WO2019069989A1 - 光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法 - Google Patents

光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法 Download PDF

Info

Publication number
WO2019069989A1
WO2019069989A1 PCT/JP2018/037067 JP2018037067W WO2019069989A1 WO 2019069989 A1 WO2019069989 A1 WO 2019069989A1 JP 2018037067 W JP2018037067 W JP 2018037067W WO 2019069989 A1 WO2019069989 A1 WO 2019069989A1
Authority
WO
WIPO (PCT)
Prior art keywords
preform
striae
optical fiber
center
pitch
Prior art date
Application number
PCT/JP2018/037067
Other languages
English (en)
French (fr)
Inventor
正敏 早川
学 塩崎
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US16/652,779 priority Critical patent/US11378737B2/en
Priority to CN201880062809.3A priority patent/CN111148724B/zh
Priority to JP2019546987A priority patent/JP7211369B2/ja
Publication of WO2019069989A1 publication Critical patent/WO2019069989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/37Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected perpendicularly to the axis of the fibre or waveguide for monitoring a section thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Definitions

  • the present disclosure relates to an optical fiber preform, a method of manufacturing an optical fiber preform, and a method of setting a striae pitch of an optical fiber preform.
  • Patent Document 1 discloses a method of producing a glass particle deposit.
  • the glass particle layers are laminated such that the thickness of the glass particle layer deposited for each traverse is different for each adjacent layer.
  • the present disclosure provides an optical fiber preform comprising a glass material and an additive for refractive index adjustment.
  • This preform has a striae due to the concentration difference of additives, and the striae has concentric refractive index periodicity at least in a part from the radial center to the periphery of the preform.
  • Each striae pitch indicating the periodicity of the refractive index periodicity increases from the center to the periphery of the preform.
  • the present disclosure provides a method of manufacturing an optical fiber preform.
  • a heating source configured to synthesize glass particles in the axial direction of the deposition target while rotating the deposition target is repeatedly reciprocated relative to the deposition target so that the glass raw material is refracted.
  • each glass layer is deposited such that the thickness of the glass layer increases from the radial center to the outer periphery of the preform.
  • the present disclosure provides a method of setting the cord pitch of an optical fiber preform.
  • an additive for adjusting the refractive index is added, and a striae pitch indicating the period of the refractive index periodicity of the optical fiber preform having a striae due to the concentration difference of the additive is set. .
  • This setting method includes a calculating step of calculating the relationship between the radius from the center to the outer periphery of the preform and the shift amount of the refractive index distribution in each of a plurality of striae pitches indicating the periodicity of the refractive index; And a synthesis step of synthesizing an optimum variation pattern of the striae pitch with reference to the relationship between the radius of each striae pitch calculated in the above and the shift amount of the refractive index distribution.
  • each striae pitch is synthesized so as to increase from the center to the periphery of the preform.
  • FIG. 1 is a schematic view including a partial cross-sectional view of a glass preform for an optical fiber having a stria, according to one embodiment.
  • FIG. 2 is a schematic view for explaining a method of producing the glass preform shown in FIG. 1 by the external chemical vapor deposition method (OVD method).
  • FIG. 3 is a view showing a curve approximating the relationship between the optimum striae pitch and the normalized radius in the glass preform shown in FIG.
  • FIG. 4A is a graph showing simulation results showing fluctuation of the barycentric position of laser light when the striae pitch is changed to 4.0 ⁇ m.
  • FIG. 4B is a graph showing a simulation result showing fluctuation of barycentric position of laser light when striae pitch is changed to 4.5 ⁇ m.
  • FIG. 4C is a graph showing a simulation result showing fluctuation of barycentric position of laser light when striae pitch is changed to 5.0 ⁇ m.
  • FIG. 5A is a graph showing a simulation result showing fluctuation of barycentric position of laser light when striae pitch is changed to 5.5 ⁇ m.
  • FIG. 5A is a graph showing a simulation result showing fluctuation of barycentric position of laser light when striae pitch is changed to 6.0 ⁇ m.
  • FIG. 5C is a graph showing simulation results showing fluctuation of the barycentric position of laser light when striae pitch is changed to 6.5 ⁇ m.
  • FIG. 6A is a graph showing a simulation result showing fluctuation of a barycentric position of laser light when the striae pitch is changed to 7.0 ⁇ m.
  • FIG. 6B is a graph showing a simulation result showing fluctuation of barycentric position of laser light when striae pitch is changed to 7.5 ⁇ m.
  • FIG. 6C is a graph showing a simulation result showing fluctuation of barycentric position of laser light when striae pitch is changed to 8.0 ⁇ m.
  • FIG. 7 is a graph in which a portion with less variation in the position of the center of gravity of the laser light is synthesized in the simulation results shown in FIGS. 4A to 4C, 5A to 5C, and 6A to 6C.
  • FIG. 8 is another graph in which a portion with less variation in the position of the center of gravity of laser light is combined.
  • FIG. 9 is still another graph in which a portion with less variation in the position of the center of gravity of laser light is synthesized.
  • the traverse speed and the rotation speed are constant.
  • the thickness of each glass layer constituting the glass particle laminate is also substantially constant, and accordingly, stripes having streaks corresponding to the traverse period or rotation period of the starting material are provided to the preform made of the glass particle deposit. Striae) may occur.
  • the optical fiber preform according to the present embodiment includes a glass material and an additive for adjusting the refractive index.
  • the preform has a striae due to the concentration difference of the additive, and the striae has concentric refractive index periodicity at least in part from the radial center to the periphery of the preform.
  • the striae pitch indicating the periodicity of the refractive index periodicity increases from the center to the periphery of the preform.
  • the striae pitch indicating the periodicity of the refractive index periodicity increases from the center to the outer periphery of the preform.
  • the measurement corresponding to the displacement amount (distortion) of the refractive index distribution It has been found that the position of the center of gravity of the laser beam deviates from zero to plus or minus largely or slightly depending on the position in the radial direction (normalized radius).
  • the present inventors further study and set the striae pitch indicating the periodicity of the refractive index periodicity to increase from the center to the outer periphery of the preform, for example, as shown in FIG. It has been found that the position of the center of gravity of the measurement laser light corresponding to the amount can be placed near zero (for example, within the range of 0 to ⁇ 20 ⁇ m) at any position in the radial direction. For this reason, by increasing the striae pitch in the preform from the center to the periphery of the preform, it is possible to prevent distortion of the measurement result of the refractive index distribution in the preform by the striae pitch. It becomes possible to measure the refractive index distribution of the optical fiber preform having a cord more accurately.
  • the striae pitch indicating the periodicity of refractive index periodicity may increase from the center to the outer periphery of the preform within the range of 2 ⁇ m to 10 ⁇ m. According to this configuration, it is possible to measure the refractive index distribution of the optical fiber preform having a cord more accurately and reliably.
  • the cord pitch may comprise at least three different thicknesses, for example the cord pitch comprises three different thicknesses of 5.5 ⁇ m, 6.0 ⁇ m and 6.5 ⁇ m. And the cord pitch may include three different thicknesses of 5 ⁇ m, 6 ⁇ m and 7 ⁇ m. Also, the cord pitch may include at least five different thicknesses, and may further include at least seven different thicknesses, for example, the cord pitch may be 4.0 ⁇ m, 4.5 ⁇ m, 5.0 ⁇ m, 5 There may be nine different thicknesses: .5 ⁇ m, 6.0 ⁇ m, 6.5 ⁇ m, 7.0 ⁇ m, 7.5 ⁇ m, and 8.0 ⁇ m. Furthermore, the striae pitch may increase from the center to the periphery of the preform by 0.3 ⁇ m or more, for example, from the center to the periphery of the preform by 0.5 ⁇ m.
  • the curve approximating the relationship between the radius from the center of the preform toward the outer periphery and the striae pitch increasing from the center of the preform toward the outer periphery is convex upward.
  • the striae pitch may be set to increase from the center to the periphery of the preform. According to this configuration, it is possible to measure the refractive index distribution of the optical fiber preform having a cord more accurately and reliably.
  • a heating source configured to synthesize glass particles in the axial direction of the deposition target while rotating the deposition target is relative to the deposition target
  • each glass layer is deposited so that the thickness of the glass layer increases from the center in the radial direction of the preform toward the outer periphery.
  • the thickness of the glass layer corresponding to the striae pitch indicating the periodicity of the refractive index periodicity increases from the center to the outer periphery of the preform.
  • the measurement result of the refractive index distribution in the preform with the striae pitch can be prevented from being distorted in the same manner as described above, it has a striae capable of measuring the refractive index distribution with high accuracy.
  • Optical fiber preforms can be manufactured.
  • the glass layers are sequentially ordered such that the thickness of the glass layer increases from the center in the radial direction of the optical fiber preform toward the outer periphery by reducing the moving speed of the heating source. It may be laminated. In this case, an increase in the thickness of each glass layer can be easily realized.
  • the glass layers are sequentially ordered such that the thickness of the glass layer increases from the center in the radial direction of the optical fiber preform toward the outer periphery by increasing the supply amount of the glass material. It may be laminated. In this case, an increase in the thickness of each glass layer can be easily realized.
  • an additive for adjusting the refractive index is added, and the refractive index cycle of the optical fiber preform having a cord by the concentration difference of the additive It is a method of setting a striae pitch that indicates the cycle of sex.
  • This setting method includes a calculating step of calculating a relationship between a radius from the center to the outer periphery of the preform and a shift amount of the refractive index distribution in each of a plurality of striae pitches indicating the periodicity of the refractive index; And a combining step of combining the variation pattern of the optimum striae pitch with reference to the calculated relation between the radius of each striae pitch and the deviation amount of the refractive index distribution.
  • each striae pitch is synthesized so as to increase from the center to the periphery of the preform.
  • a fluctuation pattern of cording pitch optimum is synthesized so that each cording pitch increases from the center to the periphery of the preform.
  • the measurement result of the refractive index distribution in the preform with the striae pitch can be prevented from being distorted in the same manner as described above, it has a striae capable of measuring the refractive index distribution with high accuracy.
  • the configuration of the optical fiber preform can be designed.
  • the optimal pulse is such that the striae pitches in the range of 2 ⁇ m to 10 ⁇ m are sequentially increasing from the center to the periphery of the preform.
  • the fluctuation pattern of the logical pitch may be synthesized.
  • the configuration of the preform for an optical fiber having a more suitable configuration can be designed by measurement of the refractive index distribution.
  • FIG. 1 is a schematic view including a partial cross-sectional view of an optical fiber preform having a striae according to the present embodiment.
  • a glass preform 1 (core material) for an optical fiber is substantially constituted of a glass material and an additive for adjusting the refractive index, and as shown in FIG. 1, the central portion 2 and the outer periphery of the central portion 2 And a plurality of (in this embodiment, for example, nine layers) glass deposition layers 3 stacked in order.
  • Each layer of the plurality of glass deposition layers 3 has a striation due to the concentration difference of additives for refractive index adjustment, and has concentric refractive index periodicity.
  • the thickness of each of the plurality of glass deposition layers 3 corresponds to a striae pitch P described later.
  • FIG. 2 is a schematic view for explaining a manufacturing method for manufacturing the glass preform shown in FIG. 1 by the external chemical vapor deposition method (OVD method).
  • OLED method external chemical vapor deposition method
  • a glass source gas and a flame forming gas are supplied to a burner 11 (heat source) in a reaction vessel having an exhaust device, and the burner 11 ejects Generate soot in an oxyhydrogen flame.
  • the starting material 12 is rotated in the rotation direction S1 about the axis, and the generated soot is put on the outer peripheral surface of the starting material 12.
  • the glass particle deposition body 13 is produced.
  • the starting material used here is sometimes called, for example, a starting rod or a target rod, and is a rod or a pipe made of ceramic such as alumina (aluminum oxide) or quartz.
  • the glass materials are, for example, high purity GeCl 4 and high purity SiCl 4 and the like.
  • the flame forming gas is, for example, a gas in which O 2 (oxygen) gas, H 2 (hydrogen) gas, and N 2 (nitrogen) gas are mixed.
  • a transparent glass preform 1 for an optical fiber is manufactured by heating and sintering the glass particle deposition body 13 manufactured by the manufacturing method shown in FIG. 2 from such a material.
  • a glass fiber can be manufactured by drawing the glass preform 1 under predetermined processing conditions, but before the drawing, it is measured whether or not a predetermined refractive index distribution is formed in a portion corresponding to the core.
  • the present inventors first, with respect to each striae pitch P in the glass preform 1, the barycentric position and radius (standards) of the measurement laser light corresponding to the shift amount (distortion) of the refractive index distribution.
  • the relationship with the position in the chemical conversion radius direction was examined, simulation results shown in FIGS. 4A to 4C, 5A to 5C, and 6A to 6C were obtained.
  • the normalized radius (x / R) used here is the ratio of the radius position x of the preform to the core radius R of the preform, and the normalized radius 0 indicates the center position of the preform, The normalized radius of 1.0 indicates the position of the core radius.
  • the position of the center of gravity is a plane perpendicular to the incident light at a position 25 mm after passing the plane perpendicular to the incident light and including the central axis of the glass preform 1 when the measurement laser light is incident from the side surface of the glass preform 1
  • the barycentric position of the upper measurement laser light intensity distribution is shown, and the barycentric position 0 corresponds to the barycentric position when there is no striae.
  • the barycentric position of the laser light is also about 0 ⁇ m at the position where the normalized radius (x / R) is zero.
  • the barycentric position of the laser beam is also about 0 ⁇ m at the position where the normalized radius (x / R) is 0.1.
  • the barycentric position of the laser light is also about 0 ⁇ m at the position where the normalized radius (x / R) is 0.2 or more.
  • “about 0 ⁇ m” refers to, for example, a range of ⁇ 20 ⁇ m centered on zero (0 ⁇ m) of the center of gravity position, and more specifically ⁇ around the zero (0 ⁇ m) center of gravity position. It can be shown in the range of 10 ⁇ m. The same applies to the following description.
  • the barycentric position of the laser light is also about 0 ⁇ m at a position where the normalized radius (x / R) is less than 0.4.
  • the position of the center of gravity of the laser light is also about 0 ⁇ m at the position where the normalized radius (x / R) is less than 0.5.
  • the barycentric position of the laser light is also about 0 ⁇ m at the position where the normalized radius (x / R) is less than 0.6.
  • the barycentric position of the laser light is also about 0 ⁇ m at the position where the normalized radius (x / R) is 0.7 or more.
  • the barycentric position of the laser light is also about 0 ⁇ m at a position where the normalized radius (x / R) is 0.8 or more.
  • the striae pitch P is 8.0 ⁇ m
  • the position of the center of gravity of the laser light is also about 0 ⁇ m at a position where the normalized radius (x / R) is less than 1.0.
  • the striae pitch P is directed from the center to the outer periphery of the glass preform 1 as follows: 4.0 ⁇ m, 4.5 ⁇ m, 5.0 ⁇ m, 5.5 ⁇ m, 6.0 ⁇ m, 6.
  • each portion (glass layer) of the preform so as to increase in order of 5 ⁇ m, 7.0 ⁇ m, 7.5 ⁇ m, and 8.0 ⁇ m, the barycentric position of the laser light is almost zero in any of the radial directions ( Or near that) (see FIG. 7). Therefore, the optimum portions of the striae pitch P shown in FIGS.
  • the glass preform 1 adopts a configuration in which the striae pitch P indicating the periodicity of the refractive index periodicity increases from the center of the preform toward the outer periphery.
  • the striae pitch P indicating the periodicity of the refractive index periodicity increases from the center of the preform toward the outer periphery.
  • the striae pitch indicating the periodicity of the refractive index periodicity increases from the center to the outer periphery of the preform within the range of 2 ⁇ m to 10 ⁇ m. For this reason, it becomes possible to measure the refractive index distribution of the glass preform having a cord more accurately and reliably.
  • the striae pitch is increased by including nine different thicknesses, but the number of thicknesses included in the striae pitch is not limited thereto.
  • the striae pitch may include three or more different thicknesses, five or more different thicknesses, or seven or more different thicknesses.
  • each striae pitch increases from the center to the outer periphery of the glass preform 1 in 0.5 ⁇ m units, but is not limited to this, for example, a glass bump in 0.3 ⁇ m or more It may increase from the center to the outer periphery of the reform 1.
  • each striae pitch may be set to increase from the center to the outer periphery of the preform. In this case, it is possible to measure the refractive index distribution of the glass preform having a cord more accurately and reliably.
  • the burner 11 heat source for synthesizing the glass fine particles in the axial direction of the starting material 12 is repeatedly reciprocated relative to the starting material 12 while rotating the starting material 12 (the object to be deposited).
  • the starting material 12 the object to be deposited.
  • the glass layers are sequentially laminated in the radial direction on the starting material 12 to produce the glass preform 1 it can.
  • each glass layer is deposited so that the thickness of the glass layer increases from the radial center to the outer periphery of the glass preform.
  • the thickness of the glass layer corresponding to the striae pitch P indicating the periodicity of the refractive index periodicity is increased from the center to the periphery of the preform. For this reason, as described above, since the measurement result of the refractive index distribution in the preform with the striae pitch can be prevented from being distorted, it has a striae capable of measuring the refractive index distribution with high accuracy. Glass preforms can be manufactured.
  • the glass layers may be sequentially laminated such that the thickness of the glass layer increases from the center in the radial direction of the glass preform toward the outer periphery by reducing the moving speed of the burner 11 .
  • the glass layers may be sequentially laminated such that the thickness of the glass layer increases from the center in the radial direction of the glass preform toward the outer periphery by increasing the supply amount of the glass material. In any case, the thickness of each glass layer can be easily increased sequentially.
  • an additive for adjusting the refractive index is added, and the striae pitch indicating the period of the refractive index periodicity of the glass preform having the striae by the concentration difference of the additive Setting method.
  • This setting method is a calculation step of calculating the relationship between the radius from the center to the outer periphery of the preform and the shift amount of the refractive index distribution in each of a plurality of striae pitches indicating the periodicity of refractive index (FIG. 4A to FIG. 4C, see FIGS.
  • each striae pitch is synthesized so as to increase from the center to the periphery of the preform.
  • the measurement result of the refractive index distribution in the preform with the striae pitch can be prevented from being distorted in the same manner as described above, it has a striae capable of measuring the refractive index distribution with high accuracy.
  • the configuration of the glass preform can be suitably designed.
  • the glass preform for optical fibers which concerns on this embodiment, its manufacturing method, and the design method were demonstrated, this invention is not limited to these, A various deformation
  • nine striae pitches of 4.0 to 8.0 ⁇ m are shown, but as shown in FIG. A configuration may be adopted in which there are three stages of 0 ⁇ m and 6.5 ⁇ m, and the striae pitch P increases from the center to the outer periphery of the preform. Even in this case, the measurement result of the refractive index distribution in the preform by the striae pitch can be prevented from being distorted to some extent, thereby accurately measuring the refractive index distribution of the glass preform having the striae Can.
  • A1 shown in FIG. 8 indicates the fluctuation of the barycentric position of the measuring laser beam when the striae pitch P is 5.5 ⁇ m
  • a2 is the barycentric position of the measuring laser beam when the striae pitch P is 6.0 ⁇ m. It shows fluctuation
  • a3 shows fluctuation of the barycentric position of the measurement laser light when the striae pitch P is 6.5 ⁇ m.
  • the striae pitch P consists of three stages of 5.0 ⁇ m, 6.0 ⁇ m, and 7.0 ⁇ m, and the striae pitch P increases from the center to the outer periphery of the preform.
  • a configuration may be adopted. Even in this case, the measurement result of the refractive index distribution in the preform by the striae pitch can be prevented from being distorted to some extent, thereby accurately measuring the refractive index distribution of the glass preform having the striae Can.
  • B1 shown in FIG. 9 indicates the fluctuation of the barycentric position of the measuring laser beam when the striae pitch P is 5.0 ⁇ m
  • b2 indicates the barycentric position of the measuring laser beam when the striae pitch P is 6.0 ⁇ m.
  • the fluctuation is shown, and b3 shows the fluctuation of the barycentric position of the measurement laser light when the striae pitch P is 7.0 ⁇ m.
  • the present invention is an optical fiber such as a single mode optical fiber or a multimode optical fiber if it is a preform for an optical fiber to which an additive for refractive index adjustment is added to have a striae due to the concentration difference of the additive. It is applicable without being limited to the kind.
  • the present invention is applicable to both the shape of the refractive index distribution and the step index type or the graded index type, and may have other shapes.
  • the preform of a multi-mode optical fiber having a graded index type refractive index profile has a large core diameter and a large concentration of an additive for adjusting the refractive index, so that striae is likely to be affected by the present invention.
  • Application of is preferred.
  • SYMBOLS 1 Glass preform, 2 ... center part, 3 ... Glass deposition layer, 11 ... Burner, 12 ... Starting material, 13 ... Glass particle deposition body, S1 ... Rotation direction, T1, T2 ... Growth axial direction (traverse direction).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

ガラス材料と屈折率調整用の添加剤とを備える光ファイバ用プリフォームを開示する。このプリフォームは、添加剤の濃度差による脈理を有し、当該脈理は、プリフォームの径方向の中心から外周に向かって少なくともその一部において同心状の屈折率周期性を有する。屈折率周期性の周期を示す各脈理ピッチは、プリフォームの中心から外周に向けて増加する。

Description

光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法
 本開示は、光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法に関する。
 本出願は、2017年10月6日出願の日本出願第2017-196036号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用する。
 特許文献1は、ガラス微粒子堆積体の製造方法を開示する。この製造方法では、トラバース毎に堆積するガラス微粒子層の厚みが隣接する層毎に異なるように、各ガラス微粒子層を積層している。
特開2013-047165号公報 特開2013-096899号公報
 本開示は、ガラス材料と屈折率調整用の添加剤とを備える光ファイバ用プリフォームを提供する。このプリフォームは添加剤の濃度差による脈理を有し、当該脈理は、プリフォームの径方向の中心から外周に向かって少なくともその一部において同心状の屈折率周期性を有する。屈折率周期性の周期を示す各脈理ピッチは、プリフォームの中心から外周に向けて増加する。
 本開示は、光ファイバ用プリフォームの製造方法を提供する。この製造方法は、堆積対象物を回転させながら堆積対象物の軸方向にガラス微粒子を合成するように構成された加熱源を堆積対象物に対して相対的に繰り返し往復移動させ、ガラス原料に屈折率調整用の添加剤を添加しつつ合成されたガラス微粒子を順次積層させることで堆積対象物上の径方向にガラス層を順次積層させる工程を備えている。積層させる工程では、ガラス層の厚みがプリフォームの径方向の中心から外周に向けて増加するように各ガラス層を堆積させる。
 本開示は、光ファイバ用プリフォームの脈理ピッチの設定方法を提供する。この設定方法は、屈折率調整用の添加剤が添加され、当該添加剤の濃度差による脈理を有する光ファイバ用プリフォームの屈折率周期性の周期を示す脈理ピッチを設定する方法である。この設定方法は、屈折率周期性の周期を示す複数の脈理ピッチのそれぞれにおける、プリフォームの中心から外周に向かう半径と屈折率分布のずれ量との関係を算出する算出工程と、算出工程で算出された各脈理ピッチにおける半径と屈折率分布のずれ量との関係を参照して、最適な脈理ピッチの変動パターンを合成する合成工程と、を備えている。合成工程では、各脈理ピッチがプリフォームの中心から外周に向けて増加するように合成する。
図1は、一実施形態に係る、脈理を有する光ファイバ用のガラスプリフォームの一部断面図を含む模式図である。 図2は、外付け化学気相堆積法(OVD法)により図1に示すガラスプリフォームを製造する方法を説明するための模式図である。 図3は、図1に示すガラスプリフォームにおける、規格化半径に対する最適な脈理ピッチの関係を近似する曲線を示す図である。 図4Aは、脈理ピッチを4.0μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図4Bは、脈理ピッチを4.5μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図4Cは、脈理ピッチを5.0μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図5Aは、脈理ピッチを5.5μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図5Aは、脈理ピッチを6.0μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図5Cは、脈理ピッチを6.5μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図6Aは、脈理ピッチを7.0μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図6Bは、脈理ピッチを7.5μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図6Cは、脈理ピッチを8.0μmと変動させた場合のレーザ光の重心位置の変動を示すシミュレーション結果を示すグラフである。 図7は、図4A~図4C、図5A~図5C及び図6A~図6Cに示す各シミュレーション結果においてレーザ光の重心位置の変動が少ない部分を合成したグラフである。 図8は、レーザ光の重心位置の変動が少ない部分を合成した別のグラフである。 図9は、レーザ光の重心位置の変動が少ない部分を合成した更に別のグラフである。
[本開示が解決しようとする課題]
 OVD法等によって光ファイバ用プリフォームのためのガラス微粒子堆積体を製造する場合、一般的には、トラバース速度及び回転速度は一定である。この場合、ガラス微粒子積層体を構成する各ガラス層の厚みも略一定となり、これに伴ってガラス微粒子堆積体からなるプリフォームに、出発材のトラバース周期又は回転周期に応じた縞状のすじ(脈理)が発生することがある。このような脈理を有するプリフォームの屈折率分布を測定するために測定用レーザ光をガラス母材の側面から入射すると、ガラス母材に脈理による周期的な屈折率の変化があることから、レーザ光が回折してしまい、屈折率分布の一部に乱れが生じてしまう。その結果、脈理を有するプリフォームの正確な屈折率分布を測定できないことがある。そこで、脈理を有する光ファイバ用プリフォームの屈折率分布を精度よく測定することが望まれている。
[本開示の効果]
 本開示によれば、脈理を有する光ファイバ用プリフォームの屈折率分布を精度よく測定できる。
[本願発明の実施形態の説明]
 最初に本開示の実施形態の内容をそれぞれ個別に列記して説明する。本実施形態に係る光ファイバ用プリフォームは、ガラス材料と、屈折率調整用の添加剤と、を備えている。プリフォームは添加剤の濃度差による脈理を有し、脈理は、プリフォームの径方向の中心から外周に向かって少なくともその一部において同心状の屈折率周期性を有する。屈折率周期性の周期を示す脈理ピッチは、プリフォームの中心から外周に向けて増加する。
 この光ファイバ用プリフォームでは、屈折率周期性の周期を示す脈理ピッチがプリフォームの中心から外周に向けて増加している。本発明者のシミュレーション等を含む検討によれば、図4A~図4C、図5A~図5C及び図6A~図6Cに例示されるように、屈折率分布のずれ量(歪み)に相当する測定用レーザ光の重心位置が半径(規格化半径)方向の位置に応じてゼロからプラス方向又はマイナス方向に大きく又はやや大きく振れてしまうことがわかってきた。そして本発明者は更に検討を進め、屈折率周期性の周期を示す脈理ピッチがプリフォームの中心から外周に向けて増加するように設定すると、例えば図7に示すように屈折率分布のずれ量に相当する測定用レーザ光の重心位置を半径方向のいずれの位置においてもゼロ付近(例えば0~±20μmの範囲内)に収めることができることがわかってきた。このため、プリフォームにおける脈理ピッチをプリフォームの中心から外周に向けて増加することで、脈理ピッチによるプリフォームでの屈折率分布の測定結果を歪まないようにすることができ、これにより、脈理を有する光ファイバ用プリフォームの屈折率分布を更に精度よく測定することが可能となる。
 この光ファイバ用プリフォームでは、屈折率周期性の周期を示す脈理ピッチが2μm以上10μm以下の範囲内でプリフォームの中心から外周に向けて増加してもよい。この構成によれば、脈理を有する光ファイバ用プリフォームの屈折率分布を更に精度よく且つ確実に測定することが可能となる。
 この光ファイバ用プリフォームでは、脈理ピッチは、少なくとも3つの異なる厚さを含んでもよく、例えば、脈理ピッチは、5.5μm、6.0μm及び6.5μmの3つの異なる厚さを含んでもよく、また、脈理ピッチは、5μm、6μm及び7μmの3つの異なる厚さを含んでもよい。また、脈理ピッチは、少なくとも5つの異なる厚さを含んでもよく、更に少なくとも7つの異なる厚さを含んでもよく、例えば、脈理ピッチは、4.0μm、4.5μm、5.0μm、5.5μm、6.0μm、6.5μm、7.0μm、7.5μm、及び8.0μmの9つの異なる厚さを含でもよい。更に、脈理ピッチは、0.3μm単位以上でプリフォームの中心から外周に向けて増加してもよく、例えば、0.5μm単位でプリフォームの中心から外周に向けて増加してもよい。
 この光ファイバ用プリフォームでは、プリフォームの中心から外周に向かう半径とプリフォームの中心から外周に向けて増加する各脈理ピッチとの関係を近似する曲線が上に凸となるように、各脈理ピッチがプリフォームの中心から外周に向けて増加するように設定されていてもよい。この構成によれば、脈理を有する光ファイバ用プリフォームの屈折率分布を更に精度よく且つ確実に測定することが可能となる。
 本実施形態に係る光ファイバ用プリフォームの製造方法は、堆積対象物を回転させながら堆積対象物の軸方向にガラス微粒子を合成するように構成された加熱源を堆積対象物に対して相対的に繰り返し往復移動させ、ガラス原料に屈折率調整用の添加剤を添加しつつ合成されたガラス微粒子を順次積層させることで堆積対象物上の径方向にガラス層を順次積層させる工程を備えている。この積層させる工程では、ガラス層の厚みがプリフォームの径方向の中心から外周に向けて増加するように各ガラス層を堆積させている。
 この光ファイバ用プリフォームの製造方法では、屈折率周期性の周期を示す脈理ピッチに相当するガラス層の厚みがプリフォームの中心から外周に向けて増加する。この場合、上記と同様に、脈理ピッチによるプリフォームでの屈折率分布の測定結果を歪まないようにすることができるため、屈折率分布を精度よく測定することが可能な、脈理を有する光ファイバ用プリフォームを製造することができる。
 この光ファイバ用プリフォームの製造方法では、加熱源の移動速度を低下させることでガラス層の厚みが光ファイバ用プリフォームの径方向の中心から外周に向けて増加するように各ガラス層を順に積層させてもよい。この場合、各ガラス層の厚みの増加を容易に実現することができる。
 この光ファイバ用プリフォームの製造方法では、ガラス原料の供給量を増加させることでガラス層の厚みが光ファイバ用プリフォームの径方向の中心から外周に向かって増加するように各ガラス層を順に積層させてもよい。この場合、各ガラス層の厚みの増加を容易に実現することができる。
 本実施形態に係る光ファイバ用プリフォームの脈理ピッチの設定方法は、屈折率調整用の添加剤が添加され、当該添加剤の濃度差による脈理を有する光ファイバ用プリフォームの屈折率周期性の周期を示す脈理ピッチを設定する方法である。この設定方法は、屈折率周期性の周期を示す複数の脈理ピッチのそれぞれにおけるプリフォームの中心から外周に向かう半径と屈折率分布のずれ量との関係を算出する算出工程と、算出工程で算出された各脈理ピッチにおける半径と屈折率分布のずれ量との関係を参照して、最適な脈理ピッチの変動パターンを合成する合成工程と、を備えている。合成工程では、各脈理ピッチがプリフォームの中心から外周に向けて増加するように合成している。
 この光ファイバ用プリフォームの脈理ピッチの設定方法では、各脈理ピッチがプリフォームの中心から外周に向けて増加するように最適な脈理ピッチの変動パターンを合成している。この場合、上記と同様に、脈理ピッチによるプリフォームでの屈折率分布の測定結果を歪まないようにすることができるため、屈折率分布を精度よく測定することが可能な、脈理を有する光ファイバ用プリフォームの構成を設計することができる。
 この光ファイバ用プリフォームの脈理ピッチの設定方法では、合成工程では、2μm以上10μm以下の範囲内の各脈理ピッチがプリフォームの中心から外周に向けて増加する順になるように最適な脈理ピッチの変動パターンを合成してもよい。この場合、屈折率分布の測定により好適な構成を有する光ファイバ用プリフォームの構成を設計することができる。
[本願発明の実施形態の詳細]
 本開示の実施形態に係る光ファイバ用プリフォーム、その製造方法、及び、脈理ピッチの設定方法の具体例を以下に図面を参照しつつ説明する。本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、また、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、本実施形態に係る脈理を有する光ファイバ用プリフォームの一部断面図を含む模式図である。光ファイバ用のガラスプリフォーム1(コア材)は、ガラス材料と屈折率調整用の添加剤とから実質的に構成され、図1に示すように、中央部2と、中央部2の外周に順に積層される複数(本実施形態では例えば9層)のガラス堆積層3と、を備えている。複数のガラス堆積層3の各層は、屈折率調整用の添加材の濃度差による脈理を有し、同心状の屈折率周期性を有する。複数のガラス堆積層3の各層の厚さは、後述する脈理ピッチPにそれぞれ相当する。
 図2は、外付け化学気相堆積法(OVD法)により図1に示すガラスプリフォームを製造する製造方法を説明するための模式図である。ガラスプリフォーム1を製造するには、図2に示すように、排気装置を有する反応容器内において、少なくともガラス原料ガスと火炎形成ガスとをバーナ11(加熱源)に供給し、バーナ11が噴出する酸水素火炎中でススを生成する。そして、バーナ11を成長軸方向T1及びT2に沿って往復トラバースさせながら、軸線を中心として出発材12を回転方向S1に回転させて、出発材12の外周面に生成したススをスス付けさせる。これにより、ガラス微粒子堆積体13を作製する。
 ここで用いる出発材は、例えば出発棒又はターゲットロッド等と呼ばれることもあり、アルミナ(酸化アルミニウム)等のセラミック又は石英などからなるロッド又はパイプである。ガラス材料は、例えば、高純度のGeCl及び高純度のSiCl等である。火炎形成ガスは、例えばO(酸素)ガス、H(水素)ガス、及びN(窒素)ガス等を混合したガスである。このような材料から、図2に示す製造方法により製造されたガラス微粒子堆積体13を、加熱焼結することにより、光ファイバ用の透明なガラスプリフォーム1を作製する。ガラスプリフォーム1を所定の加工条件で線引きすることによりガラスファイバを製造することができるが、その線引きの前にコア相当部分で所定の屈折率分布が形成されているか否かを測定する。
 この測定の際、ガラスプリフォーム1内に生成される脈理により、測定される屈折率分布が歪んでしまい、正確な屈折率分布が測定できないことがある。この問題に対し、本発明者らは、まず、ガラスプリフォーム1における各脈理ピッチPに対して、屈折率分布のずれ量(歪み)に相当する測定用レーザ光の重心位置と半径(規格化半径)方向の位置との関係について検討したところ、図4A~図4C、図5A~図5C及び図6A~図6Cに示すシミュレーション結果を得た。これら関係について評価したところ、図4A~図4C、図5A~図5C及び図6A~図6Cに示すように、各脈理ピッチPの大きさ(幅:μm)に応じて、レーザ光の重心位置の変動が大きく異なることが分かった。これらのシミュレーションは、各脈理ピッチPを一定とした場合の測定用レーザ光の重心位置の変化を示す。そこで、本発明者らは更に検討を進めたところ、レーザ光の重心位置の変動を示す図におけるレーザ光の重心位置が、各図の丸印に示すように、ゼロになる部分が点在して存在することに気が付いた。そして、このような部分(最適部分)を繋げ合わせた好適な脈理ピッチを設定することで、屈折率分布のずれ量(歪み)をガラスプリフォーム1の半径方向の全体において低減出来るのではないかということに想到した。ここで用いる規格化半径(x/R)は、プリフォームの半径位置xをプリフォームのコア半径Rに対する比で表したもので、規格化半径0(ゼロ)はプリフォームの中心位置を示し、規格化半径1.0はコア半径の位置を示す。重心位置は、測定用レーザ光がガラスプリフォーム1の側面から入射し、入射光と垂直でガラスプリフォーム1の中心軸を含む平面を通過してから25mm離れた位置における入射光と垂直な平面上の測定用レーザ光強度分布の重心位置を示しており、重心位置0は脈理がない場合の重心位置に対応する。
 具体的には、図4Aに示すように、脈理ピッチPが4.0μmの場合、規格化半径(x/R)がゼロの位置において、レーザ光の重心位置も0μm程度になる。図4Bに示すように、脈理ピッチPが4.5μmの場合、規格化半径(x/R)が0.1の位置において、レーザ光の重心位置も0μm程度になる。図4Cに示すように、脈理ピッチPが5.0μmの場合、規格化半径(x/R)が0.2強の位置において、レーザ光の重心位置も0μm程度になる。なお、ここでいう「0μm程度」とは、例えば、重心位置のゼロ(0μm)を中心とした±20μmの範囲内を示し、より詳細には、重心位置のゼロ(0μm)を中心とした±10μmの範囲内を示すことができる。以下の説明においても同様である。
 同様に、図5Aに示すように、脈理ピッチPが5.5μmの場合、規格化半径(x/R)が0.4弱の位置において、レーザ光の重心位置も0μm程度になる。図5Bに示すように、脈理ピッチPが6.0μmの場合、規格化半径(x/R)が0.5弱の位置において、レーザ光の重心位置も0μm程度になる。図5Cに示すように、脈理ピッチPが6.5μmの場合、規格化半径(x/R)が0.6弱の位置において、レーザ光の重心位置も0μm程度になる。
 同様に、図6Aに示すように、脈理ピッチPが7.0μmの場合、規格化半径(x/R)が0.7強の位置において、レーザ光の重心位置も0μm程度になる。図6Bに示すように、脈理ピッチPが7.5μmの場合、規格化半径(x/R)が0.8強の位置において、レーザ光の重心位置も0μm程度になる。図6Cに示すように、脈理ピッチPが8.0μmの場合、規格化半径(x/R)が1.0弱の位置において、レーザ光の重心位置も0μm程度になる。
 そして、これらの好適部分を合成して、脈理ピッチPがガラスプリフォーム1の中心から外周に向けて、4.0μm、4.5μm、5.0μm、5.5μm、6.0μm、6.5μm、7.0μm、7.5μm、8.0μmと順に増加するようにプリフォームの各部分(ガラス層)を構成することで、半径方向の何れにおいても、レーザ光の重心位置を略ゼロ(若しくはその付近)に収めることが可能であることがわかった(図7参照)。そこで、図4A~図4C、図5A~図5C及び図6A~図6Cに示す各脈理ピッチPの最適な部分(レーザ光の重心位置がゼロ付近の部分)を合成して図7に示すようにすることで、脈理の影響を受けにくく、より確実な屈折率分布を測定することができるガラスプリフォーム1を得ることができることが確認できた。ガラスプリフォーム1における最適な脈理ピッチについては、例えば図3に示すピッチ変動を例示することができる。図3に示すような脈理ピッチ変動を有する増加脈理ピッチを備えることにより、例えば、ガラスプリフォーム1の屈折率分布を測定した場合に、脈理による屈折率分布のずれを低減できることから、より正確な屈折率分布を測定することが可能となる。図4A~図4C、図5A~図5C、図6A~図6C及び図7の上下方向に伸びたエラーバーは、半径方向の当該位置において、脈理の位相の違いにより変化する測定用レーザ光の重心位置を示す。シミュレーションは測定用レーザ光の入射ビーム径を12μmとして行ったが、特に脈理のピッチが6μmより大きくなるとエラーバーが大きくなる傾向がある。よって、半径方向の当該位置における平均的な重心位置を得るために、半径方向にわたって脈理ピッチの1周期程度の範囲で重心位置を平均化することが好ましい。
 以上、ガラスプリフォーム1は、屈折率周期性の周期を示す脈理ピッチPがプリフォームの中心から外周に向けて増加する構成を採用している。図4A~図4C、図5A~図5C、図6A~図6C及び図7等のシミュレーション結果に示すように、プリフォームにおける脈理ピッチをプリフォームの中心から外周に向けて増加することで、脈理ピッチによるプリフォームでの屈折率分布の測定結果を歪まないようにすることができ、これにより、脈理を有するガラスプリフォームの屈折率分布を更に精度よく測定することが可能となる。
 ガラスプリフォーム1では、屈折率周期性の周期を示す脈理ピッチが2μm以上10μm以下の範囲内でプリフォームの中心から外周に向けて増加する。このため、脈理を有するガラスプリフォームの屈折率分布を更に精度よく且つ確実に測定することが可能となる。本実施形態では、脈理ピッチが9つの異なる厚さを含んで増加する構成であるが、脈理ピッチに含まれる厚さの数はこれに限定されない。脈理ピッチが3つ以上の異なる厚さを含む態様でもよいし、5つ以上の異なる厚さを含む態様でもよいし、7つ以上の異なる厚さを含む態様でもよい。また、本実施形態では、各脈理ピッチは、0.5μm単位でガラスプリフォーム1の中心から外周に向けて増加しているが、これに限定されず、例えば0.3μm単位以上でガラスプリフォーム1の中心から外周に向けて増加してもよい。
 ガラスプリフォーム1では、プリフォームの中心から外周に向かう半径とプリフォームの中心から外周に向けて増加する各脈理ピッチとの関係を近似する曲線が、例えば図3に示すように、上に凸となるように、各脈理ピッチがプリフォームの中心から外周に向けて増加するように設定されたものとすることもできる。この場合、脈理を有するガラスプリフォームの屈折率分布を更に精度よく且つ確実に測定することが可能となる。
 また、出発材12(堆積対象物)を回転させながら出発材12の軸方向にガラス微粒子を合成するためのバーナ11(加熱源)を出発材12に対して相対的に繰り返し往復移動させ、ガラス原料に屈折率調整用の添加剤を添加しつつ合成されたガラス微粒子を順次積層させることで、出発材12上の径方向にガラス層を順次積層させて、ガラスプリフォーム1を製造することができる。この製造方法では、ガラス層の厚みがガラスプリフォームの径方向の中心から外周に向けて増加するように各ガラス層を堆積させている。この製造方法では、上記同様に、屈折率周期性の周期を示す脈理ピッチPに相当するガラス層の厚みがプリフォームの中心から外周に向けて増加するようになっている。このため、上述したように、脈理ピッチによるプリフォームでの屈折率分布の測定結果を歪まないようにすることができるため、屈折率分布を精度よく測定することが可能な、脈理を有するガラスプリフォームを製造することができる。
 この製造方法の一態様として、バーナ11の移動速度を低下させることでガラス層の厚みがガラスプリフォームの径方向の中心から外周に向けて増加するように各ガラス層を順に積層させてもよい。また、ガラス原料の供給量を増加させることでガラス層の厚みがガラスプリフォームの径方向の中心から外周に向かって増加するように各ガラス層を順に積層させてもよい。いずれの場合であっても、各ガラス層の厚みを順次増加することを容易に実現できる。
 本実施形態に係る脈理ピッチの設定方法は、屈折率調整用の添加剤が添加され、当該添加剤の濃度差による脈理を有するガラスプリフォームの屈折率周期性の周期を示す脈理ピッチを設定する設定方法である。この設定方法は、屈折率周期性の周期を示す複数の脈理ピッチのそれぞれにおけるプリフォームの中心から外周に向かう半径と屈折率分布のずれ量との関係を算出する算出工程(図4A~図4C、図5A~図5C、及び、図6A~図6C参照)と、算出工程で算出された各脈理ピッチにおける半径と屈折率分布のずれ量との関係を参照して、最適な脈理ピッチの変動パターンを合成する合成工程(図7及び図3参照)と、を備える。合成工程では、各脈理ピッチがプリフォームの中心から外周に向けて増加するように合成する。この場合、上記と同様に、脈理ピッチによるプリフォームでの屈折率分布の測定結果を歪まないようにすることができるため、屈折率分布を精度よく測定することが可能な、脈理を有するガラスプリフォームの構成を好適に設計することができる。
 以上、本実施形態に係る光ファイバ用のガラスプリフォーム及びその製造方法、設計方法について説明してきたが、本発明はこれらに限定されるものではなく、種々の変形を適用することができる。例えば、上記のガラスプリフォームにおいては、脈理ピッチが4.0~8.0μmの9段階となる例を示したが、図8に示すように、脈理ピッチPが5.5μm、6.0μm、6.5μmの3段階からなり、これら脈理ピッチPがプリフォームの中心から外周に向けて増加する構成を採用してもよい。この場合でも、脈理ピッチによるプリフォームでの屈折率分布の測定結果をある程度は歪まないようにすることができ、これにより、脈理を有するガラスプリフォームの屈折率分布を精度よく測定することができる。図8に示すa1は脈理ピッチPが5.5μmの場合の測定用レーザ光の重心位置の変動を示し、a2は脈理ピッチPが6.0μmの場合の測定用レーザ光の重心位置の変動を示し、a3は脈理ピッチPが6.5μmの場合の測定用レーザ光の重心位置の変動を示している。これらa1~a3を順に合成することで、好適な脈理ピッチとすることができる。
 また、例えば、図9に示すように、脈理ピッチPが5.0μm、6.0μm、7.0μmの3段階からなり、これら脈理ピッチPがプリフォームの中心から外周に向けて増加する構成を採用してもよい。この場合でも、脈理ピッチによるプリフォームでの屈折率分布の測定結果をある程度は歪まないようにすることができ、これにより、脈理を有するガラスプリフォームの屈折率分布を精度よく測定することができる。図9に示すb1は脈理ピッチPが5.0μmの場合の測定用レーザ光の重心位置の変動を示し、b2は脈理ピッチPが6.0μmの場合の測定用レーザ光の重心位置の変動を示し、b3は脈理ピッチPが7.0μmの場合の測定用レーザ光の重心位置の変動を示している。これらb1~b3を順に合成することで、好適な脈理ピッチとすることができる。本発明は、屈折率調整用の添加剤が添加されて当該添加剤の濃度差による脈理を有する光ファイバ用のプリフォームであれば、シングルモード光ファイバ又はマルチモード光ファイバ等の光ファイバの種類に限定されず適用可能である。本発明は、屈折率分布の形状についてもステップインデックス型又はグレーデットインデックス型のいずれにも適用可能であり、他の形状であっても良い。特に、屈折率分布形状がグレーデッドインデックス型のマルチモード光ファイバのプリフォームはコア径が大きく、また屈折率調整用の添加剤の濃度が大きいため、脈理による影響が出やすいことから本発明の適用が好ましい。
 1…ガラスプリフォーム、2…中央部、3…ガラス堆積層、11…バーナ、12…出発材、13…ガラス微粒子堆積体、S1…回転方向、T1,T2…成長軸方向(トラバース方向)。

Claims (15)

  1.  光ファイバ用プリフォームであって、
     ガラス材料と、屈折率調整用の添加剤と、を備え、
     前記プリフォームは前記添加剤の濃度差による脈理を有し、前記脈理は、前記プリフォームの径方向の中心から外周に向かって少なくともその一部において同心状の屈折率周期性を有し、前記屈折率周期性の周期を示す各脈理ピッチが前記プリフォームの中心から外周に向けて増加する、光ファイバ用プリフォーム。
  2.  前記屈折率周期性の周期を示す前記脈理ピッチが2μm以上10μm以下の範囲内で前記プリフォームの中心から外周に向けて増加する、
    請求項1に記載の光ファイバ用プリフォーム。
  3.  前記脈理ピッチは、少なくとも3つ以上の異なる厚さを含む、
    請求項1又は請求項2に記載の光ファイバ用プリフォーム。
  4.  前記脈理ピッチは、5.5μm、6.0μm、及び6.5μmの3つの異なる厚さを含む、
    請求項3に記載の光ファイバ用プリフォーム。
  5.  前記脈理ピッチは、5μm、6μm、及び7μmの3つの異なる厚さを含む、
    請求項3に記載の光ファイバ用プリフォーム。
  6.  前記脈理ピッチは、少なくとも5つの異なる厚さを含む、
    請求項1又は請求項2に記載の光ファイバ用プリフォーム。
  7.  前記脈理ピッチは、4.0μm、4.5μm、5.0μm、5.5μm、6.0μm、6.5μm、7.0μm、7.5μm、及び8.0μmの9つの異なる厚さを含む、
    請求項6に記載の光ファイバ用プリフォーム。
  8.  前記脈理ピッチは、0.3μm単位以上で前記プリフォームの中心から外周に向けて増加する、
    請求項1~請求項7の何れか1項に記載の光ファイバ用プリフォーム。
  9.  前記脈理ピッチは、0.5μm単位で前記プリフォームの中心から外周に向けて増加する、
    請求項8に記載の光ファイバ用プリフォーム。
  10.  前記プリフォームの中心から外周に向かう半径と前記プリフォームの中心から外周に向けて増加する前記各脈理ピッチとの関係を近似する曲線が上に凸となるように、前記各脈理ピッチが前記プリフォームの中心から外周に向けて増加するように設定された、
    請求項1~請求項9の何れか1項に記載の光ファイバ用プリフォーム。
  11.  光ファイバ用プリフォームの製造方法であって、
     堆積対象物を回転させながら前記堆積対象物の軸方向にガラス微粒子を合成するように構成された加熱源を前記堆積対象物に対して相対的に繰り返し往復移動させ、ガラス原料に屈折率調整用の添加剤を添加しつつ合成されたガラス微粒子を順次積層させることで前記堆積対象物上の径方向にガラス層を順次積層させる工程を備え、
     前記積層させる工程では、前記ガラス層の厚みが前記プリフォームの径方向の中心から外周に向けて増加するように前記各ガラス層を堆積させる、
    光ファイバ用プリフォームの製造方法。
  12.  前記加熱源の移動速度を低下させることで前記ガラス層の厚みが前記プリフォームの径方向の中心から外周に向けて増加するように前記各ガラス層を順に積層させる、
    請求項11に記載の光ファイバ用プリフォームの製造方法。
  13.  前記ガラス原料の供給量を増加させることで前記ガラス層の厚みが前記プリフォームの径方向の中心から外周に向かって増加するように前記各ガラス層を順に積層させる、
    請求項11又は12に記載の光ファイバ用プリフォームの製造方法。
  14.  屈折率調整用の添加剤が添加され、当該添加剤の濃度差による脈理を有する光ファイバ用プリフォームの屈折率周期性の周期を示す脈理ピッチを設定する設定方法であって、
     前記屈折率周期性の周期を示す複数の脈理ピッチのそれぞれにおける、前記プリフォームの中心から外周に向かう半径と屈折率分布のずれ量との関係を算出する算出工程と、
     前記算出工程で算出された各脈理ピッチにおける前記半径と前記屈折率分布のずれ量との関係を参照して、最適な脈理ピッチの変動パターンを合成する合成工程と、
    を備え、
     前記合成工程では、前記各脈理ピッチが前記プリフォームの中心から外周に向けて増加するように合成する、
    光ファイバ用プリフォームの脈理ピッチの設定方法。
  15.  前記合成工程では、2μm以上10μm以下の範囲内の各脈理ピッチが前記プリフォームの中心から外周に向けて順に増加するように前記最適な脈理ピッチの変動パターンを合成する、
    請求項14に記載の光ファイバ用プリフォームの脈理ピッチの設定方法。
PCT/JP2018/037067 2017-10-06 2018-10-03 光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法 WO2019069989A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/652,779 US11378737B2 (en) 2017-10-06 2018-10-03 Optical fiber preform, method for manufacturing optical fiber preform, and method for setting striae pitch of optical fiber preform
CN201880062809.3A CN111148724B (zh) 2017-10-06 2018-10-03 光纤用预制件、光纤用预制件的制造方法以及光纤用预制件的条纹间距的设定方法
JP2019546987A JP7211369B2 (ja) 2017-10-06 2018-10-03 光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196036 2017-10-06
JP2017196036 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019069989A1 true WO2019069989A1 (ja) 2019-04-11

Family

ID=65994582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037067 WO2019069989A1 (ja) 2017-10-06 2018-10-03 光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法

Country Status (4)

Country Link
US (1) US11378737B2 (ja)
JP (1) JP7211369B2 (ja)
CN (1) CN111148724B (ja)
WO (1) WO2019069989A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108639A1 (ja) * 2010-03-03 2011-09-09 株式会社フジクラ 石英多孔質体の製造方法、光ファイバ母材の製造方法、石英多孔質体、及び光ファイバ母材
JP2012062240A (ja) * 2010-08-19 2012-03-29 Fujikura Ltd 光ファイバ母材の製造方法及び光ファイバの製造方法
JP2013047165A (ja) * 2011-08-29 2013-03-07 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び光ファイバ用ガラス母材及び光ファイバ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231774A (en) * 1978-04-10 1980-11-04 International Telephone And Telegraph Corporation Method of fabricating large optical preforms
US5627933A (en) * 1994-02-17 1997-05-06 Sumitomo Electric Industries, Ltd. Optical waveguide and process for producing it
JP4495344B2 (ja) * 1998-09-15 2010-07-07 コーニング インコーポレイテッド 軸方向に変化する構造を有する導波路
JP2004010368A (ja) * 2002-06-03 2004-01-15 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法とその製造装置
JP5367204B2 (ja) * 2003-04-03 2013-12-11 旭硝子株式会社 TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2006096608A (ja) 2004-09-29 2006-04-13 Sumitomo Electric Ind Ltd ガラス母材の製造方法
JP2013056794A (ja) * 2011-09-07 2013-03-28 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び光ファイバ用ガラス母材
JP2013096899A (ja) 2011-11-02 2013-05-20 Sumitomo Electric Ind Ltd 光ファイバ母材の屈折率分布測定方法及び屈折率分布測定装置
CN107110778B (zh) * 2014-10-31 2020-01-07 康宁股份有限公司 对圆柱形玻璃体的折射率分布进行高精度测量

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108639A1 (ja) * 2010-03-03 2011-09-09 株式会社フジクラ 石英多孔質体の製造方法、光ファイバ母材の製造方法、石英多孔質体、及び光ファイバ母材
JP2012062240A (ja) * 2010-08-19 2012-03-29 Fujikura Ltd 光ファイバ母材の製造方法及び光ファイバの製造方法
JP2013047165A (ja) * 2011-08-29 2013-03-07 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び光ファイバ用ガラス母材及び光ファイバ

Also Published As

Publication number Publication date
JPWO2019069989A1 (ja) 2020-10-22
CN111148724B (zh) 2022-07-08
US20200247709A1 (en) 2020-08-06
JP7211369B2 (ja) 2023-01-24
CN111148724A (zh) 2020-05-12
US11378737B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
JP3064857B2 (ja) 光リソグラフィー用光学部材および合成石英ガラスの製造方法
JP5695025B2 (ja) 光ファイバ母材の製造方法
TWI547450B (zh) 摻雜氧化鈦之石英玻璃及其製造方法
JP2612949B2 (ja) 光ファイバプリフォーム母材の製造方法
US20120258389A1 (en) Titania-doped quartz glass and making method
JPH10158025A (ja) 光ファイバプリフォームの製造方法
CN104995557B (zh) 用于EUV-光刻中的镜面基材的由TiO2-SiO2玻璃构成的坯料及其制造方法
KR20090018678A (ko) 감소된 맥리 저 팽창 유리 및 구성요소, 및 이의 제조방법
US11001520B2 (en) Optical fiber glass preform manufacturing method
JPH03279234A (ja) 光ファイバプリフォーム母材の製造方法
WO2019069989A1 (ja) 光ファイバ用プリフォーム、光ファイバ用プリフォームの製造方法、及び、光ファイバ用プリフォームの脈理ピッチの設定方法
JP6006185B2 (ja) 光ファイバ用多孔質ガラス堆積体の製造方法
JP6387739B2 (ja) ガラス微粒子堆積体の製造方法
WO2003037809A1 (fr) Procede d'obtention d'un materiau de base pour fibre optique
JP2013056786A (ja) 光ファイバ用母材の製造方法
JPWO2020065632A1 (ja) 光ファイバ母材の測定方法
JP4558547B2 (ja) 光ファイバ母材の製造方法
JP5760859B2 (ja) ガラス微粒子堆積体の製造方法及び光ファイバ用ガラス母材及び光ファイバ
JP2001220151A (ja) 正確に規定した屈折率プロフィルを示すプリフォームを化学気相蒸着(cvd)技術により製造する方法
JP2007210829A (ja) ガラス微粒子堆積体の製造方法及びガラス体の製造方法
KR20030037172A (ko) 광섬유 프리폼 외부기상증착장치
JPH0583500B2 (ja)
JP5682143B2 (ja) ガラス微粒子合成用バーナの位置調整方法及びガラス微粒子堆積体の製造方法
JP2013056794A (ja) ガラス微粒子堆積体の製造方法及び光ファイバ用ガラス母材
JP2007055852A (ja) ガラス微粒子堆積体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865319

Country of ref document: EP

Kind code of ref document: A1