WO2019065804A1 - ハニカム触媒 - Google Patents
ハニカム触媒 Download PDFInfo
- Publication number
- WO2019065804A1 WO2019065804A1 PCT/JP2018/035848 JP2018035848W WO2019065804A1 WO 2019065804 A1 WO2019065804 A1 WO 2019065804A1 JP 2018035848 W JP2018035848 W JP 2018035848W WO 2019065804 A1 WO2019065804 A1 WO 2019065804A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- honeycomb catalyst
- honeycomb
- noble metal
- partition walls
- present
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 124
- 238000005192 partition Methods 0.000 claims abstract description 51
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 37
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 239000011230 binding agent Substances 0.000 claims description 14
- 238000001125 extrusion Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 7
- 239000002245 particle Substances 0.000 description 67
- 239000010410 layer Substances 0.000 description 45
- 239000011247 coating layer Substances 0.000 description 26
- 239000007789 gas Substances 0.000 description 22
- 239000002994 raw material Substances 0.000 description 19
- 238000000746 purification Methods 0.000 description 17
- 239000002002 slurry Substances 0.000 description 16
- 238000010304 firing Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 10
- 229910001593 boehmite Inorganic materials 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 8
- 239000012784 inorganic fiber Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 5
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- -1 platinum group metals Chemical class 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 150000002500 ions Chemical group 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- 229910002706 AlOOH Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
- B01D53/885—Devices in general for catalytic purification of waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/9454—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
- C04B38/0009—Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/16—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2825—Ceramics
- F01N3/2828—Ceramic multi-channel monoliths, e.g. honeycombs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a honeycomb catalyst.
- Exhaust gases emitted from internal combustion engines such as automobiles include harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC).
- harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC).
- CO carbon monoxide
- NOx nitrogen oxides
- HC hydrocarbons
- Such an exhaust gas purification catalyst that decomposes harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washcoating a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like.
- Patent Document 1 discloses an exhaust gas purification catalyst (hereinafter referred to as a honeycomb) having a coat layer of ceria-zirconia solid solution in which Pd is supported on a porous base having a honeycomb structure and Rh is supported on the porous base. Also referred to as catalysts).
- Patent Document 1 As a result of intensive investigations by the inventor of the honeycomb catalyst described in Patent Document 1, it was found that the honeycomb layer described in Patent Document 1 is likely to exfoliate the coating layer during use or to generate a crack in the coating layer. The It is considered that the reason is that the difference in thermal expansion coefficient between the base material constituting the honeycomb catalyst and the coat layer is large.
- a coated layer containing about 98% by weight of ceria-zirconia solid solution is formed on the surface of a porous substrate containing about 70% by weight of ceria-zirconia solid solution.
- the thermal expansion coefficient of the coated layer containing about 98 wt% CZ solid solution and the thermal expansion coefficient of the porous substrate containing about 70 wt% CZ solid solution It is considered that the difference is large and peeling and cracking of the coating layer are likely to occur.
- peeling of the coating layer occurs, the amount of catalyst decreases and the exhaust gas purification performance is reduced.
- the diffusion of the exhaust gas in the coat layer is likely to be uneven, so the exhaust gas purification performance is lowered.
- the present invention is an invention made to solve the above-mentioned problems, and an object of the present invention is to provide a honeycomb catalyst in which the exhaust gas purification performance is unlikely to deteriorate.
- the honeycomb catalyst of the present invention is a honeycomb catalyst in which a noble metal is supported on a honeycomb structure in which a plurality of through holes are arranged in parallel in the longitudinal direction with the partition walls separated, and the partition walls are ceria-zirconia composite oxide And a coat layer formed on the surface of the base portion and containing the noble metal, wherein the thermal expansion coefficient of the partition in the longitudinal direction is 7 It is characterized in that it is from 0. 0 to 8.0 x 10 -6 / ° C.
- the thermal expansion coefficient in the longitudinal direction of the partition walls is 7.0 to 8.0 ⁇ 10 ⁇ 6 / ° C. This has a low coefficient of thermal expansion as a partition wall of a honeycomb catalyst containing a ceria-zirconia composite oxide. Further, when the coefficient of thermal expansion of the coating layer is high, it is expected that the coefficient of thermal expansion of the partition including the coating layer in the longitudinal direction exceeds 8.0 ⁇ 10 ⁇ 6 / ° C. That the thermal expansion coefficient is in the above range indicates that the difference in thermal expansion coefficient between the base portion and the coating layer is small.
- the coated layer is not easily peeled off from the surface of the base portion during use, and the coated layer is not easily cracked, and the exhaust gas purification performance is hardly deteriorated.
- the thermal expansion coefficient in the longitudinal direction of the partition wall exceeds 8.0 ⁇ 10 ⁇ 6 / ° C.
- the coating layer tends to be peeled off.
- the thermal expansion coefficient in the longitudinal direction of the partition wall is less than 7.0 ⁇ 10 ⁇ 6 / ° C., the coating layer is easily cracked.
- the thermal expansion coefficient in the longitudinal direction of the partition walls is measured in accordance with JIS R 1618 (2002) using a sample obtained by cutting out the partition walls to dimensions of 5 ⁇ 5 ⁇ 20 mm from the honeycomb catalyst.
- the noble metal is preferably supported on the base portion. Since the precious metal is supported not only on the coat layer but also on the base portion, the entire partition can be used for exhaust gas purification, and the exhaust gas purification performance can be improved.
- the base portion further contains an inorganic binder.
- the mechanical strength of the partition can be improved.
- the thickness of the partition walls is preferably 0.05 to 0.25 mm.
- the ratio of length to diameter (length / diameter) of the honeycomb catalyst is desirably 0.5 to 1.1.
- the diameter of the honeycomb catalyst is desirably 130 mm or less. By setting the diameter of the honeycomb catalyst to 130 mm or less, breakage due to thermal shock can be less likely to occur.
- the proportion of the ceria-zirconia mixed oxide is desirably 25 to 75% by weight.
- the oxygen storage capacity (OSC) of the honeycomb catalyst can be enhanced by setting the proportion of the ceria-zirconia composite oxide in the above range.
- FIG. 1 is a perspective view schematically showing an example of the honeycomb catalyst of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an example of partition walls constituting the honeycomb catalyst of the present invention.
- a noble metal is supported on a honeycomb structure in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall being separated.
- the honeycomb structure contains ceria-zirconia composite oxide (hereinafter also referred to as CZ) and alumina.
- CZ ceria-zirconia composite oxide
- alumina alumina
- the partition walls constituting the honeycomb structure are a base portion constituted of an extrusion-molded body containing ceria-zirconia composite oxide particles (hereinafter also referred to as CZ particles) and alumina particles, and a base It consists of a coat layer which is formed on the surface of the material part and which contains a noble metal.
- the thermal expansion coefficient in the longitudinal direction of the partition walls is 7.0 to 8.0 ⁇ 10 ⁇ 6 / ° C.
- the honeycomb catalyst of the present invention has a low coefficient of thermal expansion as partition walls of the honeycomb catalyst containing the ceria-zirconia mixed oxide. Also, it is shown that the difference in thermal expansion coefficient between the base portion and the coating layer is small. Therefore, in the honeycomb catalyst of the present invention, the coated layer is not easily peeled off from the surface of the base portion during use, and the coated layer is not easily cracked, and the exhaust gas purification performance is hardly deteriorated.
- the coating layer tends to be peeled off.
- the thermal expansion coefficient in the longitudinal direction of the partition wall is less than 7.0 ⁇ 10 ⁇ 6 / ° C., the coating layer is easily cracked.
- the thermal expansion coefficient in the longitudinal direction of the partition walls is measured in accordance with JIS R 1618 (2002) using a sample obtained by cutting out the partition walls to dimensions of 5 ⁇ 5 ⁇ 20 mm from the honeycomb catalyst.
- FIG. 1 is a perspective view schematically showing an example of the honeycomb catalyst of the present invention.
- the honeycomb catalyst 10 shown in FIG. 1 includes a single honeycomb structure 11 in which a plurality of through holes 12 are arranged in parallel in the longitudinal direction across the partition walls 13.
- the honeycomb structure 11 contains CZ and alumina, and carries a noble metal.
- FIG. 2 is a cross-sectional view schematically showing an example of partition walls constituting the honeycomb catalyst of the present invention.
- the partition wall 13 is composed of a base layer 13 b and a coat layer 13 a containing a noble metal 14.
- the base portion 13b is formed of an extrusion-molded body containing ceria-zirconia mixed oxide and alumina.
- the noble metal 14 may be supported also on the base portion 13 b.
- the noble metal be supported also on the base portion. Since the precious metal is supported not only on the coat layer but also on the base portion, the entire partition can be used for exhaust gas purification, and the exhaust gas purification performance can be improved.
- the average particle diameter of the CZ particles constituting the honeycomb catalyst of the present invention is preferably 1 to 50 ⁇ m from the viewpoint of improving the thermal shock resistance.
- the average particle size of the CZ particles is more preferably 1 to 30 ⁇ m.
- the surface area is increased when the honeycomb catalyst is formed, so that the OSC can be increased.
- the average particle diameter of the alumina particles constituting the honeycomb catalyst of the present invention is not particularly limited, but is preferably 1 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m from the viewpoint of improving the exhaust gas purification performance.
- the average particle diameter of the CZ particles and alumina particles constituting the honeycomb catalyst of the present invention is determined by taking a SEM photograph of the honeycomb catalyst using a scanning electron microscope (SEM, S-4800 manufactured by Hitachi High-Tech Co., Ltd.) Can.
- the ratio of the alumina particles in the honeycomb catalyst is desirably 15 to 35% by weight.
- ceria has OSC in the ceria-zirconia mixed oxide that constitutes CZ particles.
- ceria-zirconia mixed oxide it is desirable that ceria and zirconia form a solid solution.
- the ceria-zirconia mixed oxide desirably contains 30 wt% or more of ceria, more desirably 40 wt% or more, and desirably 90 wt% or less of ceria. It is more desirable to contain by weight or less.
- the ceria-zirconia composite oxide desirably contains 60 wt% or less of zirconia, and more desirably 50 wt% or less.
- Such ceria-zirconia mixed oxide has a high ceria ratio, so the OSC is high.
- the type of alumina particles is not particularly limited, but it is desirable that the alumina particles are ⁇ -phase alumina particles (hereinafter also referred to as ⁇ -alumina particles).
- ⁇ -alumina particles ⁇ -phase alumina particles
- alumina particles of the ⁇ phase as a partition material of the ceria-zirconia composite oxide, it is possible to suppress the sintering of the alumina particles with each other during use, so that the catalytic function can be maintained.
- heat resistance can be enhanced by making alumina particles into the ⁇ phase.
- the honeycomb catalyst of the present invention preferably contains inorganic particles used as an inorganic binder at the time of production, and more preferably contains ⁇ -alumina particles derived from boehmite.
- the honeycomb catalyst of the present invention desirably contains inorganic fibers, and more desirably contains alumina fibers.
- the honeycomb catalyst contains inorganic fibers such as alumina fibers, the mechanical properties of the honeycomb catalyst can be improved.
- an inorganic fiber means that whose aspect ratio is 5 or more
- an inorganic particle means that whose aspect ratio is less than 5.
- the ratio of length to diameter (length / diameter) of the honeycomb catalyst is desirably 0.5 to 1.1, and more desirably 0.6 to 0.8. .
- the diameter of the honeycomb catalyst is desirably 130 mm or less, and more desirably 125 mm or less.
- the diameter of the honeycomb catalyst is preferably 85 mm or more.
- the length of the honeycomb catalyst is desirably 65 to 120 mm, and more desirably 70 to 110 mm.
- the shape of the honeycomb catalyst of the present invention is not limited to a cylindrical shape, and may include a prismatic shape, an elliptic cylindrical shape, a long cylindrical shape, and a prismatic columnar shape which is chamfered (for example, a triangular prismatic shape which is chamfered).
- the thickness of the partition walls is desirably uniform. Specifically, the thickness of the partition walls of the honeycomb catalyst is desirably 0.05 to 0.25 mm, and more desirably 0.05 to 0.15 mm.
- the thickness of the coating layer is desirably 0.01 to 0.10 mm, and more desirably 0.02 to 0.05 mm.
- the thickness of the base portion is desirably 0.05 to 0.20 mm, and more desirably 0.05 to 0.15 mm.
- the shape of the through holes in the honeycomb catalyst of the present invention is not limited to a square pole, and may be a triangular pole, a hexagonal pole, or the like.
- the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb catalyst is 31 to 155 / cm 2 .
- the porosity of the honeycomb catalyst of the present invention is desirably 40 to 70%.
- the porosity of the honeycomb catalyst can be measured by the weight method described below.
- the honeycomb catalyst is cut into a size of 10 cells ⁇ 10 cells ⁇ 10 mm to obtain a measurement sample.
- the measurement sample is subjected to ultrasonic cleaning with ion-exchanged water and acetone, and then dried at 100 ° C. using an oven.
- the measurement sample of 10 cells ⁇ 10 cells ⁇ 10 mm includes the outermost through holes and the partition walls constituting the through holes in a state in which ten through holes are arranged in the longitudinal direction and ten in the lateral direction. It refers to a sample cut out so that the length in the longitudinal direction is 10 mm.
- the true density is measured in accordance with JIS R 1620 (1995) using an Auto Pycnometer 1320 manufactured by Micromeritics.
- the evacuation time is 40 minutes.
- the actual weight of the measurement sample is measured with an electronic balance (HR 202i manufactured by A & D).
- an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
- the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
- a noble metal is supported on the honeycomb structure.
- the noble metal include platinum group metals such as platinum, Pd, Rh and the like.
- the noble metal may be supported directly on the honeycomb fired body, or may be supported by forming a coating layer containing the noble metal on the surfaces of the partition walls constituting the honeycomb fired body.
- the loading amount of the noble metal is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
- the supported amount of the noble metal refers to the weight of the noble metal per apparent volume of the honeycomb catalyst.
- the apparent volume of the honeycomb catalyst is a volume including the volume of the void, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
- honeycomb catalyst of the present invention for example, a coated layer forming step of forming a coat layer containing noble metal, CZ particles and alumina particles on the surface of partition wall with respect to a honeycomb fired body manufactured by the following method How to do it.
- a method for producing a honeycomb fired body for example, a raw material paste containing CZ particles and alumina particles is formed to produce a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction across partition walls.
- a method including a forming step and a firing step of producing a honeycomb fired body by firing the honeycomb formed body.
- the average particle diameter of the CZ particles and the alumina particles which are raw materials of the honeycomb catalyst, can be determined by a laser diffraction type particle size distribution measuring device (MASTER SIZER 2000 manufactured by MALVERN).
- an inorganic fiber As another raw material used when preparing a raw material paste, an inorganic fiber, an inorganic binder, an organic binder, a pore making agent, a shaping
- alumina a silica, a silicon carbide, a silica alumina, glass, a potassium titanate, aluminum borate etc.
- the aspect ratio of the inorganic fiber is preferably 5 to 300, more preferably 10 to 200, and still more preferably 10 to 100.
- the inorganic binder is not particularly limited, and examples thereof include solids contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite and the like. These inorganic binders may be used in combination of two or more.
- Boehmite is desirable.
- Boehmite is an alumina monohydrate represented by the composition of AlOOH, and is well dispersed in a medium such as water, so it is desirable to use boehmite as an inorganic binder.
- the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin and the like, and two or more kinds may be used in combination.
- the pore forming agent is not particularly limited, and examples thereof include acrylic resin, coke, starch and the like, and in the present invention, it is desirable to use two or more of acrylic resin, coke and starch.
- the pore forming agent refers to one used for introducing pores into the inside of the honeycomb fired body when the honeycomb fired body is manufactured.
- the shaping aid is not particularly limited, and ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like can be mentioned, and two or more kinds may be used in combination.
- the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like, and two or more types may be used in combination.
- the blending ratio thereof is 25 to 75% by weight of CZ particles with respect to the total solid content remaining after the firing step in the raw materials, alumina particles 15 to 35% by weight, alumina fiber: 5 to 15% by weight and boehmite: 5 to 20% by weight are desirable.
- the raw material paste is formed to produce a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction across the partition walls.
- a honeycomb molded body is produced by extrusion molding using the above-mentioned raw material paste. That is, by passing the paste through a mold of a predetermined shape, a continuous body of a honeycomb formed body having through holes of a predetermined shape is formed, and the honeycomb formed body is obtained by cutting into a predetermined length.
- the honeycomb formed body is dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to produce a honeycomb dried body.
- a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to produce a honeycomb dried body.
- honeycomb formed body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb formed body.
- the honeycomb formed body is fired to produce a honeycomb fired body.
- degreasing and firing of the honeycomb formed body are performed in this step, it may be referred to as “defatting and firing step” but for convenience, it is referred to as “firing step”.
- the temperature of the firing step is preferably 800 to 1300 ° C., and more preferably 900 to 1200 ° C.
- the time of the firing step is preferably 1 to 24 hours, and more preferably 3 to 18 hours.
- the atmosphere in the firing step is not particularly limited, but it is desirable that the oxygen concentration be 1 to 20%.
- a honeycomb fired body can be manufactured by the above steps. Subsequently, a coating layer forming step of forming a coating layer containing a noble metal and CZ on the surfaces of the partition walls of the honeycomb fired body will be described.
- a slurry for forming a coat layer which is a raw material of the coat layer, is prepared.
- the coat layer forming slurry is obtained by mixing CZ particles, alumina particles and a noble metal with a solvent.
- the noble metal examples include platinum group metals such as platinum, Pd, Rh and the like.
- the noble metal in preparing the coating layer forming slurry may be a dispersion solution of noble metal particles, or may be a solution of a noble metal salt or a noble metal complex.
- the order of mixing of the various raw materials in preparing the slurry for forming the coating layer is not particularly limited, and CZ particles, alumina particles, noble metal and solvent may be mixed at one time.
- the noble metal-loaded CZ particles are obtained by mixing, and then the method of mixing the noble metal-loaded CZ particles, the alumina particles and the solvent, or the alumina particles and the noble metal are first mixed to obtain the precious metal-loaded alumina particles.
- CZ particles and a solvent may be mixed.
- An inorganic binder, a dispersion medium, etc. are mentioned as another raw material used when preparing the slurry for coat layer formation.
- said raw material the thing similar to what is used for the raw material paste at the time of producing a honeycomb molded object can be used suitably.
- honeycomb fired body is immersed in a coat layer forming slurry and pulled up, and then dried and fired to obtain a honeycomb catalyst in which a coat layer containing a noble metal is formed on the surfaces of partition walls constituting the honeycomb fired body.
- the loading amount of the noble metal loaded in the coating layer forming step is preferably adjusted to be 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
- the thermal expansion coefficient of the coating layer is higher than the thermal expansion coefficient of the honeycomb fired body (base portion) It is desirable to lower it.
- a composition of the slurry for coat layer formations which a thermal expansion coefficient becomes lower than a honeycomb calcination object it is desirable to contain alumina particles 25 weight% or more.
- the outer peripheral coat layer may be formed by applying the outer peripheral coat layer paste to the outer peripheral surface excluding both end surfaces of the honeycomb fired body and then drying and solidifying it. it can.
- an adhesive layer paste is applied to and bonded to the outer peripheral surface excluding the both end surfaces of the plurality of honeycomb fired bodies. After that, those manufactured by drying and solidifying can be used.
- the adhesive layer paste include those having the same composition as the raw material paste and the slurry for forming the coating layer.
- the raw material paste was extrusion molded using an extrusion molding machine to produce a cylindrical honeycomb molded body. Then, the honeycomb molded body was dried at a power of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, and then degreased and fired at 1100 ° C. for 10 hours to produce a honeycomb fired body. .
- the honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 105 mm, the density of through holes was 77.5 pieces / cm 2 (500 cpsi), and the thickness of partition walls was 0.076 mm (3 mil).
- a nitric acid solution of palladium nitrate Pd (NO 3 ) 2 (Pd concentration 100 g / L) was prepared.
- the honeycomb fired body obtained in Production Example 1 was immersed in this solution and held for 24 hours. Thereafter, the honeycomb fired body was pulled out of the mixed solution, dried at 110 ° C. for 2 hours, and fired at 500 ° C. in a nitrogen atmosphere for 1 hour to obtain a Pd-loaded honeycomb fired body in which Pd was supported on the honeycomb fired body.
- the loading amount of Pd was 1.2 g / L per apparent volume of the honeycomb fired body.
- the Pd-loaded honeycomb fired body was immersed in the coat layer forming slurry. Next, the Pd-loaded honeycomb fired body was taken out of the slurry for forming a coating layer, and the air was blown by a blower to blow away the excess slurry for forming a coating layer attached to the Pd-loaded honeycomb fired body. Thereafter, the honeycomb catalyst was dried overnight at 80 ° C. and calcined at 500 ° C. for one hour to obtain a honeycomb catalyst according to Example 1. The thickness of the coating layer was 0.025 mm on one side, and the thickness of the partition was 0.126 mm. The loading amount of Rh was 0.4 g / L per apparent volume of the honeycomb catalyst.
- Example 2 A honeycomb catalyst according to Example 2 was obtained in the same manner as Example 1, except that the mixing ratio of Rh-supported CZ particles to ⁇ -alumina particles in the slurry for forming a coat layer was changed to 50: 50 (weight ratio).
- the mixing ratio of Rh-supported CZ particles to ⁇ -alumina particles in the slurry for forming a coat layer was changed to 50: 50 (weight ratio).
- Comparative example 1 A honeycomb catalyst according to Comparative Example 1 was obtained in the same manner as in Example 1, except that the mixing ratio of Rh-supported CZ particles to ⁇ -alumina particles in the slurry for forming a coat layer was changed to 60:40 (weight ratio).
- honeycomb catalysts according to Examples 1 and 2 and Comparative Example 1 are cut out to have a cross-sectional dimension of 5 ⁇ 5 mm and a length in the longitudinal direction of 20 mm, respectively, to obtain partition walls according to JIS R 1618 (2002).
- the measured longitudinal thermal expansion coefficient was 7.4 ⁇ 10 -6 /°C,8.0 ⁇ 10 -6 /°C,8.2 ⁇ 10 -6 / °C respectively.
- the peel resistance test of the coat layer was performed under the following conditions to evaluate the peel resistance of the coat layer.
- the honeycomb catalysts according to Examples 1 and 2 and Comparative Example 1 were enclosed in a metal casing through an alumina mat, and air heated by a gas burner and air at room temperature were alternately ventilated.
- a heat cycle test was conducted by repeating 100 cycles of aeration of air heated to a temperature of 200 ° C. and 950 ° C. at the center of the honeycomb catalyst and air at room temperature.
- the honeycomb catalysts according to Examples 1 and 2 in which the thermal expansion coefficient in the longitudinal direction of the partition walls is 7.0 to 8.0 ⁇ 10 ⁇ 6 / ° C. have high peel resistance of the coating layer, and the exhaust gas is It was found that the purification performance was difficult to reduce.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Structural Engineering (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
本発明は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体に貴金属が担持されてなるハニカム触媒であって、上記隔壁は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体で構成される基材部と、上記基材部の表面に形成され、上記貴金属を含むコート層とからなり、上記隔壁の長手方向の熱膨張係数が、7.0~8.0×10-6/℃であることを特徴とするハニカム触媒に関する。
Description
本発明は、ハニカム触媒に関する。
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である。
一方、特許文献1には、ハニカム構造の多孔質基材にPdを担持させ、該多孔質基材上にRhを担持させたセリア-ジルコニア固溶体からなるコート層を有する排ガス浄化触媒(以下、ハニカム触媒ともいう)が開示されている。
しかしながら、特許文献1に記載されたようなハニカム触媒よりも、さらに排ガス浄化性能の高いハニカム触媒が求められている。
特許文献1に記載されたハニカム触媒について発明者が鋭意検討した結果、特許文献1に記載されたハニカム触媒では、使用中にコート層が剥離したり、コート層にクラックが発生しやすいことがわかった。その理由については、ハニカム触媒を構成する基材とコート層との熱膨張係数の差が大きいことが原因であると考えられる。
特許文献1では、セリア-ジルコニア固溶体を約70重量%含む多孔質基材の表面に、セリア-ジルコニア固溶体を約98重量%含むコート層が形成されている。セリア-ジルコニア固溶体(CZ固溶体)は熱膨張係数が大きいため、CZ固溶体を約98重量%含んでいるコート層の熱膨張率とCZ固溶体を約70重量%含む多孔質基材の熱膨張率の差が大きく、コート層の剥離及びクラックが発生しやすいと考えられる。コート層の剥離が発生すると、触媒量が減少して排ガス浄化性能が低下してしまう。またコート層にクラックが発生すると、コート層内における排ガスの拡散が不均一となりやすいため、排ガス浄化性能が低下してしまう。
特許文献1では、セリア-ジルコニア固溶体を約70重量%含む多孔質基材の表面に、セリア-ジルコニア固溶体を約98重量%含むコート層が形成されている。セリア-ジルコニア固溶体(CZ固溶体)は熱膨張係数が大きいため、CZ固溶体を約98重量%含んでいるコート層の熱膨張率とCZ固溶体を約70重量%含む多孔質基材の熱膨張率の差が大きく、コート層の剥離及びクラックが発生しやすいと考えられる。コート層の剥離が発生すると、触媒量が減少して排ガス浄化性能が低下してしまう。またコート層にクラックが発生すると、コート層内における排ガスの拡散が不均一となりやすいため、排ガス浄化性能が低下してしまう。
本発明は、上記課題を解決するためになされた発明であり、本発明の目的は、排ガス浄化性能が低下しにくいハニカム触媒を提供することである。
すなわち、本発明のハニカム触媒は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体に貴金属が担持されてなるハニカム触媒であって、上記隔壁は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体で構成される基材部と、上記基材部の表面に形成され、上記貴金属を含むコート層とからなり、上記隔壁の長手方向の熱膨張係数が、7.0~8.0×10-6/℃であることを特徴とする。
本発明のハニカム触媒では、隔壁の長手方向の熱膨張係数が7.0~8.0×10-6/℃となっている。これは、セリア-ジルコニア複合酸化物を含有するハニカム触媒の隔壁としては熱膨張率が低い。また、コート層の熱膨張率が高い場合には、コート層を含む隔壁の長手方向の熱膨張率が8.0×10-6/℃を超えることが予想されるから、隔壁の長手方向の熱膨張率が上記範囲であるということは、基材部とコート層との熱膨張率の差が小さいことを示している。そのため、本発明のハニカム触媒では使用中に基材部の表面からコート層が剥離したり、コート層にクラックが発生しにくく、排ガス浄化性能の低下を起こしにくい。
隔壁の長手方向の熱膨張係数が8.0×10-6/℃を超える場合には、コート層が剥離しやすくなる。一方、隔壁の長手方向の熱膨張係数が7.0×10-6/℃未満の場合には、コート層にクラックが発生しやすくなる。
隔壁の長手方向の熱膨張係数が8.0×10-6/℃を超える場合には、コート層が剥離しやすくなる。一方、隔壁の長手方向の熱膨張係数が7.0×10-6/℃未満の場合には、コート層にクラックが発生しやすくなる。
隔壁の長手方向の熱膨張係数は、ハニカム触媒から隔壁を5×5×20mmの寸法に切り出した試料を用いて、JIS R 1618(2002)に準拠して測定される。
本発明のハニカム触媒では、上記基材部に上記貴金属が担持されていることが望ましい。
貴金属がコート層だけでなく基材部にも担持されていることにより、隔壁全体を排ガス浄化に使用することができ、排ガス浄化性能を向上させることができる。
貴金属がコート層だけでなく基材部にも担持されていることにより、隔壁全体を排ガス浄化に使用することができ、排ガス浄化性能を向上させることができる。
本発明のハニカム触媒では、上記基材部は、無機バインダをさらに含むことが望ましい。
基材部が無機バインダをさらに含むと、隔壁の機械的強度を向上させることができる。
基材部が無機バインダをさらに含むと、隔壁の機械的強度を向上させることができる。
本発明のハニカム触媒において、上記隔壁の厚さは0.05~0.25mmであることが望ましい。
隔壁の厚さを上記範囲にすることで、ハニカム触媒の機械的強度と排ガス浄化性能とを両立させやすい。
隔壁の厚さを上記範囲にすることで、ハニカム触媒の機械的強度と排ガス浄化性能とを両立させやすい。
本発明のハニカム触媒において、上記ハニカム触媒の直径に対する長さの比(長さ/直径)は、0.5~1.1であることが望ましい。
ハニカム触媒の形状が上記範囲であると、ハニカム触媒の圧力損失を低く抑えつつ、必要な排ガス浄化性能を満たしやすい。
ハニカム触媒の形状が上記範囲であると、ハニカム触媒の圧力損失を低く抑えつつ、必要な排ガス浄化性能を満たしやすい。
本発明のハニカム触媒において、上記ハニカム触媒の直径は、130mm以下であることが望ましい。
ハニカム触媒の直径を130mm以下にすることで、熱衝撃による破損を起こりにくくすることができる。
ハニカム触媒の直径を130mm以下にすることで、熱衝撃による破損を起こりにくくすることができる。
本発明のハニカム触媒において、セリア-ジルコニア複合酸化物の占める割合は、25~75重量%であることが望ましい。
セリア-ジルコニア複合酸化物の占める割合を上記範囲に設定することで、ハニカム触媒の酸素吸蔵能(OSC)を高めることができる。
セリア-ジルコニア複合酸化物の占める割合を上記範囲に設定することで、ハニカム触媒の酸素吸蔵能(OSC)を高めることができる。
(発明の詳細な説明)
[ハニカム触媒]
まず、本発明のハニカム触媒について説明する。
[ハニカム触媒]
まず、本発明のハニカム触媒について説明する。
本発明のハニカム触媒は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体に貴金属が担持されてなる。
本発明のハニカム触媒において、ハニカム構造体は、セリア-ジルコニア複合酸化物(以下、CZともいう)とアルミナとを含む。
本発明のハニカム触媒が上記した成分を有していることは、X線回折(XRD)にて確認することができる。
本発明のハニカム触媒が上記した成分を有していることは、X線回折(XRD)にて確認することができる。
本発明のハニカム触媒において、ハニカム構造体を構成する隔壁は、セリア-ジルコニア複合酸化物粒子(以下、CZ粒子ともいう)とアルミナ粒子とを含む押出成形体で構成される基材部と、基材部の表面に形成され、貴金属を含むコート層とからなる。
本発明のハニカム触媒においては、隔壁の長手方向の熱膨張係数が、7.0~8.0×10-6/℃である。
本発明のハニカム触媒は、セリア-ジルコニア複合酸化物を含有するハニカム触媒の隔壁としては熱膨張率が低い。また、基材部とコート層との熱膨張率の差が小さいことを示している。そのため、本発明のハニカム触媒では使用中に基材部の表面からコート層が剥離したり、コート層にクラックが発生しにくく、排ガス浄化性能の低下を起こしにくい。
隔壁の長手方向の熱膨張係数が8.0×10-6/℃を超える場合には、コート層が剥離しやすくなる。一方、隔壁の長手方向の熱膨張係数が7.0×10-6/℃未満の場合には、コート層にクラックが発生しやすくなる。
本発明のハニカム触媒は、セリア-ジルコニア複合酸化物を含有するハニカム触媒の隔壁としては熱膨張率が低い。また、基材部とコート層との熱膨張率の差が小さいことを示している。そのため、本発明のハニカム触媒では使用中に基材部の表面からコート層が剥離したり、コート層にクラックが発生しにくく、排ガス浄化性能の低下を起こしにくい。
隔壁の長手方向の熱膨張係数が8.0×10-6/℃を超える場合には、コート層が剥離しやすくなる。一方、隔壁の長手方向の熱膨張係数が7.0×10-6/℃未満の場合には、コート層にクラックが発生しやすくなる。
隔壁の長手方向の熱膨張係数は、ハニカム触媒から隔壁を5×5×20mmの寸法に切り出した試料を用いて、JIS R 1618(2002)に準拠して測定される。
図1は、本発明のハニカム触媒の一例を模式的に示す斜視図である。
図1に示すハニカム触媒10は、複数の貫通孔12が隔壁13を隔てて長手方向に並設された単一のハニカム構造体11を備えている。
ハニカム構造体11は、CZとアルミナとを含み、貴金属が担持されている。
図1に示すハニカム触媒10は、複数の貫通孔12が隔壁13を隔てて長手方向に並設された単一のハニカム構造体11を備えている。
ハニカム構造体11は、CZとアルミナとを含み、貴金属が担持されている。
図2は、本発明のハニカム触媒を構成する隔壁の一例を模式的に示す断面図である。
図2に示すように、隔壁13は、基材部13bと貴金属14を含むコート層13aからなる。基材部13bはセリア-ジルコニア複合酸化物とアルミナとを含む押出成形体で構成されている。なお、基材部13bにも貴金属14が担持されていてもよい。
図2に示すように、隔壁13は、基材部13bと貴金属14を含むコート層13aからなる。基材部13bはセリア-ジルコニア複合酸化物とアルミナとを含む押出成形体で構成されている。なお、基材部13bにも貴金属14が担持されていてもよい。
本発明のハニカム触媒では、基材部にも貴金属が担持されていることが望ましい。
貴金属がコート層だけでなく基材部にも担持されていることにより、隔壁全体を排ガス浄化に使用することができ、排ガス浄化性能を向上させることができる。
貴金属がコート層だけでなく基材部にも担持されていることにより、隔壁全体を排ガス浄化に使用することができ、排ガス浄化性能を向上させることができる。
本発明のハニカム触媒を構成するCZ粒子の平均粒子径は耐熱衝撃性を向上させる観点から、1~50μmであることが望ましい。また、CZ粒子の平均粒子径は1~30μmであることがより望ましい。
CZ粒子の平均粒子径が1~50μmであると、ハニカム触媒とした際に、表面積が大きくなるため、OSCを高くすることができる。
CZ粒子の平均粒子径が1~50μmであると、ハニカム触媒とした際に、表面積が大きくなるため、OSCを高くすることができる。
本発明のハニカム触媒を構成するアルミナ粒子の平均粒子径は特に限定されないが、排ガス浄化性能を向上させる観点から、1~10μmであることが望ましく、1~5μmであることがより望ましい。
本発明のハニカム触媒を構成するCZ粒子及びアルミナ粒子の平均粒子径は、走査型電子顕微鏡(SEM、日立ハイテク社製 S-4800)を用いて、ハニカム触媒のSEM写真を撮影することにより求めることができる。
本発明のハニカム触媒において、ハニカム触媒のうちアルミナ粒子が占める割合は、15~35重量%であることが望ましい。
本発明のハニカム触媒において、CZ粒子を構成するセリア-ジルコニア複合酸化物では、セリアがOSCを有する。セリア-ジルコニア複合酸化物は、セリアとジルコニアが固溶体を形成していることが望ましい。
本発明のハニカム触媒において、セリア-ジルコニア複合酸化物は、セリアを30重量%以上含むことが望ましく、40重量%以上含むことがより望ましく、一方、セリアを90重量%以下含むことが望ましく、80重量%以下含むことがより望ましい。また、セリア-ジルコニア複合酸化物は、ジルコニアを60重量%以下含むことが望ましく、50重量%以下含むことがより望ましい。このようなセリア-ジルコニア複合酸化物はセリア比率が高いため、OSCが高い。
本発明のハニカム触媒において、上記アルミナ粒子の種類は特に限定されないが、θ相のアルミナ粒子(以下、θ-アルミナ粒子ともいう)であることが望ましい。
θ相のアルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、アルミナ粒子が使用中に熱によって互いに焼結することを抑制できるため、触媒機能を維持することが可能となる。さらに、アルミナ粒子をθ相とすることにより、耐熱性を高くすることができる。
θ相のアルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、アルミナ粒子が使用中に熱によって互いに焼結することを抑制できるため、触媒機能を維持することが可能となる。さらに、アルミナ粒子をθ相とすることにより、耐熱性を高くすることができる。
本発明のハニカム触媒は、製造時に無機バインダとして用いられた無機粒子を含むことが望ましく、ベーマイトに由来するγ-アルミナ粒子を含むことがより望ましい。
本発明のハニカム触媒は、無機繊維を含むことが望ましく、アルミナ繊維を含むことがより望ましい。
ハニカム触媒がアルミナ繊維等の無機繊維を含んでいると、ハニカム触媒の機械的特性を改善することができる。
ハニカム触媒がアルミナ繊維等の無機繊維を含んでいると、ハニカム触媒の機械的特性を改善することができる。
なお、無機繊維とは、アスペクト比が5以上のものをいい、無機粒子とは、アスペクト比が5未満のものをいう。
本発明のハニカム触媒において、ハニカム触媒の直径に対する長さの比(長さ/直径)は、0.5~1.1であることが望ましく、0.6~0.8であることがより望ましい。
本発明のハニカム触媒において、ハニカム触媒の直径は、130mm以下であることが望ましく、125mm以下であることがより望ましい。また、ハニカム触媒の直径は、85mm以上であることが望ましい。
ハニカム触媒の直径を130mm以下にすることで、熱衝撃による破損を起こりにくくすることができる。
ハニカム触媒の直径を130mm以下にすることで、熱衝撃による破損を起こりにくくすることができる。
本発明のハニカム触媒において、ハニカム触媒の長さは、65~120mmであることが望ましく、70~110mmであることがより望ましい。
本発明のハニカム触媒の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカム触媒において、隔壁の厚さは、均一であることが望ましい。具体的には、ハニカム触媒の隔壁の厚さは、0.05~0.25mmであることが望ましく、0.05~0.15mmであることがより望ましい。
本発明のハニカム触媒において、コート層の厚さは、0.01~0.10mmであることが望ましく、0.02~0.05mmであることがより望ましい。
本発明のハニカム触媒において、基材部の厚さは0.05~0.20mmであることが望ましく、0.05~0.15mmであることがより望ましい。
本発明のハニカム触媒における貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
本発明のハニカム触媒において、ハニカム触媒の長手方向に垂直な断面の貫通孔の密度は、31~155個/cm2であることが望ましい。
本発明のハニカム触媒における気孔率は、40~70%であることが望ましい。ハニカム触媒の気孔率を上記範囲とすることにより、ハニカム触媒の強度を維持しつつ、高い排ガス浄化性能を発揮することができる。
ハニカム触媒の気孔率は、以下に説明する重量法にて測定することができる。
(1)ハニカム触媒を10セル×10セル×10mmの大きさに切断して、測定試料とする。この測定試料をイオン交換水及びアセトンを用いて超音波洗浄した後、オーブンを用いて100℃で乾燥する。なお、10セル×10セル×10mmの測定試料とは、貫通孔が縦方向に10個、横方向に10個並んだ状態で、最も外側の貫通孔とその貫通孔を構成する隔壁を含み、長手方向の長さが10mmとなるように切り出した試料を指す。
(2)測定顕微鏡(ニコン社製Measuring Microscope MM-40 倍率:100倍)を用いて、測定試料の断面形状の寸法を測定し、幾何学的な計算から体積を求める(なお、幾何学的な計算から体積を求めることができない場合は、飽水重量と水中重量とを実測して体積を測定する)。
(3)計算から求められた体積及びピクノメータで測定した測定試料の真密度から、測定試料が完全な緻密体であると仮定した場合の重量を計算する。なお、ピクノメータでの測定手順は(4)に示す通りとする。
(4)ハニカム焼成体を粉砕し、23.6ccの粉末を準備する。得られた粉末を200℃で8時間乾燥させる。その後、Micromeritics社製 Auto Pycnometer1320を用いて、JIS R 1620(1995)に準拠して真密度を測定する。排気時間は40分とする。
(5)測定試料の実際の重量を電子天秤(A&D社製 HR202i)で測定する。
(6)以下の式から、ハニカム触媒の気孔率を求める。
(ハニカム触媒の気孔率)=100-(測定試料の実際の重量/測定試料が完全な緻密体であると仮定した場合の重量)×100[%]
(1)ハニカム触媒を10セル×10セル×10mmの大きさに切断して、測定試料とする。この測定試料をイオン交換水及びアセトンを用いて超音波洗浄した後、オーブンを用いて100℃で乾燥する。なお、10セル×10セル×10mmの測定試料とは、貫通孔が縦方向に10個、横方向に10個並んだ状態で、最も外側の貫通孔とその貫通孔を構成する隔壁を含み、長手方向の長さが10mmとなるように切り出した試料を指す。
(2)測定顕微鏡(ニコン社製Measuring Microscope MM-40 倍率:100倍)を用いて、測定試料の断面形状の寸法を測定し、幾何学的な計算から体積を求める(なお、幾何学的な計算から体積を求めることができない場合は、飽水重量と水中重量とを実測して体積を測定する)。
(3)計算から求められた体積及びピクノメータで測定した測定試料の真密度から、測定試料が完全な緻密体であると仮定した場合の重量を計算する。なお、ピクノメータでの測定手順は(4)に示す通りとする。
(4)ハニカム焼成体を粉砕し、23.6ccの粉末を準備する。得られた粉末を200℃で8時間乾燥させる。その後、Micromeritics社製 Auto Pycnometer1320を用いて、JIS R 1620(1995)に準拠して真密度を測定する。排気時間は40分とする。
(5)測定試料の実際の重量を電子天秤(A&D社製 HR202i)で測定する。
(6)以下の式から、ハニカム触媒の気孔率を求める。
(ハニカム触媒の気孔率)=100-(測定試料の実際の重量/測定試料が完全な緻密体であると仮定した場合の重量)×100[%]
本発明のハニカム触媒において、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。
外周コート層の厚さは、0.1~2.0mmであることが望ましい。
外周コート層の厚さは、0.1~2.0mmであることが望ましい。
本発明のハニカム触媒においては、ハニカム構造体に貴金属が担持されている。
貴金属としては、例えば、白金、Pd、Rh等の白金族金属が挙げられる。
貴金属は、ハニカム焼成体に直接担持されていてもよく、ハニカム焼成体を構成する隔壁の表面に、貴金属を含むコート層が形成されることにより担持されていてもよい。
貴金属としては、例えば、白金、Pd、Rh等の白金族金属が挙げられる。
貴金属は、ハニカム焼成体に直接担持されていてもよく、ハニカム焼成体を構成する隔壁の表面に、貴金属を含むコート層が形成されることにより担持されていてもよい。
本発明のハニカム触媒において、貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカム触媒の見掛けの体積当たりの貴金属の重量をいう。なお、ハニカム触媒の見掛けの体積は、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
本明細書において、貴金属の担持量とは、ハニカム触媒の見掛けの体積当たりの貴金属の重量をいう。なお、ハニカム触媒の見掛けの体積は、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
[ハニカム触媒の製造方法]
次に、本発明のハニカム触媒を製造する方法について説明する。
本発明のハニカム触媒を製造する方法としては、例えば、以下の方法で製造したハニカム焼成体に対して、隔壁の表面に貴金属とCZ粒子とアルミナ粒子とを含むコート層を形成するコート層形成工程を行う方法が挙げられる。
次に、本発明のハニカム触媒を製造する方法について説明する。
本発明のハニカム触媒を製造する方法としては、例えば、以下の方法で製造したハニカム焼成体に対して、隔壁の表面に貴金属とCZ粒子とアルミナ粒子とを含むコート層を形成するコート層形成工程を行う方法が挙げられる。
(ハニカム焼成体の作製)
まず、ハニカム焼成体を作製する方法について説明する。
ハニカム焼成体を作製する方法としては、例えば、CZ粒子とアルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含む方法が挙げられる。
まず、ハニカム焼成体を作製する方法について説明する。
ハニカム焼成体を作製する方法としては、例えば、CZ粒子とアルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含む方法が挙げられる。
(成形工程)
成形工程では、まずCZ粒子とアルミナ粒子とを含む原料ペーストを調製する。
成形工程では、まずCZ粒子とアルミナ粒子とを含む原料ペーストを調製する。
CZ粒子及びアルミナ粒子の種類、平均粒子径等については、[ハニカム触媒]の項目で説明したため、詳細な説明は省略する。
ただし、ハニカム触媒の原料となるCZ粒子及びアルミナ粒子の平均粒子径は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)により求めることができる。
ただし、ハニカム触媒の原料となるCZ粒子及びアルミナ粒子の平均粒子径は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)により求めることができる。
原料ペーストを調製する際に用いる他の原料としては、無機繊維、無機バインダ、有機バインダ、造孔剤、成形助剤、分散媒等が挙げられる。
無機繊維を構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらの中では、アルミナ繊維が望ましい。
無機繊維のアスペクト比は、5~300であることが望ましく、10~200であることがより望ましく、10~100であることがさらに望ましい。
無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられる。これらの無機バインダは、二種以上併用してもよい。
無機バインダの中では、ベーマイトが望ましい。ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、ベーマイトを無機バインダとして用いることが望ましい。
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
造孔剤としては、特に限定されないが、例えば、アクリル樹脂、コークス、デンプン等が挙げられ、本発明では、アクリル樹脂、コークス及びデンプンのうち2種類以上を用いることが望ましい。
造孔剤とは、ハニカム焼成体を作製する際、ハニカム焼成体の内部に気孔を導入するために用いられるものをいう。
造孔剤とは、ハニカム焼成体を作製する際、ハニカム焼成体の内部に気孔を導入するために用いられるものをいう。
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
上記した原料としてCZ粒子、アルミナ粒子、アルミナ繊維及びベーマイトを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:25~75重量%、アルミナ粒子:15~35重量%、アルミナ繊維:5~15重量%、ベーマイト:5~20重量%が望ましい。
原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
上記方法により原料ペーストを調製した後、原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
具体的には、上記原料ペーストを用いて押出成形することにより、ハニカム成形体を作製する。つまり、所定の形状の金型に上記ペーストを通過させることにより、所定の形状の貫通孔を有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体が得られる。
具体的には、上記原料ペーストを用いて押出成形することにより、ハニカム成形体を作製する。つまり、所定の形状の金型に上記ペーストを通過させることにより、所定の形状の貫通孔を有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体が得られる。
次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製することが望ましい。
本明細書においては、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。
(焼成工程)
焼成工程では、ハニカム成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程では、ハニカム成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20%であることが望ましい。
以上の工程により、ハニカム焼成体を作製することができる。
続いて、該ハニカム焼成体の隔壁の表面に貴金属とCZとを含むコート層を形成するコート層形成工程について説明する。
続いて、該ハニカム焼成体の隔壁の表面に貴金属とCZとを含むコート層を形成するコート層形成工程について説明する。
(コート層形成工程)
まず、コート層の原料となるコート層形成用スラリーを準備する。
コート層形成用スラリーは、CZ粒子、アルミナ粒子及び貴金属を溶媒と混合することにより得られる。
まず、コート層の原料となるコート層形成用スラリーを準備する。
コート層形成用スラリーは、CZ粒子、アルミナ粒子及び貴金属を溶媒と混合することにより得られる。
貴金属としては、例えば、白金、Pd、Rh等の白金族金属が挙げられる。
コート層形成用スラリーを準備する際の貴金属は、貴金属粒子の分散溶液であってもよく、貴金属塩や貴金属錯体の溶液であってもよい。
コート層形成用スラリーを準備する際の貴金属は、貴金属粒子の分散溶液であってもよく、貴金属塩や貴金属錯体の溶液であってもよい。
コート層形成用スラリーを準備する際の、各種原料の混合順は特に限定されず、CZ粒子、アルミナ粒子、貴金属及び溶媒を一度に混合する方法であってもよく、まずCZ粒子と貴金属とを混合して貴金属担持CZ粒子を得て、その後貴金属担持CZ粒子、アルミナ粒子及び溶媒を混合する方法や、まずアルミナ粒子と貴金属とを混合して貴金属担持アルミナ粒子を得て、その後貴金属担持アルミナ粒子、CZ粒子及び溶媒を混合する方法であってもよい。
コート層形成用スラリーを調製する際に用いる他の原料としては、無機バインダ、分散媒等が挙げられる。
上記原料としては、ハニカム成形体を作製する際の原料ペーストに用いられるものと同様のものを好適に用いることができる。
上記原料としては、ハニカム成形体を作製する際の原料ペーストに用いられるものと同様のものを好適に用いることができる。
ハニカム焼成体をコート層形成用スラリーに浸漬し、引き上げた後、乾燥・焼成することによりハニカム焼成体を構成する隔壁の表面に、貴金属を含むコート層が形成されたハニカム触媒が得られる。
コート層形成工程で担持される貴金属の担持量は、0.1~15g/Lとなるように調整することが望ましく、0.5~10g/Lとすることがより望ましい。
隔壁の長手方向の熱膨張率を7.0~8.0×10-6/℃に調整するためには、コート層の熱膨張率をハニカム焼成体(基材部)の熱膨張率よりも低くすることが望ましい。
熱膨張率がハニカム焼成体よりも低くなるようなコート層形成用スラリーの組成としては、アルミナ粒子を25重量%以上含むことが望ましい。
熱膨張率がハニカム焼成体よりも低くなるようなコート層形成用スラリーの組成としては、アルミナ粒子を25重量%以上含むことが望ましい。
(その他の工程)
ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。
ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。
複数個のハニカム焼成体が接着層を介して接着されてなるハニカム構造体を用いる場合は、複数個のハニカム焼成体の両端面を除く外周面に接着層用ペーストを塗布して、接着させた後、乾燥固化することにより作製したものを用いることができる。接着層用ペーストとしては、原料ペーストやコート層形成用スラリーと同じ組成のものが挙げられる。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
[ハニカム触媒の作製]
(製造例1)
CZ粒子[CeO2:ZrO2=3:7(重量比)、平均粒子径:2μm]を26.4重量%、θ-アルミナ粒子(平均粒子径:2μm)を13.2重量%、アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を5.3重量%、無機バインダとしてベーマイトを11.3重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
(製造例1)
CZ粒子[CeO2:ZrO2=3:7(重量比)、平均粒子径:2μm]を26.4重量%、θ-アルミナ粒子(平均粒子径:2μm)を13.2重量%、アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を5.3重量%、無機バインダとしてベーマイトを11.3重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
押出成形機を用いて、原料ペーストを押出成形して、円柱状のハニカム成形体を作製した。そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、1100℃で10時間脱脂・焼成することにより、ハニカム焼成体を作製した。ハニカム焼成体は直径が103mm、長さが105mmの円柱状であり、貫通孔の密度が77.5個/cm2(500cpsi)、隔壁の厚さが0.076mm(3mil)であった。
(貴金属の担持)
硝酸パラジウムPd(NO3)2の硝酸溶液(Pd濃度100g/L)を準備した。この溶液中に、製造例1で得たハニカム焼成体を浸漬し、24時間保持した。その後、ハニカム焼成体を混合溶液から引き上げ、110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム焼成体にPdを担持させたPd担持ハニカム焼成体を得た。
Pdの担持量は、ハニカム焼成体の見掛けの体積当たり1.2g/Lとした。
硝酸パラジウムPd(NO3)2の硝酸溶液(Pd濃度100g/L)を準備した。この溶液中に、製造例1で得たハニカム焼成体を浸漬し、24時間保持した。その後、ハニカム焼成体を混合溶液から引き上げ、110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム焼成体にPdを担持させたPd担持ハニカム焼成体を得た。
Pdの担持量は、ハニカム焼成体の見掛けの体積当たり1.2g/Lとした。
(熱膨張率の測定1:基材部の熱膨張率)
得られたPd担持ハニカム焼成体を断面寸法が5×5mmとなるよう、かつ長手方向の長さが20mmとなるように切り出して、JIS R 1618(2002)に準拠して、基材部の熱膨張率を測定したところ、8.0×10-6/℃であった。
得られたPd担持ハニカム焼成体を断面寸法が5×5mmとなるよう、かつ長手方向の長さが20mmとなるように切り出して、JIS R 1618(2002)に準拠して、基材部の熱膨張率を測定したところ、8.0×10-6/℃であった。
(実施例1)
(コート層形成用スラリーの作製)
CZ粒子[CeO2:ZrO2=3:7(重量比)、平均粒子径:2μm]を硝酸ロジウム溶液に添加して混合し、溶媒を乾燥させた後、500℃で1時間焼成することにより、CZ粒子にRhが担持されたRh担持CZ粒子を得た。続いて、得られたRh担持CZ粒子20重量部とθ-アルミナ粒子(平均粒子径:2μm)を80重量部を混合し、イオン交換水400重量部と混合することによりコート層形成用スラリーを調製した。
(コート層形成用スラリーの作製)
CZ粒子[CeO2:ZrO2=3:7(重量比)、平均粒子径:2μm]を硝酸ロジウム溶液に添加して混合し、溶媒を乾燥させた後、500℃で1時間焼成することにより、CZ粒子にRhが担持されたRh担持CZ粒子を得た。続いて、得られたRh担持CZ粒子20重量部とθ-アルミナ粒子(平均粒子径:2μm)を80重量部を混合し、イオン交換水400重量部と混合することによりコート層形成用スラリーを調製した。
(コート層の形成)
コート層形成用スラリーにPd担持ハニカム焼成体を浸漬させた。次いでPd担持ハニカム焼成体をコート層形成用スラリーから取り出し、送風機の風を吹き付けることでPd担持ハニカム焼成体に付着した余分なコート層形成用スラリーを吹き飛ばした。その後、80℃で一昼夜乾燥させ、500℃で1時間焼成することにより、実施例1に係るハニカム触媒を得た。
コート層の厚さは片側0.025mmとし、隔壁の厚さは0.126mmとした。
Rhの担持量は、ハニカム触媒の見掛けの体積当たり0.4g/Lとした。
コート層形成用スラリーにPd担持ハニカム焼成体を浸漬させた。次いでPd担持ハニカム焼成体をコート層形成用スラリーから取り出し、送風機の風を吹き付けることでPd担持ハニカム焼成体に付着した余分なコート層形成用スラリーを吹き飛ばした。その後、80℃で一昼夜乾燥させ、500℃で1時間焼成することにより、実施例1に係るハニカム触媒を得た。
コート層の厚さは片側0.025mmとし、隔壁の厚さは0.126mmとした。
Rhの担持量は、ハニカム触媒の見掛けの体積当たり0.4g/Lとした。
(実施例2)
コート層形成用スラリーにおけるRh担持CZ粒子とθ-アルミナ粒子との混合比を50:50(重量比)に変更したほかは、実施例1と同様の手順で実施例2に係るハニカム触媒を得た。
コート層形成用スラリーにおけるRh担持CZ粒子とθ-アルミナ粒子との混合比を50:50(重量比)に変更したほかは、実施例1と同様の手順で実施例2に係るハニカム触媒を得た。
(比較例1)
コート層形成用スラリーにおけるRh担持CZ粒子とθ-アルミナ粒子との混合比を60:40(重量比)に変更したほかは、実施例1と同様の手順で比較例1に係るハニカム触媒を得た。
コート層形成用スラリーにおけるRh担持CZ粒子とθ-アルミナ粒子との混合比を60:40(重量比)に変更したほかは、実施例1と同様の手順で比較例1に係るハニカム触媒を得た。
(熱膨張率の測定2:隔壁の熱膨張率)
実施例1~2及び比較例1に係るハニカム触媒をそれぞれ5×5mmの断面寸法に、かつ、長手方向の長さが20mmとなるよう切り出して、JIS R 1618(2002)に準拠して隔壁の長手方向の熱膨張率を測定したところ、それぞれ7.4×10-6/℃、8.0×10-6/℃、8.2×10-6/℃であった。
実施例1~2及び比較例1に係るハニカム触媒をそれぞれ5×5mmの断面寸法に、かつ、長手方向の長さが20mmとなるよう切り出して、JIS R 1618(2002)に準拠して隔壁の長手方向の熱膨張率を測定したところ、それぞれ7.4×10-6/℃、8.0×10-6/℃、8.2×10-6/℃であった。
(耐剥離性試験)
以下の条件でコート層の耐剥離性試験を行い、コート層の耐剥離性を評価した。
実施例1~2及び比較例1に係るハニカム触媒を、アルミナ製マットを介して金属ケーシング内に封入し、ガスバーナーで熱せられた空気と室温の空気とを交互に通気させた。ハニカム触媒の中心の温度が200℃及び950℃となるように熱せられた空気と室温の空気の通気を100サイクル繰り返し、ヒートサイクル試験を行った。ヒートサイクル試験後に各ハニカム触媒におけるコート層の様子を目視で確認したところ、実施例1~2に係るハニカム触媒ではコート層の剥離がみられなかったが、比較例1に係るハニカム触媒ではコート層の剥離がみられた。
以下の条件でコート層の耐剥離性試験を行い、コート層の耐剥離性を評価した。
実施例1~2及び比較例1に係るハニカム触媒を、アルミナ製マットを介して金属ケーシング内に封入し、ガスバーナーで熱せられた空気と室温の空気とを交互に通気させた。ハニカム触媒の中心の温度が200℃及び950℃となるように熱せられた空気と室温の空気の通気を100サイクル繰り返し、ヒートサイクル試験を行った。ヒートサイクル試験後に各ハニカム触媒におけるコート層の様子を目視で確認したところ、実施例1~2に係るハニカム触媒ではコート層の剥離がみられなかったが、比較例1に係るハニカム触媒ではコート層の剥離がみられた。
上記の結果から、隔壁の長手方向の熱膨張係数が7.0~8.0×10-6/℃である実施例1~2に係るハニカム触媒は、コート層の耐剥離性が高く、排ガス浄化性能が低下しにくいことがわかった。
10 ハニカム触媒
11 ハニカム構造体
12 貫通孔
13 隔壁
13a コート層
13b 基材部
14 貴金属
11 ハニカム構造体
12 貫通孔
13 隔壁
13a コート層
13b 基材部
14 貴金属
Claims (7)
- 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム構造体に貴金属が担持されてなるハニカム触媒であって、
前記隔壁は、セリア-ジルコニア複合酸化物とアルミナとを含む押出成形体で構成される基材部と、前記基材部の表面に形成され、前記貴金属を含むコート層とからなり、
前記隔壁の長手方向の熱膨張係数が、7.0~8.0×10-6/℃であることを特徴とするハニカム触媒。 - 前記基材部に前記貴金属が担持されている請求項1に記載のハニカム触媒。
- 前記基材部は、無機バインダをさらに含む請求項1又は2に記載のハニカム触媒。
- 前記隔壁の厚さは0.05~0.25mmである請求項1~3のいずれかに記載のハニカム触媒。
- 前記ハニカム触媒の直径に対する長さの比(長さ/直径)は、0.5~1.1である請求項1~4のいずれかに記載のハニカム触媒。
- 前記ハニカム触媒の直径は、130mm以下である請求項1~5のいずれかに記載のハニカム触媒。
- 前記ハニカム触媒におけるセリア-ジルコニア複合酸化物の占める割合は、25~75重量%である請求項1~6のいずれかに記載のハニカム触媒。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880061550.0A CN111132762A (zh) | 2017-09-27 | 2018-09-27 | 蜂窝催化剂 |
EP18861879.7A EP3689460A4 (en) | 2017-09-27 | 2018-09-27 | HONEYCOMB CATALYST |
US16/830,277 US20200222890A1 (en) | 2017-09-27 | 2020-03-26 | Honeycomb catalytic converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186475A JP6726148B2 (ja) | 2017-09-27 | 2017-09-27 | 排ガス浄化用ハニカム触媒 |
JP2017-186475 | 2017-09-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/830,277 Continuation US20200222890A1 (en) | 2017-09-27 | 2020-03-26 | Honeycomb catalytic converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019065804A1 true WO2019065804A1 (ja) | 2019-04-04 |
Family
ID=65901536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035848 WO2019065804A1 (ja) | 2017-09-27 | 2018-09-27 | ハニカム触媒 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200222890A1 (ja) |
EP (1) | EP3689460A4 (ja) |
JP (1) | JP6726148B2 (ja) |
CN (1) | CN111132762A (ja) |
WO (1) | WO2019065804A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3730203A1 (en) * | 2019-04-25 | 2020-10-28 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification catalyst |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019058876A (ja) | 2017-09-27 | 2019-04-18 | イビデン株式会社 | ハニカム触媒 |
CN117177813A (zh) * | 2021-06-10 | 2023-12-05 | 庄信万丰股份有限公司 | 使用铑/铂和鞣酸作为络合和还原剂的改进的twc活性 |
WO2022258962A1 (en) * | 2021-06-10 | 2022-12-15 | Johnson Matthey Public Limited Company | Palladium fixing and low fresh oxygen storage capacity using tannic acid as a complexing and reducing agent |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013522020A (ja) * | 2010-03-19 | 2013-06-13 | サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン | 閉塞材料を有するフィルター材料 |
JP2014147858A (ja) * | 2013-01-31 | 2014-08-21 | Cataler Corp | 排ガス浄化用触媒 |
JP2017039069A (ja) | 2015-08-18 | 2017-02-23 | 株式会社デンソー | 排ガス浄化触媒 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09262484A (ja) * | 1996-03-29 | 1997-10-07 | Ngk Insulators Ltd | 高耐熱衝撃性セラミックハニカム触媒 |
WO2006137163A1 (ja) * | 2005-06-24 | 2006-12-28 | Ibiden Co., Ltd. | ハニカム構造体 |
CN101376103B (zh) * | 2007-08-27 | 2011-07-27 | 比亚迪股份有限公司 | 汽车尾气净化催化剂载体的预处理方法及汽车尾气净化催化剂 |
WO2009141891A1 (ja) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | ハニカム構造体 |
JP5419505B2 (ja) * | 2009-03-24 | 2014-02-19 | 日本碍子株式会社 | ハニカム構造体の製造方法及びハニカム触媒体の製造方法 |
CN102430403B (zh) * | 2011-08-29 | 2013-09-11 | 重庆海特汽车排气系统有限公司 | 一种低贵金属含量高效三元催化剂及其制备方法 |
KR102288008B1 (ko) * | 2012-07-26 | 2021-08-11 | 코르메텍, 인코포레이티드 | 벌집형 촉매 어셈블리 및 이의 용도 |
-
2017
- 2017-09-27 JP JP2017186475A patent/JP6726148B2/ja active Active
-
2018
- 2018-09-27 WO PCT/JP2018/035848 patent/WO2019065804A1/ja unknown
- 2018-09-27 EP EP18861879.7A patent/EP3689460A4/en not_active Withdrawn
- 2018-09-27 CN CN201880061550.0A patent/CN111132762A/zh active Pending
-
2020
- 2020-03-26 US US16/830,277 patent/US20200222890A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013522020A (ja) * | 2010-03-19 | 2013-06-13 | サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン | 閉塞材料を有するフィルター材料 |
JP2014147858A (ja) * | 2013-01-31 | 2014-08-21 | Cataler Corp | 排ガス浄化用触媒 |
JP2017039069A (ja) | 2015-08-18 | 2017-02-23 | 株式会社デンソー | 排ガス浄化触媒 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3689460A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3730203A1 (en) * | 2019-04-25 | 2020-10-28 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN111132762A (zh) | 2020-05-08 |
JP6726148B2 (ja) | 2020-07-22 |
EP3689460A4 (en) | 2021-06-09 |
US20200222890A1 (en) | 2020-07-16 |
EP3689460A1 (en) | 2020-08-05 |
JP2019058874A (ja) | 2019-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6998871B2 (ja) | ハニカム構造体及び該ハニカム構造体の製造方法 | |
JP6934007B2 (ja) | ハニカム構造体及び該ハニカム構造体の製造方法 | |
JPWO2018012565A1 (ja) | ハニカム構造体及び該ハニカム構造体の製造方法 | |
US11298686B2 (en) | Honeycomb catalytic converter | |
CN111107932B (zh) | 蜂窝催化剂 | |
WO2019065805A1 (ja) | ハニカム触媒 | |
US20200222890A1 (en) | Honeycomb catalytic converter | |
US20200222889A1 (en) | Honeycomb catalytic converter | |
JP2020040033A (ja) | ハニカム構造体 | |
WO2019065797A1 (ja) | ハニカム触媒 | |
JP6949019B2 (ja) | ハニカム構造体及び該ハニカム構造体の製造方法 | |
JP2020040035A (ja) | ハニカム構造体の製造方法 | |
JP2019063683A (ja) | ハニカム触媒の製造方法 | |
JP6985854B2 (ja) | ハニカム構造体の製造方法 | |
JP6944834B2 (ja) | ハニカム触媒 | |
WO2019026645A1 (ja) | ハニカム構造体の製造方法及びハニカム構造体 | |
JP2019151508A (ja) | ハニカム構造体の製造方法 | |
JP7112212B2 (ja) | ハニカム構造体の製造方法 | |
JP6944833B2 (ja) | ハニカム構造体の製造方法 | |
JP6985842B2 (ja) | ハニカム触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18861879 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018861879 Country of ref document: EP Effective date: 20200428 |