WO2019065108A1 - 熱収縮性ポリエステル系フィルムロール - Google Patents

熱収縮性ポリエステル系フィルムロール Download PDF

Info

Publication number
WO2019065108A1
WO2019065108A1 PCT/JP2018/032622 JP2018032622W WO2019065108A1 WO 2019065108 A1 WO2019065108 A1 WO 2019065108A1 JP 2018032622 W JP2018032622 W JP 2018032622W WO 2019065108 A1 WO2019065108 A1 WO 2019065108A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thickness
film roll
heat
shrinkable polyester
Prior art date
Application number
PCT/JP2018/032622
Other languages
English (en)
French (fr)
Inventor
雅幸 春田
多保田 規
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65902986&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019065108(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US16/649,682 priority Critical patent/US11565459B2/en
Priority to KR1020207010421A priority patent/KR102602093B1/ko
Priority to EP18861059.6A priority patent/EP3689948A4/en
Priority to CN201880061982.1A priority patent/CN111164135B/zh
Priority to JP2018557157A priority patent/JP7127544B2/ja
Publication of WO2019065108A1 publication Critical patent/WO2019065108A1/ja
Priority to JP2022122876A priority patent/JP7180813B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/28Wound package of webs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • B29C55/085Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0094Geometrical properties
    • B29K2995/0097Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/12Width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/13Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/50Timing
    • B65H2513/52Age; Duration; Life time or chronology of event
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/40Temperature; Thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/175Plastic
    • B65H2701/1752Polymer film
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings

Definitions

  • the present invention relates to a film roll obtained by winding a heat-shrinkable polyester film. More specifically, the present invention relates to a heat-shrinkable film roll having a good film roll slack and a small loss during printing and processing.
  • stretched films for applications such as label packaging that combines protection of glass bottles and PET bottles with display of goods, cap seals, accumulation packaging, etc.
  • Heat-shrinkable films are becoming widely used.
  • polyvinyl chloride-based films have low heat resistance, and also have problems such as generation of hydrogen chloride gas at the time of incineration and causing dioxins.
  • polystyrene-based films are poor in solvent resistance, and inks of special compositions must be used for printing, and they must be incinerated at high temperatures, and a large amount of black smoke is generated with offensive odors during incineration.
  • polyester-based heat-shrinkable films having high heat resistance, easy incineration, and excellent solvent resistance are being widely used as shrinkage labels, and it is possible to use PET containers in circulation volumes. With the increase, the amount used tends to increase.
  • heat-shrinkable film from the viewpoint of handling at the time of label production, generally, one which is greatly shrunk in the width direction is used. Therefore, conventional heat-shrinkable polyester films have been manufactured by stretching at high magnification in the width direction in order to develop sufficient shrinkage force in the width direction when heated.
  • the production efficiency can be improved and the cost can be reduced, so many labels are manufactured using this method. It is done.
  • the solvent adheres to a spot where slack occurs, insufficient adhesive strength and uneven adhesive strength occur, and it is difficult to obtain a good tube-like heat-shrinkable label.
  • the above-mentioned badness caused by the slack is more apparent due to the speeding up of the processing, and it is difficult to apply with a film roll having slack in the range which has not been a problem conventionally and has been accepted.
  • the present inventors newly found that there is a certain thing.
  • An object of the present invention is to solve the problems of the above-described conventional heat-shrinkable polyester film or a film roll comprising a heat-shrinkable multilayer polyester film, and to provide a heat-shrinkable polyester film roll with less slack of the film. is there.
  • the present invention comprises the following constitution. 1.
  • a film roll comprising a heat-shrinkable polyester film having a shrinkage of 30% or more in the film main shrinkage direction at 90 ° C. for 10 seconds in warm water, wherein the heat-shrinkable polyester film and the film roll A heat-shrinkable polyester film roll characterized by satisfying the following requirements (1) to (5).
  • Film roll winding length is 2000 m to 25000 m
  • film roll width is 400 mm to 2500 mm
  • film thickness is 5 ⁇ m to 40 ⁇ m
  • thickness unevenness of the maximum concave portion determined from the maximum thickness difference in the maximum concave portion and the film average thickness is 10% or less
  • the winding hardness of the film roll surface layer is 400 or more and 800 or less.
  • the thickness unevenness determined from the maximum thickness difference in the maximum recess and the film average thickness is 10% or less for all samples 1.
  • a film roll comprising the heat-shrinkable polyester film according to 3.
  • the absolute value of the difference in refractive index in the width direction between the maximum recess and any of the maximum thickness locations at both ends of the recess is 0.01 or less.
  • the heat-shrinkable polyester film roll as described in any one of the above. 4.
  • the thickness unevenness across the width of the film roll is 13% or less.
  • the heat-shrinkable polyester film roll as described in any one of the above. 5.
  • the static friction coefficient and dynamic friction coefficient of the winding outer surface and the winding inner surface of the film are both 0.1 or more and 0.8 or less.
  • the heat-shrinkable polyester film roll as described in any one of the above.
  • the heat-shrinkable polyester film roll of the present invention has less slack in the film. Therefore, it can be used favorably with less trouble in post-processing such as printing and solvent adhesion.
  • the polyester used for the heat-shrinkable polyester film of the present invention is mainly composed of ethylene terephthalate. That is, it contains 50% by mole, preferably 60% by mole or more of ethylene terephthalate.
  • Other dicarboxylic acid components constituting the polyester of the present invention include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, and aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid And alicyclic dicarboxylic acids.
  • the content is preferably less than 3 mol%.
  • a heat-shrinkable polyester film obtained by using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids, the film stiffness at high speed attachment is insufficient.
  • a trivalent or higher polyvalent carboxylic acid for example, trimellitic acid, pyromellitic acid and anhydrides thereof and the like.
  • diol component constituting the polyester used in the present invention examples include aliphatic diols such as ethylene glycol, 1-3 propanediol, 1-4 butanediol, neopentyl glycol and hexanediol, 1,4-cyclohexanedimethanol and the like Alicyclic diols and aromatic diols such as bisphenol A can be mentioned.
  • the polyester used for the heat-shrinkable polyester film of the present invention is a cyclic diol such as 1,4-cyclohexanedimethanol or a diol having 3 to 6 carbon atoms (eg, 1-3 propane diol, 1-4 butane diol) And polyesters in which the glass transition point (Tg) is adjusted to 60 to 80 ° C. by containing one or more of neopentyl glycol, hexanediol and the like).
  • Tg glass transition point
  • the polyester used for the heat-shrinkable polyester film of the present invention is at least one kind of amorphous component in 100 mol% of the polyhydric alcohol component or 100 mol% of the polyvalent carboxylic acid component in all the polyester resins.
  • the total amount of the monomer components is preferably 15 mol% or more, more preferably 17 mol% or more, and particularly preferably 20 mol% or more.
  • a diol having 8 or more carbon atoms such as octanediol
  • a polyhydric alcohol having a valency of 3 or more such as trimethylolpropane, trimethylolethane, or glycerin
  • diglycerin etc. are preferably not contained.
  • various additives for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents, if necessary.
  • a heat stabilizer, a pigment for coloring, a coloring inhibitor, an ultraviolet absorber and the like can be added.
  • the resin forming the heat-shrinkable polyester film of the present invention it is preferable to improve the workability (slidability) of the polyethylene terephthalate resin film by adding fine particles as a lubricant.
  • the fine particles can be selected arbitrarily, and examples of the inorganic fine particles include silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate and the like.
  • organic fine particles for example, acrylic resin particles, melamine resin particles, silicone resin particles, crosslinked polystyrene particles and the like can be mentioned.
  • the average particle diameter of the fine particles can be appropriately selected as needed within the range of 0.05 to 3.0 ⁇ m (as measured by a Coulter counter).
  • the above-mentioned particles in the resin forming the heat-shrinkable polyester-based film for example, it can be added at any stage of producing a polyester-based resin, but it is an esterification stage or a transesterification reaction After completion, it is preferable to add as a slurry dispersed in ethylene glycol or the like at a stage before the start of the polycondensation reaction to advance the polycondensation reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a polyester-based resin raw material using a vented kneading extruder, or particles and a polyester-based resin raw material dried using a kneading extruder It is also preferable to carry out by a method of blending and the like.
  • the heat-shrinkable polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
  • the heat-shrinkable polyester film of the present invention also includes a laminated multilayer polyester film having at least one polyester resin layer.
  • the polyester resin layers may be polyesters of the same composition or polyesters of different compositions.
  • the layer that can be laminated as another layer is not particularly limited as long as it is a thermoplastic resin layer, but is preferably a polystyrene resin layer from the viewpoint of cost and heat shrinkage characteristics.
  • the heat-shrinkable polyester film of the present invention when treated in warm water at 90 ° C. for 10 seconds in a no-load state, the main shrinkage of the film calculated by the following equation 1 from the length before and after shrinkage.
  • the thermal contraction rate in the direction (that is, the hot water thermal contraction rate at 90 ° C.) needs to be 30% or more.
  • Thermal contraction rate ⁇ (length before contraction ⁇ length after contraction) / length before contraction ⁇ ⁇ 100 (%)
  • the hot-water thermal contraction rate in the main contraction direction at 90 ° C. is preferably 35% or more, more preferably 40% or more.
  • the winding length of the heat-shrinkable polyester film roll or heat-shrinkable multilayer polyester film roll of the present invention is preferably 2000 m or more and 25000 m or less. In processing such as printing, the longer the winding length, the lower the frequency of replacing the roll and the better the working efficiency. Preferably it is 3000 m or more, More preferably, it is 4000 m or more, Especially preferably, it is 5000 m or more.
  • the upper limit is not particularly limited and it is preferable that the winding length is long. However, since the inventors have confirmed only up to 25000 m winding length, the winding length is set to 25000 m as the upper limit. In the aspect of the present invention, it is more difficult to increase the film roll length, since the film area increases and the possibility of the occurrence of the sagging defect increases as the film roll length increases. .
  • the width of the heat-shrinkable polyester film roll of the present invention is preferably 400 mm or more and 2500 mm or less.
  • the wider the film roll the higher the efficiency in processing such as printing, and so the wider is preferable.
  • the preferred width is 500 mm or more, more preferably 600 mm or more, and particularly preferably 800 mm or more. It should be noted that a longer film roll width is more difficult with aspects of the present invention, since the longer the film roll width, the greater the area of the film and the opportunity for the sag defect to occur.
  • the thickness of the heat-shrinkable polyester film of the present invention is preferably 5 ⁇ m to 40 ⁇ m. 35 micrometers or less are more preferable, and, as for the upper limit of film thickness, 30 micrometers or less are more preferable. Since the thickness of 5 ⁇ m was confirmed in the present invention, it was 5 ⁇ m or more. Further, the thicker the film, the lower the stiffness and the less tendency to be preferable, which is preferable. Therefore, although it does not matter if the film is thick, it goes against environmental compliance by reducing the thickness. In the aspect of the present invention, the thin film thickness is more difficult because the thinner film thickness is more likely to cause slack.
  • the heat-shrinkable polyester film roll of the present invention has a location where the thickness pattern is a recess in thickness unevenness in the width direction of the film roll, and the recess (maximum recess) having the largest thickness difference 10% or less of the thickness nonuniformity of the largest recessed part calculated
  • required by the following Formula 2 from the largest thickness difference in a largest recessed part and film average thickness is preferable (an example is shown in FIG. 1). Thickness unevenness of recess (maximum height thickness of recess-minimum height thickness of recess) / average thickness x 100 (%) ⁇ ⁇ ⁇ 2
  • the concave portion refers to a point in which the thickness decreases in both directions of the measurement direction bordering on that point in thickness unevenness in the film width direction measured using a continuous contact type thickness meter as described later.
  • a valley is a point where the thickness increases in both directions of the measurement direction bordering the point as a peak, this refers to the portion of the thickness pattern that is peak-valley-peak.
  • the film which does not have such a thickness pattern ie, the film which does not have a recessed part, is not included in this invention.
  • any larger value of the thickness difference between each peak and valley is referred to as the maximum thickness difference in the recess.
  • the thickness unevenness of the largest concave portion is higher than 10%
  • the position of the concave portion is slit and taken up as a film roll
  • air is taken in and the air is accumulated, and then air is leaked when storing the film roll
  • it is not preferable because it causes wrinkles and slackness.
  • the concave portion is thinner than the other portions in the width direction, it is elongated in the longitudinal direction by the tension when it is slit and wound up as a film roll. Therefore, in the film roll, the length of the concave portion in the longitudinal direction becomes longer than the other position in the width direction, and the portion becomes slack.
  • the thickness unevenness of the maximum recess is preferably 9% or less, more preferably 8% or less.
  • the thickness unevenness of the maximum recess is preferably low, and 3% is the lowest in our test.
  • the unevenness in thickness of the recess as described above should be measured using a continuous contact thickness gauge as shown in the following examples.
  • a continuous contact thickness gauge As shown in Patent Document 5, when the thickness is measured at intervals of 30 mm to 500 mm in the measurement direction, the maximum thickness difference of the recess may become an unmeasured position, and the thickness difference in the accurate recess may be It is difficult to ask for
  • the thickness unevenness in the present invention refers to one measured using a continuous contact thickness gauge.
  • the thickness unevenness determined from the maximum thickness difference in the maximum recess and the film average thickness Is preferably 10% or less in all samples.
  • the thickness unevenness of the maximum recess is higher than 10%
  • the position of the recess is slit and wound up as a film roll
  • air is taken in and air is accumulated, and then the film roll is stored.
  • the thickness of the recess is thinner than that of the other portions in the width direction, the recess is stretched in the longitudinal direction by the tension at the time of slitting. Therefore, in the film roll, the length of the concave portion in the longitudinal direction becomes longer than the other position in the width direction, and the portion becomes slack.
  • the thickness unevenness of the recesses is preferably 9% or less, more preferably 8% or less.
  • the thickness unevenness of the recess is preferably low, and 3% was the lowest in our test.
  • the maximum thickness location on either end of the recess (a peak having a larger thickness among the two peaks) and the recess It is preferable that the absolute value of the difference of the width direction refractive index with the minimum thickness location (the said valley part) of these is 0.01 or less. If the absolute value of the difference in refractive index in the width direction between the maximum thickness location at either end of the recess and the minimum thickness location at the recess is greater than 0.01, then the minimum thickness location and the maximum thickness location of the recess are likely to stretch in the longitudinal direction And the tension at the time of slitting causes a difference to be stretched in the longitudinal direction.
  • the absolute value of the preferred widthwise refractive index difference is 0.008 or less, and more preferably 0.006 or less.
  • the absolute value of the width direction refractive index difference is preferably low, and 0.0003 is the lowest in our test.
  • the thickness unevenness of the whole width direction of the heat-shrinkable polyester-based film roll of the present invention is 13% or less in the formula represented by the following formula 3.
  • Uneven thickness is not preferable because wrinkles are likely to occur.
  • it is 10% or less, more preferably 7% or less.
  • it is the size of the thickness unevenness in the maximum recess that is a major cause of the occurrence of the slack. ⁇ (Maximum thickness-minimum thickness) / average thickness ⁇ ⁇ 100 (%) ⁇ ⁇ ⁇ Formula 3
  • the coefficient of static friction and the coefficient of dynamic friction of the film surfaces of the outer and outer surfaces of the heat-shrinkable polyester film of the present invention are preferably 0.1 or more and 0.8 or less. If it is lower than 0.1, it may slip too much, which may cause an end face shift. On the other hand, if it is larger than 0.8, the amount of air taken up at the time of slitting is large, and it is not preferable because slack and air are likely to be introduced due to air leakage in the recess at the time of film roll. Preferably they are 0.13 or more and 0.77 or less, More preferably, they are 0.16 or more and 0.74 or less.
  • the heat-shrinkable polyester film of the present invention is obtained by melt-extruding the above-described polyester raw material with an extruder to form an unstretched film, and stretching and heat-treating the unstretched film by a predetermined method described below. You can get it. In the case of stacking, a plurality of extruders, feed blocks, and multi manifolds may be used.
  • polyester can be obtained by polycondensing said suitable dicarboxylic acid component and diol component by a well-known method. Also, usually, two or more types of chip-like polyester are mixed and used as a raw material of a film.
  • the raw material supply causes variations (so-called raw material segregation) when fed to the extruder, which causes variations in the film composition and thickness unevenness in the width direction (especially the maximum concave portion) Cause.
  • the raw material chips are dried using a dryer such as a hopper dryer or paddle dryer, or a vacuum dryer, and the raw materials are made uniform using a stirrer in the hopper on the extruder.
  • the mixed material is extruded into a film at a temperature of 200 to 280.degree.
  • the undried polyester raw material uniformly mixed in the same manner as described above is similarly extruded in the form of a film while removing water in a vented extruder.
  • any existing method such as a T-die method or a tubular method may be adopted for the extrusion, the T-die method is preferable in order to make the thickness unevenness better.
  • the extrusion temperature should not exceed 280 ° C. If the melting temperature is too high, it is not preferable because the limiting viscosity when formed into a label is lowered and cracks are easily generated.
  • shear rate at the die exit was obtained from the following equation 4.
  • Shear rate ⁇ 6 Q / (W ⁇ H 2 ) .. Formula 4 ⁇ ; shear rate (sec -1 ) Q: Discharge amount of raw material from extruder (cm 3 / sec) W; width of the die outlet opening (cm) H: Lip gap of the die (cm)
  • the shear rate is high because thickness unevenness in the width direction (especially, the maximum concave portion) can be reduced.
  • the higher the shear rate the more stable the pressure during resin discharge at the T-die outlet.
  • Preferred shear rate was 100 sec -1 or more, more preferably 150 sec -1 or more, and particularly preferably 170Sec -1 or more.
  • the draft ratio is high since the thickness unevenness in the longitudinal direction is good, but if the draft ratio is high, resin debris or the like adheres to the resin discharge portion of the die and the productivity is deteriorated. In addition, when the draft ratio is low, the thickness unevenness in the longitudinal direction is unfavorably deteriorated.
  • the draft ratio is preferably 10 or more and 80 or less, more preferably 20 or more and 70 or less.
  • a method of quenching the molten resin a method of obtaining a substantially unoriented resin sheet can be suitably adopted by casting the molten resin from a die onto a rotating drum and rapidly solidifying it.
  • the unstretched film obtained above is preheated, if necessary, at 80 to 120 ° C., preferably 90 to 110 ° C., with a transverse stretching machine (so-called tenter), and then transverse direction (direction orthogonal to the extrusion direction)
  • the film is stretched 3.5 times or more, preferably 4 times or more and 7 times or less.
  • the stretching temperature is 65 ° C. or more and 80 ° C. or less, preferably 70 ° C. or more and 75 ° C. or less.
  • multistage stretching stretching by 2 steps
  • An example (three-step stretching) of the stretching pattern of the transverse stretching machine is shown in FIG.
  • FIG. 2 in multi-stage drawing, it is preferable to provide a pattern that maintains a constant length after completion of drawing at each stage.
  • heat treatment is preferably performed at a temperature 1 ° C. to 30 ° C. higher than the stretching temperature.
  • the heat treatment is carried out in order to relieve the tension state of the film after stretching, and it is also effective in adjusting the heat shrinkage rate at the temperature at the heat treatment and also reducing the natural shrinkage rate.
  • the resulting heat-shrinkable polyester film is wound as an intermediate product, a wide roll, and then slitted to a specified width and winding length using a slitter and wound onto a wound core (core) to obtain a heat-shrinkable polyester film Roll is obtained.
  • a wound core a plastic core of 3 inches, 6 inches, 8 inches, etc., a metal core or a paper tube can usually be used.
  • the preferable winding length and width of the film roll are as described above.
  • the slit is started at an initial tension of 70 to 120 N / m, preferably 80 to 110 N / m, and an initial surface pressure of 200 to 400 N / m, preferably 250 to 350 N / m.
  • the initial tension is higher than 120 N / m, it is not preferable because the uneven thickness portion of the concave portion is slightly stretched by the tension at the time of slitting and causes slack.
  • the initial tension is 70 N / m or less, the tension is insufficient when winding the film with a slit, and the end face of the film roll becomes uneven (so-called end face deviation), which is not preferable. It is desirable to reduce the tension after the winding length has reached 500 m.
  • the tension is desirable to reduce the tension constantly so as to correlate with the winding length so that the tension at 300 m before the end of the slit becomes 50 to 80%, preferably 60 to 70% of the initial tension.
  • the surface pressure is preferably as low as initial surface pressure ⁇ 5% or less, and more preferably as initial surface pressure ⁇ 3%, over the entire length of the winding length.
  • the winding hardness of the film roll surface layer slit as described above is preferably 400 or more and 800 or less. It is not preferable that the winding hardness of the film roll surface layer is less than 400, for example, when the film roll is stored for half a year in a warehouse, the air caught at the time of slitting is released and the film roll is slackened. If the winding hardness of the film roll surface layer is higher than 800, the film roll becomes hard, and the above-mentioned depressions are compressed to cause slack, which is not preferable.
  • the winding hardness of the film roll surface layer is preferably 450 or more and 750 or less, and more preferably 500 or more and 700 or less.
  • the winding hardness in the present invention refers to the winding hardness measured according to the description of the examples described later.
  • a continuously formed film is continuously wound up, and if the film forming conditions are constant, the degree of thickness unevenness in the film width direction is the entire length of the winding length Although it becomes almost constant over time, slight fluctuations in the respective steps during film formation cause slight fluctuations with respect to the entire winding length. It is preferable that the thickness unevenness in the film width direction is controlled over the entire length of the winding length. Whether the thickness unevenness is controlled over the entire length of the winding length can be confirmed, for example, by collecting a sample of the film of the film roll from the surface layer every winding length at regular intervals and measuring the thickness unevenness of each sample it can.
  • the thickness unevenness can be measured by taking a sample of the surface layer portion of the film roll to obtain a representative value of the film roll.
  • a sample is collected from a portion obtained by removing 1 m of the film from the surface of the film roll and measured to be a representative value.
  • the preferable range of the thickness unevenness (thickness unevenness in the maximum recess and the entire width direction) in the film width direction in the film roll surface layer is as described above.
  • a preferred embodiment of the present invention is that a sample is collected and measured every 1000 m of winding length, and thickness unevenness (thickness unevenness of the maximum recess and the entire width direction) is within a predetermined range for all samples.
  • the preferable range of the thickness unevenness (thickness unevenness in the maximum recessed portion and the entire width direction) in the film width direction in the entire length of the film roll is as described above.
  • the evaluation method used in the present invention is as follows. In addition, when there is no description in particular, 1 m of films were removed from a film roll surface layer, and the film or film roll of the surface layer part after this removal was evaluated.
  • Thermal contraction rate in the main contraction direction The film is cut into a square of 10 cm ⁇ 10 cm and treated for 10 seconds in a no-load state in hot water at a hot water temperature of 90 ° C. ⁇ 0.5 ° C. for heat shrinkage, and then the film in the transverse direction (main shrinking direction) The dimensions were measured, and the heat shrinkage was determined according to the following equation (1).
  • Thermal contraction rate ((length before contraction ⁇ length after contraction) / length before contraction) ⁇ 100 (%)
  • Chips A and C having the compositions shown in Table 1 were obtained by the same method as in Synthesis Example 1.
  • NPG is neopentyl glycol
  • BD is butanediol
  • CHDM is cyclohexane dimethanol.
  • SiO 2 Sisia 266 manufactured by Fuji Silysia Co., Ltd.
  • the intrinsic viscosity was 0.73 dl / g for chips A, C and E, and 0.92 dl / g for chip D.
  • Example 1 Method of producing heat shrinkable film>
  • the chips A, B, C and D were separately predried and mixed with 20% by mass of chip A, 5% by mass of chip B and 60% by mass of chip C and 15% by mass of chip D as shown in Table 2.
  • three types of raw materials were charged into the extruder while stirring using an agitator immediately above the extruder.
  • the mixed resin is melted at 260 ° C., extruded from a T-die at a shear rate of 190 sec -1 , a draft ratio of 30 and brought into contact with a rotating metal roll cooled to a surface temperature of 30 ° C.
  • An unstretched film of 138 ⁇ m was obtained.
  • the Tg of the unstretched film at this time was 69.degree.
  • the unstretched film was introduced into a tenter (lateral stretching machine).
  • the temperature of the preheating step was heated to 90 ° C.
  • the film was stretched 1.5 times at a stretching temperature of 75 ° C.
  • the one-step stretched film was held at 75 ° C. and then stretched 1.5 times (total 2.25 times) at 72 ° C. in the second step of stretching.
  • the two-step stretched film was gripped at 72 ° C., and then stretched at a temperature of 70 ° C. by 2.44 times (5.5 times in total) in a third step of stretching.
  • the film stretched 5.5 times in three steps was heat-treated at 80 ° C. for 10 seconds under tension. Thereafter, the film was cooled, both edges were cut and removed, and wound into a roll with a width of 4200 mm, whereby a 25 ⁇ m thick stretched film was continuously produced over a predetermined length.
  • the transversely stretched film obtained above was slit with a slitter in a size of 2200 mm, 1200 mm and 800 mm so as to have a winding length of 15000 m.
  • the slit was started at an initial tension of 100 N / m and an initial surface pressure of 310 N / m.
  • the tension was reduced at a ratio of 0.239% / m from 500 m to 14700 m, and the tension was 66 N / m from 14700 m to 15000 m.
  • slitting was performed so that the surface pressure was constant at 310 N / m. In this way, slitting was performed to obtain film rolls having widths of 2200 mm, 1200 mm, 800 mm, and a winding length of 15000 m. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3.
  • Example 2 A film roll was obtained in the same manner as in Example 1 except that the chip C described above was changed to a chip E. Further, the Tg at this time was 69 ° C. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film had good results as in Example 1.
  • Example 3 A film roll was obtained in the same manner as Example 1, except that the thickness of the unstretched film was 209 ⁇ m, the preheating temperature in transverse stretching was changed from 90 ° C. to 95 ° C., and the obtained film thickness became 38 ⁇ m. . And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film had good results as in Example 1.
  • Example 4 A film roll was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was 83 ⁇ m, and the obtained film thickness was 15 ⁇ m. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film had good results as in Example 1.
  • Comparative Example 1 The chips A, B, C and D were separately predried and mixed with 20% by mass of chip A, 5% by mass of chip B and 60% by mass of chip C and 15% by mass of chip D as shown in Table 2.
  • the mixed resin is melted at 260 ° C., extruded from a T-die at a shear rate of 190 sec -1 , a draft ratio of 30 and brought into contact with a rotating metal roll cooled to a surface temperature of 30 ° C.
  • An unstretched film of 138 ⁇ m was obtained.
  • the Tg of the unstretched film at this time was 69.degree.
  • the unstretched film was introduced into a tenter (lateral stretching machine).
  • the temperature of the preheating step was heated to 90 ° C. Thereafter, it was stretched at once at 75 ° C. and 5.5 times.
  • the 5.5-fold transversely stretched film was heat-treated at 80 ° C. for 10 seconds under tension. Thereafter, the film was cooled, both edges were cut and removed, and wound into a roll with a width of 4200 mm, whereby a 25 ⁇ m thick stretched film was continuously produced over a predetermined length.
  • the transversely stretched film obtained above was slit with a slitter in a size of 2200 mm, 1200 mm and 800 mm so as to have a winding length of 15000 m.
  • the slit was started at an initial tension of 100 N / m and an initial surface pressure of 310 N / m.
  • the tension was reduced at a ratio of 0.239% / m from 500 m to 14700 m, and the tension was 66 N / m from 14700 m to 15000 m.
  • slitting was performed so that the surface pressure was constant at 310 N / m. In this way, slitting was performed to obtain film rolls having widths of 2200 mm, 1200 mm, 800 mm, and a winding length of 15000 m.
  • the evaluation results are shown in Table 3. The unevenness in thickness of the recess was bad, and the film was checked for slack.
  • Comparative example 2 A film roll was obtained in the same manner as Comparative Example 1 except that the thickness of the unstretched film was 209 ⁇ m, the preheating temperature in transverse stretching was changed from 90 ° C. to 95 ° C., and the obtained film thickness became 38 ⁇ m. . And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film was checked for slack in the film as in Comparative Example 1. In addition to the results of Table 3 (film roll surface layer), all samples of 1000 m were evaluated for slack, and as a result, all samples of the above three film rolls were x (sag is present at one or more points).
  • the heat-shrinkable polyester film roll of the present invention has good slack as described above, it can be suitably used in processing such as printing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Winding Of Webs (AREA)
  • Wrappers (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

【課題】良好な巻き特性、特に弛みに対して良好な熱収縮性ポリエステル系フィルムロールを提供すること。 【解決手段】 温湯中90℃・10秒でのフィルム主収縮方向の収縮率が30%以上である熱収縮性ポリエステル系フィルムが巻き取られてなるフィルムロールで、該熱収縮性ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(5)を満たすことを特徴とする熱収縮性ポリエステル系フィルムロール。 (1)フィルムロール巻長が2000m以上25000m以下 (2)フィルムロール幅が400mm以上2500mm以下 (3)フィルム厚みが5μm以上40μm以下 (4)フィルムロールの表層におけるフィルム幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより求めた最大凹部の厚みムラが10%以下(5)フィルムロール表層の巻硬度が400以上800以下

Description

熱収縮性ポリエステル系フィルムロール
 本発明は、熱収縮性ポリエステル系フィルムを巻き取ってなるフィルムロールに関する。さらに詳しくは、フィルムロールの弛みが良好で、印刷や加工する際のロスが少ない熱収縮性フィルムロールに関する。
 近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
 また、熱収縮性フィルムとしては、ラベル製造時の取扱いの面から、一般的に、幅方向に大きく収縮させるものが利用される。それゆえ、従来の熱収縮性ポリエステル系フィルムは、加熱時に幅方向への十分な収縮力を発現させるために、幅方向へ高倍率の延伸することによって製造されていた。
 ところが、熱収縮性ラベルは最終的にゴミとして廃棄される事が多く、環境対応から薄肉化が求められている。厚みが薄くなる事によって、腰感が下がりフィルムをスリットした後のフィルムロールの外観不良が生じて不具合が露呈する。そのためフィルムロールに印刷や加工を行う際にトラブルが生じる。特に弛みが生じている位置は平面性が悪く、フィルムロール幅方向で弛みが生じている位置は印刷抜け等が生じてしまい、ロスとなる課題が有る。フィルムの薄膜化、印刷の高速化および多色化により、弛みに起因するこれらの悪さはより顕在化しており、従来は問題とはならず許容されてきた範囲の弛みをフィルムに有するフィルムロールでは適用が困難であることを、本発明者らは新たに知見した。
熱収縮性フィルムからチューブ状ラベルを形成するには、フィルムの幅方向片端部をもう一方の端部に重ねて固定する必要がある。この固定方法としては、従来から、溶剤接着法(特許文献1)や接着剤を使用する方法(特許文献2)等が用いられてきた。それらの中でも溶剤接着法は高速でチューブ状ラベルへの加工が可能であり、広く用いられている。
この溶剤接着法で熱収縮性ポリエステルフィルムの面同士をチューブ状ラベルに加工する工程(チュービング工程)では、生産効率を向上させてコストダウンが可能なため、多くのラベルがこの方式を用いて作られている。しかし溶剤を接着する箇所に弛みが生じていると、接着強度不足や接着強度の不揃いが生じて、良好なチューブ状の熱収縮ラベルを得ることは難しい。チュービング工程においても、加工の高速化により、弛みに起因する上記の悪さはより顕在化しており、従来は問題とはならず許容されてきた範囲の弛みをフィルムに有するフィルムロールでは適用が困難であることを、本発明者らは新たに知見した。
特許第3075019号公報 特開2014-43520号公報 特許第5552841号公報 特許第3678220号公報 特開2001-151907号公報
上記特許文献3では、ポリイミドフィルムロールの表面に皺等が生じがたいフィルムロールの巻取り条件が示されている。しかし弛みに関する改善効果は不明で、またフィルムロールのフィルム厚みムラの改善に関して記述されていない。
上記特許文献4では、熱収縮性ポリエステルフィルムロールにおいて、ロール内での熱収縮性や溶剤接着性の変動が少なく、厚みムラが良好なフィルムロールについて述べられている。しかしフィルムロールや局所的な厚みムラや弛みについては述べられていない。
本発明の目的は、上記従来の熱収縮性ポリエステルフィルム、または熱収縮性多層ポリエステルフィルムからなるフィルムロールが有する問題点を解消し、フィルムの弛みが少ない熱収縮性ポリエステルフィルムロールを提供することにある。
 本発明者らは上記課題を解決するため、鋭意検討した結果、本発明を完成するに至った。即ち本発明は以下の構成よりなる。
1.温湯中90℃・10秒でのフィルム主収縮方向の収縮率が30%以上である熱収縮性ポリエステル系フィルムが巻き取られてなるフィルムロールで、該熱収縮性ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(5)を満たすことを特徴とする熱収縮性ポリエステル系フィルムロール。
(1)フィルムロール巻長が2000m以上25000m以下
(2)フィルムロール幅が400mm以上2500mm以下
(3)フィルム厚みが5μm以上40μm以下
(4)フィルムロールの表層におけるフィルム幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより求めた最大凹部の厚みムラが10%以下(5)フィルムロール表層の巻硬度が400以上800以下
2.フィルムロールの表層から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向の厚みムラにおいて、前記最大凹部における最大厚み差とフィルム平均厚みより求めた厚みムラが全ての試料で10%以下である1.に記載の熱収縮性ポリエステル系フィルムからなるフィルムロール。
3.前記最大凹部における凹部の両端のいずれかの最大厚み箇所との幅方向屈折率の差の絶対値が0.01以下である1.~2.のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
4.フィルムロールの幅方向全体の厚みムラが13%以下である1.~3.のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
5.フィルムの巻外面と巻内面の静摩擦係数と動摩擦係数がいずれも0.1以上0.8以下である1.~4.のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
 本発明の熱収縮性ポリエステル系フィルムロールはフィルムの弛みが少ない。その為、印刷や溶剤接着等の後加工でトラブルが少なく良好に使用する事ができる。
本発明のフィルム幅方向厚みムラにおける最大凹部を示す図である。 本発明のフィルムの横延伸工程の一例を示す図である。
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、エチレンテレフタレートを主たる構成成分とするものである。すなわち、エチレンテレフタレートを50モル%以上、好ましくは60モル%以上含有するものである。本発明のポリエステルを構成する他のジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等を挙げることができる。
 脂肪族ジカルボン酸(たとえば、アジピン酸、セバシン酸、デカンジカルボン酸等)を含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不十分である。
 また、3価以上の多価カルボン酸(たとえば、トリメリット酸、ピロメリット酸およびこれらの無水物等)を含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 本発明で使用するポリエステルを構成するジオール成分としては、エチレングリコール、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、1,4-シクロヘキサンジメタノール等の環状ジオールや、炭素数3~6個を有するジオール(たとえば、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等)のうちの1種以上を含有させて、ガラス転移点(Tg)を60~80℃に調整したポリエステルが好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、全ポリステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計が15モル%以上であることが好ましく、17モル%以上であることがより好ましく、特に20モル%以上であることが好ましい。ここで、非晶質成分となりうるモノマーとしては、たとえば、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル2-エチル1,3-プロパンジオール、2,2-イソプロピル1,3-プロパンジオール、2,2-ジn-ブチル1,3-プロパンジオール、1,4-ブタンジオール、ヘキサンジオールを挙げることができるが、その中でも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールやイソフタル酸を用いるのが好ましい。
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステル中には、炭素数8個以上のジオール(たとえばオクタンジオール等)、または3価以上の多価アルコール(たとえば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を、含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 また、本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、たとえば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、滑剤として微粒子を添加することによりポリエチレンテレフタレート系樹脂フィルムの作業性(滑り性)を良好なものとするのが好ましい。微粒子としては任意のものを選択することができるが、たとえば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等を挙げることができる。また、有機系微粒子としては、たとえば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。
 熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、たとえば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
 さらに、本発明の熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
 なお、本発明の熱収縮性ポリエステル系フィルムには、ポリエステル樹脂層を少なくとも1層有する積層型の多層ポリエステルフィルムも含まれる。ポリエステル樹脂層が2層以上積層されるときは、そのポリエステル樹脂層は同じ組成のポリエステルであっても、異なる組成のポリエステルであってもよい。また、他の層として積層可能な層は、熱可塑性樹脂層であれば、特に限定されないが、価格や熱収縮特性から、ポリスチレン系樹脂層であることが好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式1により算出したフィルムの主収縮方向の熱収縮率(すなわち、90℃の湯温熱収縮率)が、30%以上であることが必要である。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) ・・式1
 90℃における主収縮方向の湯温熱収縮率が30%を下回ると、収縮量が小さいために、熱収縮した後のラベルにシワや収縮不足が生じてしまうので、熱収縮フィルムとしては好ましくない。90℃における主収縮方向の湯温熱収縮率は好ましくは35%以上、より好ましくは40%以上である。
 また、本発明の熱収縮性ポリエステル系フィルムロール、または、熱収縮性多層ポリエステル系フィルムロールの巻長は、2000m以上25000m以下が好ましい。印刷等の加工において、巻長が長い方がロールを交換する頻度が低減し作業効率は良くなる。好ましくは3000m以上であり、更に好ましくは4000m以上、特に好ましくは5000m以上である。上限は特に無く巻長が長い方が好ましいが、発明者らは25000m巻長までしか確認できていない為、巻長25000mを上限とした。なお、フィルムロールの巻長が長くなるほどフィルムの面積は増加して弛みの欠点が発生する機会は増大するので、本発明の様態においてはフィルムロールの巻長が長いことは、より困難性を伴う。
また、本発明の熱収縮性ポリエステル系フィルムロールの幅は、400mm以上2500mm以下が好ましい。上限は特に無くフィルムロールの幅が長いと、印刷工程におけるロスが少なくて好ましいが、発明者らは2500mmまでしか確認できていない為、幅2500mmを上限とした。またフィルムロールの幅は広い方が、上記したように印刷等の加工における効率が上がるので、広い方が好ましい。好ましい幅は500mm以上であり、更に好ましくは600mm以上、特に好ましくは800mm以上である。なお、フィルムロールの幅が長くなるほどフィルムの面積は増加して弛みの欠点が発生する機会は増大するので、本発明の様態においてはフィルムロールの幅が長いことは、より困難性を伴う。
また、本発明の熱収縮性ポリエステル系フィルムの厚みは、5μm以上40μm以下が好ましい。フィルム厚みの上限は、35μm以下がより好ましく、30μm以下がさらに好ましい。本発明で確認したのが厚み5μmまでであったので5μm以上とした。またフィ
ルム厚みは厚い方が腰感があり、より弛みが少なく好ましい傾向であるので、厚い分には構わないが、厚みを薄くすることによる環境対応には逆行することになる。なお、フィルム厚みは薄いほうがより弛みは発生しやすくなるので、本発明の様態においてはフィルム厚みが薄いことは、より困難性を伴う。
また、本発明の熱収縮性ポリエステル系フィルムロールは、フィルムロールの幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより下式2により求めた最大凹部の厚みムラが10%以下が好ましい(例を図1に示す)。
凹部の厚みムラ=(凹部の最大高さ厚み-凹部の最小高さ厚み)÷平均厚み×100(%)  ・・式2                         
 なお、本発明における凹部とは、後述のように連続接触式厚み計を用いて測定したフィルム幅方向の厚みムラにおいて、その点を境にして測定方向の両方向に対して厚みが減少する点を山部とし、その点を境にして測定方向の両方向に対して厚みが増加する点を谷部としたとき、山部―谷部―山部となる厚みパターンの部分をさす。なお、このような厚みパターンを有しないフィルム、すなわち凹部を有さないフィルムは本発明には含まれない。凹部における2つの山部と1つの谷部において、各山部と谷部の厚み差のいずれか大きい値(同値の場合は両方の値)を、凹部における最大厚み差と称する。
最大凹部の厚みムラが10%より高いと、凹部の位置をスリットしてフィルムロールとして巻き取る際に、エアーが巻き込まれて空気が溜まり、その後フィルムロールを保管している際にエアー抜けが生じて皺や弛みの原因となり好ましくない。また凹部は、幅方向の他の箇所より厚みが薄いのでスリットしてフィルムロールとして巻き取る際の張力により長手方向に伸ばされてしまう。そのためフィルムロールで凹部の箇所は、長手方向の長さが幅方向の他位置より長くなり、その箇所が弛みとなる。特に凹部とその両端の厚み差が大きいときに顕在化することが本発明者らの調査により分かった。好ましい最大凹部の厚みムラは9%以下であり、更に好ましくは8%以下である。最大凹部の厚みムラは低い方が好ましく、本発明者らのテストにおいては3%が最も低かった。
 上記に示したような凹部の厚みムラは、以下実施例で示すような連続接触式厚み計を用いて測定すべきである。例えば特許文献5に示されているように、測定方向に30mm間隔から500mm間隔で厚みの測定を行うと、凹部の最大厚み差が未測定位置になる可能性があり、正確な凹部に厚み差を求めることが困難である。本発明における厚みムラは、連続接触式厚み計を用いて測定したものをさす。
 また本発明の熱収縮性ポリエステルフィルムのフィルムロールの表層から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向の厚みムラにおいて、前記最大凹部における最大厚み差とフィルム平均厚みより求めた厚みムラが全ての試料で10%以下であることが好ましい。
 前述しているが、最大凹部の厚みムラが10%より高いと、凹部の位置をスリットしてフィルムロールとして巻き取る際に、エアーを巻き込まれて空気が溜まり、その後フィルムロールを保管しているさいにエアー抜けが生じて皺や弛みの原因となり好ましくない。また凹部は、幅方向の他の箇所より厚みが薄いのでスリット時の張力により長手方向に伸ばされてしまう。そのためフィルムロールで凹部の箇所は、長手方向の長さが幅方向の他位置より長くなり、その箇所が弛みとなる。特に凹部とその両端の厚み差(前記谷部と山部の厚み差)が大きいときに顕在化することが本発明者らの調査により分かった。そのため、ロールの幅方向の凹部の厚みムラが重要である。好ましい凹部の厚みムラは9%以下であり、更に好ましくは8%以下である。凹部の厚みムラは低い方が好ましく、本発明者らのテストにおいては3%が最も低かった。
 また、本発明の熱収縮性ポリエステル系フィルムロールの幅方向厚みパターンにおける前記最大凹部において、凹部の両端のいずれかの最大厚み箇所(前記2つの山部のうち厚みのより大きい山部)と凹部の最小厚み箇所(前記谷部)との幅方向屈折率の差の絶対値が0.01以下であることが好ましい。凹部の両端のいずれかの最大厚み箇所と凹部の最小厚み箇所との幅方向屈折率の差の絶対値が0.01より高いと、凹部の最小厚み箇所と最大厚み箇所は長手方向の伸び易さが異なり、スリット時の張力により長手方向に伸ばされてしまう差が生じる。そのためフィルムロールで長手方向の長さが長くなり、その箇所が弛みとなる。好ましい前記幅方向屈折率差の絶対値は0.008以下であり、更に好ましくは0.006以下である。前記幅方向屈折率差の絶対値は低い方が好ましく、本発明者らのテストにおいては0.0003が最も低かった。
 また、本発明の熱収縮性ポリエステル系フィルムロールの幅方向全体の厚みムラは、下式3で表される式で13%以下である。厚みムラが悪いと皺が生じ易くなるので好ましくない。好ましくは10%以下で、更に好ましいのは7%以下である。厚みムラの値は、小さければ小さいほど好ましい。なお、前述のように弛みの発生について、より大きい要因となるのは前記の最大凹部における厚みムラの大きさである。
   {(厚みの最大値―厚みの最小値)÷平均厚み}×100(%) ・・式3
 また、本発明の熱収縮性ポリエステル系フィルムの巻外面と巻内面のフィルム面同士の静摩擦係数と動摩擦係数はいずれも0.1以上0.8以下であることが好ましい。0.1より低いと滑りすぎて端面のズレが生じる可能性がある。また0.8より大きいと、スリット時にエアーの巻き込み量が多くなり、フィルムロール時に凹部のエアー抜けにより弛みやシワが入り易くなり好ましくない。好ましくは0.13以上0.77以下であり、更に好ましくは0.16以上0.74以下である。
 以下、本発明の熱収縮性ポリエステル系フィルムロールの好ましい製造方法について説明する。
 本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により、延伸して熱処理することによって得ることができる。積層する場合は、複数の押し出し機やフィードブロック、マルチマニホールドを用いればよい。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分とを公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルを2種以上混合してフィルムの原料として使用する。
 2種以上の原料を混合すると押出し機に投入されるさいに、原料供給でバラツキ(所謂原料偏析)が生じ、それによりフィルム組成のバラツキが発生して幅方向への厚みムラ(特に最大凹部)の原因となる。それを防止するために押出し機の直上の配管やホッパーに攪拌機を設置して原料を均一に混合した後に溶融押出しをすることが望ましい。
 具体的なフィルムおよびラベルの製造方法としては、原料チップをホッパドライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥し、押出し機上のホッパー内で攪拌機を用いて原料を均一に混合し、混合した原料を200~280℃の温度でフィルム状に押し出す。あるいは、上記と同様に均一に混合した未乾燥のポリエステル原料をベント式押し出し機内で水分を除去しながら同様にフィルム状に押し出す。押出しに際してはTダイ法、チューブラ法等、既存のどの方法を採用しても構わないが、厚みムラを良好にするにはTダイ法が好ましい。なお、押し出し時の温度は280℃を超えないようにする。溶融温度が高すぎると、ラベルとした際の極限粘度が低下し、クラックが生じやすくなるため好ましくない。
 また、ダイス出口でのせん断速度は、以下の式4より求めた。
   せん断速度
       γ=6Q/(W×H)          ・・式4
         γ;せん断速度(sec-1
         Q;原料の押出し機からの吐出量(cm3/sec)
         W;ダイス出口の開口部の幅(cm)
         H;ダイスのLipギャップ(cm)
 せん断速度は高い方が幅方向の厚みムラ(特に最大凹部)が低減できるので好ましい。せん断速度が高い方が、Tダイ出口での樹脂吐出時の圧力が安定するためである。好ましいせん断速度は100sec-1以上であり、更に好ましくは150sec-1以上、特に好ましくは170sec-1以上である。
 ドラフト比は高い方が長手方向の厚みムラが良好となり好ましいが、ドラフト比が高いとダイスの樹脂吐出部に樹脂カス等が付着し、生産性が悪くなるので高すぎるのは好ましくない。またドラフト比が低いと、長手方向の厚みムラが悪くなるので好ましくない。ドラフト比は10以上80以下が好ましく、更に好ましくは20以上70以下である。
押出し後は、急冷して未延伸フィルムを得る。なお、この「未延伸フィルム」には、フィルム送りのために必要な張力が作用したフィルムも含まれるものとする。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより、実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 その後、上記で得られた未延伸フィルムを、横延伸機(所謂テンター)で必要により80~120℃、好ましくは90~110℃で予熱した後、横方向(押し出し方向に対して直交する方向)に3.5倍以上、好ましくは4倍以上7倍以下に延伸する。延伸温度は、65℃以上80℃以下、好ましくは70℃以上75℃以下である。
 また横延伸は2段延伸以上5段延伸以下で多段延伸をすることが好ましい。多段延伸によりにより、各々の延伸温度を変更することにより延伸応力を変化させることが可能となり幅方向の厚みムラ(最大凹部及び幅方向全体)を低下できるので好ましい。好ましくは3段延伸以上である。横延伸機の延伸パターンの例(3段延伸)を図2に示す。図2のように、多段延伸においては各段階での延伸終了後に定長を維持するようなパターンを設けることが好ましい。また、各段階の延伸において2℃以上の温度差をつけて1段目の延伸から最終段目の延伸にかけて温度を低下させる温度パターンとすることが好ましい。
 また、横延伸後は、延伸温度より1℃~30℃高い温度で、熱処理することが好ましい。熱処理は、延伸後のフィルムの緊張状態を緩和するために行われ、熱処理時の温度で熱収縮率の調整を行い、また自然収縮率を減少させるのにも効果がある。これにより、本発明のラベルとなる熱収縮性ポリエステル系フィルムが得られる。
 得られた熱収縮性ポリエステルフィルムを中間製品である広幅ロールとして巻取り、次いでスリッターを用いて指定の幅、巻長にスリットして巻取りコア(芯)に巻取り、熱収縮性ポリエステル系フィルムロールが得られる。巻取りコアとしては、通常、3インチ、6インチ、8インチ等のプラスチックコア、金属製コアあるいは紙管を使用することができる。なお、該フィルムロールの好ましい巻長及び幅については、前述の通りである。
 加えて、以下のスリット条件を採用することによりスリットの際に発生する弛みを低減することが好ましい。
 具体的なスリットの条件としては、初期張力を70~120N/m、好ましくは80~110N/m、初期面圧を200~400N/m、好ましくは250~350N/mでスリットを開始する。初期張力が120N/mより高いと凹部の厚みムラ部がスリット時に張力により若干伸ばされてしまい弛みの原因となるので好ましくない。また初期張力が70N/m以下であると、フィルムをスリットで巻き取るさいに張力が不足し、フィルムロールの端面が不揃いとなり(所謂端面ズレ)が生じて好ましくない。巻長が500mに達した後、張力を減少させることが望ましい。具体的にはスリット終了前300m時の張力が初期張力の50~80%、好ましくは60~70%となるように巻長と相関するように一定して張力を低下させることが望ましい。また面圧は巻長全長に亘り、できるだけ初期面圧±5%以下であると好ましく、更に好ましくは初期面圧±3%以下である。
 また上記のようにスリットしたフィルムロール表層の巻硬度は400以上800以下であることが好ましい。フィルムロール表層の巻硬度が400未満であると、例えば倉庫でフィルムロールを半年間保管した時にスリット時に巻き込まれたエアーが抜け、フィルムロールが弛むので好ましくない。またフィルムロール表層の巻硬度が800より高いと、フィルムロールが硬巻となり、前述したような凹部が圧縮されることによって弛みが生じるので好ましくない。好ましいフィルムロール表層の巻硬度は450以上750以下であり、さらに好ましくは500以上700以下である。なお、本発明における巻硬度は、後述の実施例の記載にしたがって測定した巻硬度をさす。
 一般に工業的に生産されるフィルムロールにおいては、連続して製膜したフィルムが連続的に巻き取られており、製膜条件が一定であれば、フィルム幅方向の厚みムラの程度は巻長全長に亘ってほぼ一定となるが、製膜時の各工程の微小な変動により、巻長全長に対して若干の変動が起きる。フィルム幅方向の厚みムラは、巻長全長に亘り制御されていることが好ましい。巻長全長に亘り厚みムラが制御されているかどうかは、例えばフィルムロールのフィルムを表層より一定間隔の巻長毎に試料を採取して、各試料の厚みムラを測定することにより確認することができる。本発明のフィルムロールにおいては、厚みムラはフィルムロールの表層部分の試料を採取して測定して、該フィルムロールにおける代表値とすることが可能である。本発明においては後述の実施例に記載されているように、フィルムロール表層よりフィルムを1m除去した部分より試料を採取して測定して代表値とするものである。フィルムロール表層におけるフィルム幅方向の厚みムラ(最大凹部および幅方向全体の厚みムラ)の好適な範囲は前述の通りである。
 本発明の好ましい様態は、巻長1000m毎に試料を採取して測定し、全ての試料について厚みムラ(最大凹部および幅方向全体の厚みムラ)が所定範囲となることである。フィルムロール全長におけるフィルム幅方向の厚みムラ(最大凹部および幅方向全体の厚みムラ)の好適な範囲は前述の通りである。
 次に実施例及び比較例を用いて、本発明を具体的に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。
 本発明において用いた評価方法は下記の通りである。なお、特に記載の無い場合はフィルムロール表層からフィルムを1m除去し、該除去後の表層部分のフィルム又はフィルムロールを評価した。
[主収縮方向の熱収縮率]
 フィルムを10cm×10cmの正方形に裁断し、温水温度90℃±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの横方向(主収縮方向)の寸法を測定し、下記(1)式に従い熱収縮率を求めた。
熱収縮率=((収縮前の長さ-収縮後の長さ)/収縮前の長さ)×100(%) 式(1)
[幅方向全体の厚みムラ]
 ロールをスリッターに設置した。その後、ロール表層から1m除去した後にフィルムロールを幅方向に全幅、長手方向に40mmにサンプリングし、ミクロン計測器社製の連続接触式厚み計を用いて、5m/sで連続的に幅方向の厚みを測定した。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式(2)から、フィルム幅方向の厚みムラを算出した。
 厚みムラ={(Tmax.-Tmin.)/Tave.}×100 (%)  式(2)
[凹部の厚みムラ]
 上記した幅方向の連続接触厚みを求め、図1に示すように最大凹部になっている箇所を探した。下式(3)より最大凹部の厚みムラを求めた。また最大凹部の両端での高さが異なるときは、高い方の値を選択して求めた。
 最大凹部の厚みムラ=(最大凹部の最大高さ厚み-最大凹部の最小高さ厚み)÷平均厚み×100(%)   式(3)
[ロール巻長での、ロール幅方向最大凹部の厚みムラ]
 ロールをスリッターに設置した。その後、ロール表層から1m除去した後に上述した方法でロール幅方向の最大凹部の厚みムラを測定した。測定後、スリッターで1000m巻返して上述した方法でロール幅方向の凹部の厚みムラを測定した。1000m巻返してロール幅方向の最大凹部の厚みムラを測定を繰り返し行った。
[最大凹部と最大凹部両端との屈折率の差]
 上記した最大凹部と最大凹部両端の厚みが高い方の位置のフィルムの幅方向の屈折率をアッベ屈折計を用いて測定した。そして下式(4)より差を求め、絶対値とした。
 最大凹部と最大凹部両端との屈折率の差=|最大凹部の幅方向屈折率―最大凹部の両端の高い方の位置の幅方向屈折率|  式(4)
[摩擦係数]
 JIS K-7125に準拠し、引張試験機(ORIENTEC社製テンシロン)を用
い、23℃・65%RH環境下で、フィルムの表面と裏面とを接合させた場合の静摩擦係数と動摩擦係数を求めた。なお、上側のフィルムを巻き付けたスレッド(錘)の重量は、1.5kgであり、スレッドの底面積の大きさは、縦63mm×横63mmであった。また、摩擦測定の際の引張速度は、200mm/min.であった。
[弛みの評価]
 フィルムロールから幅方向には全幅、長手方向へは4m以上6m以下にサンプリングし平面台の上にのせた。この時、長手方向へ連続して平面性が他の部分よりも少しでも悪くなっている帯状の箇所が目視で確認されればそれを弛みとした。以下のように評価を行った。
  弛み無し :  ○
  弛みが1箇所以上有り  :  ×
[巻き硬度の評価]
 スイス プロセオ社の硬さ試験機パロテスター2を使用して、ロール幅方向に端部から100mm間隔で測定を行った。ロール幅方向に測定した値の平均値を、測定値として用いた。
 [ポリエステル原料の調製]
 合成例1(ポリエステルの合成)
 エステル化反応缶に、57036質量部のテレフタル酸(TPA)、33244質量部のエチレングリコール(EG)、15733質量部のネオペンチルグリコール(NPG)、重縮合触媒として23.2質量部の三酸化アンチモン、5.0質量部の酢酸ナトリウム(アルカリ金属化合物)および46.1質量部のトリメチルホスフェート(リン化合物)を仕込み、0.25MPaに調圧し、220~240℃で120分間撹拌することによりエステル化反応を行った。反応缶を常圧に復圧し、3.0質量部の酢酸コバルト・4水塩、および124.1質量部の酢酸マグネシウム/4水塩を加え、240℃で10分間撹拌した後、75分かけて1.33hPaまで減圧すると共に、280℃まで昇温した。280℃で溶融粘度が4500ポイズになるまで撹拌を継続(約70分間)した後、ストランド状で水中に吐出した。吐出物をストランドカッターで切断することにより、チップBを得た。チップBの極限粘度は0.73dl/gであった。
 合成例2
 合成例1と同様な方法により、表1に示した組成のチップA、Cを得た。表中、NPGはネオペンチルグリコール、BDはブタンジオール、CHDMはシクロヘキサンジメタノールの略記である。なお、チップAには、滑剤としてSiO2(富士シリシア社製サイリシア266)をポリエステルに対して3,000ppmの割合で添加した。極限粘度は、チップA、C、Eが0.73dl/g、チップDが0.92dl/gであった。
Figure JPOXMLDOC01-appb-T000001
 実施例1
 <熱収縮性フィルムの製造方法>
 上記したチップA、チップB、チップC、およびチップDを別個に予備乾燥し、表2に示したように、チップA20質量%、チップB5質量%チップC60質量%およびチップD15質量%で混合して押出機に投入した。この時 押出し機の直上で攪拌機を用いて攪拌しながら3種類の原料を押出し機へ投入した。この混合樹脂を260℃で溶融させてTダイからせん断速度190sec-1、ドラフト比30の条件で押し出し、表面温度30℃に冷却された回転する金属ロールに接触させて急冷することにより、厚さ138μmの未延伸フィルムを得た。このときの未延伸フィルムのTgは69℃であった。
 上記未延伸フィルムをテンター(横延伸機)へ導いた。予熱工程の温度を90℃に加熱した。その後に、1段目の延伸工程において延伸温度75℃で1.5倍延伸した。1段延伸されたフィルムを75℃で把持し次いで2段目の延伸工程で72℃で1.5倍(トータルで2.25倍)で延伸した。2段延伸されたフィルムを72℃で把持し次いで3段目の延伸工程で70℃で2.44倍(トータルで5.5倍)で延伸した。3段で5.5倍横延伸したフィルムを80℃で10秒間、緊張状態で熱処理した。その後、冷却し、両縁部を裁断除去して幅4200mmでロール状に巻き取ることによって、厚さ25μmの延伸フィルムを所定の長さにわたって連続的に製造した。
 上記得られた横延伸フィルムをスリッターで、幅2200mm、1200mm、800mmのサイズに巻長15000mになるようにスリットした。
 具体的なスリットの条件としては、初期張力を100N/m、初期面圧を310N/mでスリットを開始した。巻長が500mから14700mまで、0.239%/mの比率で張力を減少させ、14700mから15000mは張力66N/mとなるようにした。また面圧は310N/mで一定となるようにスリットを行った。
このようにスリットして幅2200mm、1200mm、800mm、巻長15000mのフィルムロールを得た。
 そして得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。目標の特性となるフィルムが得られ、弛みが良好な結果であった。なお、弛みについては表3の結果(フィルムロール表層)に加えて1000m毎の試料を全て評価した結果、上記3つのフィルムロールの全ての試料において○(弛み無し)であった。
実施例2
 上記したチップCをチップEに変更した以外は実施例1と同様の方法でフィルムロールを得た。また、この時のTgは69℃であった。
 そして得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムは実施例1同様に良好な結果であった。
実施例3
 未延伸フィルムの厚みを209μmとし、横延伸での予熱温度を90℃から95℃に変更し、得られたフィルム厚みが38μmとなった以外は実施例1と同様の方法でフィルムロールを得た。
 そして得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムは実施例1同様に良好な結果であった。
実施例4
 未延伸フィルムの厚みを83μmとし、得られたフィルム厚みが15μmとなった以外は実施例1と同様の方法でフィルムロールを得た。
 そして得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムは実施例1同様に良好な結果であった。
比較例1
 上記したチップA、チップB、チップC、およびチップDを別個に予備乾燥し、表2に示したように、チップA20質量%、チップB5質量%チップC60質量%およびチップD15質量%で混合して押出機に投入した。この混合樹脂を260℃で溶融させてTダイからせん断速度190sec-1、ドラフト比30の条件で押し出し、表面温度30℃に冷却された回転する金属ロールに接触させて急冷することにより、厚さ138μmの未延伸フィルムを得た。このときの未延伸フィルムのTgは69℃であった。
 上記未延伸フィルムをテンター(横延伸機)へ導いた。予熱工程の温度を90℃に加熱した。その後に、75℃で5.5倍で一度に延伸した。5.5倍横延伸したフィルムを80℃で10秒間、緊張状態で熱処理した。その後、冷却し、両縁部を裁断除去して幅4200mmでロール状に巻き取ることによって、厚さ25μmの延伸フィルムを所定の長さにわたって連続的に製造した。
 上記得られた横延伸フィルムをスリッターで、幅2200mm、1200mm、800mmのサイズに巻長15000mになるようにスリットした。
 具体的なスリットの条件としては、初期張力を100N/m、初期面圧を310N/mでスリットを開始した。巻長が500mから14700mまで、0.239%/mの比率で張力を減少させ、14700mから15000mは張力66N/mとなるようにした。また面圧は310N/mで一定となるようにスリットを行った。
このようにスリットして幅2200mm、1200mm、800mm、巻長15000mのフィルムロールを得た。
 そして得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。凹部の厚みムラが悪く、フィルムに弛みを確認した。
比較例2
 未延伸フィルムの厚みを209μmとし、横延伸での予熱温度を90℃から95℃に変更し、得られたフィルム厚みが38μmとなった以外は比較例1と同様の方法でフィルムロールを得た。
 そして得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムは比較例1同様にフィルムに弛みを確認した。なお、弛みについては表3の結果(フィルムロール表層)に加えて1000m毎の試料を全て評価した結果、上記3つのフィルムロールの全ての試料において×(弛みが1箇所以上有り)であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の熱収縮性ポリエステルフィルムロールは、上記の如く弛みが良好なので、印刷等の加工において好適に用いることができる。

Claims (5)

  1.  温湯中90℃・10秒でのフィルム主収縮方向の収縮率が30%以上である熱収縮性ポリエステル系フィルムが巻き取られてなるフィルムロールで、該熱収縮性ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(5)を満たすことを特徴とする熱収縮性ポリエステル系フィルムロール。
    (1)フィルムロール巻長が2000m以上25000m以下
    (2)フィルムロール幅が400mm以上2500mm以下
    (3)フィルム厚みが5μm以上40μm以下
    (4)フィルムロールの表層におけるフィルム幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより求めた最大凹部の厚みムラが10%以下(5)フィルムロール表層の巻硬度が400以上800以下
  2.  フィルムロールの表層から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向の厚みムラにおいて、前記最大凹部における最大厚み差とフィルム平均厚みより求めた厚みムラが全ての試料で10%以下である請求項1に記載の熱収縮性ポリエステル系フィルムからなるフィルムロール。
  3.  前記最大凹部における凹部の両端のいずれかの最大厚み箇所との幅方向屈折率の差の絶対値が0.01以下である請求項1~2のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
  4.  フィルムロールの幅方向全体の厚みムラが13%以下である請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
  5.  フィルムの巻外面と巻内面の静摩擦係数と動摩擦係数がいずれも0.1以上0.8以下である請求項1~4のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
PCT/JP2018/032622 2017-09-27 2018-09-03 熱収縮性ポリエステル系フィルムロール WO2019065108A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/649,682 US11565459B2 (en) 2017-09-27 2018-09-03 Heat-shrinkable polyester-based film roll
KR1020207010421A KR102602093B1 (ko) 2017-09-27 2018-09-03 열수축성 폴리에스테르계 필름 롤
EP18861059.6A EP3689948A4 (en) 2017-09-27 2018-09-03 HEAT-SHRINKABLE POLYESTER-BASED FILM
CN201880061982.1A CN111164135B (zh) 2017-09-27 2018-09-03 热收缩性聚酯系薄膜卷
JP2018557157A JP7127544B2 (ja) 2017-09-27 2018-09-03 熱収縮性ポリエステル系フィルムロール
JP2022122876A JP7180813B2 (ja) 2017-09-27 2022-08-01 熱収縮性ポリエステル系フィルムロール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-186266 2017-09-27
JP2017186266 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065108A1 true WO2019065108A1 (ja) 2019-04-04

Family

ID=65902986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032622 WO2019065108A1 (ja) 2017-09-27 2018-09-03 熱収縮性ポリエステル系フィルムロール

Country Status (7)

Country Link
US (1) US11565459B2 (ja)
EP (1) EP3689948A4 (ja)
JP (4) JP7127544B2 (ja)
KR (1) KR102602093B1 (ja)
CN (1) CN111164135B (ja)
TW (1) TWI806903B (ja)
WO (1) WO2019065108A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466736A (zh) * 2019-10-02 2022-05-10 东洋纺株式会社 热收缩性聚酯系薄膜卷
EP3970689A4 (en) * 2019-05-16 2022-10-12 Toppan Inc. THIN FILM AND TRANSFER SHEET

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065108A1 (ja) * 2017-09-27 2019-04-04 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
EP3875409B1 (en) * 2018-10-30 2024-05-29 Toyobo Co., Ltd. Biaxially oriented polyester film roll

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075019B2 (ja) 1993-06-10 2000-08-07 東洋紡績株式会社 熱収縮性ポリエステル系チューブの製造方法
JP2001151907A (ja) 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd ポリ乳酸系収縮フィルムまたはシート
JP2003113257A (ja) * 2001-08-01 2003-04-18 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムロール
JP2004255671A (ja) * 2003-02-25 2004-09-16 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP3678220B2 (ja) 2001-08-03 2005-08-03 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール
JP2009226939A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2009226940A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
JP2013086263A (ja) * 2011-10-13 2013-05-13 Unitika Ltd 積層フィルム、フィルムロールおよびその製造方法
JP2014043520A (ja) 2012-08-28 2014-03-13 Henkel Japan Ltd ホットメルト接着剤
JP5552841B2 (ja) 2010-03-02 2014-07-16 宇部興産株式会社 樹脂フィルムロールの製造方法
JP2014195944A (ja) * 2013-03-29 2014-10-16 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP5872595B2 (ja) * 2007-01-17 2016-03-01 三菱樹脂株式会社 ポリエステル系熱収縮性フィルムロール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE502756T1 (de) * 2003-10-21 2011-04-15 Toyo Boseki Wärmeschrumpfbare polyesterfolie und rolle von wärmeschrumpfbarer polyesterfolie
US7871691B2 (en) 2004-05-14 2011-01-18 Teijin Dupont Films Japan Limited Oriented polyester film
JP2006226939A (ja) 2005-02-21 2006-08-31 Fujitsu Ten Ltd ナビゲーション装置、ナビゲーション装置における表示方法、及び、プログラム
KR100665170B1 (ko) * 2005-09-05 2007-01-04 도레이새한 주식회사 열수축성 폴리에스테르 필름
JP2007262365A (ja) * 2006-03-30 2007-10-11 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムロール及び熱収縮性ラベル
JP4560740B2 (ja) 2007-09-25 2010-10-13 東洋紡績株式会社 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
EP2639044B1 (en) * 2008-02-27 2018-05-30 Toyobo Co., Ltd. Tubular body label
KR100987065B1 (ko) * 2008-06-11 2010-10-11 에스케이씨 주식회사 열수축성 폴리에스터계 필름 및 그의 제조 방법
JP6337774B2 (ja) * 2013-05-16 2018-06-06 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6740577B2 (ja) * 2015-07-28 2020-08-19 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2019065108A1 (ja) 2017-09-27 2019-04-04 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
EP3747628B1 (en) 2018-01-31 2024-06-19 Toyobo Co., Ltd. Heat-shrinkable polyester-based film roll

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075019B2 (ja) 1993-06-10 2000-08-07 東洋紡績株式会社 熱収縮性ポリエステル系チューブの製造方法
JP2001151907A (ja) 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd ポリ乳酸系収縮フィルムまたはシート
JP2003113257A (ja) * 2001-08-01 2003-04-18 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムロール
JP3678220B2 (ja) 2001-08-03 2005-08-03 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール
JP2004255671A (ja) * 2003-02-25 2004-09-16 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP5872595B2 (ja) * 2007-01-17 2016-03-01 三菱樹脂株式会社 ポリエステル系熱収縮性フィルムロール
JP2009226939A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2009226940A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
JP5552841B2 (ja) 2010-03-02 2014-07-16 宇部興産株式会社 樹脂フィルムロールの製造方法
JP2013086263A (ja) * 2011-10-13 2013-05-13 Unitika Ltd 積層フィルム、フィルムロールおよびその製造方法
JP2014043520A (ja) 2012-08-28 2014-03-13 Henkel Japan Ltd ホットメルト接着剤
JP2014195944A (ja) * 2013-03-29 2014-10-16 東洋紡株式会社 熱収縮性ポリエステル系フィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3970689A4 (en) * 2019-05-16 2022-10-12 Toppan Inc. THIN FILM AND TRANSFER SHEET
CN114466736A (zh) * 2019-10-02 2022-05-10 东洋纺株式会社 热收缩性聚酯系薄膜卷

Also Published As

Publication number Publication date
EP3689948A1 (en) 2020-08-05
KR102602093B1 (ko) 2023-11-13
TWI806903B (zh) 2023-07-01
JP7505617B2 (ja) 2024-06-25
JP2022163117A (ja) 2022-10-25
CN111164135B (zh) 2023-08-11
EP3689948A4 (en) 2021-07-07
CN111164135A (zh) 2020-05-15
US20210370580A1 (en) 2021-12-02
JP7260050B2 (ja) 2023-04-18
JP7127544B2 (ja) 2022-08-30
JP7180813B2 (ja) 2022-11-30
JPWO2019065108A1 (ja) 2020-09-03
JP2023082156A (ja) 2023-06-13
KR20200060415A (ko) 2020-05-29
US11565459B2 (en) 2023-01-31
JP2023022055A (ja) 2023-02-14
TW201920395A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
KR101491876B1 (ko) 백색 열수축성 폴리에스테르계 필름, 백색 열수축성 폴리에스테르계 필름의 제조방법, 라벨, 및 포장체
JP7505617B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP7306504B2 (ja) 熱収縮性ポリエステル系フィルムロール
KR101190348B1 (ko) 열수축성 폴리에스테르계 필름
WO2019188922A1 (ja) 熱収縮性ポリエステル系フィルム
WO2019188337A1 (ja) 熱収縮性ポリエステル系フィルム
JP7485183B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP2023155502A (ja) 熱収縮性ポリエステル系フィルムロール
JP7364085B2 (ja) 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557157

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010421

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018861059

Country of ref document: EP

Effective date: 20200428