WO2019056998A1 - 自主移动机器人及其寻桩方法、控制装置和智能清洁系统 - Google Patents

自主移动机器人及其寻桩方法、控制装置和智能清洁系统 Download PDF

Info

Publication number
WO2019056998A1
WO2019056998A1 PCT/CN2018/105836 CN2018105836W WO2019056998A1 WO 2019056998 A1 WO2019056998 A1 WO 2019056998A1 CN 2018105836 W CN2018105836 W CN 2018105836W WO 2019056998 A1 WO2019056998 A1 WO 2019056998A1
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous mobile
mobile robot
area
robot
pile
Prior art date
Application number
PCT/CN2018/105836
Other languages
English (en)
French (fr)
Inventor
王磊
谢濠键
Original Assignee
深圳洛克时代科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳洛克时代科技有限公司 filed Critical 深圳洛克时代科技有限公司
Priority to EP18858506.1A priority Critical patent/EP3690591B1/en
Publication of WO2019056998A1 publication Critical patent/WO2019056998A1/zh
Priority to US16/883,706 priority patent/US11347230B2/en
Priority to US17/737,904 priority patent/US20220276658A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4005Arrangements of batteries or cells; Electric power supply arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0003Home robots, i.e. small robots for domestic use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode

Definitions

  • the present invention relates to the field of robot technology, and more particularly to an autonomous mobile robot and a pile-seeking method thereof, a control device and an intelligent cleaning system.
  • Autonomous mobile robots are becoming more and more popular.
  • Autonomous mobile robots are generally equipped with charging piles.
  • the power of the autonomous mobile robot is insufficient, it is necessary to return to the charging pile for charging.
  • the re-pile scheme of autonomous mobile robots usually adopts the charging pile transmitting signal, and the autonomous mobile robot receives the signal.
  • the control system controls the driving system according to the pile back signal sent by the charging pile, so that the autonomous movement is performed.
  • the robot moves toward the position of the charging post until the pile is charged.
  • the starting position of the autonomous mobile robot is far from the charging pile, or there is an isolation belt between the starting position and the charging pile.
  • the autonomous mobile robot cannot sense the charging pile signal.
  • the autonomous mobile robot needs to recharge, there is a high probability that the charging pile cannot be found, and an error will eventually be reported.
  • the user often needs to put the autonomous mobile robot near the charging pile or the charging pile, and then backfilling, the user experience is poor, and the intelligence is not enough.
  • a method for an autonomous mobile robot to find a charging pile comprising:
  • S2 determining an optimal point on a boundary of the first effective area, wherein a remaining area at the optimal point is the largest, and the remaining area is defined as: the second effective area does not overlap with the first effective area An area of the remaining remaining area, wherein the second effective area is determined centering on the optimal point;
  • Steps S1-S3 are repeated until the autonomous mobile robot receives the signal of the charging post for the first time.
  • no obstacles are included in the first effective area and the second effective area.
  • the obstacle comprises a wall.
  • the autonomous mobile robot includes a forbidden zone detector.
  • the autonomous mobile robot is controlled to move along a boundary of the forbidden zone until the forbidden zone position is recorded.
  • the forbidden zone is not included in the first effective area and the second effective area.
  • the boundary of the exclusion zone comprises a virtual wall and/or a cliff edge.
  • the exclusion zone detector comprises a virtual wall sensor and/or a cliff sensor.
  • the radius of the first effective area is equal to the radius of the second effective area.
  • the present invention also provides a control device for an autonomous mobile robot, comprising a memory, a processor, and a computer program stored on the memory and running on the processor, the processor implementing the program to implement the method step.
  • the present invention also provides an autonomous mobile robot including the above-described control device.
  • the autonomous mobile robot is a smart cleaning robot.
  • the present invention also provides an intelligent cleaning system comprising: a charging post; and an autonomous mobile robot as described above.
  • a control device for an autonomous mobile robot, an autonomous mobile robot, and a smart cleaning system can improve the ability of the robot to globally search for piles, that is, when the autonomous mobile robot cannot sense the charging pile signal
  • the robot can automatically find the charging post signal by self-seeking the pile, thereby avoiding the need to manually manually place the robot near the charging pile or the charging pile, thereby reducing manual intervention and ensuring the robot.
  • the intelligence and reliability improve the user experience.
  • FIG. 1 is a top plan view of an autonomous mobile robot in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a bottom schematic view of an autonomous mobile robot in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is another top schematic view of an autonomous mobile robot in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a side schematic view of an autonomous mobile robot in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a flow chart showing a method for an autonomous mobile robot to find a charging pile according to a preferred embodiment of the present invention
  • 6-10 are schematic diagrams showing the principle of a method for an autonomous mobile robot to find a charging pile according to a preferred embodiment of the present invention
  • Figure 11 is a schematic illustration of a forbidden zone boundary of an autonomous mobile robot in accordance with a preferred embodiment of the present invention.
  • Figure 12 is a schematic illustration of a route for an autonomous mobile robot to find a charging post when encountering a restricted zone in accordance with a preferred embodiment of the present invention.
  • FIG. 1 and 2 are schematic structural diagrams of an autonomous mobile robot according to an exemplary embodiment. The structure of the autonomous mobile robot will be described in detail below.
  • the autonomous mobile robot is the cleaning robot 10.
  • the cleaning robot 10 includes a sensing system, a control system, a driving system, an energy system, and a human-machine interaction system 9 in addition to the machine body 1 and the cleaning system.
  • the main parts of the cleaning robot will be described in detail below.
  • the machine body 1 includes an upper cover, a forward portion 13, a rearward portion 14, a chassis 11, and the like.
  • the machine body 1 has an approximately circular shape (both front and rear are circular), and may have other shapes including, but not limited to, an approximate D-shape of the front rear circle.
  • the sensing system includes a position determining device located above the machine body 1, a buffer located at the forward portion 13 of the machine body 1, an ultrasonic sensor, an infrared sensor, a magnetometer, an accelerometer, a gyroscope, an odometer, and the like. These sensing devices provide the control system with various positional and motion status information for the machine.
  • the position determining device includes, but is not limited to, an infrared transmitting and receiving device, a camera, and a laser ranging device (LDS).
  • LDS laser ranging device
  • the cleaning system includes a dry cleaning unit and a wet cleaning unit.
  • the wet cleaning portion is the first cleaning portion 2, and its main function is to wipe the surface to be cleaned (such as the ground) by the cleaning cloth 4 containing the cleaning liquid.
  • the dry cleaning portion is a second cleaning portion whose main function is to clean the fixed particle contaminants of the surface to be cleaned by a structure such as a cleaning brush.
  • the main cleaning function is derived from the second cleaning portion of the roller brush 61, the dust box, the fan, the air outlet, and the connecting members between the four.
  • a roller brush 61 having a certain interference with the ground sweeps the garbage on the ground and winds it to the front of the suction port between the roller brush 61 and the dust box, and then is sucked by the fan and sucked through the dust box.
  • the dust removal capacity of the sweeping machine can be characterized by Dub picking efficiency (Dust pick up efficiency).
  • the cleaning efficiency DPU is affected by the structure and material of the roller brush 61, and is affected by the dust suction port, the dust box, the fan, the air outlet and the four.
  • the wind utilization rate of the air duct formed by the connecting parts is affected by the type and power of the wind turbine.
  • the increase in dust removal capacity is more significant for energy-saving cleaning robots.
  • the improvement of dust removal ability directly reduces the energy requirement, that is to say, the robot that can clean the ground of 80 square meters with a single charge can be evolved to charge 100 square meters or more.
  • the battery life of the battery that reduces the number of times of charging is also greatly increased, so that the frequency of replacing the battery by the user is also increased. More intuitive and important, the improvement of dust removal capability is the most obvious and important user experience, and the user will directly come to the conclusion that it is clean or clean.
  • the dry cleaning system can also include an edge brush 62 having a rotating shaft that is angled relative to the ground for moving debris into the sweeping area of the roller brush 61 of the second cleaning portion.
  • the first cleaning portion 2 mainly includes a liquid accommodating case 3, a cleaning cloth 4, and the like.
  • the liquid accommodating case 3 serves as a basis for carrying other components of the first cleaning unit 2.
  • the cleaning cloth 4 is detachably disposed on the liquid accommodating case 3.
  • the liquid in the liquid accommodating case 3 flows to the cleaning cloth 4, and the cleaning cloth 4 wipes the cleaned bottom surface such as a roller brush.
  • the drive system is used to drive the machine body 1 and the components thereon to move for automatic walking and cleaning.
  • the drive system includes a drive wheel module that can drive the robot to travel across the ground based on distance and angle information, such as x, y, and ⁇ components, issuing drive commands.
  • the drive wheel module can simultaneously control the left and right wheels.
  • the drive wheel modules preferably include a left drive wheel module and a right drive wheel module, respectively.
  • the left and right drive wheel modules are opposed (symmetrically disposed) along a transverse axis defined by the machine body 1.
  • the robot may include one or more driven wheels including, but not limited to, a universal wheel.
  • the drive wheel module includes a traveling wheel and a drive motor and a control circuit for controlling the drive motor.
  • the drive wheel module can also be connected to a circuit for measuring the drive current and an odometer.
  • the drive wheel module can be detachably connected to the machine body 1 for easy assembly and disassembly.
  • the drive wheel can have an offset drop suspension system that is movably fastened, for example rotatably attached to the machine body 1 and that receives a spring bias that is biased downward and away from the machine body 1.
  • the spring bias allows the drive wheel to maintain contact and traction with the ground with a certain amount of ground force, while the robot's cleaning elements (such as roller brushes) also contact the ground with a certain pressure.
  • the forward portion 13 of the machine body 1 can carry a damper that detects one or more events in the travel path of the robot via a sensor system, such as an infrared sensor, while the drive wheel module propels the robot while walking on the ground.
  • the robot can control the drive wheel module to cause the robot to respond to an event, such as away from an obstacle, through events detected by the buffer, such as obstacles, walls, and the like.
  • the cleaning robot in order to prevent the robot from entering a restricted area in the home (for example, a region containing a fragile item, a floor water-containing area such as a toilet), preferably, the cleaning robot further includes a forbidden zone detector.
  • the forbidden zone detector includes a virtual wall sensor, and the virtual wall sensor sets a virtual wall according to the user's setting to define a forbidden zone. As shown in FIG. 11, when the virtual wall sensor detects the virtual wall, the driving wheel module can be controlled to limit the cleaning robot. Cross the restricted area 25 (that is, the virtual wall) and enter the restricted area.
  • the forbidden zone detector further includes a cliff sensor, and the cliff sensor sets a boundary according to the user's setting to define a forbidden zone, as shown in the figure.
  • the drive wheel module can be controlled when the cliff sensor detects the boundary of the restricted area (i.e., the edge of the cliff) to limit the cleaning robot from crossing the boundary 25 of the restricted area, thereby preventing the robot from falling off the step.
  • the control system is disposed on the circuit board in the machine body 1, and includes a computing processor that communicates with non-transitory memory, such as a hard disk, a flash memory, a random access memory, such as a central processing unit, an application processor, an application processor.
  • a positioning algorithm such as SLAM
  • SLAM positioning algorithm
  • the sensing device such as the buffer, the cliff sensor and the ultrasonic sensor, the infrared sensor, the magnetometer, the accelerometer, the gyroscope, the odometer, etc., comprehensively determine the working state of the sweeping machine, such as the threshold.
  • control system can plan the most efficient and reasonable cleaning path and cleaning mode based on the instant map information drawn by the SLAM, thereby greatly improving the cleaning efficiency of the robot.
  • Energy systems include rechargeable batteries such as nickel metal hydride batteries and lithium batteries.
  • the rechargeable battery can be connected with a charging control circuit, a battery pack charging temperature detecting circuit and a battery undervoltage monitoring circuit, and the charging control circuit, the battery pack charging temperature detecting circuit, and the battery undervoltage monitoring circuit are connected to the single chip control circuit.
  • the main body is connected to the charging post 21 (shown in FIG. 6) by a charging electrode disposed on the side or below the fuselage for charging. If the exposed charging electrode is stained with dust, the plastic body around the electrode melts and deforms due to the accumulation effect of electric charge during the charging process, and even the electrode itself is deformed, and normal charging cannot be continued.
  • the cleaning robot 10 is provided with a signal receiver 15 at the right end of the front end and the traveling direction for receiving a signal from the charging post 21.
  • the system remembers the position of the charging post 21, so that when the robot is cleaned, or the battery is low, the drive wheel system is controlled to store the charging post 21 in its memory. Drive, and then charge the pile.
  • the human-computer interaction system 9 includes buttons on the host panel, the buttons are for the user to select functions, and may also include a display screen and/or indicator lights and/or speakers, and the display screen, the indicator lights and the speakers display the current state of the machine or Feature selection; also includes a mobile client program.
  • the mobile phone client can display the map of the environment where the device is located and the location of the machine, and can provide the user with richer and more user-friendly functions.
  • the robot can travel on the ground by various combinations of movements of three mutually perpendicular axes defined by the machine body 1: front and rear axis X (ie along the machine body) The axis of the forward portion 13 and the rearward portion 14 of the 1), the transverse axis Y (i.e., the axis perpendicular to the axis X and at the same horizontal plane as the axis X), and the central vertical axis Z (perpendicular to the axis X and the axis Y) The plane of the axis).
  • the forward driving direction along the front and rear axis X is indicated as “forward”
  • the backward driving direction along the front and rear axis X is indicated as “backward”.
  • the transverse axis Y extends substantially between the right and left wheels of the robot along an axis defined by the center point of the drive wheel module.
  • the robot can rotate around the Y axis.
  • the rearward portion is “upward” when it is tilted downward, and “downward” when the forward portion of the robot is inclined downward and the backward portion is inclined upward.
  • the robot can rotate around the Z axis. In the forward direction of the robot, when the robot tilts to the right of the X-axis to "right turn”, when the robot tilts to the left of the X-axis to "left turn".
  • the dust box is mounted in the accommodating cavity by means of a mechanical pick-up, and the clip is contracted when the pick-up is caught. When the pick-up is released, the clip protrudes into the recess of the accommodating cavity accommodating the clip.
  • the most suitable scenario for the method for finding a charging pile by the autonomous mobile robot according to the present invention is that when the cleaning robot does not start from the charging pile 21, the position of the charging pile 21 is not stored in the memory of the robot, and when the cleaning robot and the charging pile 21 are used.
  • the distance is far apart (for example, more than 5 m), or when there is an isolation band between the cleaning robot and the charging post 21, the robot cannot detect the signal of the charging post 21, in which case the robot needs to be charged and needs to be detected.
  • the signal of the charging pile 21 is charged.
  • the method for finding a charging pile by an autonomous mobile robot generally employs a scoring mechanism for controlling the robot to move as far as possible toward a position where the signal of the charging post 21 is present.
  • the present invention sets a mechanism for the robot to walk in an optimized manner to find the pile, specifically, to move the robot toward the widest possible boundary, because the more open the theoretical place, the more It is easy to receive the pile signal, so the more you walk toward the open boundary, the greater the probability of receiving the pile signal.
  • the processor of the robot controls the execution program S1: the first effective area is determined at the center of the autonomous mobile robot. Specifically, the robot centers on itself at the starting position, determines a circular area, and determines the first effective area 23 in the circular area.
  • the radius of the circular area may depend on the model of the robot and the actual area of the actual home. In one embodiment, the radius of the circular area is set to 1.5 m.
  • the effective area does not include obstacles such as walls, and does not include the restricted area.
  • one example of an effective area is a shaded portion in the circular area of FIG.
  • the program S2 is executed to determine the optimum point on the boundary of the first effective area.
  • the best point is the point where the remaining area is the largest.
  • the remaining area is defined as the area of the remaining area of the second effective area that is not centered on the first effective area, centered on the optimum point.
  • FIG. 7 and FIG. 8 as an example, in FIG. 7, assuming that A is the optimal point, the circular second effective area 24 is determined centering on A, and the remaining area is the second effective area 24 not being the first.
  • the area where the effective area 23 overlaps i.e., the shaded portion in the area 24). Similar to Fig. 7, the remaining area in Fig.
  • the robot can automatically determine the best point through the calculation program of its processor.
  • the radius of the probe when the robot determines the second active area 24 is equal to the radius of the probe when determining the first active area 23.
  • step S3 controlling the center of the autonomous mobile robot to move to the optimal point; and step S4: when the autonomous mobile robot moves to the optimal point, repeating the above steps S1-S3, that is, continuing to determine the effective area at the center of the autonomous mobile robot And continue to determine the best point on the boundary of the effective area.
  • the walking route of the robot in FIG. 10 is a preferred route, and in this way, the robot can gradually move toward the wide-area boundary until the robot When the charging pile signal is detected for the first time, the pile-seeking step ends and the normal pile back step is entered.
  • the robot's traversal algorithm can determine the next point to go. The general trend is to move the robot towards a wide area and obtain the charging post signal with greater probability.
  • the control robot moves along the boundary 25 of the restricted zone (that is, the virtual wall or the cliff edge) until the robot records The location of the restricted area.
  • the processor can mark the restricted area location on the constructed room map and store it in the memory so that the robot can no longer be returned to the restricted area position.
  • the present invention also discloses a control device comprising a memory, a processor, and a computer program stored on the memory and running on the processor, wherein the processor performs the above steps when executing the program.
  • the invention also discloses an autonomous mobile robot including the control device and an intelligent cleaning system, which comprises a charging pile and the above-mentioned autonomous mobile robot. .
  • a control device for an autonomous mobile robot, an autonomous mobile robot, and a smart cleaning system can improve the ability of the robot to globally search for piles, that is, when the autonomous mobile robot cannot sense the charging pile signal
  • the robot can automatically find the charging post signal by self-seeking the pile, thereby avoiding the need to manually manually place the robot near the charging pile or the charging pile, thereby reducing manual intervention and ensuring the robot.
  • the intelligence and reliability improve the user experience.

Abstract

一种自主移动机器人及其寻桩方法、控制装置和智能清洁系统。该寻桩方法包括:S1:以自主移动机器人的中心确定第一有效区域;S2:在该第一有效区域的边界上确定最佳点,其中,该最佳点处的剩余面积最大,该剩余面积定义为:第二有效区域的不与第一有效区域重叠的剩余区域的面积,其中该第二有效区域以该最佳点为中心确定;S3:控制该自主移动机器人的中心移动至该最佳点;S4:重复步骤S1-S3,直至该自主移动机器人首次接收到充电桩的信号。该寻桩方法可以提高设备通过自主寻桩而自动找到桩讯号的可能性,确保设备的智能性和可靠性,提高用户的使用体验。

Description

自主移动机器人及其寻桩方法、控制装置和智能清洁系统 技术领域
本发明涉及机器人技术领域,更具体地涉及一种自主移动机器人及其寻桩方法、控制装置和智能清洁系统。
背景技术
如今,自主移动机器人已经越来越普遍。自主移动机器人一般都配备有充电桩,当自主移动机器人的电量不足时,需要返回充电桩进行充电。目前自主移动机器人的回桩方案通常采取充电桩发射信号,自主移动机器人接收信号的方式,当自主移动机器人需要充电时,会根据充电桩发出的回桩信号,控制系统控制驱动系统,使得自主移动机器人朝向充电桩所在位置移动,直至回桩充电。
但是在实际使用过程中,会出现下列情况:自主移动机器人的起始位置离充电桩很远,或者起始位置和充电桩之间存在隔离带,这时自主移动机器人感测不到充电桩信号。此时,如果自主移动机器人需要回充,则有很大概率找不到充电桩,最终会报错误。而这时往往需要用户将自主移动机器人放到充电桩附近或者充电桩上,再进行回充,用户体验差,不够智能。
因此,需要提供一种自主移动机器人及其寻桩方法、控制装置和智能清洁系统,以至少部分地解决上面提到的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为至少部分地解决上述技术问题,根据本发明的一个方面,提供了一种自主移动机器人寻找充电桩的方法,所述方法包括:
S1:以所述自主移动机器人的中心确定第一有效区域;
S2:在所述第一有效区域的边界上确定最佳点,其中,所述最佳点处的剩余面积最大,所述剩余面积定义为:第二有效区域的不与所述第一有效区域重叠的剩余区域的面积,其中所述第二有效区域以所述最佳点为中心确定;
S3:控制所述自主移动机器人的中心移动至所述最佳点;
S4:重复步骤S1-S3,直至所述自主移动机器人首次接收到充电桩的信号。
可选地,所述第一有效区域和第二有效区域中均不包括障碍物。
可选地,所述障碍物包括墙壁。
可选地,所述自主移动机器人包括禁区探测器。
可选地,当所述最佳点处于所述自主移动机器人所探测到的禁区内部时,控制所述自主移动机器人沿着所述禁区的边界移动,直至记录下所述禁区位置。
可选地,所述第一有效区域和第二有效区域中均不包括所述禁区。
可选地,所述禁区的边界包括虚拟墙和/或悬崖边缘。
可选地,所述禁区探测器包括虚拟墙传感器和/或悬崖传感器。
可选地,所述第一有效区域的半径等于所述第二有效区域的半径。
本发明还提供一种自主移动机器人的控制装置,包括存储器、处理器及存储在所述存储器上且在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法的步骤。
本发明还提供一种自主移动机器人,所述自主移动机器人包括上述的控制装置。
可选地,所述自主移动机器人为智能清洁机器人。
本发明还提供一种智能清洁系统,包括:充电桩;以及如上所述的自主移动机器人。
根据本发明的自主移动机器人寻找充电桩的方法、自主移动机器人的控制装置、自主移动机器人和智能清洁系统能够提高机器人全局寻桩的能力,即,当自主移动机器人无法感测到充电桩讯号时,通过执行本申请的上述程序,可使机器人通过自主寻桩而自动找到充电桩讯号,从而可以避免需要人工手动将机器人放到充电桩附近或者充电桩上,进而减少了人工干预,确保了机器人的智能性和可靠性,改善了用户体验。
附图说明
以下将结合附图对本发明实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。附图用来对本发明实施例进行进一步的解释,该附图构成说明书的一部分,且与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中,相同的附图标记通常代表相同或相似的部件或步骤。
图1是根据本发明的优选实施例的自主移动机器人的顶部示意图;
图2是根据本发明的优选实施例的自主移动机器人的底部示意图;
图3是根据本发明的优选实施例的自主移动机器人的另一个顶部示意图;
图4是根据本发明的优选实施例的自主移动机器人的侧部示意图;
图5是根据本发明的优选实施例的自主移动机器人寻找充电桩的方法的流程示意图;
图6-图10是本发明的优选实施例的自主移动机器人寻找充电桩的方法的原理示意图;
图11示意性地示出了根据本发明的优选实施例的自主移动机器人的禁区边界;
图12示意性地示出了根据本发明的优选实施例的自主移动机器人在遇到禁区时寻找充电桩的路线。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
图1和图2是根据一示例性实施例示出的一种自主移动机器人的结构示意图。下文首先对自主移动机器人的结构予以详细描述。
在图示实施例中,自主移动机器人为清洁用机器人10。清洁用机器人10除包括机器主体1和清洁系统外还包括感知系统、控制系统、驱动系统、能源系统和人机交互系统9。下面将对清洁用机器人的各主要部分进行详细说明。
机器主体1包括上封盖、前向部分13、后向部分14和底盘11等。机器主体1具有近似圆形形状(前后都为圆形),也可具有其他形状,包括但不限于前方后圆的近似D形形状。
感知系统包括位于机器主体1上方的位置确定装置、位于机器主体1的前向部分13的缓冲器、超声传感器、红外传感器、磁力计、加速度计、陀螺仪、里程计等传感装置。这些传感装置向控制系统提供机器的各种位置信息和运动状态信息。位置确定装置包括但不限于红外发射接收装置、摄像头、激光测距装置(LDS)。
清洁系统包括干式清洁部和湿式清洁部。其中,湿式清洁部为第一清洁部2,其主要作用是通过含有清洁液的清洁布4对被清洁表面(如地面)进行擦拭。干式清洁部为第二清洁部,其主要作用是通过清扫刷等结构清扫被清洁表面的固定颗粒污染物。
作为干式清洁部,主要的清洁功能源于滚刷61、尘盒、风机、出风口以及四者之间的连接部件所构成的第二清洁部。与地面具有一定干涉的滚刷61将地面上的垃圾扫起并卷带到滚刷61与尘盒之间的吸尘口前方,然后被风机产生并经过尘盒的有吸力的气体吸入尘盒。扫地机的除尘能力可用垃圾的清扫效率DPU(Dust pick up efficiency)进行表征,清扫效率DPU受滚刷61结构和材料影响,受吸尘口、尘盒、风机、出风口以及四者之间的连接部件所构成的风道的风力利用率影响,受风机的类型和功率影响。相比于普通的插电吸尘器,除尘能力的提高对于能源有限的清洁用机器人来说意义更大。因为除尘能力的提高直接有效降低了对于能源要求,也就是说原来充一次电可以清扫80平米地面的机器人,可以进化为充一次电清扫100平米甚至更多。并且减少充电次数的电池的使用寿命也会大大增加,使得用户更换电池的频率也会增加。更为直观和重要的是,除尘能力的提高是最为明显和重要的用户体验,用户会直接得出扫得是否干净/擦得是否干净的结论。干式清洁系统还可包含具有旋转轴的边刷62,旋转轴相对于地面成一定角度,以用于将碎屑移动到第二清洁部的滚刷61的清扫区域中。
作为湿式清洁部,第一清洁部2主要包括液体容置箱3和清洁布4等。液体容置箱3作为承载第一清洁部2的其他部件的基础。清洁布4可拆地设置在液体容置箱3上。液体容置箱3内的液体流向清洁布4,清洁布4对滚刷等清扫后的底面进行擦拭。
驱动系统用以驱动机器主体1及其上的部件移动,以进行自动行走和清扫。驱动系统包括驱动轮模块,驱动系统可基于距离和角度信息,例如x、y及θ分量,发出驱动命令而操纵机器人跨越地面行驶。驱动轮模块可以同时控制左轮和右轮,为了更为精确地控制机器的运动,优选驱动轮模块分别包括左驱动轮模块和右驱动轮模块。左、右驱动轮模块沿着由机器主体1界定的横向轴对置(对称设置)。为了使机器人能够在地面上更为稳定地运动或者具有更强的运动能力,机器人可以包括一个或者多个从动轮,从动轮包括但不限于万向轮。
驱动轮模块包括行走轮和驱动马达以及控制驱动马达的控制电路,驱动轮模块还可以连接测量驱动电流的电路和里程计。驱动轮模块可以可拆卸地连接到机器主体1上,方便拆装和维修。驱动轮可具有偏置下落式悬挂系统,以可移动方式紧固,例如以可旋转方式附接,到机器主体1上,且接受向下及远离机器主体1偏置的弹簧偏置。弹簧偏置允许驱动轮以一定的着地力维持与地面的接触及牵引,同时机器人的清洁元件(如滚刷等)也以一定的压力接触地面。
机器主体1的前向部分13可承载缓冲器,在清洁过程中驱动轮模块推进机器人在地面行走时,缓冲器经由传感器系统,例如红外传感器,检测机器人的行驶路径中的一个或多个事件,机器人可通过由缓冲器检测到的事件,例如障碍物、墙壁,而控制驱动轮模块使机器人来对事件做出响应,例如远离障碍物。
一般在使用机器人的过程中,为了防止机器人进入家庭中的禁区(例如有易碎物品摆放处区域、卫生间等地面含水区域),优选地,清洁用机器人中还包括禁区探测器。禁区探测器包括虚拟墙传感器,虚拟墙传感器会根据用户的设定设置虚拟墙从而限定禁区,如图11所示,当虚拟墙传感器检测到虚拟墙时可控制驱动轮模块,以限制清洁用机器人越过禁区的边界25(也就是虚拟墙)而进入禁区。
此外,在使用机器人的过程中,为了防止机器人在例如室内楼梯、较高的台阶等处掉落,禁区探测器还包括悬崖传感器,悬崖传感器会根据用户的设定设置边界从而限定禁区,如图11所示,当悬崖传感器检测到禁区边界(也就是悬崖边缘)时可控制驱动轮模块,以限制清洁用机器人越过禁区的边界25,从而避免机器人从台阶上掉落下去。
控制系统设置在机器主体1内的电路主板上,包括与非暂时性存储器,例如硬盘、快闪存储器、随机存取存储器,通信的计算处理器,例如中央处理单元、应用处理器,应用处理器根据激光测距装置反馈的障碍物信息利用定位算 法,例如SLAM,绘制机器人所在环境中的即时地图。并且结合缓冲器、悬崖传感器和超声传感器、红外传感器、磁力计、加速度计、陀螺仪、里程计等传感装置反馈的距离信息、速度信息综合判断扫地机当前处于何种工作状态,如过门槛,上地毯,位于悬崖处,上方或者下方被卡住,尘盒满,被拿起等等,还会针对不同情况给出具体的下一步动作策略,使得机器人的工作更加符合主人的要求,有更好的用户体验。进一步地,控制系统能基于SLAM绘制的即时地图信息规划最为高效合理的清扫路径和清扫方式,大大提高机器人的清扫效率。
能源系统包括充电电池,例如镍氢电池和锂电池。充电电池可以连接有充电控制电路、电池组充电温度检测电路和电池欠压监测电路,充电控制电路、电池组充电温度检测电路、电池欠压监测电路再与单片机控制电路相连。主机通过设置在机身侧方或者下方的充电电极与充电桩21(如图6所示)连接进行充电。如果裸露的充电电极上沾附有灰尘,会在充电过程中由于电荷的累积效应,导致电极周边的塑料机体融化变形,甚至导致电极本身发生变形,无法继续正常充电。
如图3和图4所示,清洁用机器人10在前端和行进方向的右端设置了信号接收器15,以用于接收充电桩21发出的信号。正常来说,当机器人从充电桩21出发时,系统会记住充电桩21的位置,因此,在机器人打扫完毕,或者电量不足时,会控制驱动轮系统往其内存中存储的充电桩21位置处驱动,进而上桩充电。
人机交互系统9包括主机面板上的按键,按键供用户进行功能选择;还可以包括显示屏和/或指示灯和/或喇叭,显示屏、指示灯和喇叭向用户展示当前机器所处状态或者功能选择项;还可以包括手机客户端程序。对于路径导航型清洁设备,在手机客户端可以向用户展示设备所在环境的地图,以及机器所处位置,可以向用户提供更为丰富和人性化的功能项。
为了更加清楚地描述机器人的行为,进行如下方向定义:机器人可通过相对于由机器主体1界定的如下三个相互垂直轴的移动的各种组合在地面上行进:前后轴X(即沿机器主体1的前向部分13和后向部分14方向的轴线)、横向轴Y(即垂直于轴X且与轴X在同一水平面的轴)及中心垂直轴Z(垂直于轴X和轴Y所组成的平面的轴)。沿着前后轴X的前向驱动方向标示为“前向”,且沿着前后轴X的向后驱动方向标示为“后向”。横向轴Y实质上是沿 着由驱动轮模块的中心点界定的轴心在机器人的右轮与左轮之间延伸。
机器人可以绕Y轴转动。当机器人的前向部分向上倾斜,后向部分向下倾斜时为“上仰”,且当机器人的前向部分向下倾斜,后向部分向上倾斜时为“下俯”。另外,机器人可以绕Z轴转动。在机器人的前向方向上,当机器人向X轴的右侧倾斜为“右转”,当机器人向X轴的左侧倾斜为“左转”。
尘盒以机械抠手卡接的方式安装在容纳腔中,抠手被抠住时卡件收缩,抠手放开时卡件伸出卡在容纳腔中容纳卡件的凹槽中。
下文结合图5到图12详细描述根据本发明的自主移动机器人寻找充电桩的方法。
根据本发明的自主移动机器人寻找充电桩的方法最适用的情境为:当清洁用机器人没有从充电桩21出发,机器人的存储器中没有存储充电桩21的位置,并且当清洁用机器人和充电桩21相距很远的距离(例如大于5m以上)时,或者清洁用机器人和充电桩21之间有隔离带时,机器人无法探测到充电桩21的信号,在这种情况下机器人需要充电并需要探测到充电桩21的信号。
根据本发明的自主移动机器人寻找充电桩的方法总体是采用一种打分机制,控制机器人尽可能朝向有充电桩21信号的位置移动。但由于充电桩21的位置无法确定,则本发明设定一种机制,使得机器人采用一种优化的方式行走找桩,具体地,使得机器人朝向尽量开阔的地界行走,因为理论上越开阔的地方越容易收到桩信号,因此越朝向开阔的地界行走,收到桩信号的几率越大。
具体地,如图5和图6所示,首先,机器人的处理器控制执行程序S1:以自主移动机器人的中心确定第一有效区域。具体地,机器人在起始位置处以其自身为中心,确定一个圆形区域,并在该圆形区域中确定第一有效区域23。该圆形区域的半径可根据机器人的型号和实际家庭通常面积而定,在一个实施例中,该圆形区域的半径设为1.5m。其中,有效区域中不包括墙壁等障碍物,且不包括禁区。例如,有效区域的一个示例为图6的圆形区域中的阴影部分。
其次,执行程序S2:在第一有效区域的边界上确定最佳点。其中,最佳点为在此处剩余面积最大的点。剩余面积定义为:以最佳点为中心确定的第二有效区域的不与第一有效区域重叠的剩余区域的面积。以图7和图8为例,在图7中,假设A为最佳点,则以A为中心确定圆形的第二有效区域24,剩余区域即为第二有效区域24的不与第一有效区域23重叠的区域(即区域24中的阴影部分)。与图7类似,图8中的剩余区域即为以B为中心确定的第二有效区域 24的不与第一有效区域23重叠的区域(即区域24中的阴影部分)。很明显,图8中的剩余面积比图7中的剩余面积大。因此图8中的点B确定为最佳点。在实际运用过程中,机器人可通过其处理器的运算程序而自动确定最佳点。优选地,机器人在确定第二有效区域24时的探射的半径与在确定第一有效区域23时的探射的半径相等。
接着执行步骤S3:控制自主移动机器人的中心移动至最佳点;以及步骤S4:当自主移动机器人移动至最佳点时,重复上述步骤S1-S3,即以自主移动机器人的中心继续确定有效区域,并在有效区域的边界上继续确定最佳点。如图9和图10所示,按照上述的确定最佳点的方法,显而易见,图10中的机器人的行走路线为优选路线,以此方式,可以使得机器人逐渐趋向于广域地界行走,直到机器人首次探测到充电桩信号,则寻桩步骤结束,进入正常的回桩步骤。
需要说明的是,在机器人每一步的行走过程中,确定的最佳点可能不止一个,那么他们的权重是相同的。在实际运用过程中可由机器人的遍历算法确定下一步要去的点。总体趋势是使机器人朝向广阔区域行走,以较大概率地获得充电桩信号。
如图12所示,当机器人确定的下一个最佳点处于自主移动机器人所探测到的禁区内部时,控制机器人沿着禁区的边界25(也就是虚拟墙或悬崖边缘)移动,直至机器人记录下禁区的位置为止。具体地,处理器可在构建的房间地图上对该禁区位置进行标记并存储在存储器中,从而可控制机器人不再回到禁区位置。
本发明还公开了一种控制装置,包括存储器、处理器及存储在存储器上且在处理器上运行的计算机程序,其中处理器执行程序时执行上述步骤。本发明还公开了一种包括该控制装置的自主移动机器人以及智能清洁系统,智能清洁系统包括充电桩和上述的自主移动机器人。。
根据本发明的自主移动机器人寻找充电桩的方法、自主移动机器人的控制装置、自主移动机器人和智能清洁系统能够提高机器人全局寻桩的能力,即,当自主移动机器人无法感测到充电桩讯号时,通过执行本申请的上述程序,可使机器人通过自主寻桩而自动找到充电桩讯号,从而可以避免需要人工手动将机器人放到充电桩附近或者充电桩上,进而减少了人工干预,确保了机器人的智能性和可靠性,改善了用户体验。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种自主移动机器人寻找充电桩的方法,其特征在于,所述方法包括:
    S1:以所述自主移动机器人的中心确定第一有效区域;
    S2:在所述第一有效区域的边界上确定最佳点,其中,所述最佳点处的剩余面积最大,所述剩余面积定义为:第二有效区域的不与所述第一有效区域重叠的剩余区域的面积,其中所述第二有效区域以所述最佳点为中心确定;
    S3:控制所述自主移动机器人的中心移动至所述最佳点;
    S4:重复步骤S1-S3,直至所述自主移动机器人首次接收到所述充电桩的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一有效区域和第二有效区域中均不包括障碍物。
  3. 根据权利要求2所述的方法,其特征在于,所述障碍物包括墙壁。
  4. 根据权利要求1所述的方法,其特征在于,所述自主移动机器人包括禁区探测器。
  5. 根据权利要求4所述的方法,其特征在于,当所述最佳点处于所述自主移动机器人所探测到的禁区内部时,控制所述自主移动机器人沿着所述禁区的边界移动,直至记录下所述禁区位置。
  6. 根据权利要求5所述的方法,其特征在于,所述第一有效区域和第二有效区域中均不包括所述禁区。
  7. 根据权利要求6所述的方法,其特征在于,所述禁区的边界包括虚拟墙和/或悬崖边缘。
  8. 根据权利要求7所述的方法,其特征在于,所述禁区探测器包括虚拟墙传感器和/或悬崖传感器。
  9. 根据权利要求1所述的方法,其特征在于,所述第一有效区域的半径等于所述第二有效区域的半径。
  10. 一种自主移动机器人的控制装置,包括存储器、处理器及存储在所述存储器上且在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1至9中任一项所述方法的步骤。
  11. 一种自主移动机器人,其特征在于,包括如权利要求10所述的控制装置。
  12. 根据权利要求11所述的自主移动机器人,其特征在于,所述自主移动机器人包括智能清洁机器人。
  13. 一种智能清洁系统,其特征在于,包括:
    充电桩;以及
    如权利要求11或12所述的自主移动机器人。
PCT/CN2018/105836 2017-09-25 2018-09-14 自主移动机器人及其寻桩方法、控制装置和智能清洁系统 WO2019056998A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18858506.1A EP3690591B1 (en) 2017-09-25 2018-09-14 Autonomous mobile robot and charging station seeking method therefor, control apparatus and smart cleaning system
US16/883,706 US11347230B2 (en) 2017-09-25 2020-05-26 Autonomous mobile robot, method for docking autonomous mobile robot, control device and smart cleaning system
US17/737,904 US20220276658A1 (en) 2017-09-25 2022-05-05 Autonomous mobile robot, method for docking autonomous mobile robot, control device and smart cleaning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710876877.0A CN108852174B (zh) 2017-09-25 2017-09-25 自主移动机器人及其寻桩方法、控制装置和智能清洁系统
CN201710876877.0 2017-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/883,706 Continuation US11347230B2 (en) 2017-09-25 2020-05-26 Autonomous mobile robot, method for docking autonomous mobile robot, control device and smart cleaning system

Publications (1)

Publication Number Publication Date
WO2019056998A1 true WO2019056998A1 (zh) 2019-03-28

Family

ID=64325828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105836 WO2019056998A1 (zh) 2017-09-25 2018-09-14 自主移动机器人及其寻桩方法、控制装置和智能清洁系统

Country Status (5)

Country Link
US (2) US11347230B2 (zh)
EP (1) EP3690591B1 (zh)
CN (2) CN108852174B (zh)
TW (1) TWI682258B (zh)
WO (1) WO2019056998A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114675636A (zh) 2017-09-25 2022-06-28 北京石头创新科技有限公司 自主移动机器人及其寻桩方法、控制装置和自主移动系统
CN108852174B (zh) * 2017-09-25 2022-02-25 北京石头创新科技有限公司 自主移动机器人及其寻桩方法、控制装置和智能清洁系统
CN111568307B (zh) * 2019-02-19 2023-02-17 北京奇虎科技有限公司 机器人执行清扫工作方法、设备及计算机可读存储介质
CN111743459A (zh) * 2019-03-29 2020-10-09 北京石头世纪科技股份有限公司 智能清洁系统、自主机器人和基站
CN109991981A (zh) * 2019-04-04 2019-07-09 尚科宁家(中国)科技有限公司 一种扫地机器人回充方法
CN110448234A (zh) * 2019-09-05 2019-11-15 北京石头世纪科技股份有限公司 一种智能清洁设备
CN112033391B (zh) * 2020-08-20 2024-02-13 常州市贝叶斯智能科技有限公司 一种基于充电桩的机器人重定位方法及装置
CN112496525A (zh) * 2020-12-15 2021-03-16 天津默纳克电气有限公司 一种工业机器人控制系统
CN115137255B (zh) * 2022-06-29 2023-11-21 深圳市优必选科技股份有限公司 充电异常处理方法、装置、可读存储介质及扫地机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080012518A1 (en) * 2006-03-30 2008-01-17 Kabushiki Kaisha Toshiba Docking system
JP2008181177A (ja) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd 充電池搭載移動体の充電装置
CN104765379A (zh) * 2014-11-11 2015-07-08 深圳市银星智能科技股份有限公司 机器人在封闭工作区域寻找回充座的方法及机器人系统
CN105119338A (zh) * 2015-09-10 2015-12-02 珠海市一微半导体有限公司 移动机器人充电控制系统及方法
CN106455888A (zh) * 2014-05-29 2017-02-22 夏普株式会社 自走式电子机器
CN106774295A (zh) * 2015-11-24 2017-05-31 沈阳新松机器人自动化股份有限公司 一种分布式引导机器人自主充电系统

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03327A (ja) 1989-05-26 1991-01-07 Fuji Technica Inc 油圧式動力伝達継手
EP0909412B1 (de) 1996-07-02 2000-04-05 Siemens Aktiengesellschaft Verfahren zur erstellung einer zellular strukturierten umgebungskarte von einer selbstbeweglichen mobilen einheit, welche sich mit hilfe mit auf wellenreflexion basierenden sensoren in der umgebung orientiert
WO2002074150A1 (en) * 2001-03-16 2002-09-26 Vision Robotics Corporation Autonomous mobile canister vacuum cleaner
US7332890B2 (en) * 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
EP1796879A2 (en) * 2004-08-27 2007-06-20 Sharper Image Corporation Robot cleaner with improved vacuum unit
KR100600487B1 (ko) 2004-10-12 2006-07-13 삼성광주전자 주식회사 로봇 청소기의 좌표보정방법 및 이를 이용한 로봇 청소기시스템
KR100645814B1 (ko) * 2005-06-07 2006-11-23 엘지전자 주식회사 이동로봇의 자동충전 복귀 시스템 및 그 복귀 방법
ES2623920T3 (es) 2005-12-02 2017-07-12 Irobot Corporation Sistema de robot.
KR101281512B1 (ko) * 2007-04-06 2013-07-03 삼성전자주식회사 로봇청소기 및 그 제어방법
KR100782863B1 (ko) * 2007-06-29 2007-12-06 (주)다사로봇 이동로봇의 도킹유도장치 및 도킹유도방법
JP2009112723A (ja) 2007-11-09 2009-05-28 Hitachi Appliances Inc 自走式掃除機
US8961695B2 (en) * 2008-04-24 2015-02-24 Irobot Corporation Mobile robot for cleaning
KR101553654B1 (ko) * 2009-02-13 2015-10-01 삼성전자 주식회사 이동 로봇 및 이동 로봇의 이동 방법
US8706297B2 (en) 2009-06-18 2014-04-22 Michael Todd Letsky Method for establishing a desired area of confinement for an autonomous robot and autonomous robot implementing a control system for executing the same
US8428776B2 (en) 2009-06-18 2013-04-23 Michael Todd Letsky Method for establishing a desired area of confinement for an autonomous robot and autonomous robot implementing a control system for executing the same
KR101672787B1 (ko) 2009-06-19 2016-11-17 삼성전자주식회사 로봇청소기와 도킹스테이션 및 이를 가지는 로봇청소기 시스템 및 그 제어방법
KR101473870B1 (ko) * 2009-06-19 2014-12-18 삼성전자 주식회사 청소장치
CN102713779B (zh) 2009-11-06 2015-12-02 艾罗伯特公司 用于通过自主型机器人完全覆盖表面的方法和系统
CN101738195B (zh) 2009-12-24 2012-01-11 厦门大学 基于环境建模与自适应窗口的移动机器人路径规划方法
JP5560979B2 (ja) * 2010-07-13 2014-07-30 村田機械株式会社 自律移動体
KR20120049533A (ko) * 2010-11-09 2012-05-17 삼성전자주식회사 로봇 시스템 및 그의 제어 방법
KR101752190B1 (ko) * 2010-11-24 2017-06-30 삼성전자주식회사 로봇청소기 및 그 제어방법
DE102011000009A1 (de) * 2011-01-03 2012-07-05 Vorwerk & Co. Interholding Gmbh Verfahren zur gleichzeitigen Bestimmung und Kartenbildung
US9480379B2 (en) * 2011-10-21 2016-11-01 Samsung Electronics Co., Ltd. Robot cleaner and control method for the same
JP2013146302A (ja) * 2012-01-17 2013-08-01 Sharp Corp 自走式電子機器
CN103259302A (zh) 2012-02-16 2013-08-21 恩斯迈电子(深圳)有限公司 充电站与充电系统
EP2859423B1 (en) * 2012-06-07 2016-01-06 Koninklijke Philips N.V. System and method for guiding a robot cleaner along a path
KR101395888B1 (ko) * 2013-03-21 2014-05-27 엘지전자 주식회사 로봇 청소기 및 그 동작방법
JP6104715B2 (ja) * 2013-05-30 2017-03-29 株式会社Ihiエアロスペース 経路生成方法と装置
CN103948354B (zh) * 2014-05-05 2016-03-09 苏州爱普电器有限公司 一种地面清洁机器人及其控制方法
CN103995984A (zh) * 2014-06-09 2014-08-20 武汉科技大学 一种基于椭圆约束的机器人路径规划方法和装置
US9354634B2 (en) * 2014-09-10 2016-05-31 Joseph Y. Ko Automatic homing and charging method for self-moving cleaning apparatus
CN105629971A (zh) * 2014-11-03 2016-06-01 贵州亿丰升华科技机器人有限公司 一种机器人自动充电系统及其控制方法
US9630319B2 (en) * 2015-03-18 2017-04-25 Irobot Corporation Localization and mapping using physical features
WO2016206648A1 (zh) 2015-06-26 2016-12-29 苏州宝时得电动工具有限公司 自主移动设备及其无线充电系统
US9919425B2 (en) * 2015-07-01 2018-03-20 Irobot Corporation Robot navigational sensor system
DE102015114883A1 (de) * 2015-09-04 2017-03-09 RobArt GmbH Identifizierung und Lokalisierung einer Basisstation eines autonomen mobilen Roboters
CN105259918B (zh) * 2015-09-18 2018-12-04 莱克电气股份有限公司 机器人吸尘器自动充电回归的方法
CN105242670B (zh) * 2015-10-26 2019-01-22 深圳拓邦股份有限公司 具有自动返回充电功能的机器人、系统及对应方法
CN105990876B (zh) * 2015-12-21 2019-03-01 小米科技有限责任公司 充电桩及其识别方法、装置和自动清洁设备
US10175688B2 (en) * 2016-01-20 2019-01-08 Yujin Robot Co., Ltd. Apparatus and system for remotely controlling a moving robot and method thereof
CN107041718B (zh) 2016-02-05 2021-06-01 北京小米移动软件有限公司 清洁机器人及其控制方法
CN105652876A (zh) * 2016-03-29 2016-06-08 北京工业大学 基于数组地图的移动机器人室内路径规划方法
CN105982621B (zh) * 2016-04-14 2019-12-13 北京小米移动软件有限公司 自动清洁设备的风路结构和自动清洁设备
CN105929843B (zh) * 2016-04-22 2018-11-13 天津城建大学 一种基于改进蚁群算法的机器人路径规划方法
CN205970884U (zh) * 2016-05-19 2017-02-22 安徽继远软件有限公司 一种带有智能摄像头的充电桩
KR101930870B1 (ko) * 2016-08-03 2018-12-20 엘지전자 주식회사 이동 로봇 및 그 제어방법
KR20180021595A (ko) * 2016-08-22 2018-03-05 엘지전자 주식회사 이동 로봇 및 그 제어방법
CN106308685B (zh) 2016-08-23 2019-10-11 北京小米移动软件有限公司 清洁机器人及其控制方法
CN106200645B (zh) 2016-08-24 2019-07-26 北京小米移动软件有限公司 自主机器人、控制装置和控制方法
EP3512668B1 (en) * 2016-09-14 2021-07-21 iRobot Corporation Systems and methods for configurable operation of a robot based on area classification
TWM541825U (zh) * 2016-09-23 2017-05-21 世擘股份有限公司 自動清潔裝置以及自動清潔系統
JP6831210B2 (ja) 2016-11-02 2021-02-17 東芝ライフスタイル株式会社 電気掃除機
US10445927B2 (en) * 2016-11-16 2019-10-15 Here Global B.V. Method for determining polygons that overlap with a candidate polygon or point
CH713152A2 (de) * 2016-11-23 2018-05-31 Cleanfix Reinigungssysteme Ag Bodenbehandlungsmaschine und Verfahren zum Behandeln von Bodenflächen.
KR101984101B1 (ko) * 2017-03-06 2019-05-30 엘지전자 주식회사 청소기 및 그 제어방법
DE102018116065A1 (de) * 2017-07-13 2019-01-17 Vorwerk & Co. Interholding Gmbh Verfahren zum Betrieb eines sich selbsttätig fortbewegenden Servicegerätes
CN108852174B (zh) * 2017-09-25 2022-02-25 北京石头创新科技有限公司 自主移动机器人及其寻桩方法、控制装置和智能清洁系统
KR102060715B1 (ko) * 2017-11-30 2019-12-30 엘지전자 주식회사 이동 로봇 및 그 제어방법
KR102070068B1 (ko) * 2017-11-30 2020-03-23 엘지전자 주식회사 이동 로봇 및 그 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080012518A1 (en) * 2006-03-30 2008-01-17 Kabushiki Kaisha Toshiba Docking system
JP2008181177A (ja) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd 充電池搭載移動体の充電装置
CN106455888A (zh) * 2014-05-29 2017-02-22 夏普株式会社 自走式电子机器
CN104765379A (zh) * 2014-11-11 2015-07-08 深圳市银星智能科技股份有限公司 机器人在封闭工作区域寻找回充座的方法及机器人系统
CN105119338A (zh) * 2015-09-10 2015-12-02 珠海市一微半导体有限公司 移动机器人充电控制系统及方法
CN106774295A (zh) * 2015-11-24 2017-05-31 沈阳新松机器人自动化股份有限公司 一种分布式引导机器人自主充电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690591A4 *

Also Published As

Publication number Publication date
CN114504276B (zh) 2023-11-28
CN114504276A (zh) 2022-05-17
US20220276658A1 (en) 2022-09-01
EP3690591A1 (en) 2020-08-05
CN108852174B (zh) 2022-02-25
TWI682258B (zh) 2020-01-11
US11347230B2 (en) 2022-05-31
TW201921208A (zh) 2019-06-01
US20200293055A1 (en) 2020-09-17
EP3690591A4 (en) 2021-04-28
CN108852174A (zh) 2018-11-23
EP3690591B1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
TWI682258B (zh) 自主移動機器人及其尋樁方法、控制裝置以及智能清潔系統
TWI689801B (zh) 自主移動機器人及其尋樁方法、控制裝置以及智能清潔系統
WO2019006974A1 (zh) 清洁设备的清洁操作执行方法、装置及可读存储介质
CN106200645A (zh) 自主机器人、控制装置和控制方法
CN111481105A (zh) 一种自行走机器人避障方法、装置、机器人和存储介质
US11659972B2 (en) Moisture-proof mat and intelligent cleaning system
WO2019056999A1 (zh) 储液箱、智能清洁设备和智能清洁系统
TWI769511B (zh) 清潔元件及智慧清潔設備
US20240053762A1 (en) Regional map drawing method and apparatus, medium, and electronic device
WO2023134157A1 (zh) 自动清洁设备
JP2023010564A (ja) 自律清掃機器及びその騒音低減エアダクト装置
WO2022218177A1 (zh) 机器人避障方法及装置、机器人、存储介质、电子设备
JP7279223B2 (ja) 自動清掃機器
CN215457681U (zh) 一种自动清洁设备
CN115251762B (zh) 清洁设备及系统
WO2023130681A1 (zh) 自动清洁设备及系统
CN218500627U (zh) 清洁设备及系统
CN215728850U (zh) Tof组件及扫地机器人
CN215272496U (zh) 一种用于表面清洁设备的隔离装置及其充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858506

Country of ref document: EP

Effective date: 20200428