WO2019065942A1 - プリプレグ、並びに、それを用いた金属張積層板及び配線基板 - Google Patents

プリプレグ、並びに、それを用いた金属張積層板及び配線基板 Download PDF

Info

Publication number
WO2019065942A1
WO2019065942A1 PCT/JP2018/036187 JP2018036187W WO2019065942A1 WO 2019065942 A1 WO2019065942 A1 WO 2019065942A1 JP 2018036187 W JP2018036187 W JP 2018036187W WO 2019065942 A1 WO2019065942 A1 WO 2019065942A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
prepreg
polyphenylene ether
thermosetting resin
mass
Prior art date
Application number
PCT/JP2018/036187
Other languages
English (en)
French (fr)
Inventor
泰範 星野
弘明 藤原
佑季 北井
高好 小関
佐藤 幹男
征士 幸田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880062570.XA priority Critical patent/CN111148783A/zh
Priority to US16/651,069 priority patent/US20200223998A1/en
Priority to JP2019545666A priority patent/JP7281691B2/ja
Publication of WO2019065942A1 publication Critical patent/WO2019065942A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0251Non-conductive microfibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0284Paper, e.g. as reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Definitions

  • the present invention relates to a prepreg, and a metal-clad laminate and a wiring board using the same.
  • polyphenylene ether is excellent in dielectric characteristics such as dielectric constant and dielectric loss tangent, and also excellent in dielectric characteristics in a high frequency band (high frequency region) from MHz band to GHz band. For this reason, it is examined that polyphenylene ether is used as a high frequency molding material, for example. More specifically, it is considered to be used as a substrate material or the like for forming a base of a printed wiring board provided in an electronic device using a high frequency band.
  • quartz glass has the disadvantage of being very fragile, and there are major problems in substrate processing. Therefore, it is the fact that it has not been put to practical use until now.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a prepreg having excellent electrical properties such as dielectric properties while also being excellent in processability at the time of substrate processing. Another object of the present invention is to provide a metal-clad laminate and a wiring substrate using the above-mentioned prepreg.
  • the prepreg according to one aspect of the present invention is a prepreg having a thermosetting resin composition or a semi-cured product of a thermosetting resin composition, and a fibrous base material, and the thermosetting resin composition (A) a thermosetting resin containing a modified polyphenylene ether compound, (B) a first inorganic filler in which a molybdenum compound is present in at least a part of the surface, and (C) a second inorganic filler
  • the content of the (B) first inorganic filler is 0.1 parts by mass or more and 15 parts by mass or less, relative to 100 parts by mass of the (A) thermosetting resin, and
  • the content of the inorganic filler of 2 is 200 parts by mass or less
  • the fibrous base material is a glass cloth containing quartz glass yarn.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a prepreg according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of a metal-clad laminate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a wiring board according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a drill processability evaluation test performed in the example.
  • the prepreg according to one aspect of the present invention is a prepreg having a thermosetting resin composition or a semi-cured product of a thermosetting resin composition, and a fibrous base material, wherein the thermosetting resin composition is (A) a thermosetting resin containing a modified polyphenylene ether compound, (B) a first inorganic filler in which a molybdenum compound is present in at least a part of the surface, and (C) a second inorganic filler,
  • the content of the (B) first inorganic filler is 0.1 to 15 parts by mass with respect to 100 parts by mass of the (A) thermosetting resin, and the (C) second
  • the content of the inorganic filler is 200 parts by mass or less
  • the fibrous base material is a glass cloth containing quartz glass yarn.
  • the prepreg of this embodiment having such a configuration has excellent dielectric properties, heat resistance, and moldability, and is also excellent in processability such as drill processability at the time of substrate processing.
  • the thermosetting resin composition used in the present embodiment contains (A) a thermosetting resin containing a modified polyphenylene ether compound.
  • the modified polyphenylene ether compound used in the present embodiment may be a terminally modified modified polyphenylene ether compound, and for example, a modified polyphenylene ether compound having a polyphenylene ether chain in the molecule and modified terminal-modified with a substituent X as described later Polyphenylene ether compounds and the like can be mentioned. Specifically, for example, it is a modified polyphenylene ether represented by the following formula (1) or (2).
  • m and n be, for example, 1 to 30 in total of m and n.
  • m is preferably 0 to 20
  • n is preferably 0 to 20. That is, m preferably represents 0 to 20, n preferably represents 0 to 20, and the sum of m and n preferably represents 1 to 30.
  • R 1 to R 8 and R 9 to R 16 are each independent. That is, R 1 to R 8 and R 9 to R 16 may be identical to or different from each other.
  • R 1 to R 8 and R 9 to R 16 each represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • a hydrogen atom and an alkyl group are preferable.
  • R 1 to R 8 and R 9 to R 16 include the following.
  • the alkyl group is not particularly limited, but, for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specifically, for example, methyl group, ethyl group, propyl group, hexyl group, decyl group and the like can be mentioned.
  • alkenyl group is not particularly limited, but, for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable.
  • examples thereof include a vinyl group, an allyl group, and a 3-butenyl group.
  • alkynyl group is not particularly limited, but, for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specifically, for example, ethynyl group, prop-2-yn-1-yl group (propargyl group) and the like can be mentioned.
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but, for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable .
  • acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, hexanoyl group, octanoyl group, cyclohexylcarbonyl group and the like can be mentioned.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but, for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable .
  • an acryloyl group, a methacryloyl group, a crotonoyl group and the like can be mentioned.
  • the alkynyl carbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but, for example, an alkynyl carbonyl group having 3 to 18 carbon atoms is preferable, and an alkynyl carbonyl group having 3 to 10 carbon atoms is more preferable .
  • a propioloyl group and the like can be mentioned.
  • Y a linear, branched or cyclic hydrocarbon having 20 or less carbon atoms can be mentioned. More specifically, the group etc. which are represented by following formula (3) are mentioned, for example.
  • R 17 and R 18 each independently represent a hydrogen atom or an alkyl group.
  • alkyl group a methyl group etc. are mentioned, for example.
  • a methylene group, a methyl methylene group, a dimethyl methylene group etc. are mentioned, for example.
  • the substituent represented by X is preferably a substituent having a carbon-carbon unsaturated double bond.
  • the substituent having a carbon-carbon unsaturated double bond is not particularly limited.
  • substituent X a substituent represented by the following formula (4) can be mentioned.
  • s represents 0 to 10.
  • Z represents an arylene group.
  • R 19 to R 21 are each independent. That is, R 19 to R 21 may be identical to or different from each other.
  • R 19 to R 21 each represent a hydrogen atom or an alkyl group.
  • the arylene group is not particularly limited. Specific examples thereof include monocyclic aromatic groups such as phenylene group, and polycyclic aromatic groups in which the aromatic group is not a single ring but is a polycyclic aromatic group such as a naphthalene ring. Further, the arylene group also includes a derivative in which a hydrogen atom bonded to an aromatic ring is substituted by a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • the alkyl group is not particularly limited.
  • an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • methyl group, ethyl group, propyl group, hexyl group, decyl group and the like can be mentioned.
  • vinylbenzyl group ethenylbenzyl group
  • ethenylbenzyl group such as p-ethenylbenzyl group and m-ethenylbenzyl group
  • vinylphenyl group acrylate group
  • methacrylate group Etc ethacrylate group
  • the functional group containing a vinyl benzyl group is mentioned.
  • at least one substituent selected from the following formula (5) or formula (6) may, for example, be mentioned.
  • a (meth) acrylate group can be mentioned, for example, the following formula It is indicated by (7).
  • R 22 represents a hydrogen atom or an alkyl group.
  • the alkyl group is not particularly limited.
  • an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • methyl group, ethyl group, propyl group, hexyl group, decyl group and the like can be mentioned.
  • the repeating unit represented by the following formula (8) is contained in the molecule It may be done.
  • R 23 to R 26 are each independent. That is, R 23 to R 26 may be identical to or different from each other.
  • R 23 to R 26 each represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferable.
  • each group listed in R 23 to R 26 specifically, each group listed in R 1 to R 8 is the same as each group listed.
  • the weight average molecular weight (Mw) of the modified polyphenylene ether compound used in the present embodiment is not particularly limited. Specifically, it is preferably 500 to 5,000, more preferably 800 to 4,000, and still more preferably 1,000 to 3,000.
  • the weight average molecular weight may be any value as measured by a general molecular weight measurement method, and specific examples thereof include a value measured using gel permeation chromatography (GPC).
  • the weight-average molecular weight of the modified polyphenylene ether compound When the weight-average molecular weight of the modified polyphenylene ether compound is in such a range, it has excellent dielectric properties possessed by polyphenylene ether, and it becomes excellent not only in heat resistance of the cured product but also in moldability. . This is considered to be due to the following. In the case of ordinary polyphenylene ether, when the weight average molecular weight is within such a range, the heat resistance of the cured product tends to be lowered since the molecular weight is relatively low. In this respect, since the modified polyphenylene ether compound according to this embodiment has an unsaturated double bond at the terminal end, it is considered that a compound having a sufficiently high heat resistance of the cured product can be obtained.
  • the weight average molecular weight of the modified polyphenylene ether compound is in such a range, it is considered that the moldability is also excellent. Therefore, it is considered that such a modified polyphenylene ether compound is obtained not only by the heat resistance of the cured product but also by the moldability.
  • the average number (the number of terminal functional groups) of the said substituent which it has at the molecular terminal per molecule of modified polyphenylene ether in the modified polyphenylene ether compound used in this embodiment is not specifically limited. Specifically, the number is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a sufficient heat resistance of the cured product. In addition, when the number of terminal functional groups is too large, the reactivity becomes too high, and for example, there may be problems such as deterioration of the storability of the resin composition or the fluidity of the resin composition. . That is, when such a modified polyphenylene ether is used, a molding defect such as void generation during multi-layer molding occurs due to lack of fluidity, and a highly reliable printed wiring board is difficult to obtain. There was a risk of problems.
  • the number of terminal functional groups of the modified polyphenylene ether compound may, for example, be a numerical value representing the average value of the substituents per molecule of all the modified polyphenylene ether compounds present in 1 mole of the modified polyphenylene ether compound.
  • the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether compound and calculating the decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before the modification is the number of terminal functional groups.
  • the number of hydroxyl groups remaining in the modified polyphenylene ether compound is determined by adding a quaternary ammonium salt (tetraethyl ammonium hydroxide) that associates with the hydroxyl group to a solution of the modified polyphenylene ether compound, and measuring the UV absorbance of the mixed solution You can ask for it by doing.
  • a quaternary ammonium salt tetraethyl ammonium hydroxide
  • the intrinsic viscosity of the modified polyphenylene ether compound used in the present embodiment is not particularly limited. Specifically, it may be 0.03 to 0.12 dl / g, preferably 0.04 to 0.11 dl / g, and more preferably 0.06 to 0.095 dl / g. . If the intrinsic viscosity is too low, the molecular weight tends to be low, and it tends to be difficult to obtain low dielectric properties such as a low dielectric constant and a low dielectric loss tangent. On the other hand, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity can not be obtained, and the moldability of the cured product tends to be reduced. Therefore, if the intrinsic viscosity of the modified polyphenylene ether compound is in the above range, excellent heat resistance and moldability of the cured product can be realized.
  • the intrinsic viscosity here is an intrinsic viscosity measured in methylene chloride at 25 ° C. More specifically, for example, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) is used as a viscometer And the like. Examples of this viscometer include AVS 500 Visco System manufactured by Schott, and the like.
  • the method for synthesizing the modified polyphenylene ether compound used in the present embodiment is not particularly limited as long as it is possible to synthesize the modified polyphenylene ether compound which is terminally modified by the substituent X as described above.
  • a method of reacting a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded to polyphenylene ether may be mentioned.
  • the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded is a compound in which the substituent represented by the formulas (4) to (7) is bonded to a halogen atom, etc. It can be mentioned.
  • halogen atom examples include a chlorine atom, a bromine atom, an iodine atom and a fluorine atom, and among these, a chlorine atom is preferable.
  • Specific examples of the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include p-chloromethylstyrene and m-chloromethylstyrene.
  • the polyphenylene ether which is a raw material is not particularly limited as long as it can finally synthesize a predetermined modified polyphenylene ether.
  • polyphenylene ether such as poly (phenylene ether) composed of 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol and poly (2,6-dimethyl-1,4-phenylene oxide)
  • the main ingredients and the like can be mentioned.
  • the bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in the molecule, and examples thereof include tetramethyl bisphenol A and the like.
  • the trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in the molecule.
  • the polyphenylene ether as described above and the compound represented by the formula (4) are dissolved in a solvent and stirred as an example of a synthesis method of the modified polyphenylene ether compound.
  • polyphenylene ether and the compound represented by Formula (4) react, and the modified polyphenylene ether used by this embodiment is obtained.
  • an alkali metal hydroxide functions as a dehydrohalogenating agent, specifically, a dehydrochlorinating agent. That is, the alkali metal hydroxide causes hydrogen halide to be eliminated from the phenol group of polyphenylene ether and the compound represented by the formula (4), and thereby, instead of the hydrogen atom of the phenol group of polyphenylene ether. It is believed that the substituent X is attached to the oxygen atom of the phenol group.
  • the alkali metal hydroxide is not particularly limited as long as it can function as a dehalogenating agent, and examples thereof include sodium hydroxide and the like.
  • the alkali metal hydroxide is usually used in the form of an aqueous solution, and specifically, it is used as an aqueous solution of sodium hydroxide.
  • reaction conditions such as reaction time and reaction temperature, differ also with the compound etc. which are represented by Formula (4), and if it is the conditions on which the above reaction advances suitably, it will not be specifically limited.
  • the reaction temperature is preferably room temperature to 100 ° C., and more preferably 30 to 100 ° C.
  • the reaction time is preferably 0.5 to 20 hours, and more preferably 0.5 to 10 hours.
  • the solvent used in the reaction can dissolve polyphenylene ether and the compound represented by formula (4), and does not inhibit the reaction between the polyphenylene ether and the compound represented by formula (4). If it is, it will not be limited in particular. Specifically, toluene and the like can be mentioned.
  • phase transfer catalyst has a function of taking in an alkali metal hydroxide and is soluble in both the phase of polar solvent such as water and the phase of nonpolar solvent such as organic solvent.
  • the catalyst can move the Specifically, when an aqueous solution of sodium hydroxide is used as the alkali metal hydroxide and an organic solvent such as toluene which is not compatible with water is used as the solvent, the aqueous solution of sodium hydroxide is subjected to the reaction. Even if it is added dropwise to the solvent, it is considered that the solvent and the aqueous sodium hydroxide solution separate and sodium hydroxide is less likely to transfer to the solvent. In such a case, it is considered that the aqueous sodium hydroxide solution added as an alkali metal hydroxide is less likely to contribute to the reaction promotion.
  • the phase transfer catalyst is not particularly limited, and examples thereof include quaternary ammonium salts such as tetra-n-butylammonium bromide and the like.
  • the resin composition according to the present embodiment preferably contains the modified polyphenylene ether obtained as described above as the modified polyphenylene ether.
  • thermosetting resin composition of the present embodiment may include a thermosetting resin other than the above-described modified polyphenylene ether compound.
  • a thermosetting resin other than the above-described modified polyphenylene ether compound for example, epoxy resins, unsaturated polyester resins, thermosetting polyimide resins and the like can be mentioned as other thermosetting resins which can be used.
  • thermosetting resin is desirably a resin containing modified polyphenylene ether and a crosslinking agent.
  • the crosslinking agent that can be used for the thermosetting resin composition of the present embodiment is not particularly limited as long as it can form a crosslink by reaction with a modified polyphenylene ether compound and can be cured.
  • Preferred is a crosslinking agent having a carbon-carbon unsaturated double bond in the molecule, and further a compound having two or more carbon-carbon unsaturated double bonds in the molecule.
  • the weight average molecular weight of the crosslinking agent used in the present embodiment is preferably 100 to 5,000, more preferably 100 to 4,000, and still more preferably 100 to 3,000.
  • the weight average molecular weight of the crosslinking agent is too low, the crosslinking agent may be easily volatilized from the compound component system of the resin composition.
  • the weight average molecular weight of the crosslinking agent is too high, the viscosity of the varnish of the resin composition and the melt viscosity during heat molding may be too high. Therefore, when the weight average molecular weight of the crosslinking agent is in such a range, a resin composition more excellent in the heat resistance of the cured product is obtained.
  • the weight average molecular weight may be any value as measured by a general molecular weight measurement method, and specific examples thereof include a value measured using gel permeation chromatography (GPC).
  • the crosslinking agent used in the present embodiment is a trialkenyl isocyanurate compound such as triallyl isocyanurate (TAIC), a polyfunctional methacrylate compound having two or more methacrylic groups in the molecule, an acrylic group in the molecule
  • TAIC triallyl isocyanurate
  • vinyl compounds (polyfunctional vinyl compounds) having two or more vinyl groups in the molecule such as polybutadiene and the like, and vinyl such as styrene having a vinyl benzyl group in the molecule, divinyl benzene and the like
  • a benzyl compound etc. are mentioned.
  • one having two or more carbon-carbon double bonds in the molecule is preferable.
  • crosslinking agent examples thereof include trialkenyl isocyanurate compounds, polyfunctional acrylate compounds, polyfunctional methacrylate compounds, polyfunctional vinyl compounds, and divinylbenzene compounds. When these are used, it is thought that crosslinking is more suitably formed by the curing reaction, and the heat resistance of the cured product of the resin composition according to the present embodiment can be further enhanced.
  • the crosslinking agent the exemplified crosslinking agents may be used alone, or two or more of them may be used in combination.
  • a crosslinking agent a compound having two or more carbon-carbon unsaturated double bonds in the molecule and a compound having one carbon-carbon unsaturated double bond in the molecule may be used in combination.
  • Specific examples of the compound having one carbon-carbon unsaturated double bond in the molecule include a compound having a vinyl group in the molecule (monovinyl compound).
  • the content of the modified polyphenylene ether compound is preferably 30 to 90 parts by mass, preferably 50 to 90 parts by mass, with respect to a total of 100 parts by mass of the modified polyphenylene ether compound and the crosslinking agent. Is more preferred.
  • the content of the crosslinking agent is preferably 10 to 70 parts by mass, and more preferably 10 to 50 parts by mass, with respect to 100 parts by mass in total of the modified polyphenylene ether compound and the crosslinking agent.
  • the content ratio of the modified polyphenylene ether compound to the crosslinking agent is preferably 90:10 to 30:70 by mass ratio, and more preferably 90:10 to 50:50.
  • each content of the said modified polyphenylene ether compound and the said crosslinking agent is content which satisfy
  • a molybdenum compound can be conventionally used as an inorganic filler
  • a molybdenum compound exists in a part or the whole of the surface of inorganic substances other than molybdenum in this 1st inorganic filler.
  • Inorganic filler "Present on the surface” refers to a state in which a molybdenum compound is supported on at least a part of the surface of the inorganic filler, or at least a part of the surface of the inorganic filler is covered with the molybdenum compound, etc. .
  • the resin composition of the present embodiment is 0.1 parts by mass or more and 15 parts by mass with respect to 100 parts by mass of the above-mentioned thermosetting resin in which the first inorganic filler in which the molybdenum compound is present in at least a part of the surface It contains in the following contents.
  • the first inorganic filler in such a content, it is possible to provide a prepreg excellent in processing performance at the time of substrate processing such as drill processing, while being excellent in electrical properties and thermal expansion coefficient.
  • the compounding amount of the first inorganic filler is preferably 0.1 parts by mass or more and 5 parts by mass or less.
  • the molybdenum compound that can be used in the present embodiment is preferably a compound particle composed of at least one or more metal salts selected from, for example, zinc molybdate, calcium molybdate, and magnesium molybdate.
  • inorganic fillers other than various molybdenum compounds can be used without particular limitation as long as the molybdenum compound is present on at least a part of the surface. Above all, it is preferable to use talc from the viewpoint of processability, heat resistance and chemical resistance.
  • the amount of the molybdenum compound present on the surface of the first inorganic filler is not particularly limited, it is present at a ratio (mass ratio) of about 100: 0.1 to 100: 20 with respect to the first inorganic filler. Is preferred. As a result, there is an advantage that processability can be improved without deteriorating heat resistance.
  • the resin composition of the present embodiment includes the second inorganic filler in an amount of 200 parts by mass or less based on 100 parts by mass of the thermosetting resin, in addition to the first inorganic filler described above. If the content of the second inorganic filler is 200 parts by mass or less, it is considered that sufficient moldability and processability can be obtained.
  • the lower limit of the content of the second inorganic filler is not particularly limited, it is preferably 50 parts by mass or more with respect to 100 parts by mass of the thermosetting resin. Thereby, it is possible to impart electrical properties and heat resistance to the resin composition.
  • the second inorganic filler that can be used in the present embodiment is not particularly limited, and, for example, spherical silica, barium sulfate, silicon oxide powder, crushed silica, calcined talc, barium titanate, titanium oxide, clay, Alumina, mica, boehmite, zinc borate, zinc stannate, other metal oxides, metal hydrates and the like can be mentioned.
  • spherical silica, barium sulfate, silicon oxide powder, crushed silica, calcined talc, barium titanate, titanium oxide, clay, Alumina, mica, boehmite, zinc borate, zinc stannate, other metal oxides, metal hydrates and the like can be mentioned.
  • thermal expansion of a laminated board or the like using the prepreg of the present embodiment can be suppressed, and dimensional stability can be enhanced.
  • silica is preferable because it has the advantage of being able to improve the heat resistance of the laminate and the dielectric loss tangent (Df).
  • the inorganic filler as described above may be surface-treated with a silane coupling agent or the like.
  • thermosetting resin composition of this embodiment can also contain other components.
  • reaction initiators selected from organic peroxides, azo compounds, dihalogen compounds and the like, flame retardants, resin modifiers, antioxidants and the like can be mentioned.
  • the curing reaction can proceed.
  • the curing reaction can proceed even with only modified polyphenylene ether.
  • an initiator may be added.
  • the reaction initiator is not particularly limited as long as it can accelerate the curing reaction of the modified polyphenylene ether and the crosslinkable curing agent.
  • An oxidizing agent such as ronitrile can be mentioned.
  • carboxylic acid metal salt etc. can be used together as needed. By doing so, the curing reaction can be further accelerated.
  • ⁇ , ⁇ ′-bis (t-butylperoxy-m-isopropyl) benzene is preferably used. Since ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene has a relatively high reaction initiation temperature, it suppresses the acceleration of the curing reaction when it is not necessary to cure such as during prepreg drying. It is possible to suppress the decrease in the preservability of the polyphenylene ether resin composition. Furthermore, since ⁇ , ⁇ ′-bis (t-butylperoxy-m-isopropyl) benzene has low volatility, it does not volatilize during drying or storage of the prepreg, and the stability is good.
  • reaction initiators may be used alone or in combination of two or more.
  • the reaction initiator is preferably used in an amount of 0.1 to 2 parts by mass with respect to 100 parts by mass of the (A) terminal-modified polyphenylene ether compound which is a thermosetting resin. .
  • content refers to content when mix
  • FIG. 1 is a schematic cross-sectional view showing an example of a prepreg 1 according to an embodiment of the present invention.
  • the reference numerals in the drawings indicate the following: 1 prepreg, 2 semi-cured resin composition or resin composition, 3 fibrous base material, 11 metal-clad laminate, 12 insulating layer, 13 metal foil, 14 wiring , 15 drill bits, 16 entry boards, 21 wiring boards.
  • the prepreg 1 which concerns on this embodiment is equipped with the semi-hardened thing 2 of the said thermosetting resin composition or the said thermosetting resin composition, and the fibrous base material 3, as shown in FIG.
  • this prepreg 1 one in which the fibrous base material 3 is present in the thermosetting resin composition or the semi-cured product 2 can be mentioned. That is, the prepreg 1 includes the thermosetting resin composition or the semi-cured product thereof, and the fibrous base material 3 present in the thermosetting resin composition or the semi-cured product 2 thereof.
  • cured material” is a thing of the state hardened
  • the prepreg according to the present embodiment may be provided with a semi-cured product of the resin composition, or may be provided with the resin composition itself that has not been cured. That is, the prepreg according to the present embodiment may be a prepreg including a semi-cured product of the resin composition (the resin composition of B-stage) and a fibrous base material, or a resin composition before curing.
  • the prepreg may include an article (the resin composition at A stage) and a fibrous base material.
  • a glass cloth containing quartz glass yarn is used as a fibrous base material used in producing a prepreg.
  • examples of the glass cloth containing quartz glass yarn include Q glass and QL glass.
  • the quartz glass yarn refers to a glass containing 99.0% by mass or more of SiO 2 (silicon dioxide) based on the total amount (hereinafter, also referred to as “Q glass”).
  • the QL glass cloth is a glass cloth of a hybrid configuration configured of the Q glass and the L glass.
  • L glass means a glass cloth containing about 50 to 60% by mass of SiO 2 (silicon dioxide), about 10 to 25% by mass of B 2 O 3 , and 15% by mass or less of CaO.
  • SiO 2 silicon dioxide
  • B 2 O 3 B 2 O 3
  • CaO CaO
  • the warp is L glass
  • the weft is Q glass.
  • the relative permittivity (Dk) and the dielectric loss tangent (Df) of each of the above glass cloths are as follows: -Q glass Dk: more than 3.3 to 3.8 or less, Df: 0.0017 or less-QL glass Dk: more than 3.8 to 4.3 or less, Df: more than 0.0023 to 0.0033 or less-L glass Dk: more than 4.2 to 4.7 or less, Df: more than 0.0033 to 0.0043 or less
  • the relative permittivity (Dk) and the dielectric loss tangent (Df) of each of the glass cloths in the present embodiment are values obtained by the following measurement method.
  • a substrate copper-clad laminate
  • copper foil is removed from the prepared copper-clad laminate
  • the Dk and Df at a frequency of 10 GHz of the obtained sample were measured by a cavity resonator perturbation method using a network analyzer (N5230A manufactured by Keysight Technologies, Inc.).
  • the cured product of the resin composition is measured by the cavity resonator perturbation method from the volume fraction of glass cloth and the resin composition used for substrate preparation Based on Dk and Df at 10 GHz, Dk and Df of the glass cloth are calculated.
  • the fibrous base material of the present embodiment may be a surface-treated glass cloth, and the surface treatment agent may be, for example, a silane coupling having a functional group such as a vinyl group, a styryl group, a methacrylic group or an acrylic group.
  • An agent can be preferably used.
  • the glass cloth has an air permeability adjusted by performing an opening treatment.
  • the opening process include a process performed by spraying high pressure water onto a glass cloth, and a process performed by continuously pressing the yarn with an appropriate pressure with a press roll and compressing it flat. It can be mentioned.
  • the air permeability of the glass cloth is preferably 200 cm 3 / cm 2 / sec or less, more preferably 3 to 100 cm 3 / cm 2 / sec, and 3 to 50 cm 3 / cm 2 / sec. Is more preferred. When this air permeability is too high, the opening of the glass cloth tends to be insufficient.
  • the air permeability is the air permeability measured by the Frazier type air permeability tester according to JISR3420 (2013).
  • the thickness of the fibrous base material is not particularly limited, but is preferably 0.01 to 0.2 mm, more preferably 0.02 to 0.15 mm, and more preferably 0.03 to 0.2 mm. More preferably, it is 0.1 mm.
  • the resin content in the prepreg is not particularly limited, but is preferably 40 to 90% by mass, more preferably 50 to 90% by mass, and still more preferably 60 to 80% by mass. If the resin content is too low, low dielectric properties tend to be difficult to obtain. If the resin content is too high, the coefficient of thermal expansion (CTE) tends to be high, and the plate thickness accuracy tends to be low.
  • the thickness of the prepreg is not particularly limited, but is preferably 0.015 to 0.2 mm, more preferably 0.02 to 0.15 mm, and preferably 0.03 to 0.13 mm, for example. Is more preferred.
  • the prepreg is too thin, the number of prepregs required to obtain a desired substrate thickness increases.
  • the prepreg is too thick, the resin content tends to be low, and it is difficult to obtain desired low dielectric properties.
  • thermosetting resin composition of this embodiment mentioned above is prepared in varnish form, and is used as resin varnish in many cases.
  • resin varnish is prepared, for example, as follows.
  • each component that can be dissolved in an organic solvent such as a modified polyphenylene ether compound, a crosslinking agent, and a reaction initiator, is charged into the organic solvent and dissolved. At this time, heating may be performed as necessary. Thereafter, a component which does not dissolve in the organic solvent, that is, an inorganic filler, etc. is added, and the resin in the form of varnish is dispersed by using a ball mill, bead mill, planetary mixer, roll mill etc. A composition is prepared.
  • the organic solvent to be used here is not particularly limited as long as it does not inhibit the curing reaction by dissolving a modified polyphenylene ether compound, a crosslinking agent, a reaction initiator and the like. Specific examples thereof include toluene, cyclohexanone and propylene glycol monomethyl ether acetate. These may be used alone or in combination of two or more.
  • thermosetting resin composition 2 prepared in the obtained resin varnish form was impregnated into the fibrous base material 3 Then, the method of drying is mentioned.
  • Impregnation of the resin varnish (resin composition 2) into the fibrous base material 3 is carried out by immersion, application and the like. This impregnation can be repeated several times as needed. At this time, it is also possible to repeat the impregnation using a plurality of resin varnishes different in composition and concentration, and finally adjust to the desired composition (content ratio) and resin amount.
  • the fibrous base material 3 impregnated with the resin varnish (resin composition 2) is heated under desired heating conditions, for example, at 80 ° C. or more and 180 ° C. or less for 1 minute or more and 10 minutes or less.
  • desired heating conditions for example, at 80 ° C. or more and 180 ° C. or less for 1 minute or more and 10 minutes or less.
  • the solvent is volatilized from the varnish, and a prepreg 1 before curing (A stage) or in a semi-cured state (B stage) is obtained.
  • the metal-clad laminate 11 of the present embodiment is characterized by having an insulating layer 12 containing a cured product of the above-mentioned prepreg, and a metal foil 13.
  • one or more sheets of the prepreg 1 are stacked, and further, metal foil 13 such as copper foil is formed on both upper and lower sides or one side thereof. It is possible to produce a double-sided metal-foiled or single-sided metal-foiled laminate by stacking and integrating the two by heating and pressing.
  • the heating and pressing conditions can be appropriately set according to the thickness of the laminate to be produced, the type of the resin composition, etc. For example, the temperature is 170 to 220 ° C., the pressure is 1.5 to 5.0 MPa, and the time 60 It can be up to 150 minutes.
  • the wiring board 21 of the present embodiment has an insulating layer 12 containing a cured product of the above-described prepreg, and a wiring 14.
  • the surface of the laminate is formed by forming a circuit (wiring) by etching the metal foil 13 on the surface of the metal-clad laminate 13 obtained above.
  • a wiring board 21 provided with a conductor pattern (wiring 14) as a circuit can be obtained.
  • the wiring substrate 21 obtained by using the resin composition of the present embodiment is excellent in dielectric characteristics, and even if it is in the form of a package in which semiconductor chips are joined, it is easy to mount and there is no variation in quality. Is also excellent.
  • the cured product of the prepreg of the present embodiment is excellent in processability, it is difficult to cause cracking or the like at the time of processing (etching, peeling, etc.), and is excellent in moldability and handleability.
  • the prepreg according to one aspect of the present invention is a prepreg having a thermosetting resin composition or a semi-cured product of a thermosetting resin composition, and a fibrous base material, wherein the thermosetting resin composition is (A) a thermosetting resin containing a modified polyphenylene ether compound, (B) a first inorganic filler in which a molybdenum compound is present in at least a part of the surface, and (C) a second inorganic filler,
  • the content of the (B) first inorganic filler is 0.1 to 15 parts by mass with respect to 100 parts by mass of the (A) thermosetting resin, and the (C) second
  • the content of the inorganic filler is 200 parts by mass or less
  • the fibrous base material is a glass cloth containing quartz glass yarn.
  • the (A) thermosetting resin further contains a crosslinking agent.
  • the molybdenum compound is a compound particle composed of at least one metal salt selected from zinc molybdate, calcium molybdate and magnesium molybdate. . Thereby, the above-mentioned effect can be acquired more certainly.
  • the content of the (C) second inorganic filler is preferably 50 parts by mass or more with respect to 100 parts by mass of the (A) thermosetting resin. Thereby, further electrical properties and heat resistance can be imparted to the resin composition.
  • the metal-clad laminate according to still another aspect of the present invention is characterized by having an insulating layer containing the cured product of the above-mentioned prepreg, and a metal foil.
  • a wiring board according to still another aspect of the present invention is characterized by having an insulating layer including the cured product of the above-mentioned prepreg, and a wiring.
  • the prepreg, the metal-clad laminate, and the wiring substrate of the present invention are very useful for industrial use because they are excellent in dielectric properties, formability, heat resistance and processability.
  • thermosetting resin composition in this example First, components used in preparing a thermosetting resin composition in this example will be described.
  • thermosetting resin> Polyphenylene ether compound
  • Modified PPE-1 A modified polyphenylene ether in which the terminal hydroxyl group of polyphenylene ether is modified with a methacryl group (represented by the above formula (2), X in formula (2) is a methacryl group, and in formula (2)
  • Modified PPE-2 A modified polyphenylene ether obtained by reacting polyphenylene ether with chloromethylstyrene.
  • polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics, 2 hydroxyl end groups, weight average molecular weight Mw 1700) was added to a 1-liter three-necked flask equipped with a temperature controller, a stirrer, a cooling system, and a dropping funnel.
  • the obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3 , TMS). As a result of NMR measurement, a peak derived from a vinylbenzyl group (ethenylbenzyl group) was confirmed at 5 to 7 ppm. Thereby, it could be confirmed that the obtained solid was a modified polyphenylene ether having a vinylbenzyl group as a substituent at the molecule end as a substituent. Specifically, it could be confirmed that it is an ethenylbenzylated polyphenylene ether.
  • the obtained modified polyphenylene ether compound is represented by the above formula (2), X in the formula (2) is a vinylbenzyl group (ethenylbenzyl group), and Y in the formula (2) is dimethyl It is a modified polyphenylene ether compound which is a methylene group (a group represented by formula (3) and R 17 and R 18 in formula (3) are methyl groups).
  • the number of terminal functional groups of the modified polyphenylene ether was measured as follows.
  • TEAH tetraethylammonium hydroxide
  • Remaining OH amount ( ⁇ mol / g) [(25 ⁇ Abs) / ( ⁇ ⁇ OPL ⁇ X)] ⁇ 10 6
  • represents an absorption coefficient and is 4700 L / mol ⁇ cm.
  • OPL is the cell optical path length, which is 1 cm.
  • the amount of residual OH (the number of terminal hydroxyl groups) of the modified polyphenylene ether thus calculated is almost zero, it was found that the hydroxyl groups of the polyphenylene ether before modification were substantially modified. From this, it is understood that the decrease from the number of terminal hydroxyl groups of the polyphenylene ether before modification is the number of terminal hydroxyl groups of the polyphenylene ether before modification. That is, it was found that the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal functional groups of the modified polyphenylene ether. That is, the number of terminal functional groups was two.
  • the intrinsic viscosity (IV) of the modified polyphenylene ether was also measured in methylene chloride at 25 ° C. Specifically, the intrinsic viscosity (IV) of the modified polyphenylene ether was measured using a 0.18 g / 45 ml methylene chloride solution of the modified polyphenylene ether (liquid temperature 25 ° C.) with a viscometer (AVS 500 Visco System manufactured by Schott). It was measured. As a result, the intrinsic viscosity (IV) of the modified polyphenylene ether was 0.086 dl / g.
  • Mw weight average molecular weight
  • Unmodified PPE polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics, intrinsic viscosity (IV) 0.083 dl / g, number of hydroxyl groups at two, weight average molecular weight Mw 1700)
  • Epoxy resin Dicyclopentadiene type epoxy resin (Epiclon HP 7200 manufactured by DIC Corporation, average number of epoxy groups: 2.3)
  • KG-911C Zinc molybdate-treated talc (made by Huber)
  • KG-911A calcium molybdate-treated talc (made by Huber)
  • SC-2300SVJ spherical silica (made by Admatex Co., Ltd.)
  • Others -Zinc molybdate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • the obtained varnish was impregnated into the fibrous base material (glass cloth) shown in Table 1 and heat dried at 130 ° C. for about 3 to 8 minutes to prepare a prepreg.
  • the content (resin content) of the resin composition with respect to the weight of the prepreg was adjusted to be about 55% by mass.
  • the evaluation substrate (cured product of prepreg, metal-clad laminate) prepared as described above was evaluated by the method shown below.
  • Df Dielectric properties (Dielectric loss tangent (Df))]
  • the dielectric loss tangent of each evaluation substrate (cured product of the prepreg obtained above) at 10 GHz was measured by a cavity resonator perturbation method. Specifically, the dielectric loss tangent of the evaluation substrate at 10 GHz was measured using a network analyzer (“N5230A” manufactured by Agilent Technologies, Inc.). As an evaluation standard, Df makes 0.002 or less a pass line.
  • Drilling conditions Entry board: Al 0.15 mm Number of overlapping sheets: 0.75 mm ⁇ 2 sheets Hole diameter: 0.3 ⁇ ⁇ 5.5 Bit part number: NHUL020 Rotation speed: 160 Krpm Feeding speed: 20 ⁇ / rev Hit number: 5000 hit As the evaluation criteria, if the hole position accuracy was 50 ⁇ m or less, it was judged as a pass.
  • the heat resistance was evaluated according to the standard of JIS C 6481.
  • the copper clad laminate cut into a predetermined size was left in a thermostatic bath set at 280 ° C. for 1 hour, and then taken out. Then, the heat-treated test pieces were visually observed and evaluated as ⁇ when no blistering occurred and as ⁇ when blistering occurred.
  • Formability evaluation criteria :: no void or scratching on the surface and cross section of the molded product ⁇ : a void or cracking occurring on the surface of the molded product as a result of cross section observation
  • Comparative Example 1 and Comparative Example 8 which do not contain the first inorganic filler in which a molybdenum compound is present in at least a part of the surface, the dielectric properties etc. were good, but the result was inferior in drillability. .
  • Comparative Example 2 in which the content of the first inorganic filler was too large, sufficient dielectric properties and heat resistance were not obtained.
  • the present invention has wide industrial applicability in the technical fields related to electronic materials and various devices using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本発明の一局面は、熱硬化性樹脂組成物又は熱硬化性樹脂組成物の半硬化物と、繊維質基材とを有するプリプレグであって、前記熱硬化性樹脂組成物が、(A)変性ポリフェニレンエーテル化合物を含む熱硬化性樹脂と、(B)表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤と、(C)第2の無機充填剤とを含み、前記(A)熱硬化性樹脂100質量部に対し、前記(B)第1の無機充填剤の含有量が0.1質量部以上15質量部以下であり、かつ、前記(C)第2の無機充填剤の含有量が200質量部以下であり、前記繊維質基材が、石英ガラスヤーンを含むガラスクロスである、プリプレグに関する。

Description

プリプレグ、並びに、それを用いた金属張積層板及び配線基板
 本発明は、プリプレグ、並びに、それを用いた金属張積層板及び配線基板等に関する。
 近年、電気機器は信号の大容量化が進展しているため、半導体基板などには、高速通信に必要とされる低誘電率や低誘電正接といった誘電特性が求められる。また、更なる長距離伝送を可能にするための電気特性の改善も要望されている。
 ポリフェニレンエーテル(PPE)は、誘電率や誘電正接等の誘電特性が優れ、MHz帯からGHz帯という高周波数帯(高周波領域)においても誘電特性が優れていることが知られている。このため、ポリフェニレンエーテルは、例えば、高周波用成形材料として用いられることが検討されている。より具体的には、高周波数帯を利用する電子機器に備えられるプリント配線板の基材を構成するための基板材料等として用いられることが検討されている。
 一方で、電気特性の改善を目的として様々な研究がなされている中、石英ガラスの使用が有効な手段として検討されている。この石英ガラス(Qガラス、クオーツとも称される)と前記ポリフェニレンエーテル樹脂を組み合わせたプリプレグも報告されている(特許文献1)。
 しかし、基板材料向けに石英ガラスを含む基材(ガラスクロス)を使用することで、低誘電特性や低熱膨張等の特性を付与することが期待される一方で、SiOの持つ高い硬度のために石英ガラスは非常に脆いという難点があり、基板加工時において大きな課題がある。そのため、現在まで実用化には至っていないのが実情である。
国際公報WO2012/128313号パンフレット
 本発明は、かかる事情に鑑みてなされたものであって、誘電特性等の優れた電気特性を有する一方で、基板加工時の加工性にも優れるプリプレグを提供することを目的とする。また、前記プリプレグを用いた金属張積層板及び配線基板を提供することを目的とする。
 本発明者らは鋭意研究を重ね、下記構成によって上記課題が解決できることを見出した。
 すなわち、本発明の一態様に係るプリプレグは、熱硬化性樹脂組成物又は熱硬化性樹脂組成物の半硬化物と、繊維質基材とを有するプリプレグであって、前記熱硬化性樹脂組成物が、(A)変性ポリフェニレンエーテル化合物を含む熱硬化性樹脂と、(B)表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤と、(C)第2の無機充填剤とを含み、前記(A)熱硬化性樹脂100質量部に対し、前記(B)第1の無機充填剤の含有量が0.1質量部以上15質量部以下であり、かつ、前記(C)第2の無機充填剤の含有量が200質量部以下であり、前記繊維質基材が、石英ガラスヤーンを含むガラスクロスであることを特徴とする。
図1は、本発明の一実施形態に係るプリプレグの構成を示す概略断面図である。 図2は、本発明の一実施形態に係る金属張積層板の構成を示す概略断面図である。 図3は、本発明の一実施形態に係る配線基板の構成を示す概略断面図である。 図4は、実施例で行ったドリル加工性評価試験を示す概略図である。
 本発明の一態様に係るプリプレグは、熱硬化性樹脂組成物又は熱硬化性樹脂組成物の半硬化物と、繊維質基材とを有するプリプレグであって、前記熱硬化性樹脂組成物が、(A)変性ポリフェニレンエーテル化合物を含む熱硬化性樹脂と、(B)表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤と、(C)第2の無機充填剤とを含み、前記(A)熱硬化性樹脂100質量部に対し、前記(B)第1の無機充填剤の含有量が0.1質量部以上15質量部以下であり、かつ、前記(C)第2の無機充填剤の含有量が200質量部以下であり、前記繊維質基材が、石英ガラスヤーンを含むガラスクロスであることを特徴とする。
 このような構成を有する本実施形態のプリプレグは、優れた誘電特性、耐熱性、成形性を有し、さらに、基板加工時におけるドリル加工性などの加工性にも優れる。
 以下、本実施形態に係るプリプレグの各構成について、具体的に説明する。
 <(A)熱硬化性樹脂>
 本実施形態で用いる熱硬化性樹脂組成物は、(A)変性ポリフェニレンエーテル化合物を含む熱硬化性樹脂を含有する。本実施形態で使用する変性ポリフェニレンエーテル化合物は、末端変性された変性ポリフェニレンエーテル化合物であればよく、例えば、ポリフェニレンエーテル鎖を分子中に有し、後述するような置換基Xにより末端変性された変性ポリフェニレンエーテル化合物等が挙げられる。具体的には、例えば、下記式(1)または(2)で表される変性ポリフェニレンエーテルである。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(1)及び式(2)において、m及びnは、例えば、mとnとの合計値が、1~30となるものであることが好ましい。また、mが、0~20であることが好ましく、nが、0~20であることが好ましい。すなわち、mは、0~20を示し、nは、0~20を示し、mとnとの合計は、1~30を示すことが好ましい。
 また、式(1)及び式(2)において、R~R並びにR~R16は、それぞれ独立している。すなわち、R~R並びにR~R16は、それぞれ同一の基であっても、異なる基であってもよい。また、R~R並びにR~R16は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 R~R並びにR~R16はにおいて、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 また、アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
 また、アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
 また、アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
 また、アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
 また、アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。
 次に、式(1)および式(2)中、Yとしては、炭素数20以下の直鎖状、分岐状もしくは環状の炭化水素が挙げられる。より具体的には、例えば、下記式(3)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 前記式(3)中、R17及びR18は、それぞれ独立して、水素原子またはアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(3)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられる。
 さらに、前記式(1)および(2)中、Xで示される置換基は、炭素-炭素不飽和二重結合を有する置換基であることが好ましい。
 炭素-炭素不飽和二重結合を有する置換基としては、特に限定されない。例えば、前記置換基Xとしては、下記式(4)で表される置換基等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(4)中、sは、0~10を示す。また、Zは、アリーレン基を示す。また、R19~R21は、それぞれ独立している。すなわち、R19~R21は、それぞれ同一の基であっても、異なる基であってもよい。また、R19~R21は、水素原子またはアルキル基を示す。
 なお、式(4)において、sが0である場合は、Zがポリフェニレンエーテルの末端に直接結合しているものを示す。
 このアリーレン基は、特に限定されない。具体的には、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子がアルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。また、前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 また、前記置換基Xとしては、より具体的には、p-エテニルベンジル基やm-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、及びメタクリレート基等が挙げられる。
 上記式(4)に示す置換基Xの好ましい具体例としては、ビニルベンジル基を含む官能基が挙げられる。具体的には、下記式(5)又は式(6)から選択される少なくとも1つの置換基等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 上記以外にも、本実施形態で用いる変性ポリフェニレンエーテルにおいて末端変性される、炭素-炭素不飽和二重結合を有する他の置換基Xとしては、(メタ)アクリレート基が挙げられ、例えば、下記式(7)で示される。
Figure JPOXMLDOC01-appb-C000007
 式(7)中、R22は、水素原子またはアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 また、前記変性ポリフェニレンエーテル化合物におけるポリフェニレンエーテル鎖としては、上記式(1)及び(2)で示した繰り返し単位以外にも、例えば、下記式(8)で表される繰り返し単位を分子中に有していてもよい。
Figure JPOXMLDOC01-appb-C000008
 式(8)中、pは、1~50を示し、式(1)又は式(2)のmとnとの合計値に相当し、1~30であることが好ましい。また、R23~R26は、それぞれ独立している。すなわち、R23~R26は、それぞれ同一の基であっても、異なる基であってもよい。また、R23~R26は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。また、R23~R26において、挙げられた各基としては、具体的には、R~Rにおいて、挙げられた各基と同様である。
 本実施形態において用いられる変性ポリフェニレンエーテル化合物の重量平均分子量(Mw)は、特に限定されない。具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
 変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテルの有する優れた誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルでは、その重量平均分子量がこのような範囲内であると、比較的低分子量となっているため、硬化物の耐熱性が低下する傾向がある。この点、本実施形態に係る変性ポリフェニレンエーテル化合物は、末端に不飽和二重結合を以上有するので、硬化物の耐熱性が充分に高いものが得られると考えられる。また、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、成形性にも優れると考えられる。よって、このような変性ポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。
 また、本実施形態において用いられる変性ポリフェニレンエーテル化合物における、変性ポリフェニレンエーテル1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。すなわち、このような変性ポリフェニレンエーテルを用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高いプリント配線板が得られにくいという成形性の問題が生じるおそれがあった。
 なお、変性ポリフェニレンエーテル化合物の末端官能基数は、変性ポリフェニレンエーテル化合物1モル中に存在する全ての変性ポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、変性ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。
 また、本実施形態において用いられる変性ポリフェニレンエーテル化合物の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであればよいが、0.04~0.11dl/gであることが好ましく、0.06~0.095dl/gであることがより好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、変性ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
 また、本実施形態において用いられる変性ポリフェニレンエーテル化合物の合成方法は、上述したような置換基Xにより末端変性された変性ポリフェニレンエーテル化合物を合成できれば、特に限定されない。例えば、ポリフェニレンエーテルに、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とは、前記式(4)~(7)で表される置換基とハロゲン原子とが結合された化合物等が挙げられる。前記ハロゲン原子としては、具体的には、塩素原子、臭素原子、ヨウ素原子、及びフッ素原子が挙げられ、この中でも、塩素原子が好ましい。炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、具体的には、p-クロロメチルスチレンやm-クロロメチルスチレン等が挙げられる。
 原料であるポリフェニレンエーテルは、最終的に、所定の変性ポリフェニレンエーテルを合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。
 変性ポリフェニレンエーテル化合物の合成方法の一例として、具体的には、例えば、上記のようなポリフェニレンエーテルと、式(4)で表される化合物とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、式(4)で表される化合物とが反応し、本実施形態で用いられる変性ポリフェニレンエーテルが得られる。
 また、この反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と式(4)で表される化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、置換基Xが、フェノール基の酸素原子に結合すると考えられる。
 また、アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。
 また、反応時間や反応温度等の反応条件は、式(4)で表される化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。
 また、反応時に用いる溶媒は、ポリフェニレンエーテルと、式(4)で表される化合物とを溶解させることができ、ポリフェニレンエーテルと、式(4)で表される化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。
 また、上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。
 また、相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。
 本実施形態に係る樹脂組成物には、変性ポリフェニレンエーテルとして、上記のようにして得られた変性ポリフェニレンエーテルを含むことが好ましい。
 なお、本実施形態の熱硬化性樹脂組成物には、上述したような変性ポリフェニレンエーテル化合物以外の熱硬化性樹脂を含めてもよい。例えば、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性ポリイミド樹脂等が使用可能なその他熱硬化性樹脂として挙げられる。
 好ましい実施形態では、熱硬化性樹脂は、変性ポリフェニレンエーテルと架橋剤とを含む樹脂であることが望ましい。それにより、より優れた耐熱性、電気特性等が得られると考えられる。
 本実施形態の熱硬化性樹脂組成物に使用できる架橋剤としては、変性ポリフェニレンエーテル化合物と反応させることによって、架橋を形成させて、硬化させることができるものであれば特に限定されない。好ましくは、炭素-炭素不飽和二重結合を分子中に有する架橋剤であり、さらに炭素-炭素不飽和二重結合を分子中に2個以上有する化合物が好ましい。
 また、本実施形態において用いられる架橋剤は、重量平均分子量が100~5000であることが好ましく、100~4000であることがより好ましく、100~3000であることがさらに好ましい。架橋剤の重量平均分子量が低すぎると、架橋剤が樹脂組成物の配合成分系から揮発しやすくなるおそれがある。また、架橋剤の重量平均分子量が高すぎると、樹脂組成物のワニスの粘度や、加熱成形時の溶融粘度が高くなりすぎるおそれがある。よって、架橋剤の重量平均分子量がこのような範囲内であると、硬化物の耐熱性により優れた樹脂組成物が得られる。このことは、変性ポリフェニレンエーテル化合物との反応により、架橋を好適に形成することができるためと考えられる。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
 具体的には、本実施形態において用いられる架橋剤は、トリアリルイソシアヌレート(TAIC)等のトリアルケニルイソシアヌレート化合物、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、ポリブタジエン等のように分子中にビニル基を2個以上有するビニル化合物(多官能ビニル化合物)、及び分子中にビニルベンジル基を有するスチレン、ジビニルベンゼン等のビニルベンジル化合物等が挙げられる。この中でも、炭素-炭素二重結合を分子中に2個以上有するものが好ましい。具体的には、トリアルケニルイソシアヌレート化合物、多官能アクリレート化合物、多官能メタクリレート化合物、多官能ビニル化合物、及びジビニルベンゼン化合物等が挙げられる。これらを用いると、硬化反応により架橋がより好適に形成されると考えられ、本実施形態に係る樹脂組成物の硬化物の耐熱性をより高めることができる。また、架橋剤は、例示した架橋剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、架橋剤としては、炭素-炭素不飽和二重結合を分子中に2個以上有する化合物と、炭素-炭素不飽和二重結合を分子中に1個有する化合物とを併用してもよい。炭素-炭素不飽和二重結合を分子中に1個有する化合物としては、具体的には、分子中にビニル基を1個有する化合物(モノビニル化合物)等が挙げられる。
 また、前記変性ポリフェニレンエーテル化合物の含有量が、前記変性ポリフェニレンエーテル化合物と前記架橋剤との合計100質量部に対して、30~90質量部であることが好ましく、50~90質量部であることがより好ましい。また、前記架橋剤の含有量が、前記変性ポリフェニレンエーテル化合物と前記架橋剤との合計100質量部に対して、10~70質量部であることが好ましく、10~50質量部であることがより好ましい。すなわち、前記変性ポリフェニレンエーテル化合物と前記架橋剤との含有比が、質量比で90:10~30:70であることが好ましく、90:10~50:50であることが好ましい。前記変性ポリフェニレンエーテル化合物及び前記架橋剤の各含有量が、上記範囲を満たすような含有量であれば、硬化物の耐熱性及び難燃性により優れた樹脂組成物になる。このことは、前記変性ポリフェニレンエーテル化合物と前記架橋剤との硬化反応が好適に進行するためと考えられる。
 <(B)第1の無機充填剤>
 本実施形態において用いられる(B)成分、すなわち、表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤について説明する。
 なお、モリブデン化合物は従来より無機充填剤として使用できることが知られているが、本実施形態においては、第1の無機充填剤は、モリブデン以外の無機物の表面の一部または全体にモリブデン化合物が存在する無機充填材である。「表面に存在している」とは、無機充填剤の表面の少なくとも一部にモリブデン化合物が担持されていたり、無機充填剤の表面の少なくとも一部がモリブデン化合物で被覆されている状態等をさす。
 本実施形態の樹脂組成物は、表面の少なくとも一部にモリブデン化合物が存在する前記第1の無機充填剤を、上述した熱硬化性樹脂100質量部に対し、0.1質量部以上15質量部以下の含有量で含む。前記第1の無機充填剤をこのような含有量で含むことにより、電気特性や熱膨張係数に優れつつ、ドリル加工性といった基板加工時の加工性能に優れたプリプレグを提供することができる。さらにより優れた電気特性を得るという観点からは、前記第1の無機充填剤の配合量は0.1質量部以上5質量部以下であることが好ましい。
 本実施形態で使用し得るモリブデン化合物は、例えば、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸マグネシウムから選択される少なくとも1つ以上の金属塩からなる化合物粒子であることが好ましい。このようなモリブデン化合物を使用することによって、上述した効果をより確実に得ることができると考えられる。
 第1の無機充填剤としては、表面の少なくとも一部にモリブデン化合物が存在していれば特に限定なく様々なモリブデン化合物以外の無機充填剤を使用できる。中でも、加工性、耐熱性および耐薬品性という観点から、タルクを用いることが好ましい。
 第1の無機充填剤の表面に存在するモリブデン化合物の量は特に限定はされないが、第1の無機充填剤に対し、100:0.1~100:20程度の割合(質量比)で存在していることが好ましい。それにより、耐熱性を悪化させることなく加工性を改善することが可能になるという利点がある。
 <(C)第2の無機充填剤>
 本実施形態の樹脂組成物は、上述した第1の無機充填剤以外に、第2の無機充填剤を、熱硬化性樹脂100質量部に対し、200質量部以下で含む。第2の無機充填剤の含有量が200質量部以下であれば、十分な成形性と加工性が得られると考えられる。
 第2の無機充填剤の含有量の下限値は特に限定されないが、好ましくは、熱硬化性樹脂100質量部に対し、50質量部以上である。それにより、樹脂組成物に対して電気特性および耐熱性の付与が可能となるためである。
 本実施形態で使用できる第2の無機充填剤としては、特に限定されるものではなく、例えば、球状シリカ、硫酸バリウム、酸化ケイ素粉、破砕シリカ、焼成タルク、チタン酸バリウム、酸化チタン、クレー、アルミナ、マイカ、ベーマイト、ホウ酸亜鉛、スズ酸亜鉛、その他の金属酸化物や金属水和物等が挙げられる。このような無機充填剤が樹脂組成物に含有されていると、本実施形態のプリプレグを用いた積層板等の熱膨張を抑制でき、寸法安定性を高めることができると考えられる。
 さらに、シリカを用いることが、積層板の耐熱性や誘電正接(Df)を良化させることができるという利点もあるため好ましい。
 上述したような無機充填剤は、シランカップリング剤等で表面処理がなされたものであってもよい。
 <その他の成分>
 本実施形態の熱硬化性樹脂組成物には、上記した成分以外に、本発明の効果を損なわない範囲で、その他の成分を含めることもできる。
 具体的には、有機過酸化物、アゾ化合物、ジハロゲン化合物などから選択される反応開始剤や、難燃剤、樹脂改質剤、酸化防止剤等が挙げられる。
 ポリフェニレンエーテル樹脂組成物は、変性ポリフェニレンエーテル化合物と架橋型硬化剤とからなるものであっても、硬化反応は進行し得る。また、変性ポリフェニレンエーテルのみであっても、硬化反応は進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。反応開始剤は、変性ポリフェニレンエーテルと架橋型硬化剤との硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン,過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等の酸化剤が挙げられる。また、必要に応じて、カルボン酸金属塩等を併用することができる。そうすることによって、硬化反応を一層促進させるができる。これらの中でも、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンが好ましく用いられる。α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができ、ポリフェニレンエーテル樹脂組成物の保存性の低下を抑制することができる。さらに、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、揮発性が低いため、プリプレグ乾燥時や保存時に揮発せず、安定性が良好である。また、反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。特に、反応開始剤を用いる場合、好ましくは、熱硬化性樹脂である(A)末端変性ポリフェニレンエーテル化合物100質量部に対する添加量が0.1~2質量部となるように、反応開始剤を用いる。
 なお、本実施形態において上述した「含有量」とは、樹脂組成物を調整する際に各成分を配合するときの含有量や、ワニス状態での含有量をさす。
 <プリプレグ>
 次に、本実施形態のプリプレグについて説明する。
 図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。なお、図面中の各符号は以下を示す:1 プリプレグ、2 樹脂組成物又は樹脂組成物の半硬化物、3 繊維質基材、11 金属張積層板、12 絶縁層、13 金属箔、14 配線、15 ドリルビット、16 エントリーボード、21 配線基板。
 本実施形態に係るプリプレグ1は、図1に示すように、前記熱硬化性樹脂組成物又は前記熱硬化性樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1としては、前記熱硬化性樹脂組成物又はその半硬化物2の中に繊維質基材3が存在するものが挙げられる。すなわち、このプリプレグ1は、前記熱硬化性樹脂組成物又はその半硬化物と、前記熱硬化性樹脂組成物又はその半硬化物2の中に存在する繊維質基材3とを備える。
 なお、本実施形態において、「半硬化物」とは、熱硬化性樹脂組成物を、さらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、溶融に伴い粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が徐々に上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。
 本実施形態に係るプリプレグとしては、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、本実施形態に係るプリプレグとしては、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。
 本実施形態では、プリプレグを製造する際に用いられる繊維質基材として、石英ガラスヤーンを含むガラスクロスを使用する。本実施形態において、石英ガラスヤーンを含むガラスクロスとしては、例えば、QガラスやQLガラスなどが挙げられる。
 本実施形態において、石英ガラスヤーンとは、全体量に対してSiO(二酸化ケイ素)が99.0質量%以上含まれているガラス(以下、「Qガラス」とも称す)のことをいう。
 このようなQガラスからなるガラスクロスを使用することによって、その硬化物において非常に優れた誘電特性(低誘電率、低誘電正接)を有するプリプレグを提供することができる。そして、Qガラスによって引き起こされる加工性の低下については、上述したような第1の無機充填剤を使用することによって抑制することができる。
 また、本実施形態においてQLガラスクロスとは、前記QガラスおよびLガラスで構成されるハイブリッド構成のガラスクロスである。なお、Lガラスとは、SiO(二酸化ケイ素)50~60質量%程度と、B10~25質量%程度と、15質量%以下のCaOとを含むガラスクロスを意味する。通常、QLガラスは、経糸がLガラス、緯糸がQガラスで構成されている。このようなQLガラスを使用することによって、良好な低誘電特性とドリル加工性のバランスに優れたプリプレグを提供することができる。
 上記各ガラスクロスの比誘電率(Dk)と誘電正接(Df)は以下の通りである:
・Qガラス Dk:3.3超~3.8以下、Df:0.0017以下
・QLガラス Dk:3.8超~4.3以下、Df:0.0023超~0.0033以下
・Lガラス Dk:4.2超~4.7以下、Df:0.0033超~0.0043以下
 なお、本実施形態における、上記各ガラスクロスの比誘電率(Dk)と誘電正接(Df)は、以下の測定方法で求めた値である。まず、プリプレグ100質量%あたりの樹脂含量が60質量%となるように基板(銅張積層板)を作製し、作製した銅張積層板から銅箔を除去して、比誘電率(Dk)及び誘電正接(Df)の評価のための試料を得る。得られた試料の周波数10GHzにおけるDk及びDfを、ネットワーク・アナライザ(キーサイト・テクノロジー合同会社製のN5230A)を用いて、空洞共振器摂動法で測定した。得られた試料(プリプレグの硬化物)のDk及びDfの値から、ガラスクロスの体積分率及び基板作製に用いた樹脂組成物から、その樹脂組成物の硬化物を空洞共振器摂動法で測定した、10GHzにおけるDk及びDfをもとに、ガラスクロスのDk及びDfを算出する。
 本実施形態の繊維質基材は、表面処理されたガラスクロスであってもよく、表面処理剤としては、例えば、ビニル基、スチリル基、メタクリル基、アクリル基などの官能基を有するシランカップリング剤が好ましく使用できる。
 前記ガラスクロスは、開繊処理を施すことによって、通気度を調整したものがより好ましい。前記開繊処理としては、例えば、ガラスクロスに高圧水を吹き付けることで行う処理、及び、プレスロールにて適宜の圧力で連続的にヤーンを加圧して、偏平に圧縮することにより行う処理等が挙げられる。前記ガラスクロスの通気度は、200cm/cm/秒以下であることが好ましく、3~100cm/cm/秒であることがより好ましく、3~50cm/cm/秒であることがさらに好ましい。この通気度が大きすぎる場合、ガラスクロスの開繊が不充分な傾向がある。ガラスクロスの開繊が不充分であると、プリプレグ製造時にピンホールが発生したり、ヤーンの粗密が大きくなってスキューが発生しやすくなったり、ドリル等の加工時の均一性にむらが発生したりする。また、前記通気度が小さすぎる場合、それだけ強力な開繊処理が施されたということになり、ガラスクロスに毛羽立ち等の問題が発生する傾向がある。なお、前記通気度としては、JIS R 3420(2013)に準拠して、フラジール形通気性試験機で測定された通気度である。また、また、繊維質基材の厚みは、特に限定されないが、例えば、0.01~0.2mmであることが好ましく、0.02~0.15mmであることがより好ましく、0.03~0.1mmであることがさらに好ましい。
 前記プリプレグにおけるレジンコンテントは、特に限定されないが、例えば、40~90質量%であることが好ましく、50~90質量%であることがより好ましく、60~80質量%であることがさらに好ましい。前記レジンコンテントが低すぎると、低誘電特性が得られにくくなる傾向がある。また、前記レジンコンテントが高すぎると、熱膨張係数(CTE)が高くなったり、板厚精度が低下する傾向がある。なお、ここでのレジンコンテントは、プリプレグの質量に対する、プリプレグの質量から繊維質基材の質量を引いた分の質量の割合[=(プリプレグの質量-繊維質基材の質量)/プリプレグの質量×100]である。
 前記プリプレグの厚みは、特に限定されないが、例えば、0.015~0.2mmであることが好ましく、0.02~0.15mmであることがより好ましく、0.03~0.13mmであることがさらに好ましい。前記プリプレグが薄すぎると、所望の基板厚みを得るために必要なプリプレグの枚数が多くなる。また、前記プリプレグが厚すぎると、レジンコンテントが低くなる傾向があり、所望の低誘電特性が得られにくくなる傾向がある。
 <プリプレグの製法>
 次に、本実施形態のプリプレグを得る方法について説明する。
 プリプレグを製造する際には、上述した本実施形態の熱硬化性樹脂組成物は、ワニス状に調製し、樹脂ワニスとして用いられることが多い。このような樹脂ワニスは、例えば、以下のようにして調製される。
 まず、変性ポリフェニレンエーテル化合物、架橋剤、反応開始剤等の、有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、有機溶媒に溶解しない成分、すなわち、無機充填剤等を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の樹脂組成物が調製される。ここで用いられる有機溶媒としては、変性ポリフェニレンエーテル化合物、架橋剤、反応開始剤等を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエン、シクロヘキサノン及びプロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらは単独で使用しても、2種以上を併用してもよい。
 得られた樹脂ワニスを用いて本実施形態のプリプレグ1を製造する方法としては、例えば、得られた樹脂ワニス状に調製された熱硬化性樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。
 樹脂ワニス(樹脂組成物2)の繊維質基材3への含浸は、浸漬及び塗布等によって行われる。この含浸は、必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂ワニスを用いて含浸を繰り返し、最終的に希望とする組成(含有比)及び樹脂量に調整することも可能である。
 樹脂ワニス(樹脂組成物2)が含浸された繊維質基材3を、所望の加熱条件、例えば、80℃以上、180℃以下で1分間以上、10分間以下で加熱される。加熱によって、ワニスから溶媒を揮発させ、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。
 <金属張積層板>
 図2に示すように、本実施形態の金属張積層板11は、上述のプリプレグの硬化物を含む絶縁層12と、金属箔13とを有することを特徴とする。
 上記のようにして得られたプリプレグ1を用いて金属張積層板を作製する方法としては、プリプレグ1を一枚または複数枚重ね、さらにその上下の両面又は片面に銅箔等の金属箔13を重ね、これを加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層体を作製することができるものである。加熱加圧条件は、製造する積層板の厚みや樹脂組成物の種類等により適宜設定することができるが、例えば、温度を170~220℃、圧力を1.5~5.0MPa、時間を60~150分間とすることができる。
 <配線基板>
 図3に示すように、本実施形態の配線基板21は、上述のプリプレグの硬化物を含む絶縁層12と、配線14とを有する。
 そのような配線基板21の製造方法としては、例えば、上記で得られた金属張積層体13の表面の金属箔13をエッチング加工等して回路(配線)形成をすることによって、積層体の表面に回路として導体パターン(配線14)を設けた配線基板21を得ることができる。本実施形態の樹脂組成物を用いて得られる配線基板21は、誘電特性に優れ、半導体チップを接合したパッケージの形態にしても、実装しやすい上に品質にばらつきがなく、信号速度やインピーダンスにも優れている。さらに、本実施形態のプリプレグの硬化物は加工性に優れているため、加工時(エッチング、剥離など)に割れ等も生じにくく、成形性やハンドリング性に優れている。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一態様に係るプリプレグは、熱硬化性樹脂組成物又は熱硬化性樹脂組成物の半硬化物と、繊維質基材とを有するプリプレグであって、前記熱硬化性樹脂組成物が、(A)変性ポリフェニレンエーテル化合物を含む熱硬化性樹脂と、(B)表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤と、(C)第2の無機充填剤とを含み、前記(A)熱硬化性樹脂100質量部に対し、前記(B)第1の無機充填剤の含有量が0.1質量部以上15質量部以下であり、かつ、前記(C)第2の無機充填剤の含有量が200質量部以下であり、前記繊維質基材が、石英ガラスヤーンを含むガラスクロスであることを特徴とする。
 上記構成によって、誘電特性等の優れた電気特性を有する一方で、基板加工時の加工性にも優れるプリプレグを提供することができる。
 また、前記プリプレグにおいて、前記(A)熱硬化性樹脂がさらに架橋剤を含むことが好ましい。それにより、より電気特性に優れたプリプレグを確実に提供することができると考えられる。
 さらに、前記(B)第1の無機充填剤において、前記モリブデン化合物が、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸マグネシウムから選択される少なくとも1つ以上の金属塩からなる化合物粒子であることが好ましい。それにより、上述の効果をより確実に得ることができる。
 また、前記プリプレグにおいて、前記(C)第2の無機充填剤の含有量が、前記(A)熱硬化性樹脂100質量部に対し、50質量部以上であることが好ましい。それにより、樹脂組成物に対して更なる電気特性と耐熱性を付与することができる。
 本発明のさらなる他の一態様に係る金属張積層板は、上述のプリプレグの硬化物を含む絶縁層と、金属箔とを有することを特徴とする。
 また、本発明のさらなる他の一態様に係る配線基板は、上述のプリプレグの硬化物を含む絶縁層と、配線とを有することを特徴とする。
 本発明のプリプレグ、金属張積層板、及び配線基板は、誘電特性、成形性、耐熱性及び加工性に優れているため、産業利用上非常に有用である。
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 まず、本実施例において、熱硬化性樹脂組成物を調製する際に用いる成分について説明する。
  <A成分:熱硬化性樹脂>
  (ポリフェニレンエーテル化合物)
 ・変性PPE-1:ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル(上記式(2)で表され、式(2)中のXがメタクリル基であり、式(2)の中のYがジメチルメチレン基(式(3)で表され、式(3)中のR17及びR18がメチル基である基)である変性ポリフェニレンエーテル化合物、SABICイノベーティブプラスチックス社製のSA9000、重量平均分子量Mw2000、末端官能基数2個)
 ・変性PPE-2:ポリフェニレンエーテルとクロロメチルスチレンとを反応させて得られた変性ポリフェニレンエーテルである。
 具体的には、以下のように反応させて得られた変性ポリフェニレンエーテルである。
 まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた1リットルの3つ口フラスコに、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、末端水酸基数2個、重量平均分子量Mw1700)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物(東京化成工業株式会社製のクロロメチルスチレン:CMS)30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、攪拌した。そして、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、徐々に加熱し、最終的に液温が75℃になるまで加熱した。そして、その溶液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、75℃で4時間攪拌した。次に、10質量%の塩酸でフラスコの内容物を中和した後、多量のメタノールを投入した。そうすることによって、フラスコ内の液体に沈殿物を生じさせた。すなわち、フラスコ内の反応液に含まれる生成物を再沈させた。そして、この沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。
 得られた固体を、H-NMR(400MHz、CDCl、TMS)で分析した。NMRを測定した結果、5~7ppmにビニルベンジル基(エテニルベンジル基)に由来するピークが確認された。これにより、得られた固体が、分子末端に、前記置換基としてビニルベンジル基を分子中に有する変性ポリフェニレンエーテルであることが確認できた。具体的には、エテニルベンジル化されたポリフェニレンエーテルであることが確認できた。この得られた変性ポリフェニレンエーテル化合物は、上記式(2)で表され、式(2)中のXが、ビニルベンジル基(エテニルベンジル基)であり、式(2)の中のYがジメチルメチレン基(式(3)で表され、式(3)中のR17及びR18がメチル基である基)である変性ポリフェニレンエーテル化合物である。
 また、変性ポリフェニレンエーテルの末端官能基数を、以下のようにして測定した。
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、その溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの末端水酸基数を算出した。
 残存OH量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×10 ここで、εは、吸光係数を示し、4700L/mol・cmである。また、OPLは、セル光路長であり、1cmである。
 そして、その算出された変性ポリフェニレンエーテルの残存OH量(末端水酸基数)は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数からの減少分は、変性前のポリフェニレンエーテルの末端水酸基数であることがわかった。すなわち、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数であることがわかった。つまり、末端官能基数が、2個であった。
 また、変性ポリフェニレンエーテルの、25℃の塩化メチレン中で固有粘度(IV)を測定した。具体的には、変性ポリフェニレンエーテルの固有粘度(IV)を、変性ポリフェニレンエーテルの、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計(Schott社製のAVS500 Visco System)で測定した。その結果、変性ポリフェニレンエーテルの固有粘度(IV)は、0.086dl/gであった。
 また、変性ポリフェニレンエーテルの分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した。その結果、Mwは、2300であった。
 ・無変性PPE:ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、固有粘度(IV)0.083dl/g、末端水酸基数2個、重量平均分子量Mw1700)
 (架橋剤)
・TAIC:トリアリルイソシアヌレート(日本化成株式会社製のTAIC、分子量249、末端二重結合数3個)
・DCP:トリシクロデカンジメタノールジメタクリレート(新中村化学株式会社製のDCP、末端二重結合数2個)
 (エポキシ樹脂)
・エポキシ樹脂:ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製のエピクロンHP7200、平均エポキシ基数2.3個)
 <無機充填剤>
 (第1の無機充填剤)
・KG-911C:モリブデン酸亜鉛処理タルク(Huber社製)
・KG-911A:モリブデン酸カルシウム処理タルク(Huber社製)
 (第2の無機充填剤)
・SC-2300SVJ:球状シリカ(株式会社アドマテックス製)
 (その他)
・モリブデン酸亜鉛(和光純薬工業株式会社製)
 <反応開始剤>
・過酸化物:「パーブチルP(PBP)」(日本油脂株式会社製)
・イミダゾール系反応開始剤:「2E4MZ」(四国化成製、2エチル4メチルイミダゾール)
 <繊維質基材>
・Qガラス:石英ガラスクロス(信越石英株式会社製のSQF2116AC-04、#1078タイプ)を、分子中にメタクリル基を有するシランカップリング剤で表面処理したガラスクロス(通気度:25cm/cm/秒、Dk:3.5、Df:0.0015)
・QLガラス:QガラスとLガラスのハイブリッドガラス(旭化成株式会社製のQLガラス、#1078タイプ)(通気度:20cm/cm/秒、Dk:4.0、Df:0.0028)
・Lガラス:Lガラスクロス(汎用低誘電ガラスクロス、旭化成株式会社製のL1078、#1078タイプ)(通気度:20cm/cm/秒、Dk:4.5、Df:0.0038)
 <実施例1~10、比較例1~8>
 [調製方法]
 (樹脂ワニス)
 まず、無機充填材以外の各成分を表1に記載の配合割合(質量部)で、固形分濃度が60質量%となるように、トルエンに添加し、混合させた。その混合物を、室温で60分間攪拌した。その後、得られた液体に無機充填材を添加し、ビーズミルで無機充填材を分散させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
 (プリプレグおよび銅張積層板)
 次に、得られたワニスを、表1に示す繊維質基材(ガラスクロス)に含浸させた後、130℃で約3~8分間加熱乾燥することによりプリプレグを作製した。その際、プリプレグの重量に対する樹脂組成物の含有量(レジンコンテント)が約55質量%となるように調整した。
 そして、得られた各プリプレグを4枚重ねて、温度200℃、2時間、圧力3MPaの条件で加熱加圧することにより評価基板(プリプレグの硬化物)を得た。
 また、得られた各プリプレグを6枚重ねて、その両側に、銅箔(古河電気工業株式会社の「FV-WS」、厚み35μm)を配置して被圧体とし、温度200℃、圧力3MPaの条件で2時間加熱・加圧して、750μmが厚みである、両面に銅箔が接着された評価基板(金属張積層板)である銅箔張積層板を作製した。
 上記のように調製された評価基板(プリプレグの硬化物、金属張積層板)を、以下に示す方法により評価を行った。
 <評価試験>
 上記のように調製された各プリプレグ及び評価積層板を、以下に示す方法により評価を行った。
 [誘電特性(誘電正接(Df))]
 10GHzにおけるそれぞれの評価基板(上記で得られたプリプレグの硬化物)の誘電正接を、空洞共振器摂動法で測定した。具体的には、ネットワーク・アナライザ(アジレント・テクノロジー株式会社製の「N5230A」)を用い、10GHzにおける評価基板の誘電正接を測定した。評価基準としては、Dfが0.002以下を合格ラインとする。
 [ドリル加工性(穴位置精度)]
 評価基板(上記で得られた銅張積層板)を用いて、図4に示すように基板を設置して、下記ドリル加工条件で5000hit後の穴位置精度を測定した。
 ドリル加工条件:
   エントリーボード:Al 0.15mm
   重ね枚数:0.75 mm×2枚重ね
   穴径:0.3φ×5.5
   ビット品番:NHUL020
   回転数:160Krpm
   送り速度:20μ/rev
   Hit数:5000hit
 評価基準としては、穴位置精度が50μm以下であれば合格とした。
 [耐熱性]
 評価基板(上記で得られた銅張積層板)を用いて、JIS C 6481 の規格に準じて耐熱性を評価した。所定の大きさに切り出した銅張積層板を280℃に設定した恒温槽に1時間放置した後、取り出した。そして熱処理された試験片を目視で観察し、フクレが発生しなかったときを○、フクレが発生したときを×として評価した。
 [成形性]
 成形後のサンプルにおいて、銅箔をエッチングにて除去したサンプルに対して、以下の基準で顕微鏡観察(SEM)により成形性を評価した。
成形性評価基準:
○:成型品の表面および断面にボイド、カスレの発生なし
×:成型品の表面、断面観察の結果ボイド、カスレの発生あり
 以上の試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
 (考察)
 表1の結果から、本発明により、非常に優れた誘電特性と、耐熱性と成形性を有し、さらにドリル加工性に優れるプリプレグおよび積層板を提供できることができることが示された。それに対し、本発明の構成と異なるプリプレグを使用した比較例においては、少なくともいずれかの評価項目において実施例よりも劣る結果となった。
 特に、表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤を含まない比較例1や比較例8では、誘電特性等は良好であったが、ドリル加工性に劣る結果となった。一方で、第1の無機充填剤の含有量が多すぎた比較例2では、十分な誘電特性と耐熱性が得られなかった。
 また、第2の無機充填剤の含有量が過剰であった比較例3では、ドリル加工性および成形性に劣る結果となった。
 プリプレグの繊維質基材として、QガラスまたはQLガラスを使用しなかった比較例4および5では、ドリル加工性には優れていたものの、本発明において目標とする誘電特性を達成できなかった。さらに、熱硬化性樹脂として未変性PPEを使用した比較例6でも誘電特性に劣る結果となった。
 また、モリブデン化合物を第1の無機充填剤の表面に存在させるのではなく、そのまま無機充填剤として使用した比較例7では、十分な誘電特性と耐熱性が得られなかった。
 さらには、Lガラスを用いた比較例4と5においては、表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤を用いても、ドリル加工性にあまり差異が出なかったが、QガラスまたはQLガラスを用いた場合、表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤を用いることによりドリル加工性が劇的に向上することがわかった(実施例1~4および10と比較例1および8との対比)。
 この出願は、2017年9月29日に出願された日本国特許出願特願2017-190993を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、電子材料やそれを用いた各種デバイスに関する技術分野において、広範な産業上の利用可能性を有する。

Claims (6)

  1.  熱硬化性樹脂組成物又は熱硬化性樹脂組成物の半硬化物と、繊維質基材とを有するプリプレグであって、
     前記熱硬化性樹脂組成物が、(A)変性ポリフェニレンエーテル化合物を含む熱硬化性樹脂と、(B)表面の少なくとも一部にモリブデン化合物が存在する第1の無機充填剤と、(C)第2の無機充填剤とを含み、
     前記(A)熱硬化性樹脂100質量部に対し、前記(B)第1の無機充填剤の含有量が0.1質量部以上15質量部以下であり、かつ、前記(C)第2の無機充填剤の含有量が200質量部以下であり、
     前記繊維質基材が、石英ガラスヤーンを含むガラスクロスである、プリプレグ。
  2.  前記(A)熱硬化性樹脂がさらに架橋剤を含む、請求項1に記載のプリプレグ。
  3.  前記(B)第1の無機充填剤において、前記モリブデン化合物が、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸マグネシウムから選択される少なくとも1つ以上の金属塩からなる化合物である、請求項1又は2に記載のプリプレグ。
  4.  前記(C)第2の無機充填剤の含有量が、前記(A)熱硬化性樹脂100質量部に対し、50質量部以上である、請求項1~3のいずれかに記載のプリプレグ。
  5.  請求項1~4のいずれかに記載のプリプレグの硬化物を含む絶縁層と、金属箔とを有する、金属張積層板。
  6.  請求項1~4のいずれかに記載のプリプレグの硬化物を含む絶縁層と、配線とを有する、配線基板。
PCT/JP2018/036187 2017-09-29 2018-09-28 プリプレグ、並びに、それを用いた金属張積層板及び配線基板 WO2019065942A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880062570.XA CN111148783A (zh) 2017-09-29 2018-09-28 预浸料、以及使用其的覆金属箔层压板和布线板
US16/651,069 US20200223998A1 (en) 2017-09-29 2018-09-28 Prepreg, and metal-clad laminated board and wiring substrate obtained using same
JP2019545666A JP7281691B2 (ja) 2017-09-29 2018-09-28 プリプレグ、並びに、それを用いた金属張積層板及び配線基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190993 2017-09-29
JP2017-190993 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065942A1 true WO2019065942A1 (ja) 2019-04-04

Family

ID=65900742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036187 WO2019065942A1 (ja) 2017-09-29 2018-09-28 プリプレグ、並びに、それを用いた金属張積層板及び配線基板

Country Status (4)

Country Link
US (1) US20200223998A1 (ja)
JP (1) JP7281691B2 (ja)
CN (1) CN111148783A (ja)
WO (1) WO2019065942A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172725A (ja) * 2018-03-27 2019-10-10 旭化成株式会社 樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JP2021077786A (ja) * 2019-11-11 2021-05-20 旭化成株式会社 ポリフェニレンエーテル含有プリント配線板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7550068B2 (ja) 2021-01-29 2024-09-12 信越化学工業株式会社 ミリ波用高速通信低誘電基板
CN118265822A (zh) * 2021-11-18 2024-06-28 旭化成株式会社 玻璃布、玻璃布的制造方法、预浸料、印刷电路板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171796A (ja) * 1990-11-05 1992-06-18 Nec Corp 低誘電率配線基板
JP2010111758A (ja) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd 樹脂組成物、プリプレグ、積層板及びプリント基板
JP2015063608A (ja) * 2013-09-25 2015-04-09 日立化成株式会社 熱硬化性樹脂組成物、これを用いたプリプレグ及びそれを用いた積層板
JP2015207753A (ja) * 2014-04-08 2015-11-19 パナソニックIpマネジメント株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板、プリント配線板
JP2016147986A (ja) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
JP2017124551A (ja) * 2016-01-14 2017-07-20 パナソニックIpマネジメント株式会社 金属張積層板および樹脂付金属箔

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613977B2 (ja) * 2008-04-28 2011-01-19 日立化成工業株式会社 薄層石英ガラスクロスを含むプリプレグ、およびそれを用いた配線板
SG10201503091TA (en) * 2010-04-21 2015-06-29 Mitsubishi Gas Chemical Co Heat curable composition
CN110437601B (zh) * 2013-10-31 2022-07-26 松下知识产权经营株式会社 热固性树脂组合物、预浸渍体、覆金属箔层叠板、以及印刷电路板
CN103709717B (zh) 2013-12-17 2017-10-20 中山台光电子材料有限公司 乙烯苄基醚化‑dopo化合物树脂组合物及制备和应用
CN106134296B (zh) * 2014-04-08 2020-01-17 松下知识产权经营株式会社 印刷电路板用树脂组合物、预浸料、覆金属层压板、印刷电路板
CN107201037B (zh) 2017-07-11 2019-06-14 苏州生益科技有限公司 树脂组合物及使用其制作的半固化片、金属箔层压板及层间绝缘膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171796A (ja) * 1990-11-05 1992-06-18 Nec Corp 低誘電率配線基板
JP2010111758A (ja) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd 樹脂組成物、プリプレグ、積層板及びプリント基板
JP2015063608A (ja) * 2013-09-25 2015-04-09 日立化成株式会社 熱硬化性樹脂組成物、これを用いたプリプレグ及びそれを用いた積層板
JP2015207753A (ja) * 2014-04-08 2015-11-19 パナソニックIpマネジメント株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板、プリント配線板
JP2016147986A (ja) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
JP2017124551A (ja) * 2016-01-14 2017-07-20 パナソニックIpマネジメント株式会社 金属張積層板および樹脂付金属箔

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172725A (ja) * 2018-03-27 2019-10-10 旭化成株式会社 樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JP7081950B2 (ja) 2018-03-27 2022-06-07 旭化成株式会社 樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JP2021077786A (ja) * 2019-11-11 2021-05-20 旭化成株式会社 ポリフェニレンエーテル含有プリント配線板

Also Published As

Publication number Publication date
JPWO2019065942A1 (ja) 2020-10-22
JP7281691B2 (ja) 2023-05-26
CN111148783A (zh) 2020-05-12
US20200223998A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP7316569B2 (ja) プリプレグ、金属張積層板、及び配線板
JP6906171B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP6455728B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP6504386B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP2023001134A (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP6536993B2 (ja) 金属張積層板とその製造方法、樹脂付き金属箔、及びプリント配線板
WO2019131306A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7316570B2 (ja) プリプレグ、金属張積層板、及び配線板
WO2019188189A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7203386B2 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7281691B2 (ja) プリプレグ、並びに、それを用いた金属張積層板及び配線基板
JP2018095815A (ja) 熱硬化性樹脂組成物、並びに、それを用いた樹脂ワニス、プリプレグ、樹脂付金属箔、樹脂フィルム、金属張積層板及びプリント配線板
WO2019188187A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2021010432A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7507382B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7054840B2 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、金属張積層板及び配線基板
JP7550381B2 (ja) プリプレグ、金属張積層板、及び配線板
JPWO2019188185A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860873

Country of ref document: EP

Kind code of ref document: A1