WO2019065182A1 - 超音波センサ - Google Patents

超音波センサ Download PDF

Info

Publication number
WO2019065182A1
WO2019065182A1 PCT/JP2018/033437 JP2018033437W WO2019065182A1 WO 2019065182 A1 WO2019065182 A1 WO 2019065182A1 JP 2018033437 W JP2018033437 W JP 2018033437W WO 2019065182 A1 WO2019065182 A1 WO 2019065182A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
ultrasonic wave
ultrasonic
pair
members
Prior art date
Application number
PCT/JP2018/033437
Other languages
English (en)
French (fr)
Inventor
緒方 健治
省吾 黒木
Original Assignee
第一精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一精工株式会社 filed Critical 第一精工株式会社
Priority to EP18861734.4A priority Critical patent/EP3691293B1/en
Priority to US16/637,407 priority patent/US11067541B2/en
Priority to CN201880062877.XA priority patent/CN111149372B/zh
Priority to JP2019544524A priority patent/JP7092139B2/ja
Publication of WO2019065182A1 publication Critical patent/WO2019065182A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0603Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a piezoelectric bender, e.g. bimorph
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0062Devices moving in two or more dimensions, i.e. having special features which allow movement in more than one dimension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2044Cantilevers, i.e. having one fixed end having multiple segments mechanically connected in series, e.g. zig-zag type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0271Resonators; ultrasonic resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0172Flexible holders not provided for in B81B2203/0154 - B81B2203/0163
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/058Rotation out of a plane parallel to the substrate

Definitions

  • the present invention relates to an ultrasonic sensor.
  • an ultrasonic sensor using a transducer made of lead zirconate titanate (also referred to as PZT) as an ultrasonic wave oscillation source (ultrasonic oscillation element) is a thin film manufacturing technology by microfabrication. It is disclosed to be manufactured by the MEMS (Micro Electro Mechanical Systems) technology.
  • the actuator which drives an ultrasonic oscillation element is needed.
  • the ultrasonic oscillation element is formed of a thin film, it is not easy to attach the actuator portion to the ultrasonic oscillation element, and it becomes difficult to drive the ultrasonic oscillation element formed of a thin film. It was
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an ultrasonic sensor capable of easily realizing driving of an ultrasonic wave oscillation element formed of a thin film.
  • the ultrasonic sensor of the present invention is A fixed frame fixed to an external member; A flexible first substrate disposed in the fixed frame, and a first piezoelectric element having a thin film formed on the first substrate, which is flexed by the expansion and contraction of the first piezoelectric element An ultrasonic wave generator that generates ultrasonic waves; A second substrate having flexibility by connecting the first substrate and the fixed frame, and a second piezoelectric element formed in a thin film on the second substrate, the second An actuator unit that is flexed by the expansion and contraction of the piezoelectric element of claim 1 and causes the ultrasonic oscillation unit to swing relative to the fixed frame; Equipped with The fixed frame, the first substrate, and the second substrate are configured of the same substrate.
  • the fixed frame, the ultrasonic oscillation unit, and the actuator unit are disposed on the same plane. You may do it.
  • the actuator unit is Oscillating the ultrasonic wave oscillating unit in a uniaxial direction; You may do it.
  • the actuator unit is A pair of linear members disposed respectively on both sides in the first direction in the ultrasonic wave oscillator, For each of the pair of members, The second substrate has a portion extending along a second direction crossing the first direction from the inner side of the fixed frame, and the portion extends and contracts along the second direction. A thin film of the piezoelectric element is formed, and the pair of members are deformed by the expansion and contraction of the second piezoelectric element to swing the ultrasonic wave oscillation unit. You may do it.
  • the length of a portion of each of the pair of members extending along the second direction is It is longer than the distance from the inner side of the fixed frame to which the actuator unit is connected to the middle point of the outer edge of the ultrasonic wave generator in the second direction. You may do it.
  • the ultrasonic oscillation unit is formed in a disk shape.
  • the actuator unit is The ultrasonic oscillator comprises a pair of members disposed on both sides in the first direction around the ultrasonic oscillator and extending along an outer edge of the ultrasonic oscillator in an arc shape.
  • the second substrate extends in an arc shape from the inner edge of the fixed frame along the outer edge of the ultrasonic wave oscillator, and the second piezoelectric element extends along the direction in which the second substrate extends. Stretch and The pair of members are deformed by the expansion and contraction of the second piezoelectric element to swing the ultrasonic wave oscillating unit. You may do it.
  • Each of the pair of members is It is disposed in two-fold rotational symmetry centering on the ultrasonic wave oscillating unit, You may do it.
  • One member of the pair of members is It is connected to the fixed frame at a first position located in a second direction orthogonal to the first direction as viewed from the center of the ultrasonic wave oscillator, Connecting to the ultrasonic wave oscillating unit at a second position located on the opposite side of the first position as viewed from the center of the ultrasonic wave oscillating unit;
  • the other member of the pair of members is Connected to the fixed frame at a third position located in the second direction as viewed from the center of the ultrasonic wave oscillator; It connects with the said ultrasonic oscillation part in the 4th position located in the opposite side of the said 3rd position seeing from the center of the said ultrasonic oscillation part, You may do it.
  • One member and the other member in the pair of members are disposed to face each other at both ends in the direction in which the members extend, and the opposing outer sides pass through the center of the ultrasonic wave oscillation unit, and the second one Intersect with a straight line extending in the direction, You may do it.
  • the actuator unit is Oscillating the ultrasonic wave oscillating unit in two axial directions; You may do it.
  • the actuator unit is A movable frame formed of part of the second substrate; A first actuator that connects the fixed frame and the movable frame and causes the movable frame to swing around a first rotation axis with respect to the fixed frame; A second actuator that connects the movable frame and the ultrasonic wave oscillation unit, and oscillates the ultrasonic wave oscillation unit with respect to the movable frame about a second rotation axis different from the first rotation axis; , Equipped with You may do it.
  • the first actuator is The movable substrate is constituted by a pair of linear members disposed respectively on both sides in the first direction, and the second substrate of the pair of members is the first direction from the inner side of the fixed frame
  • the second piezoelectric element having a portion extending along a second direction crossing the second layer, the second piezoelectric element extending and contracting along the second direction is formed into a thin film, and a pair of the first A member causes the second substrate to deform due to expansion and contraction of the second piezoelectric element to swing the movable frame around the first rotation axis;
  • the second actuator is
  • the first substrate comprises the first substrate from the inner side of the movable frame, wherein the second substrate is formed of a pair of linear members arranged respectively on both sides in the second direction in the ultrasonic wave oscillation unit.
  • the second piezoelectric element having a portion extending along the direction of the second layer, which expands and contracts along the first direction, is formed in a thin film, and a pair of members constituting the The expansion and contraction of the piezoelectric element 2 causes the ultrasonic oscillation unit to swing around the second rotation axis by deformation. You may do it.
  • the length of the portion of the first actuator extending along the second direction is Longer than the distance from the inner side of the fixed frame to which the first actuator is connected to the middle point of the outer edge of the movable frame in the second direction, You may do it.
  • the length of the portion extending along the first direction of the second actuator is It is longer than the distance from the inner side of the movable frame to which the second actuator is connected to the middle point of the outer edge of the ultrasonic wave generator in the first direction. You may do it.
  • the ultrasonic oscillation unit is formed in a disk shape, and the movable frame is formed in an annular shape concentric with the ultrasonic oscillation unit.
  • the first actuator is disposed on both sides in the first direction centering on the ultrasonic wave oscillating unit, and includes a pair of members extending in an arc along the outer edge of the movable frame, each of the pair of members.
  • the second substrate extends in an arc from the inner edge of the fixed frame along the outer edge of the movable frame, and the second piezoelectric element extends along the direction in which the second substrate extends.
  • the pair of members that expand and contract and configure the first actuator are deformed by the expansion and contraction of the second piezoelectric element to swing the movable frame around the first rotation axis
  • the second actuator is disposed on both sides of a second direction orthogonal to the first direction with the ultrasonic oscillation unit as a center, and a pair of members extending in an arc along the outer edge of the ultrasonic oscillation unit
  • the second substrate of each of the pair of members extends in an arc shape from the inner edge of the movable frame along the outer edge of the ultrasonic wave oscillation unit
  • the second piezoelectric element is The pair of members which expand and contract along the direction in which the second substrate extends, and which constitute the second actuator, are deformed by the expansion and contraction of the second piezoelectric element, and are deformed about the second rotation axis. Swing the ultrasonic wave oscillator, You may do it.
  • the pair of members constituting the first actuator are: It is disposed in two-fold rotational symmetry centering on the ultrasonic wave oscillator
  • the pair of members constituting the second actuator are: It is disposed in two-fold rotational symmetry centering on the ultrasonic wave oscillating unit, You may do it.
  • One member of the pair of members constituting the first actuator is Connected to the fixed frame at a first position located in the second direction as viewed from the center of the ultrasonic wave oscillator, Connected to the movable frame at a second position located on the opposite side of the first position as viewed from the center of the ultrasonic wave oscillator;
  • the other member of the pair of members constituting the first actuator is Connected to the fixed frame at a third position located in the second direction as viewed from the center of the ultrasonic wave oscillator; Connected to the movable frame at a fourth position located on the opposite side of the third position as viewed from the center of the ultrasonic wave oscillator;
  • One member of the pair of members constituting the second actuator is Connected to the movable frame at a fifth position located in the first direction as viewed from the center of the ultrasonic wave oscillator, Connected to the ultrasonic wave oscillator at a sixth position located on the opposite side of the fifth position as viewed from the
  • One member and the other member of the pair of members constituting the first actuator are arranged to face each other at both ends in the direction in which the members extend, and the opposing outer sides are the ultrasonic wave oscillating portion Intersect with a straight line extending in the second direction as viewed from the center of the You may do it.
  • One member and the other member of the pair of members constituting the second actuator are arranged to face each other at both ends in the extending direction, and the opposing outer side is the ultrasonic wave oscillating portion Intersect with a straight line extending in the first direction as viewed from the center of the You may do it.
  • the fixed frame, the first substrate constituting the ultrasonic wave oscillating unit, and the second substrate constituting the actuator unit for oscillating the ultrasonic wave oscillating unit are constituted by the same substrate. Therefore, the driving of the ultrasonic oscillation element formed of the thin film can be easily realized.
  • the ultrasonic sensor 100A is a rectangular flat device formed on a substrate as a whole.
  • a slit is formed in a semiconductor substrate which is an example of a substrate, and the fixed frame 2, the ultrasonic oscillation unit 3, and the actuator unit 4 are partitioned. That is, the fixed frame 2, the ultrasonic wave oscillating unit 3 and the actuator unit 4 are formed on the same substrate.
  • a stainless steel plate is exemplified.
  • the fixed frame 2 is a rectangular flat frame disposed at the outermost periphery, and is fixed to a base (not shown) which is an external member.
  • the ultrasonic wave oscillation unit 3 is a disk-shaped member disposed in the frame of the fixed frame 2.
  • the actuator unit 4 is a pair of beam-shaped members provided in the frame of the fixed frame 2.
  • an XYZ three-dimensional orthogonal coordinate system in which the center of gravity position of the ultrasonic wave oscillation unit 3 is the origin O is defined.
  • the direction in which the actuator unit 4 is disposed with respect to the ultrasonic wave oscillation unit 3 is the X axis direction
  • the direction orthogonal to the X axis in the in-plane direction of the ultrasonic sensor 100A is the Y axis
  • the direction be the normal direction of the surface of the ultrasonic sensor 100A be the Z-axis direction.
  • the first direction is parallel to the X axis
  • the second direction is parallel to the Y axis.
  • the ultrasonic wave generator 3 generates an ultrasonic wave whose traveling direction is the + Z direction.
  • the actuator unit 4 is a pair of linear members disposed respectively on both sides in the X-axis direction of the ultrasonic wave oscillation unit 3, connects the fixed frame 2 and the ultrasonic wave oscillation unit 3, and supports the ultrasonic wave oscillation unit 3 doing.
  • the thickness of the actuator portion 4 is set smaller than the thickness of the fixed frame 2, and the actuator portion 4 is flexible at least in the vertical direction (Z-axis direction). .
  • the actuator unit 4 can warp the ultrasonic wave oscillating unit 3 with respect to the fixed frame 2 within a predetermined degree of freedom by curving upward or downward.
  • the ultrasonic sensor 100A has a laminated structure in which an A layer 1A, a B layer 1B, and a C layer 1C are laminated in this order.
  • the fixed frame 2, the ultrasonic wave oscillation unit 3 and the actuator unit 4 include a three-layer structure of an A layer 1A, a B layer 1B, and a C layer 1C.
  • a D layer 1D is provided on the C layer 1C.
  • Four layers of the A layer 1A, the B layer 1B, the C layer 1C, and the D layer 1D have a planar shape (the shape shown in FIG. 1).
  • the A layer 1A is a substrate layer serving as a support substrate for the other layers, and is formed of a material capable of supporting the B layer 1B, the C layer 1C, and the D layer 1D formed on the upper surface thereof.
  • the actuator unit 4 needs to have flexibility at least in the vertical direction (Z-axis direction). That is, the A layer 1A as a substrate layer can be bent within the range required for each actuator unit 4 (within the range required for tilting the ultrasonic wave oscillation unit 3 at the required angle) , Formed of a material having a certain degree of flexibility.
  • the A layer 1A is formed of a silicon substrate. More specifically, the A layer 1A includes a support layer made of silicon, a BOX layer (silicon dioxide insulating film) of silicon dioxide formed on the support layer, and silicon formed on the BOX layer. It has a three-layer structure of the active layer.
  • the A layer 1A is divided into a portion of the fixed frame 2, a first substrate 3A constituting the ultrasonic wave oscillation unit 3, and a second substrate 4A constituting the actuator unit 4.
  • the B layer 1B constitutes a lower electrode layer of the piezoelectric element.
  • the D layer 1D constitutes an upper electrode layer of the piezoelectric element. Therefore, both are formed of the conductive material.
  • the C layer 1C constitutes a piezoelectric element and is made of a piezoelectric material exhibiting a piezoelectric effect.
  • the C layer 1C is formed of a thin film of PZT (lead zirconate titanate) or KNN (potassium sodium niobate).
  • the piezoelectric element is constituted by a sandwich structure in which the piezoelectric material layer (C layer 1C) is sandwiched between the conductive material layers (B layer 1B and D layer 1D).
  • the C layer 1C has a property of expanding and contracting in a longitudinal direction (direction orthogonal to the thickness direction) when a voltage of a predetermined polarity is applied in the thickness direction.
  • the D layer 1D is divided into an upper electrode layer 3D provided in the ultrasonic wave oscillation unit 3, an upper electrode layer 4D provided in the actuator unit 4, and a detection electrode 5D.
  • Other wirings are formed as the D layer 1D on the C layer 1C, but the illustration thereof is omitted.
  • the B layer 1 B and the C layer 1 C have a portion of the fixed frame 2, a portion of the ultrasonic wave oscillation unit 3, and a portion of the actuator unit 4.
  • the B layer 1B is the lower electrode layer 3B
  • the C layer 1C is the piezoelectric material layer 3C
  • the D layer 1D is the upper electrode layer 3D.
  • the lower electrode layer 3B, the piezoelectric material layer 3C and the upper electrode layer 3D constitute a first piezoelectric element (3B, 3C, 3D).
  • the B layer 1B is the lower electrode layer 4B
  • the C layer 1C is the piezoelectric material layer 4C
  • the D layer 1D is the upper electrode layer 4D or the detection electrode 5D.
  • the lower electrode layer 4B, the piezoelectric material layer 4C and the upper electrode layer 4D constitute a second piezoelectric element (4B, 4C, 4D).
  • the ultrasonic sensor 100A has a structure suitable for mass production.
  • a method of manufacturing a MEMS element using a semiconductor manufacturing process can be applied to the manufacture of the ultrasonic sensor 100A.
  • the ultrasonic sensor 100A includes a platinum layer (B layer 1B: lower electrode layer), a PZT layer (C layer 1C: piezoelectric material layer), a platinum / gold layer (D layer) on the upper surface of a silicon substrate (A layer 1A: substrate layer).
  • Layer 1D The lower layer portion is formed by sequentially depositing platinum and the upper layer portion is a two-layer structure layer made of gold.
  • the patterning process is performed on D layer 1 D to leave only D layer 1 D, and further, a part of the structure including three layers of A layer 1 A, B layer 1 B, C layer 1 C
  • a slit penetrating in the vertical direction is formed by a method such as etching.
  • the ultrasonic sensor 100A is completed.
  • the ultrasonic oscillation unit 3 includes the first substrate 3A, which is the A layer 1A, and the first piezoelectric elements (3B, 3C, 3D) formed in a thin film on the first substrate 3A. And).
  • the first substrate 3A is thinner at the inner peripheral portion provided with the first piezoelectric element (3B, 3C, 3D) than at the outer peripheral portion, and the inner peripheral portion has flexibility.
  • the inner peripheral portion of the ultrasonic wave oscillation unit 3 is bent by the expansion and contraction of the first piezoelectric element (3B, 3C, 3D) to generate an ultrasonic wave.
  • the actuator unit 4 is composed of a second substrate 4A and second piezoelectric elements (4B, 4C, 4D) formed in a thin film on the second substrate 4A.
  • the second substrate 4A connects the first substrate 3A to the fixed frame 2 (A layer 1A).
  • the actuator unit 4 is flexed by the expansion and contraction of the second piezoelectric element (4B, 4C, 4D) to swing the ultrasonic wave oscillation unit 3 with respect to the fixed frame 2.
  • the fixed frame 2, the first substrate 3A, and the second substrate 4A are formed of the same semiconductor substrate. Further, the fixed frame 2, the ultrasonic wave oscillation unit 3 and the actuator unit 4 are disposed on the same plane.
  • the actuator unit 4 is composed of three parts, and each part includes an arm start end 41, an arm end portion 42, and an arm relay portion 43. And
  • the arm start end 41 extends from the inner side of the fixed frame 2 along the Y-axis direction (second direction).
  • the arm start end 41 extends linearly beyond the midpoint N of the outer side of the ultrasonic wave oscillator 3.
  • a thin film of a second piezoelectric element (4B, 4C, 4D) is formed on the arm start end 41.
  • the actuator unit 4 is deformed by the expansion and contraction of the second piezoelectric element (4B, 4C, 4D) to swing the ultrasonic wave oscillation unit 3.
  • One end of the arm end portion 42 is connected to the midpoint N of the outer side of the ultrasonic wave oscillation unit 3 and extends in parallel with the arm start end 41.
  • the arm relay portion 43 extends along the X-axis direction, and connects the other end of the arm start end 41 and the other end of the arm end portion 42.
  • the length of the portion extending along the Y-axis direction is the middle point N of the outer edge of the ultrasonic wave oscillation unit 3 in the Y-axis direction from the inner side of the fixed frame 2 to which the actuator unit 4 is connected. It is longer than the distance.
  • the pair of members in the actuator unit 4 are disposed so as to be rotationally symmetric about the origin O twice.
  • the actuator unit 4 swings the ultrasonic wave oscillation unit 3 in the uniaxial direction (about the X axis). That is, the actuator unit 4 is disposed on both sides of the ultrasonic wave oscillation unit 3 in the X-axis direction, and is deformed by the expansion and contraction of the piezoelectric element to ultrasonically oscillate the fixed frame 2 around the rotation axis along the X-axis direction Swing part 3
  • FIG. 4A, FIG. 4B and FIG. 4C are cross-sectional views showing the operation of the ultrasonic wave oscillation unit 3.
  • the first piezoelectric element (3B, 3C, 3D) does not expand or contract, and the first substrate 3A remains horizontal.
  • the piezoelectric material layer 3C When a voltage is applied between the two electrode layers so that the upper electrode layer 3D side is positive and the lower electrode layer 3B side is negative, the piezoelectric material layer 3C extends in the longitudinal direction (direction orthogonal to the thickness direction). Conversely, when a voltage is applied between the two electrode layers so that the upper electrode layer 3D side is negative and the lower electrode layer 3B side is positive, the piezoelectric material layer 3C has the property of contracting in the longitudinal direction. The degree of expansion and contraction becomes an amount according to the voltage value to be applied.
  • the first piezoelectric element (3B, 3C, 3D) extends in the longitudinal direction, and a stress in a direction extending in the surface direction is applied to the upper surface side of the flexible first substrate 3A.
  • the ultrasonic wave oscillation unit 3 is warped so that the upper side is convex.
  • the first piezoelectric element (3B, 3C, 3D) is driven to repeat the state shown in FIG. 4B and the state shown in FIG. 4C at a frequency of 20 KHz or more, for example.
  • the deformation shown in FIG. 4B or 4C can be produced. Since the polarization action differs depending on the material constituting the piezoelectric element (for example, depending on the bulk or thin film), the relationship between the polarity of the voltage and the expansion and contraction may be reversed from the above.
  • FIG. 5A, 5B and 5C are cross-sectional views showing the operation of the actuator unit 4.
  • FIG. 5A when no voltage is applied to the second piezoelectric element (4B, 4C, 4D), the second piezoelectric element (4B, 4C, 4D) does not expand or contract.
  • the arm start end 41 is horizontal.
  • the piezoelectric material layer 4C When a voltage is applied between the two electrode layers so that the upper electrode layer 4D side is positive and the lower electrode layer 4B side is negative, the piezoelectric material layer 4C extends in the longitudinal direction (direction orthogonal to the thickness direction). Conversely, when a voltage is applied between the two electrode layers so that the upper electrode layer 4D side is negative and the lower electrode layer 4B side is positive, the piezoelectric material layer 4C has the property of contracting in the longitudinal direction. The degree of expansion and contraction becomes an amount according to the voltage value to be applied.
  • the second piezoelectric element (4B, 4C, 4D) extends in the longitudinal direction, and a stress in a direction extending in the surface direction (direction along the Y-axis) is applied to the upper surface side of the flexible second substrate 4A.
  • the arm start end 41 of the actuator unit 4 is warped so that the upper side is convex.
  • the detection electrode 5D is provided to detect the displacement of the actuator unit 4.
  • the detection electrode 5D is formed to be narrower than the width of the actuator unit 4 for wiring.
  • the detection electrode 5D is provided at a portion where the actuator unit 4 and the fixed frame 2 are connected. In these parts, the deformation of the actuator unit 4 becomes large. Therefore, the displacement of the actuator portion 4 can be stably detected by arranging the detection electrode 5D at these places.
  • the ultrasonic wave oscillation unit 3 is connected to the fixed frame 2 via the actuator unit 4, and is supported by the actuator unit 4 in a suspended state floating from the base. Therefore, when the actuator unit 4 warps upward or downward, the ultrasonic wave oscillation unit 3 supported in the suspended state tilts around the X axis, that is, in the Y axis direction.
  • the ultrasonic wave oscillation unit 3 supports the base (the actuator unit 4). It is supported in the horizontal attitude above the fixed point).
  • a white triangle indicates the center of gravity G of the ultrasonic wave generator 3.
  • the center of gravity G coincides with the origin O of the coordinate system. In this case, the ultrasonic wave oscillation unit 3 oscillates the ultrasonic wave in the + Z direction.
  • the ultrasonic oscillation part 3 can be inclined so that the + Y end falls most.
  • the ultrasonic wave oscillation unit 3 oscillates the ultrasonic wave in the direction inclined from the + Z direction to the + Y side.
  • the ultrasonic wave oscillation unit 3 can be inclined so that the -Y end thereof is lowered most. In this case, the ultrasonic wave oscillation unit 3 oscillates the ultrasonic wave in the direction inclined from the + Z direction to the -Y side.
  • a negative voltage is applied to the piezoelectric element of the + X side actuator unit 4 and the piezoelectric element of the ⁇ X side actuator unit 4 respectively.
  • the ultrasonic wave oscillation unit 3 can be rocked around the X axis with respect to the fixed frame 2.
  • the degree of inclination corresponds to the voltage value to be applied. Therefore, by adjusting the polarity and the value of the voltage to be applied, it is possible to arbitrarily adjust the tilt angle of the ultrasonic oscillation unit 3 in the X-axis direction.
  • the actuator unit 4 and the ultrasonic wave oscillation unit 3 are disposed in the fixed frame 2 . Since the actuator unit 4 and the ultrasonic wave oscillation unit 3 are movable components that cause displacement, it is better to avoid contacting the external object. In this respect, if the fixed frame 2 has a frame shape, the movable component can be enclosed inside, so that the movable component can be protected from contact with an external object.
  • the fixed frame 2, the first substrate 3A constituting the ultrasonic wave oscillation unit 3, and the actuator unit 4 for oscillating the ultrasonic wave oscillation unit 3 are configured.
  • the second substrate 4A is formed of the same semiconductor substrate.
  • the fixed frame 2, the ultrasonic wave oscillation unit 3, and the actuator unit 4 are disposed in the same plane. Therefore, the ultrasonic sensor 100A can be miniaturized and thinned.
  • the actuator unit 4 swings the ultrasonic wave oscillation unit 3 in the uniaxial direction. In this way, ultrasonic waves can be transmitted over a wide range.
  • the second piezoelectric element (4B, 4B, 4C, 4D) includes the second piezoelectric element (4B, 4C, 4D) that expands and contracts the actuator unit 4 which is a pair of members in the Y-axis direction. It is deformed by the expansion and contraction of 4C, 4D) to swing the ultrasonic wave oscillation unit 3. In this way, the actuator unit 4 can be made extremely small.
  • the length of the arm start end 41 where the second piezoelectric element (4B, 4C, 4D) is formed in the actuator unit 4 is The distance to the middle point N of the outer edge of 3 is longer. Thereby, the angle which the ultrasonic wave oscillation part 3 rock
  • the fixed frame 2 is not limited to the rectangular shape, and may be, for example, an elliptical shape or a polygonal shape.
  • the ultrasonic wave oscillating unit 3 is not limited to a circular shape, and may be an elliptical shape or a polygonal shape.
  • the actuator unit 4 is connected to the center point N of the outer side of the ultrasonic wave oscillation unit 3, moments other than the XY direction hardly act on the ultrasonic wave oscillation unit 3 and the vibration of the ultrasonic wave oscillation unit 3 It is possible to prevent twisting in any direction.
  • the ultrasonic oscillation unit 3 can be miniaturized as a simple configuration.
  • the ultrasonic sensor 100B according to the second embodiment differs from the first embodiment in the configuration of the actuator unit 4.
  • the actuator unit 4 swings the ultrasonic wave oscillation unit 3 not only around the X axis but also around the Y axis.
  • the actuator unit 4 causes the ultrasonic oscillation unit 3 to oscillate in two axial directions.
  • the actuator unit 4 includes a first actuator 14A, a movable frame 14B, and a second actuator 14C.
  • the first actuator 14A is provided between the fixed frame 2 and the movable frame 14B and on both sides of the movable frame 14B in the X-axis direction.
  • the first actuator 14A connects the fixed frame 2 and the movable frame 14B, and swings the movable frame 14B with respect to the fixed frame 2 around an X axis (first rotation axis).
  • the configuration of the first actuator 14A is substantially the same as the configuration of the actuator unit 4 according to the first embodiment.
  • the movable frame 14B is a rectangular frame configured by a part of the second substrate 4A.
  • the movable frame 14 ⁇ / b> B is disposed in the fixed frame 2 and disposed so as to surround the ultrasonic wave oscillation unit 3.
  • the second actuator 14C is provided between the movable frame 14B and the ultrasonic wave oscillation unit 3 and on both sides of the ultrasonic wave oscillation unit 3 in the Y-axis direction.
  • the second actuator 14C connects the movable frame 14B and the ultrasonic wave oscillation unit 3 and swings the ultrasonic wave oscillation unit 3 around the Y axis (second rotation axis) with respect to the movable frame 14B.
  • the fixed frame 2, the ultrasonic wave oscillating unit 3, and the actuator unit 4 are shown in FIG.
  • each includes a three-layer structure of A layer 1A, B layer 1B, and C layer 1C.
  • the thicknesses of the first actuator 14A and the second actuator 14C are set smaller than the thicknesses of the fixed frame 2 and the movable frame 14B, and the first actuator 14A and the second actuator are set.
  • An air gap is formed below 14C.
  • the first actuator 14A and the second actuator 14C can be deformed.
  • a part of the support layer among the three layers (support layer, BOX layer, active layer) constituting the A layer 1A It is exemplified to remove
  • the first actuator 14A is configured by a pair of linear members disposed on both sides of the movable frame 14B in the X-axis direction.
  • the first actuator 14A has a portion in which the second substrate 4A extends from the inner side of the fixed frame 2 along the Y-axis direction for each of the pair of members.
  • a second piezoelectric element (4B, 4C, 4D) that expands and contracts along the Y-axis direction is thin-film formed in that portion, and the expansion and contraction of the second piezoelectric element (4B, 4C, 4D)
  • the second substrate 4A is deformed to swing the movable frame 14B around the X axis.
  • the length of the portion of the first actuator 14A extending in the Y-axis direction is the midpoint of the outer edge of the movable frame 14B in the Y-axis direction from the inner side of the fixed frame 2 to which the first actuator 14A is connected. It is longer than the distance to N.
  • the second actuator 14C is composed of three parts, each of which is an arm start end 51, an arm end part 52, and an arm relay part 53.
  • the arm start end 51 extends from the inner side of the movable frame 14B along the X-axis direction (first direction).
  • the arm start end 51 extends linearly beyond the midpoint M of the outer edge of the ultrasonic wave oscillator 3.
  • a thin film of a second piezoelectric element (4B, 4C, 4D) is formed on the arm start end 51.
  • the actuator unit 4 is deformed by the expansion and contraction of the second piezoelectric element (4B, 4C, 4D) to swing the ultrasonic wave oscillation unit 3.
  • One end of the arm end 52 is connected to the middle point M of the outer edge of the ultrasonic wave oscillator 3 and extends in parallel with the arm start end 51.
  • the arm relay portion 53 extends along the Y-axis direction, and connects between the other end of the arm start end 51 and the other end of the arm end portion 52.
  • the length of the portion extending along the X-axis direction is greater than the distance from the inner side of the movable frame 14B to the midpoint M of the outer edge of the ultrasonic wave generator 3 in the X-axis direction. It is getting longer.
  • the ultrasonic wave oscillation unit 3 When a voltage is not applied to the second piezoelectric element (4B, 4C, 4D) of the second actuator 14C, as shown in FIG. 10A, the ultrasonic wave oscillation unit 3 remains in the horizontal attitude as the second state. Is supported by the movable frame 14B (see FIG. 7) via the actuator 14C.
  • a white triangle indicates the center of gravity G of the ultrasonic wave generator 3. The center of gravity G coincides with the origin O of the coordinate system. In this case, the traveling direction of the ultrasonic wave is the + Z direction.
  • the entire second actuator 14C is inclined so that the + X end is lowered.
  • the ultrasonic oscillation part 3 can be made to incline so that the + X end may fall most.
  • the traveling direction of the ultrasonic wave is a direction inclined to the + X side.
  • the entire second actuator 14C is inclined so that the -X end is lowered.
  • the ultrasonic wave oscillation unit 3 can be inclined so that the ⁇ X end thereof is most lowered.
  • the traveling direction of the ultrasonic wave is a direction inclined to the ⁇ X side.
  • the ultrasonic wave oscillation unit 3 can be rocked around the Y axis with respect to the movable frame 14B.
  • the degree of inclination corresponds to the voltage value to be applied. Therefore, by adjusting the polarity and the value of the voltage to be applied, it is possible to arbitrarily adjust the tilt angle of the ultrasonic oscillation unit 3 in the Y-axis direction.
  • the ultrasonic sensor 100B has the arm start end 51 extending along the X axis, and applying a voltage of a predetermined polarity to the upper surface or the lower surface along the X axis direction.
  • a second piezoelectric element (4B, 4C, 4D) that expands and contracts is fixed. Therefore, if a voltage is applied to the second piezoelectric element (4B, 4C, 4D) and the second piezoelectric element (4B, 4C, 4D) is expanded or contracted, the ultrasonic oscillation unit 3 is made larger in the X-axis direction. Can be tilted (rotated around the Y axis). Therefore, it is possible to secure a sufficient displacement angle around the Y axis.
  • the detection electrode 6D is provided at a portion where the second actuator 14C and the movable frame 14B are connected. These parts are places where the deformation of the second actuator 14C becomes large. Therefore, the displacement of the second actuator 14C can be stably detected by arranging the detection electrode 6D at these places.
  • the actuator unit 4 causes the ultrasonic wave oscillation unit 3 to oscillate in two axial directions. In this way, ultrasonic waves can be transmitted to a wider range.
  • the actuator unit 4 is configured such that the first actuator 14A swings the ultrasonic wave oscillating unit 3 around the X axis, the movable frame 14B, and the ultrasonic wave oscillating unit 3 around the Y axis. It comprised with the 2nd actuator 14C rock
  • the first actuator 14A and the second actuator 14C which are a pair of members, have the second piezoelectric elements (4B, 4C, 4D) that expand and contract in the X and Y axis directions.
  • the ultrasonic oscillation unit 3 is swung by deformation due to the expansion and contraction of the second piezoelectric element (4B, 4C, 4D). In this way, the actuator unit 4 can be made extremely small.
  • the lengths of the arm start ends 41 and 51 at which the second piezoelectric elements (4B, 4C, 4D) are formed are The distance from the inner side of the fixed frame 2 to the middle point N of the outer edge of the movable frame 14B is longer than the distance from the inner side of the movable frame 14B to the middle point M of the outer edge of the ultrasonic wave oscillation unit 3.
  • the angle at which the ultrasonic wave oscillation unit 3 swings can be increased in two axial directions.
  • the ratio of the drive frequency of the first actuator 14A to the drive frequency of the second actuator 14C is set to a desired value by the lengths of the first actuator 14A and the second actuator 14C. It can be set to Therefore, according to the ultrasonic sensor 100B of the second embodiment, optimization and downsizing of the drive frequency can be realized.
  • the first actuators 14A are disposed so as to be rotationally symmetric twice around the origin O of the ultrasonic wave oscillation unit 3.
  • the second actuators 14C are disposed so as to be rotationally symmetric twice around the ultrasonic wave oscillation unit 3.
  • the direction from one end to the other end connected to the fixed frame 2 at the arm start end 41 and the direction from the one end to the other end connected to the movable frame 14 B at the arm start end 51 are centered on the origin O. The same is true for the direction of rotation.
  • the direction of the second actuator 14C may be different. That is, the direction from one end of arm start end 41 connected to fixed frame 2 to the other end and the direction from one end of arm start end 51 connected to movable frame 14 B to the other end have origin O The direction of rotation about the center may be reversed.
  • the direction of the second actuator 14C is different if a deviation occurs in the traveling direction of the ultrasonic waves.
  • the use of the ultrasonic sensor 100B may correct the deviation in the direction of travel of the ultrasonic wave.
  • adopting an ultrasonic sensor 100B in which the second actuator 14C is in the reverse direction is considered as a solution.
  • the axial deviation of the swinging state of the movable frame 14B and the ultrasonic wave oscillation unit 3 may be corrected to correct the traveling direction of the ultrasonic wave.
  • a weight is not limited to movable frame 14B.
  • a weight may be attached to the ultrasonic wave oscillation unit 3.
  • weights may be attached to both or one of the first and second actuators 14A and 14C.
  • the ultrasonic sensors 100A and 100B according to the above embodiments can be used by being incorporated into various devices. It is possible to realize an ultrasonic sensor incorporated in a drone, a cleaning robot or the like which scans an ultrasonic wave and detects an obstacle from the reception state.
  • the shape of the actuator part 4 is not restricted to the thing of said each embodiment.
  • the actuator unit 4 may be formed in a meander shape.
  • the actuator unit 4 may be connected to a corner of the ultrasonic wave oscillator 3.
  • the actuator portion 4 may be bent in an L shape.
  • the second piezoelectric elements (4B, 4C, 4D) formed at the arm start ends 41, 51 are configured to expand and contract.
  • the present invention is not limited to this.
  • Second piezoelectric elements (4B, 4C, 4D) formed in the arm end portions 42, 52 in addition to expansion and contraction of the second piezoelectric elements (4B, 4C, 4D) formed in the arm start ends 41, 51 May be configured to expand and contract.
  • the arm end portions 42 and 52 are formed of the lower electrode layer 4B, the piezoelectric material layer 4C, and the upper electrode layer 4D.
  • which part of the actuator unit 4 is expanded and contracted by the piezoelectric element can be appropriately designed according to the swinging state required for the movable frame 14B and the ultrasonic wave oscillation unit 3.
  • the ultrasonic sensor 101A is a disk-like device formed on a substrate as a whole.
  • a slit is formed in a semiconductor substrate which is an example of a substrate, and a fixed frame 2 ', an ultrasonic oscillation unit 3', and an actuator unit 4 'are partitioned. That is, the fixed frame 2 ', the ultrasonic wave oscillation unit 3' and the actuator unit 4 'are formed on the same substrate.
  • the fixed frame 2 ' is different from the fixed frame 2 according to each of the above embodiments in that the fixed frame 2' is an annular frame disposed on the outermost periphery.
  • the ultrasonic wave oscillation unit 3 ' is a disk-shaped member disposed in the frame of the fixed frame 2'.
  • the fixed frame 2 'and the ultrasonic wave oscillation unit 3' are concentric.
  • the actuator portion 4 ' is a pair of beam-shaped members provided in the frame of the fixed frame 2', and extends in an arc shape along the outer edge of the ultrasonic wave oscillation portion 3 '.
  • an XYZ three-dimensional orthogonal coordinate system in which the center of gravity position of the ultrasonic wave oscillation unit 3 'is the origin O is defined.
  • the direction in which the actuator unit 4 'is disposed with respect to the ultrasonic wave oscillation unit 3' is the X-axis direction, which is orthogonal to the X-axis in the in-plane direction of the ultrasonic sensor 101A.
  • the direction to be set is taken as the Y axis direction
  • the normal direction of the surface of the ultrasonic sensor 101A is taken as the Z axis direction.
  • the ultrasonic wave oscillation unit 3 ' generates an ultrasonic wave whose traveling direction is the + Z direction.
  • the actuator unit 4 ′ is a pair of members 4 R and 4 L respectively disposed on both sides in the X axis direction (first direction) with the ultrasonic wave oscillation unit 3 ′ as a center, and the fixed frame 2 ′ and the ultrasonic wave oscillation unit 3 'And' are supported to support the ultrasonic wave oscillation unit 3 '.
  • the thickness of the actuator portion 4 ' is set smaller than the thickness of the fixed frame 2', and the actuator portion 4 'has flexibility at least in the vertical direction (Z-axis direction). doing. For this reason, the actuator unit 4 'can warp the ultrasonic oscillation unit 3' relative to the fixed frame 2 'within a predetermined degree of freedom by curving upward or downward. .
  • the ultrasonic sensor 101A has a laminated structure in which an A layer 1A, a B layer 1B, and a C layer 1C are laminated in this order in the same manner as the ultrasonic sensor 100A.
  • the fixed frame 2, the ultrasonic wave oscillator 3 and the ultrasonic wave oscillation unit 3 ′ have a three-layer structure including an A layer 1 A, a B layer 1 B, and a C layer 1 C.
  • the same as the actuator unit 4 in that the A layer 1A constituting the actuator unit 4 ' is the second substrate 4A, and the B layers 1B to 1D are the second piezoelectric elements (4B, 4C, 4D). It is.
  • the detection electrode 5D is constituted by the D layer 1D of the actuator portion 4 ', and the displacement of the actuator portion 4' is detected at this portion.
  • the second substrate 4A extends in an arc shape from the inner edge of the fixed frame 2' along the outer edge of the ultrasonic wave oscillation unit 3 '.
  • the second piezoelectric elements (4B, 4C, 4D) expand and contract along the direction in which the second substrate 4A extends (the direction of the arc).
  • Each of the pair of members 4R and 4L of the actuator unit 4 ' is disposed so as to be rotationally symmetric twice around the ultrasonic wave oscillation unit 3'.
  • One member 4R of the pair of members 4R and 4L is a fixed frame 2 'at a first position P1 located in a second direction (Y-axis direction) as viewed from the center O of the ultrasonic wave oscillation unit 3'.
  • one member 4R is connected to the ultrasonic wave oscillation unit 3 'at a second position P2 located on the opposite side of the first position P1 when viewed from the center O of the ultrasonic wave oscillation unit 3'.
  • the other member 4L of the pair of members 4R and 4L of the actuator unit 4 ' is at the third position P3 located in the second direction (Y-axis direction) as viewed from the center O of the ultrasonic wave oscillation unit 3'.
  • the ultrasonic oscillation unit 3 ' at a fourth position P4 opposite to the third position P3 when viewed from the center O of the ultrasonic oscillation unit 3'.
  • One member 4R and the other member 4L in the pair of members of the actuator unit 4 ' are disposed to face each other at both ends in the extending direction (arc direction), and the opposing outer sides are ultrasonic oscillation It intersects with a straight line (Y axis) extending in the second direction (Y axis direction) through the center O of the part 3 '.
  • the first position P1, the second position P2, the third position P3, and the fourth position P4 can be arranged on a straight line.
  • the swinging direction of the ultrasonic wave oscillation unit 3 'by one member 4R and the swinging direction of the ultrasonic wave oscillation unit 3' by the other member 4L can be matched as much as possible.
  • the pair of members 4R and 4L of the actuator unit 4 ' are deformed by the expansion and contraction of the second piezoelectric element (4B, 4C, 4D).
  • the second position P2 moves to the + Z side with respect to the first position P1, and at the same time, the fourth position P4 moves to the -Z side with respect to the third position P3.
  • the ultrasonic wave oscillation unit 3 rotates the X axis counterclockwise. Thereafter, the second position P2 moves to the ⁇ Z side with respect to the first position P1, and at the same time, the fourth position P4 moves to the + Z side with respect to the third position P3.
  • the ultrasonic wave oscillation unit 3 rotates the X axis clockwise.
  • the pair of members 4R and 4L of the actuator unit 4 repeats such a motion
  • the ultrasonic wave oscillation unit 3' swings around the X axis.
  • the upper electrode layer 4D and the detection electrode 5D are not shown.
  • the actuator portion 4 ' is an arc-shaped member along the outer edge of the ultrasonic oscillation portion 3', and the fixing frame 2 'is annular, so that the fixing frame is formed. Since the gap between the ultrasonic wave generator 3 ′ and the actuator 4 ′ can be reduced, the entire apparatus can be miniaturized.
  • the shape of the fixed frame 2 ' is annular, but the inner peripheral shape of the fixed frame 2' may be a circular arc along the outer edge of the actuator portion 4 ', and the outer peripheral shape of the fixed frame 2' is rectangular It may be
  • the pair of members 4R and 4L of the actuator unit 4 ' are rotationally symmetric about the center O twice, the present invention is not limited to this.
  • the pair of members 4R and 4L may be line symmetrical with respect to the Y axis.
  • the first position P1, the second position P2, the third position P3, and the fourth position P4 are on the Y axis, but the present invention is not limited thereto. I can not. These positions may not be on the Y axis as long as the ultrasonic oscillation unit 3 ′ can be oscillated around the X axis by the actuator unit 4 ′.
  • the configuration of the actuator unit 4 ' is different from that of the ultrasonic sensor 101A according to the third embodiment.
  • the actuator unit 4 ' includes a first actuator 14A', a movable frame 14B ', and a second actuator 14C'.
  • the present embodiment is the same as the third embodiment in that the ultrasonic wave oscillation unit 3 ′ is formed in a disk shape.
  • the movable frame 14B ' is formed in an annular shape concentric with the ultrasonic wave oscillation unit 3'.
  • the first actuator 14A ' is provided between the fixed frame 2' and the movable frame 14B 'on both sides of the movable frame 14B' in the X-axis direction.
  • the first actuator 14A ' connects the fixed frame 2' and the movable frame 14B 'and swings the movable frame 14B' around the X axis (first rotation axis) with respect to the fixed frame 2 '.
  • the configuration of the first actuator 14A ' is substantially the same as the configuration of the actuator unit 4' according to the third embodiment.
  • the movable frame 14B ' is an annular frame formed of a part of the second substrate 4A.
  • the movable frame 14B ' is disposed in the fixed frame 2' so as to surround the ultrasonic wave oscillation unit 3 '.
  • the second actuator 14C ' is provided between the movable frame 14B' and the ultrasonic wave oscillation unit 3 'on both sides of the ultrasonic wave oscillation unit 3' in the Y-axis direction.
  • the second actuator 14C ' connects the movable frame 14B' and the ultrasonic wave oscillation unit 3 ', and shakes the ultrasonic wave oscillation unit 3' around the Y axis (second rotation axis) with respect to the movable frame 14B '. Move it.
  • the fixed frame 2 ', the ultrasonic wave oscillation unit 3', the actuator unit 4 '(first actuator 14A', movable frame 14B 'and second actuator 14C') Each includes a three-layer structure (see FIG. 9) of A layer 1A, B layer 1B, and C layer 1C.
  • the thicknesses of the first actuator 14A ′ and the second actuator 14C ′ are set smaller than the thicknesses of the fixed frame 2 ′ and the movable frame 14B ′, and the first actuator 14A ′ is set.
  • An air gap is formed below the second actuator 14C '. Thereby, the first actuator 14A 'and the second actuator 14C' can be deformed.
  • the supporting layer It is exemplified to remove a part.
  • the first actuators 14A ′ are disposed on both sides in the first direction (X-axis direction) with the ultrasonic wave oscillation unit 3 ′ as a center, and a pair of members 14AR extending in an arc along the outer edge of the movable frame 14B ′. It consists of 14AL.
  • the second substrate 4A extends in an arc from the inner edge of the fixed frame 2' along the outer edge of the movable frame 14B '.
  • the second piezoelectric elements (4B, 4C, 4D) extend and contract along the direction (arc direction) in which the second substrate 4A extends.
  • the second actuators 14C ' are disposed on both sides of a second direction (Y-axis direction) orthogonal to the first direction (X-axis direction) with the ultrasonic wave oscillation unit 3' at the center.
  • the second actuator 14C ' is configured of a pair of members 14CR and 14CL extending in an arc shape along the outer edge of the ultrasonic wave oscillation unit 3'.
  • the second substrate 4A extends in an arc shape from the inner edge of the movable frame 14B ′ along the outer edge of the ultrasonic wave oscillation unit 3 ′.
  • the second piezoelectric elements (4B, 4C, 4D) extend and contract along the direction (arc direction) in which the second substrate 4A extends.
  • the pair of members 14AR and 14AL constituting the first actuator 14A ' is disposed so as to be rotationally symmetric twice around the ultrasonic wave oscillation unit 3', and the pair of members 14CR and 14CR 'constituting the second actuator 14C'
  • the 14CL is disposed in two-fold rotational symmetry around the ultrasonic wave oscillation unit 3 '.
  • one member 14AR of the pair of members 14AR and 14AL constituting the first actuator 14A ' is in the second direction (Y-axis direction) viewed from the center of the ultrasonic wave oscillation unit 3'.
  • the movable frame 14B is connected to the fixed frame 2 'at a first position P1 located at the second position P2 opposite to the first position P1 as viewed from the center of the ultrasonic wave oscillation unit 3'.
  • the other member 14AL of the pair of members 14AR and 14AL constituting the first actuator 14A ' is a third member positioned in the second direction (Y-axis direction) when viewed from the center of the ultrasonic wave oscillation unit 3'. It is connected to the fixed frame 2 'at the position P3 and connected to the movable frame 14B' at a fourth position P4 located on the opposite side of the third position P3 when viewed from the center of the ultrasonic wave oscillation unit 3 '.
  • one member 14CR of the pair of members 14CR and 14CL constituting the second actuator 14C ′ is located in the first direction (X-axis direction) when viewed from the center of the ultrasonic wave oscillation unit 3 ′.
  • the ultrasonic oscillation unit 3 ' is connected to the movable frame 14B' at a position P5 of 5, and at a sixth position P6 opposite to the fifth position P5 when viewed from the center of the ultrasonic oscillation unit 3 '.
  • the other member 14CL of the pair of members 14CR and 14CL constituting the second actuator 14C ' is located in the first direction (X-axis direction) as viewed from the center O of the ultrasonic wave oscillation unit 3'.
  • a seventh position P7 is connected to the movable frame 14B ', and an eighth position P8 opposite to the seventh position P7 as viewed from the center O of the ultrasonic oscillation unit 3' is an ultrasonic oscillator 3 Connect with '.
  • one member 14AR and the other member 14AL in the pair of members 14AR and 14AL constituting the first actuator 14A ' are disposed to face each other at both ends in the extending direction (arc direction), The opposing outer side intersects with a straight line (Y axis) extending in the second direction (Y axis direction) as viewed from the center O of the ultrasonic wave oscillation unit 3 '.
  • one member 14CR and the other member 14CL in the pair of members 14CR and 14CL constituting the second actuator 14C ' are disposed to face each other at both ends in the extending direction (arc direction),
  • the opposing outer side intersects with a straight line (X axis) extending in the first direction (X axis direction) as viewed from the center of the ultrasonic wave oscillation unit 3 '.
  • the first position P1 to the fourth position P4 can be arranged on a straight line
  • the fifth position P5 to the eighth position P8 can be arranged on a straight line.
  • the swinging direction of the ultrasonic wave oscillation unit 3 'by one member 14AR and the swinging direction of the ultrasonic wave oscillation unit 3' by the other member 14AL can be matched as much as possible.
  • the swinging direction of the ultrasonic wave oscillation unit 3 'by one member 14CR and the swinging direction of the ultrasonic wave oscillation unit 3' by the other member 14CL can be matched as much as possible.
  • the pair of members 14AR and 14AL constituting the first actuator 14A ' is deformed by the expansion and contraction of the second piezoelectric element (4B, 4C, 4D).
  • the second position P2 moves to the + Z side with respect to the first position P1, and at the same time, the fourth position P4 moves to the -Z side with respect to the third position P3.
  • the ultrasonic wave oscillation unit 3 rotates the X axis counterclockwise. Thereafter, the second position P2 moves to the ⁇ Z side with respect to the first position P1, and at the same time, the fourth position P4 moves to the + Z side with respect to the third position P3.
  • the ultrasonic wave oscillation unit 3 rotates the X axis clockwise.
  • the ultrasonic wave oscillation unit 3' swings around the X axis.
  • a pair of members 14CR and 14CL which comprise 2nd actuator 14 C 'deform
  • the sixth position P6 moves to the + Z side with respect to the fifth position P5, and at the same time, the eighth position P8 moves to the -Z side with respect to the seventh position P7.
  • the ultrasonic wave oscillation unit 3 'rotates the Y axis counterclockwise. Thereafter, the sixth position P6 moves to the ⁇ Z side with respect to the fifth position P5, and at the same time, the eighth position P8 moves to the + Z side with respect to the seventh position P7.
  • the ultrasonic wave oscillation unit 3 rotates the Y axis clockwise.
  • the pair of members 14CR and 14CL of the second actuator 14C ' repeat such a motion
  • the ultrasonic wave oscillation unit 3' swings around the Y axis.
  • the upper electrode layer 4D and the detection electrode 5D are not shown.
  • the first actuator 14A ′, the movable frame 14B ′, and the second actuator 14C ′ are arc-shaped or annular along the outer edge of the ultrasonic wave oscillation unit 3 ′. It is a member. In this way, the gap between the fixed frame 2 ', the ultrasonic wave oscillation unit 3' and the actuator unit 4 'can be reduced, so that the fixed frame 2' can be further annularized to miniaturize the entire apparatus. it can.
  • the shape of the fixed frame 2 ' is annular, but the inner peripheral shape of the fixed frame 2' may be a circular arc along the outer edge of the actuator portion 4 ', and the outer peripheral shape of the fixed frame 2' is rectangular It may be
  • the pair of members 14AR and 14AL of the first actuator 14A ' is rotationally symmetric about the center O twice
  • the pair of members 14AR and 14AL may be disposed in line symmetry with respect to the Y axis.
  • the pair of members 14CR and 14CL of the second actuator 14C ' is rotationally symmetric about the center O twice, but the present invention is not limited thereto.
  • the pair of members 14CR and 14CL may be disposed in line symmetry with respect to the X axis.
  • the first position P1, the second position P2, the third position P3, and the fourth position P4 are on the Y axis, but the present invention is not limited thereto. I can not. These positions may not be on the Y axis as long as the ultrasonic oscillation unit 3 ′ can be oscillated around the X axis by the actuator unit 4 ′.
  • the fifth position P5, the sixth position P6, the seventh position P7, and the eighth position P8 are on the X axis, but the present invention is not limited thereto. I can not. These positions may not be on the X axis as long as the ultrasonic oscillation unit 3 ′ can be oscillated around the Y axis by the actuator unit 4 ′.
  • the ultrasonic wave oscillating unit 3, 3 'and the actuator unit 4, 4' are integrated (collective simultaneous processing in the semiconductor manufacturing process) Can simplify assembly and save space. Further, by driving using a piezoelectric thin film, it is possible to obtain a large displacement at a low voltage. Further, by making the actuator portions 4 and 4 'circular, it is possible to miniaturize.
  • the present invention can be used for an apparatus that generates ultrasonic waves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

固定枠(2)は、外部の部材に固定される。超音波発振部(3)は、固定枠(2)内に配置され、可撓性を有する第1の基板と第1の基板上に薄膜形成された第1の圧電素子とで構成され、第1の圧電素子の伸縮により撓んで超音波を発生する。アクチュエータ部(4)は、第1の基板と固定枠(2)との間を接続し可撓性を有する第2の基板と、第2の基板上に薄膜形成された第2の圧電素子とで構成され、第2の圧電素子の伸縮により撓んで固定枠(2)に対して超音波発振部(3)を揺動させる。固定枠(2)、第1の基板及び第2の基板が同一の基板で構成されている。

Description

超音波センサ
 本発明は、超音波センサに関する。
 特許文献1には、チタン酸ジルコン酸鉛(lead zirconate titanate;PZTともいう。)から成る振動子を超音波の発振源(超音波発振素子)として用いる超音波センサが、微細加工による薄膜製造技術であるMEMS(Micro Electro Mechanical Systems)技術によって製造されることが開示されている。
特開平10-256570号公報
 上述の超音波センサでは、超音波発振素子による超音波の発振方向を制御するために、超音波発振素子を駆動するアクチュエータが必要になる。しかしながら、超音波発振素子は、薄膜で形成されているため、超音波発振素子にアクチュエータ部を取り付けるのは容易ではないことから、薄膜により形成された超音波発振素子を駆動するのが困難となっていた。
 本発明は、上記実情に鑑みてなされたものであり、薄膜により形成された超音波発振素子の駆動を容易に実現することができる超音波センサを提供することを目的とする。
 上記目的を達成するために、本発明の超音波センサは、
 外部の部材に固定される固定枠と、
 前記固定枠内に配置され、可撓性を有する第1の基板と前記第1の基板上に薄膜形成された第1の圧電素子とで構成され、前記第1の圧電素子の伸縮により撓んで超音波を発生する超音波発振部と、
 前記第1の基板と前記固定枠との間を接続し可撓性を有する第2の基板と、前記第2の基板上に薄膜形成された第2の圧電素子とで構成され、前記第2の圧電素子の伸縮により撓んで前記固定枠に対して前記超音波発振部を揺動させるアクチュエータ部と、
 を備え、
 前記固定枠、前記第1の基板及び前記第2の基板が同一の基板で構成されている。
 この場合、前記固定枠と、前記超音波発振部と、前記アクチュエータ部と、が同一平面上に配置されている、
 こととしてもよい。
 また、前記アクチュエータ部は、
 前記超音波発振部を、一軸方向に揺動させる、
 こととしてもよい。
 前記アクチュエータ部は、
 前記超音波発振部における第1の方向の両側にそれぞれ配置された線状の一対の部材であり、
 前記一対の部材のそれぞれについて、
 前記第2の基板が前記固定枠の内辺から前記第1の方向に交差する第2の方向に沿って延びる部分を有し、その部分に前記第2の方向に沿って伸縮する前記第2の圧電素子が薄膜形成され、前記一対の部材が、前記第2の圧電素子の伸縮により変形して前記超音波発振部を揺動させる、
 こととしてもよい。
 前記一対の部材それぞれの前記第2の方向に沿って延びた部分の長さは、
 前記アクチュエータ部が接続された前記固定枠の内辺から前記第2の方向に関する前記超音波発振部の外縁の中点までの距離よりも長い、
 こととしてもよい。
 前記超音波発振部は円板状に形成され、
 前記アクチュエータ部は、
 前記超音波発振部を中心として第1の方向の両側に配置され、前記超音波発振部の外縁に沿って円弧状に延びる一対の部材で構成され、
 前記一対の部材のそれぞれについて、
 前記第2の基板は、前記固定枠の内縁から前記超音波発振部の外縁に沿って円弧状に延びており、前記第2の圧電素子は、前記第2の基板が延びた方向に沿って伸縮し、
 前記一対の部材は、前記第2の圧電素子の伸縮により変形して前記超音波発振部を揺動させる、
 こととしてもよい。
 前記一対の部材のそれぞれは、
 前記超音波発振部を中心として2回回転対称に配置されている、
 こととしてもよい。
 前記一対の部材のうちの一方の部材は、
 前記超音波発振部の中心から見て前記第1の方向に直交する第2の方向に位置する第1の位置で、前記固定枠と接続し、
 前記超音波発振部の中心から見て前記第1の位置の逆側に位置する第2の位置で、前記超音波発振部と接続し、
 前記一対の部材のうちの他方の部材は、
 前記超音波発振部の中心から見て前記第2の方向に位置する第3の位置で、前記固定枠と接続し、
 前記超音波発振部の中心から見て前記第3の位置の逆側に位置する第4の位置で、前記超音波発振部と接続する、
 こととしてもよい。
 前記一対の部材における一方の部材と他方の部材とは、その延びた方向両端で互いに対向するように配置されており、対向する外辺が、前記超音波発振部の中心を通り前記第2の方向に延びる直線と交差している、
 こととしてもよい。
 前記アクチュエータ部は、
 前記超音波発振部を、二軸方向に揺動させる、
 こととしてもよい。
 前記アクチュエータ部は、
 前記第2の基板の一部で構成される可動枠と、
 前記固定枠と前記可動枠とを接続し、前記固定枠に対して前記可動枠を第1の回転軸まわりに揺動させる第1のアクチュエータと、
 前記可動枠と前記超音波発振部とを接続し、前記可動枠に対して前記超音波発振部を前記第1の回転軸とは異なる第2の回転軸まわりに揺動させる第2のアクチュエータと、
 を備える、
 こととしてもよい。
 前記第1のアクチュエータは、
 前記可動枠における第1の方向の両側にそれぞれ配置された線状の一対の部材で構成され、その一対の部材それぞれについて、前記第2の基板が前記固定枠の内辺から前記第1の方向に交差する第2の方向に沿って延びる部分を有し、その部分に前記第2の方向に沿って伸縮する前記第2の圧電素子が薄膜形成され、前記第1のアクチュエータを構成する一対の部材が、前記第2の圧電素子の伸縮により前記第2の基板が変形して前記第1の回転軸まわりに前記可動枠を揺動させ、
 前記第2のアクチュエータは、
 前記超音波発振部における第2の方向の両側にそれぞれ配置された線状の一対の部材で構成され、その一対の部材それぞれについて、前記第2の基板が前記可動枠の内辺から前記第1の方向に沿って延びる部分を有し、その部分に前記第1の方向に沿って伸縮する前記第2の圧電素子が薄膜形成され、前記第2のアクチュエータを構成する一対の部材が、前記第2の圧電素子の伸縮により変形して前記第2の回転軸まわりに前記超音波発振部を揺動させる、
 こととしてもよい。
 前記第1のアクチュエータの前記第2の方向に沿って延びた部分の長さは、
 前記第1のアクチュエータが接続された前記固定枠の内辺から前記第2の方向に関する前記可動枠の外縁の中点までの距離よりも長い、
 こととしてもよい。
 前記第2のアクチュエータの前記第1の方向に沿って延びた部分の長さは、
 前記第2のアクチュエータが接続された前記可動枠の内辺から前記第1の方向に関する前記超音波発振部の外縁の中点までの距離よりも長い、
 こととしてもよい。
 前記超音波発振部が円板状に形成され、前記可動枠は前記超音波発振部と同心の円環状に形成され、
 前記第1のアクチュエータは、前記超音波発振部を中心として第1の方向の両側に配置され、前記可動枠の外縁に沿って円弧状に延びる一対の部材で構成され、前記一対の部材のそれぞれについて、前記第2の基板は、前記固定枠の内縁から前記可動枠の外縁に沿って円弧状に延びており、前記第2の圧電素子は、前記第2の基板が延びた方向に沿って伸縮し、前記第1のアクチュエータを構成する前記一対の部材は、前記第2の圧電素子の伸縮により変形して前記第1の回転軸まわりに前記可動枠を揺動させ、
 前記第2のアクチュエータは、前記超音波発振部を中心として前記第1の方向に直交する第2の方向の両側に配置され、前記超音波発振部の外縁に沿って円弧状に延びる一対の部材で構成され、前記一対の部材のそれぞれについて、前記第2の基板は、前記可動枠の内縁から前記超音波発振部の外縁に沿って円弧状に延びており、前記第2の圧電素子は、前記第2の基板が延びた方向に沿って伸縮し、前記第2のアクチュエータを構成する前記一対の部材は、前記第2の圧電素子の伸縮により変形して前記第2の回転軸まわりに前記超音波発振部を揺動させる、
 こととしてもよい。
 前記第1のアクチュエータを構成する前記一対の部材は、
 前記超音波発振部を中心として2回回転対称に配置されており、
 前記第2のアクチュエータを構成する前記一対の部材は、
 前記超音波発振部を中心として2回回転対称に配置されている、
 こととしてもよい。
 前記第1のアクチュエータを構成する前記一対の部材のうちの一方の部材は、
 前記超音波発振部の中心から見て前記第2の方向に位置する第1の位置で、前記固定枠と接続し、
 前記超音波発振部の中心から見て前記第1の位置の逆側に位置する第2の位置で、前記可動枠と接続し、
 前記第1のアクチュエータを構成する前記一対の部材のうちの他方の部材は、
 前記超音波発振部の中心から見て前記第2の方向に位置する第3の位置で、前記固定枠と接続し、
 前記超音波発振部の中心から見て前記第3の位置の逆側に位置する第4の位置で、前記可動枠と接続し、
 前記第2のアクチュエータを構成する前記一対の部材のうちの一方の部材は、
 前記超音波発振部の中心から見て前記第1の方向に位置する第5の位置で、前記可動枠と接続し、
 前記超音波発振部の中心から見て、前記第5の位置の逆側に位置する第6の位置で、前記超音波発振部と接続し、
 前記第2のアクチュエータを構成する前記一対の部材のうちの他方の部材は、
 前記超音波発振部の中心から見て前記第1の方向に位置する第7の位置で、前記可動枠と接続し、
 前記超音波発振部の中心から見て前記第7の位置の逆側に位置する第8の位置で、前記超音波発振部と接続する、
 こととしてもよい。
 前記第1のアクチュエータを構成する前記一対の部材における一方の部材と他方の部材とは、その延びた方向両端で互いに対向するように配置されており、対向する外辺が、前記超音波発振部の中心から見て前記第2の方向に延びる直線と交差している、
 こととしてもよい。
 前記第2のアクチュエータを構成する前記一対の部材における一方の部材と他方の部材とは、その延びた方向両端で互いに対向するように配置されており、対向する外辺が、前記超音波発振部の中心から見て前記第1の方向に延びる直線と交差している、
 こととしてもよい。
 本発明によれば、固定枠と、超音波発振部を構成する第1の基板と、超音波発振部を揺動させるアクチュエータ部を構成する第2の基板とが、同一の基板で構成されているので、薄膜により形成された超音波発振素子の駆動を容易に実現することができる。
本発明の実施の形態1に係る超音波センサを表側から見た斜視図である。 図1の超音波センサを裏側から見た斜視図である。 図1の超音波センサの一部の積層構造を示す模式図である。 超音波発振部の動作(その1)を示す図である。 超音波発振部の動作(その2)を示す図である。 超音波発振部の動作(その3)を示す図である。 圧電素子の動作(その1)を示す図である。 圧電素子の動作(その2)を示す図である。 圧電素子の動作(その3)を示す図である。 アクチュエータ部の動作(その1)を示す断面図である。 アクチュエータ部の動作(その2)を示す断面図である。 アクチュエータ部の動作(その3)を示す断面図である。 本発明の実施の形態2に係る超音波センサの構成を示す斜視図である。 図7の超音波センサを裏側から見た斜視図である。 図7の超音波センサの一部の積層構造を示す模式図である。 アクチュエータ部の動作(その1)を示す断面図である。 アクチュエータ部の動作(その2)を示す断面図である。 アクチュエータ部の動作(その3)を示す断面図である。 超音波センサの変形例(その1)を示す模式図である。 超音波センサの変形例(その2)を示す模式図である。 超音波センサの変形例(その3)を示す模式図である。 超音波センサの変形例(その4)を示す模式図である。 本発明の実施の形態3に係る超音波センサを表側から見た斜視図である。 図15の超音波センサを裏側から見た斜視図である。 本発明の実施の形態3に係る超音波センサの動作を示す斜視図である。 本発明の実施の形態4に係る超音波センサを表側から見た斜視図である。 図18の超音波センサを裏側から見た斜視図である。 本発明の実施の形態4に係る超音波センサの動作を示す斜視図である。
実施の形態1.
 まず、本発明の実施の形態1について図面を参照して詳細に説明する。
 図1に示すように、超音波センサ100Aは、全体として、基板上に形成される矩形平板状の装置である。超音波センサ100Aでは、基板の一例である半導体基板にスリットが形成されて、固定枠2と、超音波発振部3と、アクチュエータ部4とが区画形成されている。すなわち、固定枠2、超音波発振部3及びアクチュエータ部4は、同一の基板上に形成されている。なお、基板の他の例としては、ステンレス板が例示される。
 固定枠2は、最も外周に配置された矩形平板状の枠体であり、外部の部材である不図示の基台に固定される。超音波発振部3は、固定枠2の枠内に配置された円板状の部材である。アクチュエータ部4は、固定枠2の枠内に設けられた一対の梁状の部材である。
 ここで、超音波発振部3の重心位置を原点OとするXYZ3次元直交座標系を規定する。このXYZ座標系では、図1において、超音波発振部3に対してアクチュエータ部4が配置される方向をX軸方向とし、超音波センサ100Aの面内方向でX軸に直交する方向をY軸方向とし、超音波センサ100Aの面の法線方向をZ軸方向とする。本実施の形態では、第1の方向がX軸に平行であり、第2の方向がY軸に平行である。
 超音波発振部3は、+Z方向を進行方向とする超音波を発生する。アクチュエータ部4は、超音波発振部3のX軸方向両側にそれぞれ配置された線状の一対の部材であり、固定枠2と超音波発振部3とを連結し、超音波発振部3を支持している。
 図2に示すように、固定枠2の厚みに比べて、アクチュエータ部4の厚みは小さく設定されており、アクチュエータ部4は、少なくとも上下方向(Z軸方向)に関して可撓性を有している。このため、アクチュエータ部4は、上方に反ったり、下方に反ったりして、所定の自由度の範囲内で、固定枠2に対して超音波発振部3を揺動させることができる。
 図3に示すように、超音波センサ100Aは、A層1A、B層1B、C層1Cがこの順に積層された積層構造を有している。固定枠2、超音波発振部3及びアクチュエータ部4は、A層1A、B層1B、C層1Cの3層構造を含んでいる。
 また、超音波発振部3及びアクチュエータ部4では、C層1C上にD層1Dが設けられている。A層1A、B層1B、C層1C及びD層1Dの4層は、平面形状(図1に示す形状)を有している。
 A層1Aは、他の各層の支持基板となる基板層であり、その上面に形成されるB層1B、C層1C、D層1Dを支持することができる材質によって形成されている。ただし、アクチュエータ部4は、少なくとも上下方向(Z軸方向)に関して可撓性を有している必要がある。すなわち、基板層としてのA層1Aは、各アクチュエータ部4が必要な範囲内(超音波発振部3を、要求される角度で傾斜させるために必要な範囲内)で撓みを生じることができるよう、ある程度の可撓性を有する材料によって形成される。
 本実施の形態では、シリコン基板によってA層1Aが構成されている。より具体的には、A層1Aは、シリコンからなる支持層と、支持層の上に形成された二酸化シリコンのBOX層(二酸化ケイ素絶縁膜)と、BOX層の上に形成されたシリコンからなる活性層の3層構造となっている。
 本実施の形態では、A層1Aは、固定枠2の部分と、超音波発振部3を構成する第1の基板3Aと、アクチュエータ部4を構成する第2の基板4Aとに分かれている。
 B層1Bは、圧電素子の下部電極層を構成する。また、D層1Dは、圧電素子の上部電極層を構成する。したがって、いずれも導電性材料によって形成される。
 C層1Cは、圧電素子を構成し、圧電効果を呈する圧電材料によって構成される。例えば、PZT(チタン酸ジルコン酸鉛)またはKNN(ニオブ酸カリウムナトリウム)の薄膜によってC層1Cが形成されている。本実施の形態では、圧電材料層(C層1C)を導電性材料層(B層1B及びD層1D)で挟んだサンドイッチ構造体によって圧電素子が構成される。C層1Cは、厚み方向に所定極性の電圧を印加すると、長手方向(厚み方向に直交する方向)に伸縮する性質を有する。
 実際には、D層1Dは、超音波発振部3において設けられた上部電極層3Dと、アクチュエータ部4において設けられた上部電極層4Dと、検出用電極5Dとに分けられる。C層1C上には、D層1Dとして、他に配線が形成されているが、その図示は省略されている。
 本実施の形態では、B層1B、C層1Cは、固定枠2の部分と、超音波発振部3の部分と、アクチュエータ部4の部分と、を有している。また、超音波発振部3においては、B層1Bが下部電極層3Bとなり、C層1Cが圧電材料層3Cとなり、D層1Dが上部電極層3Dとなる。下部電極層3B、圧電材料層3C及び上部電極層3Dで、第1の圧電素子(3B,3C,3D)が構成される。また、アクチュエータ部4においては、B層1Bが下部電極層4Bとなり、C層1Cが圧電材料層4Cとなり、D層1Dが上部電極層4D又は検出用電極5Dとなる。下部電極層4B、圧電材料層4C及び上部電極層4Dで、第2の圧電素子(4B,4C,4D)が構成される。
 超音波センサ100Aは、量産化に適した構造を有している。特に、超音波センサ100Aの製造には、半導体製造プロセスを利用したMEMS素子の製造方法を適用することが可能である。超音波センサ100Aは、シリコン基板(A層1A:基板層)の上面に、白金層(B層1B:下部電極層)、PZT層(C層1C:圧電材料層)、白金/金層(D層1D:下層部分は白金、上層部分は金からなる2層構造層)を順次堆積させて構成される。
 4層の積層構造体を形成したら、D層1Dに対してパターニング処理を行ってD層1Dのみを残し、更に、A層1A、B層1B、C層1Cの3層からなる構造体の部分に対して、エッチングなどの方法で上下方向に貫通するスリットを形成する。また、アクチュエータ部4や超音波発振部3の下面側の一部分をエッチング等で除去すれば、超音波センサ100Aが完成する。
 言い換えると、超音波センサ100Aにおいて、超音波発振部3は、A層1Aである第1の基板3Aと、第1の基板3A上に薄膜形成された第1の圧電素子(3B,3C,3D)とで構成される。第1の基板3Aは、その外周部分よりも第1の圧電素子(3B,3C,3D)が設けられた内周部分において薄く構成されており、その内周部分は、可撓性を有する。超音波発振部3の内周部分は、第1の圧電素子(3B,3C,3D)の伸縮により撓んで超音波を発生する。
 また、アクチュエータ部4は、第2の基板4Aと、第2の基板4A上に薄膜形成された第2の圧電素子(4B,4C,4D)とで構成される。第2の基板4Aは、第1の基板3Aと固定枠2(A層1A)との間を接続する。アクチュエータ部4は、第2の圧電素子(4B,4C,4D)の伸縮により、撓んで固定枠2に対して超音波発振部3を揺動させる。
 上述したように固定枠2、第1の基板3A及び第2の基板4Aは、同一の半導体基板で構成されている。また、固定枠2と、超音波発振部3と、アクチュエータ部4とは、同一平面上に配置されている。
 さらに詳細には、図1及び図2に示すように、アクチュエータ部4は、3つの部分から構成されており、それぞれの部分を、アーム始端部41と、アーム終端部42と、アーム中継部43としている。
 アーム始端部41は、固定枠2の内辺からY軸方向(第2の方向)に沿って延びている。アーム始端部41は、超音波発振部3の外辺の中点Nを超えて直線状に延びている。アーム始端部41の部分に、第2の圧電素子(4B,4C,4D)が薄膜形成されている。アクチュエータ部4は、第2の圧電素子(4B,4C,4D)の伸縮により変形して超音波発振部3を揺動させる。
 アーム終端部42は、一端が超音波発振部3の外辺の中点Nと接続され、アーム始端部41と平行に延びている。アーム中継部43は、X軸方向に沿って延び、アーム始端部41の他端とアーム終端部42の他端との間を連結する。また、アクチュエータ部4では、Y軸方向に沿って延びた部分の長さは、アクチュエータ部4が接続された固定枠2の内辺からY軸方向に関する超音波発振部3の外縁の中点Nまでの距離よりも長くなっている。
 アクチュエータ部4における一対の部材は、原点Oを中心として2回回転対称に配置されている。
 本実施の形態では、アクチュエータ部4は、超音波発振部3を一軸方向(X軸まわりに)揺動させる。すなわち、アクチュエータ部4は、X軸方向における超音波発振部3の両側に配置され、圧電素子の伸縮により変形してX軸方向に沿った回転軸を中心に固定枠2に対して超音波発振部3を揺動させる。
 次に、超音波センサ100Aの動作について説明する。
 図4A、図4B及び図4Cは、超音波発振部3の動作を示す断面図である。図4Aに示すように、第1の圧電素子(3B,3C,3D)に電圧が与えられていない状態では、第1の圧電素子(3B,3C,3D)は伸縮せず、第1の基板3Aは水平のままとなっている。
 上部電極層3D側が正、下部電極層3B側が負となるように、両電極層間に電圧を印加すると、圧電材料層3Cは長手方向(厚み方向に直交する方向)に伸びる。逆に、上部電極層3D側が負、下部電極層3B側が正となるように、両電極層間に電圧を印加すると、圧電材料層3Cは長手方向に縮む性質をもっている。伸縮の度合いは、印加する電圧値に応じた量になる。
 したがって、図4Bに示すように、上部電極層3Dが正で、下部電極層3Bが負となる極性(以下、正極性と呼ぶ)の電圧を印加すると、第1の圧電素子(3B,3C,3D)は長手方向に伸び、可撓性を有する第1の基板3Aの上面側に、面方向に伸びる方向への応力が加わる。その結果、超音波発振部3は、上方が凸になるように反り返る。
 これに対して、図4Cに示すように、上部電極層3Dが負で、下部電極層3Bが正となる極性(以下、負極性と呼ぶ)の電圧を印加すると、第1の圧電素子(3B,3C,3D)は長手方向に縮み、可撓性を有する第1の基板3Aの上面側に、面方向に縮む方向への応力が加わる。その結果、超音波発振部3は、下方が凸になるように反り返る。
 このようにして、図4Bに示す状態と、図4Cに示す状態とを例えば20KHz以上の周波数で繰り返すように第1の圧電素子(3B,3C,3D)を駆動して、超音波発振部3を振動させることにより超音波を発生させる。
 もちろん、上部電極層3D側が正、下部電極層3B側が負となるように、両電極層間に電圧を印加すると、圧電材料層3Cが長手方向に縮む一方で、上部電極層3D側が負、下部電極層3B側が正となるように、両電極層間に電圧を印加すると、長手方向に伸びる性質を有するような圧電材料層3Cを用いても構わない。この場合、正極性の電圧を印加すると、下方が凸になるように反り返り、負極性の電圧を印加すると、上方が凸になるように反り返る。
 いずれにしても、上部電極層3Dと下部電極層3Bとの間に、所定極性の電圧を印加することにより、図4B又は図4Cに示す変形を生じさせることができる。なお、圧電素子を構成する材料によって(例えば、バルク、薄膜によって)、分極作用が異なるので、電圧の極性と伸縮の関係とが上述とは逆になる場合がある。
 続いて、アクチュエータ部4の動作について説明する。
 図5A、図5B及び図5Cは、アクチュエータ部4の動作を示す断面図である。図5Aに示すように、第2の圧電素子(4B,4C,4D)に電圧が与えられてない状態では、第2の圧電素子(4B,4C,4D)は伸縮せず、アクチュエータ部4のアーム始端部41は水平となっている。
 上部電極層4D側が正、下部電極層4B側が負となるように、両電極層間に電圧を印加すると、圧電材料層4Cは長手方向(厚み方向に直交する方向)に伸びる。逆に、上部電極層4D側が負、下部電極層4B側が正となるように、両電極層間に電圧を印加すると、圧電材料層4Cは長手方向に縮む性質をもっている。伸縮の度合いは、印加する電圧値に応じた量になる。
 したがって、図5Bに示すように、上部電極層4Dが正で、下部電極層4Bが負となる極性(以下、正極性と呼ぶ)の電圧を印加すると、第2の圧電素子(4B,4C,4D)は長手方向に伸び、可撓性を有する第2の基板4Aの上面側に、面方向(Y軸に沿った方向)に伸びる方向への応力が加わる。その結果、アクチュエータ部4のアーム始端部41は、上方が凸になるように反り返る。
 これに対して、図5Cに示すように、上部電極層4Dが負で、下部電極層4Bが正となる極性(以下、負極性と呼ぶ)の電圧を印加すると、第2の圧電素子(4B,4C,4D)は長手方向に縮み、可撓性を有する第2の基板4Aの上面側に、面方向に縮む方向への応力が加わる。その結果、アクチュエータ部4のアーム始端部41は、下方が凸になるように反り返る。
 電極間に印加される電圧と伸縮する方向との関係等は、超音波発振部3での説明と同じである。
 図1に戻り、検出用電極5Dは、アクチュエータ部4の変位を検出するために設けられている。検出用電極5Dは、配線のため、アクチュエータ部4の幅よりも幅が狭くなるように形成されている。
 検出用電極5Dは、アクチュエータ部4と固定枠2とが接続する部分に設けられている。これらの部分では、アクチュエータ部4の変形が大きくなる。したがって、これらの場所に検出用電極5Dを配設することにより、アクチュエータ部4の変位を安定して検出することができる。
 超音波発振部3は、固定枠2に対して、アクチュエータ部4を介して接続されており、アクチュエータ部4によって、基台から浮いた宙吊り状態で支持されている。したがって、アクチュエータ部4が上方もしくは下方に反り返ると、宙吊り状態で支持されている超音波発振部3は、X軸まわり、すなわちY軸方向に傾斜する。
 図6Aに示すように、アクチュエータ部4の第2の圧電素子(4B,4C,4D)に電圧が加えられていない場合には、超音波発振部3は、アクチュエータ部4を介して基台(固定点)の上方に水平姿勢のまま支持されている。白い三角形は、超音波発振部3の重心Gを示す。重心Gは、座標系の原点Oと一致している。この場合、超音波発振部3は、+Z方向に超音波を発振する。
 アクチュエータ部4のアーム始端部41が上方に凸になるように反り返ると、アクチュエータ部4全体が、+Y端が下がるように傾斜するようになる。これにより、図6Bに示すように、超音波発振部3を、その+Y端が最も下がるように傾斜させることができる。この場合、超音波発振部3は、+Z方向から+Y側に傾斜する方向に超音波を発振する。
 アクチュエータ部4のアーム始端部41が下方に凸になるように反り返ると、アクチュエータ部4全体が、-Y端が下がるように傾斜するようになる。これにより、図6Cに示すように、超音波発振部3を、その-Y端が最も下がるように傾斜させることができる。この場合、超音波発振部3は、+Z方向から-Y側に傾斜する方向に超音波を発振する。
 +X側のアクチュエータ部4の圧電素子及び-X側のアクチュエータ部4の圧電素子には、それぞれ負極性の電圧が加えられる。これにより、固定枠2に対して、超音波発振部3をX軸まわりに揺動させることができる。
 傾斜の度合いは、印加する電圧値に応じた量になる。したがって、印加する電圧の極性および値を調整すれば、超音波発振部3のX軸方向への傾斜角度を任意に調整することが可能になる。
 なお、この実施の形態では、固定枠2内に、アクチュエータ部4及び超音波発振部3を配置した構造を採用している。アクチュエータ部4及び超音波発振部3は、変位を生じる可動構成要素であるため、外部物体と接触することは避けた方がよい。この点、固定枠2のように枠状であれば、可動構成要素を内部に囲い込むことができるので、可動構成要素を外部物体との接触から保護できる。
 以上詳細に説明したように、本実施の形態によれば、固定枠2と、超音波発振部3を構成する第1の基板3Aと、超音波発振部3を揺動させるアクチュエータ部4を構成する第2の基板4Aとが、同一の半導体基板で構成されている。これにより、超音波発振部3を外部の駆動部に取り付ける必要がなくなるので、薄膜により形成された超音波発振部3の駆動を容易に実現することができる。
 また、本実施の形態によれば、固定枠2と、超音波発振部3と、アクチュエータ部4とが、同一平面内に配置されている。このため、超音波センサ100Aを小型化、薄膜化することができる。
 また、本実施の形態によれば、アクチュエータ部4は、超音波発振部3を、一軸方向に揺動させる。このようにすれば、超音波を広い範囲に送信することができる。
 また、本実施の形態によれば、一対の部材であるアクチュエータ部4を、Y軸方向に伸縮する第2の圧電素子(4B,4C,4D)を有し、第2の圧電素子(4B,4C,4D)の伸縮により変形して、超音波発振部3を揺動させるものとした。このようにすれば、アクチュエータ部4を、極めて小型なものとすることができる。
 また、本実施の形態によれば、アクチュエータ部4で第2の圧電素子(4B,4C,4D)が形成されたアーム始端部41の長さを、固定枠2の内辺から超音波発振部3の外縁の中点Nまでの距離よりも長くしている。これにより、超音波発振部3が揺動する角度を大きくすることができる。
 また、固定枠2については、矩形状に限られるものではなく、例えば楕円状、多角形状であってもよい。また、超音波発振部3については、円形状に限られるものではなく、楕円状、多角形状であってもよい。
 また、アクチュエータ部4は、超音波発振部3の外辺の中点Nに接続されているので、XY方向以外のモーメントが超音波発振部3に殆ど働かず、超音波発振部3の振動がいずれかの方向に偏らず捩じれないようにすることができる。また、アクチュエータ部4については、簡素な構成として、超音波発振部3を小型化することができる。
実施の形態2.
 次に、本発明の実施の形態2について説明する。
 図7及び図8に示すように、本実施の形態2に係る超音波センサ100Bは、アクチュエータ部4の構成が、上記実施の形態1と異なる。アクチュエータ部4は、X軸まわりだけでなく、Y軸まわりにも、超音波発振部3を揺動させる。本実施の形態に係る超音波センサ100Bでは、アクチュエータ部4は、超音波発振部3を、二軸方向に揺動させる。
 本実施の形態では、アクチュエータ部4は、第1のアクチュエータ14Aと、可動枠14Bと、第2のアクチュエータ14Cと、を備える。
 第1のアクチュエータ14Aは、固定枠2と可動枠14Bとの間であって、X軸方向における可動枠14Bの両側に設けられている。第1のアクチュエータ14Aは、固定枠2と可動枠14Bとを接続し、固定枠2に対して可動枠14BをX軸(第1の回転軸)まわりに揺動させる。この第1のアクチュエータ14Aの構成は、上記実施の形態1に係るアクチュエータ部4の構成とほぼ同じである。
 可動枠14Bは、第2の基板4Aの一部で構成される矩形状の枠である。可動枠14Bは、固定枠2内に配置され、超音波発振部3を囲むように配置されている。
 第2のアクチュエータ14Cは、可動枠14Bと、超音波発振部3との間であって、Y軸方向における超音波発振部3の両側に設けられている。第2のアクチュエータ14Cは、可動枠14Bと超音波発振部3とを接続し、可動枠14Bに対して超音波発振部3をY軸(第2の回転軸)まわりに揺動させる。
 本実施の形態2に係る超音波センサ100Bにおいても、固定枠2、超音波発振部3、アクチュエータ部4(第1のアクチュエータ14A、可動枠14B、第2のアクチュエータ14C)は、図9に示すように、それぞれA層1A、B層1B、C層1Cの3層構造を含んでいる。図8に示すように、固定枠2及び可動枠14Bの厚みに比べて、第1のアクチュエータ14A、第2のアクチュエータ14Cの厚みは小さく設定されており、第1のアクチュエータ14A、第2のアクチュエータ14Cの下方には空隙が形成されている。これにより、第1のアクチュエータ14A、第2のアクチュエータ14Cは、変形可能となっている。なお、第1のアクチュエータ14A、第2のアクチュエータ14Cの厚みを小さくするための手段としては、A層1Aを構成する3層(支持層、BOX層、活性層)のうち、支持層の一部を除去することが例示される。
 各部の構成についてより具体的に説明する。アクチュエータ部4において、第1のアクチュエータ14Aは、可動枠14BにおけるX軸方向の両側にそれぞれ配置された線状の一対の部材で構成される。そして、第1のアクチュエータ14Aは、その一対の部材それぞれについて、第2の基板4Aが固定枠2の内辺からY軸方向に沿って延びる部分を有している。第1のアクチュエータ14Aは、その部分にY軸方向に沿って伸縮する第2の圧電素子(4B,4C,4D)が薄膜形成され、第2の圧電素子(4B,4C,4D)の伸縮により第2の基板4Aが変形してX軸まわりに可動枠14Bを揺動させる。また、第1のアクチュエータ14AのY軸方向に沿って延びた部分の長さは、第1のアクチュエータ14Aが接続された固定枠2の内辺からY軸方向に関する可動枠14Bの外縁の中点Nまでの距離よりも長くなっている。
 第2のアクチュエータ14Cは、3つの部分から構成されており、それぞれの部分を、アーム始端部51と、アーム終端部52と、アーム中継部53としている。
 アーム始端部51は、可動枠14Bの内辺からX軸方向(第1の方向)に沿って延びている。アーム始端部51は、超音波発振部3の外縁の中点Mを超えて直線状に延びている。アーム始端部51の部分に、第2の圧電素子(4B,4C,4D)が薄膜形成されている。アクチュエータ部4は、第2の圧電素子(4B,4C,4D)の伸縮により変形して超音波発振部3を揺動させる。
 アーム終端部52は、一端が超音波発振部3の外縁の中点Mと接続され、アーム始端部51と平行に延びている。アーム中継部53は、Y軸方向に沿って延び、アーム始端部51の他端とアーム終端部52の他端との間を連結する。このように、アクチュエータ部4では、X軸方向に沿って延びた部分の長さは、可動枠14Bの内辺からX軸方向に関する超音波発振部3の外縁の中点Mまでの距離よりも長くなっている。
 第2のアクチュエータ14Cの第2の圧電素子(4B,4C,4D)に、電圧が加えられていない場合には、図10Aに示すように、超音波発振部3は、水平姿勢のまま第2のアクチュエータ14Cを介して可動枠14B(図7参照)に支持されている。白い三角形は、超音波発振部3の重心Gを示す。重心Gは、座標系の原点Oと一致している。この場合、超音波の進行方向は+Z方向となる。
 アーム始端部51が上方に凸になるように反り返ると、第2のアクチュエータ14C全体が、+X端が下がるように傾斜するようになる。これにより、図10Bに示すように、超音波発振部3を、その+X端が最も下がるように傾斜させることができる。この場合、超音波の進行方向は、+X側に傾斜した方向となる。
 アーム始端部51が下方に凸になるように反り返ると、第2のアクチュエータ14C全体が、-X端が下がるように傾斜するようになる。これにより、図10Cに示すように、超音波発振部3を、その-X端が最も下がるように傾斜させることができる。この場合、超音波の進行方向は、-X側に傾斜した方向となる。
 一対の第2のアクチュエータ14Cにおいて、+Y側の圧電素子と-Y側の圧電素子との間には、それぞれ負極性の電圧が加えられる。これにより、可動枠14Bに対して、超音波発振部3をY軸まわりに揺動させることができる。
 傾斜の度合いは、印加する電圧値に応じた量になる。したがって、印加する電圧の極性および値を調整すれば、超音波発振部3のY軸方向への傾斜角度を任意に調整することが可能になる。
 このように、超音波センサ100Bは、X軸に沿って延びたアーム始端部51を有しており、その上面もしくは下面には、それぞれ所定極性の電圧を印加することによりX軸方向に沿って伸縮する第2の圧電素子(4B,4C,4D)が固着されている。そのため、第2の圧電素子(4B,4C,4D)に電圧を印加して、第2の圧電素子(4B,4C,4D)を伸縮させれば、超音波発振部3をより大きくX軸方向に傾斜させる(Y軸まわりに回転させる)ことができる。このため、Y軸まわりに関して、十分な変位角を確保することが可能になる。
 検出用電極6Dは、第2のアクチュエータ14Cと可動枠14Bとが接続する部分に設けられている。これらの部分は、第2のアクチュエータ14Cの変形が大きくなる場所である。したがって、これらの場所に検出用電極6Dを配設することにより、第2のアクチュエータ14Cの変位を安定して検出することができる。
 以上述べたように、本実施の形態によれば、アクチュエータ部4は、超音波発振部3を、二軸方向に揺動させる。このようにすれば、超音波をより広い範囲に送信することができる。
 また、本実施の形態によれば、アクチュエータ部4を、超音波発振部3をX軸まわりに揺動する第1のアクチュエータ14Aと、可動枠14Bと、超音波発振部3をY軸まわりに揺動する第2のアクチュエータ14Cとで構成した。このようにすれば、超音波発振部3を二軸方向に揺動させるアクチュエータ部4の構成を、極めて小型なものとすることができる。
 また、本実施の形態によれば、一対の部材である第1のアクチュエータ14A、第2のアクチュエータ14Cを、X,Y軸方向に伸縮する第2の圧電素子(4B,4C,4D)を有し、第2の圧電素子(4B,4C,4D)の伸縮により変形して、超音波発振部3を揺動させるものとした。このようにすれば、アクチュエータ部4を、極めて小型なものとすることができる。
 また、本実施の形態によれば、第1のアクチュエータ14A、第2のアクチュエータ14Cにおいて、第2の圧電素子(4B,4C,4D)が形成されたアーム始端部41、51の長さを、固定枠2の内辺から可動枠14Bの外縁の中点Nまでの距離、可動枠14Bの内辺から超音波発振部3の外縁の中点Mまでの距離よりも長くしている。これにより、超音波発振部3が揺動する角度を二軸方向に大きくすることができる。
 また、本実施の形態によれば、第1のアクチュエータ14A、第2のアクチュエータ14Cの長さにより、第1のアクチュエータ14Aの駆動周波数と第2のアクチュエータ14Cの駆動周波数との比率を所望の値に設定できる。よって、本実施の形態2の超音波センサ100Bによれば、駆動周波数の最適化と小型化とを実現することができる。
 また、本実施の形態2では、第1のアクチュエータ14A同士が、超音波発振部3の原点Oを中心として2回回転対称に配置されている。また、第2のアクチュエータ14C同士が、超音波発振部3を中心として2回回転対称に配置されている。そして、アーム始端部41において固定枠2と接続される一端から他端へ向かう向きと、アーム始端部51において可動枠14Bと接続される一端から他端へ向かう向きとが、原点Oを中心とする回転方向に関して同じになっている。
 なお、第2のアクチュエータ14Cの向きが異なっていてもよい。すなわち、アーム始端部41の、固定枠2と接続された一端から他端へ向かう向きと、アーム始端部51の、可動枠14Bと接続された一端から他端へ向かう向きとが、原点Oを中心とする回転方向に関して逆向きとなっていてもよい。
 例えば、本実施の形態2に係る超音波センサ100Bで超音波の二次元走査を行った場合に、超音波の進行方向に偏りが生じる場合には、代わりに第2のアクチュエータ14Cの向きが異なる超音波センサ100Bを用いることにより、超音波の進行方向の偏りが矯正される場合がある。このような場合には、第2のアクチュエータ14Cが逆向きとなる超音波センサ100Bを採用することが解決手段として考えられる。
 上述した二次元走査による画像の歪みを矯正する方法には、他に種々な方法がある。例えば、可動枠14Bに重りを付けることにより、可動枠14B及び超音波発振部3の揺動状態の軸ずれを補正して、超音波の進行方向を矯正するようにしてもよい。
 なお、重りを付けるのは、可動枠14Bに限定されない。例えば、重りを、超音波発振部3に付けてもよい。或いは、重りを、第1、第2のアクチュエータ14A,14Cの両方、或いは一方につけてもよい。
 上記実施の形態に係る超音波センサ100A,100Bは、各種機器に組み込んで使用することが可能である。超音波を走査し、その受信状態から障害物を検知する、ドローンやお掃除ロボット等に組み込まれる超音波センサを実現することができる。
 また、アクチュエータ部4の形状は、上記各実施の形態にものには限られない。例えば、図11に示す超音波センサ100Cのように、アクチュエータ部4は、メアンダ状に形成されていてもよい。また、図12に示す超音波センサ100Dのように、アクチュエータ部4は、超音波発振部3の角部に接続するようにしてもよい。さらには、図13に示す超音波センサ100E及び図14に示す超音波センサ100Fのように、アクチュエータ部4はL字型に折れ曲がっていてもよい。
 上記実施の形態では、アーム始端部41,51に形成された第2の圧電素子(4B,4C,4D)が伸縮する構成であったが、これに限られるものではない。アーム始端部41,51に形成された第2の圧電素子(4B,4C,4D)の伸縮に加えて、アーム終端部42,52に形成された第2の圧電素子(4B,4C,4D)が伸縮する構成であってもよい。この構成の場合、アーム終端部42,52は、下部電極層4B、圧電材料層4C及び上部電極層4Dで形成される。
 このように、アクチュエータ部4において、どの部分を圧電素子で伸縮させるかについては、可動枠14B及び超音波発振部3に要求される揺動状態に応じて、適宜設計可能である。
実施の形態3.
 次に、本発明の実施の形態3について図面を参照して詳細に説明する。
 図15、図16に示すように、超音波センサ101Aは、全体として、基板上に形成される円板状の装置である。超音波センサ101Aでは、基板の一例である半導体基板にスリットが形成されて、固定枠2’と、超音波発振部3’と、アクチュエータ部4’とが区画形成されている。すなわち、固定枠2’、超音波発振部3’及びアクチュエータ部4’は、同一の基板上に形成されている。
 固定枠2’は、最も外周に配置された円環状の枠体である点が、上記各実施の形態に係る固定枠2と異なっている。超音波発振部3’は、固定枠2’の枠内に配置された円板状の部材である。固定枠2’と超音波発振部3’とは同心である。アクチュエータ部4’は、固定枠2’の枠内に設けられた一対の梁状の部材であり、超音波発振部3’の外縁に沿って円弧状に延びている。
 ここで、超音波発振部3’の重心位置を原点OとするXYZ3次元直交座標系を規定する。このXYZ座標系では、図15、図16において、超音波発振部3’に対してアクチュエータ部4’が配置される方向をX軸方向とし、超音波センサ101Aの面内方向でX軸に直交する方向をY軸方向とし、超音波センサ101Aの面の法線方向をZ軸方向とする。
 超音波発振部3’は、+Z方向を進行方向とする超音波を発生する。アクチュエータ部4’は、超音波発振部3’を中心としてX軸方向(第1の方向)の両側にそれぞれ配置された一対の部材4R,4Lであり、固定枠2’と超音波発振部3’とを連結し、超音波発振部3’を支持している。
 図16に示すように、固定枠2’の厚みに比べて、アクチュエータ部4’の厚みは小さく設定されており、アクチュエータ部4’は、少なくとも上下方向(Z軸方向)に関して可撓性を有している。このため、アクチュエータ部4’は、上方に反ったり、下方に反ったりして、所定の自由度の範囲内で、固定枠2’に対して超音波発振部3’を揺動させることができる。
 超音波センサ101Aは、超音波センサ100Aと同様に、A層1A、B層1B、C層1Cがこの順に積層された積層構造を有している。固定枠2’、超音波発振部3’及びアクチュエータ部4’が、A層1A、B層1B、C層1Cの3層構造を含んでいる点は、固定枠2,超音波発振部3及びアクチュエータ部4と同じである。また、アクチュエータ部4’を構成するA層1Aを第2の基板4Aとし、B層1B~D層1Dを、第2の圧電素子(4B,4C,4D)とする点もアクチュエータ部4と同じである。この他、アクチュエータ部4’のD層1Dにより、検出用電極5Dが構成され、この部分で、アクチュエータ部4’の変位が検出される。
 アクチュエータ部4’の一対の部材4R,4Lのそれぞれについて、第2の基板4Aは、固定枠2’の内縁から超音波発振部3’の外縁に沿って円弧状に延びている。また、第2の圧電素子(4B,4C,4D)は、第2の基板4Aが延びた方向(円弧の方向)に沿って伸縮する。
 アクチュエータ部4’の一対の部材4R,4Lのそれぞれは、超音波発振部3’を中心として2回回転対称に配置されている。一対の部材4R,4Lのうちの一方の部材4Rは、超音波発振部3’の中心Oから見て第2の方向(Y軸方向)に位置する第1の位置P1で、固定枠2’と接続する。また、さらに、一方の部材4Rは、超音波発振部3’の中心Oから見て第1の位置P1の逆側に位置する第2の位置P2で、超音波発振部3’と接続する。
 アクチュエータ部4’の一対の部材4R,4Lのうちの他方の部材4Lは、超音波発振部3’の中心Oから見て第2の方向(Y軸方向)に位置する第3の位置P3で、固定枠2’と接続し、超音波発振部3’の中心Oから見て第3の位置P3の逆側に位置する第4の位置P4で、超音波発振部3’と接続する。
 アクチュエータ部4’の一対の部材における一方の部材4Rと他方の部材4Lとは、その延びた方向(円弧方向)両端で互いに対向するように配置されており、対向する外辺が、超音波発振部3’の中心Oを通り第2の方向(Y軸方向)に延びる直線(Y軸)と交差している。これにより、第1の位置P1、第2の位置P2、第3の位置P3、第4の位置P4を一直線上に配置することができる。この結果、一方の部材4Rによる超音波発振部3’の揺動方向と、他方の部材4Lによる超音波発振部3’の揺動方向をできるだけ一致させることができる。
 アクチュエータ部4’の一対の部材4R,4Lは、第2の圧電素子(4B,4C,4D)の伸縮により変形する。この変形により、図17に示すように、第1の位置P1に対して第2の位置P2が+Z側に移動すると同時に、第3の位置P3に対して第4の位置P4が-Z側に移動する。これにより、超音波発振部3’がX軸を半時計回りに回転する。その後、第1の位置P1に対して第2の位置P2が-Z側に移動すると同時に、第3の位置P3に対して第4の位置P4が+Z側に移動する。これにより、超音波発振部3’がX軸を時計回りに回転する。アクチュエータ部4’の一対の部材4R,4Lがこのような動きを繰り返すことにより、超音波発振部3’がX軸周りに揺動する。なお、図17では、上部電極層4D、検出用電極5Dの図示は省略されている。
 本実施の形態に係る超音波センサ101Aによれば、アクチュエータ部4’を超音波発振部3’の外縁に沿った円弧状の部材とし、固定枠2’を円環状とすることで、固定枠2’、超音波発振部3’及びアクチュエータ部4’の隙間を少なくすることができるので、装置全体を小型化することができる。なお、固定枠2’の形状は円環状としたが、固定枠2’の内周形状がアクチュエータ部4’の外縁に沿った円弧形状であればよく、固定枠2’の外周形状は矩形状であってもよい。
 なお、アクチュエータ部4’の一対の部材4R,4Lは、中心Oに対して2回回転対称としたが、本発明はこれには限られない。一対の部材4R,4Lは、Y軸に対して線対称であってもよい。
 なお、本実施の形態では、第1の位置P1、第2の位置P2、第3の位置P3、第4の位置P4は、Y軸上にあるものとしたが、本発明はこれには限られない。アクチュエータ部4’により超音波発振部3’をX軸周りに揺動可能であれば、これらの位置は、Y軸上になくてもよい。
実施の形態4.
 次に、本発明の実施の形態4について図面を参照して詳細に説明する。
 図18及び図19に示すように、本実施の形態4に係る超音波センサ101Bでは、アクチュエータ部4’の構成が、上記実施の形態3に係る超音波センサ101Aと異なる。本実施の形態では、アクチュエータ部4’は、X軸まわりだけでなく、Y軸まわりにも、超音波発振部3’を揺動させる。すなわち、本実施の形態に係る超音波センサ101Bでは、アクチュエータ部4’は、超音波発振部3’を、二軸方向に揺動させる。
 本実施の形態では、アクチュエータ部4’は、第1のアクチュエータ14A’と、可動枠14B’と、第2のアクチュエータ14C’と、を備える。本実施の形態では、超音波発振部3’が円板状に形成されている点は、上記実施の形態3と同じである。また、可動枠14B’は、超音波発振部3’と同心の円環状に形成されている。
 第1のアクチュエータ14A’は、固定枠2’と可動枠14B’との間であって、X軸方向における可動枠14B’の両側に設けられている。第1のアクチュエータ14A’は、固定枠2’と可動枠14B’とを接続し、固定枠2’に対して可動枠14B’をX軸(第1の回転軸)まわりに揺動させる。この第1のアクチュエータ14A’の構成は、上記実施の形態3に係るアクチュエータ部4’の構成とほぼ同じである。
 可動枠14B’は、第2の基板4Aの一部で構成される円環状の枠である。可動枠14B’は、固定枠2’内に配置され、超音波発振部3’を囲むように配置されている。
 第2のアクチュエータ14C’は、可動枠14B’と、超音波発振部3’との間であって、Y軸方向における超音波発振部3’の両側に設けられている。第2のアクチュエータ14C’は、可動枠14B’と超音波発振部3’とを接続し、可動枠14B’に対して超音波発振部3’をY軸(第2の回転軸)まわりに揺動させる。
 本実施の形態4に係る超音波センサ101Bにおいても、固定枠2’、超音波発振部3’、アクチュエータ部4’(第1のアクチュエータ14A’、可動枠14B’及び第2のアクチュエータ14C’)は、それぞれA層1A、B層1B、C層1Cの3層構造(図9参照)を含んでいる。図19に示すように、固定枠2’及び可動枠14B’の厚みに比べて、第1のアクチュエータ14A’、第2のアクチュエータ14C’の厚みは小さく設定されており、第1のアクチュエータ14A’、第2のアクチュエータ14C’の下方には空隙が形成されている。これにより、第1のアクチュエータ14A’及び第2のアクチュエータ14C’は、変形可能となっている。なお、第1のアクチュエータ14A’及び第2のアクチュエータ14C’の厚みを小さくするための手段としては、A層1Aを構成する3層(支持層、BOX層、活性層)のうち、支持層の一部を除去することが例示される。
 各部の構成についてより具体的に説明する。第1のアクチュエータ14A’は、超音波発振部3’を中心として第1の方向(X軸方向)の両側に配置され、可動枠14B’の外縁に沿って円弧状に延びる一対の部材14AR,14ALで構成される。第1のアクチュエータ14A’の一対の部材14AR,14ALのそれぞれについて、第2の基板4Aは、固定枠2’の内縁から可動枠14B’の外縁に沿って円弧状に延びている。第2の圧電素子(4B,4C,4D)は、第2の基板4Aが延びた方向(円弧方向)に沿って伸縮する。
 第2のアクチュエータ14C’は、超音波発振部3’を中心として第1の方向(X軸方向)に直交する第2の方向(Y軸方向)の両側に配置されている。第2のアクチュエータ14C’は、超音波発振部3’の外縁に沿って円弧状に延びる一対の部材14CR,14CLで構成されている。第2のアクチュエータ14C’では、一対の部材14CR,14CLのそれぞれについて、第2の基板4Aは、可動枠14B’の内縁から超音波発振部3’の外縁に沿って円弧状に延びており、第2の圧電素子(4B,4C,4D)は、第2の基板4Aが延びた方向(円弧方向)に沿って伸縮する。
 第1のアクチュエータ14A’を構成する一対の部材14AR,14ALは、超音波発振部3’を中心として2回回転対称に配置されており、第2のアクチュエータ14C’を構成する一対の部材14CR,14CLは、超音波発振部3’を中心として2回回転対称に配置されている。
 より具体的には、第1のアクチュエータ14A’を構成する一対の部材14AR,14ALのうちの一方の部材14ARは、超音波発振部3’の中心から見て第2の方向(Y軸方向)に位置する第1の位置P1で、固定枠2’と接続し、超音波発振部3’の中心から見て第1の位置P1の逆側に位置する第2の位置P2で、可動枠14B’と接続する。第1のアクチュエータ14A’を構成する一対の部材14AR,14ALのうちの他方の部材14ALは、超音波発振部3’の中心から見て第2の方向(Y軸方向)に位置する第3の位置P3で、固定枠2’と接続し、超音波発振部3’の中心から見て第3の位置P3の逆側に位置する第4の位置P4で、可動枠14B’と接続する。
 また、第2のアクチュエータ14C’を構成する一対の部材14CR,14CLのうちの一方の部材14CRは、超音波発振部3’の中心から見て第1の方向(X軸方向)に位置する第5の位置P5で、可動枠14B’と接続し、超音波発振部3’の中心から見て、第5の位置P5の逆側に位置する第6の位置P6で、超音波発振部3’と接続する。また、第2のアクチュエータ14C’を構成する一対の部材14CR,14CLのうちの他方の部材14CLは、超音波発振部3’の中心Oから見て第1の方向(X軸方向)に位置する第7の位置P7で、可動枠14B’と接続し、超音波発振部3’の中心Oから見て第7の位置P7の逆側に位置する第8の位置P8で、超音波発振部3’と接続する。
 また、第1のアクチュエータ14A’を構成する一対の部材14AR,14ALにおける一方の部材14ARと他方の部材14ALとは、その延びた方向(円弧方向)両端で互いに対向するように配置されており、対向する外辺が、超音波発振部3’の中心Oから見て第2の方向(Y軸方向)に延びる直線(Y軸)と交差している。また、第2のアクチュエータ14C’を構成する一対の部材14CR,14CLにおける一方の部材14CRと他方の部材14CLとは、その延びた方向(円弧方向)両端で互いに対向するように配置されており、対向する外辺が、超音波発振部3’の中心から見て第1の方向(X軸方向)に延びる直線(X軸)と交差している。これにより、第1の位置P1~第4の位置P4を一直線上に配置することができるうえ、第5の位置P5~第8の位置P8を一直線上に配置することができる。この結果、一方の部材14ARによる超音波発振部3’の揺動方向と、他方の部材14ALによる超音波発振部3’の揺動方向とをできるだけ一致させることができる。また、一方の部材14CRによる超音波発振部3’の揺動方向と、他方の部材14CLによる超音波発振部3’の揺動方向とをできるだけ一致させることができる。
 第1のアクチュエータ14A’を構成する一対の部材14AR,14ALは、第2の圧電素子(4B,4C,4D)の伸縮により変形する。この変形により、図20に示すように、第1の位置P1に対して第2の位置P2が+Z側に移動すると同時に、第3の位置P3に対して第4の位置P4が-Z側に移動する。これにより、超音波発振部3’がX軸を半時計回りに回転する。その後、第1の位置P1に対して第2の位置P2が-Z側に移動すると同時に、第3の位置P3に対して第4の位置P4が+Z側に移動する。これにより、超音波発振部3’がX軸を時計回りに回転する。第1のアクチュエータ14A’の一対の部材14AR,14ALがこのような動きを繰り返すことにより、超音波発振部3’がX軸周りに揺動する。
 一方、第2のアクチュエータ14C’を構成する一対の部材14CR,14CLは、第2の圧電素子(4B,4C,4D)の伸縮により変形する。この変形により、図20に示すように、第5の位置P5に対して第6の位置P6が+Z側に移動すると同時に、第7の位置P7に対して第8の位置P8が-Z側に移動する。これにより、超音波発振部3’がY軸を半時計回りに回転する。その後、第5の位置P5に対して第6の位置P6が-Z側に移動すると同時に、第7の位置P7に対して第8の位置P8が+Z側に移動する。これにより、超音波発振部3’がY軸を時計回りに回転する。第2のアクチュエータ14C’の一対の部材14CR,14CLがこのような動きを繰り返すことにより、超音波発振部3’がY軸周りに揺動する。なお、図20では、上部電極層4D、検出用電極5Dの図示は省略されている。
 本実施の形態に係る超音波センサ101Bによれば、第1のアクチュエータ14A’、可動枠14B’及び第2のアクチュエータ14C’を超音波発振部3’の外縁に沿った円弧状又は円環状の部材とする。このようにすれば、固定枠2’、超音波発振部3’及びアクチュエータ部4’の隙間を少なくすることができるので、さらに固定枠2’を円環状として、装置全体を小型化することができる。なお、固定枠2’の形状は円環状としたが、固定枠2’の内周形状がアクチュエータ部4’の外縁に沿った円弧形状であればよく、固定枠2’の外周形状は矩形状であってもよい。
 なお、第1のアクチュエータ14A’の一対の部材14AR,14ALは、中心Oに対して2回回転対称としたが、本発明はこれには限られない。一対の部材14AR,14ALは、Y軸に対して線対称に配置されていてもよい。第2のアクチュエータ14C’の一対の部材14CR,14CLは、中心Oに対して2回回転対称としたが、本発明はこれには限られない。一対の部材14CR,14CLは、X軸に対して線対称に配置されていてもよい。
 なお、本実施の形態では、第1の位置P1、第2の位置P2、第3の位置P3、第4の位置P4は、Y軸上にあるものとしたが、本発明はこれには限られない。アクチュエータ部4’により超音波発振部3’をX軸周りに揺動可能であれば、これらの位置は、Y軸上になくてもよい。また、本実施の形態では、第5の位置P5、第6の位置P6、第7の位置P7、第8の位置P8は、X軸上にあるものとしたが、本発明はこれには限られない。アクチュエータ部4’により超音波発振部3’をY軸周りに揺動可能であれば、これらの位置は、X軸上になくてもよい。
 上記各実施の形態に係る超音波センサ100A~100F、101A,101Bによれば、超音波発振部3,3’とアクチュエータ部4、4’を一体化(半導体製造工程における一括同時加工)することで組立の簡易化や省スペース化が可能となる。また、圧電薄膜を用いて駆動させることで、低電圧で大変位を得ることが可能となる。また、アクチュエータ部4、4’を円形形状にすることで小型化が可能となる。
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 なお、本願については、2017年9月27日に出願された日本国特許出願2017-185756号を基礎とする優先権を主張し、本明細書中に日本国特許出願2017-185756号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、超音波を発生する機器に用いることができる。
 1A A層、1B B層、1C C層、1D D層、2,2’ 固定枠、3,3’ 超音波発振部、3A 第1の基板、3B 下部電極層、3C 圧電材料層、3D 上部電極層、4,4’ アクチュエータ部、4A 第2の基板、4B 下部電極層、4C 圧電材料層、4D 上部電極層、4R,4L 部材、5D 検出用電極、6D 検出用電極、14A,14A’ 第1のアクチュエータ、14B,14B’ 可動枠、14C,14C’ 第2のアクチュエータ、14AR,14AL 部材、14CR,14CL 部材、41 アーム始端部、42 アーム終端部、43 アーム中継部、51 アーム始端部、52 アーム終端部、53 アーム中継部、100A,100B,100C,100D,100E,100F,101A,101B 超音波センサ

Claims (19)

  1.  外部の部材に固定される固定枠と、
     前記固定枠内に配置され、可撓性を有する第1の基板と前記第1の基板上に薄膜形成された第1の圧電素子とで構成され、前記第1の圧電素子の伸縮により撓んで超音波を発生する超音波発振部と、
     前記第1の基板と前記固定枠との間を接続し可撓性を有する第2の基板と、前記第2の基板上に薄膜形成された第2の圧電素子とで構成され、前記第2の圧電素子の伸縮により撓んで前記固定枠に対して前記超音波発振部を揺動させるアクチュエータ部と、
     を備え、
     前記固定枠、前記第1の基板及び前記第2の基板が同一の基板で構成されている、
     超音波センサ。
  2.  前記固定枠と、前記超音波発振部と、前記アクチュエータ部と、が同一平面上に配置されている、
     請求項1に記載の超音波センサ。
  3.  前記アクチュエータ部は、
     前記超音波発振部を、一軸方向に揺動させる、
     請求項1又は2に記載の超音波センサ。
  4.  前記アクチュエータ部は、
     前記超音波発振部における第1の方向の両側にそれぞれ配置された線状の一対の部材であり、
     前記一対の部材のそれぞれについて、
     前記第2の基板が前記固定枠の内辺から前記第1の方向に交差する第2の方向に沿って延びる部分を有し、その部分に前記第2の方向に沿って伸縮する前記第2の圧電素子が薄膜形成され、前記一対の部材が、前記第2の圧電素子の伸縮により変形して前記超音波発振部を揺動させる、
     請求項3に記載の超音波センサ。
  5.  前記一対の部材それぞれの前記第2の方向に沿って延びた部分の長さは、
     前記アクチュエータ部が接続された前記固定枠の内辺から前記第2の方向に関する前記超音波発振部の外縁の中点までの距離よりも長い、
     請求項4に記載の超音波センサ。
  6.  前記超音波発振部は円板状に形成され、
     前記アクチュエータ部は、
     前記超音波発振部を中心として第1の方向の両側に配置され、前記超音波発振部の外縁に沿って円弧状に延びる一対の部材で構成され、
     前記一対の部材のそれぞれについて、
     前記第2の基板は、前記固定枠の内縁から前記超音波発振部の外縁に沿って円弧状に延びており、前記第2の圧電素子は、前記第2の基板が延びた方向に沿って伸縮し、
     前記一対の部材は、前記第2の圧電素子の伸縮により変形して前記超音波発振部を揺動させる、
     請求項3に記載の超音波センサ。
  7.  前記一対の部材のそれぞれは、
     前記超音波発振部を中心として2回回転対称に配置されている、
     請求項6に記載の超音波センサ。
  8.  前記一対の部材のうちの一方の部材は、
     前記超音波発振部の中心から見て前記第1の方向に直交する第2の方向に位置する第1の位置で、前記固定枠と接続し、
     前記超音波発振部の中心から見て前記第1の位置の逆側に位置する第2の位置で、前記超音波発振部と接続し、
     前記一対の部材のうちの他方の部材は、
     前記超音波発振部の中心から見て前記第2の方向に位置する第3の位置で、前記固定枠と接続し、
     前記超音波発振部の中心から見て前記第3の位置の逆側に位置する第4の位置で、前記超音波発振部と接続する、
     請求項7に記載の超音波センサ。
  9.  前記一対の部材における一方の部材と他方の部材とは、その延びた方向両端で互いに対向するように配置されており、対向する外辺が、前記超音波発振部の中心を通り前記第2の方向に延びる直線と交差している、
     請求項8に記載の超音波センサ。
  10.  前記アクチュエータ部は、
     前記超音波発振部を、二軸方向に揺動させる、
     請求項1又は2に記載の超音波センサ。
  11.  前記アクチュエータ部は、
     前記第2の基板の一部で構成される可動枠と、
     前記固定枠と前記可動枠とを接続し、前記固定枠に対して前記可動枠を第1の回転軸まわりに揺動させる第1のアクチュエータと、
     前記可動枠と前記超音波発振部とを接続し、前記可動枠に対して前記超音波発振部を前記第1の回転軸とは異なる第2の回転軸まわりに揺動させる第2のアクチュエータと、
     を備える、
     請求項10に記載の超音波センサ。
  12.  前記第1のアクチュエータは、
     前記可動枠における第1の方向の両側にそれぞれ配置された線状の一対の部材で構成され、その一対の部材それぞれについて、前記第2の基板が前記固定枠の内辺から前記第1の方向に交差する第2の方向に沿って延びる部分を有し、その部分に前記第2の方向に沿って伸縮する前記第2の圧電素子が薄膜形成され、前記第1のアクチュエータを構成する一対の部材が、前記第2の圧電素子の伸縮により前記第2の基板が変形して前記第1の回転軸まわりに前記可動枠を揺動させ、
     前記第2のアクチュエータは、
     前記超音波発振部における第2の方向の両側にそれぞれ配置された線状の一対の部材で構成され、その一対の部材それぞれについて、前記第2の基板が前記可動枠の内辺から前記第1の方向に沿って延びる部分を有し、その部分に前記第1の方向に沿って伸縮する前記第2の圧電素子が薄膜形成され、前記第2のアクチュエータを構成する一対の部材が、前記第2の圧電素子の伸縮により変形して前記第2の回転軸まわりに前記超音波発振部を揺動させる、
     請求項11に記載の超音波センサ。
  13.  前記第1のアクチュエータの前記第2の方向に沿って延びた部分の長さは、
     前記第1のアクチュエータが接続された前記固定枠の内辺から前記第2の方向に関する前記可動枠の外縁の中点までの距離よりも長い、
     請求項12に記載の超音波センサ。
  14.   前記第2のアクチュエータの前記第1の方向に沿って延びた部分の長さは、
      前記第2のアクチュエータが接続された前記可動枠の内辺から前記第1の方向に関する前記超音波発振部の外縁の中点までの距離よりも長い、
      請求項12又は13に記載の超音波センサ。
  15.  前記超音波発振部が円板状に形成され、前記可動枠は前記超音波発振部と同心の円環状に形成され、
     前記第1のアクチュエータは、前記超音波発振部を中心として第1の方向の両側に配置され、前記可動枠の外縁に沿って円弧状に延びる一対の部材で構成され、前記一対の部材のそれぞれについて、前記第2の基板は、前記固定枠の内縁から前記可動枠の外縁に沿って円弧状に延びており、前記第2の圧電素子は、前記第2の基板が延びた方向に沿って伸縮し、前記第1のアクチュエータを構成する前記一対の部材は、前記第2の圧電素子の伸縮により変形して前記第1の回転軸まわりに前記可動枠を揺動させ、
     前記第2のアクチュエータは、前記超音波発振部を中心として前記第1の方向に直交する第2の方向の両側に配置され、前記超音波発振部の外縁に沿って円弧状に延びる一対の部材で構成され、前記一対の部材のそれぞれについて、前記第2の基板は、前記可動枠の内縁から前記超音波発振部の外縁に沿って円弧状に延びており、前記第2の圧電素子は、前記第2の基板が延びた方向に沿って伸縮し、前記第2のアクチュエータを構成する前記一対の部材は、前記第2の圧電素子の伸縮により変形して前記第2の回転軸まわりに前記超音波発振部を揺動させる、
     請求項11に記載の超音波センサ。
  16.  前記第1のアクチュエータを構成する前記一対の部材は、
     前記超音波発振部を中心として2回回転対称に配置されており、
     前記第2のアクチュエータを構成する前記一対の部材は、
     前記超音波発振部を中心として2回回転対称に配置されている、
     請求項15に記載の超音波センサ。
  17.  前記第1のアクチュエータを構成する前記一対の部材のうちの一方の部材は、
     前記超音波発振部の中心から見て前記第2の方向に位置する第1の位置で、前記固定枠と接続し、
     前記超音波発振部の中心から見て前記第1の位置の逆側に位置する第2の位置で、前記可動枠と接続し、
     前記第1のアクチュエータを構成する前記一対の部材のうちの他方の部材は、
     前記超音波発振部の中心から見て前記第2の方向に位置する第3の位置で、前記固定枠と接続し、
     前記超音波発振部の中心から見て前記第3の位置の逆側に位置する第4の位置で、前記可動枠と接続し、
     前記第2のアクチュエータを構成する前記一対の部材のうちの一方の部材は、
     前記超音波発振部の中心から見て前記第1の方向に位置する第5の位置で、前記可動枠と接続し、
     前記超音波発振部の中心から見て、前記第5の位置の逆側に位置する第6の位置で、前記超音波発振部と接続し、
     前記第2のアクチュエータを構成する前記一対の部材のうちの他方の部材は、
     前記超音波発振部の中心から見て前記第1の方向に位置する第7の位置で、前記可動枠と接続し、
     前記超音波発振部の中心から見て前記第7の位置の逆側に位置する第8の位置で、前記超音波発振部と接続する、
     請求項16に記載の超音波センサ。
  18.  前記第1のアクチュエータを構成する前記一対の部材における一方の部材と他方の部材とは、その延びた方向両端で互いに対向するように配置されており、対向する外辺が、前記超音波発振部の中心から見て前記第2の方向に延びる直線と交差している、
     請求項17に記載の超音波センサ。
  19.  前記第2のアクチュエータを構成する前記一対の部材における一方の部材と他方の部材とは、その延びた方向両端で互いに対向するように配置されており、対向する外辺が、前記超音波発振部の中心から見て前記第1の方向に延びる直線と交差している、
     請求項17又は18に記載の超音波センサ。
PCT/JP2018/033437 2017-09-27 2018-09-10 超音波センサ WO2019065182A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18861734.4A EP3691293B1 (en) 2017-09-27 2018-09-10 Ultrasonic sensor
US16/637,407 US11067541B2 (en) 2017-09-27 2018-09-10 Ultrasonic sensor
CN201880062877.XA CN111149372B (zh) 2017-09-27 2018-09-10 超声波传感器
JP2019544524A JP7092139B2 (ja) 2017-09-27 2018-09-10 超音波センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017185756 2017-09-27
JP2017-185756 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065182A1 true WO2019065182A1 (ja) 2019-04-04

Family

ID=65901302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033437 WO2019065182A1 (ja) 2017-09-27 2018-09-10 超音波センサ

Country Status (6)

Country Link
US (1) US11067541B2 (ja)
EP (1) EP3691293B1 (ja)
JP (1) JP7092139B2 (ja)
CN (1) CN111149372B (ja)
TW (1) TWI787351B (ja)
WO (1) WO2019065182A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102462A1 (ja) * 2020-11-13 2022-05-19 パナソニックIpマネジメント株式会社 圧電駆動素子
JP2023511802A (ja) * 2019-09-12 2023-03-23 エコー イメージング,インク. 端部溝、仮想ピボット、および非拘束状態の境界を介する、mut結合効率および帯域幅の増加

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101955345B1 (ko) 2016-12-22 2019-03-08 현대 파워텍 주식회사 자동변속기의 압력센서 오프셋 보상 방법 및 장치
WO2022006816A1 (zh) * 2020-07-09 2022-01-13 诺思(天津)微系统有限责任公司 Mems压电扬声器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256570A (ja) 1997-03-14 1998-09-25 Matsushita Electric Ind Co Ltd 薄膜デバイスおよび薄膜の製造方法
JP2001149372A (ja) * 1999-11-26 2001-06-05 Matsushita Electric Ind Co Ltd 超音波探触子
JP2013003583A (ja) * 2011-06-15 2013-01-07 Fraunhofer Ges リサージュ走査を行うスキャナ用の偏向装置
JP2017003717A (ja) * 2015-06-09 2017-01-05 株式会社トライフォース・マネジメント 可動反射装置およびこれを利用した反射面駆動システム
JP2017167254A (ja) * 2016-03-15 2017-09-21 パイオニア株式会社 駆動装置及びミラー装置
JP2017185756A (ja) 2016-04-08 2017-10-12 セイコーエプソン株式会社 テープ印刷装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712426A (en) * 1993-08-03 1998-01-27 Milli Sensory Systems And Actuators, Inc. Pendulous oscillating gyroscopic and accelerometer multisensor and amplitude oscillating gyroscope
US6725719B2 (en) * 2002-04-17 2004-04-27 Milli Sensor Systems And Actuators, Inc. MEMS-integrated inertial measurement units on a common substrate
TWI430570B (zh) * 2010-12-16 2014-03-11 Univ Tatung 壓電感測器陣列
EP2701217B1 (en) 2011-04-18 2017-04-19 Konica Minolta, Inc. Piezoelectric actuator and ink-jet head provided with same
JP5962018B2 (ja) 2012-01-11 2016-08-03 セイコーエプソン株式会社 超音波トランスデューサー、超音波プローブ、診断機器および電子機器
WO2014107323A1 (en) * 2013-01-04 2014-07-10 Muffin Incorporated Ultrasound transducer direction control
US10234477B2 (en) * 2016-07-27 2019-03-19 Google Llc Composite vibratory in-plane accelerometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256570A (ja) 1997-03-14 1998-09-25 Matsushita Electric Ind Co Ltd 薄膜デバイスおよび薄膜の製造方法
JP2001149372A (ja) * 1999-11-26 2001-06-05 Matsushita Electric Ind Co Ltd 超音波探触子
JP2013003583A (ja) * 2011-06-15 2013-01-07 Fraunhofer Ges リサージュ走査を行うスキャナ用の偏向装置
JP2017003717A (ja) * 2015-06-09 2017-01-05 株式会社トライフォース・マネジメント 可動反射装置およびこれを利用した反射面駆動システム
JP2017167254A (ja) * 2016-03-15 2017-09-21 パイオニア株式会社 駆動装置及びミラー装置
JP2017185756A (ja) 2016-04-08 2017-10-12 セイコーエプソン株式会社 テープ印刷装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3691293A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023511802A (ja) * 2019-09-12 2023-03-23 エコー イメージング,インク. 端部溝、仮想ピボット、および非拘束状態の境界を介する、mut結合効率および帯域幅の増加
WO2022102462A1 (ja) * 2020-11-13 2022-05-19 パナソニックIpマネジメント株式会社 圧電駆動素子

Also Published As

Publication number Publication date
EP3691293B1 (en) 2022-12-21
US20200182834A1 (en) 2020-06-11
JP7092139B2 (ja) 2022-06-28
EP3691293A4 (en) 2020-11-18
CN111149372A (zh) 2020-05-12
US11067541B2 (en) 2021-07-20
EP3691293A1 (en) 2020-08-05
JPWO2019065182A1 (ja) 2020-07-16
CN111149372B (zh) 2021-06-22
TWI787351B (zh) 2022-12-21
TW201920908A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
JP7092139B2 (ja) 超音波センサ
JP6205587B2 (ja) 光学反射素子
JP6447683B2 (ja) 走査型微小電気機械反射鏡システム、光検出及び測距(lidar)装置、及び走査型微小電気機械反射鏡システムの作動方法
US9851373B2 (en) Vibrator and vibrating gyroscope
JP6680364B2 (ja) 可動反射素子
US8559089B2 (en) Optical scanner
JP6789438B2 (ja) 光走査装置およびその制御方法
JP5853933B2 (ja) 光走査装置および製造方法
JP2021005075A (ja) 分離された駆動部を備えた2軸memsミラー
US20140185116A1 (en) Scanning mirror device
US10001372B2 (en) Angular velocity detection device
JP2015215562A (ja) 光走査装置
US20090237628A1 (en) Optical reflection device and image projector includng the same
JP2007206480A (ja) 光走査素子
JPH08294287A (ja) 超音波アクチュエータを用いる振れ防止装置
US9097894B2 (en) Optical deflector including four coupling bars between support body and frame
JP5332262B2 (ja) 角速度センサ素子
JP2001075042A (ja) 光偏向器
JP2009098253A (ja) 光学反射素子およびこれを用いた画像投影装置
JP2009223115A (ja) 光学反射素子
JP5234323B2 (ja) 角速度センサ素子
WO2019017277A1 (ja) 振動型角速度センサ
JP5846097B2 (ja) 光走査装置
JP2018019540A (ja) 圧電アクチュエーター、圧電モーター、ロボットおよび電子部品搬送装置
JP2006039066A (ja) ヒンジ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019544524

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018861734

Country of ref document: EP

Effective date: 20200428