WO2019054390A1 - オーステナイト系ステンレス鋼及びその製造方法 - Google Patents

オーステナイト系ステンレス鋼及びその製造方法 Download PDF

Info

Publication number
WO2019054390A1
WO2019054390A1 PCT/JP2018/033714 JP2018033714W WO2019054390A1 WO 2019054390 A1 WO2019054390 A1 WO 2019054390A1 JP 2018033714 W JP2018033714 W JP 2018033714W WO 2019054390 A1 WO2019054390 A1 WO 2019054390A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
stainless steel
less
austenitic stainless
heat treatment
Prior art date
Application number
PCT/JP2018/033714
Other languages
English (en)
French (fr)
Inventor
洋介 米永
Original Assignee
コベルコ鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65722822&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019054390(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by コベルコ鋼管株式会社 filed Critical コベルコ鋼管株式会社
Priority to US16/647,312 priority Critical patent/US20200277680A1/en
Priority to CN201880053351.5A priority patent/CN111094611A/zh
Priority to EP18856267.2A priority patent/EP3683324A4/en
Priority to KR1020207004834A priority patent/KR102342675B1/ko
Priority to JP2019542074A priority patent/JP6777824B2/ja
Priority to CA3075882A priority patent/CA3075882C/en
Publication of WO2019054390A1 publication Critical patent/WO2019054390A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to an austenitic stainless steel and a method of manufacturing the same.
  • Austenitic stainless steels are widely used in various applications as steels excellent in strength, workability, corrosion resistance, and the like.
  • various austenitic stainless steels in which the component composition, the crystal structure, and the like are controlled have been developed in order to further enhance the performance according to the application and the like (see Patent Documents 1 to 5).
  • high strength stainless steel such as duplex stainless steel is also used for automobile fuel injection pipes from the viewpoints of weight reduction, fatigue failure prevention, corrosion resistance to salt water, and the like.
  • materials having higher strength yield strength, tensile strength
  • a brazing heat treatment of a steel pipe may be performed. When such heat treatment is performed, the strength of the steel pipe may be reduced, and in addition, there is a problem that the straight pipe shape can not be maintained in duplex stainless steel.
  • Patent No. 6137434 Patent No. 5131794 gazette JP, 2017-12244, A JP, 2016-44332, A Patent No. 2787044 gazette
  • the present invention has been made based on the circumstances as described above, and an object thereof is to provide an austenitic stainless steel having high strength and good shape retention after heat treatment, and a method for producing the same. It is.
  • component composition C: 0.12 mass% or less, Si: 0.1 mass% or more and 1.0 mass% or less, Mn: 0.1 mass% or more. 0 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% or less, Cr: 13.0 mass% to 22.0 mass%, Ni: 4.0 mass% to 12.0 mass % Or less, Cu: 0.01 mass% or more and 0.50 mass% or less, Mo: 5.0 mass% or less, Al: 0.03 mass% or less, Nb: 0.05 mass% or more and 0.30 mass% or less And N: 0.10% by mass or more and 0.50% by mass or less, with the balance being Fe and unavoidable impurities, and having a grain size number of 7.0 or more.
  • the said austenitic stainless steel Since the said austenitic stainless steel has the said component composition and crystal grain size, it has high strength (proof stress and tensile strength) by solid solution strengthening or refinement
  • the maximum crystal grain size of the austenitic stainless steel is preferably 60 ⁇ m or less. In such a case, coarsening of crystal grains is suppressed even if heat treatment such as brazing is performed. For this reason, the strength reduction of the steel after heat treatment is suppressed.
  • the maximum height Ry is preferably 10 ⁇ m or less.
  • corrosion resistance etc. can be improved by improving the smoothness of the said austenitic stainless steel surface.
  • the austenitic stainless steel is preferably a seamless steel pipe.
  • a seamless pipe it is possible to avoid the fracture caused by the weld. Therefore, when it is a seamless pipe, it can be used more suitably for a car fuel injection pipe etc. to which stress of repetition of internal pressure is added.
  • the austenitic stainless steel is excellent in strength, it can sufficiently cope with direct injection and high pressure of an automobile engine, and is suitably used for an automobile fuel injection pipe. Further, the austenitic stainless steel is suitably used for automobile fuel injection pipes subjected to brazing heat treatment also because of its good shape retention after heat treatment.
  • the other inventions made to solve the above problems are provided at the step of performing cold working with a single working ratio of 20% or more to steel materials, and before and after the cold working step, And a step of performing a heat treatment on the steel material, and the heat treatment temperature T (° C.) in the heat treatment step is a method for producing the austenitic stainless steel satisfying the following formula (3).
  • [% C], [% Cr], [% N] and [% Nb] represent the content (mass%) of each component in the above-described steel material.)
  • the manufacturing method a it is possible to obtain an austenitic stainless steel having high strength and good shape retention after heat treatment by achieving solid solution strengthening and grain refining strengthening.
  • the other inventions made to solve the above problems are provided at the step of performing cold working with a single working ratio of 20% or more to steel materials, and before and after the cold working step, And a step of subjecting the steel material to a heat treatment, wherein the heat treatment temperature T (° C.) in the heat treatment step is 1,000 ° C. or more and 1,200 ° C. or less.
  • austenitic stainless steel having high strength and good shape retention after heat treatment can be obtained by achieving solid solution strengthening and grain refining strengthening.
  • the last heat processing process after the said cold-working process is brightness annealing.
  • the final heat treatment is atmospheric annealing, subsequent pickling is required, and surface peeling occurs due to scale peeling or dissolution by an acid.
  • acid annealing is unnecessary by performing bright annealing as the final heat treatment step as described above, and the surface roughness does not occur, so the obtained austenitic stainless steel has high smoothness and, as a result, excellent corrosion resistance and the like. It becomes a thing.
  • an austenitic stainless steel having high strength and good shape retention after heat treatment, and a method for producing the same.
  • the austenitic stainless steel according to one embodiment of the present invention has a specific component composition and crystal grain size, whereby high strength is developed.
  • the austenitic stainless steel substantially consists of an austenitic phase single phase, and its shape retention after heat treatment becomes better as compared to a ferrite-austenite duplex stainless steel.
  • the austenitic stainless steel generally, at least 99% of the structure is the austenite phase.
  • the component composition of the austenitic stainless steel contains predetermined amounts of C, Si, Mn, P, S, Cr, Ni, Cu, Mo, Al, Nb and N, with the balance being Fe and unavoidable impurities.
  • the numerical range of the content of each component and the reason for limitation will be described.
  • C (C: 0.12% by mass or less)
  • C (carbon) is an element effective for solid solution strengthening and stabilization of the austenite phase.
  • it is an element which forms a non-intermetallic compound by adding it together with Cr, Nb and N, and effectively works to suppress the coarsening of the crystal grains by heat treatment.
  • the content is made 0.12% by mass or less in order to form a non-intermetallic compound targeted.
  • the upper limit of the content of C is preferably 0.10% by mass, more preferably 0.08% by mass, and still more preferably 0.06% by mass from the viewpoint of suppressing formation of carbides and the like.
  • the lower limit of the content of C may be more than 0% by mass, preferably 0.01% by mass, and more preferably 0.02% by mass from the solid solution strengthening by C addition and the like.
  • Si 0.1% by mass or more and 1.0% by mass or less
  • Si silicon
  • the upper limit of the content of Si is preferably 0.8% by mass.
  • Si is also an element used as pre-deoxidation when melt casting, and the lower limit of the content is preferably 0.2% by mass, more preferably 0.3% by mass, and further 0.35% by mass
  • 0.4% by mass may be further preferable, and 0.5% by mass may be further preferable.
  • Mn 0.1% by mass or more and 3.0% by mass or less
  • Mn manganese
  • MnS manganese
  • the addition of Mn needs to be avoided because it promotes the formation of non-intermetallic compounds which are harmful to corrosion resistance such as MnS. Therefore, the Mn content is 0.1% by mass or more and 3.0% by mass or less.
  • 0.3 mass% is preferred, 0.5 mass% is more preferable, and 0.7 mass% is more preferable.
  • the upper limit of the content is preferably 2.7% by mass, and more preferably 2.4% by mass.
  • P 0.05% by mass or less
  • P phosphorus
  • the content of P is set to 0.05% by mass or less. 0.04 mass% is preferable, as for the upper limit of content of P, 0.03 mass% is more preferable, and 0.02 mass% is more preferable.
  • the lower limit of the content of P may be more than 0% by mass, and may be 0.001% by mass or 0.005% by mass.
  • S sulfur
  • S is an element contained as an impurity, and is an element which combines with Mn and Ca to form a non-intermetallic compound which is harmful to corrosion resistance and mechanical properties.
  • the amount of addition should be limited as much as possible in order to form sulfides and reduce the corrosion resistance. Therefore, the upper limit of the content of S needs to be 0.01% by mass, preferably 0.005% by mass, and more preferably 0.003% by mass.
  • the lower limit of the content of S may be more than 0% by mass, and may be 0.0001% by mass or 0.0003% by mass.
  • Cr 13.0% by mass or more and 22.0% by mass or less
  • Cr chromium
  • Cr is an element effective for improving the corrosion resistance and solid solution strengthening.
  • a non-intermetallic compound is formed by adding C, Nb and N in combination, and the coarsening of the crystal grains by heat treatment is suppressed.
  • the amount of addition of Cr is increased, the temperature at which the non-intermetallic compound is stable shifts to the high temperature side, and the fine structure can be maintained even if heat treatment is performed at a higher temperature.
  • Cr acts as a ferrite forming element, it is necessary to avoid excessive addition when C, Mn, Ni and N are added in small amounts. Therefore, the content of Cr is set to 13.0% by mass or more and 22.0% by mass or less.
  • the upper limit of the content of Cr is preferably 21.0% by mass, and more preferably 20.0% by mass.
  • the lower limit of the content of Cr is preferably 15.0% by mass, more preferably 16.0% by mass, and still more preferably 18.0% by mass.
  • Ni 4.0% by mass or more and 12.0% by mass or less
  • Ni nickel
  • the content of Ni is set to 4.0% by mass or more and 12.0% by mass or less.
  • 5.0 mass% is preferable, as for the minimum of content of Ni, 7.0 mass% is more preferable, and 7.8 mass% is more preferable.
  • 11.0 mass% is preferable and, as for the upper limit of content of Ni, 10.0 mass% is more preferable.
  • Cu (copper) is an austenite-forming element. Excessive reduction leads to an increase in raw material cost because the element is mixed from stainless steel scraps and the like. Therefore, the content of Cu is 0.01% by mass or more and 0.50% by mass or less.
  • the lower limit of the content of Cu may be preferably 0.05% by mass, and 0.1% by mass may be preferable.
  • the upper limit of the content of Cu is preferably 0.40% by mass.
  • Mo Mo (molybdenum) is an element effective for improving corrosion resistance and solid solution strengthening.
  • Mo is an expensive element and leads to an increase in raw material cost, so the content is made 5.0% by mass or less.
  • the upper limit of the content of Mo is preferably 1.0% by mass, 0.50% by mass is more preferable, 0.45% by mass is more preferable, and 0.40% by mass is more It may be even more preferable.
  • the lower limit of the content of Mo may be more than 0% by mass, preferably 0.01% by mass, more preferably 0.05% by mass, and still more preferably 0.1% by mass.
  • Al 0.03% by mass or less
  • Al aluminum
  • Al aluminum
  • the upper limit of the content of Al is 0.03% by mass, preferably 0.02% by mass.
  • the lower limit of the content of Al may be more than 0% by mass, may be preferably 0.001% by mass, and may be more preferably 0.005% by mass.
  • Nb 0.05% by mass or more and 0.30% by mass or less
  • Nb niobium
  • the range of content of Nb shall be 0.05 mass% or more and 0.30 mass% or less.
  • the lower limit of the content of Nb is preferably 0.07% by mass, and more preferably 0.09% by mass.
  • 0.20 mass% is preferable and, as for the upper limit of content of Nb, 0.15 mass% is more preferable.
  • N nitrogen
  • nitrogen is an element effective for austenite stabilization, corrosion resistance improvement, and solid solution strengthening.
  • adding in combination with C, Cr and N forms a non-intermetallic compound and suppresses the coarsening of crystal grains by heat treatment.
  • the N addition amount is increased, the temperature at which the non-intermetallic compound is stable shifts to the high temperature side, and the coarsening of the crystal grains is suppressed even if heat treatment is performed at a higher temperature.
  • the N addition amount is increased, the processability and the like decrease. Therefore, the range of the content of N is 0.10% by mass or more and 0.50% or less.
  • the lower limit of the content of N is preferably 0.15 mass%, and 0.20 mass% is preferable. 0.35 mass% is preferable, and, as for the upper limit of content of N, 0.30 mass% is more preferable.
  • the basic components of the component composition which comprises the said austenitic stainless steel are as above-mentioned, and balance components are Fe and an unavoidable impurity.
  • Unavoidable impurities are impurities which are inevitably mixed at the time of melting and are contained in the range which does not injure various characteristics of a steel pipe.
  • the component composition of the austenitic stainless steel may further contain other elements in addition to the above components, as long as the effects of the present invention are not adversely affected.
  • the present inventors control the content of C, Cr, N and Nb so that compounds of C, Cr, N and Nb (Z phase) are stably present before and after heat treatment, and crystal grains before and after heat treatment It was found that the grain size and the amount of precipitates can be maintained, and grain refinement and precipitation strengthening can be used even after heat treatment. That is, the Z-phase solid solution temperature is 1 by setting the component composition such that the value of-2090 [% C] + 12.8 [% Cr] + 320 [% N] + 42.3 [% Nb] is 200 or more and 300 or less. , Was found to be 100 ° C. or higher.
  • steel pipes used for automobile fuel injection pipes are generally processed into parts by brazing heat treatment using Cu solder or the like.
  • the heat treatment is often performed at about 1,080 ° C. to 1,150 ° C., since the Cu solder has a melting point of 1082 ° C. Therefore, when the component composition of the said austenitic stainless steel obtains the said Formula (1), even if it performs the brazing heat processing of the said temperature range, the grain boundary pinning effect etc. by a precipitate can be acquired.
  • the formula (1) when the formula (1) is satisfied, it is possible to suppress the coarsening of crystal grains after the heat treatment, and to utilize the strength increase and the precipitation strengthening by the crystal grain refinement.
  • mixed grains can be suppressed, which also contributes to suppressing the formation of a weak point that is a starting point of fatigue failure.
  • C and N effectively act as solid solution strengthening elements.
  • the lower limit of [% C] + [% N] is preferably 0.25.
  • the upper limit of [% C] + [% N] is preferably 0.35.
  • the lower limit of the grain size number of the austenite crystal is 7.0, preferably 8.0, more preferably 9.0, and still more preferably 9.5.
  • the grain refinement and strengthening can be achieved and the strong strength can be expressed.
  • it is effective to add nitrogen or carbon as a solid solution element to strengthen stainless steel, but by adding such elements in excess, the workability deteriorates due to strain aging. For this reason, in the said austenitic stainless steel, in order to aim at high strengthening of stainless steel, the grain refinement reinforcement is utilized, suppressing content of nitrogen and carbon.
  • the upper limit of the grain size number of the austenite crystal is not particularly limited, but may be, for example, 16.0, and may be 14.0, 13.0, 12.0, 11.5 or 11.0. .
  • the said crystal grain size number is a value measured based on JISG0551 (2013), and is specifically a value calculated
  • the grain size of the austenitic stainless steel can be controlled, for example, by the heat treatment temperature before and after cold working as described later.
  • the upper limit of the maximum grain size of austenite crystals may be, for example, 200 ⁇ m, 150 ⁇ m or 100 ⁇ m, but is preferably 60 ⁇ m, more preferably 50 ⁇ m, and 40 ⁇ m. Is more preferably 30 ⁇ m.
  • the maximum grain size is reduced to coarsen or mix the crystal grains after heat treatment. As a result, the reduction in strength of the steel after heat treatment is suppressed.
  • the lower limit of the maximum crystal grain size is, for example, 1 ⁇ m, and may be 5 ⁇ m or 10 ⁇ m. Also, this maximum crystal grain size is a value measured by the method described in the examples described later.
  • the maximum crystal grain size of the austenitic stainless steel can be set to 60 ⁇ m or less by controlling the temperature at the heat treatment temperature and setting the component composition to satisfy the above equation (1), etc. .
  • the upper limit of the maximum height Ry is preferably 10 ⁇ m, more preferably 8 ⁇ m, and still more preferably 6 ⁇ m.
  • the lower limit of the maximum height Ry is not particularly limited, but may be, for example, 0.5 ⁇ m, and may be 1 ⁇ m or 2 ⁇ m.
  • the said largest height Ry says the value measured based on JISB0601 (1994).
  • the maximum height Ry can be a measured value of the outer surface.
  • the surface roughness (maximum height Ry) of the austenitic stainless steel can be reduced by performing bright annealing as a final step as described later, or by performing mirror finish.
  • the shape of the austenitic stainless steel is not particularly limited, and may be plate-like, rod-like, tubular or the like, but is preferably tubular. That is, the austenitic stainless steel is suitably used as a steel pipe.
  • the steel pipe include seamless steel pipes, arc welded steel pipes, arc welded steel pipes such as UOE steel pipes and spiral steel pipes, and forged steel pipes. Preferably it is a seamless steel pipe.
  • the austenitic stainless steel has high strength and can be applied to various applications, but among them, it can be suitably used for a car fuel injection pipe.
  • the austenitic stainless steel can suppress deformation after brazing heat treatment, and can maintain a high strength crystalline structure after heat treatment by adjusting the composition and the like.
  • the said austenitic stainless steel is suitable as a material of the automotive fuel injection pipe which performs brazing heat processing.
  • Austenitic stainless steel can be suitably obtained by the following method. That is, a method of manufacturing an austenitic stainless steel according to an embodiment of the present invention, A step (1) of performing cold working on a steel material, wherein a single working ratio is 20% or more; And a step (2) of heat-treating the steel material provided before and after the step (1).
  • the steel material having the above-mentioned component composition is subjected to cold working at a single processing rate of 20% or more.
  • the cold working include cold rolling and cold drawing, which are selected according to the shape of the final product. For example, in the case of obtaining a steel pipe, cold drawing is suitably employed.
  • the working ratio by cold working is 20% or more, and preferably 25% or more.
  • the upper limit of one processing rate is preferably 50%, and more preferably 40%.
  • the heat treatment temperature T (° C.) in the heat treatment step (2) may satisfy the following formula (3) together with the heat treatment before and after the cold working step (1). Thereby, the coarsening of the crystal grain by heat processing can be suppressed, and the intensity
  • the value of -2090 [% C] + 12.8 [% Cr] + 320 [% N] + 42.3 [% Nb] in the component composition of austenitic stainless steel is 100 or more It is.
  • the heat treatment temperature T (° C.) in the heat treatment step (2) is preferably 1,000 ° C. or more and 1,200 ° C. or less both before and after the cold working step (1). Thereby, the coarsening of the crystal grain by heat processing can be suppressed, and the intensity
  • 1,150 degreeC is preferable and, as for the upper limit of the said heat processing temperature T, 1,130 degreeC is more preferable.
  • the heat processing method in the said heat processing process (2) is not specifically limited, A well-known method can be used.
  • the heat treatment performed after the cold working step (1) is preferably bright annealing.
  • the heat treatment performed after the cold working step (1) is preferably the final heat treatment step.
  • Bright annealing is heat treatment performed in a reducing atmosphere, and heat treatment can be performed without oxidizing the surface of stainless steel. Thereby, the pickling process after heat treatment can be omitted, and stainless steel having high smoothness, that is, excellent corrosion resistance and the like can be obtained.
  • Embodiments The present invention is not limited to the above embodiment, and can be implemented in various modifications and improvements in addition to the above embodiment.
  • the manufacturing method of the said austenitic stainless steel after performing a final heat treatment process by air
  • Examples 1 to 7 and Comparative Examples 1 to 2 are austenitic stainless steels
  • Comparative Example 3 is a duplex stainless steel.
  • Example 8 Preparation of Steel Pipe
  • a 150 kg cylindrical ingot of the component composition shown in Table 1 (the balance being Fe and unavoidable impurities) was prepared using a vacuum induction melting furnace (VIF).
  • the ingot was heat-treated at 1,250 ° C. or more for 24 hours, and hot forged in a temperature range of 1,200 ° C. to 1,000 ° C. to produce a bloom of ⁇ 150 mm.
  • a billet of ⁇ 146 mm ⁇ 330 mm was produced from this bloom, and a steel pipe was obtained by the Eugene Sejourne hot extrusion method.
  • the steel pipe was subjected to heat treatment and cold working a plurality of times, the steel pipe was subjected to heat treatment at a heat treatment temperature before cold working (Tc) described in Table 1. Next, the steel pipe was formed by cold working at a processing rate of 35%. Thereafter, as a final heat treatment, heat treatment was performed at a heat treatment temperature (Tf) after cold working described in Table 1 using a bright annealing furnace to obtain a test material (austenitic stainless steel) of Example 8.
  • Tc heat treatment temperature before cold working
  • Tf heat treatment temperature after cold working described in Table 1 using a bright annealing furnace to obtain a test material (austenitic stainless steel) of Example 8.
  • Example 8 a sample is cut out so that a surface perpendicular to the length direction can be seen from the test material (steel pipe) obtained in Example 8, resin filling is performed so that a cross section of width x thickness can be seen, and the surface is a mirror surface It was polished until it reached 65 ° C, and the structure was revealed by 65% nitric acid electrolytic etching. The observation of the structure was performed at a magnification of 400 with an optical microscope, the grain size number was measured in 5 fields of view, and the median was taken as the grain size number. The measurement results are shown in Table 1. In addition, "-" in a table shows that it has not measured.
  • the maximum height Ry was determined in accordance with JIS B0601 (1994). It measured 3 mm in the axial direction using a roughness meter. In addition, about the test material (steel pipe) of Example 8, 3 mm of outer surfaces were measured in the length direction. The measurement results are shown in Table 1.
  • the 0.2% proof stress was evaluated as A for 400 MPa or more, B for 370 MPa or more and less than 400 MPa, and C for less than 370 MPa.
  • 800 MPa or more was evaluated as A, 710 MPa or more and less than 800 MPa as B, and less than 710 MPa as C. The results are shown in Table 2.
  • a plate material with a length of 200 mm and a thickness of 2.0 mm was prepared by wire cutting using a test material, and heat treatment was performed under the condition of air cooling at 1100 ° C. for 5 minutes while supported at two points of 50 mm from both ends. .
  • the amount of warpage of the plate after heat treatment was measured using the image data as the amount of warpage due to the heat treatment when the length of the perpendicular drawn from the line connecting both ends of the plate became maximum.
  • Those with a warpage amount of 0.1 mm or less were evaluated as A: those exceeding 0.1 mm, those with 1 mm or less being B, and those exceeding 1 mm were evaluated as C.
  • the measurement results are shown in Table 2.
  • Comparative Example 3 although the final heat treatment is performed by bright annealing, Ry exceeds 10 ⁇ m. This is because the comparative example 8 is not an austenite single phase structure but an ⁇ / ⁇ duplex stainless steel, and the ⁇ phase and the ⁇ phase have different strengths and deformation behaviors, respectively, so that Ry is increased. it is conceivable that.
  • the austenitic stainless steel of the present invention can be suitably used for automobile fuel injection pipes and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高い強度を有し、かつ熱処理後の形状保持性が良好なオーステナイト系ステンレス鋼及びその製造方法を提供する。本発明は、成分組成が、C:0.12質量%以下、Si:0.1質量%以上1.0質量%以下、Mn:0.1質量%以上3.0質量%以下、P:0.05質量%以下、S:0.01質量%以下、Cr:13.0質量%以上22.0質量%以下、Ni:4.0質量%以上12.0質量%以下、Cu:0.01質量%以上0.50質量%以下、Mo:5.0質量%以下、Al:0.03質量%以下、Nb:0.05質量%以上0.30質量%以下、及びN:0.10質量%以上0.50質量%以下を満たし、残部がFe及び不可避的不純物であり、結晶粒度番号が7.0以上であるオーステナイト系ステンレス鋼である。

Description

オーステナイト系ステンレス鋼及びその製造方法
 本発明は、オーステナイト系ステンレス鋼及びその製造方法に関する。
 オーステナイト系ステンレス鋼は、強度、加工性、耐食性等に優れた鋼材として、各種用途に広く使用されている。また、用途等に応じた性能をより高めるべく、成分組成や結晶組織等を制御した様々なオーステナイト系ステンレス鋼が開発されている(特許文献1~5参照)。
 一方、自動車用燃料噴射管にも、軽量化、疲労破壊防止、塩水に対する耐食性などの観点から、二相ステンレス鋼のような高強度なステンレス鋼等が使用されている。このような自動車用燃料噴射管の材料においても、長寿命化や高性能化などに対応すべく、従来の材料以上の高い強度(耐力、引張強さ)等を有する材料の開発が求められている。また、自動車用燃料噴射管の製造においては、鋼管のろう付け熱処理がなされることがある。このような熱処理がなされた場合、鋼管の強度が低下する場合があり、加えて二相ステンレス鋼においては直管形状を保持できないという問題もある。
特許第6137434号公報 特許第5131794号公報 特開2017-12244号公報 特開2016-44332号公報 特許第2787044号公報
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、高い強度を有し、かつ熱処理後の形状保持性が良好なオーステナイト系ステンレス鋼及びその製造方法を提供することである。
 上記課題を解決するためになされた発明は、成分組成が、C:0.12質量%以下、Si:0.1質量%以上1.0質量%以下、Mn:0.1質量%以上3.0質量%以下、P:0.05質量%以下、S:0.01質量%以下、Cr:13.0質量%以上22.0質量%以下、Ni:4.0質量%以上12.0質量%以下、Cu:0.01質量%以上0.50質量%以下、Mo:5.0質量%以下、Al:0.03質量%以下、Nb:0.05質量%以上0.30質量%以下、及びN:0.10質量%以上0.50質量%以下を満たし、残部がFe及び不可避的不純物であり、結晶粒度番号が7.0以上であるオーステナイト系ステンレス鋼である。
 当該オーステナイト系ステンレス鋼は、上記成分組成及び結晶粒度を有するため、固溶強化や結晶粒の微細化により、高い強度(耐力及び引張強さ)を有する。また、当該オーステナイト系ステンレス鋼は、上記成分組成及び結晶粒度を有するオーステナイト系ステンレス鋼であるため、熱処理後の形状保持性が良好になる。
 上記成分組成において、下記式(1)をさらに満たすことが好ましい。このような場合、ろう付け等の熱処理を施しても、結晶粒の粗大化が抑制される。このため、熱処理後の鋼の強度低下が抑制される。
 200≦-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]≦300 ・・・ (1)
(式(1)中、[%C]、[%Cr]、[%N]及び[%Nb]は、それぞれの成分の含有量(質量%)を表す。)
 当該オーステナイト系ステンレス鋼の最大結晶粒径が60μm以下であることが好ましい。このような場合、ろう付け等の熱処理を施しても、結晶粒の粗大化が抑制される。このため、熱処理後の鋼の強度低下が抑制される。
 上記成分組成において、下記式(2)をさらに満たすことが好ましい。このように、炭素及び窒素の含有量を制御することにより、強度をより高めることなどができる。
 0.20≦[%C]+[%N]≦0.40 ・・・ (2)
(式(2)中、[%C]及び[%N]は、それぞれの成分の含有量(質量%)を表す。)
 当該オーステナイト系ステンレス鋼においては、最大高さRyが、10μm以下であることが好ましい。このように当該オーステナイト系ステンレス鋼表面の平滑性を高めることで、耐食性等を高めることができる。
 当該オーステナイト系ステンレス鋼は、シームレス鋼管であることが好ましい。シームレス管である場合、溶接部が起点となって生じる破壊を避けることができる。従って、シームレス管である場合、内圧の繰り返しの応力が付加される自動車燃料噴射管等に、より好適に用いることができる。
 当該オーステナイト系ステンレス鋼は、強度が優れるため、自動車エンジンの直噴高圧化にも十分対応可能であり、自動車燃料噴射管に好適に用いられる。また、当該オーステナイト系ステンレス鋼は、熱処理後の形状保持性が良好であることからも、ろう付け熱処理がなされる自動車燃料噴射管に好適に用いられる。
 上記課題を解決するためになされた他の発明は、鋼材に対して、一回の加工率が20%以上である冷間加工を行う工程と、上記冷間加工工程の前後に設けられ、上記鋼材に対して熱処理を行う工程とを備え、上記熱処理工程における熱処理温度T(℃)が下記式(3)を満たす上記オーステナイト系ステンレス鋼の製造方法aである。
 1,000≦T≦-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]+900 ・・・ (3)
(式(3)中、[%C]、[%Cr]、[%N]及び[%Nb]は、上記鋼材におけるそれぞれの成分の含有量(質量%)を表す。)
 当該製造方法aによれば、固溶強化や結晶粒微細化強化が図られることにより、高い強度を有し、かつ熱処理後の形状保持性が良好なオーステナイト系ステンレス鋼を得ることができる。
 上記課題を解決するためになされた他の発明は、鋼材に対して、一回の加工率が20%以上である冷間加工を行う工程と、上記冷間加工工程の前後に設けられ、上記鋼材に対して熱処理を行う工程とを備え、上記熱処理工程における熱処理温度T(℃)が1,000℃以上1,200℃以下である上記オーステナイト系ステンレス鋼の製造方法bである。
 当該製造方法bによっても、固溶強化や結晶粒微細化強化が図られることにより、高い強度を有し、かつ熱処理後の形状保持性が良好なオーステナイト系ステンレス鋼を得ることができる。
 当該製造方法a及び製造方法bにおいては、上記冷間加工工程後の最終の熱処理工程が、光輝焼鈍であることが好ましい。例えば最終熱処理が大気焼鈍の場合、その後の酸洗いが必要となり、スケール剥離や酸による溶解で表面荒れが生じる。しかし、このように最終熱処理工程として光輝焼鈍を行うことで、酸洗いが不要となり、上記表面荒れが生じないため、得られるオーステナイト系ステンレス鋼は、平滑性が高く、その結果、耐食性等に優れるものとなる。
 本発明によれば、高い強度を有し、かつ熱処理後の形状保持性が良好なオーステナイト系ステンレス鋼及びその製造方法を提供することができる。
 以下、本発明の一実施形態に係るオーステナイト系ステンレス鋼及びその製造方法について詳説する。
[オーステナイト系ステンレス鋼]
 本発明の一実施形態に係るオーステナイト系ステンレス鋼は、特定の成分組成と結晶粒度を有し、これにより、高い強度が発現される。なお、当該オーステナイト系ステンレス鋼は、実質的にオーステナイト相単相からなり、フェライト・オーステナイト二相ステンレス鋼と比較して熱処理後の形状保持性が良好になる。当該オーステナイト系ステンレス鋼においては、通常、組織の99%以上がオーステナイト相である。
(成分組成)
 当該オーステナイト系ステンレス鋼の成分組成は、所定量のC、Si、Mn、P、S、Cr、Ni、Cu、Mo、Al、Nb及びNを含有し、残部がFe及び不可避的不純物からなる。以下、各成分の含有量の数値範囲とその限定理由について説明する。
(C:0.12質量%以下)
 C(炭素)は固溶強化及びオーステナイト相の安定化に有効な元素である。加えて、Cr、Nb及びNとともに添加することで非金属間化合物を形成し、熱処理による結晶粒粗大化抑制に有効に働く元素である。しかしながら、過剰な添加によって炭化物を形成するため狙った非金属間化合物形成のためには含有量を0.12質量%以下とする。炭化物の形成抑制などの点から、Cの含有量の上限は、0.10質量%が好ましく、0.08質量%がより好ましく、0.06質量%がさらに好ましい。一方、Cの含有量の下限は、0質量%超であってよく、C添加による固溶強化などから、0.01質量%が好ましく、0.02質量%がより好ましい。
(Si:0.1質量%以上1.0質量%以下)
 Si(ケイ素)はステンレス鋼の固溶強化に有効な元素である。一方で、ステンレス鋼がろう付して使用される場合には、Siがろう付性を阻害する要因となるため添加量は1.0質量%以下にする必要がある。Siの含有量の上限は、0.8質量%が好ましい。また、Siは溶解鋳造するときの予備脱酸として使用する元素でもあり、含有量の下限としては、0.2質量%が好ましく、0.3質量%がより好ましく、0.35質量%がさらに好ましく、0.4質量%がさらに好ましいこともあり、0.5質量%がさらに好ましいこともある。
(Mn:0.1質量%以上3.0質量%以下)
 Mn(マンガン)はオーステナイト形成元素である。Mn添加によって高価な元素であるNiの添加量を下げることができる。しかしながら、Mn添加はMnSのような耐食性に有害な非金属間化合物の形成を促進するため過剰な添加は避ける必要がある。よって、Mn含有量は0.1質量%以上3.0質量%以下とする。Mnの含有量の下限としては、0.3質量%が好ましく、0.5質量%がより好ましく、0.7質量%がさらに好ましい。一方、この含有量の上限は、2.7質量%が好ましく、2.4質量%がさらに好ましい。
(P:0.05質量%以下)
 P(リン)は不純物として含有する元素である。Pは熱間加工性、溶接性、強度等を低下させるため、Pの含有量は0.05質量%以下とする。Pの含有量の上限は、0.04質量%が好ましく、0.03質量%がより好ましく、0.02質量%がさらに好ましい。Pの含有量の下限は、0質量%超であってよく、0.001質量%又は0.005質量%であってもよい。
(S:0.01質量%以下)
 S(硫黄)は不純物として含有する元素で、MnやCaと結合して耐食性や機械的特性に有害な非金属間化合物を形成する元素である。硫化物を形成して耐食性を低下させるため添加量は極力制限すべきである。よってSの含有量の上限は0.01質量%にする必要があり、0.005質量%が好ましく、0.003質量%がより好ましい。一方、Sの含有量の下限は、0質量%超であってよく、0.0001質量%又は0.0003質量%であってもよい。
(Cr:13.0質量%以上22.0質量%以下)
 Cr(クロム)は耐食性向上及び固溶強化に有効な元素である。また、C、Nb及びNと複合して添加されることで非金属間化合物を形成し、熱処理によって結晶粒が粗大化することを抑制する。Cr添加量を増やすと非金属間化合物が安定である温度が高温側に移行し、より高温で熱処理を行っても微細組織を保つことができるようになる。しかしながら、Crはフェライト形成元素として作用するため、C、Mn、Ni及びNの添加量が少ない場合などには過剰な添加を避ける必要がある。よって、Crの含有量は13.0質量%以上22.0質量%以下とする。Crの過剰な添加はコストの増加やオーステナイト相の安定性低下に繋がることから、Crの含有量の上限は、21.0質量%が好ましく、20.0質量%がより好ましい。一方、上記効果を高めることなどから、Crの含有量の下限は、15.0質量%が好ましく、16.0質量%がより好ましく、18.0質量%がさらに好ましい。
(Ni:4.0質量%以上12.0質量%以下)
 Ni(ニッケル)はオーステナイト形成に有効な元素である。しかしながら、Niの過剰な添加は材料コストの増加に繋がるため、Niの含有量は4.0質量%以上12.0質量%以下とする。Niの含有量の下限は、5.0質量%が好ましく、7.0質量%がより好ましく、7.8質量%がさらに好ましい。また、Niの含有量を比較的増やすことで、単相のオーステナイト系ステンレス鋼を得ることができる。一方、Niの含有量の上限は、11.0質量%が好ましく、10.0質量%がより好ましい。
(Cu:0.01質量%以上0.50質量%以下)
 Cu(銅)はオーステナイト形成元素である。ステンレス鋼スクラップなどから混入する元素であるため、過剰な低減は原料コストの増加に繋がる。よって、Cuの含有量は、0.01質量%以上0.50質量%以下とする。Cuの含有量の下限は、0.05質量%が好ましいこともあり、0.1質量%が好ましいこともある。一方、Cuの含有量の上限は、0.40質量%が好ましい。
(Mo:5.0質量%以下)
 Mo(モリブデン)は耐食性の向上及び固溶強化に有効な元素である。しかしながらMoは高価な元素であり原料コストの増加につながるため、含有量は5.0質量%以下とする。Moの含有量の上限は、1.0質量%が好ましいこともあり、0.50質量%がより好ましいこともあり、0.45質量%がさらに好ましいこともあり、0.40質量%がよりさらに好ましいこともある。一方、Moの含有量の下限は、0質量%超であってよく、0.01質量%が好ましく、0.05質量%がより好ましく、0.1質量%がさらに好ましい。
(Al:0.03質量%以下)
 Al(アルミニウム)は、脱酸作用のある元素であるが、Alはフェライト安定化元素であるため、過剰に含まれるとオーステナイトの安定性が低下し、熱間加工性や延性が低下する。更にAl系介在物は加工性や鏡面キズの原因となる。よって、Alの含有量の上限は0.03質量%とし、0.02質量%が好ましい。一方、Alの含有量の下限は、0質量%超であってよく、0.001質量%が好ましいこともあり、0.005質量%がより好ましいこともある。
(Nb:0.05質量%以上0.30質量%以下)
 Nb(ニオブ)は、C、Cr及びNと複合して添加することで非金属間化合物を形成し、熱処理によって結晶粒が粗大化することを抑制する。Nb添加量を増やすと非金属間化合物が安定である温度が高温側に移行し、より高温で熱処理を行っても微細組織を保つことができるようになる。しかしながら、Nbは高価な元素であるため、コストの観点から過剰な添加を避ける必要がある。よってNbの含有量の範囲は0.05質量%以上0.30%質量以下とする。Nbの含有量の下限は、0.07質量%が好ましく、0.09質量%がより好ましい。一方、Nbの含有量の上限は、0.20質量%が好ましく、0.15質量%がより好ましい。
(N:0.10質量%以上0.50質量%以下)
 N(窒素)は、オーステナイト安定化、耐食性向上及び固溶強化に有効な元素である。加えて、C、Cr及びNと複合して添加すること非金属間化合物を形成し、熱処理によって結晶粒が粗大化することを抑制する。N添加量を増やすと非金属間化合物が安定である温度が高温側に移行し、より高温で熱処理を行っても結晶粒が粗大化することを抑制する。しかしながら、N添加量を増やすと加工性等が低下する。よって、Nの含有量の範囲は0.10質量%以上0.50%以下とする。さらにN添加によるオーステナイト安定化の効果及び加工性への影響を考慮すると、Nの含有量の下限は、0.15質量%が好ましく、0.20質量%が好ましい。Nの含有量の上限は、0.35質量%が好ましく、0.30質量%がより好ましい。
(Fe及び不可避的不純物)
 当該オーステナイト系ステンレス鋼を構成する成分組成の基本成分は上記のとおりであり、残部成分はFe及び不可避的不純物である。不可避的不純物は、溶製時に不可避的に混入する不純物であり、鋼管の諸特性を害さない範囲で含有される。また、当該オーステナイト系ステンレス鋼の成分組成は、本発明の効果に悪影響を与えない範囲で、上記成分に加えて、さらに他の元素を含有していてもよい。
(式(1)について)
 当該オーステナイト系ステンレス鋼の成分組成においては、下記式(1)をさらに満たすことが好ましい。
 200≦-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]≦300 ・・・ (1)
(式(1)中、[%C]、[%Cr]、[%N]及び[%Nb]は、それぞれの成分の含有量(質量%)を表す。)
 本発明者らは、C、Cr、N及びNbの含有量を制御することで、C、Cr、N及びNbの化合物(Z相)が熱処理前後で安定して存在し、熱処理前後で結晶粒径や析出物量を保ち、熱処理後も結晶粒微細化強化や析出強化を活用できることを見出した。すなわち、-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]の値が200以上300以下となる成分組成とすることによって、Z相固溶温度が1,100℃以上となることが見出された。一方、例えば、自動車燃料噴射管に使用される鋼管は、一般的にCuろうなどを用いてろう付熱処理を行い部品に加工される。Cuろうは融点が1082℃であることから、熱処理は1,080℃~1,150℃程度で行われることが多い。従って、当該オーステナイト系ステンレス鋼の成分組成が上記式(1)を得る場合、上記温度範囲のろう付け熱処理を行っても、析出物による粒界ピン留め効果等を得ることができる。このように、上記式(1)を満たす場合、熱処理後の結晶粒粗大化を抑制し、結晶粒微細化による強度上昇や析出強化を活用することができる。また、上記式(1)を満たす場合、混粒を抑制することができるため、疲労破壊の起点となる弱点部分の形成を抑制することにも寄与される。
(式(2)について)
 当該オーステナイト系ステンレス鋼の成分組成においては、下記式(2)をさらに満たすことが好ましい。
 0.20≦[%C]+[%N]≦0.40 ・・・ (2)
(式(2)中、[%C]及び[%N]は、それぞれの成分の含有量(質量%)を表す。)
 C及びNは固溶強化元素として有効に作用する。[%C]+[%N]の値を0.20以上とすることで、十分な固溶強化が生じ、耐力や引張強さなどを高めることができる。[%C]+[%N]の下限は、0.25が好ましい。一方で、[%C]+[%N]の値を0.40以下とすることで、十分な加工性を発揮することができ、冷間加工を行ったときに割れが発生する頻度が低減する。[%C]+[%N]の上限は、0.35が好ましい。
(結晶粒度)
 当該オーステナイト系ステンレス鋼においては、オーステナイト結晶の結晶粒度番号の下限が7.0であり、8.0が好ましく、9.0がより好ましく、9.5がさらに好ましい。当該オーステナイト系ステンレス鋼においては、このように、特定の成分組成とすることに加えて、結晶粒度番号を上記下限以上とすることで、結晶粒微細化強化が図られ、強い強度を発現することができる。なお、通常、ステンレス鋼の強化には固溶元素として窒素や炭素を添加することが有効であるが、これらの元素を過剰に添加することでひずみ時効によって加工性が低下する。このため、当該オーステナイト系ステンレス鋼においては、窒素や炭素の含有量を抑えつつ、ステンレス鋼の高強度化を図るため結晶粒微細化強化を活用している。
 一方、当該オーステナイト結晶の結晶粒度番号の上限は特に限定されないが、例えば16.0であってよく、14.0、13.0、12.0、11.5又は11.0であってもよい。また、上記結晶粒度番号は、JIS G0551(2013)に準拠して測定される値であり、具体的には、実施例に記載の方法により求められる値である。
 なお、当該オーステナイト系ステンレス鋼の結晶粒度は、例えば、後述するように、冷間加工前後の熱処理温度などによって制御することができる。
(最大結晶粒径)
 当該オーステナイト系ステンレス鋼においては、オーステナイト結晶の最大結晶粒径の上限は、例えば200μm、150μm又は100μmであってもよいが、60μmであることが好ましく、50μmであることがより好ましく、40μmであることがさらに好ましく、30μmであることがよりさらに好ましい。当該オーステナイト系ステンレス鋼においては、上述のように結晶粒度番号が大きい、すなわち結晶粒径の平均が小さいことに加えて、最大結晶粒径を小さくすることで、熱処理後の結晶粒粗大化や混粒を抑制し、その結果、熱処理後の鋼の強度低下が抑制される。
 一方、この最大結晶粒径の下限としては、例えば1μmであり、5μmであってよく、10μmであってもよい。また、この最大結晶粒径は、後述する実施例に記載の方法で測定した値とする。
 なお、例えば、熱処理温度の際の温度を制御し、かつ上記式(1)を満たすような成分組成とすることなどによって、当該オーステナイト系ステンレス鋼の最大結晶粒径を60μm以下とすることができる。
(表面粗さ)
 当該オーステナイト系ステンレス鋼においては、最大高さRyの上限が10μmであることが好ましく、8μmであることがより好ましく、6μmであることがさらに好ましい。当該オーステナイト系ステンレス鋼の最大高さを上記上限以下とし、表面の平滑性を高めることで、耐食性や疲労強度等を高めることができる。すなわち、当該オーステナイト系ステンレス鋼の最大高さを上記上限以下とすることで、自動車用燃料噴射管などに用いた場合の長寿命化を図ることなどができる。
 一方、上記最大高さRyの下限としては特に限定されないが、例えば0.5μmであり、1μm又は2μmであってもよい。また、上記最大高さRyは、JIS B0601(1994)に準拠して測定される値をいう。なお、当該オーステナイト系ステンレス鋼が鋼管である場合、上記最大高さRyは、外面の測定値とすることができる。
 なお、当該オーステナイト系ステンレス鋼における表面粗さ(最大高さRy)は、後述するように最終工程として光輝焼鈍を行ったり、その他、鏡面加工を施すことなどで小さくすることができる。
(形状、用途等)
 当該オーステナイト系ステンレス鋼の形状としては、特に限定されず、板状、棒状、管状等であってよいが、管状であることが好ましい。すなわち、当該オーステナイト系ステンレス鋼は、鋼管として好適に用いられる。鋼管としては、シームレス鋼管、電縫鋼管、UOE鋼管やスパイラル鋼管等のアーク溶接鋼管、鍛接鋼管等が挙げられる。好ましくはシームレス鋼管である。
 当該オーステナイト系ステンレス鋼は、強度が高く、各種用途に適用することができるが、中でも、自動車燃料噴射管に好適に用いることができる。特に、上述のように、当該オーステナイト系ステンレス鋼は、ろう付け熱処理後の変形を抑制でき、また、組成の調整などによって、熱処理後も強度の高い結晶組織を保つようにすることができる。このため、当該オーステナイト系ステンレス鋼は、ろう付け熱処理を行う自動車燃料噴射管の材料として好適である。
[オーステナイト系ステンレス鋼の製造方法]
 オーステナイト系ステンレス鋼は、以下の方法により好適に得ることができる。すなわち、本発明の一実施形態に係るオーステナイト系ステンレス鋼の製造方法は、
 鋼材に対して、一回の加工率が20%以上である冷間加工を行う工程(1)と、
 上記工程(1)の前後に設けられ、上記鋼材に対して熱処理を行う工程(2)と
 を備える。
(冷間加工工程(1))
 上記工程(1)においては、上記成分組成を有する鋼材に対して、一回の加工率が20%以上の冷間加工を行う。上記冷間加工としては、冷間圧延加工、冷間抽伸加工等が挙げられ、最終製品の形状等に応じて選択される。例えば、鋼管を得る場合は、冷間抽伸加工が好適に採用される。
 冷間加工では、中央部より表層近傍にひずみが入りやすい。加工率が20%未満の場合は中央部に十分なひずみを導入することができず、中央部の結晶粒を微細にすることが困難である。よって、冷間加工による加工率は20%以上であり、25%以上が好ましい。一方、当該オーステナイト系ステンレス鋼の均一伸びを考慮して一度の加工率の上限は、50%が好ましく、40%がより好ましい。
(熱処理工程(2))
 上記冷間加工工程(1)の前後において、上記工程2としては、上記鋼材に対して熱処理を行う。この熱処理工程(2)における熱処理温度T(℃)は、冷間加工工程(1)の前後の熱処理共に、下記式(3)を満たすとよい。これにより、熱処理による結晶粒の粗大化を抑制することができ、得られるオーステナイト系ステンレス鋼の強度を高めることができる。
 1,000≦T≦-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]+900 ・・・ (3)
(式(3)中、[%C]、[%Cr]、[%N]及び[%Nb]は、それぞれの成分の含有量(質量%)を表す。)
 なお、この製造方法を採用する場合、オーステナイト系ステンレス鋼における成分組成において、-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]の値は、100以上である。
 また、上記熱処理工程(2)における熱処理温度T(℃)は、冷間加工工程(1)の前後の熱処理共に、1,000℃以上1,200℃以下であることも好ましい。これにより、熱処理による結晶粒の粗大化を抑制することができ、得られるオーステナイト系ステンレス鋼の強度を高めることができる。なお、上記熱処理温度Tの上限は、1,150℃が好ましく、1,130℃がより好ましい。
 上記熱処理工程(2)における熱処理方法は特に限定されず、公知の方法を用いることができる。但し、冷間加工工程(1)後に行う熱処理が、光輝焼鈍であることが好ましい。なお、この冷間加工工程(1)後に行う熱処理が、最終の熱処理工程であることが好ましい。光輝焼鈍は、還元性雰囲気で行う熱処理であり、ステンレス鋼の表面を酸化させることなく熱処理を行うことができる。それによって、熱処理後の酸洗い工程が省略でき、平滑性の高い、すなわち耐食性等に優れるステンレス鋼を得ることができる。
 当該製造方法において、上記冷間加工工程(1)及び熱処理工程(2)以外の工程は、公知の方法を採用することができる。
[その他の実施形態]
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、当該オーステナイト系ステンレス鋼の製造方法においては、最終熱処理工程を大気焼鈍で行い、酸洗いした後、表面を鏡面加工して平滑性を高めてもよい。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1~7、比較例1~3]鋼板(板材)の作製
 真空誘導溶解炉(VIF)を用いて、表1に記載の成分組成(残部はFe及び不可避的不純物)の20kgの円柱状インゴットを作製した。インゴットを1,250℃以上で24hr熱処理し、1,200℃~1,000℃の温度域で熱間鍛造を行い、W60mm×L250mm×t17mmの板材を作製した。この板材に対して、表1に記載の冷間加工前熱処理温度(Tc)で熱処理を行った。次いで、この板材に対して、加工率30%で冷間圧延加工を行った。その後、最終熱処理として、光輝焼鈍炉を用いて表1に記載の冷間加工後熱処理温度(Tf)で熱処理を行い、実施例1~7、及び比較例1~3の供試材を得た。なお、実施例1~7及び比較例1~2は、オーステナイト系ステンレス鋼であり、比較例3は、二相ステンレス鋼である。
[実施例8]鋼管の作製
 真空誘導溶解炉(VIF)を用いて、表1に記載の成分組成(残部はFe及び不可避的不純物)の150kgの円柱状インゴットを作製した。インゴットを1,250℃以上で24hr熱処理し、1,200℃~1,000℃の温度域で熱間鍛造を行い、φ150mmのブルームを作製した。このブルームからφ146mm×330mmのビレットを作製し、ユジーン・セジュルネ式熱間押出法により鋼管を得た。鋼管に複数回の熱処理と冷間加工を施した後、この鋼管に対して、表1に記載の冷間加工前熱処理温度(Tc)で熱処理を行った。次いで、この鋼管に対して、加工率35%で冷間加工により成形した。その後、最終熱処理として、光輝焼鈍炉を用いて表1に記載の冷間加工後熱処理温度(Tf)で熱処理を行い、実施例8の供試材(オーステナイト系ステンレス鋼)を得た。
(結晶粒度番号)
 実施例1~7及び比較例1~3で得られた各供試材(板材)から1cm×1cm×1.2cmの試料を切り出し、幅×厚さの断面が見えるように樹脂埋めを行い、表面が鏡面になるまで研磨し、65%硝酸電解エッチングにて組織を現出させた。また、実施例8で得られた供試材(鋼管)から、長さ方向に垂直な面が見えるよう試料を切り出し、幅×厚さの断面が見えるように樹脂埋めを行い、表面が鏡面になるまで研磨し、65%硝酸電解エッチングにて組織を現出させた。組織の観察は光学顕微鏡で400倍で観察し、5視野で結晶粒度番号を測定し、中央値を結晶粒度番号とした。測定結果を表1に示す。なお、表中の「-」は、測定を行っていないことを示す。
(最大結晶粒径)
 上記結晶粒度番号を測定した5視野において観測される最も大きい結晶粒の短径と長径との平均値を最大結晶粒径とした。測定結果を表1に示す。なお、表中の「-」は、測定を行っていないことを示す。
(最大高さRy)
 JIS B0601(1994)に準拠して最大高さRyを求めた。粗度計を用い、軸方向に3mm測定した。なお、実施例8の供試材(鋼管)については、外面を長さ方向に3mm測定した。測定結果を表1に示す。
[評価]
(引張試験:0.2%耐力及び引張強さ)
 実施例1~7及び比較例1~3の各供試材(板材)から平行部がφ4×L15の引張試験片を作製し引張試験に供した。また、実施例8(鋼管)については、JIS Z 2241に準拠した11号試験片を作製し、引張試験に供した。引張試験は初期ひずみ速度2.0×10-3-1で等速で試料を引っ張った。0.2%耐力及び引張強さを測定した。0.2%耐力については、400MPa以上をA、370MPa以上400MPa未満をB、370MPa未満をCと評価した。引張強さについては、800MPa以上をA、710MPa以上800MPa未満をB、710MPa未満をCと評価した。結果を表2に示す。
(熱処理後反り量)
 供試材を用いてワイヤーカットにて長さ200mm×厚さ2.0mmの板材を作製し、両端から50mm位置の2点で支えた状態で1100℃×5min、空冷の条件で熱処理を行った。熱処理後の板材の反り量測定は画像データを用いて板材両端を結んだ線から引いた垂線の長さが最大となった時の長さを熱処理による反り量とした。反り量が0.1mm以下のものをA、0.1mmを超え、1mm以下のものをB、1mmを超えるものをCと評価した。測定結果を表2に示す。
(1100℃×5min熱処理後の結晶組織)
 供試材に対して、1,100℃×5min水冷の条件で熱処理を行った。次いで、実施例1~7及び比較例1~3の各供試材(板材)については、幅×厚さ断面が見えるように切断後、樹脂埋めを行い、表面が鏡面になるまで研磨し、65%硝酸電解エッチングにて組織を現出させた。実施例8の供試材(鋼管)については、長さ方向に垂直な面が見えるように切断後、樹脂埋めを行い、表面が鏡面になるまで研磨し、65%硝酸電解エッチングにて組織を現出させた。組織の観察は光学顕微鏡で400倍で観察し、5視野で結晶粒度番号を測定し、中央値を結晶粒度番号とした。この粒度番号が9.0以上のものを熱処理後も結晶粒の粗大化が抑制されているとしてA、9.0未満のものをBと評価した。結果を表2に示す。なお、表中の「-」は、測定を行っていないことを示す。
 また、混粒の有無の評価として、結晶粒度番号が2以上異なる結晶粒が1視野の5%以下である場合をA、結晶粒度番号が2以上異なる結晶粒が1視野の5%超20%以下である場合をB、結晶粒度番号が2以上異なる結晶粒が1視野内の20%超を占める場合をCと評価した。結果を表2に示す。なお、表中の「-」は、測定を行っていないことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例1~8は、いずれも0.2%耐力及び引張強さの評価がA又はBであり、高い強度を有し、かつ熱処理後反り量がAであり、熱処理後の形状保持性が良好であることがわかる。また、実施例の中でも、X(=-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb])が200以上300以下であり、最大結晶粒径が60μm以下である実施例1~5及び8は、1100℃×5min熱処理後の結晶組織の評価において、結晶粒度番号の評価がA、混粒の評価がA又はBである。このことから、実施例1~5及び8は、熱処理後の結晶粒の粗大化が抑制されていることがわかる。すなわち、実施例1~5及び8においては、強度が強いことに加え、熱処理後もその強度の高さが持続されると言える。さらに、実施例1~5及び8の中でも、Y(=[%C]+[%N])が0.20以上0.40以下である実施例1~4及び8は、0.2%耐力及び引張強さの評価がAであり、強度が特に高いことがわかる。
 なお、比較例3は、最終熱処理を光輝焼鈍で行っているにも拘わらず、Ryが10μmを超えている。これは、比較例8はオーステナイト単相の組織ではなく、α/γ二相ステンレス鋼になっており、α相とγ相とはそれぞれ強度や変形挙動が異なることから、Ryが大きくなったものと考えられる。
 本発明のオーステナイト系ステンレス鋼は、自動車燃料噴射管などに好適に用いることができる。
 

Claims (10)

  1.  成分組成が、
     C:0.12質量%以下、
     Si:0.1質量%以上1.0質量%以下、
     Mn:0.1質量%以上3.0質量%以下、
     P:0.05質量%以下、
     S:0.01質量%以下、
     Cr:13.0質量%以上22.0質量%以下、
     Ni:4.0質量%以上12.0質量%以下、
     Cu:0.01質量%以上0.50質量%以下、
     Mo:5.0質量%以下、
     Al:0.03質量%以下、
     Nb:0.05質量%以上0.30質量%以下、及び
     N:0.10質量%以上0.50質量%以下
     を満たし、残部がFe及び不可避的不純物であり、
     結晶粒度番号が7.0以上であるオーステナイト系ステンレス鋼。
  2.  上記成分組成において、下記式(1)をさらに満たす請求項1に記載のオーステナイト系ステンレス鋼。
     200≦-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]≦300 ・・・ (1)
    (式(1)中、[%C]、[%Cr]、[%N]及び[%Nb]は、それぞれの成分の含有量(質量%)を表す。)
  3.  最大結晶粒径が60μm以下である請求項1又は請求項2に記載のオーステナイト系ステンレス鋼。
  4.  上記成分組成において、下記式(2)をさらに満たす請求項1、請求項2又は請求項3に記載のオーステナイト系ステンレス鋼。
     0.20≦[%C]+[%N]≦0.40 ・・・ (2)
    (式(2)中、[%C]及び[%N]は、それぞれの成分の含有量(質量%)を表す。)
  5.  最大高さRyが、10μm以下である請求項1から請求項4のいずれか1項に記載のオーステナイト系ステンレス鋼。
  6.  シームレス鋼管である請求項1から請求項5のいずれか1項に記載のオーステナイト系ステンレス鋼。
  7.  自動車燃料噴射管に用いられる請求項1から請求項6のいずれか1項に記載のオーステナイト系ステンレス鋼。
  8.  鋼材に対して、一回の加工率が20%以上である冷間加工を行う工程と、
     上記冷間加工工程の前後に設けられ、上記鋼材に対して熱処理を行う工程と
     を備え、
     上記熱処理工程における熱処理温度T(℃)が下記式(3)を満たす請求項1から請求項7のいずれか1項に記載のオーステナイト系ステンレス鋼の製造方法。
     1,000≦T≦-2090[%C]+12.8[%Cr]+320[%N]+42.3[%Nb]+900 ・・・ (3)
    (式(3)中、[%C]、[%Cr]、[%N]及び[%Nb]は、上記鋼材におけるそれぞれの成分の含有量(質量%)を表す。)
  9.  鋼材に対して、一回の加工率が20%以上である冷間加工を行う工程と、
     上記冷間加工工程の前後に設けられ、上記鋼材に対して熱処理を行う工程と
     を備え、
     上記熱処理工程における熱処理温度T(℃)が1,000℃以上1,200℃以下である請求項1から請求項7のいずれか1項に記載のオーステナイト系ステンレス鋼の製造方法。
  10.  上記冷間加工工程後の最終の熱処理工程が、光輝焼鈍である請求項8又は請求項9に記載のオーステナイト系ステンレス鋼の製造方法。
     
     
PCT/JP2018/033714 2017-09-13 2018-09-11 オーステナイト系ステンレス鋼及びその製造方法 WO2019054390A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/647,312 US20200277680A1 (en) 2017-09-13 2018-09-11 Austenitic stainless steel and production method thereof
CN201880053351.5A CN111094611A (zh) 2017-09-13 2018-09-11 奥氏体系不锈钢及其制造方法
EP18856267.2A EP3683324A4 (en) 2017-09-13 2018-09-11 AUSTENITIC STAINLESS STEEL AND METHOD FOR MANUFACTURING THEREOF
KR1020207004834A KR102342675B1 (ko) 2017-09-13 2018-09-11 오스테나이트계 스테인리스강 및 그 제조 방법
JP2019542074A JP6777824B2 (ja) 2017-09-13 2018-09-11 オーステナイト系ステンレス鋼及びその製造方法
CA3075882A CA3075882C (en) 2017-09-13 2018-09-11 Austenitic stainless steel and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175651 2017-09-13
JP2017-175651 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054390A1 true WO2019054390A1 (ja) 2019-03-21

Family

ID=65722822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033714 WO2019054390A1 (ja) 2017-09-13 2018-09-11 オーステナイト系ステンレス鋼及びその製造方法

Country Status (7)

Country Link
US (1) US20200277680A1 (ja)
EP (1) EP3683324A4 (ja)
JP (1) JP6777824B2 (ja)
KR (1) KR102342675B1 (ja)
CN (1) CN111094611A (ja)
CA (1) CA3075882C (ja)
WO (1) WO2019054390A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111663082A (zh) * 2020-06-17 2020-09-15 江苏良工精密合金钢有限公司 一种奥氏体不锈钢精密无缝钢管及其制备方法
WO2022004526A1 (ja) * 2020-06-30 2022-01-06 日本製鉄株式会社 二相ステンレス鋼管および溶接継手
JP7486339B2 (ja) 2020-04-24 2024-05-17 日本製鉄株式会社 ステンレス鋼、シームレスステンレス鋼管、及びステンレス鋼の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022129993A1 (fr) * 2020-12-16 2022-06-23 Aperam Acier inoxydable austénitique, plaques pour échangeurs de chaleurs, et conduits de cheminée, réalisés avec cet acier

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131794B2 (ja) 1971-12-17 1976-09-08
JPS6137434B2 (ja) 1978-03-17 1986-08-23 Nippon Koki Kk
JPS61270356A (ja) * 1985-05-24 1986-11-29 Kobe Steel Ltd 極低温で高強度高靭性を有するオ−ステナイト系ステンレス鋼板
JP2787044B2 (ja) 1991-12-12 1998-08-13 愛知製鋼 株式会社 高強度ステンレス鋼およびその製造法
JP2003089855A (ja) * 2001-07-13 2003-03-28 Daido Steel Co Ltd ステンレス鋼鉄筋及びその製造方法
JP2006307313A (ja) * 2004-09-15 2006-11-09 Sumitomo Metal Ind Ltd 管内表面のスケールの耐剥離性に優れた鋼管
WO2012132992A1 (ja) * 2011-03-28 2012-10-04 住友金属工業株式会社 高圧水素ガス用高強度オーステナイトステンレス鋼
WO2013073055A1 (ja) * 2011-11-18 2013-05-23 住友金属工業株式会社 オーステナイト系ステンレス鋼
JP2015137420A (ja) * 2014-01-24 2015-07-30 新日鐵住金株式会社 オーステナイト系ステンレス鋼管
JP2016044332A (ja) 2014-08-22 2016-04-04 新日鐵住金株式会社 低温用途向ステンレス鋼
JP2017012244A (ja) 2015-06-26 2017-01-19 オムロン株式会社 装飾装置及び遊技機
JP2017014538A (ja) * 2015-06-26 2017-01-19 新日鐵住金ステンレス株式会社 耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208459A (ja) * 1984-03-30 1985-10-21 Aichi Steel Works Ltd 高強度ステンレス鋼およびその製造法
JPH06137434A (ja) 1992-10-30 1994-05-17 Comany Kk ネジの螺合方法及びホールキャップ
KR100356930B1 (ko) * 1998-09-04 2002-10-18 스미토모 긴조쿠 고교 가부시키가이샤 엔진 가스킷용 스테인레스강과 그 제조방법
JP3632672B2 (ja) 2002-03-08 2005-03-23 住友金属工業株式会社 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法
CN100577844C (zh) * 2005-04-04 2010-01-06 住友金属工业株式会社 奥氏体类不锈钢
JP2007302991A (ja) * 2006-04-14 2007-11-22 Daido Steel Co Ltd オーステナイト系ステンレス鋼
DE102007011868B3 (de) * 2007-03-07 2008-09-04 Mannesmann Präzisrohr GmbH Verfahren zur Herstellung eines Hochdruckspeicherrohres aus Stahl für Kraftstoffeinspritzanlagen
US8865060B2 (en) * 2007-10-04 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
US8748008B2 (en) * 2008-06-12 2014-06-10 Exxonmobil Research And Engineering Company High performance coatings and surfaces to mitigate corrosion and fouling in fired heater tubes
JP5618057B2 (ja) * 2010-03-29 2014-11-05 日本精線株式会社 耐水素脆性に優れた高強度加工用ステンレス材料及びそのステンレス鋼線、並びにステンレス鋼成形品
JP5589965B2 (ja) * 2011-06-10 2014-09-17 新日鐵住金株式会社 オーステナイト系ステンレス鋼管の製造方法及びオーステナイト系ステンレス鋼管
KR101620252B1 (ko) 2012-08-20 2016-05-12 신닛테츠스미킨 카부시키카이샤 스테인리스 강판과 그 제조 방법
EP3133179B8 (en) * 2014-04-17 2019-09-11 Nippon Steel Corporation Austenitic stainless steel and method for producing same
CN106795606B (zh) * 2014-10-29 2018-11-23 新日铁住金株式会社 奥氏体不锈钢及其制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131794B2 (ja) 1971-12-17 1976-09-08
JPS6137434B2 (ja) 1978-03-17 1986-08-23 Nippon Koki Kk
JPS61270356A (ja) * 1985-05-24 1986-11-29 Kobe Steel Ltd 極低温で高強度高靭性を有するオ−ステナイト系ステンレス鋼板
JP2787044B2 (ja) 1991-12-12 1998-08-13 愛知製鋼 株式会社 高強度ステンレス鋼およびその製造法
JP2003089855A (ja) * 2001-07-13 2003-03-28 Daido Steel Co Ltd ステンレス鋼鉄筋及びその製造方法
JP2006307313A (ja) * 2004-09-15 2006-11-09 Sumitomo Metal Ind Ltd 管内表面のスケールの耐剥離性に優れた鋼管
WO2012132992A1 (ja) * 2011-03-28 2012-10-04 住友金属工業株式会社 高圧水素ガス用高強度オーステナイトステンレス鋼
WO2013073055A1 (ja) * 2011-11-18 2013-05-23 住友金属工業株式会社 オーステナイト系ステンレス鋼
JP2015137420A (ja) * 2014-01-24 2015-07-30 新日鐵住金株式会社 オーステナイト系ステンレス鋼管
JP2016044332A (ja) 2014-08-22 2016-04-04 新日鐵住金株式会社 低温用途向ステンレス鋼
JP2017012244A (ja) 2015-06-26 2017-01-19 オムロン株式会社 装飾装置及び遊技機
JP2017014538A (ja) * 2015-06-26 2017-01-19 新日鐵住金ステンレス株式会社 耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683324A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7486339B2 (ja) 2020-04-24 2024-05-17 日本製鉄株式会社 ステンレス鋼、シームレスステンレス鋼管、及びステンレス鋼の製造方法
CN111663082A (zh) * 2020-06-17 2020-09-15 江苏良工精密合金钢有限公司 一种奥氏体不锈钢精密无缝钢管及其制备方法
CN111663082B (zh) * 2020-06-17 2022-05-10 江苏良工精密合金钢有限公司 一种奥氏体不锈钢精密无缝钢管及其制备方法
WO2022004526A1 (ja) * 2020-06-30 2022-01-06 日本製鉄株式会社 二相ステンレス鋼管および溶接継手

Also Published As

Publication number Publication date
KR20200033903A (ko) 2020-03-30
JP6777824B2 (ja) 2020-10-28
CA3075882A1 (en) 2019-03-21
US20200277680A1 (en) 2020-09-03
JPWO2019054390A1 (ja) 2020-07-16
CA3075882C (en) 2023-01-10
KR102342675B1 (ko) 2021-12-23
EP3683324A1 (en) 2020-07-22
EP3683324A4 (en) 2021-03-03
CN111094611A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2018230717A1 (ja) ばね鋼用圧延線材
JP6017341B2 (ja) 曲げ性に優れた高強度冷延鋼板
WO2019054390A1 (ja) オーステナイト系ステンレス鋼及びその製造方法
WO2007052775A1 (ja) 耐遅れ破壊特性に優れた高強度鋼および金属ボルト
WO2020110843A1 (ja) 熱延鋼板
US20180066344A1 (en) Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
WO2015060223A1 (ja) 冷間加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP5363922B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
WO2015060311A1 (ja) 絞り加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
CN111051553B (zh) 高Mn钢及其制造方法
WO2015098531A1 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
JP2011140695A (ja) 伸びおよび伸びフランジ性に優れた高強度冷延鋼板
KR20080034958A (ko) 담금질성, 열간 가공성 및 피로 강도가 우수한 고강도 후육전봉 용접 강관 및 그 제조 방법
CN112368411B (zh) 奥氏体系不锈钢板
CN112912530B (zh) 屈服强度优异的奥氏体高锰钢材及其制备方法
JP6093063B1 (ja) 加工性に優れた高強度ステンレス鋼材とその製造方法
WO2018008703A1 (ja) 圧延線材
JP6206423B2 (ja) 低温靭性に優れた高強度ステンレス厚鋼板およびその製造方法
JP7333327B2 (ja) 新しい二相ステンレス鋼
WO2018139672A1 (ja) 自動車足回り部品用鋼管および自動車足回り部品
JP2010202966A (ja) 引張特性に優れた高耐食性ステンレス鋼
JP2017066431A (ja) 締結部品用フェライト系ステンレス線状鋼材
WO2018139671A1 (ja) 自動車足回り部品用鋼管および自動車足回り部品
CN111542634A (zh) 药芯焊丝用冷轧钢板及其制造方法
WO2023153185A1 (ja) オーステナイト系ステンレス鋼およびオーステナイト系ステンレス鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542074

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207004834

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3075882

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018856267

Country of ref document: EP

Effective date: 20200414