WO2013100254A1 - 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지 - Google Patents

실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지 Download PDF

Info

Publication number
WO2013100254A1
WO2013100254A1 PCT/KR2012/001361 KR2012001361W WO2013100254A1 WO 2013100254 A1 WO2013100254 A1 WO 2013100254A1 KR 2012001361 W KR2012001361 W KR 2012001361W WO 2013100254 A1 WO2013100254 A1 WO 2013100254A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
silicon solar
forming
front electrode
inorganic additive
Prior art date
Application number
PCT/KR2012/001361
Other languages
English (en)
French (fr)
Inventor
서용석
정현수
정승화
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Publication of WO2013100254A1 publication Critical patent/WO2013100254A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an inorganic additive for forming a front electrode of a silicon solar cell and a silicon solar cell manufactured using the same.
  • Solar cells can be broadly classified into silicon (monocrystalline, polycrystalline, amorphous) solar cells, compound semiconductor solar cells using compounds other than silicon, and the like, depending on the materials used. Among them, crystalline silicon solar cells have a mainstream of simple manufacturing method and relatively low manufacturing cost.
  • FIG. 1 is a cross-sectional structural view schematically showing the structure of a silicon solar cell.
  • the silicon solar cell 10 is doped with phosphorus on a p-type substrate 4 doped with boron B on silicon Si and n ⁇ .
  • An n + emitter layer 3 of an n-type semiconductor is formed to form a pn junction at an interface as a whole.
  • the generated power is basically affected by the intensity of the incident light, a texturing technique for forming irregularities on the surface of the substrate 4 to receive a large amount of light, and the incident light is not reflected.
  • Anti-reflective film (SiN x ) 2 formation technology that can be absorbed well into the substrate 4, for example, a silicon wafer, and a front electrode 1 printed on the substrate 4 to form a pattern. Forming technology is important. In addition, it is important to minimize the area of the front electrode 1 so that the substrate 4 can receive a lot of light, and at the same time, the movement of electrons can exhibit the same characteristics.
  • the front electrode 1 is formed by applying a silver paste for forming the front electrode onto the antireflection film 2 and then firing the glass frit in the silver paste during the firing process. Etching through penetrates the n + emitter layer.
  • the emitter layer is generally thin, and the glass frit penetrates into the n-type emitter layer as well as the anti-reflective film during the firing process and contacts with the lower p-type substrate to shunt. ) Phenomenon occurs, and a problem that the efficiency drops rapidly. In addition, even when a slight temperature deviation occurs during the firing process, the efficiency can be changed greatly, so that a process window is very narrow.
  • One embodiment of the present invention to provide an inorganic additive for forming a front electrode of a silicon solar cell and a method of manufacturing the same.
  • Another embodiment of the present invention is to provide a silicon solar cell including a front electrode manufactured using the inorganic additive.
  • wet mixed grinding of a sintering inhibitor selected from the group consisting of a flexible organic powder containing PbO, SiO 2 and Al 2 O 3 and ZnO, TiO 2 , ZrO 2 and mixtures thereof Provided is an inorganic additive for forming a front electrode of a silicon solar cell prepared by spray drying water.
  • the inorganic additive may be granules having an average particle diameter of 10 to 40 ⁇ m.
  • the flexible organic powder and the sintering inhibitor may be mixed in a weight ratio of 1: 9 to 9: 1.
  • the flexible glass powder may include 50 to 90 parts by weight of PbO, 10 to 20 parts by weight of SiO 2 , and 5 to 15 parts by weight of Al 2 O 3 based on 100 parts by weight of the flexible glass powder.
  • the flexible glass powder may further include an inorganic oxide selected from the group consisting of B 2 O 3 , ZnO, CaO, ZrO 2 , TiO 2 , Na 2 O, K 2 O, Li 2 O, and mixtures thereof. .
  • the flexible glass powder containing PbO, SiO 2 and Al 2 O 3 Wet mixing and sintering inhibitor selected from the group consisting of ZnO, TiO 2 , ZrO 2 and mixtures thereof Grinding to prepare a slurry including a mixed powder of the flexible glass powder and the sintering inhibitor; And it provides a method for producing an inorganic additive for forming a front electrode of a silicon solar cell comprising the step of spray drying the slurry.
  • the wet mixing and grinding process may be carried out in a solvent selected from the group consisting of water, alcohols and mixtures thereof.
  • the wet mixing and grinding process may be performed such that the mixed powder of the flexible glass powder and the sintering inhibitor has a particle distribution (D50) of 0.5 to 1 ⁇ m.
  • a composition for forming a front electrode of a silicon solar cell including the inorganic additive, the conductive metal powder, the organic binder and the organic solvent.
  • the inorganic additive may be included in an amount of 1 to 10% by weight based on the total weight of the composition for forming the front electrode.
  • a silicon solar cell including a front electrode manufactured using the front electrode forming composition is provided.
  • the silicon solar cell may be a high sheet resistance silicon solar cell exhibiting sheet resistance of 80 ⁇ / sq or more.
  • the inorganic additive is applied to the composition for forming the front electrode of the silicon solar cell to increase the efficiency of the solar cell by providing a low series resistance and a wide process window in manufacturing the front electrode. Accordingly, the inorganic additive according to the present invention is useful as an additive to the composition for forming a front electrode of a silicon solar cell, in particular, a high sheet resistive silicon solar cell having a sheet resistance of 80 ⁇ / sq or more, which can realize high efficiency. Do.
  • FIG. 1 is a structural diagram schematically showing a structure of a conventional silicon solar cell.
  • Figure 3 is a photograph of observing the spherical granular inorganic additive prepared in Example 1-1 at 5000 times using SEM.
  • Figure 4 is a photograph of observing the spherical granular inorganic additive prepared in Example 1-1 at 1000 times using SEM.
  • High-resistance wafers are wafers with high overall sheet resistance by forming a thin n + emitter layer by doping a small amount of phosphorus to produce n-type semiconductors in pn junction fabrication. By suppressing the recombination of the voltage rises, resulting in high efficiency.
  • the n + emitter layer is thin, shunting occurs as the glass powder added to etch the antireflection film penetrates the n + emitter layer during the firing process and contacts the p-type substrate at the bottom.
  • the process window is very narrow because the efficiency decreases rapidly when the firing temperature is increased above a certain temperature.
  • the present invention by implementing a uniform dispersion in the composition for forming the front electrode, homogeneous mixing with the glass powder, and a small particle size for the inorganic additive available for the composition for forming the front electrode of the silicon solar cell, It can enable good contact properties and a wide process window.
  • the inorganic additive for forming the front electrode of the silicon solar cell according to the embodiment of the present invention, a flexible organic powder containing PbO, SiO 2 and Al 2 O 3 , ZnO, TiO 2 , ZrO 2 and these It is prepared by spray drying the wet mixed pulverized product of the sinter inhibitor selected from the group consisting of mixtures.
  • FIG. 2 is a process chart showing a manufacturing process of an inorganic additive for forming a front electrode of a silicon solar cell according to an embodiment of the present invention.
  • Figure 2 is only one example for explaining the present invention is not limited to the manufacturing process of the inorganic additive of the present invention.
  • the flexible organic powder containing PbO, SiO 2 and Al 2 O 3 is wet mixed and pulverized with a sintering inhibitor selected from the group consisting of ZnO, TiO 2 , ZrO 2 and mixtures thereof to sinter with the flexible organic powder.
  • a sintering inhibitor selected from the group consisting of ZnO, TiO 2 , ZrO 2 and mixtures thereof to sinter with the flexible organic powder.
  • the glass frit is a conductive metal powder by promoting the sintering of the conductive metal powder, etc. in the composition for forming the front electrode to reduce the electrical resistance, and by etching the anti-reflection film that prevents the reflection of incident light and promotes absorption
  • the substrate and the substrate can be contacted, and the substrate and the metal electrode can be well adhered to each other.
  • the flexible glass powder includes 50 to 90 parts by weight of PbO, 10 to 20 parts by weight of SiO 2 , and 5 to 15 parts by weight of Al 2 O 3 , based on 100 parts by weight of the flexible glass powder. By including each component in the content as described above it can exhibit a more excellent electrical properties and efficiency increase effect.
  • the flexible glass powder may further include B 2 O 3 together with the components, preferably 0.1 to 10 parts by weight of the B 2 O 3 with respect to 100 parts by weight of the flexible glass powder, more preferably 0.1 to 5 parts by weight may be included.
  • the flexible glass powder may further include a metal oxide selected from the group consisting of ZnO, CaO, ZrO 2 , TiO 2 , Na 2 O, K 2 O, Li 2 O, and mixtures thereof with the above-described components. have.
  • the metal oxides may be included in an amount of 10 to 20% by weight based on the total weight of the flexible glass powder. When included in the content range it can additionally exhibit the effect of increasing electrical properties and efficiency.
  • the flexible glass powder having the above configuration can be prepared according to a conventional method, specifically, selected from the group consisting of PbO, SiO 2 , Al 2 O 3 and optionally B 2 O 3 and the above metal oxides. It can be prepared by mixing the inorganic oxide is melted at 1200 to 1500 °C and then quenched.
  • the flexible glass powder produced by this method may have the form of a cullet.
  • the flexible glass powder preferably has an average particle diameter of 10 to 20 ⁇ m in order to increase the efficiency of mixing and grinding during wet mixing and grinding. Accordingly, prior to mixing with the sinter inhibitor, the grinding process for the flexible glass powder may be further performed, and the grinding process may be performed in a conventional method using a mill such as a ball mill or a jet mill. May be repeated one or more times.
  • the sintering inhibitor is applied to the composition for forming the front electrode serves to inhibit excessive softening of the glass during electrode production, it may include those selected from the group consisting of ZnO, TiO 2 , ZrO 2 and mixtures thereof. In addition, the sintering inhibitor is used in powder form.
  • the flexible glass powder and the sintering inhibitor are preferably mixed in a weight ratio of 1: 9 to 9: 1. If the content of the sinter inhibitor is too high compared to the lead-based glass powder, the pores may increase during firing of the electrode, resulting in a decrease in the density of the electrode and an increase in the electrical resistance. May be excessively softened to penetrate the n + emitter layer, resulting in shunting and narrowing the process window.By mixing at the optimized mixing ratio as described above, high shunt resistance can be maintained and efficiency can be increased. As a result, a wide process window can be obtained. More preferably it is mixed at a weight ratio of 7: 3 to 3: 7.
  • the wet mixing and pulverizing processes of the flexible glass powder and the sinter inhibitor are carried out at the same time. Accordingly, the wet mixing process and the grinding process may be performed using a conventional wet mill, etc., which may be simultaneously performed.
  • the wet mixing process of the flexible glass powder and the sintering inhibitor is pure water; Alcohols, preferably alcohols having 1 to 4 carbon atoms such as ethanol and isopropyl alcohol; And a solvent selected from the group consisting of mixtures thereof.
  • the amount of the solvent to be used is not particularly limited, and the amount of the solvent is preferably included in an amount of 10 to 200 parts by weight based on 100 parts by weight of the mixture of the flexible glass powder and the sinter inhibitor.
  • the wet mixing and grinding process is preferably performed such that the mixed powder of the flexible glass powder and the sintering inhibitor contained in the slurry has a particle distribution (D50) of 0.5 to 1 ⁇ m.
  • D50 particle distribution
  • the glass powder and the sintering inhibitor can be ideally uniformly distributed and are easy to form spherical granules upon spray drying.
  • the drying is performed together with the spraying of the slurry.
  • the solvent is evaporated and removed by the spray drying process, and the mixed powder of the flexible glass powder and the sintering inhibitor included in the slurry are agglomerated to obtain granules. It becomes an image.
  • the spray drying process may be carried out using a spray dryer.
  • the particle diameter of the granular inorganic additive can be controlled by appropriately adjusting the rotational speed of the spray nozzle during the spray drying process, which is then applied to the composition for forming the front electrode so as to uniformly mix with the metal powder and form the electrode paste when forming the front electrode. It is preferable to have an average particle diameter of 10 to 40 ⁇ m to exhibit the effect of obtaining a uniform distribution. More preferably, it is good to have an average particle diameter of 20-30 micrometers.
  • the inorganic additive prepared by the above method is uniformly mixed and pulverized in a state in which the glass powder and the sintering inhibitor are physically bonded to each other, thereby enabling an excellent anti-reflection coating effect and contact.
  • the sintering inhibitor included in the inorganic additive promotes the crystallization of the glass powder and suppresses the movement of the glass, thereby preventing the shunting phenomenon from penetrating the n + emitter layer and securing a wide process window. It provides low series resistance.
  • the inorganic additive according to the present invention is applied to a composition for forming a front electrode of a silicon solar cell, particularly a high sheet resistive silicon solar cell exhibiting sheet resistance of 80 ⁇ / sq or more of which is less phosphorus-doped.
  • a composition for forming a front electrode of a silicon solar cell particularly a high sheet resistive silicon solar cell exhibiting sheet resistance of 80 ⁇ / sq or more of which is less phosphorus-doped.
  • a composition for forming a front electrode of a silicon solar cell including the inorganic additive is provided.
  • the composition for forming the front electrode includes (1) an inorganic additive, (2) a conductive metal powder, (3) an organic binder, and (4) an organic solvent.
  • the inorganic additive is the same as described above.
  • the inorganic additive is preferably included in 1 to 10% by weight based on the total weight of the composition for forming the front electrode. When included in the content range it is possible to obtain a low resistance by excellent plastic density of the electrode, it can exhibit the effect of forming a low contact resistance by forming an excellent contact with the n + emitter layer. More preferably 3 to 7% by weight.
  • the conductive metal powder may be used without particular limitation as long as it is used when forming the front electrode. Specifically, silver (Ag), gold (Au), aluminum (Al), copper (Cu), nickel (Ni), chromium (Cr), zinc (Zn), tin (Sn), silver-palladium alloy (Ag- Pd), and mixtures thereof may be used, and among them, silver (Ag) having excellent electrical conductivity and excellent affinity with a substrate made of a silicon semiconductor is preferably used.
  • the conductive metal powder has an average particle diameter of 1 to 3 ⁇ m, since the sintering speed may not be slowed during the manufacturing process of the electrode and the burnout of the organic material is easy.
  • the conductive metal powder is preferably contained in 80 to 90% by weight based on the total weight of the composition for forming the front electrode. When included in the content range, there is no fear of phase separation and deterioration of printability, and low electrical conductivity can be realized.
  • organic binder examples include cellulose derivatives such as cellulose, hydroxy methyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose, carboxy ethyl cellulose and carboxy ethyl methyl cellulose; (Meth) acrylate type compounds, such as polymethacrylate; And mixtures thereof.
  • the organic binder is preferably contained in 1 to 10% by weight based on the total weight of the composition for forming the front electrode. When used in the content range it can exhibit an effect that the printing properties are good and the stability of the electrode is improved.
  • the organic solvent is ethyl carbitol, butyl carbitol, ethyl carbitol acetate, butyl carbitol acetate, texanol, terpin oil, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol monomethyl ether acetate, ⁇ Butyrolactone, cellosolve acetate, butyl cellosolve acetate, tripropylene glycol and mixtures thereof may be used.
  • the organic solvent is preferably used in an amount such that the front electrode forming composition has an appropriate viscosity. Specifically, the organic solvent may be included in an amount of 1 to 20% by weight based on the total weight of the front electrode forming composition.
  • the front electrode forming composition may further include an additive selected from the group consisting of a dispersant, a thixotropic agent, a leveling agent, an antifoaming agent, a sintering aid, a thickener, a stabilizer, a surfactant, and a mixture thereof with the above components.
  • an additive selected from the group consisting of a dispersant, a thixotropic agent, a leveling agent, an antifoaming agent, a sintering aid, a thickener, a stabilizer, a surfactant, and a mixture thereof with the above components.
  • the composition for forming a front electrode having the above structure includes an inorganic additive prepared by spray drying a wet mixed pulverized product of a flexible glass powder and a sintering inhibitor, thereby reducing the series resistance of the solar cell and improving the process window. Can be.
  • a silicon solar cell including a front electrode manufactured using the front electrode forming composition is provided.
  • the silicon solar cell includes a silicon semiconductor substrate, an emitter layer formed on the substrate, an antireflection film formed on the emitter layer, a front electrode connected to the emitter layer through the antireflection film, and a rear electrode connected to a rear surface of the substrate. It includes.
  • the silicon solar cell according to the present invention is the same as the structure of a conventional silicon solar cell except that the front electrode is formed by applying the composition for forming the front electrode on the anti-reflection film in a predetermined pattern and baking the same. Detailed description thereof will be omitted.
  • ZnO, TiO 2 and ZrO 2 as sintering inhibitors have prepared powders that are widely used as raw materials in the ceramics industry.
  • the prepared glass-based powder and the sintering inhibitor were weighed and mixed in the amounts shown in Table 1 below.
  • the resulting mixture was mixed with pure water in a weight ratio of 1: 2, filled in a wet mill, and mixed and pulverized simultaneously to obtain a slurry including a mixed powder having a particle distribution (D50) of 0.5 to 1 ⁇ m.
  • D50 particle distribution
  • the prepared slurry was dried using a spray dryer, and a granular inorganic additive having an average particle diameter of 10 to 40 ⁇ m was prepared by appropriately adjusting the rotation speed of the spray nozzle.
  • the flexible glass powder prepared in the above example was used as an inorganic additive without mixing / crushing with the sinter inhibitor and spray drying.
  • the flexible glass powder prepared in the above example was simply mixed with a sinter inhibitor as shown in Table 1 to prepare an inorganic additive.
  • Example 1-1 Glass powder (% by weight) Sinter inhibitor (% by weight) Manufacture process ZnO TiO 2 ZrO 2 Wet mixing / crushing Spray drying Example 1-1 90 10 - - Y Y Example 1-2 90 10 - - Y Y Example 1-3 80 20 - - Y Y Example 1-4 80 20 - - Y Y Example 1-5 70 30 - - Y Y Example 1-6 70 30 - - Y Y Example 1-7 70 - 30 - Y Y Example 1-8 70 - 30 - Y Y Example 1-9 70 - - 30 Y Y Example 1-10 70 - - 30 Y Y Comparative Example 1-1 100 - - - N N Comparative Example 1-2 100 - - - N N Comparative Example 1-3 70 30 - - N N Comparative Example 1-4 70 30 - - N N N
  • Figure 3 is a photograph of observing the spherical granular inorganic additive prepared in Example 1-1 at 5000 times using SEM
  • Figure 4 is a photograph observed at 1000 times.
  • a mixture was prepared by mixing by weight, by weight 4% by weight of butylcarbitol acetate as organic solvent, 0.5% by weight of BYK180 (Budchem) as a surfactant and 0.5% by weight of aerosol as other additives.
  • the resulting mixture was first mixed for 30 minutes using a planarity stirrer, and then dispersed using a 3 roll mill to prepare a composition for forming a front electrode.
  • the three-roll mill treatment process was performed five times, by increasing the pressure in order to enhance the dispersion.
  • the prepared front electrode forming composition was printed on a high surface resistance (80 ⁇ / sq) silicon wafer using a screen printing apparatus.
  • the rear aluminum electrode was prepared by applying a commercial paste (manufactured by Ferro) using a screen printing apparatus. After the printing was completed, the firing process was performed after setting a belt speed of 240 inches / min and a maximum temperature of 750 and 800 ° C. in a furnace composed of three sections of a drying furnace and six sections of a kiln.
  • the efficiency was relatively good at 750 ° C, but at 800 ° C, the parallel resistance decreased and the series resistance increased.
  • Examples 3-1 to 3-10 of the present invention it can be confirmed that even though the temperature is raised to 800 ° C., a constant level is maintained with almost no decrease in efficiency. In particular, when 30 parts by weight of the sinter inhibitor was mixed, the effect was more excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지가 제공된다. 상기 무기첨가제는 PbO, SiO2 및 Al2O3를 포함하는 유연계 유기분말과, ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 소결억제제의 습식 혼합 분쇄물을 분무 건조하여 제조된다. 상기 무기첨가제는 실리콘 태양전지의 전면전극 형성용 조성물에 적용되어 전면전극 제조시 낮은 직렬저항 및 넓은 프로세스 윈도우를 제공하여 태양전지의 효율을 증가시킨다. 이에 따라 실리콘 태양전지, 특히 80Ω/sq 이상의 면저항을 나타내는 고면저항 실리콘 태양전지의 전면전극 형성용 조성물에 대한 첨가제로서 유용하다.

Description

실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지
본 발명은 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지에 관한 것이다.
최근 화석원료와 같은 기존에너지의 고갈 및 환경오염 문제가 대두되면서 이를 대체할 새로운 에너지에 대한 관심이 높아지고 있다. 대체 가능한 에너지 자원 중 태양에너지는 자원이 무한하고 환경오염에 대한 문제가 없기 때문에, 이를 전기로 변환할 수 있는 태양전지가 크게 주목 받고 있다.
태양전지는 사용되는 재료에 따라 크게 실리콘(단결정, 다결정, 비결정) 태양전지, 실리콘 외에 화합물을 이용하는 화합물 반도체 태양전지 등으로 구분할 수 있다. 이중에서도 제조공법이 간단하고 제조비용이 비교적 적은 결정질 실리콘 태양전지가 주류를 이루고 있다.
도 1은 실리콘 태양전지의 구조를 개략적으로 나타낸 단면구조도이다.
도 1을 참조하여 설명하면, 실리콘 태양전지(10)는 실리콘(Si)에 보론(B)이 도핑된 p-타입(p-type) 기판(4) 상부에 인(phosphorus)을 도핑하여 n-타입(n-type) 반도체의 n+ 에미터층(n+ emitter layer)(3)을 형성하여 전체적으로 계면에 p-n 접합(junction)이 형성된 구조를 갖는다.
이와 같은 구조의 실리콘 태양전지(10)에 태양광이 입사하게 되면 광기전력 효과(photovoltaic effect)에 의해서 전자(electron)와 정공(hole)이 발생하게 된다. 이렇게 발생된 전자와 정공은 n-타입 반도체와 p-타입 반도체 쪽으로 각각 끌어 당겨져 기판(4)의 상부와 하부에 접합된 전면전극(1)과 후면전극(6)으로 이동하며, 이를 부하(load)에 연결함으로써 전류가 흐르게 된다.
이때 발생되는 전력은 기본적으로 입사되는 광의 세기에 영향을 받기 때문에, 일차적으로 많은 양의 빛을 받을 수 있도록 기판(4) 표면에 요철을 형성하는 텍스쳐링(texturing) 기술, 입사된 빛이 반사되지 않고 기판(4), 예를 들어 실리콘 웨이퍼(wafer)에 잘 흡수될 수 있도록 하는 반사방지막(SiNx)(2) 형성 기술, 그리고 기판(4)의 상부에 인쇄하여 패턴을 만드는 전면전극(1) 형성 기술이 중요하다. 또한, 기판(4)이 빛을 많이 받을 수 있도록 전면전극(1)의 면적을 최소화하는 동시에, 전자의 이동은 동일한 특성을 나타낼 수 있도록 하는 것이 중요하다.
전면전극(1)은 전면전극 형성용 은 페이스트(silver paste)를 반사방지막(2) 위에 도포한 후 소성함으로써 형성되며, 소성과정 중 은 페이스트 내의 글래스 프릿(glass frit)이 반사방지막(2)을 에칭하여 뚫고 들어감으로써 n+ 에미터층과 접하게 된다.
최근 들어 고효율을 구현할 수 있는 실리콘 태양전지에 대한 관심이 높아지면서 n-타입 에미터층을 얇게 형성하여 높은 면저항을 갖도록 한 고면저항 웨이퍼를 이용한 태양전지의 개발이 활발히 진행되고 있다. 일반적으로 인을 고농도로 도핑하여 저면저항 에미터층을 형성하게 되면 표면 불순물 농도가 증가하여 전극과 기판의 접촉저항 및 누설전류이 감소하고, 단파장의 태양광 영역에서 양자효율 및 표면 재결합에 따른 손실로 인한 전압 또한 낮아지게 된다. 이에 따라 인을 저농도로 도핑한 에미터층이 형성된 고면저항 웨이퍼를 사용함으로써 양자효율을 높이고 표면 재결합을 감소시켜 결과적으로 효율을 향상시키는 방법이 제안되었다.
그러나, 이와 같은 고면저항 에미터를 적용한 웨이퍼를 사용할 경우 에미터층이 전체적으로 얇게 형성되어 소성과정 중 글래스 프릿이 반사방지막 뿐만아니라 n-타입 에미터층까지 뚫고 들어가면서 하부 p-타입 기판과과 접촉하여 분로(shunting) 현상이 발생하고, 효율이 급격히 떨어지는 문제가 발생한다. 또한, 소성공정시 미세한 온도 편차가 발생하여도 효율이 크게 변할 수 있어서 프로세스 윈도우(process window)가 매우 좁다는 단점이 있다.
따라서, 이와 같은 문제를 해결할 수 있는 전극재료의 첨가제 개발이 시급하다.
본 발명의 일 구현예는 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 그 제조방법을 제공하는 것이다.
본 발명의 다른 구현예는 상기 무기첨가제를 이용하여 제조된 전면전극을 포함하는 실리콘 태양전지를 제공하는 것이다.
본 발명의 일 구현예에 따르면, PbO, SiO2 및 Al2O3를 포함하는 유연계 유기분말과, ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 소결억제제의 습식 혼합 분쇄물을 분무 건조하여 제조된 실리콘 태양전지의 전면전극 형성용 무기 첨가제를 제공한다.
상기 무기 첨가제는 10 내지 40㎛의 평균입경을 갖는 과립일 수 있다.
상기 유연계 유기분말과 소결억제제는 1:9 내지 9:1의 중량비로 혼합될 수 있다.
상기 유연계 유리분말은 상기 유연계 유리분말 100중량부에 대하여 PbO 50 내지 90중량부, SiO2 10 내지 20중량부 및 Al2O3 5 내지 15중량부를 포함할 수 있다.
상기 유연계 유리분말은 B2O3, ZnO, CaO, ZrO2, TiO2, Na2O, K2O, Li2O 및 이들의 혼합물로 이루어진 군에서 선택되는 무기 산화물을 더 포함할 수 있다.
본 발명의 다른 일 구현예에 따르면, PbO, SiO2 및 Al2O3를 포함하는 유연계 유리분말을 ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 소결억제제와 습식 혼합 및 분쇄하여 유연계 유리분말과 소결억제제의 혼합분말을 포함하는 슬러리를 제조하는 단계; 및 상기 슬러리를 분무건조하는 단계를 포함하는 실리콘 태양전지의 전면전극 형성용 무기 첨가제의 제조방법을 제공한다.
상기 습식 혼합 및 분쇄 공정은 물, 알코올 및 이들의 혼합물로 이루어진 군에서 선택되는 용매 중에서 실시될 수 있다.
상기 습식 혼합 및 분쇄 공정은 유연계 유리분말과 소결억제제의 혼합분말이 0.5 내지 1㎛의 입자분포(D50)를 갖도록 실시될 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기한 무기첨가제, 도전성 금속 분말, 유기바인더 및 유기 용매를 포함하는 실리콘 태양전지의 전면전극 형성용 조성물을 제공한다.
상기 무기첨가제는 전면전극 형성용 조성물 총 중량에 대하여 1 내지 10중량%의 함량으로 포함될 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 전면전극 형성용 조성물을 이용하여 제조된 전면전극을 포함하는 실리콘 태양전지를 제공한다.
상기 실리콘 태양전지는 80Ω/sq 이상의 면저항을 나타내는 고면저항 실리콘 태양전지일 수 있다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
상기 무기첨가제는 실리콘 태양전지의 전면전극 형성용 조성물에 적용되어 전면전극 제조시 낮은 직렬저항 및 넓은 프로세스 윈도우를 제공하여 태양전지의 효율을 증가시킨다. 이에 따라 본 발명에 따른 무기첨가제는 실리콘 태양전지, 특히 고효율 구현이 가능한, 80Ω/sq 이상의 면저항을 갖는 고면저항 실리콘 태양전지(high sheet resist silicon solar cell)의 전면전극 형성용 조성물에 대한 첨가제로서 유용하다.
도 1은 종래 실리콘 태양전지의 구조를 개략적으로 나타낸 구조도이다.
도 2는 비교예 1-1에서의 무기첨가제를 주사전자현미경(scanning electron microscopy: SEM)을 이용하여 5000배로 관찰한 사진이다.
도 3은 실시예 1-1에서 제조된 구형 과립상의 무기첨가제를 SEM을 이용하여 5000배로 관찰한 사진이다.
도 4는 실시예 1-1에서 제조된 구형 과립상의 무기첨가제를 SEM을 이용하여 1000배로 관찰한 사진이다.
[부호의 설명]
1: 전면전극
2: 반사방지막
3: 에미터층
4: 기판
5: 후면전계(back surface field)층
6: 후면 전극
7: 후면 버스-바(bus-bar) 전극
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
최근 들어 실리콘 태양전지의 효율을 높이기 위한 많은 시도가 이루어지면서 대두된 것이 고면저항 웨이퍼를 사용한 실리콘 태양전지이다. 고면저항 웨이퍼는 p-n 접합 제조시 n-타입 반도체를 제조하기 위해, 적은 양의 인을 도핑하여 얇은(shallow) n+ 에미터층을 형성함으로써 전체적으로 높은 면저항을 갖는 웨이퍼로서, 이를 이용할 경우 생성된 전자와 전공의 재결합을 억제하여 전압을 상승시키고, 그 결과로 높은 효율 구현이 가능하다. 그러나 n+ 에미터층이 얇기 때문에, 반사방지막을 에칭하기 위해 첨가된 유리분말이 소성과정 중 n+ 에미터층을 뚫고 하부에 p-타입기판과 접촉하면서 분로(shunting) 현상이 발생된다. 뿐만 아니라 일정 온도 이상으로 소성온도가 증가하면 효율이 급격히 떨어지기 때문에 프로세스 윈도우가 매우 좁다는 문제가 있다.
이 같은 문제점을 해결하기 위해 전면전극 형성용 조성물의 제조시 소결억제제를 첨가하는 방법이 제안되었지만, 소결억제제의 불균일한 분산 및 큰 입경으로 인해 상기 문제를 해결하는데 한계가 있었다.
이에 대해 본 발명의 일 구현예에서는 실리콘 태양전지의 전면전극 형성용 조성물에 이용가능한 무기첨가제에 대해 전면전극 형성용 조성물에서의 균일한 분산, 유리분말과의 균질한 혼합 및 작은 입경을 구현함으로써, 우수한 접촉 특성 및 넓은 프로세스 윈도우를 가능케 할 수 있다.
즉, 본 발명의 일 구현예에 따른 실리콘 태양전지의 전면전극 형성용 무기 첨가제는, PbO, SiO2 및 Al2O3를 포함하는 유연계 유기분말과, ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 소결억제제의 습식 혼합 분쇄물을 분무 건조하여 제조된다.
도 2는 본 발명의 일 구현예에 따른 실리콘 태양전지의 전면전극 형성용 무기 첨가제의 제조공정을 나타낸 공정도이다. 도 2는 본 발명을 설명하기 위한 일 례일 뿐 본 발명의 무기첨가제의 제조공정이 상기 도 2에 한정되는 것은 아니다.
이하에서는 도 2를 참조하여 각 단계 별로 설명한다.
먼저, PbO, SiO2 및 Al2O3를 포함하는 유연계 유기분말을 ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 소결억제제와 습식 혼합 및 분쇄하여 유연계 유기분말과 소결억제제의 혼합분말을 포함하는 슬러리를 제조한다(S1).
상기 유연계 유리분말(glass frit)은 전면전극 형성용 조성물에 있어서 도전성 금속 분말 등의 소결을 촉진하여 전기저항을 감소시키고, 입사되는 광의 반사를 막고 흡수를 촉진시키는 반사방지막을 에칭시켜 도전성 금속 분말과 기판이 접촉(contact)할 수 있도록 하며, 기판과 금속 전극이 잘 접착되어 유지될 수 있도록 하는 역할을 한다. 구체적으로는 상기 유연계 유리분말은 유연계 유리분말 100중량부에 대하여 PbO 50 내지 90중량부, SiO2 10 내지 20중량부 및 Al2O3 5 내지 15중량부를 포함한다. 상기와 같은 함량으로 각 성분을 포함함으로써 보다 우수한 전기적 특성 및 효율 증가 효과를 나타낼 수 있다.
상기 유연계 유리분말은 상기 성분들과 함께 B2O3를 더 포함할 수 있으며, 바람직하게는 유연계 유리분말 100중량부에 대하여 상기 B2O3를 0.1 내지 10중량부, 보다 바람직하게는 0.1 내지 5중량부로 포함할 수 있다.
상기 유연계 유리분말은 전술한 성분들과 함께 ZnO, CaO, ZrO2, TiO2, Na2O, K2O, Li2O 및 이들의 혼합물로 이루어진 군에서 선택되는 금속 산화물을 더 포함할 수 있다. 상기 금속 산화물들은 유연계 유리분말 총 중량에 대하여 10 내지 20중량%로 포함될 수 있다. 상기 함량범위로 포함될 때 추가적으로 전기적 특성 및 효율 증가 효과를 나타낼 수 있다.
상기와 같은 구성을 갖는 유연계 유리분말은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 PbO, SiO2, Al2O3 및 선택적으로 B2O3 및 상기한 금속 산화물로 이루어진 군에서 선택되는 무기산화물을 혼합하여 1200 내지 1500℃에서 용융시킨 후 급냉함으로써 제조될 수 있다. 이와 같은 방법에 의해 제조된 유연계 유리분말은 파유리(cullet)의 형태를 가질 수 있다.
상기 유연계 유리분말은 습식 혼합 분쇄시 혼합과 분쇄의 효율 증대를 위해 10 내지 20㎛의 평균입경을 갖는 것이 바람직하다. 이에 따라 소결억제제와의 혼합에 앞서 상기 유연계 유리분말에 대한 분쇄 공정을 더 실시할 수 있으며, 이때 분쇄 공정은 볼밀(ball mill), 제트밀(jet mill) 등의 분쇄기를 이용한 통상의 방법에 따라 1회 또는 2회 이상 반복 실시될 수 있다.
상기 소결억제제는 전면전극 형성용 조성물에 적용되어 전극 제조시 유리의 과도한 연화를 억제하는 역할을 하는 것으로, ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 포함할 수 있다. 또한, 상기 소결억제제는 분말상으로 사용된다.
상기 유연계 유리분말과 소결억제제는 1:9 내지 9:1의 중량비로 혼합되는 것이 바람직하다. 유연계 유리분말에 비해 소결억제제의 함량이 지나치게 많으면 전극 소성시 기공이 많아져 전극의 치밀도가 떨어지고 전기 저항이 증가할 우려가 있고, 반대로 소결억제제에 비해 유연계 유리분말의 함량이 지나치게 많으면 유리가 과도하게 연화되어 n+ 에미터 층을 뚫고 들어가 분로를 발생시킬 우려가 있고 프로세스 윈도우가 좁아질 우려가 있는데, 상기와 같은 최적화된 혼합비로 혼합됨으로써 높은 분로 저항을 유지할 수 있어 효율을 증가시킬 수 있고, 넓은 프로세스 윈도우를 확보할 수 있다. 보다 바람직하게는 7:3 내지 3:7의 중량비로 혼합되는 것이 좋다.
상기 유연계 유리분말과 소결억제제의 습식 혼합 및 분쇄 공정은 동시에 실시된다. 이에 따라 습식 혼합 공정 및 분쇄 공정이 동시에 이루어질 수 있는 통상의 습식 분쇄기(basket mill) 등을 사용하여 실시될 수 있다.
상기 유연계 유리분말과 소결억제제의 습식 혼합 공정은 순수; 알코올, 바람직하게는 에탄올, 이소프로필알코올 등의 탄소수 1 내지 4의 알코올; 및 이들의 혼합물로 이루어진 군에서 선택되는 용매 중에서 실시되는 것이 바람직하다. 상기 용매의 사용량은 특별히 한정되지는 않으며, 유연계 유리분말과 소결억제제의 혼합물 100 중량부에 대하여 10 내지 200중량부로 포함되는 것이 바람직하다.
상기 습식 혼합 및 분쇄 공정은 슬러리 내에 포함되는 유연계 유리분말과 소결억제제의 혼합분말이 0.5 내지 1㎛의 입자분포(D50)를 갖도록 실시되는 것이 바람직하다. 상기와 같은 입자 직경을 갖는 혼합분말을 사용함으로써 Glass 분말과 소결억제제가 이상적으로 균일하게 분포가 가능하고 분무 건조시 구형의 과립을 형성하는데 용이하다.
다음으로, 상기에서 제조된 슬러리를 분무건조하여 무기첨가제를 제조한다(S2).
상기 분무 건조 공정은 슬러리를 분무하는 과정에서 건조가 함께 진행되는 것으로, 상기 분무 건조 공정에 의해 용매가 증발 제거되는 동시에 슬러리 내에 포함된 유연계 유리분말과 소결억제제의 혼합분말이 뭉쳐져 과립(granule)상이 된다. 상기 분무 건조 공정은 분무 건조기(spray dryer)를 사용하여 실시될 수 있다.
상기 과립상의 무기 첨가제의 입경은 분무 건조 공정시 분무 노즐의 회전 속도를 적절히 조절함으로써 제어할 수 있는데, 이후 전면전극 형성용 조성물에 적용되어 전면전극의 형성시 금속 분말과 균일한 혼합 및 전극 페이스트 내에 균일한 분포를 얻을 수 있는 효과를 나타낼 수 있도록 10 내지 40㎛의 평균입경을 갖는 것이 바람직하다. 보다 바람직하게는 20 내지 30㎛의 평균입경을 갖는 것이 좋다.
상기와 같은 방법에 의해 제조된 무기첨가제는 유리분말과 소결억제제가 물리적으로 결합된 상태로 균일하게 혼합 분쇄됨으로써, 우수한 반사방지막의 에칭효과 및 접촉 구현이 가능하다. 또한, 일정 온도 이상에서는 무기첨가제에 포함된 소결억제제가 유리분말의 결정화를 촉진하여 유리의 이동을 억제함으로써 n+ 에미터층을 뚫고 들어가 분로(shunting) 현상이 발생하는 것을 막아 줌으로써 넓은 프로세스 윈도우를 확보하고, 낮은 직렬저항을 제공한다. 이에 따라 본 발명에 따른 무기첨가제는 실리콘 태양전지, 특히 인이 적게 도핑된 80Ω/sq 이상의 면저항을 나타내는 고면저항 실리콘 태양전지(high sheet resist silicon solar cell)의 전면전극 형성용 조성물에 적용되어 태양전지에 대해 고효율 구현을 가능하게 한다.
이에 따라 본 발명의 다른 일 구현예에 따르면, 상기 무기첨가제를 포함하는 실리콘 태양전지의 전면전극 형성용 조성물을 제공한다.
*즉, 상기 전면전극 형성용 조성물은, (1) 무기 첨가제, (2) 도전성 금속 분말, (3) 유기 바인더, 및 (4) 유기 용매를 포함한다.
이하 각 구성성분 별로 상세히 설명한다.
(1) 무기 첨가제
상기 무기 첨가제는 앞서 설명한 것과 동일하다.
상기 무기 첨가제는 전면전극 형성용 조성물 총 중량에 대하여 1 내지 10중량%로 포함되는 것이 바람직하다. 상기 함량 범위로 포함될 때 전극의 소성치밀도가 우수하여 낮은 저항을 얻을 수 있고, n+ 에미터 층과 우수한 컨택을 형성하여 낮은 컨택저항을 형성한 효과를 나타낼 수 있다. 보다 바람직하게는 3 내지 7중량%를 포함하는 것이 좋다.
(2) 도전성 금속 분말
상기 도전성 금속 분말로는 통상 전면전극 형성시 사용되는 것이라면 특별한 제한없이 사용할 수 있다. 구체적으로는 은(Ag), 금(Au), 알루미늄(Al), 구리(Cu), 니켈(Ni), 크롬(Cr), 아연(Zn), 주석(Sn), 은-팔라듐 합금(Ag-Pd), 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있으며, 이중에서도 전기 전도성이 우수하고, 실리콘 반도체로 이루어진 기판과의 친화력이 우수한 은(Ag)을 사용하는 것이 바람직하다.
상기 도전성 금속 분말은 1 내지 3㎛의 평균입경을 갖는 것이 전극의 제조 공정시 소결 속도가 늦어질 우려가 없고 또한 유기물의 소진(burn-out)이 용이하여 바람직하다.
상기 도전성 금속 분말은 전면전극 형성용 조성물 총 중량에 대하여 80 내지 90중량%로 포함되는 것이 바람직하다. 상기 함량 범위로 포함될 때 상분리 및 인쇄성 저하 등의 우려가 없고 낮은 전기전도도를 구현할 수 있다.
(3) 유기 바인더
상기 유기 바인더로는 셀룰로오즈, 히드록시 메틸 셀룰로오즈, 히드록시 에틸 셀룰로오즈, 카르복시 메틸 셀룰로오즈, 카르복시 에틸 셀룰로오즈, 카르복시 에틸 메틸 셀룰로오드 등의 셀룰로오즈 유도체; 폴리메타크릴레이트 등의 (메트)아크릴레이트계 화합물; 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 유기 바인더는 전면전극 형성용 조성물 총 중량에 대하여 1 내지 10중량%로 포함되는 것이 바람직하다. 상기 함량 범위로 사용될 때 인쇄 특성이 양호하고 전극의 안정성이 향상되는 효과를 나타낼 수 있다.
(4) 유기 용매
상기 유기 용매로는 에틸 카비톨, 부틸 카비톨, 에틸 카비톨 아세테이트, 부틸 카비톨 아세테이트, 텍사놀, 테르핀유, 디프로필렌글리콜 메틸 에테르, 디프로필렌글리콜 에틸 에테르, 디프로필렌글리콜 모노메틸 에테르 아세테이트, γ-부티로락톤, 셀로솔브 아세테이트, 부틸셀로솔브 아세테이트, 트리프로필렌 글리콜 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 유기 용매는 전면전극 형성용 조성물이 적절한 점도를 갖도록 하는 양으로 사용되는 것이 바람직한데, 구체적으로는 전면전극 형성용 조성물 총 중량에 대하여 1 내지 20중량%로 포함될 수 있다.
(5) 기타 첨가제
상기 전면전극 형성용 조성물은 상기 성분들과 함께 분산제, 칙소제, 레벨링제, 소포제, 소결조제, 증점제, 안정화제, 계면활성제 및 이들의 혼합물로 이루어진 군에서 선택되는 첨가제를 더 포함할 수 있다.
상기와 같은 구성을 갖는 전면전극 형성용 조성물은 유연계 유리분말과 소결억제제의 습식 혼합 분쇄물을 분무 건조하여 제조된 무기첨가제를 포함함으로써, 태양전지의 직렬저항을 감소시키고, 프로세스 윈도우를 개선시킬 수 있다.
본 발명의 다른 일 구현예에 따르면 상기 전면전극 형성용 조성물을 이용하여 제조된 전면전극을 포함하는 실리콘 태양전지를 제공한다.
상기 실리콘 태양전지는 실리콘 반도체 기판, 상기 기판 상부에 형성되는 에미터층, 상기 에미터층 위에 형성된 반사 방지막, 상기 반사 방지막을 관통하여 상기 에미터층에 접속된 전면전극 및 상기 기판의 배면에 접속된 후면전극을 포함한다.
본 발명에 따른 실리콘 태양전지는 상기 전면전극 형성용 조성물을 상기 반사방지막 상에 소정 패턴으로 도포 후 소성시켜 형성한 전면전극을 포함하는 것 외에는 통상의 실리콘 태양전지의 구성과 동일한 바, 각 구성에 대한 상세한 설명은 생략한다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
실시예 1-1 내지 1-10: 무기첨가제 제조
PbO 74.6중량부, SiO2 14.7중량부, B2O3 8.7중량부, Al2O3 2.0중량부를 측량하여 혼합하였다. 얻어진 혼합물을 백금도가니에 넣고, 1300℃에서 1시간 동안 용융하여 균일한 유리물을 만든 후 냉각수가 흐르는 냉각 롤러(roller)에 부여 파유리(cullet)를 제조하였다. 상기 급냉하여 제조한 파유리를 볼밀을 이용하여 평균입경 10 내지 20㎛가 되도록 1차 분쇄한 후, 제트 밀을 이용하여 평균입경이 2 내지 3㎛가 되도록 2차 분쇄하여 유연계 유리분말을 제조하였다.
소결억제제로서 ZnO, TiO2 및 ZrO2는 통상 요업공업분야에서 원재료로 널리 사용되는 분말을 준비하였다. 상기 준비된 유연계 유리분말과 소결억제제를 하기 표 1에 기재된 함량으로 계량하여 혼합하였다. 결과로 수득된 혼합물과 순수를 1:2의 중량비로 혼합하여 습식분쇄기(basket mill)에 채운 후 혼합과 분쇄를 동시에 진행하여 0.5 내지 1㎛의 입자분포(D50)를 갖는 혼합분말을 포함하는 슬러리를 제조하였다. 제조된 슬러리는 분무건조기를 이용하여 건조를 진행하였으며, 이때 분무노즐의 회전속도를 적절히 조절하여 10 내지 40㎛의 평균입경을 갖는 과립상의 무기첨가제를 제조하였다.
비교예 1-1 및 1-2: 무기첨가제
상기 실시예에서 제조된 유연계 유리분말을 소결억제제와의 혼합/분쇄 및 분무 건조 없이 그대로 무기첨가제로서 사용하였다.
비교예 1-3 및 1-4: 무기첨가제
상기 실시예에서 제조된 유연계 유리분말을 하기 표 1에 나타난 바와 같이 소결억제제와 단순 혼합하여 무기 첨가제를 제조하였다.
표 1
유리분말(중량%) 소결억제제(중량%) 제조공정
ZnO TiO2 ZrO2 습식 혼합/분쇄 분무건조
실시예 1-1 90 10 - - Y Y
실시예 1-2 90 10 - - Y Y
실시예 1-3 80 20 - - Y Y
실시예 1-4 80 20 - - Y Y
실시예 1-5 70 30 - - Y Y
실시예 1-6 70 30 - - Y Y
실시예 1-7 70 - 30 - Y Y
실시예 1-8 70 - 30 - Y Y
실시예 1-9 70 - - 30 Y Y
실시예 1-10 70 - - 30 Y Y
비교예1-1 100 - - - N N
비교예1-2 100 - - - N N
비교예1-3 70 30 - - N N
비교예1-4 70 30 - - N N
도 2는 비교예 1-1에서의 무기첨가제를 주사전자현미경(SEM)을 이용하여 관찰한 사진이다.
도 3은 실시예 1-1에서 제조된 구형 과립상의 무기첨가제를 SEM을 이용하여 5000배로 관찰한 사진이며, 도 4는 1000배로 관찰한 사진이다.
도 2 내지 4에 나타난 바와 같이, 습식 혼합/분쇄 및 분무건조를 진행하지 않은 비교예 1-1의 무기첨가제의 경우 거대 입자와 미분이 혼재되어 있으며, 습식 혼합/분쇄 및 분무건조를 진행한 실시에 1-1의 무기첨가제는 미세한 유연계 유리분말과 소결억제제가 균일하게 섞여 과립상을 형성함을 알 수 있다.
실시예 2-1 내지 2-10 및 비교예 2-1 내지 2-4: 전면전극 형성용 조성물의 제조
평균입경이 1 내지 3㎛인 은 분말 85중량%, 상기 실시예 1-1 내지 1-10 및 비교예 1-1 내지 1-4에서 제조된 무기 첨가제 각각 5중량%, 유기바인더로서 에틸셀룰로오즈 5중량%, 유기 용매로서 부틸카비톨아세테이트 4중량%, 계면활성제로서 BYK180(버드켐사) 0.5중량% 및 기타 첨가제로서 에어로졸(aerosol) 0.5중량%를 혼합하여 혼합물을 제조하였다. 결과로 제조된 혼합물을 플래너리티(planarity) 교반기를 이용하여 30분간 1차 혼합한 후 3롤 밀(roll mill)을 이용하여 분산을 진행하여 전면전극 형성용 조성물을 제조하였다. 상기 3롤 밀 처리 공정은 5회 진행하였으며, 순차별로 압력을 증가시켜 분산을 강화하였다.
실시예 3-1 내지 3-10 및 비교예 3-1 내지 3-4: 실리콘 태양전지의 제조
상기 제조된 전면전극 형성용 조성물을 고면저항(80Ω/sq) 실리콘 웨이퍼에 스크린 프린팅 장비를 이용하여 인쇄하였다. 후면 알루미늄 전극은 상용 페이스트(Ferro 사제)를 스크린 프린팅 장비를 이용하여 도포하여 제조하였다. 프린팅이 완료된 웨이퍼는 건조로 3개 구간, 소성로 6개 구간으로 구성된 로에 벨트속도를 240inch/min의 속도와 최대온도는 각각 750 및 800℃로 설정한 후 소성공정을 진행하였다.
시험예 : 실리콘 태양전지의 성능 평가
상기 실시예에서 제조된 태양전지에 대해 광효율 측정설비(맥사이언스사의 K3000)를 이용하여 AM1.5 분위기 및 25℃ 온도에서 병렬저항(Rshunt), 직렬저항(Rseries) 및 효율(efficient)를 각각 측정하였다.
표 2
실리콘 태양전지 전면전극 형성용 조성물 최대소성온도(℃) 전기적특성
병렬저항 (mΩ) 직렬저항 (Ω) 효율 (%)
실시예 3-1 실시예 2-1 750 58.64 0.006 17.73
실시예 3-2 실시예 2-2 800 23.43 0.007 17.32
실시예 3-3 실시예 2-3 750 46.21 0.005 17.69
실시예 3-4 실시예 2-4 800 32.33 0.005 17.53
실시예 3-5 실시예 2-5 750 38.65 0.006 17.64
실시예 3-6 실시예 2-6 800 38.24 0.006 17.60
실시예 3-7 실시예 2-7 750 49.36 0.005 17.73
실시예 3-8 실시예 2-8 800 41.22 0.006 17.66
실시예 3-9 실시예 2-9 750 29.63 0.006 17.51
실시예 3-10 실시예 2-10 800 39.49 0.005 17.63
비교예 3-1 비교예 2-1 750 21.36 0.006 17.61
비교예 3-2 비교예 2-2 800 0.14 0.034 14.73
비교예 3-3 비교예 2-3 750 56.13 0.008 17.58
비교예 3-4 비교예 2-4 800 1.04 0.019 16.21
상기 표 2에서 보는 바와 같이, 유리분말만을 포함하는 비교예 3-1 및 3-2와, 습식 혼합/분쇄 및 분무건조를 하지 않고 유리분말과 소결억제제를 단순 혼합한 비교예 3-3 및 3-4의 실리콘 태양전지의 경우, 750℃에서는 비교적 우수한 효율 특성을 나타내었으나, 800℃에서는 병렬 저항이 감소하고 직렬저항이 증가하여 급격한 효율의 감소가 발생하였다. 이에 반해 본 발명의 실시예 3-1 내지 3-10의 경우 800℃로 승온하여도 효율의 감소가 거의 없이 일정한 수준을 유지하는 것을 확인 할 수 있다. 특히 소결억제제를 30 중량부 혼합한 경우는 더욱 우수한 효과를 나타내었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (12)

  1. PbO, SiO2 및 Al2O3를 포함하는 유연계 유기분말과, ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 소결억제제의 습식 혼합 분쇄물을 분무 건조하여 제조된 실리콘 태양전지의 전면전극 형성용 무기 첨가제.
  2. 청구항 1에 있어서,
    상기 무기 첨가제는 10 내지 40㎛의 평균입경을 갖는 과립인 것인 실리콘 태양전지의 전면전극 형성용 무기 첨가제.
  3. 청구항 1에 있어서,
    상기 유연계 유기분말과 소결억제제는 1:9 내지 9:1의 중량비로 혼합되는 것인 실리콘 태양전지의 전면전극 형성용 무기 첨가제.
  4. 청구항 1에 있어서,
    상기 유연계 유리분말은 유연계 유리분말 100중량부에 대하여 PbO 50 내지 90중량부, SiO2 10 내지 20중량부 및 Al2O3 5 내지 15중량부를 포함하는 것인 실리콘 태양전지의 전면전극 형성용 무기 첨가제.
  5. 청구항 1에 있어서,
    상기 유연계 유리분말은 B2O3, ZnO, CaO, ZrO2, TiO2, Na2O, K2O, Li2O 및 이들의 혼합물로 이루어진 군에서 선택되는 무기 산화물을 더 포함하는 것인 실리콘 태양전지의 전면전극 형성용 무기 첨가제.
  6. PbO, SiO2 및 Al2O3를 포함하는 유연계 유리분말을 ZnO, TiO2, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 소결억제제와 습식 혼합 및 분쇄하여 유연계 유리분말과 소결억제제의 혼합분말을 포함하는 슬러리를 제조하는 단계; 및
    상기 슬러리를 분무건조하는 단계를 포함하는 실리콘 태양전지의 전면전극 형성용 무기 첨가제의 제조방법.
  7. 청구항 6에 있어서,
    상기 습식 혼합 및 분쇄 공정은 물, 알코올 및 이들의 혼합물로 이루어진 군에서 선택되는 용매 중에서 실시되는 것인 실리콘 태양전지의 전면전극 형성용 무기 첨가제의 제조방법.
  8. 청구항 6에 있어서,
    상기 습식 혼합 및 분쇄 공정은 유연계 유리분말과 소결억제제의 혼합분말이 0.5 내지 1㎛의 입자분포(D50)를 갖도록 실시되는 것인 실리콘 태양전지의 전면전극 형성용 무기 첨가제의 제조방법.
  9. 도전성 금속 분말,
    유기바인더,
    유기 용매 및
    청구항 1 내지 청구항 5 중 어느 한 항에 따른 무기첨가제를 포함하는 실리콘 태양전지의 전면전극 형성용 조성물.
  10. 청구항 9에 있어서,
    상기 무기첨가제는 전면전극 형성용 조성물 총 중량에 대하여 1 내지 10중량%의 함량으로 포함되는 것인 실리콘 태양전지의 전면전극 형성용 조성물.
  11. 청구항 10에 따른 전면전극 형성용 조성물을 이용하여 제조된 전면전극을 포함하는 실리콘 태양전지.
  12. 청구항 11에 있어서,
    상기 실리콘 태양전지는 80Ω/sq 이상의 면저항을 나타내는 고면저항 실리콘 태양전지인 것인 실리콘 태양전지.
PCT/KR2012/001361 2011-12-30 2012-02-22 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지 WO2013100254A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110147734A KR20130078667A (ko) 2011-12-30 2011-12-30 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지
KR10-2011-0147734 2011-12-30

Publications (1)

Publication Number Publication Date
WO2013100254A1 true WO2013100254A1 (ko) 2013-07-04

Family

ID=48697702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001361 WO2013100254A1 (ko) 2011-12-30 2012-02-22 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지

Country Status (2)

Country Link
KR (1) KR20130078667A (ko)
WO (1) WO2013100254A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360730A (zh) * 2015-03-09 2017-11-17 东芝三菱电机产业系统株式会社 太阳能电池的制造方法
CN109326514A (zh) * 2018-08-21 2019-02-12 广东爱旭科技股份有限公司 一种选择性发射极太阳能电池磷掺杂浆料及其制备方法
CN110326117A (zh) * 2016-11-24 2019-10-11 LS-Nikko铜制炼株式会社 太阳能电池电极用导电性浆料组合物以及包含使用上述组合物制造的电极的太阳能电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811100A (zh) * 2014-01-16 2014-05-21 北京林业大学 一种晶硅太阳能电池背场形成用铝浆及其制备方法
KR101993994B1 (ko) * 2017-11-06 2019-09-30 한화토탈 주식회사 태양전지 봉지재용 에틸렌 비닐아세테이트 공중합체 수지 조성물 및 이를 이용한 태양전지 봉지재

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219301A (ja) * 1996-02-09 1997-08-19 Tanaka Kikinzoku Internatl Kk 低温焼成用抵抗ペースト
KR100782160B1 (ko) * 2006-07-14 2007-12-06 인하대학교 산학협력단 피디피 격벽용 유리프릿 조성물
KR20090103733A (ko) * 2008-03-28 2009-10-01 아사히 가라스 가부시키가이샤 프릿
US20110155240A1 (en) * 2005-04-14 2011-06-30 E.I. Du Pont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219301A (ja) * 1996-02-09 1997-08-19 Tanaka Kikinzoku Internatl Kk 低温焼成用抵抗ペースト
US20110155240A1 (en) * 2005-04-14 2011-06-30 E.I. Du Pont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein
KR100782160B1 (ko) * 2006-07-14 2007-12-06 인하대학교 산학협력단 피디피 격벽용 유리프릿 조성물
KR20090103733A (ko) * 2008-03-28 2009-10-01 아사히 가라스 가부시키가이샤 프릿

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360730A (zh) * 2015-03-09 2017-11-17 东芝三菱电机产业系统株式会社 太阳能电池的制造方法
CN110326117A (zh) * 2016-11-24 2019-10-11 LS-Nikko铜制炼株式会社 太阳能电池电极用导电性浆料组合物以及包含使用上述组合物制造的电极的太阳能电池
CN109326514A (zh) * 2018-08-21 2019-02-12 广东爱旭科技股份有限公司 一种选择性发射极太阳能电池磷掺杂浆料及其制备方法

Also Published As

Publication number Publication date
KR20130078667A (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
CN107746184B (zh) 一种玻璃粉组合物及含有其的导电银浆和制备方法
EP2250650B1 (en) Aluminum pastes and use thereof in the production of silicon solar cells
WO2011016594A1 (ko) 실리콘 태양전지 제조용 납 프리 유리 프릿 분말 및 그 제조방법과 이를 포함하는 금속 페이스트 조성물 및 실리콘 태양전지
WO2011046365A2 (ko) 은 페이스트 조성물 및 이를 이용한 태양전지
US20090255583A1 (en) Aluminum pastes and use thereof in the production of silicon solar cells
WO2015037933A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US20210350948A1 (en) Full-area aluminum back surface field back-side silver paste and preparation method and application thereof
EP2319051B1 (en) Aluminum pastes and use thereof in the production of silicon solar cells
TW201813937A (zh) 玻璃粉及應用該玻璃粉製得的正電極銀漿、太陽能電池
WO2011078629A2 (en) Glass frit, paste composition, and solar cell
WO2017175902A1 (ko) 태양전지용 후면전극 페이스트 조성물
WO2017061764A1 (ko) 태양전지 전면전극용 페이스트 조성물 및 이를 이용한 태양전지
US20170271535A1 (en) A silver paste containing bismuth oxide and its use in solar cells
WO2013100254A1 (ko) 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지
US9748417B2 (en) Composition for forming solar cell electrode and electrode produced from same
JP2007128872A (ja) アルミニウム厚膜組成物、電極、半導体デバイス、およびこれらの作製方法
US20120325307A1 (en) Low bow aluminum paste with an alkaline earth metal salt additive for solar cells
KR20150027652A (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2017183881A1 (ko) 태양전지 후면전극용 페이스트 조성물
US20130160835A1 (en) Back-side electrode of p-type solar cell and method for forming the same
KR101590224B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US9640298B2 (en) Silver paste composition for forming an electrode, and silicon solar cell using same
KR101053913B1 (ko) 도전성 페이스트 조성물 및 이를 이용한 태양 전지용 전극 제조방법
TWI697015B (zh) 太陽能電池前電極用糊劑組合物及其製備方法
KR20090090843A (ko) 실리콘 태양전지 제조용 납 프리 유리 프릿 분말 및 그제조방법과 이를 포함하는 금속 페이스트 조성물 및 실리콘태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861550

Country of ref document: EP

Kind code of ref document: A1