KR20190041592A - 분산성이 개선된 은 분말의 제조방법 - Google Patents

분산성이 개선된 은 분말의 제조방법 Download PDF

Info

Publication number
KR20190041592A
KR20190041592A KR1020170132988A KR20170132988A KR20190041592A KR 20190041592 A KR20190041592 A KR 20190041592A KR 1020170132988 A KR1020170132988 A KR 1020170132988A KR 20170132988 A KR20170132988 A KR 20170132988A KR 20190041592 A KR20190041592 A KR 20190041592A
Authority
KR
South Korea
Prior art keywords
silver
solution
salt solution
reducing
powder
Prior art date
Application number
KR1020170132988A
Other languages
English (en)
Other versions
KR102007856B1 (ko
Inventor
권태현
우상덕
최영훈
김충호
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Priority to KR1020170132988A priority Critical patent/KR102007856B1/ko
Priority to PCT/KR2018/012095 priority patent/WO2019074336A1/ko
Publication of KR20190041592A publication Critical patent/KR20190041592A/ko
Application granted granted Critical
Publication of KR102007856B1 publication Critical patent/KR102007856B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/0007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

용매에 질산은 용액, 질산 및 암모니아수를 첨가하고 혼합하여 은 염 용액을 제조하는 은 염 용액 제조단계(S11); 용매에 환원제를 첨가하고 혼합하여 환원 용액을 제조하는 환원 용액 제조단계(S2); 및 상기 은 염 용액 및 상기 환원 용액을 혼합하고 교반하여 은 입자를 석출하는 환원 반응단계(S31);를 포함하는 은 분말 제조방법에 대하여, 상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 조절하여 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 조절하여 은 입자를 석출하여(S32), 제조되는 은 분말의 분산성을 개선하는 은 분말 제조방법관한 것으로, 분산제 등의 첨가제를 첨가하지 않고 제조되는 은 분말의 특성을 유지하면서 분산성을 개선시키는 방법을 제공할 수 있다.

Description

분산성이 개선된 은 분말의 제조방법 {The manufacturing method of silver powder with improved dispersibility}
본 발명은 전자부품에 사용되는 은 분말의 제조방법에 관한 것으로서, 더욱 구체적으로는 태양전지용 전극이나 적층 콘덴서의 내부전극, 회로기판의 도체 패턴 등에 사용되는 분산성이 개선된 도전성 페이스트용 은 분말의 제조방법에 관한 것이다.
도전성 페이스트는 도막 형성이 가능한 도포 적성을 갖고 건조된 도막에 전기가 흐르는 페이스트로서, 수지계 바인더와 용매로 이루어지는 비히클 중에 도전성 필러(금속 필러)를 분산시킨 유동성 조성물이며, 전기 회로의 형성이나 세라믹 콘덴서의 외부 전극의 형성 등에 널리 사용되고 있다.
특히 도전성 필러로 사용되는 은 분말(silver powder)은 전자, 화학, 촉매 등 다양한 분야에서 사용되고 있으며, 화학 환원(chemical reduction), 광환원(photoreduction) 방법 및 초음파 화학(sonochemical) 방법 등 다양한 방법에 의해 제조된다. 화학 환원 방법의 경우 은 분말의 형태 및 대량 생산 효율 측면에서 사용되기 적합한 방법이며, 하이드라진(hydrazine), 글리세롤(glycerol), 아스코르빅산(ascorbic acid) 및 알데하이드(aldehyde) 화합물 등의 다양한 종류의 환원제를 사용한다.
종래의 은 분말을 제조하는 방법으로 “Dispersion mechanisms of Arabic gum in the preparation of ultrafine silver powder (Korean journal of chemical engineering., v.31 no.8, 2014년, pp.1490 - 1495)”에 질산은(AgNO3)과 아스코르브산을 반응시키고, 분산제로서 아라빅 검(Arabic gum)을 사용하여 은 분말을 제조하는데 있어서 분산성을 향상시키는 것이 개시되어 있다.
종래와 같이 분산성을 향상시키기 위해서는 지방산, 지방산염, 계면활성제, 유기 금속, 킬레이트 형성제 및 보호 콜로이드 등의 첨가물을 첨가하여야 하며, 상기와 같은 분산제를 첨가하지 않고 은 분말을 제조하는 경우, 분산제를 첨가하여 제조한 은 분말 대비 분산성이 떨어져 이를 이용한 도전성 페이스트로 전극을 형성하는 경우 단선(short)이 발생하는 문제점이 있었다.
또한 상기 분산제를 첨가하는 경우 은 분말 제조 후 분산제를 포함하는 불순물들을 세척하는 공정이 추가적으로 발생하게 되며, 분산제 첨가에 따라 제조되는 은 분말의 입도 등 그 물성이 변하기 때문에 원하는 은 분말의 특성을 얻기 위하여 다른 단계에서 이를 제어해야 하는 문제점이 있다.
1. Dispersion mechanisms of Arabic gum in the preparation of ultrafine silver powder (Korean journal of chemical engineering., v.31 no.8, 2014년, pp.1490 - 1495).
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 분산제와 같은 첨가제를 첨가하지 않으면서도 분산성이 개선된 은 분말을 제조하는 방법을 제공하고자 하는 것이다.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 용매에 질산은 용액, 질산 및 암모니아수를 첨가하고 혼합하여 은 염 용액을 제조하는 은 염 용액 제조단계(S11); 용매에 환원제를 첨가하고 혼합하여 환원 용액을 제조하는 환원 용액 제조단계(S2); 및 상기 은 염 용액 및 상기 환원 용액을 혼합하고 교반하여 은 입자를 석출하는 환원 반응단계(S31);를 포함하는 은 분말 제조방법에 대하여, 상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 조절하여 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 조절하여 은 입자를 석출하여(S32), 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법을 제공한다.
또한 상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 증가시켜 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 감소시켜 은 입자를 석출하는(S32) 것을 특징으로 한다.
또한 상기 은 염 용액 제조단계(S12)는 용매 1000ml에 대하여 질산은 용액을 70 내지 90 ml, 질산을 3 내지 10 ml, 암모니아수는 90 내지 110 ml 비율로 첨가하여 은 염 용액을 제조하고, 상기 환원 반응단계(S32)는 은 염 용액과 환원 용액을 혼합하고 20 내지 60rpm 의 교반 속도로 교반하여 은 입자를 석출하는 것을 특징으로 한다.
또한 상기 환원 용액 제조단계(S2)는 상기 은 염 용액 내의 질산은 용액에 포함된 은 함량의 40 내지 50% 함량의 환원제를 용매와 혼합하여 10 내지 30 g/l 농도의 환원 용액을 제조하는 단계인 것을 특징으로 한다.
또한 본 발명은 분산제를 사용하지 않고 제조된 은분말로서, SEM(Scanning Electron Microscope)을 이용하여 입자 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 SEM 입경이 0.5 내지 2.0μm이고, 상기 은 분말은 상기 SEM 입경에 대한 PSA(Particle Size Analyzer)를 이용하여 측정한 D50 값의 비가 2.0 이하인 분산성이 개선된 은 분말을 제공한다.
또한 상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 D90 값의 비가 3.0 이하인 것을 특징으로 한다.
또한 상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 Dmax 값의 비가 8.0 이하인 것을 특징으로 한다.
또한 상기 은 분말의 탭 밀도는 5.5 내지 6.0g/cm3 인 것을 특징으로 한다.
또한 본 발명은 상기 은 분말을 포함하는 도전성 페이스트를 제공한다.
또한 본 발명은 상기 도전성 페이스트를 이용하여 형성된 전극을 포함하는 태양전지를 제공한다.
본 발명은 분산제와 같은 첨가제를 첨가하지 않고 분산성을 개선한 은 분말 제조방법을 제공하는 것으로서, 본 발명의 제조방법에 따라 은 분말을 제조하는 경우 분산제 등을 세척하는데 소모되는 비용을 절감할 수 있으며, 제조되는 은 분말의 특성을 그대로 유지하면서 분산성만이 개선되는 효과를 제공할 수 있다.
상기 제조된 분산성이 개선된 은 분말을 사용하여 형성된 도전성 페이스트를 이용하여 태양전지 전극을 형성하는 경우 단선을 현저하게 줄일 수 있으며, 제조된 태양전지의 효율 또한 우수한 효과를 제공한다.
도 1은 본 발명의 실시예에 따라 제조된 은 분말의 SEM 이미지를 나타낸 것이다.
도 2는 비교예에 따라 제조된 은 분말의 SEM 이미지를 나타낸 것이다.
도 3은 본 발명의 실시예 및 비교예에 따라 제조된 태양 전지의 단선 평가 이미지를 나타낸 것이다.
도 4는 본 발명의 실시예 및 비교예에 따라 제조된 태양 전지의 가혹조건에서의 단선 평가 이미지를 나타낸 것이다.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.
본 발명의 일실시예에 따른 은 분말의 제조방법은 은 염 용액 제조단계(S1), 환원 용액 제조단계(S2) 및 환원 반응단계(S3)를 포함하여 이루어진다. 본 발명은 상기 단계를 수행함에 있어서, 각 단계의 수행조건을 조절하여 은 분말이 석출되는 반응의 반응성을 줄임으로써 분산성을 향상시키되, 각 단계의 수행조건을 조절하더라도 조절 전 수행조건으로 제조된 은 분말과 동일한 입도 등의 물성을 나타내는 것을 특징으로 한다.
이하, 조절 전 수행조건(제1 수행조건)과 조절된 수행조건(제2 수행조건)으로 은 분말을 제조하는 방법을 구체적으로 설명한다.
1. 은 염 용액 제조단계(S1)
본 발명의 일실시예에 따른 은 염 용액 제조단계(S1)는 질산은 용액과 질산 및 암모니아수를 일정 비율로 혼합하여 은 염 용액을 제조하는 단계로서, 환원 반응을 통해 석출되는 은 입자의 소스가 되는 은 이온을 제공하는 용액을 제조하는 단계이다.
은 염 용액 제조단계(S1)는 물 등의 용매에 질산은 용액과 질산 및 암모니아수를 순차적으로 첨가한 후 교반하여 용해시켜 은 염 용액을 제조한다. 첨가되는 질산은 용액의 농도는 300g/L 내지 700g/L 범위 내인 것을 사용한다. 바람직하게는 400 내지 600g/L 범위 내가 좋고, 더욱 바람직하게는 500g/L 인 것이 좋다. 이하 500g/L 의 질산은 용액을 예로 들어 설명한다.
은 염 용액 제조단계(S1)에 있어서, 제1 수행조건(S11)은 다음과 같다.
용매 1000ml에 대하여 질산은 용액을 55 내지 65 ml 첨가한다. 바람직하게는 57 내지 62 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 60 ml인 것이 좋다. 용매 1000ml에 대하여 질산을 3 내지 10 ml 비율로 첨가한다. 바람직하게는 5 내지 8ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 5ml 첨가하는 것이 좋다. 용매 1000 ml에 대하여 암모니아수는 90 내지 110 ml 첨가한다. 바람직하게는 95 내지 100 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 96ml 첨가하는 것이 좋다.
은 염 용액 제조단계(S1)에 있어서, 제2 수행조건(S12)은 다음과 같다.
용매 1000ml에 대하여 질산은 용액을 70 내지 90 ml 첨가한다. 바람직하게는 75 내지 85 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 80 ml인 것이 좋다. 용매 1000ml에 대하여 질산을 3 내지 10 ml 비율로 첨가한다. 바람직하게는 5 내지 8ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 5ml 첨가하는 것이 좋다. 용매 1000 ml에 대하여 암모니아수는 90 내지 110 ml 첨가한다. 바람직하게는 95 내지 100 ml 범위 내로 첨가하는 것이 좋고, 더욱 바람직하게는 96ml 첨가하는 것이 좋다.
즉, 은 염 용액 제조단계(S1)에 있어서, 제2 수행조건은 은 염 용액을 제조하는데 있어서 제1 수행조건에서 질산은 용액의 함량을 1.2 내지 2배(부피비) 증가시키는 것이다. 바람직하게는 1.2 내지 1.7배 증가시키는 것이 좋고, 더욱 바람직하게는 1.3 내지 1.5배 증가시키는 것이 좋다. 상기 범위 내로 질산은 용액의 함량을 증가시키는 경우 제조되는 은 분말의 입경이나 밀도 등의 물성이 변화하지 않으면서 분산성이 향상된 은 분말을 얻을 수 있다.
2. 환원 용액 제조단계(S2)
본 발명의 일실시예에 따른 환원 용액 제조단계(S2)는 1종의 환원제를 용매에 녹여 환원 용액을 제조하거나 2종 이상의 환원제를 일정 비율로 혼합하여 용매에 녹여 환원 용액을 제조하는 단계로서, 상기 제조된 은 염 용액과 혼합되어 은 이온을 환원시켜 은 입자가 석출되도록 하는 용액을 제조하는 단계이다.
환원 용액 제조단계(S2)는 물 등의 용매에 1종 또는 2종 이상의 환원제를 일정 비율로 각각 첨가한 후 교반하여 용해시킨 후 혼합하여 환원 용액을 제조한다. 제조되는 환원 용액의 농도는 10 내지 30 g/l 이다. 바람직하게는 10 내지 20g/l 인 것이 좋고, 더욱 바람직하게는 20g/l인 것이 좋다.
환원제는 아스코르브산, 알칸올아민, 하이드로퀴논, 히드라진 및 포르말린으로 이루어지는 군으로부터 선택되는 1종 이상을 포함한다.
1종의 환원제를 사용하는 경우 하이드로퀴논을 사용하는 것이 좋고, 상기 은 염 용액 제조단계에서 제조된 은 염 용액 내의 질산은 용액에 포함된 은 함량의 40 내지 60 중량% 함량의 환원제를 상기 농도가 되도록 용매와 혼합하여 환원 용액을 제조한다. 바람직하게는 제조된 은 염 용액 내의 질산은 용액에 포함된 은 함량의 45 내지 55 중량% 함량의 환원제를 상기 농도가 되도록 용매와 혼합하여 환원 용액을 제조하는 것이 좋다.
2종 이상의 환원제를 혼합하여 사용하는 경우 바람직하게는 이 중에서 하이드로퀴논 및 아스코르브산을 혼합하여 사용하는 것이 좋다.
더욱 구체적으로 환원 용액에 하이드로퀴논 및 아스코르브산이 포함되는 경우 하이드로퀴논을 50 내지 70 중량%, 아스코르브산을 30 내지 50 중량% 비율로 혼합하여 물 등의 용매에 10 내지 30 g/l 농도가 되도록 첨가된다. 하이드로퀴논의 혼합량이 상기 범위보다 높아지고 아스코르브산의 혼합량이 상기 범위보다 낮아지면 제조되는 은 분말의 비표면적이 감소한다. 즉, 아스코르브산의 함량이 높아지면 비표면적이 증가하고, 하이드로퀴논과 아스코르브산이 상기 비율로 혼합될 때 높은 비표면적의 은 입자를 석출할 수 있다.
바람직하게는 하이드로퀴논을 55 내지 65 중량%, 아스코르브산을 35 내지 45 중량% 비율로 혼합하여 물 등의 용매에 10 내지 20 g/l 농도가 되도록 첨가하는 것이 좋다. 더욱 바람직하게는 하이드로퀴논을 60 중량%, 아스코르브산을 40 중량% 비율로 혼합하여 물 등의 용매에 20 g/l 농도가 되도록 첨가하는 것이 좋다.
3. 환원 반응단계(S3)
본 발명의 일실시예에 따른 환원 반응단계(S3)는 제조된 은 염 용액 및 환원 용액을 일정 비율로 혼합하여 환원 용액에 의해 은 염 용액의 은 이온을 환원시켜 은 입자를 석출하는 단계이다.
환원 반응단계(S3)는 은 염 용액 제조단계(S1)에서 제조된 은 염 용액을 교반하는 상태에서 환원 용액 제조단계(S2)에서 제조된 환원 용액을 천천히 적하하거나 일괄 투입하여 반응시킬 수 있다. 바람직하게는 일괄 투입하는 것이 빠른 시간 내에 환원 반응이 일괄 종료되어 입자끼리의 응집을 방지하고 분산성을 높일 수 있어 좋다. 더욱 구체적으로는 은 염 용액에 환원 용액을 10초 이내로 투입한 후 5 내지 20분간 교반하여 은 염 용액의 은 이온으로부터 은 입자를 석출하는 환원반응을 일으킨다.
환원 반응단계(S3)에 있어서, 제1 수행조건(S31)은 다음과 같다.
상기 은 염 용액에 환원 용액을 투입한 후 교반할 때, 100 내지 200rpm 의 교반 속도로 교반하여 환원반응이 일어나도록 한다. 바람직하게는 100 내지 150rpm의 교반 속도로 교반하는 것이 좋고, 더욱 바람직하게는 100rpm의 교반 속도로 교반하는 것이 좋다.
환원 반응단계(S3)에 있어서, 제2 수행조건(S32)은 다음과 같다.
상기 은 염 용액에 환원 용액을 투입한 후 교반할 때, 20 내지 60rpm 의 교반 속도로 교반하여 환원반응이 일어나도록 한다. 바람직하게는 30 내지 50rpm의 교반 속도로 교반하는 것이 좋고, 더욱 바람직하게는 40rpm의 교반 속도로 교반하는 것이 좋다.
즉, 환원 반응단계(S3)에 있어서, 제2 수행조건은 환원 반응 시 교반 속도를 0.2 내지 0.8배 감소시키는 것이다. 바람직하게는 0.4 내지 0.8배 감소시키는 것이 좋고, 더욱 바람직하게는 0.5 내지 0.7배 감소시키는 것이 좋다. 상기 범위 내로 교반 속도를 감소시키는 경우 제조되는 은 분말의 입경이나 밀도 등의 물성이 변화하지 않으면서 분산성이 향상된 은 분말을 얻을 수 있다.
4. 정제단계(S4)
본 발명의 일실시예에 따른 은 분말 제조방법은 환원 반응단계(S3)를 통해 은 입자 석출 반응을 완료한 후 수용액 또는 슬러리 내에 분산되어 있는 은 입자를 여과 등을 이용하여 분리하고 세척하는 정제단계(S4)를 더 포함하여 은 분말을 얻을 수 있다.
더욱 구체적으로는 석출된 은 입자가 분산된 분산액 중의 은 입자를 침강시킨 후, 분산액의 상등액을 버리고 원심분리기를 이용하여 여과하고, 여재를 순수로 세정한다. 본 발명에서 언급된 원심분리기 외에 필터프레스, 데칸터 등 고액 분리를 하기 위한 다양한 방법을 적용하는 것을 권리범위에서 제외하지 않는다. 세척을 하는 과정은 분말을 세척한 세척 수를 완전히 제거를 해야 이루어 진다. 따라서 함수율 10% 미만으로 감소시킨다.
상기 제1 수행조건에 따라 제조된 은 분말은 구형의 형상을 가지며, 주사전자현미경(SEM)을 이용하여 파우더 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 크기가 0.5 내지 2.0μm이었고, 상기 제2 수행조건에 따라 제조된 은 분말 역시 구형의 형상을 가지며, 주사전자현미경(SEM)을 이용하여 파우더 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 크기가 0.5 내지 2.0μm이었다. 즉, 제조된 은 분말의 형상 및 입도 범위가 유지되었다.
제2 수행조건에 따라 제조된 은 분말의 분산성이 개선되었음을 나타내기 위한 지표로서, 상기 제조된 은 분말을 포함하는 도전성 페이스트를 제조하여 태양전지의 전극을 형성하였을 때의 단선 발생 개수를 간접적인 지표로서 사용할 수 있으며, SEM 입경에 대한 PSA D50 값의 비, SEM 입경에 대한 PSA Dmax 값의 비, 및 탭 밀도(Tap density) 등을 직접적인 지표로서 사용할 수 있다. 이는 후술할 실험예를 통해 설명한다.
종래의 방법과 같이 첨가물을 넣어 분산성을 증가시킬 수는 있으나 이는 세척조건이 가혹하며 첨가물 투입 시 입도, 유기물 함량, 탭 밀도 등 은 분말의 특성이 완전히 달라지는 문제점이 있다.
본 발명은 은 분말 합성의 기저가 되는 질산은 용액의 부피와 교반속도 등의 외부환경을 조절하여 환원 반응 시 입체 효과(steric effect)에 의해 반응성을 의도적으로 감소시켜 분산성을 개선한 것으로서, SEM 입경, 유기물 함량 등 은 분말의 특성이 유지되는 것을 일 특징으로 한다.
또한 본 발명의 또 다른 측면에서, 제조된 은 분말을 포함하는 도전성 페이스트를 제공할 수 있다. 도전성 페이스트의 조성은 상기 제조된 은 분말 80 내지 90 중량%, 유기 비히클 5 내지 10 중량%, 유리 프릿 1 내지 5 중량%, 첨가제 1 내지 5 중량% 포함한다. 더욱 바람직하게는 상기 제조된 은 분말 85 내지 90 중량%, 유기 비히클 5 내지 8 중량%, 유리 프릿 2 내지 4 중량%, 첨가제 1 내지 3 중량% 포함하는 것이 좋다.
상기 유기 비히클로는 제한되지 않으나 유기 바인더와 용제 등이 포함될 수 있다. 때로는 용제가 생략될 수 있다.
유기 비히클은 금속 분말과 유리 프릿 등이 균일하게 혼합된 상태를 유지하는 특성이 요구되며, 예를 들면 스크린 인쇄에 의해 도전성 페이스트가 기재에 도포될 때에, 도전성 페이스트를 균질하게 하여, 인쇄 패턴의 흐려짐 및 흐름을 억제하고, 또한 스크린판으로부터의 도전성 페이스트의 토출성 및 판분리성을 향상시키는 특성이 요구된다.
유기 비히클에 포함되는 유기 바인더는 제한되지 않으나 셀룰로오스 에스테르계 화합물로 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트 등을 예로 들 수 있으며, 셀룰로오스 에테르 화합물로는 에틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시 플로필 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 메틸 셀룰로오스 등을 예로 들 수 있으며, 아크릴계 화합물로는 폴리 아크릴아미드, 폴리 메타 아크릴레이트, 폴리 메틸 메타 아크릴레이트, 폴리 에틸 메타 아크릴레이트 등을 예로 들 수 있으며, 비닐계로는 폴리비닐 부티랄, 폴리비닐 아세테이트 그리고 폴리비닐 알코올 등을 예로 들 수 있다. 상기 유기 바인더들은 적어도 1종 이상 선택되어 사용될 수 있다.
조성물의 희석을 위해 사용되는 용제로서는 알파-터피네올, 텍사놀, 디옥틸 프탈레이트, 디부틸 프탈레이트, 시클로헥산, 헥산, 톨루엔, 벤질알코올, 디옥산, 디에틸렌글리콜, 에틸렌 글리콜 모노 부틸 에테르, 에틸렌 글리콜 모노 부틸 에테르 아세테이트, 디에틸렌 글리콜 모노 부틸 에테르, 디에틸렌 글리콜 모노 부틸 에테르 아세테이트 등으로 이루어진 화합물 중에서 적어도 1종 이상 선택되어 사용되는 것이 좋다.
상기 유리 프릿의 조성이나 입경, 형상에 있어서 특별히 제한을 두지 않는다. 유연 유리 프릿뿐만 아니라 무연 유리 프릿도 사용 가능하다. 바람직하기로는 유리 프릿의 성분 및 함량으로서, 산화물 환산 기준으로 PbO는 5 ~ 29 mol%, TeO2는 20 ~ 34 mol%, Bi2O3는 3 ~ 20 mol%, SiO2 20 mol% 이하, B2O3 10 mol% 이하, 알칼리 금속(Li, Na, K 등) 및 알칼리 토금속(Ca, Mg 등)은 10 ~ 20 mol%를 함유하는 것이 좋다. 상기 각 성분의 유기적 함량 조합에 의해 전극 선폭 증가를 막고 고면저항에서 접촉저항을 우수하게 할 수 있으며, 단략전류 특성을 우수하게 할 수 있다.
유리 프릿의 평균 입경은 제한되지 않으나 0.5 내지 10㎛ 범위 내의 입경을 가질 수 있으며, 평균 입경이 다른 다종이 입자를 혼합하여 사용할 수도 있다. 바람직하기로는 적어도 1종의 유리 프릿은 평균 입경(D50)이 2㎛ 이상 10 ㎛ 이하인 것을 사용하는 것이 좋다. 이를 통해 소성 시 반응성이 우수해지고, 특히 고온에서 n층의 데미지를 최소화할 수 있으며 부착력이 개선되고 개방전압(Voc)을 우수하게 할 수 있다. 또한, 소성 시 전극의 선폭이 증가하는 것을 감소시킬 수 있다.
본 발명의 일실시예에 따라 제조된 구형의 비표면적이 큰 은 분말을 포함하는 도전성 페이스트는 페이스트 제조 시 점도를 증진시킬 수 있으며, 도전성 재료의 전극으로 사용하는 경우 소결 온도를 낮추어 적용 가능한 어플리케이션의 범위를 넓힐 수 있다.
실시예 및 비교예
(1) 제1 수행조건에 따른 은 분말 제조
순수 1000 ml 에 500 g/l 농도의 질산은 용액 60 ml 을 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액에 상기 제조된 환원 용액을 10초 이내로 모두 투입한 후 5분간 100rpm 속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다.
(2) 제2 수행조건에 따른 은 분말 제조(실시예 1 내지 9)
순수 1000 ml 에 500 g/l 농도의 질산은 용액을 하기 표 1에 나타낸 함량으로 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액에 상기 제조된 환원 용액을 10초 이내로 모두 투입한 후 5분간 하기 표 1에 나타낸 교반속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다.
(3) 비교예 1 내지 10
순수 1000 ml 에 500 g/l 농도의 질산은 용액을 하기 표 1에 나타낸 함량으로 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액에 상기 제조된 환원 용액을 10초 이내로 모두 투입한 후 5분간 하기 표 1에 나타낸 교반속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다.
(4) 비교예 11
순수 1000 ml 에 500 g/l 농도의 질산은 용액 60 ml을 투입한 후 질산 5ml, 암모니아수 96 ml를 순차적으로 첨가한 후 교반하여 은 염 용액을 제조하였다. 하이드로퀴논을 순수에 투입한 후 교반하여 완전히 녹여 20 g/l 농도의 환원 용액 1000ml 를 제조하였다.
상기 제조된 은 염 용액, 환원 용액 및 분산제로서 아라빅검 1g을 10초 이내로 모두 투입한 후 5분간 100rpm 속도로 교반하여 은 염 용액에 존재하는 은 이온들을 환원시켜 은 입자를 제조하였다.
혼합액 중의 은 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고 건조하여 은 분말을 얻었다. 분산제로 아라빅검을 사용한 경우 은 분말이 점도를 가지게 되어 끈적한 상태를 유지하기 때문에 과량의 가성소다를 이용하여 3회 이상 세척한다.
질산은(mL) 교반속도
(rpm)
분산제 사용 여부
제1 수행조건 60 100 X
제2 수행조건 실시예 1 80 40 X
실시예 2 70 40 X
실시예 3 90 40 X
실시예 4 75 40 X
실시예 5 85 40 X
실시예 6 80 20 X
실시예 7 80 30 X
실시예 8 80 50 X
실시예 9 80 60 X
비교예 1 65 40 X
비교예 2 50 40 X
비교예 3 95 40 X
비교예 4 100 40 X
비교예 5 80 70 X
비교예 6 80 100 X
비교예 7 80 10 X
비교예 8 60 250 X
비교예 9 95 100 X
비교예 10 55 10 X
비교예 11 60 100 Arabic gum
실험예
(1) SEM(scanning electron microscope) 측정
실시예 1 및 비교예 11에 의해 제조된 은 분말의 표면 형상을 측정한 주사전자현미경 사진을 도 1 및 도 2에 각각 나타내었으며 분말 100개 각각의 지름 크기를 측정한 후 평균을 내어 SEM size 를 측정하였고, 그 결과를 표 2에 나타내었다.
(2) PSA(particle size analyzer) 측정
실시예 및 비교예에 의해 제조된 은 분말 0.03g을 에탄올 30ml에 투입 후, 초음파 1분 하여 에탄올에 은 분말을 분산시킨 후 입도 분석 장비에 투입하여 입도 분포를 측정하였다. 입경의 누적분포도에서, 그래프의 전체 넓이를 기준으로 가장 큰 입경으로부터 넓이가 10%인 입경을 D10으로 표현하며, 그래프의 전체 넓이를 기준으로 가장 큰 입경으로부터 넓이가 50%인 입경을 D50으로 표현하고, 그래프의 전체 넓이를 기준으로 가장 큰 입경(Dmax)으로부터 넓이가 90%인 입경을 D90으로 표현한다.
(3) 탭 밀도(Tap density) 측정
실시예 및 비교예에 의해 제조된 은 분말의 D50 대비 탭 밀도를 계산한 결과를 하기 표 2에 나타내었다.
(4) 유기물 함량 측정
세이코 인스트루먼트(Seiko instrument) 회사제 TG/DTA EXART6600을 이용하여, 공기 중, 승온 속도 10℃/min로 상온에서 500℃까지의 범위에서 TGA 분석을 행하여 유기물 함량(Ignition loss)을 측정하였다.
SEM(μm) PSA(μm) Tap density
(g/cm3)
유기물 함량(%)
Average D10
(/SEM Avr.)
D50
(/SEM Avr.)
D90
(/SEM Avr.)
Dmax
(/SEM Avr.)
제1 수행조건 1.24 1.26
(1.02)
2.51
(2.02)
4.03
(3.25)
11
(8.87)
5.49 0.72
실시예 1 1.19 1.22
(1.03)
2.25
(1.89)
3.45
(2.90)
8.98
(7.55)
5.51 0.67
실시예 2 1.22 1.24
(1.02)
2.32
(1.90)
3.56
(2.92)
9.61
(7.88)
5.64 0.51
실시예 3 1.21 1.22
(1.01)
2.19
(1.81)
3.60
(2.98)
9.25
(7.64)
5.68 0.42
실시예 4 1.27 1.21
(0.95)
2.22
(1.75)
3.67
(2.89)
9.25
(7.28)
5.68 0.46
실시예 5 1.02 1.07
(1.05)
2.00
(1.96)
3.12
(3.00)
8.12
(7.96)
5.72 0.87
실시예 6 1.54 1.65
(1.07)
2.86
(1.86)
3.74
(2.43)
9.91
(6.44)
5.53 0.92
실시예 7 1.35 1.36
(1.01)
2.54
(1.88)
3.48
(2.58)
10.22
(7.57)
5.61 0.72
실시예 8 0.97 1.02
(1.05)
1.87
(1.93)
2.88
(2.97)
7.53
(7.76)
5.87 0.73
실시예 9 0.82 0.88
(1.07)
1.26
(1.54)
2.37
(2.89)
6.42
(7.83)
5.98 0.56
비교예 1 1.20 1.24
(1.03)
2.83
(2.36)
4.01
(3.34)
10.72
(8.93)
5.44 0.84
비교예 2 1.26 1.27
(1.01)
2.58
(2.05)
3.97
(3.15)
10.92
(8.93)
5.45 0.73
비교예 3 1.38 1.37
(0.99)
3.03
(2.20)
4.56
(3.30)
11.43
(8.28)
5.37 0.59
비교예 4 1.94 2.01
(1.04)
4.22
(2.18)
5.85
(3.02)
16.04
(8.27)
5.34 0.64
비교예 5 1.43 1.43
(1.00)
4.01
(2.80)
5.67
(3.97)
14.66
(10.25)
5.12 0.97
비교예 6 1.17 1.09
(0.93)
3.79
(3.24)
4.23
(3.62)
12.84
(10.97)
4.83 0.62
비교예 7 1.71 1.77
(1.04)
3.92
(2.29)
5.31
(3.11)
14.22
(8.32)
5.46 1.07
비교예 8 0.78 0.81
(1.04)
2.64
(3.38)
4.37
(5.60)
11.49
(14.73)
4.72 0.94
비교예 9 1.36 1.34
(0.99)
2.99
(2.20)
5.41
(3.98)
10.94
(8.04)
5.41 0.74
비교예 10 1.47 1.50
(1.02)
3.64
(2.48)
6.23
(4.24)
13.26
(9.02)
5.16 0.68
비교예 11 0.93 1.03
(1.11)
2.86
(3.08)
3.72
(4.00)
10.74
(11.55)
4.99 3.21
상기 표 2에 나타나는 것과 같이 제2 수행조건에 따라 제조된 은 분말 입자의 SEM size는 0.82 내지 1.54μm 로서, 제1 수행조건에 따라 제조된 은 분말 입자의 크기와 0.5μm 이하의 크기 차이를 보여 거의 동일한 크기로 볼 수 있다.
그러나 상기 SEM 입자 크기에 대한 PSA D50 값의 비가 2.0 이하이고, SEM 입자 크기에 대한 PSA D90 값의 비가 3.0 이하이며, SEM 입자 크기에 대한 PSA Dmax 값의 비가 8.0 이하로서, 광산란에 의하여 다분산된 입자를 하나의 입자로 입도 분석이 이루어지는 PSA 입자 크기가 각각의 입자를 SEM 입자 크기와 차이가 적을수록 분산이 잘 된 것을 의미한다.
또한 본 발명에 따라 제조된 은 분말의 5.5 내지 6.0 g/cm3로서, 제1 수행조건에 따라 제조된 은 분말의 탭 밀도(5.49g/cm3)보다 증가하여 분산성이 개선된 것으로 볼 수 있다.
(5) 도전성 페이스트 및 태양전지의 제조
상기 제조된 은 분말 88 중량%, 유리 프릿 3 중량%, 유기 비히클 6.5 중량%, 첨가제 2.5 중량%를 자전공전식 진공 교반 탈포 장치로 혼합한 후 삼본롤을 사용함으로써, 도전성 페이스트를 얻었다.
상기 얻어진 도전성 페이스트를 wafer의 전면에 50㎛ 메쉬의 스크린 프린팅 기법으로 패턴 인쇄하고, 벨트형 건조로를 사용하여 200~350 ℃에서 20초에서 30초 동안 건조시켰다. 이후 Wafer의 후면에 Al paste를 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 500 내지 900 ℃사이로 20초에서 30초간 소성을 행하여 태양전지 Cell을 제작하였다.
(6) 변환효율 분석
상기 제조된 Cell은 태양전지 효율측정장비(Halm社, cetisPV-Celltest 3)를 사용하여, 변환효율(Eff), 단락전류(Isc), 개방전압(Voc), 곡선인자(FF), 선저항(Rser)을 하기 표 3에 나타내었다. 또한 소성 직후 단선 발생 개수를 측정하여 하기 표 3에 나타내었으며, 가혹조건(온도 85℃, 습도 85%) 에서의 태양전지 cell의 단선 정도를 나타낸 이미지를 도 3 및 도 4에 나타내었다.
Isc (A) Voc (V) Eff (%) FF (%) Rser (Ω) 단선 개수
제1 조건 9.494 0.6372 19.66 77.75 0.00185 7
실시예 1 9.694 0.6403 20.38 79.51 0.00095 0
실시예 2 6.689 0.6401 20.38 79.59 0.00094 0
실시예 3 9.682 0.6411 20.42 79.70 0.00096 0
실시예 4 9.691 0.6417 20.43 79.58 0.00095 0
실시예 5 9.689 0.6408 20.4 79.60 0.00095 0
실시예 6 9.696 0.6406 20.37 79.45 0.00105 0
실시예 7 9.689 0.6416 20.44 79.63 0.00101 0
실시예 8 9.676 0.6403 20.34 79.52 0.00118 0
실시예 9 9.698 0.6415 20.42 79.48 0.00108 0
비교예 1 9.384 0.6241 19.46 78.54 0.00196 7
비교예 2 9.316 0.6267 19.64 78.79 0.00205 6
비교예 3 9.398 0.6284 19.48 77.89 0.00284 8
비교예 4 9.365 0.6263 19.68 78.43 0.00199 8
비교예 5 9.363 0.6276 19.81 78.28 0.00274 9
비교예 6 9.335 0.6274 19.21 78.54 0.00275 5
비교예 7 9.343 0.6284 19.71 78.35 0.00213 8
비교예 8 9.398 0.6297 19.52 77.73 0.00234 7
비교예 9 9.341 0.6263 19.87 78.63 0.00217 7
비교예 10 9.396 0.6265 19.37 78.14 0.00189 6
비교예 11 9.263 0.6154 18.15 75.43 0.00384 23
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 용매에 질산은 용액, 질산 및 암모니아수를 첨가하고 혼합하여 은 염 용액을 제조하는 은 염 용액 제조단계(S11);
    용매에 환원제를 첨가하고 혼합하여 환원 용액을 제조하는 환원 용액 제조단계(S2); 및
    상기 은 염 용액 및 상기 환원 용액을 혼합하고 교반하여 은 입자를 석출하는 환원 반응단계(S31);를 포함하는 은 분말 제조방법에 대하여,
    상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 조절하여 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 조절하여 은 입자를 석출하여(S32), 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  2. 제1항에 있어서,
    상기 은 염 용액 제조단계(S11)에서 질산은 용액의 첨가량을 증가시켜 은 염 용액을 제조하고(S12), 상기 환원 반응단계(S31)에서 교반 속도를 감소시켜 은 입자를 석출하여(S32), 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  3. 제1항에 있어서,
    상기 은 염 용액 제조단계(S12)는 용매 1000ml에 대하여 질산은 용액을 70 내지 90 ml, 질산을 3 내지 10 ml, 암모니아수는 90 내지 110 ml 비율로 첨가하여 은 염 용액을 제조하고,
    상기 환원 반응단계(S32)는 은 염 용액과 환원 용액을 혼합하고 20 내지 60rpm 의 교반 속도로 교반하여 은 입자를 석출하여, 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  4. 제1항에 있어서,
    상기 환원 용액 제조단계(S2)는 상기 은 염 용액 내의 질산은 용액에 포함된 은 함량의 40 내지 50% 함량의 환원제를 용매와 혼합하여 10 내지 30 g/l 농도의 환원 용액을 제조하는 단계인, 분산제를 사용하지 않고 은 분말의 분산성을 개선하는 은 분말 제조방법.
  5. 분산제를 사용하지 않고 제조된 은분말로서,
    SEM(Scanning Electron Microscope)을 이용하여 입자 100개의 각각의 지름 크기를 측정한 후 평균을 내어 측정한 SEM 입경이 0.5 내지 2.0μm이고,
    상기 은 분말은 상기 SEM 입경에 대한 PSA(Particle Size Analyzer)를 이용하여 측정한 D50 값의 비가 2.0 이하인 분산성이 개선된 은 분말.
  6. 제5항에 있어서,
    상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 D90 값의 비가 3.0 이하인 분산성이 개선된 은 분말.
  7. 제5항에 있어서,
    상기 은 분말은 상기 SEM 입경에 대한 PSA(particle size analyzer)를 이용하여 측정한 Dmax 값의 비가 8.0 이하인 분산성이 개선된 은 분말.
  8. 제5항에 있어서,
    상기 은 분말의 탭 밀도는 5.5 내지 6.0g/cm3 인 분산성이 개선된 은 분말.
  9. 제5항 내지 제8항 중 어느 한 항의 은 분말을 포함하는 도전성 페이스트.
  10. 제9항의 도전성 페이스트를 이용하여 형성된 전극을 포함하는 태양전지.
KR1020170132988A 2017-10-13 2017-10-13 분산성이 개선된 은 분말의 제조방법 KR102007856B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170132988A KR102007856B1 (ko) 2017-10-13 2017-10-13 분산성이 개선된 은 분말의 제조방법
PCT/KR2018/012095 WO2019074336A1 (ko) 2017-10-13 2018-10-15 분산성이 개선된 은 분말의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170132988A KR102007856B1 (ko) 2017-10-13 2017-10-13 분산성이 개선된 은 분말의 제조방법

Publications (2)

Publication Number Publication Date
KR20190041592A true KR20190041592A (ko) 2019-04-23
KR102007856B1 KR102007856B1 (ko) 2019-08-06

Family

ID=66101623

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170132988A KR102007856B1 (ko) 2017-10-13 2017-10-13 분산성이 개선된 은 분말의 제조방법

Country Status (2)

Country Link
KR (1) KR102007856B1 (ko)
WO (1) WO2019074336A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112371992B (zh) * 2020-10-16 2022-12-20 湖南中伟新银材料科技有限公司 核壳结构银粉的制备方法
CN117380966B (zh) * 2023-10-16 2024-05-07 上海镭立激光科技有限公司 一种晶粒尺寸可控的多晶结构银粉的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255377A (ja) * 2007-03-30 2008-10-23 Mitsubishi Materials Corp 銀微粒子の製造方法
KR20170019727A (ko) * 2015-08-12 2017-02-22 엘에스니꼬동제련 주식회사 고온 소결형 도전성 페이스트용 은 분말의 제조방법
KR20170030929A (ko) * 2015-09-10 2017-03-20 엘에스니꼬동제련 주식회사 은 분말의 제조방법
KR20170035578A (ko) * 2015-09-23 2017-03-31 엘에스니꼬동제련 주식회사 은 분말의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270312A (ja) * 2006-03-31 2007-10-18 Mitsui Mining & Smelting Co Ltd 銀粉の製造方法及び銀粉
CN104128616B (zh) * 2014-08-12 2016-03-23 苏州思美特表面材料科技有限公司 一种金属粉末的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255377A (ja) * 2007-03-30 2008-10-23 Mitsubishi Materials Corp 銀微粒子の製造方法
KR20170019727A (ko) * 2015-08-12 2017-02-22 엘에스니꼬동제련 주식회사 고온 소결형 도전성 페이스트용 은 분말의 제조방법
KR20170030929A (ko) * 2015-09-10 2017-03-20 엘에스니꼬동제련 주식회사 은 분말의 제조방법
KR20170035578A (ko) * 2015-09-23 2017-03-31 엘에스니꼬동제련 주식회사 은 분말의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Dispersion mechanisms of Arabic gum in the preparation of ultrafine silver powder (Korean journal of chemical engineering., v.31 no.8, 2014년, pp.1490 - 1495).

Also Published As

Publication number Publication date
KR102007856B1 (ko) 2019-08-06
WO2019074336A1 (ko) 2019-04-18

Similar Documents

Publication Publication Date Title
US20090023007A1 (en) Highly crystalline silver powder and method for producing the same
KR100895414B1 (ko) 은 코팅분말을 포함하는 전극용 전도성 페이스트 조성물 및그 제조방법
CN111511489B (zh) 经过表面处理的银粉末及其制造方法
CN114315159B (zh) TOPCon电池主栅电极银浆料用玻璃粉及其制备方法与应用
EP1839784A1 (en) Nickel powder, process for producing the same, and conductive paste
KR102454264B1 (ko) 점도 안정성이 향상된 전도성 페이스트용 은 분말 및 이의 제조방법
CN111627590A (zh) 一种片式电感用导电银浆其制备方法
KR20190041592A (ko) 분산성이 개선된 은 분말의 제조방법
KR102007861B1 (ko) 태양전지 전극용 은 분말 및 이를 포함하는 도전성 페이스트
KR20120020343A (ko) 첨가제에 의해 입도와 두께가 제어된 판상 은 분말의 제조방법 및 그 판상 은 입자 분말
KR20210001364A (ko) 구상 은 분말과 이의 제조방법 및 상기 구상 은 분말을 포함하는 은 페이스트 조성물
KR101853420B1 (ko) 고온 소결형 은 분말 및 이의 제조방법
JP7249726B2 (ja) 収縮率の調節が可能な銀粉末の製造方法
KR102197542B1 (ko) 세척 특성이 개선된 은 분말의 제조방법
KR102401091B1 (ko) 탄성도가 우수한 전도성 페이스트용 은 분말 및 이의 제조방법
WO2020106120A1 (ko) 단분산 은 분말의 제조방법
KR102152838B1 (ko) 인쇄 특성이 향상된 도전성 페이스트의 제조방법
KR102152841B1 (ko) 경시 점도변화가 적은 도전성 페이스트의 제조방법
WO2018080091A1 (ko) 은 분말 및 이의 제조방법
KR102061718B1 (ko) 표면 처리된 은 분말 및 이의 제조방법
KR102178010B1 (ko) 세척이 용이한 은 분말의 제조방법
KR102081183B1 (ko) 은 분말의 제조방법
CN116580871A (zh) 适用滤波器浸甩银工艺的厚膜浆料及其制备方法及滤波器
JP2019178400A (ja) 銀被覆金属粉末およびその製造方法、銀被覆金属粉末を含む導電性ペースト、並びに導電性ペーストを用いた導電膜の製造方法
CN111526955A (zh) 银粉末的制造方法以及包含银粉末的导电性浆料

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant