of this invention, may be employed as the surfactant in the organic vehicle.
- Preferred surfactants are those based on linear chains, branched chains, aromatic chains, fluorinated chains, siloxane chains, polyether chains and combinations thereof.
- Preferred surfactants include, but are not limited to, single chained, double chained or poly chained polymers.
- Preferred surfactants may have non-ionic, anionic, cationic, amphiphilic, or zwitterionic heads.
- Preferred surfactants may be polymeric and monomeric or a mixture thereof.
- Preferred surfactants may have pigment affinic groups, preferably hydroxyfunctional carboxylic acid esters with pigment affinic groups (e.g., DISPERBYK®-108, manufactured by BYK USA, Inc.), acrylate copolymers with pigment affinic groups (e.g., DISPERBYK®-116, manufactured by BYK USA, Inc.), modified polyethers with pigment affinic groups (e.g., TEGO® DISPERS 655, manufactured by Evonik Tego Chemie GmbH), other surfactants with groups of high pigment affinity (e.g., TEGO® DISPERS 662 C, manufactured by Evonik Tego Chemie GmbH).
- pigment affinic groups preferably hydroxyfunctional carboxylic acid esters with pigment affinic groups (e.g
- polymers not in the above list include, but are not limited to, polyethylene oxide, polyethylene glycol and its derivatives, and alkyl carboxylic acids and their derivatives or salts, or mixtures thereof.
- the preferred polyethylene glycol derivative is poly(ethyleneglycol)acetic acid.
- Preferred alkyl carboxylic acids are those with fully saturated and those with singly or poly unsaturated alkyl chains or mixtures thereof.
- Preferred carboxylic acids with saturated alkyl chains are those with alkyl chains lengths in a range from about 8 to about 20 carbon atoms, preferably C 9 H 19 COOH (capric acid), C 11 H 23 COOH (Lauric acid), C 13 H 27 COOH (myristic acid) C 15 H 31 COOH (palmitic acid), C 17 H 35 COOH (stearic acid), or salts or mixtures thereof.
- Preferred carboxylic acids with unsaturated alkyl chains are C 18 H 34 O 2 (oleic acid) and C 18 H 32 O 2 (linoleic acid).
- the preferred monomeric surfactant is benzotriazole and its derivatives.
- the surfactant may be at least about 0.01 wt%, based upon 100% total weight of the organic vehicle. At the same time, the surfactant is preferably no more than about 10 wt%, preferably no more than about 8 wt%, and more preferably no more than about 6 wt%, based upon 100% total weight of the organic vehicle.
- Preferred additives in the organic vehicle are those materials which are distinct from the aforementioned components and which contribute to favorable properties of the electroconductive paste, such as advantageous viscosity, printability, stability and sintering characteristics. Additives known in the art, and which are considered to be suitable in the context of the invention, may be used. Preferred additives include, but are not limited to, thixotropic agents, viscosity regulators, stabilizing agents, inorganic additives, thickeners, emulsifiers, dispersants and pH regulators. Preferred thixotropic agents include, but are not limited to, carboxylic acid derivatives, preferably fatty acid derivatives or combinations thereof.
- Preferred fatty acid derivatives include, but are not limited to, C 9 H 19 COOH (capric acid), C 11 H 23 COOH (Lauric acid), C 13 H 27 COOH (myristic acid) C 15 H 31 COOH (palmitic acid), C 17 H 35 COOH (stearic acid) C 18 H 34 O 2 (oleic acid), C 18 H 32 O 2 (linoleic acid) and combinations thereof.
- a preferred combination comprising fatty acids in this context is castor oil.
- the electroconductive paste may include additives distinct from the conductive particles, IRS, and organic vehicle.
- Preferred additives contribute to increased performance of the electroconductive paste, of the electrodes produced thereof, or of the resulting solar cell. All additives known in the art, and which are considered suitable in the context of the invention, may be employed as additives in the electroconductive paste.
- Preferred additives include, but are not limited to, thixotropic agents, viscosity regulators, emulsifiers, stabilizing agents or pH regulators, inorganic additives, thickeners and dispersants, or a combination of at least two thereof. Inorganic additives are most preferred.
- Preferred inorganic additives include, but are not limited to, alkaline and alkaline earth metals, transition metals, such as nickel, zirconium, titanium, manganese, tin, ruthenium, cobalt, iron, copper and chromium tungsten, molybdenum, zinc; post-transition metals such as boron, silicon, germanium, tellurium, gadolinium, lead, bismuth, antimony, rare earth metals, such as lanthanum, cerium, oxides, mixed metal oxides, complex compounds, or amorphous or partially crystallized glasses formed from those oxides , or any combination of at least two thereof, preferably zinc, antimony, manganese, nickel, tungsten, tellurium and ruthenium, or a combination of at least two thereof, oxides thereof, compounds which can generate those metal oxides or glasses on firing, or a mixture of at least two of the aforementioned metals, a mixture of at least two of the aforementioned oxides, a mixture of
- the electroconductive paste composition may include at least about 0.1 wt% additive, based upon 100% total weight of the paste.
- the paste preferably includes no more than about 10 wt%, preferably no more than about 5 wt%, and more preferably no more than about 2 wt% additive(s), based upon 100% total weight of the paste.
- the IRS may be combined with the conductive metallic particles and the organic vehicle using any method known in the art for preparing a paste composition.
- the method of preparation is not critical, as long as it results in a homogenously dispersed paste.
- the components can be mixed, such as with a mixer, then passed through a three roll mill, for example, to make a dispersed uniform paste.
- the invention relates to a solar cell.
- the solar cell is formed from a semiconductor substrate, for example a silicon wafer, and an electroconductive paste composition according to any of the embodiments described herein.
- the invention in another aspect, relates to a solar cell prepared by a process comprising applying an electroconductive paste composition according to any of the embodiments described herein to a semiconductor substrate and firing the semiconductor substrate.
- Preferred wafers have regions, among other regions of the solar cell, capable of absorbing light with high efficiency to yield electron-hole pairs and separating holes and electrons across a boundary with high efficiency, preferably across a p-n junction boundary.
- Preferred wafers are those comprising a single body made up of a front doped layer and a back doped layer.
- the wafer comprises appropriately doped tetravalent elements, binary compounds, tertiary compounds or alloys.
- Preferred tetravalent elements in this context are silicon, Ge or Sn, preferably silicon.
- Preferred binary compounds are combinations of two or more tetravalent elements, binary compounds of a group III element with a group V element, binary com-pounds of a group II element with a group VI element or binary compounds of a group IV element with a group VI element.
- Preferred combinations of tetravalent elements are combinations of two or more elements selected from silicon, germanium, tin or carbon, preferably SiC.
- the preferred binary compound of a group III element with a group V element is GaAs.
- the wafer is silicon. The foregoing description, in which silicon is explicitly mentioned, also applies to other wafer compositions described herein.
- the p-n junction boundary is located where the front doped layer and back doped layer of the wafer meet.
- the back doped layer is doped with an electron donating n-type dopant and the front doped layer is doped with an electron accepting or hole donating p-type dopant.
- the back doped layer is doped with p-type dopant and the front doped layer is doped with n-type dopant.
- a wafer with a p-n junction boundary is prepared by first providing a doped silicon substrate and then applying a doped layer of the opposite type to one face of that substrate.
- Doped silicon substrates are well known in the art.
- the doped silicon substrate can be prepared by any method known in the art and considered suitable for the invention.
- Preferred sources of silicon substrates are mono-crystalline silicon, multi-crystalline silicon, amorphous silicon and upgraded metallurgical silicon, most preferably mono-crystalline silicon or multi-crystalline silicon.
- Doping to form the doped silicon substrate can be carried out simultaneously by adding the dopant during the preparation of the silicon substrate, or it can be carried out in a subsequent step.
- Doping subsequent to the preparation of the silicon substrate can be carried out by gas diffusion epitaxy, for example.
- Doped silicon substrates are also readily commercially available. According to one embodiment, the initial doping of the silicon substrate may be carried out simultaneously to its formation by adding dopant to the silicon mix.
- the application of the front doped layer and the highly doped back layer, if present, may be carried out by gas-phase epitaxy.
- the gas phase epitaxy is preferably carried out at a temperature of at least about 500°C, preferably at least about 600°C, and most preferably at least about 650°C.
- the gas phase epitaxy is preferably carried out at a temperature of no more than about 900°C, more preferably no more than about 800°C, and most preferably no more than about 750°C.
- the epitaxy is also preferably carried out at a pressure of at least 2 kPa, preferably at least about 10 kPa, and most preferably at least about 30 kPa.
- the epitaxy is carried out at a pressure of no more than about 100 kPa, preferably no more than about 80 kPa, and most preferably no more than about 70 kPa.
- silicon substrates can exhibit a number of shapes, surface textures and sizes.
- the shape of the substrate may include cuboid, disc, wafer and irregular polyhedron, to name a few.
- the wafer is a cuboid with two dimensions which are similar, preferably equal, and a third dimension which is significantly smaller than the other two dimensions.
- the third dimension may be at least 100 times smaller than the first two dimensions.
- silicon substrates with rough surfaces are preferred.
- One way to assess the roughness of the substrate is to evaluate the surface roughness parameter for a sub-surface of the substrate, which is small in comparison to the total surface area of the substrate, preferably less than about one hundredth of the total surface area, and which is essentially planar.
- the value of the surface roughness parameter is given by the ratio of the area of the sub-surface to the area of a theoretical surface formed by projecting that sub-surface onto the flat plane best fitted to the sub-surface by minimizing mean square displacement.
- a higher value of the surface roughness parameter indicates a rougher, more irregular surface and a lower value of the surface roughness parameter indicates a smoother, more even surface.
- the surface roughness of the silicon substrate is preferably modified so as to produce an optimum balance between numerous factors including, but not limited to, light absorption and adhesion to the surface.
- the two larger dimensions of the silicon substrate can be varied to suit the application required of the resultant solar cell. It is preferred for the thickness of the silicon wafer to be at least about 0.01 mm. At the same time, the thickness is preferably no more than about 0.5 mm, more preferably no more than about 0.3 mm, and most preferably no more than about 0.2 mm. According to one embodiment, the silicon wafer may have a minimum thickness of 0.01 mm.
- the front doped layer be thin in comparison to the back doped layer. It is also preferred that the front doped layer have a thickness of at least about 0.1 ⁇ m, and no more than about 10 ⁇ m, preferably no more than about 5 ⁇ m, and most preferably no more than about 2 ⁇ m.
- a highly doped layer can be applied to the back face of the silicon substrate between the back doped layer and any further layers.
- Such a highly doped layer is of the same doping type as the back doped layer and such a layer is commonly denoted with a + (n+-type layers are applied to n-type back doped layers and p+-type layers are applied to p-type back doped layers).
- This highly doped back layer serves to assist metallization and improve electroconductive properties. It is preferred for the highly doped back layer, if present, to have a thickness of at least about 1 ⁇ m, and no more than about 100 ⁇ m, preferably no more than about 50 ⁇ m, and most preferably no more than about 15 ⁇ m.
- Preferred dopants are those which, when added to the silicon wafer, form a p-n junction boundary by introducing electrons or holes into the band structure. It is preferred that the identity and concentration of these dopants is specifically selected so as to tune the band structure profile of the p-n junction and set the light absorption and conductivity profiles as required.
- Preferred p-type dopants are those which add holes to the silicon wafer band structure. All dopants known in the art and which are considered suitable in the context of the invention can be employed as p-type dopants.
- Preferred p-type dopants include, but are not limited to, trivalent elements, particularly those of group 13 of the periodic table.
- Preferred group 13 elements of the periodic table include, but are not limited to, boron, aluminum, gallium, indium, thallium, or a combination of at least two thereof, wherein boron is particularly preferred.
- Preferred n-type dopants are those which add electrons to the silicon wafer band structure. All dopants known in the art and which are considered to be suitable in the context of the invention can be employed as n-type dopants.
- Preferred n-type dopants include, but are not limited to, elements of group 15 of the periodic table. Preferred group 15 elements include, but are not limited to, nitrogen, phosphorus, arsenic, antimony, bismuth, or a combination of at least two thereof, wherein phosphorus is particularly preferred.
- the various doping levels of the p-n junction can be varied so as to tune the desired properties of the resulting solar cell.
- the semiconductor substrate i.e., silicon wafer
- One aspect of the invention is a solar cell obtainable from the methods of the invention.
- Preferred solar cells are those which have a high efficiency, in terms of proportion of total energy of incident light converted into electrical energy output. Solar cells which are lightweight and durable are also preferred.
- a solar cell typically includes: (i) front electrodes, (ii) a front doped layer, (iii) a p-n junction boundary, (iv) a back doped layer, and (v) soldering pads.
- the solar cell may also include additional layers for chemical/mechanical protection.
- An antireflective layer may be applied as the outer layer before the electrode is applied to the front face of the solar cell.
- Preferred antireflective layers are those which decrease the proportion of incident light reflected by the front face and increase the proportion of incident light crossing the front face to be absorbed by the wafer.
- Antireflective layers which give rise to a favorable absorption/reflection ratio, are susceptible to etching by the electroconductive paste, are otherwise resistant to the temperatures required for firing of the electroconductive paste, and do not contribute to increased recombination of electrons and holes in the vicinity of the electrode interface are preferred. All antireflective layers known in the art and which are considered to be suitable in the context of the invention can be employed.
- Preferred antireflective layers include, but are not limited to, SiN x , SiO 2 , Al 2 O 3 , TiO 2 or mixtures of at least two thereof and/or combinations of at least two layers thereof.
- the antireflective layer is SiN x , in particular where a silicon wafer is employed.
- the thickness of antireflective layers is suited to the wavelength of the appropriate light.
- the antireflective layers have a thickness of at least about 20 nm, preferably at least about 40 nm, and most preferably at least about 60 nm.
- the thickness is preferably no more than about 300 nm, preferably no more than about 200 nm, and most preferably no more than about 90 nm.
- One or more passivation layers may be applied to the front and/or back side of the silicon wafer as an outer layer.
- the passivation layer(s) may be applied before the front electrode is formed, or before the antireflective layer is applied (if one is present).
- Preferred passivation layers are those which reduce the rate of electron/hole recombination in the vicinity of the electrode interface. Any passivation layer which is known in the art and which is considered to be suitable in the context of the invention can be employed.
- Preferred passivation layers include, but are not limited to, silicon nitride, silicon dioxide and titanium dioxide. According to a preferred embodiment, silicon nitride is used.
- the passivation layer prefferably has a thickness of at least 0.1 nm, preferably at least about 10 nm, and most preferably at least about 30 nm.
- the passivation layer is preferably no more than about 2 ⁇ m, more preferably no more than about 1 ⁇ m, and most preferably no more than about 200 nm.
- the cell can be encapsulated to provide chemical protection. Encapsulations are well known in the art and any encapsulation suitable for the invention can be employed. According to a preferred embodiment, transparent polymers, often referred to as transparent thermoplastic resins, are used as the encapsulation material, if such an encapsulation is present. Preferred transparent polymers include, but are not limited to, silicon rubber and polyethylene vinyl acetate (PVA).
- a transparent glass sheet may also be added to the front of the solar cell to provide mechanical protection to the front face of the cell.
- Transparent glass sheets are well known in the art and any suitable transparent glass sheet suitable may be employed.
- a back protecting material may be added to the back face of the solar cell to provide mechanical protection.
- Back protecting materials are well known in the art and any suitable back protecting material may be employed.
- Preferred back protecting materials are those having good mechanical properties and weather resistance.
- the preferred back protection material is polyethylene terephthalate with a layer of polyvinyl fluoride. It is preferred for the back protecting material to be present underneath the encapsulation layer (in the event that both a back protection layer and encapsulation are present).
- a frame material can be added to the outside of the solar cell to give mechanical support.
- Frame materials are well known in the art and any frame material considered suitable in the context of the invention may be employed.
- the preferred frame material is aluminum.
- a solar cell may be prepared by applying an electroconductive paste composition to an antireflective coating, such as silicon nitride, silicon oxide, titanium oxide or aluminum oxide, on the front side of a semiconductor substrate, such as a silicon wafer, to form front side electrodes.
- the backside electroconductive paste of the invention is then applied to the backside of the solar cell to form soldering pads.
- the electroconductive pastes may be applied in any manner known in the art and considered suitable in the context of the invention. Examples include, but are not limited to, impregnation, dipping, pouring, dripping on, injection, spraying, knife coating, curtain coating, brushing or printing or a combination of at least two thereof.
- Preferred printing techniques are ink-jet printing, screen printing, tampon printing, offset printing, relief printing or stencil printing or a combination of at least two thereof. It is preferred that the electroconductive paste is applied by printing, preferably by screen printing.
- the screens preferably have finger line opening with a diameter of at least about 10 ⁇ m, more preferably at least about 15 ⁇ m, more preferably at least about 20 ⁇ m, and most preferably at least about 25 ⁇ m.
- the finger line opening diameters is preferably no more than about 100 ⁇ m, more preferably no more than about 80 ⁇ m, and most preferably no more than about 70 ⁇ m.
- An aluminum paste is then applied to the backside of the substrate, overlapping the edges of the soldering pads formed from the backside electroconductive paste, to form the BSF.
- the substrate is then fired according to an appropriate profile determined by the substrate and the composition of the electroconductive paste.
- Firing is necessary to sinter the printed electrodes and soldering pads so as to form solid conductive bodies. Firing is well known in the art and can be effected in any manner considered suitable in the context of the invention. It is preferred that firing be carried out above the T g of the IRS materials.
- the maximum temperature set for firing is below about 900°C, preferably below about 860°C. Firing temperatures as low as about 820°C have been employed for obtaining solar cells.
- the firing temperature profile is typically set so as to enable the burnout of organic binder materials from the electroconductive paste composition, as well as any other organic materials present.
- the firing step is typically carried out in air or in an oxygen-containing atmosphere in a belt furnace. It is preferred for firing to be carried out in a fast firing process with a total firing time in the range from about 30 seconds (s) to about 3 minutes, more preferably in the range from about 30 s to about 2 minutes, and most preferably in the range from about 40 s to about 1 minute.
- the time above 600°C is most preferably in a range from about 3 to 7 s.
- the substrate may reach a peak temperature in the range of about 700 to 900°C for a period of about 1 to 5 s.
- the firing may also be conducted at high transport rates, for example, about 100-500 cm/min, with resulting hold-up times of about 0.05 to 5 minutes.
- Multiple temperature zones for example 3-12 zones, can be used to control the desired thermal profile.
- Firing of electroconductive pastes on the front and back faces may be carried out simultaneously or sequentially. Simultaneous firing is appropriate if the electroconductive pastes applied to both faces have similar, preferably identical, optimum firing conditions. Where appropriate, it is preferred for firing to be carried out simultaneously. Where firing is carried out sequentially, it is preferable for the back electroconductive paste to be applied and fired first, followed by application and firing of the electroconductive paste to the front face.
- a sample solar cell having both front side and backside pastes printed thereon is characterized using a commercial IV-tester "cetisPV-CTL1" from Halm Elektronik GmbH. All parts of the measurement equipment as well as the solar cell to be tested are maintained at 25°C during electrical measurement. This temperature is always measured simultaneously on the cell surface during the actual measurement by a temperature probe.
- the Xe Arc lamp simulates the sunlight with a known AM1.5 intensity of 1000 W/m 2 on the cell surface. To bring the simulator to this intensity, the lamp is flashed several times within a short period of time until it reaches a stable level monitored by the "PVCTControl 4.260.0" software of the IV-tester.
- the Halm IV tester uses a multi-point contact method to measure current (I) and voltage (V) to determine the cell's IV-curve. To do so, the solar cell is placed between the multi-point contact probes in such a way that the probe fingers are in contact with the bus bars of the cell. The numbers of contact probe lines are adjusted to the number of bus bars on the cell surface. All electrical values are determined directly from this curve automatically by the implemented software package. As a reference standard, a calibrated solar cell from ISE Freiburg consisting of the same area dimensions, same wafer material and processed using the same front side layout is tested and the data compared to the certificated values. At least five wafers processed in the very same way are measured and the data interpreted by calculating the average of each value.
- the software PVCTControl 4.260.0 provides values for efficiency, fill factor, short circuit current, series resistance, and open circuit voltage.
- Another aspect of the invention is a solar cell module formed of the solar cells of the invention.
- a plurality of solar cells may be arranged spatially and electrically interconnected to form a collective arrangement called a module.
- Preferred modules can have a number of arrangements, preferably a rectangular arrangement known as a solar panel.
- a variety of ways to electrically connect solar cells, as well as a variety of ways to mechanically arrange and fix such cells to form collective arrangements, are well known in the art. Any such methods known in the art, and which are considered suitable in the context of the invention, may be employed. Preferred methods are those which result in a low mass to power output ratio, low volume to power output ration, and high durability.
- Aluminum is the preferred material for mechanical fixing of solar cells.
- a set of IRS compositions (G1 and G2) were prepared with the starting materials set forth in Table 1 below.
- the control was prepared using the same starting materials as G1 and G2 (lead, tellurium, and M-oxides), except for the zinc or magnesium-based compound.
- Samples were prepared in 100g batches by mixing the individual oxide constituents in the amounts designated in Table 1. The oxide mixture was loaded into a 8.34 in 3 volume Colorado crucible. The crucible was then placed in an oven for 40 minutes at 600°C to preheat the oxide mixture. After preheating, the crucible was moved into a refractory oven at 850°C for 15 minutes to melt the individual components into a glass mixture.
- the molten glass was then removed from the oven and poured into a bucket containing deionized water to quickly quench.
- This glass material was further processed in a 1 L ceramic jar mill.
- the jar mill was filled approximately halfway with 1 ⁇ 2" cylindrical alumina media, or 2mm diameters yttrium stabilized zirconia (YTZ) grinding media, and deionized water.
- the glass was added to the jar mill and rolled for 8 hours at 60-80RPM. After milling, the glass was filtered through a 325 mesh sieve and dried at 125°C for 12 hours. All amounts are based on 100% total weight of the IRS. Table 1.
- Exemplary PTZ and PTM IRS Compositions (G1 and G2) Control G1 G2 PbO 29.23% 27.88% 27.71% TeO 2 50.19% 47.86% 47.57% ZnO -- 0.87% -- MgO -- -- 0.88% M-Oxides 20.58% 23.39% 23.85%
- the IRS compositions were then mixed with silver particles and organic vehicle to form exemplary electroconductive paste compositions.
- exemplary paste (P1 and P2) and the control paste about 2.3 wt% of each IRS composition, about 88.5 wt% silver particles, and about 9.2 wt% of organic vehicle, based upon 100% total weight of the paste, were each combined.
- the pastes were screen printed onto the front side of a blank monocrystalline silicon wafer using 250 mesh stainless steel, 5 ⁇ m EOM, at about a 30 ⁇ m wire diameter.
- a commercially available backside paste was used to form soldering pads, which extend across the full length of the cell and are about 4 mm wide.
- a commercially available aluminum backside paste was printed all over the remaining areas of the rear side of the cell to form an aluminum BSF. The cell was then dried at an appropriate temperature.
- the silicon substrate, with the printed front side and backside paste, was then fired at a peak temperature of approximately 700-975°C.
- the electroconductive performance of the exemplary and control pastes is set forth in Table 2 below.
- the efficiency (Eta, %), short circuit current (Isc, m ⁇ ), fill factor (FF, %), open circuit voltage (Voc, V), and series resistance under three standard lighting intensities (Rs3, ⁇ ) were all calculated according to the parameters set forth herein, and the values provided in the table below have been normalized to 1 with respect to the Control paste.
- Most exemplary pastes P1 and P2 had lower series resistance than the control paste and higher short circuit current and fill factor. Table 2.
- a set of PTZM, PTZ and PTM IRS compositions (G3-G5), as well as another control IRS (Control 2) were prepared.
- the IRS compositions were prepared with the starting materials set forth in Table 3 below, according to the parameters set forth in Example 1.
- Each exemplary IRS contained either MgO, ZnO, or both, as well as Pb, Te, and M-Oxides. All amounts are expressed in 100% total weight of the IRS. Table 3.
- Exemplary PTM IRS Compositions (G3-G5) Control 2 G3 G4 G5 PbO 28.26% 27.89% 28.04% 28.17% TeO 2 48.53% 47.89% 48.15% 48.36% MgO -- 0.43% -- 0.42% ZnO -- 0.86% 0.85% -- M-Oxides 23.21% 22.93% 22.96% 23.06%
- each IRS composition was then mixed with about 89 wt% silver particles and about 9 wt% organic vehicle according to the same parameters as set forth in Example 1 to form Pastes P3-P5 and the Control 2 paste.
- the exemplary pastes were then screen printed on a monocrystalline silicon wafer according to the parameters of Example 1.
- the electroconductive performance was measured according to the parameters set forth herein and was normalized to 1 with respect to the Control 2 paste. As shown in Table 4, each of the exemplary pastes outperformed Control 2, with specific improvements in efficiency and fill factor and reductions in series resistance. Table 4.
- PTMZ and PTZ IRS compositions (G6-G9) was prepared with the starting materials set forth in Table 5 below, according to the parameters set forth in Example 1. All amounts are expressed in 100% total weight of the IRS. Table 5.
- Exemplary PTMZ and PTZ IRS Compositions (G6-G9) G6 G7 G8 G9 PbO 28.06% 28.17% 28.03% 27.89% TeO 2 48.18% 48.36% 48.12% 47.88% MO 22.05% 22.04% 21.94% 21.82% MgO 0.85% -- -- -- ZnO 0.86% 0.84% 0.84% 0.84% CaO -- 0.58% -- -- SrO -- -- 1.07% -- BaO -- -- 1.57%
- Pastes P6-P9 About 2 wt% of each PTMZ and PTZ IRS composition was mixed with about 89 wt% silver particles and about 9 wt% organic vehicle according to the same parameters as set forth in Example 1 to form Pastes P6-P9.
- a control paste having the Control 2 IRS of Example 2 was also prepared with the same paste components. The pastes were then screen printed on a monocrystalline silicon wafer according to the parameters of Example 1. The electroconductive performance was measured according to the parameters set forth herein and normalized to 1 with respect to the Control 2 paste. As can be seen in Table 6, pastes P6-P9 exhibited improved fill factor and reduced series resistance. Table 6.
- PBZ, PBM and PBMZ IRS compositions can be prepared with the starting materials set forth in Table 7 below according to the parameters set forth in Example 1. These compositions further include Li 2 O and B 2 O 3 . All amounts are based on 100% total weight of the IRS. The anticipated electrical performance is set forth in Table 8 below. Table 7.
- Prophetic PTZ, PTM and PTMZ IRS Compositions ( X1 - X3 ) 1 X1 X2 X3 PbO 27.89% 28.04% 28.17% TeO 2 47.89% 48.15% 48.36% MgO 0.43% -- 0.42% ZnO 0.86% 0.85% -- Li 2 O 5.80% 6.30% 6.70% B 2 O 3 17.13% 16.66% 16.36% Table 8.
- PBT IRS compositions can be prepared with the starting materials set forth in Table 9 below according to the parameters set forth in Example 1. These compositions all contain only the PTZ, PTM and/or PTMZ system. All amounts are based on 100% total weight of the IRS. The anticipated electrical performance is set forth in Table 10. Table 9.
- Prophetic PTZ, PTM and PTMZ IRS Compositions X4-X6) X4 X5 X6 PbO 36.19% 36.40% 36.61% TeO 2 62.13% 62.49% 62.85% MgO 0.56% 0.55% ZnO 1.12% 1.10% Table 10. Electrical Performance of Prophetic Pastes (X4-X6) Control X4 X5 X6 Eta 0 + + + + Isc 0 + + + + Voc 0 + + + + FF 0 + + + Rs3 0 + + + + + + +
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Sustainable Energy (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
- Conductive Materials (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
- This invention relates to lead-tellurium-zinc (PTZ), lead-tellurium-alkaline earth metal (PTM), and lead-tellurium-alkaline earth metal-zinc (PTMZ) inorganic reaction systems (IRS). In one aspect of the invention, an electroconductive paste composition utilized in solar panel technology, especially for forming front side electrical contacts, includes conductive particles, an organic vehicle, and the PTZ, PTM, and/or PTMZ IRS of the invention.
- Solar cells are devices that convert the energy of light into electricity using the photovoltaic effect. Solar power is an attractive green energy source because it is sustainable and produces only non-polluting by-products. Accordingly, a great deal of research is currently being devoted to developing solar cells with enhanced efficiency while continuously lowering material and manufacturing costs. In operation, when light hits a solar cell, a fraction of the incident light is reflected by the surface and the remainder is transmitted into the solar cell. The photons of the transmitted light are absorbed by the solar cell, which is usually made of a semiconducting material such as silicon. The energy from the absorbed photons excites electrons of the semiconducting material from their atoms, generating electron-hole pairs. These electron-hole pairs are then separated by p-n junctions and collected by conductive electrodes applied on the solar cell surface.
- Solar cells typically have electroconductive pastes applied to both their front and back surfaces. A front side paste, which typically includes silver, is screen printed onto the front side of the substrate to serve as a front electrode. A typical electroconductive paste contains conductive metallic particles, glass frit, and an organic vehicle. In some instances, the glass frit etches through an antireflection coating, such as a silicon nitride coating, on the surface of the silicon substrate upon firing, helping to build electrical contact between the conductive particles and the silicon substrate. On the other hand, it is desirable that the glass frit is not so aggressive that it shunts the p-n junction after firing. For example, glass frits which include relatively high amounts of lead oxide and bismuth oxide may damage the antireflection layer and degrade the p-n junction of the substrate. As a result, the electrical performance of the solar cell may be reduced. In addition, glass frits are known to have wide melting temperature ranges, making their behavior strongly dependent on their composition and processing parameters. As such, the ability to predict glass processing parameters and behavior under fast firing processes is difficult with known glass frits.
- Thus, an IRS which optimizes contact between the electroconductive paste and the underlying substrate so as to achieve improved solar cell efficiency, without being so aggressive that it damages the antireflection layer and p-n junction, is needed. Further, an IRS having more predictable processing behaviors is also desirable.
- The invention provides a lead inorganic reaction system (IRS) containing zinc and/or an alkaline earth metal which, when used in an electroconductive paste, improves electrical contact with the underlying substrate. Moreover, due to the improved contact performance from the inclusion of zinc and/or an alkaline earth metal in the IRS, the lead content can be reduced and more predictable processing parameters can be achieved.
- One aspect of the invention is an inorganic reaction system comprising a lead-tellurium-zinc composition of Formula (I): Pba-Teb-Znf-Md-Oe, wherein 0 < a, b, d, or f ≤ 1, the sum of a, b, d and f is 1, 0 ≤ d ≤ 0.5, 0 <f ≤ 0.2, a:b is between about 10:90 and about 90:10, (a+f+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Zn, and M components.
- An inorganic reaction system comprising a lead-tellurium-magnesium composition of Formula (II): Pba-Teb-(Mgw-Cax-Sry-Baz)-Md-Oe, wherein 0 < a, b, or d ≤ 1, 0 ≤ w, x, y, z ≤ 1, w+x+y+z = c, at least one of w, x, y and z is greater than zero, the sum of a, b, c and d is 1, 0 < c ≤ 0.2, 0 ≤ d ≤ 0.5, a:b is between about 10:90 and about 90:10, (a+c+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Mg-Ca-Sr-Ba and M components.
- An inorganic reaction system comprising a lead-tellurium-magnesium-zinc composition of Formula (III): Pba-Teb-(Mgw-Cax-Sry-Baz)-Znf-Md-Oe, wherein 0 < a, b, d, or f ≤ 1, 0 ≤ w, x, y, z ≤ 1, w+x+y+z = c, at least one of w, x, y, and z is greater than zero, the sum of a, b, c, d and f is 1, 0 < c ≤ 0.2, 0 < f ≤ 0.2, 0 ≤ d ≤ 0.5, a:b is between about 10:90 and about 90:10, (a+c+f+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Mg-Ca-Sr-Ba, Zn, and M components.Another aspect of the invention is a solar cell produced by applying the electroconductive paste of the invention to a silicon wafer and firing the silicon wafer.
- The invention also provides a solar cell module comprising electrically interconnected solar cells according to the invention.
- Another aspect of the invention is a method of producing a solar cell, including the steps of providing a silicon wafer having a front side and a backside, applying the electroconductive paste of the invention to the silicon wafer, and firing the silicon wafer.
- The invention relates to PTZ, PTM, and PTMZ inorganic reaction systems. While not limited to such an application, the IRS compositions, or combinations thereof, may be used in an electroconductive paste composition such as those used in silicon solar cells. The electroconductive paste composition preferably comprises conductive metallic particles, an organic vehicle, and at least one of the PTZ, PTM, or PTMZ IRS compositions. The electroconductive paste composition may comprise one or more additional additives.
- In other embodiments, the IRS may include a combination of multiple PTZ, PTM and PTMZ glass compositions, PTZ, PTM and PTMZ glass compositions with PTZ, PTM and PTMZ -containing compounds, or PTZ, PTM and PTMZ -containing compounds (e.g., organometallic compounds, salts) that form a PTZ, PTM and PTMZ IRS during physical processing (e.g., mechanochemical processing, milling, grinding) or chemical processing (e.g., firing, thermal decomposition, photo or radiochemical decomposition). In other embodiments the elements forming the PTZ, PTM and PTMZ may be present in a single component or distributed among two or more components, which may be amorphous or crystalline or partially crystalline.
- When applied to silicon solar cells, such pastes may be used to form an electrical contact layer or electrode, either on the front side or backside of the silicon wafer.
- In one preferred embodiment, the electroconductive paste is used on the front side of a silicon wafer for a solar cell and includes silver conductive particles, the IRS composition(s) of the invention, and an organic vehicle.
- The invention relates to an IRS for use, for example, in an electroconductive paste composition. The IRS serves multiple functions when used in an electroconductive paste composition. First, the IRS provides a delivery media for the conductive particles, allowing them to migrate from the paste to the interface of the semiconductor substrate. The IRS system also provides a reaction media for the paste components to undergo physical and chemical reactions at the interface when subjected to elevated temperatures. Physical reactions include, but are not limited to, melting, dissolving, diffusing, sintering, precipitating, and crystallizing. Chemical reactions include, but are not limited to, synthesis (forming new chemical bonds) and decomposition, reduction and oxidation, and phase transitioning. Further, the IRS also acts as an adhesion media that provides bonding between the conductive particles and the semiconductor substrate, thereby improving electrical contact performance during the lifetime of the solar device. Although intended to achieve the same effects, existing glass frit compositions can result in high contact resistance at the interface of the electroconductive paste and the silicon wafer, due to the insulative properties of the glass. The IRS of the invention provides the desired delivery, reactivity, and adhesion media, but also lowers contact resistance and improves overall cell performance.
- More specifically, the IRS provides improved Ohmic and Schottky contact between the conductive particles and the semiconductor substrate (e.g., silicon substrate) in the solar cell. The IRS is a reactive media with respect to the silicon and creates active areas on the silicon substrate that improve overall contact, such as through direct contact or tunneling. The improved contact properties provide better Ohmic contact and Schottky contact, and therefore better overall solar cell performance. Further, without being bound by any particular theory, the inclusion of zinc and/or an alkaline earth metal in the IRS is believed to improve the contact properties of the electroconductive paste. Further, the combination of the IRS components, in certain amounts, provides a paste with a widened range of glass transition temperatures, softening temperatures, melting temperatures, crystallization temperatures, and flowing temperatures, thus broadening the processing window of the resulting paste. This allows the resulting electroconductive paste to have improved compatibility with a wide variety of substrates.
- The IRS may include glass material(s), ceramic material(s), any other compound(s) known in the art to form a reactive matrix at an elevated temperature. In one embodiment, the IRS may include at least one substantially amorphous glass frit. In another embodiment, the IRS may incorporate crystalline phases or compounds, or a mixture of amorphous, partially crystalline, and/or crystalline materials. The IRS may also include other oxides or compounds known in the art. For example, oxides of magnesium, nickel, tellurium, tungsten, zinc, gadolinium, antimony, cerium, zirconium, titanium, manganese, tin, ruthenium, cobalt, iron, copper and chromium, or any combination of at least two thereof, preferably zinc, antimony, manganese, nickel, tungsten, tellurium and ruthenium, or a combination of at least two thereof, compounds which can generate those metal oxides upon firing, or a mixture of at least two of the aforementioned metals, a mixture of at least two of the aforementioned oxides, a mixture of at least two of the aforementioned compounds which can generate those metal oxides on firing, or mixtures of two or more of any of the above mentioned, may be used. Other glass matrix formers or glass modifiers, such as germanium oxide, vanadium oxide, molybdenum oxides, niobium oxides, indium oxides, other alkaline and alkaline earth metal (e.g., K, Rb, Cs, Ca, Sr, and Ba) compounds, rare earth oxides (e.g., La2O3, cerium oxides), phosphorus oxides or metal phosphates, and metal halides (e.g., lead fluorides and zinc fluorides) may also be used as additives to adjust properties such as the glass transition temperature of the IRS. In one embodiment, the IRS may contain a combination of at least one glass and at least one oxide or additive.
- According to one embodiment, the PTZ IRS may be expressed by the following formula:
Pba-Teb-Znf-Md-Oe (Formula I)
- where 0 < a, b, d, or f ≤ 1, the sum of a, b, d and f is 1, 0 ≤ d ≤ 0.5, 0 < f ≤ 0.2, M is one or more metals which can act as glass formers, and the variable "e" charge balances the Pba-Teb-Znf-Md components. Preferably, 0 ≤ d ≤ 0.4. Preferably, 0 ≤ f ≤ 0.1.
- M may be any metal including, but not limited to, alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, lead and any combinations thereof. Preferably, M is lithium, boron, silicon, or any combination thereof
- Preferably, the ratio of lead to tellurium, or a:b, is between about 10:90 and about 90:10. More preferably, the a:b ratio is between about 20:80 and about 80:20. The ratio of tellurium to zinc, or b:f, is preferably between about 5:95 and about 95:5. More preferably the b:f ratio is between about 1:1 and about 20:1. Further, the ratio of lead and zinc to tellurium, or (a+f+d):b, is preferably between about 10:90 to about 90:10, more preferably between about 20:80 to about 40:60. The ratio of lead to zinc, or a:f:, is preferably between about 10:90 to about 90:10. More preferably, the a:f ratio is between about 30:70 to about 70:30.
- Formula I is preferably formulated as a one-glass composition, whereby the starting components of the IRS (Pb, Te, Zn, and additional metal) all chemically react to form one complex compound or composite, instead of a glass having a physical mixture of various oxides. Alternatively, the zinc component may be included outside of Formula I as an additive to the IRS.
- According to another embodiment, the PTZ IRS may be expressed by the following formula:
Pba-Teb-Znf-Big-Md-Oe (Formula IA)
- where a, b, d, e, and f, and all ratios thereof, as well as M, are defined as they were in Formula I. Regarding the bismuth component, the ratio a:g is between about 10:90 and about 90:10. More preferably, the a:g ratio is between about 15:85 and about 85:15. The ratio ofg:b is preferably between about 5:95 and about 95:5. More preferably, the g:b ratio is between about 10:90 and about 80:20. The ratio f:g is preferably between about 10:90 and about 90:10. More preferably, the f:g ratio is between about 15:85 and about 85:10.
- Formula IA may be formulated as a one-glass composition according to the same parameters set forth above for Formula I.
- According to one embodiment, the PTM IRS may be expressed by the following formula:
Pba-Teb-(Mgw-Cax-Sry-Baz)-Md-Oe (Formula II)
- where 0 < a, b, or d ≤ 1, 0 ≤ w, x, y, z ≤ 1, at least one of w, x, y, and z is greater than zero, w+x+y+z=c, 0< c ≤ 0.2, 0 ≤ d ≤ 0.5, the sum of a, b, c and d is 1, and the variable "e" charge balances the Pba-Teb-(Mgw-Cax-Sry-Baz)c-Md components. Preferably, "c", as set forth above, is less than or equal to 0.1 and at least 0.005. The variable "d" is less than or equal to 0.4.
- While the use of magnesium is preferred, any of calcium, strontium, or barium may be used instead of, or in addition to, magnesium. Further, M may be any element or component including, but not limited to, alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, halides, chalcogenides, lead and any combinations thereof. Preferably, M is lithium, boron, silicon, or any combination thereof.
- In one embodiment, the ratio of lead to tellurium, or a:b, is between about 10:90 and 90:10. More preferably, the a:b ratio is between about 1:10 and about 10:1. The ratio of tellurium to the Mg-Ca-Sr-Ba component, or b:c, is preferably between about 5:95 and about 95:5. More preferably, the b:c ratio is between about 1:1 and about 20:1. Further, the ratio of lead and the Mg-Ca-Sr-Ba component to tellurium, or (a+c+d):b, is preferably between about 10:90 to about 90:10, and more preferably between about 20:80 to about 40:60. The ratio of lead to the Mg-Ca-Sr-Ba component, or a:c, is preferably between about 10:90 to about 90:10. More preferably, the a:c ratio is between 30:70 to about 70:30.
- Formula II is preferably formulated as a one-glass composition, whereby the starting components of the IRS (Pb, Te, Zn, Mg, or Ca, Sr, Ba, and additional metal) all chemically react to form one complex compound or composite, instead of a glass having a physical mixture of various oxides. Alternatively, the Mg-Ca-Sr-Ba component may be included outside of Formula II as an additive to the IRS.
- According to another embodiment, the PTM IRS may be expressed by the following formula:
Pba-Teb-(Mgw-Cax-Sry-Baz)c-Big-Md-Oe (Formula IIA)
- where a, b, c, d, and e, and all ratios thereof, as well as M, are defined as they were in Formula II. Regarding the bismuth component, the ratio a:g is between about 10:90 and about 90:10. More preferably, the a:g ratio is between about 15:85 and about 85:15. The ratio ofg:b is preferably between about 5:95 and about 95:5. More preferably, the g:b ratio is between about 10:90 and about 80:20. The ratio f:g is preferably between about 10:90 and about 90:10. More preferably, the f:g ratio is between about 15:85 and about 85:10.
- Formula IIA may be formulated as a one-glass composition according to the same parameters set forth above for Formula II.
- According to one embodiment, the PTMZ IRS may be expressed by the following formula:
Pba-Teb-(Mgw-Cax-Sry-Baz)-Znf-Md-Oe (Formula III)
where 0 < a, b, d, or f ≤ 1, 0 ≤ w, x, y, z ≤ 1, w+x+y+z = c, at least one of w, x, y, and z is greater than zero, 0 < f ≤ 0.2, 0 < d ≤ 0.5, the sum of a, b, c, d, and f is 1, and the variable "e" charge balances the Pba-Teb-(Mgw-Cax-Sry-Baz)c-Znf-Md components. Preferably, "c", as set forth above, is less than or equal to about 0.2, and preferably less than or equal to about 0.1. At the same time, "c" is at least 0.05. The variable "d' is less than or equal to 0.4. The variable "f" is preferably less than 0.1. - While the use of magnesium is preferred, any of calcium, strontium, or barium may be used instead of, or in addition to, magnesium. Further, M may be any element including, but not limited to, alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, lead, halides, chalcogenides, and any combinations thereof. Preferably, M is lithium, boron, silicon, or any combination thereof.
- In one embodiment, the ratio of lead to tellurium, or a:b, is between about 10:90 and about 90:10. More preferably, the a:b ratio is between about 15:85 and about 30:70. The ratio of tellurium to the Mg-Ca-Sr-Ba component, or b:c, is preferably between about 5:95 and about 95:5. More preferably, the b:c ratio is between about 1:1 and about 20:1. The ratio of lead to the Mg-Ca-Sr-Ba component, or a:c, is preferably between 10:90 and 90:10. More preferably, the a:c ratio is between 1:10 and 10:1. The ratio of the Mg-Ca-Sr-Ba component to the zinc component, or c:f, is between about 1:1 and about 20:1. The ratio of tellurium to zinc, or b:f, is preferably between about 5:95 and about 95:5. More preferably the b:f ratio is between about 1:1 and about 20:1. Further, the ratio of lead and the Mg-Ca-Sr-Ba component and zinc and other elements to tellurium, or (a+c+d+f):b, is preferably between about 10:90 and about 90:10, more preferably between about 20:80 and about 40:60.
- Formula III is preferably formulated as a one-glass composition, whereby the starting components of the IRS (Pb, Te, Zn, Mg, or Ca, Sr, Ba, Zn and additional metal) all chemically react to form one complex compound or composite, instead of a glass having a physical mixture of various oxides. Alternatively, the Mg-Ca-Sr-Ba and/or zinc components may be included outside of Formula III as an additive to the IRS.
- According to yet another embodiment, the PTMZ IRS may be expressed by the following formula:
Pba-Teb-(Mgw-Cax-Sry-Baz)c-Big-Znf-Md-Oe (Formula IIIA)
- where a, b, c, d, e, and f, and all ratios thereof, as well as M, are defined as they were in Formula III. Regarding the bismuth component, the ratio a:g is between about 10:90 and about 90:10. More preferably, the a:g ratio is between about 15:85 to about 85:15. The ratio of g:b is preferably between about 5:95 and about 95:5. More preferably, the g:b ratio is between about 10:90 and about 80:20. The ratio f:g is preferably between about 10:90 to about 90:10. More preferably, the f:g ratio is between about 15:85 to about 85:10.
- Formula IIIA may be formulated as a one-glass composition according to the same parameters set forth above for Formula III.
- In other embodiments, the IRS may include a combination of multiple glass compositions, such as combinations of Formulas I, II or III, glass compositions with PTZ, PTM, or PTMZ-containing compounds, or compounds (e.g., organometallic compounds, salts) that form a PTZ, PTM or PTMZ IRS during physical processing (e.g., mechanochemical processing, milling, grinding) or chemical processing (e.g., firing, thermal decomposition, photo or radiochemical decomposition).
- The IRS may be formed of crystalline or partially crystalline starting materials. The elements froming the IRS may be present in a single component or distributed amount two or more components. Preferably, the starting materials used to prepare the IRS compositions are lead oxide (e.g., PbO), tellurium oxide (e.g., TeO2), and oxides of zinc and/or the alkaline earth metals, such as zinc oxide (e.g, ZnO) and magnesium oxide (e.g., MgO). However, any known lead, tellurium, zinc, and magnesium-containing compositions which may be used to formulate a PTZ, PTM, or PTMZ system according to Formulas I, II and III may be used.
- According to one embodiment, the starting materials used to prepare the IRS comprise at least about 5 wt% lead-containing compound (e.g., PbO), and preferably at least about 8 wt% lead-containing compound, based upon 100% total weight of the IRS. At the same time, the composition comprises no more than about 45% lead-containing compound, preferably no more than about 40 wt%, and most preferably no more than about 38 wt%. Further, the materials preferably include at least 20 wt% tellurium-containing compound (e.g., TeO2), and preferably at least about 30 wt%, based upon 100% total weight of the starting materials used to prepare the IRS. At the same time, the materials preferably include no more than about 70 wt% tellurium-containing compound, and preferably no more than about 60 wt%. With respect to zinc and alkaline earth metal (e.g., magnesium), the starting materials preferably include no more than about 15 wt% of such compound, and preferably no more than about 10 wt%, based upon 100% total weight of the IRS. At the same time, the starting materials may include at least about 0.1 wt% of such compound, and preferably at least about 0.3 wt%, based upon 100% total weight of the IRS.
- Other glass matrix formers may also be used to form the PBT IRS, as designed by "M" in Formula I. Suitable compounds include, but are not limited to, compounds of alkaline metals, alkaline earth metals, rare earth metals, boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, halides, chalcogenides, and any combinations thereof. Preferably, the starting materials containing these metals are metal oxides, such as, for example Li2O, Na2O, SiO2, Al2O3, MoO3, MgO, Cr2O3, P2O5, B2O3, and Ag2O. Metal halides, such as AgI or PbF2, may also be used. In one preferred embodiment, the IRS includes lithium, boron, silicon, or any combination thereof. In another embodiment, the IRS includes bismuth, as set forth more fully herein. If present, the starting materials of the IRS include at least about 0.1 wt% of the above-referenced elements. At the same time, they include no more than about 30 wt%, and preferably no more than about 20 wt%, based upon 100% total weight of the IRS.
- The IRS may be formed by any method known in the art, including solid state synthesis, melting and quenching, or other Chimie Douce (soft chemistry) processes. In a typical melting and quenching process, the first step is to mix the appropriate amounts of the starting materials (usually in powder form). This mixture is then heated in air or in an oxygen-containing atmosphere to form a melt. The melt is then quenched, and then it is ground, ball milled, and screened, in order to provide a mixture with the desired particle size. For example, components in powder form may be mixed together in a V-comb blender. The mixture is then heated (e.g., to around 800-1200°C) for about 30-40 minutes such that the starting materials may react to form a one-glass system. The IRS is then quenched, taking on a sand-like consistency. This coarse powder is milled, such as in a ball mill or jet mill, until a fine powder results. The IRS particles may be milled to an average particle size (d50) of about 0.01-20 µm, preferably about 0.1-5µm. In one embodiment, the IRS particles may be formed as nano sized particles having a d50 ranging from about 5 to about 100 nm.
- Chimie Douce (soft chemistry) processes are carried out at temperatures of about 20°C to about 500°C. Chimie Douce reactions are topotactic, meaning that structural elements of the reactants are preserved in the product, but the composition changes. Such processes include, but are not limited to, sol-gel processes, precipitation, hydrothermal/solvothermal processes, and pyrolysis.
- Conventional solid state synthesis may also be used to prepare the IRS system described herein. In this process, raw starting materials are sealed in a fused quartz tube or tantalum or platinum tube under vacuum, and then heated to about 700-1200°C. The materials dwell at this elevated temperature for about 12-48 hours and then are slowly cooled (about 0.1°C/minute) to room temperature. In some cases, solid state reactions may be carried out in an alumina crucible in air.
- Yet another process for preparing the IRS system is co-precipitation. In this process, the metal elements are reduced and co-precipitated with other metal oxides or hydroxides to form a solution containing metal cations by adjusting the pH levels or by incorporating reducing agents. The precipitates of these metals, metal oxides or hydroxides are then dried and fired under vacuum at about 400-800°C to form a fine powder.
- One aspect of the invention relates to an electroconductive paste composition. A desired electroconductive paste is one which is highly conductive, so as to optimize the resulting solar cell's electrical performance. The electroconductive paste composition is generally comprised of metallic particles, organic vehicle, and at least one of the IRS compositions discussed herein. According to one embodiment, the electroconductive paste comprises: (i) at least about 50 wt% and no more than about 95 wt% metallic particles; (ii) at least about 1 wt% and no more than about 10 wt% IRS; and (iii) at least about 1 wt% and no more than about 25 wt% organic vehicle, based upon 100% total weight of the paste.
- The electroconductive paste of the invention includes at least one of the IRS compositions of the invention, as set forth herein. Preferably, the electroconductive paste includes at least about 0.1 wt% of the IRS, and preferably at least about 0.5 wt%. At the same time, the paste includes no more than about 10 wt% of the IRS, preferably no more than about 5 wt%, and most preferably no more than about 3 wt%, based upon 100% total weight of the paste.
- According to one embodiment of the invention, the IRS should have a glass transition temperature range (Tg) below the desired firing temperature of the electroconductive paste. Preferred IRS components have a Tg range of at least about 250°C, preferably at least 300°C, and most preferably at least 350°C. At the same time, preferred IRS materials have a Tg range of no more than about 750°C, preferably no more than about 700°C, and most preferably no more than about 650°C, when measured using thermomechanical analysis. Specifically, the glass transition temperature may be determined using a DSC apparatus, TA Instruments SDT Q600 Simultaneous TGA/DSC (TA Instruments). For the measurements and data evaluation, the measurement software TA Universal Analysis 2000, V 4.5A is applied. As pan for reference and sample, Alumina sample cups (commercially available from TA Instruments) with a diameter of 6.8 mm and a volume of about 90 µl are used. An amount of about 20-50 mg of the sample is weighted into the sample pan with an accuracy of 0.01 mg. The empty reference pan and the sample pan are placed in the apparatus, the oven is closed, and the measurement started. A heating rate of 10-50 °C/min is employed from a starting temperature of 25°C to an end temperature of 1000°C. The balance in the instrument is always purged with nitrogen (N2 5.0) and the oven is purged with synthetic air (80% N2 and 20% O2 from Linde) with a flow rate of 50 ml/min. The first step in the DSC signal is evaluated as glass transition using the software described above and the determined onset value is taken as the temperature for Tg.
- It is well known in the art that IRS solid particles can exhibit a variety of shapes, sizes, and coating layers. For example, a large number of shapes of IRS solid particles are known to the person skilled in the art. Some examples include spherical, angular, elongated (rod or needle like), and flat (sheet like, flakes). IRS solid particles may also be present as a combination of particles of different shapes (e.g., spheres and flakes). Glass particles with a shape, or combination of shapes, which favor advantageous adhesion of the produced electrode are preferred.
- The median particle diameter d50 is a characteristic of particles well known to the person skilled in the art. D50 is the median diameter or the medium value of the particle size distribution. It is the value of the particle diameter at 50% in the cumulative distribution. Particle size distribution may be measured via laser diffraction, dynamic light scattering, imaging, electrophoretic light scattering, or any other method known in the art. A Horiba LA-910 Laser Diffraction Particle Size Analyzer connected to a computer with the LA-910 software program is used to determine the particle size distribution of the glass frit. The relative refractive index of the glass frit particle is chosen from the LA-910 manual and entered into the software program. The test chamber is filled with deionized water to the proper fill line on the tank. The solution is then circulated by using the circulation and agitation functions in the software program. After one minute, the solution is drained. This is repeated an additional time to ensure the chamber is clean of any residual material. The chamber is then filled with deionized water for a third time and allowed to circulate and agitate for one minute. Any background particles in the solution are eliminated by using the blank function in the software. Ultrasonic agitation is then started, and the glass frit is slowly added to the solution in the test chamber until the transmittance bars are in the proper zone in the software program. Once the transmittance is at the correct level, the laser diffraction analysis is run and the particle size distribution of the glass is measured and given as d50.
- In a preferred embodiment, the median particle diameter d50 of the IRS particles is at least about 0.1 µm, and preferably no more than about 20 µm, more preferably no more than about 5 µm, more preferably no more than about 2 µm, and most preferably no more than about 1 µm.
- The IRS particles may be present with a surface coating. Any such coating known in the art and suitable in the context of the invention can be employed on the IRS particles. Preferred coatings are those coatings which promote improved adhesion characteristics of the electroconductive paste. If such a coating is present, it is preferred for that coating to be present in an amount of no more than 10 wt%, preferably no more than about 8 wt%, more preferably no more than about 5 wt%, more preferably no more than about 3 wt%, and most preferably no more than about 1 wt%, in each case based on the total weight of the IRS component.
- Preferably, IRS particles have a specific surface area of at least about 0.1 m2/g and no more than about 15 m2/g, preferably at least about 1 m2/g and no more than about 10 m2/g. Methods of measuring specific surface area are known in the art. As set forth herein, all surface area measurements were performed using the BET (Brunauer-Emmett-Teller) method via a Monosorb MS-22 analyzer (manufactured by Quantachrome Instruments of Boynton Beach, Florida) which operates according to the SMART method. Samples are prepared for analysis in the built-in degas station. Flowing gas sweeps away impurities, resulting in a clean surface upon which adsorption may occur. The sample can be heated to a user-selectable temperature with the supplied heating mantle. Digital temperature control and display are mounted on the instrument front panel. After degassing is complete, the sample cell is transferred to the analysis station. Quick connect fittings automatically seal the sample cell during transfer. With the push of a single button, analysis commences. A dewar flask filled with coolant is automatically raised, immersing the sample cell and causing adsorption. The instrument detects when adsorption is complete (2-3 minutes), automatically lowers the dewar flask, and gently heats the sample cell back to room temperature using a built-in hot-air blower. As a result, the desorbed gas signal is displayed on a digital meter and the surface area is directly presented on a front panel display. The entire measurement (adsorption and desorption) cycle typically requires less than six minutes. The technique uses a high sensitivity, thermal conductivity detector to measure the change in concentration of an adsorbate/inert carrier gas mixture as adsorption and desorption proceed. When integrated by the on-board electronics and compared to calibration, the detector provides the volume of gas adsorbed or desorbed. A built-in microprocessor ensures linearity and automatically computes the sample's BET surface area in m2/g.
- The electroconductive paste also comprises conductive metallic particles. The electroconductive paste may comprise at least about 50 wt% metallic particles, preferably at least about 60 wt%, more preferably at least about 70 wt%, and most preferably at least about 80 wt%, based upon 100% total weight of the paste. At the same time, the paste preferably comprises no more than about 95 wt% of metallic particles, based upon 100% total weight of the paste.
- All metallic particles known in the art, and which are considered suitable in the context of the invention, may be employed as the metallic particles in the electroconductive paste. Preferred metallic particles are those which exhibit conductivity and which yield electrodes having high efficiency and fill factor, and low series and grid resistance. Preferred metallic particles are elemental metals, alloys, metal derivatives, mixtures of at least two metals, mixtures of at least two alloys or mixtures of at least one metal with at least one alloy.
- Preferred metals include at least one of silver, aluminum, gold, copper, and nickel, and alloys or mixtures thereof. In a preferred embodiment, the metallic particles comprise silver. In another preferred embodiment, the metallic particles comprise silver and aluminum. Suitable silver derivatives include, for example, silver alloys and/or silver salts, such as silver halides (e.g., silver chloride), silver nitrate, silver acetate, silver trifluoroacetate, silver orthophosphate, and combinations thereof. In one embodiment, the metallic particles comprise a metal or alloy coated with one or more different metals or alloys, for example, silver particles coated with aluminum.
- Like the IRS particles, the metallic particles can exhibit a variety of shapes, sizes, and coating layers. A large number of shapes are known in the art. Some examples are spherical, angular, elongated (rod or needle like) and flat (sheet like, flakes). Metallic particles may also be present as a combination of particles of different shapes (e.g., spheres and flakes). Metallic particles with a shape, or combination of shapes, which favor improved conductivity are preferred. One way to characterize such shapes without considering the surface nature of the particles is through the following parameters: length, width and thickness. In the context of the invention, the length of a particle is given by the length of the longest spatial displacement vector, both endpoints of which are contained within the particle. The width of a particle is given by the length of the longest spatial displacement vector perpendicular to the length vector defined above both endpoints of which are contained within the particle. The thickness of a particle is given by the length of the longest spatial displacement vector perpendicular to both the length vector and the width vector, both defined above, both endpoints of which are contained within the particle. In one embodiment, metallic particles with shapes as uniform as possible are preferred (i.e. shapes in which the ratios relating the length, the width and the thickness are as close as possible to 1; preferably at least 0.7, more preferably at least 0.8, and most preferably at least 0.9, and preferably no more than about 1.5, preferably no more than about 1.3, and most preferably no more than about 1.2). Examples of preferred shapes for the metallic particles in this embodiment are spheres and cubes, or combinations thereof, or combinations of one or more thereof with other shapes. In another embodiment, metallic particles are preferred which have a shape of low uniformity, preferably with at least one of the ratios relating the dimensions of length, width and thickness being above about 1.5, more preferably above about 3 and most preferably above about 5. Preferred shapes according to this embodiment are flake shaped, rod or needle shaped, or a combination of flake shaped, rod or needle shaped with other shapes.
- It is preferred that the median particle diameter d50, as set forth herein, of the metallic particles is at least about 0.1 µm, and preferably no more than about 10 µm, preferably no more than about 8 µm, more preferably no more than about 7 µm, and most preferably no more than about 5 µm.
- Further, preferable metallic particles have a specific surface area of at least about 0.1 m2/g and no more than about 10 m2/g. According to a preferred embodiment, silver powders having a specific surface area of at least about 0.2 m2/g, preferably at least 0.5 m2/g, and at the same time no more than about 5 m2/g are used. The specific surface area is measured according to the parameters set forth herein.
- Additional components which contribute to more favorable contact properties and electrical conductivity are preferred. For example, the metallic particles may be present with a surface coating. Any such coating known in the art, and which is considered to be suitable in the context of the invention, may be employed on the metallic particles. Preferred coatings are those coatings which promote the adhesion characteristics of the resulting electroconductive paste. If such a coating is present, it is preferred that the coating be no more than about 10 wt%, preferably no more than about 8 wt%, and most preferably no more than about 5 wt%, based on 100% total weight of the metallic particles.
- The electroconductive paste of the invention also comprises an organic vehicle. In one embodiment, the organic vehicle is present in the electroconductive paste in an amount of at least about 0.01 wt% and no more than about 50 wt%, preferably no more than about 30 wt%, and most preferably no more than about 20 wt%, based upon 100% total weight of the paste.
- Preferred organic vehicles in the context of the invention are solutions, emulsions or dispersions based on one or more solvents, preferably organic solvent(s), which ensure that the components of the electroconductive paste are present in a dissolved, emulsified or dispersed form. Preferred organic vehicles are those which provide optimal stability of the components of the electroconductive paste and endow the paste with a viscosity allowing effective printability.
- In one embodiment, the organic vehicle comprises an organic solvent and one or more of a binder (e.g., a polymer), a surfactant and a thixotropic agent, or any combination thereof. For example, in one embodiment, the organic vehicle comprises one or more binders in an organic solvent.
- Preferred binders in the context of the invention are those which contribute to the formation of an electroconductive paste with favorable stability, printability, viscosity and sintering properties. All binders which are known in the art, and which are considered to be suitable in the context of this invention, may be employed as the binder in the organic vehicle. Preferred binders (which often fall within the category termed "resins") are polymeric binders, monomeric binders, and binders which are a combination of polymers and monomers. Polymeric binders can also be copolymers wherein at least two different monomeric units are contained in a single molecule. Preferred polymeric binders are those which carry functional groups in the polymer main chain, those which carry functional groups off of the main chain and those which carry functional groups both within the main chain and off of the main chain. Preferred polymers carrying functional groups in the main chain are for example polyesters, substituted polyesters, polycarbonates, substituted polycarbonates, polymers which carry cyclic groups in the main chain, poly-sugars, substituted poly-sugars, polyurethanes, substituted polyurethanes, polyamides, substituted polyamides, phenolic resins, substituted phenolic resins, copolymers of the monomers of one or more of the preceding polymers, optionally with other comonomers, or a combination of at least two thereof. According to one embodiment, the binder may be polyvinyl butyral or polyethylene. Preferred polymers which carry cyclic groups in the main chain are for example polyvinylbutylate (PVB) and its derivatives and poly-terpineol and its derivatives or mixtures thereof. Preferred poly-sugars are for example cellulose and alkyl derivatives thereof, preferably methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, propyl cellulose, hydroxypropyl cellulose, butyl cellulose and their derivatives and mixtures of at least two thereof. Other preferred polymers are cellulose ester resins, e.g., cellulose acetate propionate, cellulose acetate buyrate, and any combinations thereof. Preferred polymers which carry functional groups off of the main polymer chain are those which carry amide groups, those which carry acid and/or ester groups, often called acrylic resins, or polymers which carry a combination of aforementioned functional groups, or a combination thereof. Preferred polymers which carry amide off of the main chain are for example polyvinyl pyrrolidone (PVP) and its derivatives. Preferred polymers which carry acid and/or ester groups off of the main chain are for example polyacrylic acid and its derivatives, polymethacrylate (PMA) and its derivatives or polymethylmethacrylate (PMMA) and its derivatives, or a mixture thereof. Preferred monomeric binders are ethylene glycol based monomers, terpineol resins or rosin derivatives, or a mixture thereof. Preferred monomeric binders based on ethylene glycol are those with ether groups, ester groups or those with an ether group and an ester group, preferred ether groups being methyl, ethyl, propyl, butyl, pentyl hexyl and higher alkyl ethers, the preferred ester group being acetate and its alkyl derivatives, preferably ethylene glycol monobutylether monoacetate or a mixture thereof. Alkyl cellulose, preferably ethyl cellulose, its derivatives and mixtures thereof with other binders from the preceding lists of binders or otherwise are the most preferred binders in the context of the invention. The binder may be present in an amount of at least about 0.1 wt%, and preferably at least about 0.5 wt%, based upon 100% total weight of the organic vehicle. At the same time, the binder may be present in an amount of no more than about 10 wt%, preferably no more than about 8 wt%, and more preferably no more than about 7 wt%, based upon 100% total weight of the organic vehicle.
- Preferred solvents are components which are removed from the paste to a significant extent during firing. Preferably, they are present after firing with an absolute weight reduced by at least about 80% compared to before firing, preferably reduced by at least about 95% compared to before firing. Preferred solvents are those which contribute to favorable viscosity, printability, stability and sintering characteristics. All solvents which are known in the art, and which are considered to be suitable in the context of this invention, may be employed as the solvent in the organic vehicle. Preferred solvents are those which exist as a liquid under standard ambient temperature and pressure (SATP) (298.15 K, 25 °C, 77 °F), 100 kPa (14.504 psi, 0.986 atm), preferably those with a boiling point above about 90 °C and a melting point above about -20 °C. Preferred solvents are polar or non-polar, protic or aprotic, aromatic or non-aromatic. Preferred solvents are mono-alcohols, di-alcohols, poly-alcohols, mono-esters, di-esters, poly-esters, mono-ethers, di-ethers, poly-ethers, solvents which comprise at least one or more of these categories of functional group, optionally comprising other categories of functional group, preferably cyclic groups, aromatic groups, unsaturated bonds, alcohol groups with one or more O atoms replaced by heteroatoms, ether groups with one or more O atoms replaced by heteroatoms, esters groups with one or more O atoms replaced by heteroatoms, and mixtures of two or more of the aforementioned solvents. Preferred esters in this context are di-alkyl esters of adipic acid, preferred alkyl constituents being methyl, ethyl, propyl, butyl, pentyl, hexyl and higher alkyl groups or combinations of two different such alkyl groups, preferably dimethyladipate, and mixtures of two or more adipate esters. Preferred ethers in this context are diethers, preferably dialkyl ethers of ethylene glycol, preferred alkyl constituents being methyl, ethyl, propyl, butyl, pentyl, hexyl and higher alkyl groups or combinations of two different such alkyl groups, and mixtures of two diethers. Preferred alcohols in this context are primary, secondary and tertiary alcohols, preferably tertiary alcohols, terpineol and its derivatives being preferred, or a mixture of two or more alcohols. Preferred solvents which combine more than one different functional groups are 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, often called texanol, and its derivatives, 2-(2-ethoxyethoxy)ethanol, often known as carbitol, its alkyl derivatives, preferably methyl, ethyl, propyl, butyl, pentyl, and hexyl carbitol, preferably hexyl carbitol or butyl carbitol, and acetate derivatives thereof, preferably butyl carbitol acetate, or mixtures of at least two of the aforementioned. The organic solvent may be present in an amount of at least about 60 wt%, and more preferably at least about 70 wt%, and most preferably at least about 80wt%, based upon 100% total weight of the organic vehicle. At the same time, the organic solvent may be present in an amount of no more than about 99 wt%, more preferably no more than about 95 wt%, based upon 100% total weight of the organic vehicle.
- The organic vehicle may also comprise one or more surfactants and/or additives. Preferred surfactants are those which contribute to the formation of an electroconductive paste with favorable stability, printability, viscosity and sintering properties. All surfactants which are known in the art, and which are considered to be suitable in the context of this invention, may be employed as the surfactant in the organic vehicle. Preferred surfactants are those based on linear chains, branched chains, aromatic chains, fluorinated chains, siloxane chains, polyether chains and combinations thereof. Preferred surfactants include, but are not limited to, single chained, double chained or poly chained polymers. Preferred surfactants may have non-ionic, anionic, cationic, amphiphilic, or zwitterionic heads. Preferred surfactants may be polymeric and monomeric or a mixture thereof. Preferred surfactants may have pigment affinic groups, preferably hydroxyfunctional carboxylic acid esters with pigment affinic groups (e.g., DISPERBYK®-108, manufactured by BYK USA, Inc.), acrylate copolymers with pigment affinic groups (e.g., DISPERBYK®-116, manufactured by BYK USA, Inc.), modified polyethers with pigment affinic groups (e.g., TEGO® DISPERS 655, manufactured by Evonik Tego Chemie GmbH), other surfactants with groups of high pigment affinity (e.g., TEGO® DISPERS 662 C, manufactured by Evonik Tego Chemie GmbH). Other preferred polymers not in the above list include, but are not limited to, polyethylene oxide, polyethylene glycol and its derivatives, and alkyl carboxylic acids and their derivatives or salts, or mixtures thereof. The preferred polyethylene glycol derivative is poly(ethyleneglycol)acetic acid. Preferred alkyl carboxylic acids are those with fully saturated and those with singly or poly unsaturated alkyl chains or mixtures thereof. Preferred carboxylic acids with saturated alkyl chains are those with alkyl chains lengths in a range from about 8 to about 20 carbon atoms, preferably C9H19COOH (capric acid), C11H23COOH (Lauric acid), C13H27COOH (myristic acid) C15H31COOH (palmitic acid), C17H35COOH (stearic acid), or salts or mixtures thereof. Preferred carboxylic acids with unsaturated alkyl chains are C18H34O2 (oleic acid) and C18H32O2 (linoleic acid). The preferred monomeric surfactant is benzotriazole and its derivatives. If present, the surfactant may be at least about 0.01 wt%, based upon 100% total weight of the organic vehicle. At the same time, the surfactant is preferably no more than about 10 wt%, preferably no more than about 8 wt%, and more preferably no more than about 6 wt%, based upon 100% total weight of the organic vehicle.
- Preferred additives in the organic vehicle are those materials which are distinct from the aforementioned components and which contribute to favorable properties of the electroconductive paste, such as advantageous viscosity, printability, stability and sintering characteristics. Additives known in the art, and which are considered to be suitable in the context of the invention, may be used. Preferred additives include, but are not limited to, thixotropic agents, viscosity regulators, stabilizing agents, inorganic additives, thickeners, emulsifiers, dispersants and pH regulators. Preferred thixotropic agents include, but are not limited to, carboxylic acid derivatives, preferably fatty acid derivatives or combinations thereof. Preferred fatty acid derivatives include, but are not limited to, C9H19COOH (capric acid), C11H23COOH (Lauric acid), C13H27COOH (myristic acid) C15H31COOH (palmitic acid), C17H35COOH (stearic acid) C18H34O2 (oleic acid), C18H32O2 (linoleic acid) and combinations thereof. A preferred combination comprising fatty acids in this context is castor oil.
- According to another embodiment, the electroconductive paste may include additives distinct from the conductive particles, IRS, and organic vehicle. Preferred additives contribute to increased performance of the electroconductive paste, of the electrodes produced thereof, or of the resulting solar cell. All additives known in the art, and which are considered suitable in the context of the invention, may be employed as additives in the electroconductive paste. Preferred additives include, but are not limited to, thixotropic agents, viscosity regulators, emulsifiers, stabilizing agents or pH regulators, inorganic additives, thickeners and dispersants, or a combination of at least two thereof. Inorganic additives are most preferred. Preferred inorganic additives include, but are not limited to, alkaline and alkaline earth metals, transition metals, such as nickel, zirconium, titanium, manganese, tin, ruthenium, cobalt, iron, copper and chromium tungsten, molybdenum, zinc; post-transition metals such as boron, silicon, germanium, tellurium, gadolinium, lead, bismuth, antimony, rare earth metals, such as lanthanum, cerium, oxides, mixed metal oxides, complex compounds, or amorphous or partially crystallized glasses formed from those oxides , or any combination of at least two thereof, preferably zinc, antimony, manganese, nickel, tungsten, tellurium and ruthenium, or a combination of at least two thereof, oxides thereof, compounds which can generate those metal oxides or glasses on firing, or a mixture of at least two of the aforementioned metals, a mixture of at least two of the aforementioned oxides, a mixture of at least two of the aforementioned compounds which can generate those metal oxides, mixed metal oxides, compounds or amorphous or partially glasses on firing, or mixtures of two or more of any of the above mentioned.
- If present, the electroconductive paste composition may include at least about 0.1 wt% additive, based upon 100% total weight of the paste. At the same time, the paste preferably includes no more than about 10 wt%, preferably no more than about 5 wt%, and more preferably no more than about 2 wt% additive(s), based upon 100% total weight of the paste.
- To form the electroconductive paste composition, the IRS may be combined with the conductive metallic particles and the organic vehicle using any method known in the art for preparing a paste composition. The method of preparation is not critical, as long as it results in a homogenously dispersed paste. The components can be mixed, such as with a mixer, then passed through a three roll mill, for example, to make a dispersed uniform paste.
- In another aspect, the invention relates to a solar cell. In one embodiment, the solar cell is formed from a semiconductor substrate, for example a silicon wafer, and an electroconductive paste composition according to any of the embodiments described herein.
- In another aspect, the invention relates to a solar cell prepared by a process comprising applying an electroconductive paste composition according to any of the embodiments described herein to a semiconductor substrate and firing the semiconductor substrate.
- Preferred wafers have regions, among other regions of the solar cell, capable of absorbing light with high efficiency to yield electron-hole pairs and separating holes and electrons across a boundary with high efficiency, preferably across a p-n junction boundary. Preferred wafers are those comprising a single body made up of a front doped layer and a back doped layer.
- Preferably, the wafer comprises appropriately doped tetravalent elements, binary compounds, tertiary compounds or alloys. Preferred tetravalent elements in this context are silicon, Ge or Sn, preferably silicon. Preferred binary compounds are combinations of two or more tetravalent elements, binary compounds of a group III element with a group V element, binary com-pounds of a group II element with a group VI element or binary compounds of a group IV element with a group VI element. Preferred combinations of tetravalent elements are combinations of two or more elements selected from silicon, germanium, tin or carbon, preferably SiC. The preferred binary compound of a group III element with a group V element is GaAs. According to a preferred embodiment, the wafer is silicon. The foregoing description, in which silicon is explicitly mentioned, also applies to other wafer compositions described herein.
- The p-n junction boundary is located where the front doped layer and back doped layer of the wafer meet. In an n-type solar cell, the back doped layer is doped with an electron donating n-type dopant and the front doped layer is doped with an electron accepting or hole donating p-type dopant. In a p-type solar cell, the back doped layer is doped with p-type dopant and the front doped layer is doped with n-type dopant. According to a preferred embodiment, a wafer with a p-n junction boundary is prepared by first providing a doped silicon substrate and then applying a doped layer of the opposite type to one face of that substrate.
- Doped silicon substrates are well known in the art. The doped silicon substrate can be prepared by any method known in the art and considered suitable for the invention. Preferred sources of silicon substrates are mono-crystalline silicon, multi-crystalline silicon, amorphous silicon and upgraded metallurgical silicon, most preferably mono-crystalline silicon or multi-crystalline silicon. Doping to form the doped silicon substrate can be carried out simultaneously by adding the dopant during the preparation of the silicon substrate, or it can be carried out in a subsequent step. Doping subsequent to the preparation of the silicon substrate can be carried out by gas diffusion epitaxy, for example. Doped silicon substrates are also readily commercially available. According to one embodiment, the initial doping of the silicon substrate may be carried out simultaneously to its formation by adding dopant to the silicon mix. According to another embodiment, the application of the front doped layer and the highly doped back layer, if present, may be carried out by gas-phase epitaxy. The gas phase epitaxy is preferably carried out at a temperature of at least about 500°C, preferably at least about 600°C, and most preferably at least about 650°C. At the same time, the gas phase epitaxy is preferably carried out at a temperature of no more than about 900°C, more preferably no more than about 800°C, and most preferably no more than about 750°C. The epitaxy is also preferably carried out at a pressure of at least 2 kPa, preferably at least about 10 kPa, and most preferably at least about 30 kPa. At the same time, the epitaxy is carried out at a pressure of no more than about 100 kPa, preferably no more than about 80 kPa, and most preferably no more than about 70 kPa.
- It is known in the art that silicon substrates can exhibit a number of shapes, surface textures and sizes. The shape of the substrate may include cuboid, disc, wafer and irregular polyhedron, to name a few. According to a preferred embodiment, the wafer is a cuboid with two dimensions which are similar, preferably equal, and a third dimension which is significantly smaller than the other two dimensions. The third dimension may be at least 100 times smaller than the first two dimensions.
- Further, a variety of surface types are known in the art. In one embodiment, silicon substrates with rough surfaces are preferred. One way to assess the roughness of the substrate is to evaluate the surface roughness parameter for a sub-surface of the substrate, which is small in comparison to the total surface area of the substrate, preferably less than about one hundredth of the total surface area, and which is essentially planar. The value of the surface roughness parameter is given by the ratio of the area of the sub-surface to the area of a theoretical surface formed by projecting that sub-surface onto the flat plane best fitted to the sub-surface by minimizing mean square displacement. A higher value of the surface roughness parameter indicates a rougher, more irregular surface and a lower value of the surface roughness parameter indicates a smoother, more even surface. The surface roughness of the silicon substrate is preferably modified so as to produce an optimum balance between numerous factors including, but not limited to, light absorption and adhesion to the surface.
- The two larger dimensions of the silicon substrate can be varied to suit the application required of the resultant solar cell. It is preferred for the thickness of the silicon wafer to be at least about 0.01 mm. At the same time, the thickness is preferably no more than about 0.5 mm, more preferably no more than about 0.3 mm, and most preferably no more than about 0.2 mm. According to one embodiment, the silicon wafer may have a minimum thickness of 0.01 mm.
- It is preferred that the front doped layer be thin in comparison to the back doped layer. It is also preferred that the front doped layer have a thickness of at least about 0.1 µm, and no more than about 10 µm, preferably no more than about 5 µm, and most preferably no more than about 2 µm.
- A highly doped layer can be applied to the back face of the silicon substrate between the back doped layer and any further layers. Such a highly doped layer is of the same doping type as the back doped layer and such a layer is commonly denoted with a + (n+-type layers are applied to n-type back doped layers and p+-type layers are applied to p-type back doped layers). This highly doped back layer serves to assist metallization and improve electroconductive properties. It is preferred for the highly doped back layer, if present, to have a thickness of at least about 1 µm, and no more than about 100 µm, preferably no more than about 50 µm, and most preferably no more than about 15 µm.
- Preferred dopants are those which, when added to the silicon wafer, form a p-n junction boundary by introducing electrons or holes into the band structure. It is preferred that the identity and concentration of these dopants is specifically selected so as to tune the band structure profile of the p-n junction and set the light absorption and conductivity profiles as required. Preferred p-type dopants are those which add holes to the silicon wafer band structure. All dopants known in the art and which are considered suitable in the context of the invention can be employed as p-type dopants. Preferred p-type dopants include, but are not limited to, trivalent elements, particularly those of group 13 of the periodic table. Preferred group 13 elements of the periodic table include, but are not limited to, boron, aluminum, gallium, indium, thallium, or a combination of at least two thereof, wherein boron is particularly preferred.
- Preferred n-type dopants are those which add electrons to the silicon wafer band structure. All dopants known in the art and which are considered to be suitable in the context of the invention can be employed as n-type dopants. Preferred n-type dopants include, but are not limited to, elements of group 15 of the periodic table. Preferred group 15 elements include, but are not limited to, nitrogen, phosphorus, arsenic, antimony, bismuth, or a combination of at least two thereof, wherein phosphorus is particularly preferred.
- As described above, the various doping levels of the p-n junction can be varied so as to tune the desired properties of the resulting solar cell.
- According to certain embodiments, the semiconductor substrate (i.e., silicon wafer) exhibits a sheet resistance above about 60 Ω/□, such as above about 65 Ω/□, 70 Ω/□, 90 Ω/□, 95 Ω/□, or 100 Ω/□.
- One aspect of the invention is a solar cell obtainable from the methods of the invention. Preferred solar cells are those which have a high efficiency, in terms of proportion of total energy of incident light converted into electrical energy output. Solar cells which are lightweight and durable are also preferred. At a minimum, a solar cell typically includes: (i) front electrodes, (ii) a front doped layer, (iii) a p-n junction boundary, (iv) a back doped layer, and (v) soldering pads. The solar cell may also include additional layers for chemical/mechanical protection.
- An antireflective layer may be applied as the outer layer before the electrode is applied to the front face of the solar cell. Preferred antireflective layers are those which decrease the proportion of incident light reflected by the front face and increase the proportion of incident light crossing the front face to be absorbed by the wafer. Antireflective layers which give rise to a favorable absorption/reflection ratio, are susceptible to etching by the electroconductive paste, are otherwise resistant to the temperatures required for firing of the electroconductive paste, and do not contribute to increased recombination of electrons and holes in the vicinity of the electrode interface are preferred. All antireflective layers known in the art and which are considered to be suitable in the context of the invention can be employed. Preferred antireflective layers include, but are not limited to, SiNx, SiO2, Al2O3, TiO2 or mixtures of at least two thereof and/or combinations of at least two layers thereof. According to a preferred embodiment, the antireflective layer is SiNx, in particular where a silicon wafer is employed.
- The thickness of antireflective layers is suited to the wavelength of the appropriate light. According to a preferred embodiment of the invention, the antireflective layers have a thickness of at least about 20 nm, preferably at least about 40 nm, and most preferably at least about 60 nm. At the same time, the thickness is preferably no more than about 300 nm, preferably no more than about 200 nm, and most preferably no more than about 90 nm.
- One or more passivation layers may be applied to the front and/or back side of the silicon wafer as an outer layer. The passivation layer(s) may be applied before the front electrode is formed, or before the antireflective layer is applied (if one is present). Preferred passivation layers are those which reduce the rate of electron/hole recombination in the vicinity of the electrode interface. Any passivation layer which is known in the art and which is considered to be suitable in the context of the invention can be employed. Preferred passivation layers include, but are not limited to, silicon nitride, silicon dioxide and titanium dioxide. According to a preferred embodiment, silicon nitride is used. It is preferred for the passivation layer to have a thickness of at least 0.1 nm, preferably at least about 10 nm, and most preferably at least about 30 nm. At the same time, the passivation layer is preferably no more than about 2 µm, more preferably no more than about 1 µm, and most preferably no more than about 200 nm.
- In addition to the layers described above which directly contribute to the principle function of the solar cell, further layers may be added for mechanical and chemical protection.
- The cell can be encapsulated to provide chemical protection. Encapsulations are well known in the art and any encapsulation suitable for the invention can be employed. According to a preferred embodiment, transparent polymers, often referred to as transparent thermoplastic resins, are used as the encapsulation material, if such an encapsulation is present. Preferred transparent polymers include, but are not limited to, silicon rubber and polyethylene vinyl acetate (PVA).
- A transparent glass sheet may also be added to the front of the solar cell to provide mechanical protection to the front face of the cell. Transparent glass sheets are well known in the art and any suitable transparent glass sheet suitable may be employed.
- A back protecting material may be added to the back face of the solar cell to provide mechanical protection. Back protecting materials are well known in the art and any suitable back protecting material may be employed. Preferred back protecting materials are those having good mechanical properties and weather resistance. The preferred back protection material is polyethylene terephthalate with a layer of polyvinyl fluoride. It is preferred for the back protecting material to be present underneath the encapsulation layer (in the event that both a back protection layer and encapsulation are present).
- A frame material can be added to the outside of the solar cell to give mechanical support. Frame materials are well known in the art and any frame material considered suitable in the context of the invention may be employed. The preferred frame material is aluminum.
- A solar cell may be prepared by applying an electroconductive paste composition to an antireflective coating, such as silicon nitride, silicon oxide, titanium oxide or aluminum oxide, on the front side of a semiconductor substrate, such as a silicon wafer, to form front side electrodes. The backside electroconductive paste of the invention is then applied to the backside of the solar cell to form soldering pads. The electroconductive pastes may be applied in any manner known in the art and considered suitable in the context of the invention. Examples include, but are not limited to, impregnation, dipping, pouring, dripping on, injection, spraying, knife coating, curtain coating, brushing or printing or a combination of at least two thereof. Preferred printing techniques are ink-jet printing, screen printing, tampon printing, offset printing, relief printing or stencil printing or a combination of at least two thereof. It is preferred that the electroconductive paste is applied by printing, preferably by screen printing. Specifically, the screens preferably have finger line opening with a diameter of at least about 10 µm, more preferably at least about 15 µm, more preferably at least about 20 µm, and most preferably at least about 25 µm. At the same time, the finger line opening diameters is preferably no more than about 100 µm, more preferably no more than about 80 µm, and most preferably no more than about 70 µm.
- An aluminum paste is then applied to the backside of the substrate, overlapping the edges of the soldering pads formed from the backside electroconductive paste, to form the BSF. The substrate is then fired according to an appropriate profile determined by the substrate and the composition of the electroconductive paste.
- Firing is necessary to sinter the printed electrodes and soldering pads so as to form solid conductive bodies. Firing is well known in the art and can be effected in any manner considered suitable in the context of the invention. It is preferred that firing be carried out above the Tg of the IRS materials.
- The maximum temperature set for firing is below about 900°C, preferably below about 860°C. Firing temperatures as low as about 820°C have been employed for obtaining solar cells. The firing temperature profile is typically set so as to enable the burnout of organic binder materials from the electroconductive paste composition, as well as any other organic materials present. The firing step is typically carried out in air or in an oxygen-containing atmosphere in a belt furnace. It is preferred for firing to be carried out in a fast firing process with a total firing time in the range from about 30 seconds (s) to about 3 minutes, more preferably in the range from about 30 s to about 2 minutes, and most preferably in the range from about 40 s to about 1 minute. The time above 600°C is most preferably in a range from about 3 to 7 s. The substrate may reach a peak temperature in the range of about 700 to 900°C for a period of about 1 to 5 s. The firing may also be conducted at high transport rates, for example, about 100-500 cm/min, with resulting hold-up times of about 0.05 to 5 minutes. Multiple temperature zones, for example 3-12 zones, can be used to control the desired thermal profile.
- Firing of electroconductive pastes on the front and back faces may be carried out simultaneously or sequentially. Simultaneous firing is appropriate if the electroconductive pastes applied to both faces have similar, preferably identical, optimum firing conditions. Where appropriate, it is preferred for firing to be carried out simultaneously. Where firing is carried out sequentially, it is preferable for the back electroconductive paste to be applied and fired first, followed by application and firing of the electroconductive paste to the front face.
- To measure the performance of a solar cell, a standard electrical test is conducted. A sample solar cell having both front side and backside pastes printed thereon is characterized using a commercial IV-tester "cetisPV-CTL1" from Halm Elektronik GmbH. All parts of the measurement equipment as well as the solar cell to be tested are maintained at 25°C during electrical measurement. This temperature is always measured simultaneously on the cell surface during the actual measurement by a temperature probe. The Xe Arc lamp simulates the sunlight with a known AM1.5 intensity of 1000 W/m2 on the cell surface. To bring the simulator to this intensity, the lamp is flashed several times within a short period of time until it reaches a stable level monitored by the "PVCTControl 4.260.0" software of the IV-tester. The Halm IV tester uses a multi-point contact method to measure current (I) and voltage (V) to determine the cell's IV-curve. To do so, the solar cell is placed between the multi-point contact probes in such a way that the probe fingers are in contact with the bus bars of the cell. The numbers of contact probe lines are adjusted to the number of bus bars on the cell surface. All electrical values are determined directly from this curve automatically by the implemented software package. As a reference standard, a calibrated solar cell from ISE Freiburg consisting of the same area dimensions, same wafer material and processed using the same front side layout is tested and the data compared to the certificated values. At least five wafers processed in the very same way are measured and the data interpreted by calculating the average of each value. The software PVCTControl 4.260.0 provides values for efficiency, fill factor, short circuit current, series resistance, and open circuit voltage.
- Another aspect of the invention is a solar cell module formed of the solar cells of the invention. A plurality of solar cells may be arranged spatially and electrically interconnected to form a collective arrangement called a module. Preferred modules can have a number of arrangements, preferably a rectangular arrangement known as a solar panel. A variety of ways to electrically connect solar cells, as well as a variety of ways to mechanically arrange and fix such cells to form collective arrangements, are well known in the art. Any such methods known in the art, and which are considered suitable in the context of the invention, may be employed. Preferred methods are those which result in a low mass to power output ratio, low volume to power output ration, and high durability. Aluminum is the preferred material for mechanical fixing of solar cells.
- A set of IRS compositions (G1 and G2) were prepared with the starting materials set forth in Table 1 below. The control was prepared using the same starting materials as G1 and G2 (lead, tellurium, and M-oxides), except for the zinc or magnesium-based compound. Samples were prepared in 100g batches by mixing the individual oxide constituents in the amounts designated in Table 1. The oxide mixture was loaded into a 8.34 in3 volume Colorado crucible. The crucible was then placed in an oven for 40 minutes at 600°C to preheat the oxide mixture. After preheating, the crucible was moved into a refractory oven at 850°C for 15 minutes to melt the individual components into a glass mixture. The molten glass was then removed from the oven and poured into a bucket containing deionized water to quickly quench. This glass material was further processed in a 1 L ceramic jar mill. The jar mill was filled approximately halfway with ½" cylindrical alumina media, or 2mm diameters yttrium stabilized zirconia (YTZ) grinding media, and deionized water. The glass was added to the jar mill and rolled for 8 hours at 60-80RPM. After milling, the glass was filtered through a 325 mesh sieve and dried at 125°C for 12 hours. All amounts are based on 100% total weight of the IRS.
Table 1. Exemplary PTZ and PTM IRS Compositions (G1 and G2) Control G1 G2 PbO 29.23% 27.88% 27.71% TeO2 50.19% 47.86% 47.57% ZnO -- 0.87% -- MgO -- -- 0.88% M-Oxides 20.58% 23.39% 23.85% - The IRS compositions were then mixed with silver particles and organic vehicle to form exemplary electroconductive paste compositions. To form each exemplary paste (P1 and P2) and the control paste, about 2.3 wt% of each IRS composition, about 88.5 wt% silver particles, and about 9.2 wt% of organic vehicle, based upon 100% total weight of the paste, were each combined.
- Once the pastes were mixed to a uniform consistency, they were screen printed onto the front side of a blank monocrystalline silicon wafer using 250 mesh stainless steel, 5 µm EOM, at about a 30 µm wire diameter. A commercially available backside paste was used to form soldering pads, which extend across the full length of the cell and are about 4 mm wide. Next, a commercially available aluminum backside paste was printed all over the remaining areas of the rear side of the cell to form an aluminum BSF. The cell was then dried at an appropriate temperature. The silicon substrate, with the printed front side and backside paste, was then fired at a peak temperature of approximately 700-975°C.
- The electroconductive performance of the exemplary and control pastes is set forth in Table 2 below. The efficiency (Eta, %), short circuit current (Isc, mΩ), fill factor (FF, %), open circuit voltage (Voc, V), and series resistance under three standard lighting intensities (Rs3, Ω) were all calculated according to the parameters set forth herein, and the values provided in the table below have been normalized to 1 with respect to the Control paste. Most notably, exemplary pastes P1 and P2 had lower series resistance than the control paste and higher short circuit current and fill factor.
Table 2. Electrical Performance of Exemplary Pastes (P1 and P2) Control P1 P2 Eta (%) 1 0.9989 1.0021 Isc (mΩ) 1 1.0011 1.0009 Voc (V) 1 0.9967 0.9984 FF (%) 1 1.0012 1.0028 Rs3 (Ω) 1 0.9506 0.9331 - A set of PTZM, PTZ and PTM IRS compositions (G3-G5), as well as another control IRS (Control 2) were prepared. The IRS compositions were prepared with the starting materials set forth in Table 3 below, according to the parameters set forth in Example 1. Each exemplary IRS contained either MgO, ZnO, or both, as well as Pb, Te, and M-Oxides. All amounts are expressed in 100% total weight of the IRS.
Table 3. Exemplary PTM IRS Compositions (G3-G5) Control 2 G3 G4 G5 PbO 28.26% 27.89% 28.04% 28.17% TeO2 48.53% 47.89% 48.15% 48.36% MgO -- 0.43% -- 0.42% ZnO -- 0.86% 0.85% -- M-Oxides 23.21% 22.93% 22.96% 23.06% - About 2 wt% of each IRS composition was then mixed with about 89 wt% silver particles and about 9 wt% organic vehicle according to the same parameters as set forth in Example 1 to form Pastes P3-P5 and the Control 2 paste. The exemplary pastes were then screen printed on a monocrystalline silicon wafer according to the parameters of Example 1. The electroconductive performance was measured according to the parameters set forth herein and was normalized to 1 with respect to the Control 2 paste. As shown in Table 4, each of the exemplary pastes outperformed Control 2, with specific improvements in efficiency and fill factor and reductions in series resistance.
Table 4. Electrical Performance of Pastes P3-P5 Control 2 P3 P4 P5 Eta 1 1.0302 1.0233 1.0177 Isc 1 0.9990 0.9983 0.9985 Voc 1 1.0000 1.0000 1.0000 FF 1 1.0316 1.0256 1.0200 Rs3 1 0.6399 0.7052 0.7753 - A set of PTMZ and PTZ IRS compositions (G6-G9) was prepared with the starting materials set forth in Table 5 below, according to the parameters set forth in Example 1. All amounts are expressed in 100% total weight of the IRS.
Table 5. Exemplary PTMZ and PTZ IRS Compositions (G6-G9) G6 G7 G8 G9 PbO 28.06% 28.17% 28.03% 27.89% TeO2 48.18% 48.36% 48.12% 47.88% MO 22.05% 22.04% 21.94% 21.82% MgO 0.85% -- -- -- ZnO 0.86% 0.84% 0.84% 0.84% CaO -- 0.58% -- -- SrO -- -- 1.07% -- BaO -- -- -- 1.57% - About 2 wt% of each PTMZ and PTZ IRS composition was mixed with about 89 wt% silver particles and about 9 wt% organic vehicle according to the same parameters as set forth in Example 1 to form Pastes P6-P9. A control paste having the Control 2 IRS of Example 2 was also prepared with the same paste components. The pastes were then screen printed on a monocrystalline silicon wafer according to the parameters of Example 1. The electroconductive performance was measured according to the parameters set forth herein and normalized to 1 with respect to the Control 2 paste. As can be seen in Table 6, pastes P6-P9 exhibited improved fill factor and reduced series resistance.
Table 6. Electrical Performance of Pastes P6-P9 Control 2 P6 P7 P8 P9 Eta 1 0.9955 0.9947 0.9901 0.9981 Isc 1 0.9737 0.9748 0.9732 0.9750 Voc 1 0.9906 0.9938 0.9938 0.9938 FF 1 1.0315 1.0274 1.0248 1.0303 Rs3 1 0.6531 0.7107 0.7309 0.6741 - Another set of PBZ, PBM and PBMZ IRS compositions can be prepared with the starting materials set forth in Table 7 below according to the parameters set forth in Example 1. These compositions further include Li2O and B2O3. All amounts are based on 100% total weight of the IRS. The anticipated electrical performance is set forth in Table 8 below.
Table 7. Prophetic PTZ, PTM and PTMZ IRS Compositions (X1-X3) 1 X1 X2 X3 PbO 27.89% 28.04% 28.17% TeO2 47.89% 48.15% 48.36% MgO 0.43% -- 0.42% ZnO 0.86% 0.85% -- Li2O 5.80% 6.30% 6.70% B2O3 17.13% 16.66% 16.36% Table 8. Electrical Performance of Prophetic Pastes (X1-X3) Control X1 X2 X3 Eta 0 + + + Isc 0 + + + Voc 0 + + + FF 0 + + + Rs3 0 + + + - Another set of PBT IRS compositions (X4-X6) can be prepared with the starting materials set forth in Table 9 below according to the parameters set forth in Example 1. These compositions all contain only the PTZ, PTM and/or PTMZ system. All amounts are based on 100% total weight of the IRS. The anticipated electrical performance is set forth in Table 10.
Table 9. Prophetic PTZ, PTM and PTMZ IRS Compositions (X4-X6) X4 X5 X6 PbO 36.19% 36.40% 36.61% TeO2 62.13% 62.49% 62.85% MgO 0.56% 0.55% ZnO 1.12% 1.10% Table 10. Electrical Performance of Prophetic Pastes (X4-X6) Control X4 X5 X6 Eta 0 + + + Isc 0 + + + Voc 0 + + + FF 0 + + + Rs3 0 + + + - These and other advantages of the invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it will be recognized by those skilled in the art that changes or modifications may be made to the above described embodiments without departing from the broad inventive concepts of the invention. Specific dimensions of any particular embodiment are described for illustration purposes only. It should therefore be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention.
Claims (26)
- An inorganic reaction system comprising a lead-tellurium-zinc composition of Formula (I):
Pba-Teb-Znf-Md-Oe,
wherein 0 < a, b, d, or f ≤ 1, the sum of a, b, d and f is 1, 0 ≤ d ≤ 0.5, 0 < f ≤ 0.2, a:b is between about 10:90 and about 90:10, (a+f+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Zn, and M components. - An inorganic reaction system comprising a lead-tellurium-magnesium composition of Formula (II):
Pba-Teb-(Mgw-Cax-Sry-Baz)-Md-Oe,
wherein 0 < a, b, or d ≤ 1, 0 ≤ w, x, y, z ≤ 1, w+x+y+z = c, at least one of w, x, y and z is greater than zero, the sum of a, b, c and d is 1, 0 < c ≤ 0.2, 0 ≤ d ≤ 0.5, a:b is between about 10:90 and about 90:10, (a+c+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Mg-Ca-Sr-Ba and M components. - An inorganic reaction system comprising a lead-tellurium-magnesium-zinc composition of Formula (III):
Pba-Teb-(Mgw-Cax-Sry-Baz)-Znf-Md-Oe,
wherein 0 < a, b, d, or f ≤ 1, 0 ≤ w, x, y, z ≤ 1, w+x+y+z = c, at least one of w, x, y, and z is greater than zero, the sum of a, b, c, d and f is 1, 0 < c ≤ 0.2, 0 < f ≤ 0.2, 0 ≤ d ≤ 0.5, a:b is between about 10:90 and about 90:10, (a+c+f+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Mg-Ca-Sr-Ba, Zn, and M components. - The inorganic reaction system according to any of the preceding claims, where d is 0 ≤ d ≤ 0.4.
- The inorganic reaction system according any of the preceding claims, wherein a:b is between about 20:80 and about 80:20.
- The inorganic reaction system according to claims 2 or 3, wherein 0 < c ≤ 0.1.
- The inorganic reaction system according to claims 1 or 3, wherein 0 < f ≤ 0.1.
- The inorganic reaction system according to any of the preceding claims, wherein the inorganic reaction system is formed from at least about 5 wt% lead-containing compound, preferably at least 8 wt%, and no more than about 45 wt% lead-containing compound, preferably no more than about 40 wt%, and most preferably no more than about 38 wt%, based upon 100% total weight of the inorganic reaction system.
- The inorganic reaction system according to any of the preceding claims, wherein the inorganic reaction system is formed from at least about 20 wt% tellurium-containing compound, preferably at least about 30 wt%, and no more than about 70 wt% tellurium-containing composition, and preferably no more than about 60 wt%, based upon 100% total weight of the inorganic reaction system.
- The inorganic reaction system according to any of the preceding claims, wherein the inorganic reaction system is formed no more than about 15 wt% zinc-containing compound, magnesium-containing compound, or both, and preferably no more than about 10 wt%, based upon 100% total weight of the inorganic reaction system.
- The inorganic reaction system according to any of the preceding claims, wherein M is selected from the group consisting of boron, aluminum, gallium, silicon, germanium, tin, phosphorus, antimony, niobium, tantalum, vanadium, titanium, molybdenum, tungsten, chromium, silver, halides, chalcogenides, alkaline metals, alkaline earth metals, and rare earth metals.
- The inorganic reaction system according to any of the preceding claims, wherein the inorganic reaction system further comprises bismuth.
- An electroconductive paste comprising:metallic particles;at least one of the inorganic reaction systems according to claims 1-12; andan organic vehicle.
- The electroconductive paste composition according to claim 13, wherein the paste composition comprises at least about 50 wt% metallic particles, preferably at least about 60 wt%, more preferably at least about 70 wt%, and most preferably at least about 80 wt%, and no more than about 95 wt% of metallic particles, based upon 100% total weight of the paste.
- The electroconductive paste composition according to claims 13 or 14, wherein the metallic particles are selected from the group consisting of silver, aluminum, gold, copper, nickel, and alloys or mixtures thereof, preferably silver.
- The electroconductive paste composition according to any of claims 13-15, wherein the paste composition comprises at least about 0.1 wt% of the IRS system, preferably at least about 0.5 wt%, and no more than about 10 wt%, more preferably no more than about 5 wt%, and most preferably no more than about 3 wt%, based upon 100% total weight of the paste.
- The electroconductive paste composition according to any of claims 13-16, wherein the paste composition comprises at least about 0.01 wt% organic vehicle, and no more than about 50 wt%, preferably no more than about 30 wt%, and most preferably no more than about 20 wt%, based upon 100% total weight of the paste.
- The electroconductive paste composition according to any of claims 13-17, wherein the organic vehicle comprises an organic solvent and one or more of a binder, surfactant, and thixotropic agent, or any combination thereof.
- The electroconductive paste composition according to claim 18, wherein the organic solvent is selected from the group consisting of carbitol, terpineol, hexyl carbitol, texanol, butyl carbitol, butyl carbitol acetate, dimethyladipate glycol ether, and any combination thereof
- The electroconductive paste composition according claims 18 or 19, wherein the binder is selected from the group consisting of ethyl cellulose, phenolic resin, polyacrylic acid, polyvinyl butyral, polyester resin, polycarbonate, polyethylene resin, polyurethane resin, rosin derivative, and any combination thereof.
- The electroconductive paste composition according to any of claims 18-20, wherein the surfactant is selected from the group consisting of polyethylene oxide, polyethylene glycol, benzotriazole, poly(ethyleneglycol)acetic acid, lauric acid, oleic acid, capric acid, myristic acid, linoleic acid, stearic acid, palmitic acid, stearate salts, palmitate salts, and any combination thereof
- A solar cell produced by applying an electroconductive paste according to any of claims 13-21 to a silicon wafer and firing the silicon wafer.
- The solar cell according to claim 22, wherein the electroconductive paste is applied to an antireflective coating on a surface of the silicon wafer.
- A solar cell module comprising electrically interconnected solar cells according to claims 22 or 23.
- A method of producing a solar cell, comprising the steps of:providing a silicon wafer having a front side and a backside;applying an electroconductive paste according to any of claims 13-21 to the silicon wafer; andfiring the silicon wafer.
- The method of producing a solar cell according to claim 25, wherein the electroconductive paste is applied to the front side of the silicon wafer.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461928744P | 2014-01-17 | 2014-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2897132A1 true EP2897132A1 (en) | 2015-07-22 |
Family
ID=52446193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15151442.9A Withdrawn EP2897132A1 (en) | 2014-01-17 | 2015-01-16 | Lead-tellurium inorganic reaction systems |
Country Status (6)
Country | Link |
---|---|
US (3) | US20150206992A1 (en) |
EP (1) | EP2897132A1 (en) |
JP (1) | JP2015171988A (en) |
KR (1) | KR101634487B1 (en) |
CN (1) | CN104916347B (en) |
TW (1) | TWI636030B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107408586B (en) * | 2015-03-13 | 2021-10-19 | 昭荣化学工业株式会社 | Conductive paste for forming solar cell electrode |
US10134925B2 (en) | 2016-04-13 | 2018-11-20 | E I Du Pont De Nemours And Company | Conductive paste composition and semiconductor devices made therewith |
US20190280133A1 (en) * | 2018-03-09 | 2019-09-12 | Heraeus Precious Metals North America Conshohocken Llc | Seed layer for improved contact on a silicon wafer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214045A (en) * | 1990-12-11 | 1992-08-05 | Hoya Corp | Low melting glass |
US5240884A (en) * | 1991-09-05 | 1993-08-31 | Johnson Matthey, Inc. | Silver-glass die attach paste |
JP2003306333A (en) * | 2003-03-31 | 2003-10-28 | Asahi Techno Glass Corp | Method of manufacturing glass for bonding, vacuum sealed container using glass for bonding and method of manufacturing the same |
US20110232746A1 (en) * | 2010-05-04 | 2011-09-29 | E. I. Du Pont De Nemours And Company | Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices |
WO2013085112A1 (en) * | 2011-12-08 | 2013-06-13 | 제일모직 주식회사 | Paste composition for solar cell electrode and electrode produced therefrom |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5559509B2 (en) * | 2009-10-28 | 2014-07-23 | 昭栄化学工業株式会社 | Conductive paste for solar cell electrode formation |
US9129725B2 (en) * | 2010-12-17 | 2015-09-08 | E I Du Pont De Nemours And Company | Conductive paste composition containing lithium, and articles made therefrom |
US8956557B2 (en) * | 2012-01-24 | 2015-02-17 | E I Du Pont De Nemours And Company | Thick film silver paste containing copper and lead—tellurium—oxide and its use in the manufacture of semiconductor devices |
WO2014117409A1 (en) * | 2013-02-04 | 2014-08-07 | 深圳首创光伏有限公司 | Electrically conductive paste for positive electrode of crystalline silicon solar cell and preparation method thereof |
CN103545016B (en) * | 2013-10-21 | 2016-06-29 | 深圳市首骋新材料科技有限公司 | Crystal silicon solar energy battery front electrode electrocondution slurry and preparation method thereof |
-
2014
- 2014-12-29 US US14/584,411 patent/US20150206992A1/en not_active Abandoned
-
2015
- 2015-01-07 JP JP2015001702A patent/JP2015171988A/en active Pending
- 2015-01-14 TW TW104101218A patent/TWI636030B/en active
- 2015-01-16 EP EP15151442.9A patent/EP2897132A1/en not_active Withdrawn
- 2015-01-16 KR KR1020150008185A patent/KR101634487B1/en active IP Right Grant
- 2015-01-16 CN CN201510021651.3A patent/CN104916347B/en active Active
-
2017
- 2017-03-10 US US15/455,251 patent/US20170186889A1/en not_active Abandoned
- 2017-03-10 US US15/455,234 patent/US10224438B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214045A (en) * | 1990-12-11 | 1992-08-05 | Hoya Corp | Low melting glass |
US5240884A (en) * | 1991-09-05 | 1993-08-31 | Johnson Matthey, Inc. | Silver-glass die attach paste |
JP2003306333A (en) * | 2003-03-31 | 2003-10-28 | Asahi Techno Glass Corp | Method of manufacturing glass for bonding, vacuum sealed container using glass for bonding and method of manufacturing the same |
US20110232746A1 (en) * | 2010-05-04 | 2011-09-29 | E. I. Du Pont De Nemours And Company | Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices |
WO2013085112A1 (en) * | 2011-12-08 | 2013-06-13 | 제일모직 주식회사 | Paste composition for solar cell electrode and electrode produced therefrom |
Also Published As
Publication number | Publication date |
---|---|
KR20150086200A (en) | 2015-07-27 |
TWI636030B (en) | 2018-09-21 |
CN104916347A (en) | 2015-09-16 |
US10224438B2 (en) | 2019-03-05 |
CN104916347B (en) | 2018-05-25 |
KR101634487B1 (en) | 2016-06-28 |
US20170186889A1 (en) | 2017-06-29 |
TW201546014A (en) | 2015-12-16 |
US20170186888A1 (en) | 2017-06-29 |
US20150206992A1 (en) | 2015-07-23 |
JP2015171988A (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2654085B1 (en) | Inorganic reaction system for electroconductive paste composition | |
TWI589649B (en) | Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices | |
EP2913140B1 (en) | Molybdenum-containing glass frit for electroconductive paste composition | |
EP2897130A1 (en) | Lead-bismuth-tellurium inorganic reaction system for electroconductive paste composition | |
EP3040321A1 (en) | Glass compositions for electroconductive paste compositions | |
WO2015039023A1 (en) | Electroconductive paste with adhesion promoting glass | |
EP2443072A1 (en) | Glass compositions used in conductors for photovoltaic cells | |
EP3040320A1 (en) | Glass composition for electroconductive paste compositions | |
US10224438B2 (en) | Lead-tellurium inorganic reaction systems | |
EP2897131B1 (en) | Lead-bismuth-tellurium-silicate inorganic reaction system having improved adhesion properties | |
EP2848657A1 (en) | Electroconductive paste with adhesion promoting glass | |
US20150243811A1 (en) | Silver-lead-silicate glass for electroconductive paste composition | |
US20170092788A1 (en) | Poly-siloxane containing organic vehicle for electroconductive pastes | |
WO2018174898A1 (en) | Low etching and non-contact glasses for electroconductive paste compositions | |
CN109754902A (en) | Glass composition for conducting composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150116 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180523 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190220 |