WO2019073781A1 - セラミック基板、積層体およびsawデバイス - Google Patents

セラミック基板、積層体およびsawデバイス Download PDF

Info

Publication number
WO2019073781A1
WO2019073781A1 PCT/JP2018/034960 JP2018034960W WO2019073781A1 WO 2019073781 A1 WO2019073781 A1 WO 2019073781A1 JP 2018034960 W JP2018034960 W JP 2018034960W WO 2019073781 A1 WO2019073781 A1 WO 2019073781A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
main surface
substrate
less
ceramic
Prior art date
Application number
PCT/JP2018/034960
Other languages
English (en)
French (fr)
Inventor
慶一郎 下司
長谷川 幹人
中山 茂
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201880065201.6A priority Critical patent/CN111194299A/zh
Priority to US16/754,811 priority patent/US11750171B2/en
Priority to JP2019548100A priority patent/JP7180607B2/ja
Priority to CN202210949180.2A priority patent/CN115333501A/zh
Publication of WO2019073781A1 publication Critical patent/WO2019073781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02897Means for compensation or elimination of undesirable effects of strain or mechanical damage, e.g. strain due to bending influence
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates

Definitions

  • the present disclosure relates to ceramic substrates, laminates and SAW devices.
  • This application claims priority based on Japanese Patent Application No. 2017-198778 filed on Oct. 12, 2017, and incorporates all the contents described in the aforementioned Japanese application.
  • a surface acoustic wave device is disposed inside a communication device such as a mobile phone for the purpose of removing noise contained in the electric signal.
  • the SAW device has a structure in which an electrode is formed on a piezoelectric substrate. Then, the piezoelectric substrate is disposed on a base substrate made of a material with high heat dissipation for the purpose of heat radiation during use.
  • a substrate made of single crystal sapphire can be employed as the base substrate.
  • a substrate made of single crystal sapphire is adopted as a base substrate, there is a problem that the manufacturing cost of the SAW device increases.
  • a SAW device having a structure in which a ceramic substrate made of polycrystalline spinel is adopted as a base substrate and a piezoelectric substrate and a ceramic substrate are bonded by van der Waals force for example, Patent Document 1 reference).
  • the ceramic substrate of the present disclosure is a ceramic substrate made of polycrystalline ceramic and having a support main surface.
  • This ceramic substrate has an average value of 0.5 ⁇ m or more and less than 15 ⁇ m, and a standard deviation of less than 1.5 times the average value of the crystal grain diameter of the polycrystalline ceramic on the supporting main surface.
  • substrate It is a schematic plan view which shows the support main surface of a ceramic substrate. It is a flowchart which shows the outline of the manufacturing method of a ceramic substrate, a laminated body, and a SAW device. It is a schematic sectional drawing for demonstrating the manufacturing method of a laminated body and a SAW device. It is a schematic sectional drawing for demonstrating the manufacturing method of a laminated body and a SAW device. It is a schematic sectional drawing for demonstrating the manufacturing method of a laminated body and a SAW device. It is the schematic sectional drawing for demonstrating the manufacturing method of a laminated body and a SAW device. It is the schematic for demonstrating the manufacturing method of a laminated body and a SAW device. It is the schematic which shows the structure of a SAW device.
  • the ceramic substrate of the present disclosure it is possible to provide a ceramic substrate capable of suppressing the occurrence of cracks in the manufacturing process of the SAW device.
  • the ceramic substrate of the present disclosure is a ceramic substrate made of polycrystalline ceramic and having a support main surface.
  • This ceramic substrate has an average value of 0.5 ⁇ m or more and less than 15 ⁇ m, and a standard deviation of less than 1.5 times the average value of the crystal grain diameter of the polycrystalline ceramic on the supporting main surface.
  • cracking of the ceramic substrate in the manufacturing process of the SAW device occurs as follows. That is, a stress is applied to the ceramic substrate by a heat cycle or the like including heating and cooling given in the manufacturing process to the laminate in which the ceramic substrate and the piezoelectric substrate are bonded together, and the strength of the ceramic substrate to the stress is insufficient. It is generated by Therefore, the strength of the ceramic substrate can be increased and the occurrence of cracking can be suppressed by reducing the average value of the crystal grain size in the supporting main surface of the ceramic substrate, more specifically, by setting the average value to less than 15 ⁇ m.
  • the average value of the crystal grain size in the support main surface is 0.5 ⁇ m or more and less than 15 ⁇ m. Furthermore, according to the study of the present inventors, even if the average value of the crystal grain size in the main support surface is 0.5 ⁇ m or more and less than 15 ⁇ m, cracking of the ceramic substrate may occur in the manufacturing process of the SAW device. .
  • the average value of the crystal grain size in the main support surface is 0.5 ⁇ m or more and less than 15 ⁇ m, more specifically, the standard of the crystal grain size when the fluctuation of the crystal grain size is large. It became clear that when the deviation was 1.5 times or more of the average value, cracking was likely to occur. Therefore, in order to effectively suppress the cracking of the ceramic substrate in the manufacturing process of the SAW device, not only the average value of the crystal grain size on the support main surface is not less than 0.5 ⁇ m and less than 15 ⁇ m. Needs to be less than 1.5 times the average value.
  • the average value of the crystal grain size of the polycrystalline ceramic on the main support surface is 0.5 ⁇ m or more and less than 15 ⁇ m, and the standard deviation of the crystal grain size is less than 1.5 times the average value. It is done. As a result, according to the ceramic substrate of the present disclosure, it is possible to provide a ceramic substrate capable of suppressing the occurrence of cracks in the manufacturing process of the SAW device.
  • the value of the residual stress in the above-mentioned supporting main surface may be ⁇ 300 MPa or more and 300 MPa or less.
  • the value of residual stress represents compressive stress as negative and tensile stress as positive value.
  • the residual stress value can be measured, for example, using an X-ray diffractometer.
  • the ceramic substrate is spinel (MgAl 2 O 4), alumina (Al 2 O 3), magnesia (MgO), silica (SiO 2), mullite (3Al 2 O 3 ⁇ 2SiO 2 ), cordierite (2MgO ⁇ 2Al 2
  • a laminate of the present disclosure includes the ceramic substrate of the present disclosure and a piezoelectric substrate made of a piezoelectric body and having a bonding main surface, and the main support surface of the ceramic substrate and the bonding main of the piezoelectric substrate. The faces are joined by van der Waals forces.
  • the laminate of the present disclosure includes the above-described ceramic substrate of the present disclosure. Therefore, according to the layered product of this indication, generating of a crack of a ceramic substrate in a manufacturing process of a SAW device can be controlled.
  • the piezoelectric substrate may be made of lithium tantalate (LiTaO 3 ) or lithium niobate (LiNbO 3 ). These materials are suitable as materials constituting the piezoelectric substrate in the laminate of the present disclosure.
  • the SAW device of the present disclosure includes the laminate of the above-described present disclosure and an electrode formed on the main surface of the piezoelectric substrate opposite to the ceramic substrate.
  • the SAW device of the present disclosure includes the above-described ceramic substrate of the present disclosure. Therefore, according to the SAW device of the present disclosure, the occurrence of cracking of the ceramic substrate in the manufacturing process of the SAW device can be suppressed.
  • ceramic substrate 10 in the present embodiment is made of polycrystalline ceramic, and has support main surface 11 for supporting piezoelectric substrate 20 which is another substrate. That is, the ceramic substrate 10 is an aggregate of a large number of crystal grains 10A. As shown in FIG. 2, a large number of crystal grains 10 ⁇ / b> A are exposed on the support main surface 11. In the support main surface 11, the average value of the diameter (crystal grain diameter) of the crystal grain 10A is 0.5 ⁇ m to less than 15 ⁇ m, and the standard deviation is less than 1.5 times the average value.
  • the crystal grain size of each crystal grain 10A can be determined, for example, as follows. First, the main support surface 11 is observed by a microscope to examine the area of the crystal grain 10A.
  • the average value of the crystal grain size can be derived, for example, by observing a plurality of regions of the support main surface 11 with a microscope and calculating the arithmetic mean of the crystal grain diameters in the region.
  • laminate 1 in the present embodiment includes ceramic substrate 10 and piezoelectric substrate 20.
  • the piezoelectric substrate 20 is made of, for example, a single-crystal piezoelectric material such as single-crystal lithium tantalate or single-crystal lithium niobate.
  • the ceramic substrate 10 is made of one or more materials, preferably any one material selected from the group consisting of spinel, alumina, magnesia, silica, mullite, cordierite, calcia, titania, silicon nitride, aluminum nitride and silicon carbide. Of polycrystalline ceramic.
  • the piezoelectric substrate 20 has an exposed major surface 21 which is one major surface, and a bonding major surface 22 which is the major surface opposite to the exposed major surface 21. Piezoelectric substrate 20 is arranged such that coupling main surface 22 is in contact with support main surface 11 of ceramic substrate 10. The ceramic substrate 10 and the piezoelectric substrate 20 are coupled by van der Waals force.
  • the ceramic substrate 10 In the ceramic substrate 10, the average value of the crystal grain size of the polycrystalline ceramic on the support main surface 11 is not less than 0.5 ⁇ m and less than 15 ⁇ m, and the standard deviation of the crystal grain size is not more than 1.5 times the average value. ing. Therefore, the ceramic substrate 10 is a ceramic substrate capable of suppressing the occurrence of cracks in the manufacturing process of the SAW device.
  • the laminate 1 further includes a ceramic substrate 10. Therefore, the laminate 1 is a laminate in which the occurrence of cracking of the ceramic substrate 10 in the manufacturing process of the SAW device is suppressed.
  • the value of the residual stress in the support major surface 11 is preferably -300 MPa or more and 300 MPa or less. As described above, by setting the absolute value of the residual stress in the support main surface 11 to 300 MPa or less, the occurrence of cracking in the manufacturing process of the SAW device can be suppressed more reliably.
  • the value of the residual stress in the main support surface 11 is more preferably -200 MPa or more and 200 MPa or less, and further preferably -100 MPa or more and 100 MPa or less.
  • the standard deviation of the crystal grain size in the supporting major surface 11 of the ceramic substrate 10 be less than one time the average value. This makes it possible to more reliably suppress the occurrence of cracks in the manufacturing process of the SAW device.
  • a substrate preparation step is first performed as a step (S10).
  • this step (S10) one or more materials selected from the group consisting of spinel, alumina, magnesia, silica, mullite, cordierite, calcia, titania, silicon nitride, aluminum nitride and silicon carbide with reference to FIG.
  • a ceramic substrate 10 made of polycrystalline ceramic is prepared.
  • a ceramic substrate 10 made of polycrystalline ceramic composed of any one material selected from the above group is prepared.
  • magnesia powder and alumina powder are mixed to prepare a raw material powder, and a molded body is manufactured by molding.
  • the formed body can be produced, for example, by performing CIP (Cold Isostatic Press) after performing preforming by press forming.
  • the sintering process can be performed, for example, by a method such as a vacuum sintering method or HIP (Hot Isostatic Press). Thereby, a sintered body is obtained. Thereafter, the sintered body is sliced to obtain a ceramic substrate 10 having a desired shape (thickness) (see FIG. 4).
  • the size of the crystal grain 10A and the variation thereof can be adjusted to a desired value range by adjusting the temperature rising rate at sintering, the sintering temperature, and the holding time at sintering.
  • the temperature raising rate can be, for example, 5 ° C./min or more and 10 ° C. or less or less.
  • the sintering temperature can be, for example, 1500 ° C. or more and 1800 ° C. or less.
  • the holding time at the time of sintering can be, for example, 0.5 hours or more and 2 hours or less.
  • a rough polishing step is performed as a step (S20).
  • a rough polishing process is performed on support main surface 11 of ceramic substrate 10 prepared in step (S10).
  • an annealing step is performed as a step (S30).
  • the ceramic substrate 10 is annealed. Specifically, for example, the ceramic substrate subjected to polishing in the step (S20) is heated to a temperature range of 1000 ° C. or more and 1500 ° C. or less, and held for 2 hours or more and 10 hours or less. Thereby, the residual stress introduced to the ceramic substrate 10 in the steps (S10) to (S20) is reduced. As a result, it becomes easy to set the value of the residual stress in the support main surface 11 to ⁇ 300 MPa or more and 300 MPa or less.
  • a finish polishing step is performed as a step (S40).
  • a finish polishing process is performed on support main surface 11 of ceramic substrate 10 annealed in step (S30). Thereby, the ceramic substrate 10 of the present embodiment is completed.
  • a bonding step is performed as a step (S50).
  • the ceramic substrate 10 on which the finish polishing is performed in the step (S40) and the piezoelectric substrate 20 made of lithium tantalate or lithium niobate prepared separately are bonded.
  • the ceramic substrate 10 and the piezoelectric substrate 20 are cleaned and dried, they are inserted into the chamber and the pressure in the chamber is reduced.
  • Ar (argon) beam is irradiated to support main surface 11 and bonding main surface 22.
  • the support major surface 11 of the ceramic substrate 10 and the coupling major surface 22 of the piezoelectric substrate 20 are kept clean.
  • the ceramic substrate 10 and the piezoelectric substrate 20 are bonded to each other such that the bonding main surface 22 of the piezoelectric substrate 20 and the support main surface 11 of the ceramic substrate 10 are in contact with each other. Thereby, the ceramic substrate 10 and the piezoelectric substrate 20 are bonded by van der Waals force. As a result, the laminate 1 of the present embodiment is obtained.
  • step (S60) a thickness reduction step is performed as step (S60).
  • processing is performed to reduce the thickness of piezoelectric substrate 20 of laminate 1 obtained in step (S50). Specifically, for example, a grinding process is performed on exposed main surface 21 of piezoelectric substrate 20. Thereby, the thickness of the piezoelectric substrate 20 is reduced to a thickness suitable for the SAW device.
  • an electrode formation step is performed as a step (S70).
  • a comb-like electrode is formed on exposed main surface 21 of piezoelectric substrate 20.
  • 6 is a cross-sectional view taken along line VI-VI of FIG.
  • a conductor film made of a conductor such as Al is It is formed.
  • the formation of the conductor film can be performed by sputtering, for example.
  • a resist is applied on the conductor film to form a resist film, and then exposure and development are performed to form a region other than the region corresponding to the shape of the desired input electrode 30 and output electrode 40.
  • An opening is formed in the Then, using the resist film in which the opening is formed as a mask, for example, wet etching is performed to form a plurality of pairs of input side electrode 30 and output side electrode 40 as shown in FIGS. 6 and 7.
  • Ru. 6 and 7 show regions corresponding to the pair of input electrodes 30 and output electrodes 40.
  • FIG. The electrode spacing of the comb-teeth-shaped electrodes in the input side electrode 30 and the output side electrode 40 can be appropriately determined according to the frequency of the signal to be output.
  • a chipping process is performed as a process (S80).
  • the laminate 1 in which a plurality of pairs of the input electrode 30 and the output electrode 40 are formed is cut in the thickness direction to form a pair of the input electrode 30 and the output electrode. It is separated into a plurality of chips including 40.
  • step (S80) input side wiring 51 and output side wiring 61 are formed on the chip manufactured in step (S80), whereby SAW device 100 (SAW according to the present embodiment) is formed. Filter) is completed.
  • SAW device 100 SAW according to the present embodiment
  • the average value of the crystal grain size of polycrystalline ceramic on support main surface 11 is not less than 0.5 ⁇ m and less than 15 ⁇ m, and the standard deviation of the crystal grain size is an average value. It is said that it is less than 1.5 times. Therefore, generation of cracks in the ceramic substrate 10 in the manufacturing process of the SAW device is suppressed.
  • the annealing step may be added again after the step (S40).
  • SAW device 100 in the present embodiment includes laminate 1 including ceramic substrate 10 and piezoelectric substrate 20 coupled by van der Waals force, and exposed major surface 21 of piezoelectric substrate 20.
  • laminate 1 including ceramic substrate 10 and piezoelectric substrate 20 coupled by van der Waals force, and exposed major surface 21 of piezoelectric substrate 20.
  • the input side electrode 30 and the output side electrode 40 which are a pair of comb-tooth shaped electrodes formed to be in contact with the upper side, the input side wiring 51 connected to the input side electrode 30, and the output side electrode 40 And an output side wire 61 connected thereto.
  • the input side electrode 30 includes a first portion 31 and a second portion 32.
  • the first portion 31 includes a linear base 31A, and a plurality of linear protrusions 31B that project from the base 31A in a direction perpendicular to the extending direction of the base 31A.
  • the second portion 32 protrudes from the base portion 32A extending in parallel to the base portion 31A and the base portion 32A in a direction perpendicular to the extending direction of the base portion 32A, and enters between the adjacent protrusions 31B.
  • a plurality of linear protrusions 32B are disposed at a predetermined constant interval.
  • the output side electrode 40 includes a first portion 41 and a second portion 42.
  • the first portion 41 includes a linear base 41A, and a plurality of linear protrusions 41B that project from the base 41A in a direction perpendicular to the extending direction of the base 41A.
  • the second portion 42 protrudes from the base portion 42A extending in parallel with the base portion 41A and the base portion 42A in a direction perpendicular to the extending direction of the base portion 42A, and enters between the adjacent protrusions 41B.
  • a plurality of linear protrusions 42B are arranged at a predetermined constant interval.
  • the surface acoustic wave generated by the input signal is most strongly excited when its wavelength coincides with the electrode period, and attenuates as the deviation from the electrode period increases. As a result, only a signal of a wavelength close to the electrode period is output through the output side electrode 40 and the output side wiring 61.
  • the temperature of the piezoelectric substrate 20 rises.
  • the piezoelectric substrate 20 is disposed so as to be in contact with the ceramic substrate 10 made of a material having high heat dissipation. Therefore, the SAW device 100 has high reliability. Furthermore, since the SAW device 100 includes the ceramic substrate 10 of the present embodiment, cracking of the ceramic substrate in the manufacturing process is suppressed. As a result, the SAW device 100 is a SAW device 100 that can be manufactured while maintaining a high yield.
  • Samples of 17 ceramic substrates (spinel substrates) having different average values and standard deviations of crystal grain sizes on the main support surface and residual stress on the support main surface were prepared (Sample Nos. 1 to 17). Using this, the steps (S10) to (S70) of the above-described embodiment were carried out, and the state of occurrence of cracks in the ceramic substrate was confirmed.
  • the crystal grain size was measured by observing the polished main support surface using a microscope ECLIPSE LV100 manufactured by Nikon Corporation. The mean value and standard deviation of the grain size were calculated by the built-in image processing software of the microscope. The residual stress in the main support surface was measured by stress measurement by X-ray diffraction method.
  • the evaluation regarding the occurrence of cracking is C. From this, it is confirmed that the average value of the crystal grain size in the main support surface needs to be 0.5 ⁇ m or more and less than 15 ⁇ m. Moreover, even if the average value of the crystal grain size is in the range of 0.5 ⁇ m to less than 15 ⁇ m, a sample having a ratio ( ⁇ / ⁇ ) of the standard deviation of the crystal grain size to the average value of the crystal grain size of 1.5 or more The evaluation of the occurrence of cracking is C for (Samples 2, 5, 8, 11, 14). From this, it is understood that, in addition to the condition of the above-mentioned average value, it is necessary to make the standard deviation of crystal grain size less than 1.5 times the average value in order to suppress the occurrence of cracking.
  • SYMBOLS 1 laminated body 10 ceramic substrate, 10A crystal grain, 11 support main surface 20 piezoelectric substrate, 21 exposed main surface, 22 coupling main surface 30 input side electrode 31 first portion 31A base portion 31B protrusion 32 second Part, 32A base part, 32B projection part 40 output side electrode, 41 first part, 41A base part, 41B projection part 42 second part, 42A base part, 42B projection part 51 input side wiring, 61 output side wiring 100 SAW device

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

セラミック基板は、多結晶セラミックから構成され、支持主面を有するセラミック基板である。セラミック基板は、支持主面において、多結晶セラミックの結晶粒径の平均値が0.5μm以上15μm未満であり、標準偏差が上記平均値の1.5倍未満である。

Description

セラミック基板、積層体およびSAWデバイス
 本開示はセラミック基板、積層体およびSAWデバイスに関するものである。
 本出願は、2017年10月12日出願の日本出願第2017-198778号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
 携帯電話機などの通信機器の内部には、電気信号に含まれるノイズを除去する目的で、SAWデバイス(Surface Acoustic Wave Device;表面弾性波素子)が配置される。SAWデバイスは、圧電体基板上に電極が形成された構造を有する。そして、使用時の放熱を目的として、圧電体基板は放熱性の高い材料からなるベース基板上に配置される。
 ベース基板としては、たとえば単結晶サファイアからなる基板を採用することができる。しかし、単結晶サファイアからなる基板をベース基板として採用すると、SAWデバイスの製造コストが上昇するという問題がある。これに対し、ベース基板として多結晶スピネルからなるセラミック基板を採用し、圧電体基板とセラミック基板とをファンデルワールス力により結合させた構造を有するSAWデバイスが提案されている(たとえば、特許文献1参照)。
特開2011-66818号公報
 本開示のセラミック基板は、多結晶セラミックから構成され、支持主面を有するセラミック基板である。このセラミック基板は、支持主面において、多結晶セラミックの結晶粒径の、平均値が0.5μm以上15μm未満であり、標準偏差が上記平均値の1.5倍未満である。
セラミック基板および圧電体基板を含む積層体の構造を示す概略断面図である。 セラミック基板の支持主面を示す概略平面図である。 セラミック基板、積層体およびSAWデバイスの製造方法の概略を示すフローチャートである。 積層体およびSAWデバイスの製造方法を説明するための概略断面図である。 積層体およびSAWデバイスの製造方法を説明するための概略断面図である。 積層体およびSAWデバイスの製造方法を説明するための概略断面図である。 積層体およびSAWデバイスの製造方法を説明するための概略図である。 SAWデバイスの構造を示す概略図である。
 [本開示が解決しようとする課題]
 本発明者らの検討によれば、セラミック基板を用いた従来の技術では、SAWデバイスの製造プロセスにおいてセラミック基板に割れが発生する場合がある。割れの発生は、SAWデバイスの製造における歩留りを悪化させる原因となる。
 そこで、SAWデバイスの製造プロセスにおける割れの発生を抑制することが可能なセラミック基板、当該セラミック基板を含む積層体およびSAWデバイスを提供することを目的の1つとする。
 [本開示の効果]
 本開示のセラミック基板によれば、SAWデバイスの製造プロセスにおける割れの発生を抑制することが可能なセラミック基板を提供することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示のセラミック基板は、多結晶セラミックから構成され、支持主面を有するセラミック基板である。このセラミック基板は、支持主面において、多結晶セラミックの結晶粒径の、平均値が0.5μm以上15μm未満であり、標準偏差が上記平均値の1.5倍未満である。
 本発明者らの検討によれば、SAWデバイスの製造プロセスにおけるセラミック基板の割れは以下のようにして起こる。すなわち、セラミック基板と圧電体基板とが貼り合わされた積層体に対して製造プロセスにおいて与えられる加熱および冷却を含むヒートサイクル等によってセラミック基板に応力が負荷され、当該応力に対するセラミック基板の強度が不足することにより発生する。そのため、セラミック基板の支持主面における結晶粒径の平均値を小さくすること、より具体的には15μm未満とすることにより、セラミック基板の強度を上昇させ、割れの発生を抑制することができる。しかし、結晶粒径の平均値を0.5μm未満にまで小さくすると、セラミック基板における十分な焼結を確保することが難しくなり、かえって強度が低下する傾向にある。そのため、支持主面における結晶粒径の平均値は、0.5μm以上15μm未満とする必要がある。さらに、本発明者らの検討によれば、支持主面における結晶粒径の平均値が0.5μm以上15μm未満であっても、SAWデバイスの製造プロセスにおけるセラミック基板の割れが発生する場合がある。この原因についてさらに検討した結果、支持主面における結晶粒径の平均値が0.5μm以上15μm未満であっても、結晶粒径のばらつきが大きい場合、より具体的には、結晶粒径の標準偏差が平均値の1.5倍以上である場合、割れが発生し易くなることが明らかとなった。したがって、SAWデバイスの製造プロセスにおけるセラミック基板の割れを有効に抑制するためには、支持主面における結晶粒径の平均値を0.5μm以上15μm未満とするだけでなく、結晶粒径の標準偏差を平均値の1.5倍未満とする必要がある。
 本開示のセラミック基板においては、支持主面における多結晶セラミックの結晶粒径の平均値が0.5μm以上15μm未満とされるとともに、結晶粒径の標準偏差が平均値の1.5倍未満とされている。その結果、本開示のセラミック基板によれば、SAWデバイスの製造プロセスにおける割れの発生を抑制することが可能なセラミック基板を提供することができる。
 上記セラミック基板において、上記支持主面における残留応力の値が-300MPa以上300MPa以下であってもよい。このように、支持主面における残留応力の絶対値を300MPa以下とすることにより、SAWデバイスの製造プロセスにおける割れの発生をより確実に抑制することができる。ここで、残留応力の値は、圧縮応力を負、引張応力を正の値で表す。残留応力の値は、たとえばX線回折装置を用いて測定することができる。
 上記セラミック基板は、スピネル(MgAl)、アルミナ(Al)、マグネシア(MgO)、シリカ(SiO)、ムライト(3Al・2SiO)、コージェライト(2MgO・2Al・5SiO)、カルシア(CaO)、チタニア(TiO)、窒化珪素(Si)、窒化アルミニウム(AlN)および炭化珪素(SiC)からなる群から選択される1種以上の材料から構成されていてもよい。これらの材料は、本願のセラミック基板を構成する材料として好適である。これらの材料の中でも、スピネルが好ましい。
 本開示の積層体は、上記本開示のセラミック基板と、圧電体からなり、結合主面を有する圧電体基板と、を備え、上記セラミック基板の上記支持主面と上記圧電体基板の上記結合主面がファンデルワールス力により結合されている。本開示の積層体は、上記本開示のセラミック基板を含む。そのため、本開示の積層体によれば、SAWデバイスの製造プロセスにおけるセラミック基板の割れの発生を抑制することができる。
 上記積層体において、圧電体基板は、タンタル酸リチウム(LiTaO)またはニオブ酸リチウム(LiNbO)からなっていてもよい。これらの材料は、本開示の積層体における圧電体基板を構成する材料として好適である。
 本開示のSAWデバイスは、上記本開示の積層体と、圧電体基板のセラミック基板とは反対側の主面上に形成される電極と、を備える。本開示のSAWデバイスは、上記本開示のセラミック基板を含む。そのため、本開示のSAWデバイスによれば、SAWデバイスの製造プロセスにおけるセラミック基板の割れの発生を抑制することができる。
 [本開示の実施形態の詳細]
 次に、本開示のセラミック基板および積層体の一実施の形態を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 図1および図2を参照して、本実施の形態におけるセラミック基板10は、多結晶セラミックから構成され、他の基板である圧電体基板20を支持するための支持主面11を有する。すなわち、セラミック基板10は、多数の結晶粒10Aの集合体である。図2に示すように、支持主面11には、多数の結晶粒10Aが露出する。支持主面11において、結晶粒10Aの径(結晶粒径)の、平均値が0.5μm以上15μm未満であり、標準偏差が上記平均値の1.5倍未満である。ここで、各結晶粒10Aの結晶粒径は、たとえば以下のように決定することができる。まず、顕微鏡によって支持主面11を観察し、結晶粒10Aの面積を調査する。そして、当該面積に対応する円の直径を結晶粒径とする。結晶粒径の平均値は、たとえば顕微鏡によって支持主面11の複数の領域を観察し、当該領域内の結晶粒径の算術平均を算出することにより導出することができる。
 図1を参照して、本実施の形態における積層体1は、セラミック基板10と圧電体基板20とを備える。圧電体基板20は、たとえば単結晶タンタル酸リチウム、単結晶ニオブ酸リチウムなどの単結晶の圧電体からなる。セラミック基板10は、スピネル、アルミナ、マグネシア、シリカ、ムライト、コージェライト、カルシア、チタニア、窒化珪素、窒化アルミニウムおよび炭化珪素からなる群から選択される一種以上、好ましくはいずれか1つの材料から構成される多結晶セラミックからなる。
 圧電体基板20は、一方の主面である露出主面21と、露出主面21とは反対側の主面である結合主面22とを有する。圧電体基板20は、その結合主面22がセラミック基板10の支持主面11に接触するように配置される。セラミック基板10と圧電体基板20とは、ファンデルワールス力により結合されている。
 セラミック基板10においては、支持主面11における多結晶セラミックの結晶粒径の平均値が0.5μm以上15μm未満とされるとともに、結晶粒径の標準偏差が平均値の1.5倍未満とされている。そのため、セラミック基板10は、SAWデバイスの製造プロセスにおける割れの発生を抑制することが可能なセラミック基板となっている。また、積層体1は、セラミック基板10を含む。そのため、積層体1は、SAWデバイスの製造プロセスにおけるセラミック基板10の割れの発生が抑制された積層体となっている。
 セラミック基板10において、支持主面11における残留応力の値は-300MPa以上300MPa以下であることが好ましい。このように、支持主面11における残留応力の絶対値を300MPa以下とすることにより、SAWデバイスの製造プロセスにおける割れの発生をより確実に抑制することができる。支持主面11における残留応力の値は-200MPa以上200MPa以下であることがより好ましく、-100MPa以上100MPa以下であることがさらに好ましい。
 セラミック基板10の支持主面11において、結晶粒径の標準偏差は平均値の1倍未満であることがより好ましい。これにより、SAWデバイスの製造プロセスにおける割れの発生をより確実に抑制することができる。
 次に、本実施の形態におけるセラミック基板10、積層体1およびSAWデバイス100の製造方法を説明する。図3を参照して、本実施の形態のセラミック基板10、積層体1およびSAWデバイス100の製造方法では、まず工程(S10)として基板準備工程が実施される。この工程(S10)では、図4を参照してスピネル、アルミナ、マグネシア、シリカ、ムライト、コージェライト、カルシア、チタニア、窒化珪素、窒化アルミニウムおよび炭化珪素からなる群から選択される1種以上の材料から構成される多結晶セラミックからなるセラミック基板10が準備される。たとえば、上記群から選択されるいずれか1つの材料から構成される多結晶セラミックからなるセラミック基板10が準備される。具体的には、たとえば多結晶スピネルからなるセラミック基板10を準備する場合、マグネシア粉末とアルミナ粉末とを混合して原料粉末を準備し、成形することにより成形体を作製する。成形体は、たとえばプレス成形により予備成形を実施した後、CIP(Cold Isostatic Press)を実施することにより作製することができる。
 次に、成形体に対して焼結処理を実施する。焼結処理は、たとえば真空焼結法、HIP(Hot Isostatic Press)などの方法により実施することができる。これにより、焼結体が得られる。その後、焼結体に対してスライス加工を実施することにより、所望の形状(厚み)を有するセラミック基板10が得られる(図4参照)。ここで、結晶粒10Aの大きさおよびそのばらつきは、焼結時の昇温速度、焼結温度および焼結における保持時間を調整することにより、所望の値の範囲に調整することができる。具体的には、昇温速度はたとえば5℃/分以上10以下℃/分以下とすることができる。焼結温度はたとえば1500℃以上1800℃以下とすることができる。焼結時の保持時間はたとえば0.5時間以上2時間以下とすることができる。このように、短時間で昇温し、焼結時間も短時間とすることにより、異常粒成長の発生を抑制し、結晶粒径の平均値を0.5μm以上15μm未満にするとともに、結晶粒径の標準偏差を上記平均値の1.5倍未満とすることが容易となる。
 次に、工程(S20)として粗研磨工程が実施される。この工程(S20)では、図4を参照して、工程(S10)において準備されたセラミック基板10の支持主面11に対して粗研磨処理が実施される。
 次に、工程(S30)としてアニール工程が実施される。この工程(S30)では、セラミック基板10に対して、アニールが実施される。具体的には、たとえば工程(S20)において研磨が実施されたセラミック基板が1000℃以上1500℃以下の温度域に加熱され、2時間以上10時間以下の時間保持される。これにより、工程(S10)~(S20)においてセラミック基板10に導入された残留応力が低下する。その結果、支持主面11における残留応力の値を-300MPa以上300MPa以下とすることが容易となる。
 次に、工程(S40)として仕上研磨工程が実施される。この工程(S40)では、図4を参照して、工程(S30)においてアニールされたセラミック基板10の支持主面11に対して仕上研磨処理が実施される。これにより、本実施の形態のセラミック基板10が完成する。
 次に、工程(S50)として貼り合わせ工程が実施される。この工程(S50)では、工程(S40)において仕上研磨が実施されたセラミック基板10と、別途準備されたタンタル酸リチウムまたはニオブ酸リチウムからなる圧電体基板20とが貼り合わされる。具体的には、たとえばセラミック基板10および圧電体基板20が洗浄され、乾燥された後、チャンバ―内に挿入され、チャンバ―内が減圧される。そして、図4において矢印で示されるように、支持主面11および結合主面22に対して、たとえばAr(アルゴン)ビームが照射される。これにより、セラミック基板10の支持主面11および圧電体基板20の結合主面22が清浄な状態とされる。その後、圧電体基板20の結合主面22とセラミック基板10の支持主面11とが接触するように、セラミック基板10と圧電体基板20とが貼り合わされる。これにより、セラミック基板10と圧電体基板20とは、ファンデルワールス力により結合する。その結果、本実施の形態の積層体1が得られる。
 引き続き、セラミック基板10を含む積層体1を用いたSAWデバイスの製造方法について説明する。図3を参照して、工程(S50)に続いて、工程(S60)として減厚工程が実施される。この工程(S60)では、図1および図5を参照して、工程(S50)において得られた積層体1の圧電体基板20の厚みを小さくする加工が実施される。具体的には、たとえば圧電体基板20の露出主面21に対して研削処理が実施される。これにより、圧電体基板20の厚みが、SAWデバイスに適した厚みにまで低減される。
 次に、工程(S70)として電極形成工程が実施される。この工程(S70)では、図5~図7を参照して、圧電体基板20の露出主面21に櫛歯型の電極が形成される。図6は、図7の線分VI-VIに沿う断面図である。具体的には、図6および図7を参照して、工程(S60)において適切な厚みに調整された圧電体基板20の露出主面21上に、Alなどの導電体からなる導電体膜が形成される。導電体膜の形成は、たとえばスパッタリングにより実施することができる。その後、導電体膜上にレジストが塗布されてレジスト膜が形成された後、露光および現像が実施されることにより、所望の入力側電極30および出力側電極40の形状に対応する領域以外の領域に開口が形成される。そして、開口が形成されたレジスト膜をマスクとして用いて、たとえばウェットエッチングを実施することにより、図6および図7に示すように入力側電極30と出力側電極40とからなる対が複数形成される。なお、図6および図7は、一対の入力側電極30および出力側電極40に対応する領域を表している。入力側電極30および出力側電極40における櫛歯型電極の電極間隔は、出力すべき信号の周波数に応じて適宜決定することができる。
 次に、工程(S80)としてチップ化工程が実施される。この工程(S80)では、入力側電極30と出力側電極40とからなる対が複数形成された積層体1が厚さ方向に切断されることにより、1対の入力側電極30および出力側電極40を含む複数のチップに分離される。
 その後、図7および図8を参照して、工程(S80)において作製されたチップに対して入力側配線51および出力側配線61が形成されることにより、本実施の形態におけるSAWデバイス100(SAWフィルタ)が完成する。
 上記SAWデバイス100の製造プロセスにおいては、積層体1に対して加熱および冷却を含むヒートサイクルが与えられる。その結果、セラミック基板10には応力が負荷される。しかし、本実施の形態のセラミック基板10においては、支持主面11における多結晶セラミックの結晶粒径の平均値が0.5μm以上15μm未満とされるとともに、結晶粒径の標準偏差が平均値の1.5倍未満とされている。そのため、SAWデバイスの製造プロセスにおいてセラミック基板10に割れが発生することが抑制される。なお、支持主面11における残留応力の絶対値を一層低減する観点から、工程(S40)の後に再度アニール工程を追加してもよい。
 図8を参照して、本実施の形態におけるSAWデバイス100は、ファンデルワールス力により結合されたセラミック基板10と圧電体基板20とを含む積層体1と、圧電体基板20の露出主面21上に接触するように形成された1対の櫛歯形状を有する電極である入力側電極30および出力側電極40と、入力側電極30に接続された入力側配線51と、出力側電極40に接続された出力側配線61とを備えている。
 入力側電極30は、第1部分31と第2部分32とを含む。第1部分31は、直線状のベース部31Aと、ベース部31Aの延在方向に垂直な方向にベース部31Aから突出する直線状の複数の突出部31Bとを含む。第2部分32は、ベース部31Aと平行に延在する直線状のベース部32Aと、ベース部32Aの延在方向に垂直な方向にベース部32Aから突出し、隣り合う突出部31Bの間に進入する直線状の複数の突出部32Bとを含む。突出部31Bと突出部32Bとは、予め定められた一定の間隔をおいて配置される。
 出力側電極40は、第1部分41と第2部分42とを含む。第1部分41は、直線状のベース部41Aと、ベース部41Aの延在方向に垂直な方向にベース部41Aから突出する直線状の複数の突出部41Bとを含む。第2部分42は、ベース部41Aと平行に延在する直線状のベース部42Aと、ベース部42Aの延在方向に垂直な方向にベース部42Aから突出し、隣り合う突出部41Bの間に進入する直線状の複数の突出部42Bとを含む。突出部41Bと突出部42Bとは、予め定められた一定の間隔をおいて配置される。
 入力側配線51から入力側電極30に入力信号である交流電圧が印加されると、圧電効果により圧電体基板20の露出主面21(表面)に弾性表面波が生じ、出力側電極40側に伝達される。このとき、入力側電極30および出力側電極40は図1に示すように櫛歯形状を有しており、突出部31Bと突出部32Bとの間隔、および突出部41Bと突出部42Bとの間隔は一定である。したがって、入力側電極30から出力側電極40に向かう方向において、圧電体基板20の露出主面21のうち電極が形成された領域は所定の周期(電極周期)で存在する。そのため、入力信号により発生した弾性表面波は、その波長が電極周期に一致する場合に最も強く励振され、電極周期とのずれが大きいほど減衰する。その結果、電極周期に近い波長の信号のみが出力側電極40および出力側配線61を介して出力される。
 ここで、上記動作において、圧電体基板20の温度が上昇する。本実施の形態のSAWデバイス100においては、圧電体基板20に、放熱性の高い材料からなるセラミック基板10が接触するように配置されている。そのため、SAWデバイス100は高い信頼性を有している。さらに、SAWデバイス100は、本実施の形態のセラミック基板10を含むため、製造プロセスにおけるセラミック基板の割れが抑制される。その結果、SAWデバイス100は、高い歩留りを維持しつつ製造可能なSAWデバイス100となっている。
 支持主面における結晶粒径の平均値および標準偏差、ならびに支持主面における残留応力の異なる17のセラミック基板(スピネル基板)のサンプルを準備した(サンプルNo.1~17)。これを用いて上記実施の形態の工程(S10)~(S70)までを実施し、セラミック基板における割れの発生の状態を確認した。
 なお、結晶粒径の測定は、Nikon社製顕微鏡ECLIPSE LV100を用い、研磨された支持主面を観察することにより行った。結晶粒径の平均値および標準偏差は、当該顕微鏡の内蔵画像処理ソフトウェアにより算出した。支持主面における残留応力は、X線回折法による応力測定にて測定した。使用X線はCu-Kaラインフォーカス、励起条件は45kV 40mA、走査方法はsin2Ψ法(並傾法)、測定範囲は2θ=93°~95.5°、ステップ幅は0.03゜、Ψ条件は13水準(+側6水準、零点1水準、-側6水準){0≦sin2Ψ≦0.5}、積算時間は1または3sec、測定面はMgAl(731)面とした。実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、SAWデバイスの製造プロセスにおけるセラミック基板の割れについて、割れの発生が見られなかったものをA、僅かな割れが見られたものをB、明確な割れが見られたものをCと評価した。
 表1を参照して、支持主面における結晶粒径の平均値が0.5μm以上15μm未満の範囲外であるサンプル1および17については、割れの発生に関する評価がCとなっている。このことから、支持主面における結晶粒径の平均値は、0.5μm以上15μm未満とする必要があることが確認される。また、結晶粒径の平均値が0.5μm以上15μm未満の範囲内であっても、結晶粒径の平均値に対する結晶粒径の標準偏差の比(σ/μ)が1.5以上のサンプル(サンプル2、5、8、11,14)については、割れの発生に関する評価がCとなっている。このことから、割れの発生を抑制するためには、上記平均値の条件に加えて、結晶粒径の標準偏差を平均値の1.5倍未満とする必要があることが分かる。
 さらに、上記平均値の条件および標準偏差の条件を満たす場合であっても、支持主面における残留応力の値が-300MPa以上300MPa以下の範囲外であるサンプル(サンプル3、6、9、12、15)については、割れの発生に関する評価がBとなっているのに対し、-300MPa以上300MPa以下の範囲内であるサンプルについては、割れの発生に関する評価がAとなっている。このことから、支持主面における残留応力の絶対値を300MPa以下とすることにより、SAWデバイスの製造プロセスにおける割れの発生をより確実に抑制できることが確認される。
 今回開示された実施の形態および実施例はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 積層体、10 セラミック基板、10A 結晶粒、11 支持主面
20 圧電体基板、21 露出主面、22 結合主面
30 入力側電極、31 第1部分、31A ベース部、31B 突出部
32 第2部分、32A ベース部、32B 突出部
40 出力側電極、41 第1部分、41A ベース部、41B 突出部
42 第2部分、42A ベース部、42B 突出部
51 入力側配線、61 出力側配線
100 SAWデバイス

Claims (8)

  1.  多結晶セラミックから構成され、支持主面を有するセラミック基板であって、
     前記支持主面において、前記多結晶セラミックの結晶粒径の、
     平均値が0.5μm以上15μm未満であり、
     標準偏差が前記平均値の1.5倍未満である、セラミック基板。
  2.  前記支持主面における残留応力の値が-300MPa以上300MPa以下である、請求項1に記載のセラミック基板。
  3.  スピネル、アルミナ、マグネシア、シリカ、ムライト、コージェライト、カルシア、チタニア、窒化珪素、窒化アルミニウムおよび炭化珪素からなる群から選択される1種以上の材料から構成される、請求項1または請求項2に記載のセラミック基板。
  4.  前記多結晶セラミックが、スピネルから構成される、請求項1または請求項2に記載のセラミック基板。
  5.  前記支持主面における残留応力の値が-300MPa以上300MPa以下であり、
     前記多結晶セラミックが、スピネルから構成される、請求項1に記載のセラミック基板。
  6.  請求項1~請求項5のいずれか1項に記載のセラミック基板と、
     圧電体からなり、結合主面を有する圧電体基板と、を備え、
     前記セラミック基板の前記支持主面と前記圧電体基板の前記結合主面がファンデルワールス力により結合されている、積層体。
  7.  前記圧電体基板は、タンタル酸リチウムまたはニオブ酸リチウムからなる、請求項6に記載の積層体。
  8.  請求項6または請求項7に記載の積層体と、
     前記圧電体基板の前記セラミック基板とは反対側の主面上に形成される電極と、を備える、SAWデバイス。
PCT/JP2018/034960 2017-10-12 2018-09-21 セラミック基板、積層体およびsawデバイス WO2019073781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880065201.6A CN111194299A (zh) 2017-10-12 2018-09-21 陶瓷基板、层状体和saw器件
US16/754,811 US11750171B2 (en) 2017-10-12 2018-09-21 Layered body, and saw device
JP2019548100A JP7180607B2 (ja) 2017-10-12 2018-09-21 セラミック基板、積層体およびsawデバイス
CN202210949180.2A CN115333501A (zh) 2017-10-12 2018-09-21 陶瓷基板、层状体和saw器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-198778 2017-10-12
JP2017198778 2017-10-12

Publications (1)

Publication Number Publication Date
WO2019073781A1 true WO2019073781A1 (ja) 2019-04-18

Family

ID=66100590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034960 WO2019073781A1 (ja) 2017-10-12 2018-09-21 セラミック基板、積層体およびsawデバイス

Country Status (5)

Country Link
US (1) US11750171B2 (ja)
JP (1) JP7180607B2 (ja)
CN (2) CN111194299A (ja)
TW (1) TW201925137A (ja)
WO (1) WO2019073781A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220227A (ja) * 2000-01-31 2001-08-14 Kyocera Corp ダイヤフラム基板
JP2009023908A (ja) * 2000-12-04 2009-02-05 Toshiba Corp 薄膜基板の製造方法
JP2016100729A (ja) * 2014-11-20 2016-05-30 太陽誘電株式会社 弾性波デバイスの製造方法
WO2016208766A1 (ja) * 2015-06-26 2016-12-29 京セラ株式会社 セラミック基板およびこれを用いた実装用基板ならびに電子装置
JP2017095333A (ja) * 2015-11-27 2017-06-01 株式会社ニッカトー 高温特性及び耐食性に優れたアルミナ焼結体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616426B1 (en) * 1993-03-15 1998-09-16 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device having a lamination structure
JP4077888B2 (ja) 1995-07-21 2008-04-23 株式会社東芝 セラミックス回路基板
JPH10316466A (ja) 1997-05-19 1998-12-02 Toshiba Ceramics Co Ltd 透光性アルミナセラミックス
JP3880150B2 (ja) 1997-06-02 2007-02-14 松下電器産業株式会社 弾性表面波素子
JP4248173B2 (ja) 2000-12-04 2009-04-02 株式会社東芝 窒化アルミニウム基板およびそれを用いた薄膜基板
CN100418769C (zh) * 2002-11-25 2008-09-17 京瓷株式会社 压电陶瓷、促动器及其制造方法、印刷头及喷墨打印机
JP4556713B2 (ja) * 2005-03-11 2010-10-06 株式会社デンソー セラミックス積層体の製造方法
JP2007108734A (ja) 2005-09-21 2007-04-26 Schott Ag 光学素子及び同光学素子から成る撮像光学素子
JP5549167B2 (ja) 2009-09-18 2014-07-16 住友電気工業株式会社 Sawデバイス
CN103492345B (zh) 2011-07-14 2016-04-06 株式会社东芝 陶瓷电路基板
WO2013008920A1 (ja) 2011-07-14 2013-01-17 株式会社東芝 セラミックス回路基板
JP6347553B2 (ja) * 2013-05-31 2018-06-27 日本碍子株式会社 複合基板用支持基板および複合基板
EP3085677A4 (en) * 2014-08-29 2017-11-22 Kyocera Corporation Piezoelectric ceramic plate, plate-shaped substrate and electronic component
JP6373212B2 (ja) 2015-03-26 2018-08-15 日本碍子株式会社 アルミナ焼結体の製法及びアルミナ焼結体
JP6433930B2 (ja) 2016-02-23 2018-12-05 太陽誘電株式会社 弾性波デバイス
KR20170110500A (ko) 2016-03-22 2017-10-11 스미토모덴키고교가부시키가이샤 세라믹 기판, 적층체 및 saw 디바이스
JP2019067861A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 圧電アクチュエーター、圧電駆動装置、ロボット、電子部品搬送装置およびプリンター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220227A (ja) * 2000-01-31 2001-08-14 Kyocera Corp ダイヤフラム基板
JP2009023908A (ja) * 2000-12-04 2009-02-05 Toshiba Corp 薄膜基板の製造方法
JP2016100729A (ja) * 2014-11-20 2016-05-30 太陽誘電株式会社 弾性波デバイスの製造方法
WO2016208766A1 (ja) * 2015-06-26 2016-12-29 京セラ株式会社 セラミック基板およびこれを用いた実装用基板ならびに電子装置
JP2017095333A (ja) * 2015-11-27 2017-06-01 株式会社ニッカトー 高温特性及び耐食性に優れたアルミナ焼結体

Also Published As

Publication number Publication date
JP7180607B2 (ja) 2022-11-30
CN111194299A (zh) 2020-05-22
JPWO2019073781A1 (ja) 2020-09-24
TW201925137A (zh) 2019-07-01
CN115333501A (zh) 2022-11-11
US20210104999A1 (en) 2021-04-08
US11750171B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP7095785B2 (ja) セラミック基板、積層体およびsawデバイス
WO2011034136A1 (ja) 基板、基板の製造方法、sawデバイスおよびデバイス
CN105636920B (zh) 莫来石烧结体、其制法以及复合基板
JP7247885B2 (ja) 積層体およびsawデバイス
JP7180607B2 (ja) セラミック基板、積層体およびsawデバイス
JP7339158B2 (ja) セラミック基板、積層体およびsawデバイス
WO2019073782A1 (ja) セラミック基板、積層体およびsawデバイス
JP7509185B2 (ja) 積層体およびsawデバイス
US10399906B2 (en) Sialon sintered body, method for producing the same, composite substrate, and electronic device
JP2018041888A (ja) セラミック基板の研削方法および圧電素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866325

Country of ref document: EP

Kind code of ref document: A1