JP2020184411A - 照明装置及びアクアリウム - Google Patents

照明装置及びアクアリウム Download PDF

Info

Publication number
JP2020184411A
JP2020184411A JP2019086568A JP2019086568A JP2020184411A JP 2020184411 A JP2020184411 A JP 2020184411A JP 2019086568 A JP2019086568 A JP 2019086568A JP 2019086568 A JP2019086568 A JP 2019086568A JP 2020184411 A JP2020184411 A JP 2020184411A
Authority
JP
Japan
Prior art keywords
light emitting
light
peak wavelength
emitting device
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019086568A
Other languages
English (en)
Inventor
横井 清孝
Kiyotaka Yokoi
清孝 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019086568A priority Critical patent/JP2020184411A/ja
Publication of JP2020184411A publication Critical patent/JP2020184411A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】水生生物にかかるストレスを低減させた照明装置及びアクアリウムを提供する。【解決手段】照明装置100は、水槽200の内部を照明する照明装置100であって、水槽200の内部で所定の水中環境を再現する光を発光する少なくとも1つの発光装置10と、発光装置10を制御する制御装置20と、を備える。【選択図】図1A

Description

本開示は、照明装置及びアクアリウムに関する。
従来、4種類のLEDを含むLEDアレイと、LEDアレイの明るさを制御する制御回路と、を備える照明器具が、水槽の上部に取り付けられることで、鑑賞者に、水草の緑及び赤を自然に見せるアクアリウムが知られている(例えば、特許文献1参照)。
特表2015−528993号公報
従来の照明装置は、鑑賞者に、水槽の内部をより良く見せるための機能が重視されていた。このため、水槽の内部に生息する水生生物に、適切な光が照射されない場合があり、ストレスがかかり易いという問題があった。
上記のような問題点に鑑みてなされた本開示の目的は、水生生物にかかるストレスを低減させた照明装置及びアクアリウムを提供することにある。
本開示の一実施形態に係る照明装置は、水槽の内部を照明する照明装置であって、前記水槽の内部で所定の水中環境を再現する光を発光す少なくとも1つの発光装置と、前記発光装置を制御する制御装置と、を備える。
本開示の一実施形態に係るアクアリウムは、水槽と、前記水槽の内部で所定の水中環境を再現する光を発光する複数の発光装置と、前記発光装置を制御する制御装置と、を備える。
本開示の一実施形態によれば、水中環境を考慮せず水槽内部に単に照明装置を設置する場合と比較して、自然な水中環境等を再現可能な状態とすることができるため、水生生物にかかるストレスを低減させることが可能となる。
一実施形態に係るアクアリウムの一例を示す外観斜視図である。 一実施形態に係るアクアリウムの一例を示す外観斜視図である。 一実施形態に係るアクアリウムの一例を示す上面図である。 側面のマジックミラーで光が反射する構成の一例を示す図である。 蓋部材のマジックミラーで光が反射する構成の一例を示す図である。 一実施形態に係る照明装置の一例を示す図である。 水深と発光スペクトルとの関係の一例を示す図である。 一実施形態に係る発光装置の一例を示す外観斜視図である。 図6に示す発光装置のA−A断面図である。 図7に示す発光装置の一点鎖線の丸囲み部の拡大図である。 一実施形態に係る発光素子の発光スペクトルの一例を示す図である。 一実施形態に係る発光装置が備える第1蛍光体、第2蛍光体、第3蛍光体、及び第4蛍光体それぞれの蛍光スペクトルの一例を示す図である。 第1発光装置の発光スペクトル及び水深2m〜8mにおける太陽光スペクトルの一例を示す図である。 第2発光装置の発光スペクトル及び水深8m〜30mにおける太陽光スペクトルの一例を示す図である。 第3発光装置の発光スペクトル及び水深30m〜100mにおける太陽光スペクトルの一例を示す図である。
以下、本開示の実施形態について、図面を参照して説明する。以下の説明で用いられる図は模式的なものである。図面上の寸法比率などは現実のものとは必ずしも一致していない。
<アクアリウムの構成>
図1A、図1B、図2、図3A及び図3Bを参照して、本実施形態に係るアクアリウム1000について説明する。
アクアリウム1000は、水槽200と、水槽200の内部を照明する照明装置100とを備える。アクアリウム1000は、蓋部材300をさらに備えてよい。アクアリウム1000は、マジックミラー400をさらに備えてよい。
アクアリウム1000は、鑑賞者が水生生物2000を鑑賞するために、例えば、家庭、オフィス、水族館、などに設置される設備である。水生生物2000は、水中で生息可能な鑑賞用の水生生物を含んでよい。水生生物2000は、例えば、熱帯魚、コイ、アロワナ、メダカ、エビ、金魚、またはサンゴ、などを含んでよい。
照明装置100は、複数の発光装置10と、制御装置20と、配線基板30とを備える。複数の発光装置10は、水槽200の内部で所定の水中環境を再現する光を発光する。制御装置20は、例えば、鑑賞者によって、手動操作されて、少なくとも1つの発光装置10を制御する。所定の水中環境は、水深によって特定される環境を含んでよい。所定の水中環境は、例えば、太陽光及び月光の少なくとも一方に照らされている環境を含んでよい。
配線基板30は、複数の発光装置10が実装されて、複数の発光装置10と制御装置20とを接続する。配線基板30は、例えば、図1Aに示すように、蓋部材300に対して、平行に設けられていてもよい。配線基板30が蓋部材300に対して平行に設けられることで、複数の発光装置10が発光する光を、例えば、水槽200の側面に設けられるマジックミラー400で効率的に反射させて、水生生物2000に対して照射することができる。配線基板30は、例えば、図1Bに示すように、蓋部材300に対して、斜めに設けられていてもよい。配線基板30が蓋部材300に対して斜めに設けられることで、複数の発光装置10が発光する光を、例えば、蓋部材300に設けられるマジックミラー400で効率的に反射させて、水生生物2000に対して照射することができる。
水槽200は、上部に開口を有し、内部に淡水又は海水などの液体を貯留するための空間を有している。水槽200は、内部に貯留した液体の温度を制御するヒータ等の温度制御手段を有してよい。水槽200は、内部に貯留した液体の温度を、例えば、5℃〜30℃に制御してよい。液体は、上述の例に限られず種々の温度に制御されてよい。
水槽200の形状は、特に限定されるものではなく、例えば、テーブル型、キューブ型、丸型、又は円柱型などの任意の形状であってよい。例えば、水槽200の形状がテーブル型である場合、水槽200は、底面201と、底面201に対して垂直に設けられる側面202、側面203、側面204及び側面205と、4つの脚と、を備えてよい。この場合、鑑賞者は、椅子などに腰をかけたままで、水槽200の内部に生息する水生生物2000を、水槽200の上部から鑑賞することができる(図2参照)。
水槽200は、光透過性を有する材料で形成される。光透過性を有する材料として、例えば、アクリル樹脂、若しくはエポキシ樹脂、などの樹脂材料、又は、石英ガラス、若しくはパイレックス(登録商標)ガラス、などのガラス材料、などが用いられてよい。水槽200が光透過性を有する材料で形成されることで、鑑賞者は、水槽200の内部に生息する水生生物2000を、例えば、側面202〜205から鮮明に鑑賞することができる。
水槽200は、底面201にマジックミラー400を備えていてもよい。また、水槽200は、側面202〜205の少なくとも1つの面にマジックミラー400を備えていてもよい。また、水槽200は、底面201及び側面202〜205における全ての面にマジックミラー400を備えていてもよい(図3A参照)。水槽200が、底面201及び側面202〜205における全ての面にマジックミラー400を備えることにより、複数の発光装置10が発光する光を、水槽200の外部に漏れにくくすることができる。このようにすることで、水槽200がマジックミラー400を備えない場合と比べて、照明装置100による照明によって水槽200の内部が明るくなりやすい。また、水槽200がマジックミラー400を備えることによって、水槽200の内部から水槽200の外部が見えにくくなる。水槽200の外部の照明が暗くされている場合、水槽200の外部はさらに見えにくくなる。このようにすることで、水生生物2000は、水槽200の外部を視認し難くなる。その結果、水生生物2000にかかるストレスを低減させることができる。一方で、鑑賞者は、水槽200の外部から水槽200の内部をよく見ることができる。その結果、鑑賞者に対して、水生生物2000をより鮮やかに見せることができる。
水槽200は、液体の温度を測定する温度計、液体の塩分濃度を測定する塩分濃度計、などを更に備えていてもよい。
蓋部材300は、水槽200の上部に設けられる。蓋部材300は、例えば、水槽200の内部に貯留する液体の入れ替え、水槽200の内部に生息する水生生物2000の交換、などの際に開閉される。
蓋部材300は、光透過性を有する材料で形成される。光透過性を有する材料として、例えば、アクリル樹脂、若しくはエポキシ樹脂、などの樹脂材料、又は、石英ガラス、若しくはパイレックスガラス、などのガラス材料、などが用いられてよい。水槽200が光透過性を有する材料で形成されることで、鑑賞者は、水槽200の内部に生息する水生生物2000を、例えば、蓋部材300の上部から鮮明に鑑賞することができる。
蓋部材300は、表面300Aにマジックミラー400を備えていてもよい(図3B参照)。蓋部材300が、表面300Aにマジックミラー400を備えることにより、マジックミラー400に対して入射する光を、表面300Aで効率的に反射させることができる。これにより、水生生物2000は、水槽200の外部を視認し難くなるため、水生生物2000にかかるストレスを低減させることができる。また、鑑賞者に対して、水生生物2000をより鮮やかに見せることができる。
図3A及び図3Bに示されるように、マジックミラー400は、蓋部材300、水槽200の底面201、及び水槽200の側面202〜205、の少なくとも1つに設けられてよい。マジックミラー400は、蓋部材300のみに設けられてもよい。また、マジックミラー400は、水槽200の底面201のみに設けられてもよい。また、マジックミラー400は、水槽200の側面202〜205のみに設けられてもよい。また、マジックミラー400は、蓋部材300、水槽200の底面201、水槽200の側面202〜205、の全てに設けられてもよい。マジックミラー400は、蓋部材300よりも内側に設けられてもよい。
マジックミラー400は、入射する入射光の一部を反射させると共に入射光の一部を透過させ、入射光を反射光と透過光とに分離する光学部材である。マジックミラー400は、図3Aに示されているように水槽200の側面に位置する場合、側面に向けて入射する光を水槽200の内側に反射してよい。マジックミラー400は、図3Bに示されているように水槽200の蓋部材300に位置する場合、蓋部材300に向けて入射する光を水槽200の内側に反射してよい。マジックミラー400は、水槽200の底面に入射する光を水槽200の内側に反射してもよい。マジックミラー400は、錫若しくは銀などのメッキ膜を形成するメッキ処理、又は、金属などの蒸着処理などにより、光透過性を有する材料に薄い反射膜が積層されることによって形成されてよい。マジックミラー400は、反射膜の厚さに基づいて、反射光及び透過光の割合が適宜調整されうる。
マジックミラー400は、可撓性を有していてもよい。マジックミラー400が可撓性を有することで、水槽200の形状に沿って、マジックミラー400を密着させることが可能になる。
蓋部材300、水槽200の底面201、水槽200の側面202〜205、の少なくとも1つに、マジックミラー400を設ける際には、複数の発光装置10が発光する光に対して、アクアリウム1000の外部の明るさが適宜調整される。
本実施形態に係るアクアリウム1000によれば、上述の照明装置100が水槽200の内部を照明する。これにより、水槽200の内部で所定の水中環境が再現されるため、水槽200に生息する水生生物2000にかかるストレスを低減させることが可能になる。
照明装置100が設置される位置は、図1A等に例示されるように水槽200の上部に限られない。照明装置100は、水槽200に生息する水生生物2000に適切な光を照射可能な種々の位置に設置されてよい。例えば、照明装置100は、水槽200の側部に設置されていてもよいし、水槽200の底部に設置されていてもよい。
<照明装置の構成>
図4をさらに参照して、本実施形態に係る照明装置100の構成について詳細に説明する。
照明装置100は、複数の発光装置10と、制御装置20と、配線基板30と、を備える。発光装置10は少なくとも1つあればよいが、複数の発光装置10である場合には、第1発光装置10−1と、第2発光装置10−2と、第3発光装置10−3と、を備える。発光装置10が1つの場合には、第1発光装置10−1と、第2発光装置10−2と、第3発光装置10−3のいずれかであり、ある特定の水中環境を再現することができる。そのとき、制御装置20でその光の強度を制御することができる。制御装置20は、AC−DC変換部21と、駆動部22と、制御部23と、を備える。制御装置20は、その構成が特に限定されるものではなく、発光装置10を制御可能な公知の制御装置20の構成を適用することができる。第1発光装置10−1、第2発光装置10−2、第3発光装置10−3の個数は、単数であっても複数であってもよい。照明装置100が複数の発光装置10として備える発光装置10の数は、3つに限られず、2つであってもよいし、4つ以上であってもよい。
複数の発光装置10は、例えば、蓋部材300の対向する2辺に実装されてよい(図2参照)。複数の発光装置10は、蓋部材300の対向する2辺に限定されず、例えば、蓋部材300の全ての辺に実装されていてもよい。
複数の発光装置10は、例えば、3m以上20m以下の間隔で、配線基板30に実装される。間隔が大きい程、発光装置10の個数が減るため、発光装置10と配線基板30との間に生じる応力を抑え、発光装置10と配線基板30との剥離を生じ難くすることができる。間隔が小さい程、発光装置10の個数が増えるため、実装密度を大きくし、複数の発光装置10が発光する光の量を多くすることができる。
第1発光装置10−1は、駆動部22によって駆動制御される。第1発光装置10−1は、水深2m〜8mで太陽光に照らされている環境を、水槽200の内部に再現する光を発光する。第1発光装置10−1は、360nm〜430nmの波長領域に第1ピーク波長λ1を有し、430nm〜475nmの波長領域に第2ピーク波長λ2を有し、480nm〜530nmの波長領域に第3ピーク波長λ3を有する発光スペクトルの光を発光してよい(図11参照)。第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.0〜1.3である。第1ピーク波長λ1における光強度を1とした場合に、第3ピーク波長λ3における相対光強度が1.0〜1.3である。
第2発光装置10−2は、駆動部22によって駆動制御される。第2発光装置10−2は、水深8m〜30mで太陽光に照らされている環境を、水槽200の内部に再現する光を発光する。第2発光装置10−2は、360nm〜430nmの波長領域に第1ピーク波長λ1を有し、430nm〜475nmの波長領域に第2ピーク波長λ2を有し、490nm〜540nmの波長領域に第3ピーク波長λ3を有する発光スペクトルの光を発光してよい(図12参照)。第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.1〜1.4である。第1ピーク波長λ1における光強度を1とした場合に、第3ピーク波長λ3における相対光強度が1.1〜1.4である。
第3発光装置10−3は、駆動部22によって駆動制御される。第3発光装置10−3は、水深30m〜100mで太陽光に照らされている環境を、水槽200の内部に再現する光を発光する。第3発光装置10−3は、360nm〜430nmの波長領域に第1ピーク波長λ1を有し、480nm〜520nmの波長領域に第2ピーク波長λ2を有する発光スペクトルの光を発光してよい(図13参照)。第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.2以上である。
制御装置20は、水槽200の内部に生息する水生生物2000の種類に基づいて、所定の水中環境を決定し、複数の発光装置10を制御する。
制御装置20は、第1発光装置10−1に駆動電流を供給する場合、第2発光装置10−2及び第3発光装置10−3に駆動電流を供給しない。これにより、第1発光装置10−1は、水槽200の内部で水深2m〜8mで太陽光に照らされている環境を再現する光を発光することができる。制御装置20は、第2発光装置10−2に駆動電流を供給する場合、第1発光装置10−1及び第3発光装置10−3に駆動電流を供給しない。これにより、第2発光装置10−2は、水槽200の内部で水深8m〜30mで太陽光に照らされている環境を再現する光を発光することができる。制御装置20は、第3発光装置10−3に駆動電流を供給する場合、第1発光装置10−1及び第2発光装置10−2に駆動電流を供給しない。これにより、第3発光装置10−3は、水槽200の内部で水深30m〜100mで太陽光に照らされている環境を再現する光を発光することができる。
制御装置20は、第1発光装置10−1、第2発光装置10−2、又は第3発光装置10−3に供給する駆動電流の大きさを、所定時間ごとに切り替えてよい。例えば、制御装置20は、第1発光装置10−1、第2発光装置10−2、又は第3発光装置10−3に供給する駆動電流の大きさを、1時間ごとに切り替えながら、各発光装置10を調光制御してよい。これにより、複数の発光装置10のそれぞれが発光する光を、自然光により近づけることが可能になる。また、例えば、制御装置20は、第1発光装置10−1、第2発光装置10−2、又は第3発光装置10−3に供給する駆動電流の大きさを、12時間ごとに切り替えながら、各発光装置10を点灯又は消灯制御してよい。これにより、水槽200の内部で、昼の環境と夜の環境とを再現することが可能になる。また、制御装置20は、各発光装置10が発光する光の強度を変化させる際に、変化の前後における強度の差を所定値以下に制限してよい。これにより、水生生物2000が光の強度の変化によるストレスを感じにくくなる。また、制御装置20は、各発光装置10が発光する光の強度を大きくする場合の変化率と、小さくする場合の変化率とを異ならせてもよい。変化率は、単位時間当たりの光の強度の変化量で表されるとする。光の強度を大きくする場合の変化率の絶対値は、光の強度を小さくする場合の変化率の絶対値よりも小さくされてもよい。また、制御装置20は、各発光装置10が発光する光の強度を、太陽の高度に合わせて変化させてよい。制御装置20は、各発光装置10が発光する光の強度を、例えば、午前6時から午前11時までの間に徐々に大きくしていき、午前11時から午後1時までの間に最大値に保ち、午後1時から午後6時までの間に徐々に小さくしてもよい。光の強度を一定時間に保つ時間は、適宜設定されてよい。制御装置20は、太陽の高度に合わせて、各発光装置10が発光する光のスペクトルを変化させてもよい。制御装置20は、例えば、日の出の前後1時間、及び、日没の前後1時間において、各発光装置10が発光する光の短波長側(青色側)の波長の相対光強度を低下させてもよい。
AC−DC変換部21は、交流電源1から入力される交流電力を直流電力へと変換し、駆動部22へと出力する。AC−DC変換部21は、例えば、整流部、電圧調整部、入力電圧検出部、又は出力電圧検出部、などを備えていてよい。
駆動部22は、第1の駆動回路22−1と、第2の駆動回路22−2と、第3の駆動回路22−3と、を備える。第1の駆動回路22−1、第2の駆動回路22−2、及び第3の駆動回路22−3は、例えば、インダクタ、ダイオード、キャパシタ、などを備える公知のDC/DCコンバータを含んでよい。
駆動部22は、制御部23から入力される制御信号に基づいて、AC−DC変換部21から入力される直流電圧を、複数の発光装置10に応じた駆動電流へと変換し、複数の発光装置10へと所定の駆動電流を供給する。駆動部22は、例えば、専用ケーブルなどによって、複数の発光装置10と接続されている。
第1の駆動回路22−1は、制御部23から入力される制御信号に基づいて、第1発光装置10−1に駆動電流を供給し、第1発光装置10−1の点灯又は消灯、或いは、調光又は調色を制御する。第1の駆動回路22−1が、第1発光装置10−1を適切に駆動制御することで、第1発光装置10−1は、水深2m〜8mで太陽光に照らされている環境を、水槽200の内部に再現する光を発光することができる。
第2の駆動回路22−2は、制御部23から入力される制御信号に基づいて、第2発光装置10−2に駆動電流を供給し、第2発光装置10−2の点灯又は消灯、或いは、調光又は調色を制御する。第2発光装置10−2が、第2発光装置10−2を適切に駆動制御することで、第2発光装置10−2は、水深8m〜30mで太陽光に照らされている環境を、水槽200の内部に再現する光を発光することができる。
第3の駆動回路22−3は、制御部23から入力される制御信号に基づいて、第3発光装置10−3に駆動電流を供給し、第3発光装置10−3の点灯又は消灯、或いは、調光又は調色を制御する。第3発光装置10−3が、第3発光装置10−3を適切に駆動制御することで、第3発光装置10−3は、水深30m〜100mで太陽光に照らされている環境を、水槽200の内部に再現する光を発光することができる。
制御部23は、例えば、アナログ回路、デジタル回路、若しくはマイコン、又は、これらの組み合わせで構成され、制御装置20が備える各部の動作を制御する。制御部23は、記憶部などを更に備えていてもよく、記憶部には、制御部23が各種処理を実行するために必要な各種プログラム又は各種の情報、などが記憶される。制御部23は、図4に示すように、AC−DC変換部21及び駆動部22と別々に構成されていてもよいし、AC−DC変換部21及び駆動部22と組み合わされて構成されていてもよい。
制御部23は、水槽200の内部に生息する水生生物2000の種類に基づいて、所定の水中環境を決定してよい。制御部23は、決定した水中環境を再現するための光を照明装置100から発光できるように、複数の発光装置10を制御してよい。制御部23は、例えば、水槽200の内部に生息する水生生物2000の種類がメダカである場合、所定の水中環境を、水深2m〜8mで太陽光に照らされている環境に決定し、制御信号を第1の駆動回路22−1へと出力する。制御部23は、例えば、水槽200の内部に生息する水生生物2000の種類がサンゴである場合、所定の水中環境を、水深8m〜30mで太陽光に照らされている環境に決定し、制御信号を第2の駆動回路22−2へと出力する。制御部23は、例えば、水槽200の内部に生息する水生生物2000の種類がエビである場合、所定の水中環境を、水深30m〜100mで太陽光に照らされている環境に決定し、制御信号を第3の駆動回路22−3へと出力する。
配線基板30は、例えば、リジッド基板、フレキシブル基板またはリジッドフレキシブル基板などのプリント基板が用いられてよい。配線基板30が備える配線と、複数の発光装置10が備える基板の配線とは、例えば、半田または導電性接着剤を介して、電気的に接続されてよい。
配線基板30は、その形状が、特に限定されるものではなく、蓋部材300に沿った形状であってよい。配線基板30は、例えば、円形状、楕円形状、矩形状、又は正方形状、など種々の形状であってよい。
上述のように、制御装置20が、複数の発光装置10を適切に制御することで、複数の発光装置10は、水槽200の内部で所定の水中環境を再現する光を発光することができる。これにより、水生生物2000にかかるストレスを低減させることができる。
<水深と発光装置の発光スペクトルとの関係>
次に、図5を参照して、水深と、複数の発光装置10が発光する発光スペクトルと、の関係について説明する。
水槽200の内部において、水深2m〜8mで太陽光に照らされている海中環境A1が再現される場合、第1発光装置10−1は、グラフB1に示す発光スペクトルの光を発光する(図11参照)。海中環境A1は、例えば、メダカなどの水生生物2000にとって適切な環境である。
グラフB1に示す発光スペクトルは、360nm〜430nmの波長領域に第1ピーク波長λ1を有し、430nm〜475nmの波長領域に第2ピーク波長λ2を有し、480nm〜530nmの波長領域に第3ピーク波長λ3を有する。また、グラフB1に示す発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.0〜1.3であり、第3ピーク波長λ3における相対光強度が1.0〜1.3である。
水槽200の内部において、水深8m〜30mで太陽光に照らされている海中環境A2が再現される場合、第2発光装置10−2は、グラフB2に示す発光スペクトルの光を発光する(図12参照)。海中環境A2は、例えば、サンゴなどの水生生物2000にとって適切な環境である。
グラフB2に示す発光スペクトルは、360nm〜430nmの波長領域に第1ピーク波長λ1を有し、430nm〜475nmの波長領域に第2ピーク波長λ2を有し、490nm〜540nmの波長領域に第3ピーク波長λ3を有する。また、グラフB2に示す発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.1〜1.4であり、第3ピーク波長λ3における相対光強度が1.1〜1.4である。
水槽200の内部において、水深30m〜100mで太陽光に照らされている海中環境A3が再現される場合、第3発光装置10−3は、グラフB3に示す発光スペクトルの光を発光する(図13参照)。海中環境A3は、例えば、エビなどの水生生物2000にとって適切な環境である。
グラフB3に示す発光スペクトルは、360nm〜430nmの波長領域に第1ピーク波長λ1を有し、480nm〜520nmの波長領域に第2ピーク波長λ2を有する。また、グラフB3に示す発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.2以上である。
上述のように、各種の水生生物2000は、水槽200の内部であっても、水深に応じて、海中と略同様の環境に生息することができる。これにより、水生生物2000にかかるストレスを低減させることが可能となる。
<発光装置の構成>
図6から図10までを参照して、本実施形態に係る発光装置10について詳細に説明する。発光装置10は、上述の照明装置100に少なくとも1つ搭載される。
発光装置10は、素子基板2と、複数の発光素子3と、枠体4と、封止部材5と、波長変換部材6と、を備える。
素子基板2は、例えば、絶縁性を有する材料で形成されてよい。素子基板2は、例えば、アルミナ若しくはムライトなどのセラミック材料、ガラスセラミック材料、又は、これらの材料のうち複数の材料を混合した複合系材料などで形成されてよい。素子基板2は、熱膨張を調整することが可能な金属酸化物微粒子を分散させた高分子樹脂材料などで形成されてもよい。
素子基板2は、素子基板2の主面2A又は素子基板2の内部に、素子基板2と配線基板30とを電気的に導通する配線導体を備えてよい。配線導体は、例えば、タングステン、モリブデン、マンガン、又は銅などの導電材料で形成されてよい。配線導体は、例えば、タングステンの粉末に有機溶剤が添加された金属ペーストを、素子基板2となるセラミックグリーンシートに所定パターンで印刷し、複数のセラミックグリーンシートを積層して、焼成することにより形成されてよい。配線導体は、酸化防止のために、その表面に、例えば、ニッケル又は金などのめっき層が形成されてよい。
素子基板2は、発光素子3が発光する光を効率良く外部へと放出させるため、配線導体、及びめっき層と間隔を空けて、金属反射層を備えてもよい。金属反射層は、例えば、アルミニウム、銀、金、銅又はプラチナなどの金属材料で形成されてよい。
複数の発光素子3は、素子基板2の主面2A上に実装される。複数の発光素子3は、素子基板2に設けられる配線導体の表面に被着するめっき層上に、例えば、ろう材又は半田などを介して、電気的に接続される。素子基板2の主面2A上に実装される発光素子3の個数は、特に限定されるものではない。
発光素子3は、例えば、LED(light emitting diode)である。LEDは、P型半導体とN型半導体とが接合されたPN接合中で、電子と正孔とが再結合することによって、外部へと光を発光する。発光素子3は、LEDに限られず、他の発光デバイスであってもよい。
発光素子3は、透光性基体と、透光性基体上に形成される光半導体層とを含んでよい。透光性基体は、例えば、有機金属気相成長法、又は分子線エピタキシャル成長法などの化学気相成長法を用いて、その上に光半導体層を成長させることが可能な材料を含む。透光性基体は、例えば、サファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコン(Si)、又は二ホウ化ジルコニウムなどで形成されてよい。透光性基体の厚みは、例えば、50μm以上1000μm以下であってよい。
光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層とを含んでよい。第1半導体層、発光層、及び第2半導体層は、例えば、III族窒化物半導体、ガリウム燐若しくはガリウムヒ素などのIII−V族半導体、又は、窒化ガリウム、窒化アルミニウム若しくは窒化インジウムなどのIII族窒化物半導体などで形成されてよい。
第1半導体層の厚みは、例えば、1μm以上5μm以下であってよい。発光層の厚みは、例えば、25nm以上150nm以下であってよい。第2半導体層の厚みは、例えば、50nm以上600nm以下であってよい。
図9は、発光素子3の発光スペクトルの一例を示す図である。図9のグラフにおいて、横軸及び縦軸はそれぞれ、発光素子3が発光する光の波長及び相対光強度を表している。相対光強度は、ピーク波長における光強度を1とした場合に、ピーク波長における光強度に対する光強度の比として表される。図9のグラフによれば、発光素子3は、360nm〜430nmの波長領域にピーク波長を有する光を発光する。360nm〜430nmの波長領域は、可視光領域に含まれる。360nm〜430nmの波長領域は、紫色光領域ともいう。
枠体4は、例えば、酸化アルミニウム、酸化チタン、酸化ジルコニウム又は酸化イットリウムなどのセラミック材料で形成されてよい。枠体4は、多孔質材料で形成されてよい。枠体4は、酸化アルミニウム、酸化チタン、酸化ジルコニウム又は酸化イットリウムなどの金属酸化物を含む粉末を混合した樹脂材料で形成されてよい。枠体4は、これらの材料に限られず、種々の材料で形成されてよい。
枠体4は、素子基板2の主面2Aに、例えば、樹脂、ろう材又は半田などを介して、接続される。枠体4は、複数の発光素子3と間隔を空けて、複数の発光素子3を取り囲むように素子基板2の主面2A上に設けられる。枠体4は、内壁面が、素子基板2の主面2Aから遠ざかる程、外方に向かって広がるように傾斜して設けられている。内壁面は、複数の発光素子3が発光する光を反射させる反射面として機能する。内壁面は、例えば、タングステン、モリブデン、又はマンガンなどの金属材料で形成される金属層と、金属層を被覆し、ニッケル又は金などの金属材料で形成されるめっき層とを含んでよい。めっき層は、複数の発光素子3が発光する光を反射する。
枠体4の内壁面の形状は、平面視において、円形状であってよい。内壁面の形状が円形状であることによって、枠体4は、複数の発光素子3が発光する光を略一様に、外方に向かって反射させることができる。枠体4の内壁面の傾斜角度は、素子基板2の主面2Aに対して、例えば、55度以上70度以下の角度に設定されていてよい。
封止部材5は、素子基板2及び枠体4で囲まれる内側の空間に、枠体4で囲まれる内側の空間の上部の一部を残して充填されている。封止部材5は、複数の発光素子3を封止するとともに、複数の発光素子3が発光する光を透過させる。封止部材5は、例えば、光透過性を有する材料で形成されてよい。封止部材5は、例えば、シリコーン樹脂、アクリル樹脂若しくはエポキシ樹脂などの光透過性を有する絶縁樹脂材料、又は光透過性を有するガラス材料、などで形成されてよい。封止部材5の屈折率は、例えば、1.4以上1.6以下に設定されていてよい。
波長変換部材6は、360nm〜430nmの波長領域にピーク波長を有する光を、600nm〜700nmの波長領域にピーク波長を有する光に変換する第1蛍光体61を備える。また、波長変換部材6は、360nm〜430nmの波長領域にピーク波長を有する光を、500nm〜600nmの波長領域にピーク波長を有する光に変換する第2蛍光体62を備える。また、波長変換部材6は、360nm〜430nmの波長領域にピーク波長を有する光を、450nm〜550nmの波長領域にピーク波長を有する光に変換する第3蛍光体63を備える。また、波長変換部材6は、360nm〜430nmの波長領域にピーク波長を有する光を、400nm〜500nmの波長領域にピーク波長を有する光に変換する第4蛍光体64を備える。
波長変換部材6は、発光素子3が発光する光を、600nm〜700nm、500nm〜600nm、450nm〜550nm、及び400nm〜500nmの波長領域それぞれにピーク波長を有する光、に変換することが可能な位置に設けられている。図6、図7及び図8に示す例では、波長変換部材6は、素子基板2及び枠体4で囲まれる内側の空間の上部の一部に、封止部材5の上面に沿って設けられている。この例に限定されることなく、例えば、波長変換部材6は、素子基板2及び枠体4で囲まれる内側の空間の上部からはみ出すように設けられてもよい。
波長変換部材6は、透光性を有する部材と、第1蛍光体61と、第2蛍光体62と、第3蛍光体63と、第4蛍光体64と、を備える。波長変換部材6は、透光性を有する部材に、第1蛍光体61、第2蛍光体62、第3蛍光体63、及び第4蛍光体64が含有されることで形成される。透光性を有する部材に含有される蛍光体の含有量は、適宜設定される。第1蛍光体61、第2蛍光体62、第3蛍光体63、及び第4蛍光体64は、透光性を有する部材に略均一に分散される。発光素子3が発光する光は、封止部材5を介して、波長変換部材6の内部へと入射する。
透光性を有する部材は、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂若しくはエポキシ樹脂などの透光性を有する絶縁樹脂、又は透光性を有するガラス材料、などで形成されてよい。
図10は、蛍光体の蛍光スペクトルの一例を示す図である。図10のグラフにおいて、横軸及び縦軸はそれぞれ、蛍光体が発光する光の波長及び相対光強度を表している。
蛍光体は、図10に例示されるように600nm〜700nmの波長領域に第1ピーク波長λ1を有する第1蛍光体61を含んでよい。第1蛍光体61は、例えば、赤色を示す蛍光体である。第1蛍光体61は、例えば、YS:Eu、Y:Eu、SrCaClAlSiN:Eu2+、CaAlSiN:Eu、又はCaAlSi(ON):Euなどを用いることができる。
蛍光体は、図10に例示されるように500nm〜600nmの波長領域に第2ピーク波長λ2を有する第2蛍光体62を含んでよい。第2蛍光体62は、例えば、緑色を示す蛍光体である。第2蛍光体62は、例えば、SrSi(O,Cl):Eu、(Sr,Ba,Mg)SiO:Eu2+、又はZnS:Cu,Al、ZnSiO:Mnなどを用いることができる。
蛍光体は、図10に例示されるように450nm〜550nmの波長領域に第3ピーク波長λ3を有する第3蛍光体63を含んでよい。第3蛍光体63は、例えば、青緑色を示す蛍光体である。第3蛍光体63は、例えば、(Sr,Ba,Ca)(POCl:Eu,SrAl1425:Euなどを用いることができる。
蛍光体は、図10に例示されるように400nm〜500nmの波長領域に第4ピーク波長λ4を有する第4蛍光体64を含んでよい。第4蛍光体64は、例えば、青色を示す蛍光体である。第4蛍光体64は、例えば、BaMgAl1017:Eu、又は(Sr,Ca,Ba)10(POCl:Eu,(Sr,Ba)10(POCl:Euなどを用いることができる。
波長変換部材6は、上述の第1蛍光体61、第2蛍光体62、第3蛍光体63、第4蛍光体64の他、例えば、青緑色を示し、450nm〜550nmの波長領域にピーク波長を有する蛍光体を含んでいてもよい。青緑色を示す蛍光体としては、例えば、(Sr,Ba,Ca)(POCl:Eu,SrAl1425:Euなどが挙げられる。また、波長変換部材6は、上述の第1蛍光体61、第2蛍光体62、第3蛍光体63、第4蛍光体64の他、例えば、近赤外領域の色を示し、680nm〜800nmの波長領域にピーク波長を有する蛍光体を含んでいてもよい。近赤外領域の色を示す蛍光体としては、例えば、3Ga12:Crなどが挙げられる。
第1発光装置10−1、第2発光装置10−2、第3発光装置10−3は、それぞれ所定の波長変換部材6を備えることによって、例えば、水深に依存して変化する自然光のスペクトルに近似する発光スペクトルを有する光を発光できる。つまり、発光装置10は、高い演色性を有しつつ、水生生物2000にかかるストレスを低減させることが可能な光を発光できる。
<発光装置の発光スペクトル>
次に、図11、図12及び図13を参照して、本実施形態に係る複数の発光装置10の発光スペクトルについて説明する。発光スペクトルは、例えば、分光測光装置などにより分光法を用いて測定される。図11、図12及び図13のグラフにおいて、横軸及び縦軸はそれぞれ、発光装置10が発光する光の波長及び相対光強度を表している。相対光強度は、ピーク波長における光強度を1とした場合に、ピーク波長における光強度に対する光強度の比として表される。
図11は、第1発光装置10−1が、水深2m〜8mで太陽光に照らされている環境を再現する光を発光する場合における発光スペクトルを示している。
第1発光装置10−1が発光する光の発光スペクトルは、360nm〜430nmの波長領域に第1ピーク波長λ1を有する。第1発光装置10−1が発光する光の発光スペクトルは、430nm〜475nmの波長領域に第2ピーク波長λ2を有する。第1発光装置10−1が発光する光の発光スペクトルは、480nm〜530nmの波長領域に第3ピーク波長λ3を有する。
第1発光装置10−1が発光する光の発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.0〜1.3である。第1発光装置10−1が発光する光の発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第3ピーク波長λ3における相対光強度が1.0〜1.3である。
即ち、第1発光装置10−1は、紫色領域に第1ピーク波長λ1を有し、青色領域に第2ピーク波長λ2を有し、黄色領域に第3ピーク波長λ3を有し、赤色領域にかけて緩やかに相対光強度が低くなる発光スペクトルの光を発光する。この光は、例えば、水深2m〜8mの海中に届く太陽光と、略同様の発光スペクトルであり、メダカなどの水生生物2000の成育に適している。
図12は、第2発光装置10−2が、水深8m〜30mで太陽光に照らされている環境を再現する光を発光する場合における発光スペクトルを示している。
第2発光装置10−2が発光する光の発光スペクトルは、360nm〜430nmの波長領域に第1ピーク波長λ1を有する。第2発光装置10−2が発光する光の発光スペクトルは、430nm〜475nmの波長領域に第2ピーク波長λ2を有する。第2発光装置10−2が発光する光の発光スペクトルは、490nm〜540nmの波長領域に第3ピーク波長λ3を有する。
第2発光装置10−2が発光する光の発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.1〜1.4である。第2発光装置10−2が発光する光の発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第3ピーク波長λ3における相対光強度が1.1〜1.4である。
即ち、第2発光装置10−2は、紫色領域に第1ピーク波長λ1を有し、青色領域に第2ピーク波長λ2を有し、黄色領域に第3ピーク波長λ3を有し、赤色領域にかけて緩やかに相対光強度が低くなる発光スペクトルの光を発光する。この光は、例えば、水深8m〜30mの海中に届く太陽光と、略同様の発光スペクトルであり、サンゴなどの水生生物2000の成育に適している。
図13は、第3発光装置10−3が、水深30m〜100mで太陽光に照らされている環境を再現する光を発光する場合における発光スペクトルを示している。
第3発光装置10−3が発光する光の発光スペクトルは、360nm〜430nmの波長領域に第1ピーク波長λ1を有する。第3発光装置10−3が発光する光の発光スペクトルは、480nm〜520nmの波長領域に第2ピーク波長λ2を有する。
第3発光装置10−3が発光する光の発光スペクトルは、第1ピーク波長λ1における光強度を1とした場合に、第2ピーク波長λ2における相対光強度が1.2以上である。
即ち、第3発光装置10−3は、紫色領域に第1ピーク波長λ1を有し、青色領域に第2ピーク波長λ2を有し、緑色領域から赤色領域にかけて緩やかに相対光強度が低くなる発光スペクトルの光を発光する。この光は、例えば、水深30m〜100mの海中に届く太陽光と、略同様の発光スペクトルであり、エビなどの水生生物2000の成育に適している。
本実施形態に係る発光装置10によれば、図11、図12及び図13に示すように、複数の発光装置10が発光する光のスペクトルを、水深に依存して変化する自然光のスペクトルに効果的に近付けることができる。これにより、水生生物2000にかかるストレスを低減させることが可能となる。
<変形例>
本実施形態において、波長変換部材6が蛍光体として、第1蛍光体61、第2蛍光体62、第3蛍光体63、及び第4蛍光体64のうち少なくとも1つを含むとして説明してきた。波長変換部材6は、その他の種類の蛍光体を含んでもよい。波長変換部材6は、1種類の蛍光体を含む構成であってもよいし、2種類以上の蛍光体を含む構成であってもよい。
本実施形態では、配線基板30が、蓋部材300の表面に設けられる場合を一例に挙げて説明しているが、これに限定されない。例えば、配線基板30は、蓋部材300の裏面に設けられてもよい。
本実施形態では、複数の発光装置10が、3種類である場合を一例に挙げて説明しているが、3種類に限定されるものではない。
本実施形態では、制御装置20が、第1発光装置10−1、第2発光装置10−2及び第3発光装置10−3のいずれか1つに駆動電流を供給する場合、他の2つの発光装置10に駆動電流を供給しないとしたが、これに限定されない。例えば、制御装置20は、複数の発光装置10に駆動電流を供給し、各発光装置10が発光する光を混合して調色制御することも可能である。照明装置100は、光を調色制御することによって、水深に応じた水中環境を再現する光を射出してよい。照明装置100は、光を調色制御することによって、太陽光が入射する水中環境を再現する光を射出してよい。太陽の高度が異なる場合、太陽光のスペクトルは異なる。照明装置100は、太陽の高度に応じて光を調色制御してもよい。照明装置100は、光を調色制御することによって、月光が入射する水中環境を再現する光を射出してよい。月の高度、又は、月齢が異なる場合、月光のスペクトルは異なる。照明装置100は、月の高度、又は、月齢に応じて光を調色制御してもよい。
本実施形態において「第1」及び「第2」などの記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」などの記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1蛍光体は、第2蛍光体と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」などの識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。
本実施形態に係る構成を説明する図は、模式的なものである。図面上の寸法比率などは、現実のものと必ずしも一致しない。
上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。本開示に係る構成は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形又は変更が可能である。本発明は上述の実施形態の例に限定されるものではなく、数値などの種々の変形は可能である。本実施形態における特徴部の種々の組み合わせは上述の実施形態の例に限定されるものではない。
2 素子基板
2A 主面
3 発光素子
4 枠体
5 封止部材
6 波長変換部材
10 発光装置
10−1 第1発光装置
10−2 第2発光装置
10−3 第3発光装置
20 制御装置
30 配線基板
61 第1蛍光体
62 第2蛍光体
63 第3蛍光体
64 第4蛍光体
100 照明装置
200 水槽
300 蓋部材
400 マジックミラー
1000 アクアリウム
2000 水生生物

Claims (15)

  1. 水槽の内部を照明する照明装置であって、
    前記水槽の内部で所定の水中環境を再現する光を発光する少なくとも1つの発光装置と、
    前記発光装置を制御する制御装置と、
    を備える照明装置。
  2. 前記所定の水中環境は、水深によって特定される、
    請求項1に記載の照明装置。
  3. 前記所定の水中環境は、太陽光及び月光の少なくとも一方に照らされている環境を含む、
    請求項1又は2に記載の照明装置。
  4. 前記制御装置は、前記水槽の内部に生息する水生生物の種類に基づいて、前記所定の水中環境を決定する、
    請求項1から3のいずれか一項に記載の照明装置。
  5. 前記水生生物は、熱帯魚、コイ、アロワナ、メダカ、エビ、金魚またはサンゴの少なくとも1つである、
    請求項4に記載の照明装置。
  6. 前記発光装置は、
    360nm〜430nmの波長領域にピーク波長を有する光を発光する発光素子と、
    前記発光素子が発光する光を、360nm〜780nmの波長領域にピーク波長を有する光に変換する波長変換部材と、
    を備える、請求項1から5のいずれか一項に記載の照明装置。
  7. 前記発光装置の前記波長変換部材は、
    透光性を有する部材と、
    600nm〜700nmの波長領域に第1ピーク波長を有する第1蛍光体、500nm〜600nmの波長領域に第2ピーク波長を有する第2蛍光体、450nm〜550nmの波長領域に第3ピーク波長を有する第3蛍光体、400nm〜500nmの波長領域に第4ピーク波長を有する第4蛍光体、の少なくとも1つを含む蛍光体と、
    を備える、請求項6に記載の照明装置。
  8. 前記制御装置は、
    前記所定の水中環境が、水深2m〜8mで且つ太陽光に照らされている環境である場合、
    360nm〜430nmの波長領域に第1ピーク波長を有し、430nm〜475nmの波長領域に第2ピーク波長を有し、480nm〜530nmの波長領域に第3ピーク波長を有し、前記第1ピーク波長における光強度を1とした場合に、前記第2ピーク波長における相対光強度が1.0〜1.3であり、前記第3ピーク波長における相対光強度が1.0〜1.3である発光スペクトルの光を発光する第1発光装置に、駆動電流を供給する、
    請求項1から7のいずれか一項に記載の照明装置。
  9. 前記制御装置は、
    前記所定の水中環境が、水深8m〜30mで且つ太陽光に照らされている環境である場合、
    360nm〜430nmの波長領域に第1ピーク波長を有し、430nm〜475nmの波長領域に第2ピーク波長を有し、490nm〜540nmの波長領域に第3ピーク波長を有し、前記第1ピーク波長における光強度を1とした場合に、前記第2ピーク波長における相対光強度が1.1〜1.4であり、前記第3ピーク波長における相対光強度が1.1〜1.4である発光スペクトルの光を発光する第2発光装置に、駆動電流を供給する、
    請求項1から7のいずれか一項に記載の照明装置。
  10. 前記制御装置は、
    前記所定の水中環境が、水深30m〜100mで且つ太陽光に照らされている環境である場合、
    360nm〜430nmの波長領域に第1ピーク波長を有し、480nm〜520nmの波長領域に第2ピーク波長を有し、前記第1ピーク波長における光強度を1とした場合に、前記第2ピーク波長における相対光強度が1.2以上である発光スペクトルの光を発光する第3発光装置に、駆動電流を供給する、
    請求項1から7のいずれか一項に記載の照明装置。
  11. 前記制御装置は、
    第1発光装置、第2発光装置、または第3発光装置に供給する駆動電流を、所定時間ごとに切り替える、
    請求項1から10のいずれか一項に記載の照明装置。
  12. 水槽と、
    前記水槽の内部で所定の水中環境を再現する光を発光する少なくとも1つの発光装置と、
    前記発光装置を制御する制御装置と、
    を備えるアクアリウム。
  13. 前記発光装置は、
    前記水槽の上部に設けられる、
    請求項12に記載のアクアリウム。
  14. 前記水槽を開閉する蓋部材を更に備え、
    前記蓋部材、前記水槽の側面、前記水槽の底面、の少なくとも1つにマジックミラーが設けられる、
    請求項12又は13に記載のアクアリウム。
  15. 前記蓋部材、前記水槽の側面、前記水槽の底面、の全てにマジックミラーが設けられる、
    請求項14に記載のアクアリウム。
JP2019086568A 2019-04-26 2019-04-26 照明装置及びアクアリウム Pending JP2020184411A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019086568A JP2020184411A (ja) 2019-04-26 2019-04-26 照明装置及びアクアリウム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019086568A JP2020184411A (ja) 2019-04-26 2019-04-26 照明装置及びアクアリウム

Publications (1)

Publication Number Publication Date
JP2020184411A true JP2020184411A (ja) 2020-11-12

Family

ID=73045391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019086568A Pending JP2020184411A (ja) 2019-04-26 2019-04-26 照明装置及びアクアリウム

Country Status (1)

Country Link
JP (1) JP2020184411A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166486U (ja) * 1979-05-19 1980-11-29
JPH0734655U (ja) * 1993-12-06 1995-06-27 修三 池田 水 槽
JPH10162609A (ja) * 1996-11-29 1998-06-19 Iwasaki Electric Co Ltd 水槽用照明装置
JP2019062185A (ja) * 2017-09-26 2019-04-18 京セラ株式会社 発光装置および照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166486U (ja) * 1979-05-19 1980-11-29
JPH0734655U (ja) * 1993-12-06 1995-06-27 修三 池田 水 槽
JPH10162609A (ja) * 1996-11-29 1998-06-19 Iwasaki Electric Co Ltd 水槽用照明装置
JP2019062185A (ja) * 2017-09-26 2019-04-18 京セラ株式会社 発光装置および照明装置

Similar Documents

Publication Publication Date Title
JP6913790B2 (ja) 屋内用光源および照明装置
JP7025424B2 (ja) 発光装置および照明装置
JP7230200B2 (ja) 照明装置、照明制御方法及び照明制御プログラム
CN111133594B (zh) 发光装置以及照明装置
JP2022103159A (ja) 発光装置、照明装置および生物育成用の照明装置
JP2023095896A (ja) 照明装置
JP6401047B2 (ja) 光合成促進光源
US11495716B2 (en) Light-emitting device and illumination apparatus
JP2020184411A (ja) 照明装置及びアクアリウム
JP7027161B2 (ja) 照明装置および照明モジュール
WO2021075505A1 (ja) 発光装置及び照明装置
WO2019107281A1 (ja) 発光装置および照明装置
WO2019163983A1 (ja) 発光装置および照明装置
WO2019106864A1 (ja) 発光装置および照明装置
JP3243360U (ja) 生物育成用の照明装置
JP3238005U (ja) 発光装置および水生生物飼育用照明装置
JP2022070972A (ja) 照明装置および照明モジュール
JP2020107422A (ja) 照明装置および照明システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131