WO2019064675A1 - 発光装置および照明装置 - Google Patents

発光装置および照明装置 Download PDF

Info

Publication number
WO2019064675A1
WO2019064675A1 PCT/JP2018/018065 JP2018018065W WO2019064675A1 WO 2019064675 A1 WO2019064675 A1 WO 2019064675A1 JP 2018018065 W JP2018018065 W JP 2018018065W WO 2019064675 A1 WO2019064675 A1 WO 2019064675A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
wavelength
emitting device
peak wavelength
Prior art date
Application number
PCT/JP2018/018065
Other languages
English (en)
French (fr)
Inventor
秀崇 加藤
草野 民男
横井 清孝
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019544234A priority Critical patent/JP7058663B2/ja
Priority to US16/650,995 priority patent/US11282989B2/en
Priority to CN201880061269.7A priority patent/CN111133594B/zh
Priority to EP18862433.2A priority patent/EP3690963B1/en
Publication of WO2019064675A1 publication Critical patent/WO2019064675A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/06Arrangements for heating or lighting in, or attached to, receptacles for live fish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/28Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/30Lighting for domestic or personal use
    • F21W2131/308Lighting for domestic or personal use for aquaria
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a light emitting device and a lighting device including a light emitting element and a phosphor.
  • a light emitting device using a semiconductor light emitting element such as an LED (Laser Emitting Diode) as a light source and a lighting device mounting the light emitting device on a substrate or the like are used.
  • a light emitting element such as an LED (Laser Emitting Diode)
  • LED Laser Emitting Diode
  • Such a light emitting device or the like may be used in various manufacturing processes, for example, as a substitute for natural light such as sunlight.
  • the above-mentioned light emitting device may be used for indoor breeding of aquatic organisms including cnidarians such as corals and sea anemones and aquatic animals such as fish.
  • a light emitting device for example, a light emitting device (light) that emits white light as described in Patent Document 1 has been proposed.
  • a light emitting device includes a light emitting element having a light emitting portion emitting a first radiation having a first peak wavelength at 380 to 425 nm and a half width of 15 to 35 nm;
  • a covering material is disposed on the light emitting portion, and includes a phosphor that emits a second radiation having a second peak wavelength at 430 to 475 nm and a third peak wavelength at 490 to 540 nm.
  • This light emitting device has a length in which the light intensity is continuously reduced from the upper limit of the third peak wavelength to the wavelength of 750 nm from the peak region including the first peak wavelength, the second peak wavelength and the third peak wavelength. And emitting an external radiation having a wavelength range.
  • the illuminating device of one aspect of this invention is equipped with the light-emitting device of the said structure, and the mounting board by which the said light-emitting device was mounted.
  • FIG. 4 is a diagram showing the spectrum of sunlight in the sea. It is a perspective view showing a lighting installation of an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a light emitting device 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the light emitting device 1 shown in FIG. 1 cut along a plane indicated by an imaginary line.
  • FIG. 3 is a cross-sectional view showing a part of the light emitting device 1 shown in FIG. 2 in an enlarged manner.
  • FIG. 4 is a diagram showing the spectrum of external radiation light in the light emitting device of the embodiment of the present invention.
  • FIG. 5 is a diagram showing the spectrum of sunlight in the sea added to FIG.
  • FIG. 6 is a perspective view showing a lighting device 10 according to an embodiment of the present invention.
  • the light emitting device 1 includes a substrate 2, a light emitting element 3, a frame 4, a sealing member 5, a covering material 6, and a phosphor 7.
  • the lighting device 10 includes a light emitting device 1 and a mounting plate 11 on which the light emitting device 1 is mounted.
  • the light emitting device 1 includes the substrate 2, the light emitting element 3 mounted on the substrate 2, the frame 4 positioned on the upper surface of the substrate 2 and surrounding the light emitting element 3 in plan view, and the frame A sealing member 5 is disposed on the inner side of the housing 4 to seal the light emitting element 3, and a covering material 6 disposed on the light emitting element 3 via the sealing member 5.
  • the covering material 6 is located on the light emitting portion 3 a of the light emitting element 3 and includes the phosphor 7.
  • the light emitting element 3 is, for example, an LED, and emits light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.
  • the substrate 2 is an insulating substrate and is, for example, rectangular in plan view, and includes a first surface (for example, the upper surface) on which the light emitting element 3 is mounted and a second surface (for example, the lower surface) on the opposite side.
  • the substrate 2 is made of, for example, a ceramic material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body or a silicon nitride sintered body, or a material such as a glass ceramic sintered body. Further, the substrate 2 may be made of a composite material in which a plurality of materials among these materials are mixed.
  • the substrate 2 may be made of a polymer resin in which fine particles (filler particles) such as metal oxide are dispersed. The filler particles can adjust the thermal expansion coefficient of the substrate 2.
  • the substrate 2 is made of, for example, an aluminum oxide sintered body, it can be manufactured by the following process. First, a slurry obtained by adding an organic solvent and a binder to raw material powders such as aluminum oxide and silicon oxide and kneading them is formed into a sheet by a method such as a doctor blade method to prepare a ceramic green sheet. Next, the ceramic green sheet is cut into a predetermined shape and size to produce a plurality of sheets. Thereafter, these sheets are laminated in a plurality of layers as needed, and integrally sintered at a temperature of about 1300 to 1600 ° C. The substrate 2 can be manufactured by the above steps.
  • a wiring conductor (not shown) is located on the substrate 2 at least on the upper surface or inside of the substrate 2.
  • the wiring conductor 2 electrically conducts the inside and the outside of the portion surrounded by the frame 4 of the substrate 2.
  • the wiring conductor is made of, for example, a conductive material appropriately selected from materials such as tungsten, molybdenum, manganese, copper, silver, palladium and gold.
  • the wiring conductor can be formed, for example, as follows. First, a metal paste obtained by adding an organic solvent to powder such as tungsten is printed on a plurality of sheets to be the substrate 2 in a predetermined pattern. Thereafter, a laminate of a plurality of sheets and a metal paste are co-fired. The wiring conductor can be formed on the substrate 2 by the above steps. A plated layer of, for example, nickel or gold is formed on the surface of the wiring conductor in order to reduce the possibility of oxidation or to improve the characteristics such as the wettability of the brazing material described later.
  • a metal reflection layer (see FIG. Not shown) may be arranged on the surface such as the upper surface of the substrate 2 on which the light emitting element 3 is mounted.
  • the metal reflection layer is made of, for example, a metal material such as aluminum, silver, gold, copper or platinum (platinum). These metal materials may be, for example, in the form of a metallized layer similar to the wiring conductor, or may be in the form of a thin film layer including a plating layer. Also, the metal reflection layer may be formed of a plurality of metal layers.
  • the light emitting element 3 is mounted on the upper surface of the substrate 2.
  • the light emitting element 3 is electrically and mechanically connected on the wiring conductor (or the plating layer on the surface thereof) located on the upper surface of the substrate 2 through, for example, a brazing material or a solder.
  • the light emitting element 3 has a light transmitting substrate (without the reference numeral) and a light emitting portion 3 a which is a photosemiconductor layer located on the light transmitting substrate.
  • the light-transmissive substrate may be any substrate as long as the photosemiconductor layer can be grown using a chemical vapor deposition method such as a metal organic chemical vapor deposition method or a molecular beam epitaxial growth method.
  • the optical semiconductor layer is composed of a first semiconductor layer located on the translucent substrate, a light emitting layer located on the first semiconductor layer, and a second semiconductor layer located on the light emitting layer.
  • the first semiconductor layer, the light emitting layer and the second semiconductor layer may be, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphorus or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride or indium nitride An object semiconductor or the like can be used.
  • the thickness of the first semiconductor layer is, for example, not less than 1 ⁇ m and not more than 5 ⁇ m.
  • the thickness of the light emitting layer is, for example, 25 nm or more and 150 nm or less.
  • the thickness of the second semiconductor layer is, for example, 50 nm or more and 600 nm or less.
  • the light emitting element 3 configured in this manner can emit excitation light in a wavelength range of, for example, 380 nm or more and 425 nm or less. That is, the light emitting device 1 of the embodiment emits light (visible light) in a violet wavelength region.
  • the frame 4 is made of, for example, a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide. Further, the frame 4 may be a porous material. Further, the frame 4 may be made of a resin material in which powder made of metal oxide such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide is mixed.
  • the frame 4 is connected to the upper surface of the substrate 2 via, for example, a resin, a brazing material, or solder.
  • the frame 4 is provided on the upper surface of the substrate 2 so as to surround the light emitting element 3 with a space from the light emitting element 3. Further, the frame 4 is formed so that the inclined inner wall surface spreads outward as the distance from the upper surface of the substrate 2 is increased.
  • the inner wall surface inclined so as to extend to the outside of the frame 4 functions as a reflective surface that emits the excitation light emitted from the light emitting element 3 to the outside.
  • the shape of the inner wall surface of the frame 4 is circular in plan view, the light emitted from the light emitting element 3 can be uniformly reflected outward by the reflection surface.
  • the inclined inner wall surface of the frame 4 is, for example, a metal layer made of tungsten, molybdenum, manganese or the like on the inner peripheral surface of the frame 4 made of a sintered material, nickel or gold etc. You may form the plating layer which consists of.
  • the plating layer has a function of reflecting the light emitted from the light emitting element 3.
  • the inclination angle of the inner wall surface of the frame 4 (the size of the angle formed by the inner wall surface of the frame and the upper surface of the substrate 2 in the vertical cross section) is, for example, 55 degrees or more and 70 degrees or less The angle is set.
  • a light transmissive sealing member 5 is filled in an inner space surrounded by the substrate 2 and the frame 4.
  • the sealing member 5 seals the light emitting element 3 and extracts light emitted from the inside of the light emitting element 3 to the outside. Furthermore, it has a function of transmitting the light extracted to the outside of the light emitting element 3.
  • the sealing member 5 is filled in the inner space surrounded by the substrate 2 and the frame 4 leaving a part of the space surrounded by the frame 4.
  • the sealing member 5 is made of, for example, a translucent insulating resin such as silicone resin, acrylic resin or epoxy resin, or a translucent glass material.
  • the refractive index of the sealing member 5 is set to, for example, 1.4 or more and 1.6 or less.
  • the covering material 6 is located on the light emitting portion 3 a of the light emitting element 3. That is, the covering material 6 is opposed to the upper surface of the light emitting element 3 via the sealing member 5.
  • the covering material 6 is provided along the upper surface of the sealing member 5 in the upper part of the inner space surrounded by the substrate 2 and the frame 4.
  • the covering material 6 is positioned to fit in the frame 4.
  • the covering material 6 has a function of converting the wavelength of the light emitted from the light emitting element 3.
  • the wavelength conversion function of the covering material 6 is due to the phosphor 7 located in the covering material 6.
  • the phosphor 7 contained in the inside of the covering material 6 is emitted from the light emitting element 3 It is excited by light to emit fluorescence.
  • the covering material 6 transmits part of the light emitted from the light emitting element 3. That is, the external radiation emitted from the covering material 6 to the outside includes the radiation (first radiation) emitted from the light emitting element and the fluorescence (second radiation) emitted from the phosphor 7 There is.
  • the spectrum of the external radiation is a combination of the spectra of these first and second radiations.
  • the covering material 6 is made of, for example, a translucent insulating resin such as fluorine resin, silicone resin, acrylic resin or epoxy resin, or a translucent glass material, and the fluorescent resin 7 is contained in the insulating resin and the glass material. It is contained.
  • the phosphors 7 are uniformly dispersed in the covering material 6.
  • the emission spectrum of the external emission light which is the light finally emitted from the light emitting device 1 to the outside is as shown in FIG. 4 and FIG.
  • An emission spectrum is selected.
  • the external radiation can be set so as to have the above-mentioned spectrum. Note that the above emission spectrum can be measured, for example, with various commercially available measuring instruments provided with a spectroscope and a control circuit.
  • the first radiation emitted from the light emitting element 3 has the first peak wavelength ⁇ 1 at 380 to 425 nm.
  • the half width of this first radiation is set to 15 to 35 nm.
  • the half width is the wavelength width in the light intensity from the peak to half of the peak (the vertical axis in FIGS. 4 and 5 is 0.5 position), and in the example shown in FIG. .
  • the light emitting element 3 has a sharp peak in the violet wavelength region.
  • the phosphor 7 contained in the covering material 6 located on the light emitting portion 3a of the light emitting element 3 has a second peak wavelength ⁇ 2 at 430 to 475 nm and a third peak wavelength ⁇ 3 at 490 to 540 nm. 2 Emit radiation light. That is, the fluorescent substance 7 is located in the site
  • the external radiation in the light emitting device 1 has a peak area P including the first peak wavelength ⁇ 1, the second peak wavelength ⁇ 2, and the third peak wavelength ⁇ 3, and 750 nm from the upper limit of the third peak wavelength ⁇ 3 (upper limit side of visible light And the long wavelength region L in which the light intensity decreases continuously.
  • the light intensity (W / m 2 / nm) is the irradiance of light per unit area and unit wavelength.
  • the light emitting device 1 in the embodiment has a peak on the short wavelength side in the purple region, has a peak in the blue region and the yellow region, and has external emission light of a spectrum whose light intensity gradually decreases toward the red region.
  • This external radiation is, for example, a spectrum similar to the sunlight having a depth of about several meters (for example, about 2 to 15 m) reaching the sea, and is suitable for the growth of aquatic organisms including aquatic animals such as corals. ing.
  • the example in which two types of fluorescent substance, ie, the 1st fluorescent substance 7a and the 2nd fluorescent substance 7b, were used as the fluorescent substance 7 is shown.
  • the first phosphor 7a and the second phosphor 7b emit fluorescence corresponding to the second peak wavelength ⁇ 2 and the third peak wavelength ⁇ 3, respectively.
  • the phosphor 7 may contain three or more types.
  • each fluorescent substance 7 is as follows, for example.
  • the second phosphor 7b exhibiting bluish green color is Sr 4 Al 14 O 25 : Eu.
  • the proportions of the elements in parentheses may be set arbitrarily within the range of the molecular formula.
  • the following 3rd fluorescent substance 7c and 4th fluorescent substance 7d can be mentioned. That is, the third phosphor 7c showing a yellow, SrS i2 (O, Cl) 2 N 2: is Eu. The fourth phosphor 7d showing red is CaAlSi (ON) 3 : Eu.
  • the fluorescent substance 7 if the third fluorescent substance 7c and the fourth fluorescent substance 7d are contained in addition to the first fluorescent substance 7a and the second fluorescent substance 7b, the peak area P and the long wavelength area L
  • the light emitting device 1 capable of emitting external radiation can be easily manufactured.
  • the mass of the fluorescent substance 7 contained in the covering material 6 is set in the order of the first fluorescent substance 7a> the second fluorescent substance 7b> the third fluorescent substance 7c> the fourth fluorescent substance 7d as a magnitude relation of respective mass. do it.
  • the specific mass of each phosphor 7 can be appropriately set according to the conditions such as the material and thickness of the covering material 6 to be used, the emission spectrum of the light emitting device 1 and the like.
  • the light intensity between the first peak wavelength ⁇ 1 and the second peak wavelength ⁇ 2 (hereinafter referred to as the inter-peak intensity) is the first peak wavelength ⁇ 1, the second peak wavelength ⁇ 2, and the third peak.
  • the intensity may be 20 to 70% of the maximum light intensity at the wavelength ⁇ 3 (hereinafter referred to as the maximum intensity).
  • the peak-to-peak intensity is 20% or more with respect to the maximum intensity, the peak-to-peak intensity (light intensity between purple and blue) is effectively secured to the extent suitable for the growth of aquatic organisms (especially corals) it can.
  • the peak-to-peak intensity is 70% or less of the maximum intensity
  • the peak-to-peak intensity (light intensity between purple and blue) is appropriately reduced to reduce the possibility of inhibiting the breeding of aquatic organisms. it can.
  • the peak-to-peak intensity is about 0.3 when the maximum intensity is 1.
  • the light intensity of the external radiation light in the long wavelength region L may have the following distribution. That is, the intensity is 75 to 85% of the light intensity at the third peak wavelength ⁇ 3 in the 550 to 570 nm wavelength region, and 55 to 65% of the light intensity at the third peak wavelength ⁇ 3 in the 565 to 585 nm wavelength region. And 35 to 45% of the light intensity at the third peak wavelength ⁇ 3 in the wavelength range of 600 to 640 nm, and 15 to 25% of the light intensity at the third peak wavelength ⁇ 3 in the wavelength range of 650 to 670 nm And may be 5 to 15% of the light intensity at the third peak wavelength ⁇ 3 in the wavelength range of 690 to 710 nm.
  • the attenuation (reduction) of light intensity from the short wavelength side to the long wavelength side in the long wavelength region L is effectively brought close to the condition of sunlight as in the example shown in FIG. be able to.
  • the attenuation of the light intensity on the long wavelength side can be gradually reduced from the yellow area to the red area as shown in FIG. 4, for example, and external radiation including the light components in these areas in a well-balanced manner. can do.
  • the relative intensity (for example, 75 to 85%) of the light intensity in each wavelength region is the relative intensity at the lower limit wavelength (for example, 550 nm) of each wavelength region
  • the lower limit (for example, 75%) of the relative intensity at the upper limit wavelength (for example, 570 nm) of each wavelength range In this case, it becomes easier to set the light emitting device 1 in which the light intensity is attenuated on the long wavelength side as described above.
  • the light emitting device 1 having such external radiation light can be manufactured, for example, using the same phosphor 7 as the phosphor 7 described above (the first phosphor 7a and the second phosphor 7b).
  • the mass of the fluorescent substance 7 contained in the covering material 6 may be in the following order: first fluorescent substance 7a> second fluorescent substance 7b> third fluorescent substance 7c> fourth fluorescent substance 7d.
  • the light emitting device 1 has the external emission light in the wavelength range of 380 to 425 nm from the lower limit of the first peak wavelength ⁇ 1 to the upper limit of the long wavelength range. It may be 10 to 15% (hereinafter also referred to as a first ratio) to the total light energy in the entire wavelength region of In this case, the light energy on the short wavelength side (400 to 500 nm) is relatively small with respect to the total light energy.
  • the external radiation can be effectively brought close to the condition of sunlight, as in the example shown in FIG. 5, for example. Therefore, it can be set as the light-emitting device 1 which has the external radiation suitable for the growth (that is, breeding) of aquatic life (especially coral in shallow water).
  • the lower limit of the first peak wavelength ⁇ 1 is about 380 nm and the upper limit full wavelength range of the long wavelength range is about 750 nm, the above whole wavelength range substantially corresponds to the visible light wavelength range. That is, the ratio of light energy (J) in the 380 to 425 nm wavelength region indicates the ratio of light energy in a relatively short wavelength region to the light energy of visible light emitted from the light emitting device 1.
  • the light energy of the external radiation in the wavelength range of 430 to 475 nm is 20 to 30% of the total light energy of the external radiation in the entire wavelength range in the light emitting device 1 of the embodiment. (Hereinafter also referred to as the second ratio).
  • the light energy in the short wavelength region (400 nm to 500 nm) including the second peak wavelength ⁇ 2 is relatively smaller than the total light energy.
  • the external radiation can be effectively brought close to the condition of sunlight. Therefore, it can be set as the light-emitting device 1 which has the external radiation suitable for the growth (that is, breeding) of aquatic life (especially coral in shallow water).
  • the light emitting device 1 having the second ratio may further have the first ratio as described above.
  • the light emitting device 1 having both the first ratio and the second ratio further has, for example, a spectrum close to sunlight in shallow water.
  • the light emitting device 1 which is the second ratio may be slightly (for example, several percent of a predetermined value) deviated from the numerical value of the first ratio.
  • the light emission device 1 has 60 to 70% of the light energy in the wavelength region of 475 to 750 nm with respect to the total light energy in the entire wavelength region. (Hereafter, it may also be referred to as the third ratio).
  • the light energy in the wavelength range including the third peak wavelength ⁇ 3 to the long wavelength range L is relatively large with respect to the total light energy.
  • the attenuation (reduction) of light energy in the long wavelength region is relatively smaller than that in the peak region P, and it is easy to secure relatively large light energy up to the red region.
  • the external radiation can be effectively brought close to the condition of sunlight. Therefore, it can be set as the light-emitting device 1 which has the external radiation suitable for the growth (that is, breeding) of aquatic life (especially coral in shallow water).
  • the light emitting device 1 having the third ratio may further be at least one of the first ratio and the second ratio as described above.
  • Such a light emitting device which is at least one of the first ratio and the second ratio in addition to the third ratio further has, for example, a spectrum close to sunlight in shallow water.
  • the light emitting device 1 which is the third ratio may be slightly (for example, about several percent of a predetermined value) deviated from the numerical value of either one of the first ratio and the second ratio.
  • the light emitting device 1 satisfies all of the above first to third proportions, the emitted light has a spectrum that effectively approximates the sunlight in the shallow water. Therefore, the light emitting device 1 can be made easier to manufacture a lighting device (details will be described later) effective for breeding aquatic organisms.
  • the light emitting device 1 satisfying the conditions of all of the first to third ratios described above includes, for example, the first phosphor 7a, the second phosphor 7b, the third phosphor 7c, and the fourth phosphor in the covering material 6. It can be manufactured using the same phosphor as 7d. In this case, the magnitude relationship between the masses of the first fluorescent substance 7a, the second fluorescent substance 7b, the third fluorescent substance 7c, and the fourth fluorescent substance 7d is also the same as in the above-described embodiment. It can be manufactured by doing.
  • the illumination device 10 includes the light emitting device 1 having any one of the above-described configurations and the mounting plate 11 on which the light emitting device 1 is mounted.
  • the mounting plate 11 includes a rectangular flat base 12 and a translucent lid 13 located on the base 12 for sealing the light emitting device.
  • the lighting apparatus 10 in this embodiment further includes a housing 21 having a groove-shaped portion for housing the mounting plate 11, and a pair of end plates 22 for closing an end on the short side of the housing 21. There is.
  • the external radiation emitted from the lighting device 10 to the outside basically has the same spectrum as the external radiation of the light emitting device 1. Therefore, the external radiation of the lighting device 10 also has the same effect as the external radiation of the light emitting device 1.
  • the same spectrum as the external emission light of the light emitting device 1 refers to the first peak wavelength ⁇ 1 of 380 to 425 nm (half width of 15 to 35 nm), the second peak wavelength ⁇ 2 of 430 to 475 nm, and the third peak of 490 to 540 nm. It is a spectrum having a peak region P having a wavelength ⁇ 3 and a long wavelength region L in which the light intensity decreases continuously from the upper limit of the third peak wavelength ⁇ 3 to a wavelength of 750 nm.
  • the plurality of light emitting devices 1 are mounted in the mounting space formed by the mounting plate 11 including the translucent lid 13 and the housing 21, and the lighting device 10 used for breeding aquatic organisms and the like is configured. It is done. According to such a lighting device 10, since the light emitting device 1 having the above configuration is included, it is possible to provide a lighting device suitable for breeding aquatic organisms.
  • the lighting device 10 may include a light emitting device (without a code) (hereinafter, referred to as another light emitting device) that emits external radiation having a spectrum different from that of the light emitting device 1 of the embodiment.
  • a light emitting device without a code
  • Other light emitting devices may include multiple types having external radiation with different spectra.
  • external radiation light having a spectrum similar to that of the light emitting device 1 according to the embodiment can also be obtained by combining the external radiation light of a plurality of other light emitting devices.
  • the spectrum of the external radiation light of the illuminating device 10 can also be finely adjusted by appropriately adjusting the light emission intensity of a plurality of other light emitting devices.
  • the fine adjustment in this case includes, for example, making the maximum peak wavelength different at the first (second and third) peak wavelengths ⁇ 1 ( ⁇ 2, ⁇ 3), making the half width different in the above range, etc. Can.
  • the mounting plate 11 has a function of arranging and holding the plurality of light emitting devices 1. In addition, the mounting plate 11 has a function of dissipating the heat generated by the light emitting device 1 to the outside.
  • the mounting plate 11 is formed of, for example, a metal material such as aluminum, copper or stainless steel, an organic resin material, or a composite material including these.
  • the mounting plate 11 in this embodiment is an elongated rectangular shape in plan view, and for example, the length in the longitudinal direction is 100 mm or more and 2000 mm or less.
  • the mounting plate 11 includes the base 12 having the mounting area on the top surface on which the plurality of light emitting devices 1 are mounted, and the translucent lid 13 sealing the mounting area. Further, the mounting plate 11 is accommodated in the grooved portion of the housing 21. Both ends of the groove-like portion are closed by the end plates 22, respectively, and the mounting plate 11 and the plurality of light emitting devices 1 mounted thereon are fixed and accommodated in the housing 21.
  • a printed circuit board such as a rigid board, a flexible board, or a rigid flexible board is used as the base 12.
  • the wiring pattern disposed on the base 12 and the wiring conductor of the substrate 2 in the light emitting device 1 are electrically connected to each other via a solder or a conductive adhesive.
  • An electric signal (current) transmitted from an external power source through the base 12 is transmitted to the light emitting element 3 through the substrate 2 and the light emitting element 3 emits light.
  • the lid 13 has a function of sealing the light emitting device 1 and transmitting external radiation emitted by the light emitting device 1 to the outside. Therefore, the lid 13 is made of a translucent material through which the external radiation is transmitted. As a translucent material, an acrylic resin, glass, etc. are mentioned, for example.
  • the lid 13 is a rectangular plate (e.g., an elongated rectangular shape similar to the base 12), and the length in the longitudinal direction is set to, for example, 98 mm or more and 1998 mm or less.
  • the lid 13 is inserted from an opening at one side or the other in the longitudinal direction of the grooved portion of the housing 21 and is slid and positioned along the longitudinal direction of the housing 21. As described above, both ends of the grooved portion are closed by the end plate 22, and the lid 13 is fixed to the housing 21. That is, a plurality of light emitting devices 1 are mounted on the mounting plate 11, and the lighting device 10 configured by being sealed by the housing 21 and the lid 13 is configured.
  • the lid 13 may be made of a material having a function of diffusing light.
  • the glare can be reduced while maintaining the spectrum of the external radiation light of the lighting device 10 the same as the light emitting device 1.
  • a material for diffusing light for example, a material obtained by adding particles of a resin material or the like having a refractive index of light different from that of the material to the light transmitting material can be mentioned.
  • said illuminating device 10 is an illuminating device of the linear light emission which arranged the several light-emitting devices 1 linearly, the surface which arranged not only this but several light-emitting devices 1 in the shape of a lattice or a zigzag lattice shape It may be a light emitting illumination device.
  • the mounting plate 11 (the base 12 or the like) is not limited to the elongated rectangular shape in plan view, but may be a rectangular shape having a small aspect ratio such as square in plan view It may be For example, when the lighting device is disposed on a water tank where aquatic organisms are bred, the mounting plate 11 having a shape (for example, a circular shape or the like) similar to the shape of the water tank may be used.
  • a plurality of lighting devices including the mounting plate 11 in which the plurality of light emitting devices 1 are linearly arranged and mounted are used for breeding of aquatic organisms as a lighting module in which a plurality of lighting devices are mounted on another substrate. It may be done.
  • a sealing material or the like (not shown) for reducing the influence when water adheres is disposed at a predetermined site such as between the housing 21 and the lid 13 It may be one in which a hygroscopic agent or the like is disposed in the housing.
  • the wiring conductor may be coated with a plating layer such as gold plating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

380~425nmに第1ピーク波長を有し、半値幅が15~35nmである第1放射光を放射する発光部を有する発光素子と、発光素子の発光部上に位置しており、430~475nmに第2ピーク波長を有するとともに490~540nmに第3ピーク波長を有する第2放射光を放射する蛍光体を含む被覆材とを備えており、第1ピーク波長、第2ピーク波長および第3ピーク波長14P02303を含むピーク領域と、第3ピーク波長の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域とを有する外部放射光を放射する発光装置等である。

Description

発光装置および照明装置
 本発明は、発光素子および蛍光体を含む発光装置および照明装置に関する。
 近年、LED(Laser Emitting Diode)等の半導体発光素子(以下、単に発光素子という)を光源とする発光装置および発光装置を基板等に実装した照明装置が用いられている。このような発光装置等は、例えば、太陽光等の自然光の代替として、各種の製造工程で使用される場合がある。
 上記の発光装置等を、植物または動物等の栽培または飼育に用いることが試みられるようになってきている。近年、サンゴおよびイソギンチャク等の刺胞動物および魚類等の水生動物を含む水生生物の屋内での飼育に、上記の発光装置が用いられる場合がある。この場合の発光装置として、例えば特許文献1に記載されているような、白色光を発光する発光装置(ライト)等が提案されている。
 本発明の1つの態様の発光装置は、380~425nmに第1ピーク波長を有し、半値幅が15~35nmである第1放射光を放射する発光部を有する発光素子と、前記発光素子の前記発光部上に位置しており、430~475nmに第2ピーク波長を有するとともに490~540nmに第3ピーク波長を有する第2放射光を放射する蛍光体を含む被覆材とを備えている。この発光装置は、前記第1ピーク波長、前記第2ピーク波長および前記第3ピーク波長を含むピーク領域と、前記第3ピーク波長の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域とを有する外部放射光を放射する。
 また、本発明の1つの態様の照明装置は、上記構成の発光装置と、前記発光装置が実装された実装板とを備える。
本発明の実施形態の発光装置を示す斜視図である。 図1に示す発光装置を仮想線で示す平面で切断したときの断面図である。 図2に示す発光装置の一部を拡大して示す断面図である。 本発明の実施形態の発光装置における外部放射光のスペクトルを示す図である。 図4に、海中における太陽光のスペクトルを加えて示す図である。 本発明の実施形態の照明装置を示す斜視図である。
 本発明の実施形態の発光装置および照明装置を、添付の図面を参照して説明する。以下の説明における上下の区別は便宜的ものであり、発光装置および照明装置が実際に用いられるときの上下を規定するものではない。なお、以下の説明における「飼育に適する」こと等は、飼育しようとする水生生物について、それらの死滅等がなく、正常に成育できる状態であることを意味する。
 図1は、本発明の実施形態の発光装置1を示す斜視図である。図2は、図1に示す発光装置1を仮想線で示す平面で切断したときの断面図である。図3は、図2に示す発光装置1の一部を拡大して示す断面図である。図4は、本発明の実施形態の発光装置における外部放射光のスペクトルを示す図である。図5は、図4に、海中における太陽光のスペクトルを加えて示す図である。図6は、本発明の実施形態の照明装置10を示す斜視図である。これらの図において、発光装置1は、基板2と、発光素子3と、枠体4と、封止部材5と、被覆材6と、蛍光体7とを備えている。照明装置10は、発光装置1と、発光装置1が実装された実装板11とを備えている。
 本実施形態において、発光装置1は、基板2と、基板2に搭載された発光素子3と、基板2の上面に位置し、平面視で発光素子3を囲んでいる枠体4と、枠体4に内側に位置して発光素子3を封止している封止部材5と、封止部材5を介して発光素子3上に位置している被覆材6とを有している。また、被覆材6は、発光素子3の発光部3a上に位置し、蛍光体7を含んでいる。発光素子3は、例えば、LEDであって、半導体を用いたpn接合中の電子と正孔が再結合することによって、外部に向かって光を放出する。
 基板2は、絶縁性の基板であって、例えば平面視で矩形状であり、発光素子3が搭載されている第1面(例えば上面)と、反対側の第2面(例えば下面)とを有している。基板2は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体または窒化ケイ素質焼結体等のセラミック材料、またはガラスセラミック焼結体等の材料からなる。また、基板2は、これらの材料のうち複数の材料を混合した複合材料からなるものでもよい。また、基板2は、金属酸化物等の微粒子(フィラー粒子)を分散させた高分子樹脂からなるものでもよい。フィラー粒子により、基板2の熱膨張係数を調整することができる。
 基板2は、例えば、酸化アルミニウム質焼結体からなる場合であれば、次の工程で製作することができる。まず、酸化アルミニウムおよび酸化ケイ素等の原料粉末に有機溶剤およびバインダを添加して混練したスラリーをドクターブレード法等の方法でシート状に成形してセラミックグリーンシートを作製する。次に、セラミックグリーンシートを所定の形状および寸法に切断して複数のシートを作製する。その後、これらのシートを必要に応じて複数層積層し、約1300~1600℃の温度で一体的に焼成する。以上の工程によって、基板2を製作することができる。
 基板2には、少なくとも基板2の上面または内部には、配線導体(図示せず)が位置している。配線導体2は、基板2の枠体4で囲まれた部分の内外を電気的に導通する。配線導体は、例えば、タングステン、モリブデン、マンガン、銅、銀、パラジウムおよび金等の材料から適宜選択された導電材料からなる。
 基板2がセラミック材料からなる場合は、配線導体は、例えば次のようにして形成することができる。まず、タングステン等の粉末に有機溶剤を添加して得た金属ペーストを、基板2となる複数のシートにそれぞれ所定パターンで印刷する。その後、複数のシートを積層したものと金属ペーストとを同時焼成する。以上の工程により、基板2に配線導体を形成することができる。なお、配線導体の表面には、酸化の可能性低減または後述するろう材の濡れ性等の特性向上等のために、例えば、ニッケルまたは金等のめっき層が形成されている。
 また、基板2の上面等の発光素子3が搭載される面には、基板2上方(外部)に効率よく光を反射させるために、配線導体およびめっき層と間隔を空けて金属反射層(図示せず)が配置されていてもよい。金属反射層は、例えば、アルミニウム、銀、金、銅またはプラチナ(白金)等の金属材料からなる。これらの金属材料は、例えば配線導体と同様のメタライズ層の形態でもよく、めっき層を含む薄膜層の形態でもよい。また、金属反射層は、複数の形態の金属層からなるものでもよい。
 発光素子3は、基板2の上面に搭載されている。発光素子3は、基板2の上面に位置する配線導体(または、その表面のめっき層)上に、例えば、ろう材または半田を介して電気的および機械的に接続されている。発光素子3は、透光性基体(符号なし)と、透光性基体上に位置する光半導体層である発光部3aとを有している。透光性基体は、有機金属気相成長法または分子線エピタキシャル成長法等の化学気相成長法を用いて、光半導体層を成長させることが可能なものであればよい。透光性基体に用いられる材料としては、例えば、サファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウム等を用いることができる。なお、透光性基体の厚みは、例えば50μm以上1000μm以下である。
 光半導体層は、透光性基体上に位置する第1半導体層と、第1半導体層上に位置する発光層と、発光層上に位置する第2半導体層とから構成されている。第1半導体層、発光層および第2半導体層は、例えば、III族窒化物半導体、ガリウムリンまたはガリウムヒ素等のIII-V族半導体、あるいは、窒化ガリウム、窒化アルミニウムまたは窒化インジウム等のIII族窒化物半導体等を用いることができる。なお、第1半導体層の厚みは、例えば1μm以上5μm以下である。発光層の厚みは、例えば25nm以上150nm以下である。第2半導体層の厚みは、例えば50nm以上600nm以下である。また、このように構成された発光素子3は、例えば380nm以上425nm以下の波長範囲の励起光を発することができる。すなわち、実施形態の発光装置1は、紫色の波長領域の光(可視光)を放射する。
 枠体4は、例えば、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料からなる。また、枠体4は、多孔質材料でもよい。また枠体4は、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等の金属酸化物からなる粉末を混合させた樹脂材料からなるものでもよい。
 枠体4は、基板2の上面に、例えば樹脂、ろう材または半田等を介して接続されている。枠体4は、発光素子3と間隔を空けて、発光素子3を取り囲むように基板2の上面に設けられている。また、枠体4は、傾斜する内壁面が、基板2の上面から遠ざかるに従い、外方に向かって広がるように形成されている。枠体4の外側に広がるように傾斜した内壁面が、発光素子3から発せられる励起光を外部に放射する反射面として機能する。なお、平面視して、枠体4の内壁面の形状を円形とすると、発光素子3が放射する光を一様に反射面にて外方に向かって反射させることができる。
 また、枠体4の傾斜している内壁面は、例えば、焼結材料からなる枠体4の内周面にタングステン、モリブデン、マンガン等からなる金属層と、金属層を被覆するニッケルまたは金等からなるめっき層を形成してもよい。このめっき層は、発光素子3の発する光を反射させる機能を有する。なお、枠体4の内壁面の傾斜角度(縦断面視において枠体の内壁面と基板2上面とのなす角の大きさ)は、基板2の上面に対して例えば55度以上70度以下の角度に設定されている。
 基板2および枠体4で囲まれる内側の空間には、光透過性の封止部材5が充填されている。封止部材5は、発光素子3を封止するとともに、発光素子3の内部から発せられる光を外部に光を取り出す。さらに、発光素子3の外部に取り出された光が透過する機能を備えている。
 封止部材5は、基板2および枠体4で囲まれる内側の空間内に、枠体4で囲まれる空間の一部を残して充填されている。封止部材5は、例えば、シリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂や透光性のガラス材料が用いられる。封止部材5の屈折率は、例えば1.4以上1.6以下に設定されている。
 被覆材6は、発光素子3の発光部3a上に位置している。すなわち、被覆材6は、発光素子3の上面と封止部材5を介して対向している。例えば図2に示すように、被覆材6は、基板2および枠体4で囲まれた内側の空間の上部に、封止部材5の上面に沿って設けられている。被覆材6は、枠体4内に収まるように位置している。被覆材6は、発光素子3の発する光の波長を変換する機能を有している。被覆材6における波長変換の機能は、被覆材6内に位置している蛍光体7による。
 すなわち、発光素子3から放射された光が封止部材5を介して被覆材6の内部に入射したときに、被覆材6の内部に含有されている蛍光体7が発光素子3から放射された光によって励起されて蛍光を発する。また、被覆材6は、発光素子3から放射された光の一部を透過させる。つまり、被覆材6から外部に放射される外部放射光は、発光素子から放射された放射光(第1放射光)と、蛍光体7から放射された蛍光(第2放射光)とを含んでいる。外部放射光のスペクトルは、これらの第1および第2放射光のスペクトルが合成されたものになる。
 被覆材6は、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂、または透光性のガラス材料からなり、その絶縁樹脂、ガラス材料中に、蛍光体7が含有されている。蛍光体7は、被覆材6中に均一に分散している。
 発光素子3および被覆材6中に含有される蛍光体7としては、最終的に発光装置1から外部に放射される光である外部放射光の発光スペクトルが、図4および図5に示すような発光スペクトルとなるようなものが選ばれる。この場合、第1放射光を放射する発光素子3についても、外部放射光が上記スペクトルになるように設定することができる。なお、上記の発光スペクトルは、例えば、分光器および制御回路を備える市販の各種測定器で測定することができる。
 本実施形態の発光装置1では、前述したように、発光素子3から放射される第1放射光が、380~425nmに第1ピーク波長λ1を有している。また、この第1放射光は、半値幅が15~35nmに設定されている。半値幅は、光強度がピーク時からピーク時の半分(図4、5における縦軸が0.5の位置)に至る間の波長幅であり、図4に示す例では、半値全幅として約20nmである。言い換えれば、発光素子3は、紫色の波長領域において鋭いピークを有している。
 発光素子3の発光部3a上に位置している被覆材6に含まれている蛍光体7は、430~475nmに第2ピーク波長λ2を有するとともに490~540nmに第3ピーク波長λ3を有する第2放射光を放射する。すなわち、蛍光体7は、発光部3aから上方向に放射された第1放射光が照射される部位に位置している。前述したように、第1放射光が照射された蛍光体7から蛍光(第2放射光)が放射される。
 発光装置1における外部放射光は、これらの第1ピーク波長λ1、第2ピーク波長λ2および第3ピーク波長λ3を含むピーク領域Pと、第3ピーク波長λ3の上限から750nm(可視光の上限側の波長程度)の波長にかけて、光強度が連続的に減少する長波長領域Lとを有している。なお、光強度(W/m/nm)は、単位面積および単位波長あたりの光の放射照度である。
 すなわち、実施形態における発光装置1は、紫色領域に短波長側のピークを有し、青色領域および黄色領域にもピークを有し、赤色領域にかけて緩やかに光強度が低くなるスペクトルの外部放射光を放射する。この外部放射光は、例えば、深さ数m程度(例えば2~15m程度)の海中に届く太陽光と同様のスペクトルと同様のスペクトルであり、サンゴ等の水生動物を含む水生生物の成育に適している。
 なお、図3では、蛍光体7として、2種類の蛍光体、つまり第1蛍光体7aおよび第2蛍光体7bが用いられた例を示している。第1蛍光体7aおよび第2蛍光体7bは、上記の第2ピーク波長λ2および第3ピーク波長λ3それぞれに対応した蛍光を放射する。なお、蛍光体7は、3種類以上のものを含んでいても構わない。
 各蛍光体7の具体例は、例えば次のとおりである。青色を示す第1蛍光体7aは、(Sr,Ca,Ba)10(POl2:Euである。青緑色を示す第2蛍光体7bは、SrAl1425:Euである。かっこ内の元素の割合は、分子式の範囲内であれば任意に設定して構わない。
 第1蛍光体7aおよび第2蛍光体7b以外の蛍光体としては、下記の第3蛍光体7cおよび第4蛍光体7dを挙げることができる。すなわち、黄色を示す第3蛍光体7cは、SrSi2(O,Cl):Euである。赤色を示す第4蛍光体7dは、CaAlSi(ON):Euである。蛍光体7について、第1蛍光体7aおよび第2蛍光体7bに加えて第3蛍光体7cおよび第4蛍光体7dを含有しているものであれば、上記ピーク領域Pと長波長領域Lとを有する外部放射光の放射が可能な発光装置1を容易に製作することができる。この場合、被覆材6に含まれる蛍光体7の質量は、それぞれの質量の大小関係として、第1蛍光体7a>第2蛍光体7b>第3蛍光体7c>第4蛍光体7dの順に設定すればよい。それぞれの蛍光体7の具体的な質量は、用いる被覆材6の材料および厚さ、発光装置1の発光スペクトル等の条件に応じて適宜設定することができる。
 実施形態の発光装置1において、第1ピーク波長λ1と第2ピーク波長λ2との間の光強度(以下、ピーク間強度という)は、第1ピーク波長λ1、第2ピーク波長λ2および第3ピーク波長λ3における最大の光強度(以下、最大強度という)に対して20~70%の強さであってもよい。ピーク間強度が最大強度に対して20%以上であるときには、ピーク間強度(紫色と青色との間の光強度)を水生生物(特にサンゴ)の成育に適する程度に効果的に確保することができる。ピーク間強度が最大強度に対して70%以下であるときには、ピーク間強度(紫色と青色との間の光強度)が適度に低減され、水生生物の飼育を阻害する可能性を低減することができる。例えば図4に示す例では、最大強度を1としたときのピーク間強度が約0.3である。
 また、長波長領域Lにおける外部放射光の光強度は、次のような分布であってもよい。すなわち、550~570nmの波長領域において第3ピーク波長λ3おける光強度の75~85%の強さであり、565~585nmの波長領域において第3ピーク波長λ3における光強度の55~65%の強さであり、600~640nmの波長領域において第3ピーク波長λ3における光強度の35~45%の強さであり、650~670nmの波長領域において第3ピーク波長λ3における光強度の15~25%の強さであり、690~710nmの波長領域において第3ピーク波長λ3における光強度の5~15%の強さであってもよい。このような条件が満たされるときには、長波長領域Lにおける短波長側から長波長側にかけての光強度の減衰(低下)を、図5に示す例のように、太陽光の条件に効果的に近付けることができる。言い換えれば、長波長側における光強度の減衰を、例えば図4に示すように黄色領域から赤色領域にかけて次第に緩やかなものにすることができ、これらの領域の光成分もバランスよく含む外部放射光にすることができる。
 なお、各波長領域(例えば550~570nm等)における光強度の上記相対的な強さ(例えば75~85%等)は、各波長領域の下限の波長(例えば550nm)において上記相対的な強さの上限(例えば85%)であるとともに、各波長領域の上限の波長(例えば570nm)において上記相対的な強さの下限(例えば75%)となるものでもよい。この場合には、上記のような、長波長側において光強度が減衰する発光装置1とすることがより容易になる。
 このような外部放射光を有する発光装置1は、例えば、前述した蛍光体7(第1蛍光体7aおよび第2蛍光体7b)と同様の蛍光体7を用いて製作することができる。
 また、この場合も、被覆材6に含まれる蛍光体7の質量は、第1蛍光体7a>第2蛍光体7b>第3蛍光体7c>第4蛍光体7dの順であればよい。
 また、実施形態の発光装置1は、上記の各形態において、その外部放射光が、380~425nmの波長領域における光エネルギー(J)が、第1ピーク波長λ1の下限から長波長領域の上限までの全波長領域における全体の光エネルギーに対して10~15%であるもの(以下、第1割合であるものともいう)でもよい。この場合には、短波長側(400~500nm)の光エネルギーが全体の光エネルギーに対して比較的小さい。これにより、例えば図5に示す例のように、外部放射光を太陽光の条件に効果的に近付けることができる。したがって、水生生物(特に浅海おけるサンゴ)の成育(つまり飼育)に適した外部放射光を有する発光装置1とすることができる。
 なお、図4および図5において、上記の波長領域における光エネルギー(J)は、光強度を示す曲線と相対強度=0の直線との間に挟まれる部分の面積(つまり単位波長における光強度の積算値(積分値))として表されている。また、第1ピーク波長λ1の下限が約380nmであり、長波長領域の上限全波長領域が約750nmであるため、上記の全波長領域は、ほぼ可視光の波長領域に相当する。すなわち、上記380~425nm波長領域の光エネルギー(J)の割合は、発光装置1から放射される可視光の光エネルギーにおける比較的波長が短い領域の光エネルギーの割合を示している。
 また、実施形態の発光装置1は、上記の各形態において、430~475nmの波長領域における外部放射光の光エネルギーが、全波長領域における外部放射光の全体の光エネルギーに対して20~30%であるもの(以下、第2割合であるものともいう)でもよい。この場合には、第2ピーク波長λ2を含む短波長領域(400nm~500nm)の光エネルギーが全体の光エネルギーに対して比較的小さい。この場合にも、例えば図5に示す例のように、外部放射光を太陽光の条件に効果的に近付けることができる。したがって、水生生物(特に浅海おけるサンゴ)の成育(つまり飼育)に適した外部放射光を有する発光装置1とすることができる。
 この第2割合である発光装置1は、さらに、上記のような第1割合であるものでもあって構わない。このような第1割合および第2割合の両方である発光装置1は、さらに、例えば浅海における太陽光に近いスペクトルになる。なお、この場合に、第2割合である発光装置1は、第1割合の数値から多少(例えば所定値に対して数%程度)ずれたものでも構わない。
 また、実施形態の発光装置1は、上記の各形態において、その外部放射光は、475~750nmの波長領域における光エネルギーが、全波長領域における全体の光エネルギーに対し60~70%であるもの(以下、第3割合であるものともいう)でもよい。この場合には、第3ピーク波長λ3から長波長領域Lを含む波長領域の光エネルギーが全体の光エネルギーに対して比較的大きい。また、ピーク領域Pよりも長波長領域における光エネルギーの減衰(低下)が比較的小さく、赤色領域まで比較的大きな光エネルギーを確保することが容易である。この場合にも、例えば図5に示す例のように、外部放射光を太陽光の条件に効果的に近付けることができる。したがって、水生生物(特に浅海おけるサンゴ)の成育(つまり飼育)に適した外部放射光を有する発光装置1とすることができる。
 この第3割合である発光装置1は、さらに、上記のような第1割合および第2割合の少なくとも一方であるものでもあって構わない。このような、第3割合に加えて第1割合および第2割合の少なくとも一方である発光装置は、さらに、例えば浅海における太陽光に近いスペクトルになる。なお、この場合に、第3割合である発光装置1は、第1割合および第2割合のうちいずれか一方の数値から多少(例えば所定値に対して数%程度)ずれたものでも構わない。
 また、発光装置1は、上記の第1割合~第3割合の全ての条件を満たすものであれば、その放射光が、浅海における太陽光に効果的に近似したスペクトルを有するものになる。したがって、水生生物の飼育に有効な照明装置(詳細は後述)の製作がより容易な発光装置1とすることができる。
 なお、上記の第1割合~第3割合の全ての条件を満たす発光装置1は、例えば、被覆材6における第1蛍光体7a、第2蛍光体7b、第3蛍光体7cおよび第4蛍光体7dと同様の蛍光体を用いて製作することができる。この場合に、第1蛍光体7a、第2蛍光体7b、第3蛍光体7cおよび第4蛍光体7dの蛍光体7の質量の大小関係も、前述した実施形態の例と同様の関係で存在するものとすることで製作することができる。
 本発明の実施形態の照明装置10を図6に示している。実施形態の照明装置10は、上記いずれかの構成の発光装置1と、発光装置1が実装された実装板11とを備えている。図6に示す例において実装板11は、長方形平板状の基部12と、基部12上に位置して発光装置を封止する透光性の蓋体13とを備えている。また、この実施形態における照明装置10は、実装板11を収容する溝状の部分を有する筐体21と、筐体21の短辺側の端部を塞ぐ一対の端板22とをさらに備えている。
 この照明装置10から外部に放射される外部放射光は、基本的に、発光装置1の外部放射光と同じスペクトルを有している。そのため、照明装置10の外部放射光も、発光装置1の外部放射光と同様の効果を有している。なお、発光装置1の外部放射光と同じスペクトルとは、380~425nmの第1ピーク波長λ1(半値幅が15~35nm)、430~475nmの第2ピーク波長λ2および490~540nmの第3ピーク波長λ3を有するピーク領域Pと、第3ピーク波長λ3の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域Lとを有するスペクトルである。
 すなわち、透光性の蓋体13を含む実装板11および筐体21によって構成される実装空間内に、複数の発光装置1が実装されて、水生生物等の飼育に用いられる照明装置10が構成されている。このような照明装置10によれば、上記構成の発光装置1を含んでいることから、水生生物の飼育に適した照明装置を提供することができる。
 また、照明装置10は、実施形態の発光装置1とは異なるスペクトルの外部放射光を放射する発光装置(符号なし)(以下、他の発光装置という)を含んでいても構わない。他の発光装置は、互いにスペクトルが異なる外部放射光を有する複数種のものを含んでいてもよい。
 この場合、複数種の他の発光装置の外部放射光を合成させることで、実施形態の発光装置1と同様のスペクトルを有する外部放射光とすることもできる。この構成において、照明装置10から外部に放射される、発光装置1と同じスペクトルの外部放射光の光強度を効果的に高めることもできる。また、あわせて、複数種の他の発光装置の発光強度を適宜調整することで、照明装置10の外部放射光のスペクトルを微調整することもできる。この場合の微調整としては、例えば、第1(第2、第3)ピーク波長λ1(λ2、λ3)における最大ピーク波長を異ならせること、上記の範囲で半値幅を異ならせること等を挙げることができる。
 実装板11は、複数の発光装置1を配列して保持する機能を有している。また、実装板11は、発光装置1が発する熱を外部に放散させる機能を有している。実装板11は、例えば、アルミニウム、銅またはステンレス鋼等の金属材料、有機樹脂材料またはこれらを含む複合材料等により形成されている。
 この実施形態における実装板11は、平面視において細長い長方形状であり、例えば、長手方向の長さが100mm以上2000mm以下である。前述したように、実装板11は、複数の発光装置1が実装される実装領域を上面に有する基部12と、実装領域を封止する透光性の蓋体13とを含んでいる。また、実装板11は、筐体21の溝状の部分に収容される。溝状の部分の両端がそれぞれ端板22で塞がれて、筐体21内に実装板11およびこれに実装された複数の発光装置1が固定されて収容される。
 基部12としては、例えば、リジッド基板、フレキシブル基板またはリジッドフレキシブル基板等のプリント基板が用いられる。基部12に配置された配線パターンと発光装置1における基板2の配線導体とが、半田または導電性接着剤を介して互いに電気的に接続される。外部の電源から基部12を介して伝送された電気信号(電流)が基板2を介して発光素子3に伝わり、発光素子3が発光する。
 蓋体13は、発光装置1を封止するとともに、これらの発光装置1が放射する外部放射光を外部に透過させる機能を有している。そのため、蓋体13は、この外部放射光が透過する透光性の材料からなる。透光性の材料としては、例えば、アクリル樹脂およびガラス等が挙げられる。蓋体13は、矩形状(基部12と同様の細長い長方形状等)の板体であって、長手方向の長さが、例えば、98mm以上1998mm以下に設定されている。
 蓋体13は、筐体21の溝状の部分における長手方向一方側または他方側の開口から挿し込まれ、筐体21の長手方向に沿ってスライドされて位置決めされる。前述したように溝状の部分の両端が端板22で塞がれて、筐体21に蓋体13が固定される。すなわち、複数の発光装置1が実装板11に実装され、筐体21および蓋体13等で封止されてなる照明装置10が構成される。
 また、蓋体13は、光を拡散させる機能を有する材料からなるものでもよい。この場合には、照明装置10の外部放射光のスペクトルを発光装置1と同じに維持しながら、まぶしさを低減することができる。光を拡散させる材料としては、例えば、上記透光性の材料に、その材料とは光の屈折率が異なる樹脂材料等の粒子を添加したものが挙げられる。
 なお、上記の照明装置10は、複数の発光装置1を直線状に配列した線発光の照明装置であるが、これに限らず複数の発光装置1を格子状または千鳥格子状に配列した面発光の照明装置であってもよい。また、実装板11(基部12等)は、平面視で細長い長方形状のものに限らず、平面視で正方形状等の縦横比が小さい四角形状でもよく、円形状または楕円形状等の四角形状以外のものでもよい。例えば、照明装置が水生生物の飼育されている水槽上に配置されるものであるときに、この水槽の形状と同様の形状(例えば円形状等)の実装板11が用いられてもよい。
 また、複数の発光装置1が直線状に配列されて実装された実装板11を含む照明装置が、さらに複数個、他の基板に搭載されてなる照明用モジュールとして、水生生物の飼育等に利用されてもよい。また、上記の照明装置10およびモジュール等は、水が付着したときの影響を低減するためのシーリング材等(図示せず)が、筐体21と蓋体13との間等の所定部位に配置されたものでもよく、筐体内に吸湿剤等が配置されたものでもよい。また、配線導体に金めっき等のめっき層が被着されたものでもよい。
1 発光装置
2 基板
3 発光素子
3a 発光部
4 枠体
5 封止部材
6 被覆材
7 蛍光体
7a 第1蛍光体
7b 第2蛍光体
7c 第3蛍光体
7d 第4蛍光体
10 照明装置
11 実装板
12 基部
13 蓋体
21 筐体
22 端板
P ピーク領域
L 長波長領域

Claims (7)

  1.  380~425nmに第1ピーク波長を有し、半値幅が15~35nmである第1放射光を放射する発光部を有する発光素子と、
    前記発光素子の前記発光部上に位置しており、430~475nmに第2ピーク波長を有するとともに490~540nmに第3ピーク波長を有する第2放射光を放射する蛍光体を含む被覆材とを備えており、
    前記第1ピーク波長、前記第2ピーク波長および前記第3ピーク波長を含むピーク領域と、前記第3ピーク波長の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域とを有する外部放射光を放射する発光装置。
  2.  前記第1ピーク波長と前記第2ピーク波長との間の光強度は、前記第1ピーク波長、前記第2ピーク波長および前記第3ピーク波長における最大の光強度に対して20~70%の強さである請求項1記載の発光装置。
  3.  前記長波長領域における前記外部放射光の光強度は、550~570nmの波長領域において前記第3ピーク波長における光強度の75~85%の強さであり、565~585nmの波長領域において前記第3ピーク波長における光強度の55~65%の強さであり、600~640nmの波長領域において前記第3ピーク波長における光強度の35~45%の強さであり、650~670nmの波長領域において前記第3ピーク波長における光強度の15~25%の強さであり、690~710nmの波長領域において前記第3ピーク波長における光強度の5~15%の強さである請求項1または請求項2記載の発光装置。
  4.  前記外部放射光は、380~425nmの波長領域における光エネルギーが、前記第1ピーク波長の下限から前記長波長領域の上限までの全波長領域における全体の光エネルギーに対して10~15%である請求項1~請求項3のいずれか1項記載の発光装置。
  5.  前記外部放射光は、430~475nmの波長領域における光エネルギーが、前記全波長領域における全体の光エネルギーに対して20~30%である請求項1~請求項4のいずれか1項記載の発光装置。
  6.  前記外部放射光は、475~750nmの波長領域における光エネルギーが、前記全波長領域における全体の光エネルギーに対し60~70%である請求項1~請求項5のいずれか1項記載の発光装置。
  7.  請求項1~6のいずれか1項記載の発光装置と、
    該発光装置が実装された実装板とを備える照明装置。
PCT/JP2018/018065 2017-09-26 2018-05-10 発光装置および照明装置 WO2019064675A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019544234A JP7058663B2 (ja) 2017-09-26 2018-05-10 発光装置および照明装置
US16/650,995 US11282989B2 (en) 2017-09-26 2018-05-10 Light-emitting device and illumination apparatus
CN201880061269.7A CN111133594B (zh) 2017-09-26 2018-05-10 发光装置以及照明装置
EP18862433.2A EP3690963B1 (en) 2017-09-26 2018-05-10 Light-emitting device and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-184671 2017-09-26
JP2017184671 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019064675A1 true WO2019064675A1 (ja) 2019-04-04

Family

ID=65901161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018065 WO2019064675A1 (ja) 2017-09-26 2018-05-10 発光装置および照明装置

Country Status (5)

Country Link
US (1) US11282989B2 (ja)
EP (1) EP3690963B1 (ja)
JP (3) JP7058663B2 (ja)
CN (1) CN111133594B (ja)
WO (1) WO2019064675A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075505A1 (ja) * 2019-10-18 2021-04-22

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11282989B2 (en) * 2017-09-26 2022-03-22 Kyocera Corporation Light-emitting device and illumination apparatus
JP7448913B2 (ja) 2019-03-08 2024-03-13 沖電開発株式会社 サンゴの産卵誘導方法及び装置
JP2020184411A (ja) * 2019-04-26 2020-11-12 京セラ株式会社 照明装置及びアクアリウム
JP7230200B2 (ja) * 2019-06-28 2023-02-28 京セラ株式会社 照明装置、照明制御方法及び照明制御プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034833A (ja) * 2006-06-27 2008-02-14 Mitsubishi Chemicals Corp 照明装置
JP2010199273A (ja) * 2009-02-25 2010-09-09 Kyocera Corp 発光装置および照明装置
US20110222277A1 (en) * 2010-03-09 2011-09-15 Cree, Inc. High cri lighting device with added long-wavelength blue color
JP2013065555A (ja) * 2011-09-02 2013-04-11 Mitsubishi Chemicals Corp 照明方法及び発光装置
JP2017034179A (ja) * 2015-08-05 2017-02-09 株式会社小糸製作所 発光モジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269104A (ja) 2000-03-28 2001-10-02 Iwasaki Electric Co Ltd Led式水中ライトトラップ
CN100403563C (zh) * 2005-04-18 2008-07-16 光宝科技股份有限公司 白光发光二极管元件及相关荧光粉与制备方法
US7923928B2 (en) * 2006-06-27 2011-04-12 Mitsubishi Chemical Corporation Illuminating device
KR20080018620A (ko) * 2006-08-25 2008-02-28 서울반도체 주식회사 발광 소자
US8704440B2 (en) * 2011-07-06 2014-04-22 Osram Sylvania Inc. LED lighting device having a phosphor composition
EP2833422A4 (en) 2012-03-30 2015-04-01 Mitsubishi Chem Corp LIGHT-EMITTING SEMICONDUCTOR DEVICE AND LIGHTING DEVICE
KR20150007885A (ko) * 2013-07-12 2015-01-21 엘지이노텍 주식회사 형광체 및 이를 구비한 발광 소자
CN105609494B (zh) * 2014-10-27 2019-03-01 光宝光电(常州)有限公司 白光发光装置
JP2016181550A (ja) 2015-03-23 2016-10-13 三菱化学株式会社 発光装置、照明装置及び画像表示装置
US10160905B2 (en) 2015-07-07 2018-12-25 Dyden Corporation Blue-green light-emitting phosphor, light-emitting element, light-emitting device, and white-light-emitting device
TWI580890B (zh) 2016-05-25 2017-05-01 國立中正大學 光源模組
JP2019016632A (ja) * 2017-07-04 2019-01-31 日亜化学工業株式会社 発光装置
US11282989B2 (en) * 2017-09-26 2022-03-22 Kyocera Corporation Light-emitting device and illumination apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034833A (ja) * 2006-06-27 2008-02-14 Mitsubishi Chemicals Corp 照明装置
JP2010199273A (ja) * 2009-02-25 2010-09-09 Kyocera Corp 発光装置および照明装置
US20110222277A1 (en) * 2010-03-09 2011-09-15 Cree, Inc. High cri lighting device with added long-wavelength blue color
JP2013065555A (ja) * 2011-09-02 2013-04-11 Mitsubishi Chemicals Corp 照明方法及び発光装置
JP2017034179A (ja) * 2015-08-05 2017-02-09 株式会社小糸製作所 発光モジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075505A1 (ja) * 2019-10-18 2021-04-22
WO2021075505A1 (ja) * 2019-10-18 2021-04-22 京セラ株式会社 発光装置及び照明装置
JP7233559B2 (ja) 2019-10-18 2023-03-06 京セラ株式会社 発光装置及び照明装置
JP7536128B2 (ja) 2019-10-18 2024-08-19 京セラ株式会社 発光装置及び照明装置

Also Published As

Publication number Publication date
EP3690963B1 (en) 2023-09-06
JP7321340B2 (ja) 2023-08-04
JP7120838B2 (ja) 2022-08-17
CN111133594B (zh) 2023-10-10
JP2022145782A (ja) 2022-10-04
JPWO2019064675A1 (ja) 2020-11-05
EP3690963A1 (en) 2020-08-05
EP3690963A4 (en) 2021-06-23
JP7058663B2 (ja) 2022-04-22
US20200279980A1 (en) 2020-09-03
JP2019062185A (ja) 2019-04-18
US11282989B2 (en) 2022-03-22
CN111133594A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
JP6913790B2 (ja) 屋内用光源および照明装置
JP7321340B2 (ja) 発光装置および照明装置
JP7025424B2 (ja) 発光装置および照明装置
JP2022103159A (ja) 発光装置、照明装置および生物育成用の照明装置
WO2019164014A1 (ja) 発光装置および照明装置
JP7027161B2 (ja) 照明装置および照明モジュール
WO2019106864A1 (ja) 発光装置および照明装置
JP2019175926A (ja) 発光装置および照明装置
WO2019163983A1 (ja) 発光装置および照明装置
WO2019107281A1 (ja) 発光装置および照明装置
JP3238005U (ja) 発光装置および水生生物飼育用照明装置
JP3243360U (ja) 生物育成用の照明装置
WO2014068907A1 (ja) 蛍光体、波長変換部材及び発光装置
JP7274013B2 (ja) 照明装置および照明モジュール
JP2019129245A (ja) 発光装置および照明装置
WO2021075505A1 (ja) 発光装置及び照明装置
JP2020107422A (ja) 照明装置および照明システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018862433

Country of ref document: EP

Effective date: 20200428