WO2019054160A1 - 電力供給装置 - Google Patents
電力供給装置 Download PDFInfo
- Publication number
- WO2019054160A1 WO2019054160A1 PCT/JP2018/031425 JP2018031425W WO2019054160A1 WO 2019054160 A1 WO2019054160 A1 WO 2019054160A1 JP 2018031425 W JP2018031425 W JP 2018031425W WO 2019054160 A1 WO2019054160 A1 WO 2019054160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- capacitor
- power
- output terminal
- capacitor unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0006—Arrangements for supplying an adequate voltage to the control circuit of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0096—Means for increasing hold-up time, i.e. the duration of time that a converter's output will remain within regulated limits following a loss of input power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/06—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
- H02P7/18—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
- H02P7/24—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
- H02P7/28—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
- H02P7/285—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
- H02P7/292—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2201/00—Indexing scheme relating to controlling arrangements characterised by the converter used
- H02P2201/03—AC-DC converter stage controlled to provide a defined DC link voltage
Definitions
- the present invention relates to a power supply device for supplying power to a motor drive device.
- Patent Document 1 listed below discloses a power conversion device that connects a capacitor between the positive output terminal and the negative output terminal of the rectifier circuit to supply power to the main circuit of the inverter device. There is.
- the prior art as described above has a problem that power can not be supplied to the control circuit of the motor drive device when a sudden change of the input voltage occurs.
- One object of the present invention is to realize a power supply device capable of supplying power not only to a main circuit of a motor drive device but also to a control circuit of the motor drive device when a sudden change in input voltage occurs. Do.
- a power supply device for supplying power to a main circuit for supplying motor drive power to a motor of a motor drive device, which is an external device. And a control power supply output terminal for supplying power to a control circuit for controlling the main circuit of the motor drive device, the rectifier circuit rectifying the alternating current input from the alternating current power supply, and (1) the rectification circuit and the above A first backup capacitor is inserted between the control power supply output terminal, and (2) the first backup capacitor is charged by the output of the rectifier circuit.
- power when sudden change of input voltage occurs, power can be supplied not only to the main circuit of the motor drive device but also to the control circuit of the motor drive device.
- Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail based on FIGS. 1 to 4. The same or corresponding portions in the drawings have the same reference characters allotted and description thereof will not be repeated.
- AC represents “Alternating Current (AC)”
- DC represents “Direct Current (DC)”.
- FIG. 2 is a diagram showing an overview of the power supply system 1 including the capacitor unit 10. As illustrated in FIG. 2, the power supply system 1 includes a capacitor unit 10, a driver 20 and a motor 30, and may further include a controller 40 and a tool 50.
- the controller 40 is, for example, a programmable logic controller (PLC), and is a master device that manages data transmission via the field network 60 in the power supply system 1.
- a driver 20 is connected as a slave device to the controller 40 as a master device.
- FIG. 2 shows an example in which the controller 40 as a master device is connected to one driver 20 (slave device). However, it is not essential that one slave device is connected to the master device, and the controller 40 as the master device may be connected to a plurality of drivers 20 (slave devices). An example in which the controller 40 is connected to the plurality of drivers 20 is shown in FIG. 7 described later.
- the driver 20 is a motor control device connected to the controller 40 via the field network 60 and driving the motor 30 in accordance with a command value from the controller 40. More specifically, the driver 20 receives command values such as a position command value, a speed command value, and a torque command value from the controller 40 at constant time intervals (cycles). Also, the driver 20 is calculated from the position, speed (typically, from the difference between the current position and the previous position) from a detector such as a position sensor (rotary encoder) and a torque sensor connected to the shaft of the motor 30 And torque) are acquired. Then, the driver 20 sets a command value from the controller 40 as a target value, and performs feedback control using the actual measurement value as a feedback value.
- command values such as a position command value, a speed command value, and a torque command value from the controller 40 at constant time intervals (cycles).
- speed typically, from the difference between the current position and the previous position
- a detector such as a position sensor (rotary encoder) and a torque sensor connected
- the driver 20 receives the command value for each axis from the controller 40, and the output for each axis of the motor 30 to be controlled (that is, the control amount for each axis) follows the command value for each axis. Perform feedback control. Specifically, the driver 20 adjusts the current for driving the motor 30 such that the measured value approaches the target value.
- the driver 20 may also be referred to as a servo motor amplifier.
- the driver 20 includes a main circuit that “provides current (power) for driving the motor 30 to the motor 30” and a control circuit that “controls the main circuit, etc.”.
- the driver 20 obtains the main circuit power supply (DC power supply for the main circuit) and the control power supply (DC power supply for the control circuit) from the capacitor unit 10.
- the main circuit power supply is used as a motor drive power supply
- the control power supply is used as a power supply of a control circuit configured by a microcomputer or the like.
- the main circuit When the main circuit is supplied with the main circuit power, it converts the supplied main circuit power into a motor drive power and supplies it to the motor 30.
- the control circuit controls the main circuit such that the control amount of the motor 30 follows the command value from the controller 40.
- the driver 20 may further include a circuit (brake control circuit) that controls "a brake that decelerates the motor 30 independently of the operation of the main circuit when a sudden change in input voltage occurs.”
- the brake control circuit provided in the driver 20 brakes the motor 30 to decelerate the motor 30 independently of the operation of the main circuit when a sudden change of the input voltage occurs in the power supply supplied to the brake control circuit.
- the brake control circuit may maintain the stop of the motor 30 to which the driving power is not supplied from the main circuit of the driver 20 during power interruption or the like.
- a circuit for controlling "a brake for decelerating the motor 30 independently of the operation of the main circuit when a sudden change in input voltage occurs" is incorporated in the driver 20.
- An example will be described. However, it is not essential for the power supply system 1 that the brake control circuit is incorporated in the driver 20.
- a circuit or device for controlling "a brake for decelerating the motor 30 independently of the operation of the main circuit of the driver 20 when a sudden change in input voltage occurs" exists independently from the driver 20. You may
- the field network 60 transmits various data that the controller 40 receives or transmits.
- various industrial Ethernets registered trademark
- Industrial Ethernet registered trademark
- EtherCAT registered trademark
- PROFINET registered trademark
- MECHATROLINK registered trademark
- MECHATROLINK registered trademark
- SERCOS registered trademark
- CIP Motion CIP Motion
- field networks other than Industrial Ethernet may be used.
- EtherNet / IP registered trademark
- DeviceNet DeviceNet
- CompoNet / IP registered trademark
- the configuration in the case of adopting EtherCAT (registered trademark) as industrial Ethernet (registered trademark) as the field network 60 will be exemplified.
- the motor 30 is controlled by the driver 20 to drive a load machine (not shown). Specifically, the motor 30 is driven according to the current supplied from the main circuit of the driver.
- the motor 30 may be, for example, a servomotor or a stepping motor.
- FIG. 2 shows an example in which the motor 30 is a servomotor and the driver 20 is a servo driver, for example, the motor 30 is a pulse motor and the driver 20 is a pulse motor driver. It is also good.
- the tool 50 is connected to the controller 40 via the communication cable 70.
- the tool 50 is a means by which a human and a machine exchange information. Specifically, a human operates a machine (instructions to a machine), and the machine gives a human the current state and result. It is a means to inform.
- a means for a human to give an instruction to a machine includes a switch, a button, a handle, a dial, a pedal, a remote control, a microphone, a keyboard, a mouse and the like.
- Means of transmission include a liquid crystal screen, a meter, a lamp, a speaker and the like.
- the tool 50 is typically configured by a general-purpose computer, and may be configured by an HMI (Human Machine Interface).
- the information processing program executed by the tool 50 may be stored and distributed in a CD-ROM (Compact Disk-Read Only Memory) (not shown).
- the program stored in the CD-ROM is read by a CD-ROM drive (not shown) and stored in the hard disk of the tool 50 or the like.
- the program may be downloaded from the host computer or the like via a network.
- the tool 50 may set various parameters for the power supply system 1 (in particular, the controller 40). For example, the timing of obtaining the state value (input refresh) and the timing of updating the output value (output refresh) may be calculated and set by the tool 50.
- the tool 50 may also provide an environment for programming a user program as a control program that the user causes the controller 40 to execute depending on the control purpose (e.g., the target line and process).
- the capacitor unit 10 is a power supply device that supplies power to the driver 20, and is a power supply device that receives AC power from a commercial power source or the like and outputs DC power to the driver 20.
- the capacitor unit 10 includes a driver 20, a main circuit power supply ("PN" in FIG. 2; a DC power supply for the main circuit of the driver 20) and a control power supply ("24 V DC” in FIG. 2). And DC power supply for the control circuit of the driver 20).
- the capacitor unit 10 is supplied with single-phase 200 V AC power, and supplies 24 V DC current to the control circuit of the driver 20.
- the capacitor unit 10 is supplied with three-phase 200 V AC power, and supplies 200 V DC current to the main circuit of the driver 20.
- the capacitor unit 10 may be supplied with single-phase 200 V AC power, and may supply 24 V DC current to the brake control circuit of the driver 20.
- the power supply that the capacitor unit 10 supplies to the brake control circuit of the driver 20 may be referred to as "brake power supply" in the following description.
- the power (power supply) supplied to the driver 20 by the capacitor unit 10 is, for example, DC 200 V system ("main circuit power supply”) and DC 24 V system ("control circuit power supply” or “control circuit power supply and brake power supply ”) And two.
- the capacitor unit 10 does not change the driver 20 which is a conventional motor control device, and the driver 20 changes to an abrupt change in input voltage such as instantaneous voltage drop due to lightning strike or instantaneous power failure. Measures can be taken.
- the capacitor unit 10 secures the control power supply of the driver 20 by the first backup capacitor 100. Therefore, the control circuit of the driver 20 can continue its operation even when a sudden change of the input voltage occurs due to a lightning strike or the like.
- the charging power of the first backup capacitor 100 of the capacitor unit 10 is consumed as a power supply of the control circuit of the driver 20, and the charging power of the second backup capacitor 109 is the main of the driver 20. It is consumed as a power source of the circuit.
- the capacitor unit 10 is a power supply device for supplying power to the main circuit for supplying motor drive power to the motor 30 of the driver 20 (motor drive device), and is input from an external AC power supply
- a rectifier 104 rectifying circuit for rectifying alternating current, and a control power output terminal 101 for supplying power to a control circuit for controlling the main circuit of the driver 20, (1) the rectifier 104 and the control power output terminal 101 ,
- the first backup capacitor 100 is charged by the output of the rectifier 104.
- the positive output terminal of the first backup capacitor 100 is electrically connected to the positive output terminal of the rectifier 104
- the first output capacitor 100 is connected to the negative output terminal of the rectifier 104.
- the negative terminal of is electrically connected.
- the positive terminal of the first backup capacitor 100 is electrically connected between (1) the positive output terminal of the rectifier 104 and the positive terminal 101 A of the control power output terminal 101.
- the negative terminal of the first backup capacitor 100 is electrically connected between the negative output terminal of the rectifier 104 and the negative terminal 101 B of the control power output terminal 101.
- the capacitor unit 10 includes the first backup capacitor 100 between the rectifier 104 and the control power output terminal 101 for supplying power to the control circuit of the driver 20. Then, the first backup capacitor 100 is charged by the output of the rectifier 104.
- the capacitor unit 10 can control the charging power of the first backup capacitor 100 as the control circuit of the driver 20 even when a sudden change in the input voltage such as an instantaneous voltage drop and an instantaneous power failure occurs due to lightning strike or the like.
- a sudden change in the input voltage such as an instantaneous voltage drop and an instantaneous power failure occurs due to lightning strike or the like.
- the capacitor unit 10 has an effect that the driver 20 can take measures against sudden change in input voltage such as instantaneous voltage drop due to lightning strike and instantaneous blackout without changing the driver 20. .
- the capacitor unit 10 may further include a second backup capacitor 109 connected between the positive output terminal 110A for supplying power to the main circuit of the driver 20 and the negative output terminal 110B.
- the capacitor unit 10 further includes the second backup capacitor 109 connected between the positive output terminal 110A for supplying power to the main circuit of the driver 20 and the negative output terminal 110B. There is.
- the second backup capacitor 109 is charged by the power to be input to the main circuit power supply output terminal 110 for supplying power to the main circuit of the driver 20.
- capacitor unit 10 can charge the charging power of second backup capacitor 109 as the main circuit of driver 20 even when a sudden change in input voltage such as an instantaneous voltage drop and an instantaneous power failure occurs due to lightning strike or the like. The effect of being able to supply
- capacitor unit 10 When a sudden change in the input voltage to the capacitor unit 10 occurs, the capacitor unit 10 notifies the outside that a sudden change in the input voltage has occurred.
- capacitor unit 10 includes notification unit 200, and when notification unit 200 detects that the input voltage of the AC power input to its own device has suddenly changed, "the sudden change of the input voltage has occurred" , External (for example, controller 40).
- the capacitor unit 10 when the capacitor unit 10 suddenly changes the input voltage to the own device, the capacitor unit 10 notifies the controller 40 or the like that the sudden change of the input voltage has occurred, and the controller 40 or the like The effect of being able to execute necessary processing at the time of sudden change of For example, when a sudden change in the input voltage to the capacitor unit 10 occurs, the capacitor unit 10 notifies the controller 40 that a sudden change in the input voltage has occurred. Then, the controller 40 that has received this notification can, for example, cause the plurality of drivers 20 to synchronize and stop the motor 30 connected to each of the plurality of drivers 20.
- FIG. 1 is a diagram showing a circuit configuration of a capacitor unit 10 (power supply device) according to a first embodiment of the present invention.
- the capacitor unit 10 includes an AC power input terminal 102, a capacitor 103, a rectifier 104, a first backup capacitor 100, a DC / DC power converter module 105, a control power output terminal 101, and an AC power input terminal 106.
- a capacitor 108, a rectifier 108, a second backup capacitor 109, and a main circuit power output terminal 110 is a capacitor unit 10 (power supply device) according to a first embodiment of the present invention.
- the capacitor unit 10 includes an AC power input terminal 102, a capacitor 103, a rectifier 104, a first backup capacitor 100, a DC / DC power converter module 105, a control power output terminal 101, and an AC power input terminal 106.
- a capacitor 108, a rectifier 108, a second backup capacitor 109, and a main circuit power output terminal 110 is a capacitor unit 10 (power
- Control power supply circuit The AC power received by the AC power input terminal 102 from the external power source is rectified by the rectifier 104, and after the voltage is adjusted to a desired value by the DC / DC power converter module 105, from the control power output terminal 101 as a control power. It is output to the driver 20.
- An AC power (for example, single phase 200 V) is input to the AC power input terminal 102 by a commercial power source or the like.
- a rectifier 104 is connected to the AC power input terminal 102 via a capacitor 103.
- the capacitor 103 reduces noise (harmonic current) from the AC power supply.
- the AC voltage passed through the capacitor 103 is rectified by the rectifier 104.
- the rectifier 104 outputs a DC voltage to the DC / DC power converter module 105 via the first backup capacitor 100.
- the direct current output from the rectifier 104 is input to the control power output terminal 101 via the DC / DC power converter module 105.
- the DC / DC power converter module 105 converts the voltage of the DC current output from the rectifier 104 into a desired voltage (for example, 24 V) and converts the DC current converted into the desired voltage to the control power output terminal 101. It is a voltage conversion circuit to output.
- the DC / DC power converter module 105 is not essential in the capacitor unit 10, the capacitor unit 11 described later with reference to FIG. 5, and the capacitor unit 12 described later with reference to FIG.
- the capacitor unit 10 when the voltage of the direct current output from the rectifier 104 is a desired voltage to be input to the control power output terminal 101, the voltage conversion is not necessary, so the DC / DC power converter module 105 is not necessary.
- the control power supply output terminal 101 supplies a direct current whose voltage is adjusted to a desired value by the DC / DC power supply converter module 105 to the driver 20 as a control power supply (power supply for the control circuit of the driver 20).
- the control power output terminal 101 may supply a direct current to the driver 20.
- the capacitor unit 11, and the capacitor unit 12, the control power output terminal 101 may supply an alternating current to the driver 20 as a control power.
- an inverter circuit DC / AC inverter circuit
- the inverter circuit converts a direct current from the rectifier 104 (the first backup capacitor 100) into an alternating current, and outputs the converted alternating current to the control power output terminal 101, whereby the control power output terminal 101 becomes a control power source.
- An alternating current may be supplied to the driver 20 as
- the first backup capacitor 100 is inserted between the rectifier 104 and the control power output terminal 101, for example, between the rectifier 104 and the DC / DC power converter module 105. That is, FIG. 1 shows an example in which the positive terminal of the first backup capacitor 100 is connected between the positive output terminal of the rectifier 104 and the positive input terminal of the DC / DC power converter module 105. ing. In the circuit example shown in FIG. 1, the negative terminal of the first backup capacitor 100 is connected between the negative output terminal of the rectifier 104 and the negative input terminal of the DC / DC power converter module 105.
- the first backup capacitor 100 is charged by the output of the rectifier 104, and when a sudden change in input voltage such as an instantaneous voltage drop due to lightning strike or an instantaneous power failure occurs, the control circuit of the driver 20 is controlled by a discharge. Supply. In other words, the first backup capacitor 100 supplies charging power to the control circuit of the driver 20 when a sudden change in input voltage occurs due to lightning strike or the like. In addition, the first backup capacitor 100 absorbs regenerative energy from the motor 30.
- the capacitor unit 10 supplies the charging power of the first backup capacitor 100 to the driver 20 as a control power supply when a sudden change of the input voltage occurs due to a lightning strike or the like. That is, the capacitor unit 10 secures the control power supply of the driver 20 and enables control of the main circuit of the driver 20 by the braking circuit of the driver 20 (that is, control of driving of the motor 30). Even when the sudden change of the input voltage occurs, the control circuit of the driver 20 can continue the operation by utilizing the charge left in the first backup capacitor 100.
- the AC power received by the AC power input terminal 106 from the external power source is rectified by the rectifier 108 and is output from the main circuit power output terminal 110 to the driver 20 as the main circuit power.
- An AC power (for example, three-phase 200 V) is input to the AC power input terminal 106 by a commercial power source or the like.
- a rectifier 108 is connected to the AC power input terminal 106 via a capacitor 107.
- the capacitor 107 reduces noise (harmonic current) from the AC power supply.
- the alternating voltage passed through the capacitor 107 is rectified by the rectifier 108.
- the rectifier 108 outputs a DC voltage to the second backup capacitor 109 via the second backup capacitor 109.
- the direct current output from the rectifier 108 is input to the main circuit power output terminal 110, and the main circuit power output terminal 110 outputs the direct current output from the rectifier 108 to the main circuit power (for the main circuit of the driver 20).
- the power is supplied to the driver 20 as a power source).
- the second backup capacitor 109 is inserted between the rectifier 108 and the main circuit power output terminal 110. That is, FIG. 1 shows an example in which the positive terminal of the second backup capacitor 109 is connected between the positive output terminal of the rectifier 108 and the positive output terminal 110A of the main circuit power output terminal 110. ing. In the circuit example shown in FIG. 1, the negative terminal of the second backup capacitor 109 is connected between the negative output terminal of the rectifier 108 and the negative output terminal 110 B of the main circuit power output terminal 110.
- the second backup capacitor 109 is charged by the output of the rectifier 108, and the main circuit of the driver 20 operates as a main circuit of the driver 20 when the "sudden change in input voltage" such as an instantaneous voltage drop due to lightning strike or an instantaneous power failure occurs. Supply power.
- the second backup capacitor 109 supplies charging power to the main circuit of the driver 20 when a sudden change in input voltage occurs due to lightning strike or the like.
- the second backup capacitor 109 absorbs the regenerative energy from the motor 30.
- the capacitor unit 10 supplies the main circuit power from the second backup capacitor 109 to the driver 20 when sudden change of the input voltage occurs due to lightning strike or the like, that is, secures the main circuit power of the driver 20. Even when the sudden change of the input voltage occurs, the main circuit of the driver 20 can use the charge left on the second backup capacitor 109.
- the capacitor unit 10 receives two AC power supplies (for example, single-phase 200 V AC power supply and three-phase 200 V AC power supply), and controls two DC power supplies (for example, DC 24 V) Output of the power supply and the main circuit power supply of DC200V).
- the capacitor unit 10 also performs backup for the two DC power supplies (specifically, the control power supply and the main circuit power supply). That is, the capacitor unit 10 backs up the control power supply by the first backup capacitor 100 and the main circuit power supply by the second backup capacitor 109.
- the electric capacity (electrostatic capacity, capacitor capacity) of the second backup capacitor 109 for charging the backup power of the main circuit power supply is the electric capacity of the first backup capacitor 100 for charging the backup power of the control circuit power supply. Greater than. However, it is not essential that the electric capacity of the second backup capacitor 109 be larger than the electric capacity of the first backup capacitor 100. For example, the capacitance of the second backup capacitor 109 may be equal to the capacitance of the first backup capacitor 100.
- the capacitor unit 10 includes a notification unit 200 as a functional block. In order to secure the simplicity of the description, configurations not directly related to the present embodiment are omitted from the description and the circuit diagram of FIG. However, according to the actual conditions of implementation, the capacitor unit 10 may have the omitted configuration.
- the notification unit 200 illustrated in FIG. 1 stores, for example, a CPU (central processing unit) or the like in a storage device (not shown) realized by a ROM (read only memory), a non-volatile random access memory (NVRAM), etc. This can be realized by reading out the program being executed on a random access memory (RAM) (not shown) and the like and executing it.
- the notification unit 200 When a sudden change in the input voltage to the capacitor unit 10 occurs, the notification unit 200 notifies the outside that “a sudden change in the input voltage has occurred”.
- the notification unit 200 is connected to, for example, the AC power input terminal 102 and the AC power input terminal 106.
- the notification unit 200 detects that the input voltage of the AC power input to at least one of the AC power input terminal 102 and the AC power input terminal 106 has suddenly changed, the notification unit 200 "externally indicates that a sudden change in the input voltage has occurred.”
- the device for example, the controller 40 or the like
- FIG. 3 is a diagram showing an example of connection of the capacitor unit 10 with the driver 20 (motor drive device).
- the capacitor units 10A and 10B are those in which "A" and “B" are attached to the "capacitor unit 10" to distinguish each of the two “capacitor units 10". .
- capacitor unit 10 When it is not necessary to distinguish each of the capacitor unit 10A and the capacitor unit 10B in particular, they are simply referred to as "capacitor unit 10".
- the capacitor unit 10A supplies the driver 20 with a main circuit power supply ("P-N” in FIG. 3) and a control power supply ("DC 24 V” on the upper side of the paper of FIG. 3). It backs up the circuit power supply and the control power supply.
- P-N main circuit power supply
- DC 24 V control power supply
- the capacitor unit 10A further supplies a DC current (“DC 24 V (Brake)” on the lower side of the sheet of FIG. 3) to the brake control circuit of the driver 20.
- the brake control circuit brakes the motor 30 to decelerate the motor 30 (rapid deceleration) when a sudden change of the input voltage occurs in the power supply supplied to the brake control circuit.
- the brake control circuit may maintain the stop of the motor 30 to which the driving power is not supplied from the main circuit of the driver 20 during power interruption or the like.
- the capacitor unit 10A backs up the power supply (brake power supply) to the brake control circuit of the driver 20, thereby avoiding the occurrence of an unexpected situation accompanying the sudden stop of the motor 30.
- the capacitor unit 10B is connected to the capacitor unit 10A.
- the capacitor unit 10A and the capacitor unit 10B are connected in parallel, and an AC power source ("three-phase AC 200 V" in FIG. 3) is input from the outside to the capacitor unit 10A and the capacitor unit 10B.
- the capacitor unit 10B can be added to the capacitor unit 10A, and the electric capacity of the capacitor unit 10A can be simulated when a situation such as a shortage of the electric capacity of the capacitor unit 10A occurs. Can be made larger. More precisely, the capacitor unit 10A can utilize the electric capacity of the capacitor unit 10B by being electrically connected in parallel with the capacitor unit 10B.
- the capacitor unit 10 (for example, the capacitor unit 10A) includes a connector (external connector) for electrically connecting to the "capacitor unit 10 (capacitor unit 10B other than own device)".
- the capacitor unit 10 (for example, the capacitor unit 10A) is a connector and can add (electrically connect) "a capacitor unit 10 (capacitor unit 10B) other than the own device”.
- the capacitor unit 10A and the capacitor unit 10B directly connect the connectors to each other or connect the connectors to each other by wire and electrically connect in parallel with each other.
- the capacitor unit 10 is electrically connected in parallel with the “capacitor unit 10 other than the own device” via the connector to increase the electric capacity (simulated), that is, “the capacitor unit 10 other than the own device”
- the electrical capacity of the That is, the capacitor unit 10 is a connector, and it is possible to increase the electric capacity of the first backup capacitor 100 (simulatedly) by adding “a capacitor unit 10 (capacitor unit 10 B) other than the own device”. Therefore, the capacitor unit 10 can cope with the situation where the electric capacity of the second backup capacitor 109 runs short.
- the capacitor unit 10 (the capacitor unit 10A in the example of FIG. 3) is connected to one capacitor unit 10 (the capacitor unit 10B in the example of FIG. 3) other than the own device via the connector.
- An example of electrical parallel connection is shown.
- the "capacitor units 10 other than the own device” that can be electrically connected in parallel by the capacitor unit 10 via the connector are not limited to one.
- the capacitor unit 10 can be electrically connected in parallel with a plurality of (for example, two or three) capacitor units 10 other than the own device via a connector.
- the capacitor unit 10 includes a plurality of connectors (external connectors) for electrically connecting to the “capacitor unit 10 other than the own device”.
- the connector of the capacitor unit 10 (the capacitor unit 10A in the example of FIG. 3) and the connector of the other capacitor unit 10 (the capacitor unit 10B in the example of FIG. 3) are wired and electrically An example of connection is shown. However, it is not essential to electrically connect the connectors of each of the plurality of capacitor units 10 in a wired manner.
- the connectors of each of the plurality of capacitor units 10 may be directly connected.
- the connector of the capacitor unit 10A and the connector of the capacitor unit 10B may be directly coupled.
- connection external connector
- the "connector (external connector)" described here corresponds to the "capacitor expansion terminal 112" shown in FIG. 6, and the details thereof will be described later with reference to FIG.
- FIG. 4 shows an overview of each of the power supply system 1 and the conventional power supply system and a comparison of the two.
- FIG. 4A is a diagram showing an overview of a conventional power supply system.
- the conventional capacitor unit 99 supplies the main circuit power to the main circuit of the driver 97
- the UPS (Uninterruptible Power Supply) 98 controls the control power to the control circuit of the driver 97. It is the composition to supply.
- FIG. 4B is a diagram for describing the power (power supply) that the capacitor unit 10 particularly supplies to the driver 20 in the power supply system 1 illustrated in FIG. 2.
- FIG. 4C is a table comparing the “conventional power supply system” illustrated in FIG.
- the UPS 98 used for backing up the control power supply of the driver 97 should be small, high performance but expensive. I have no choice.
- the UPS 09 is generally difficult to expand if the electric capacity is insufficient.
- the capacitor unit 10 illustrated in FIG. 4B performs two-system power output of the main circuit power supply and the control power supply of the driver 20, and backs up both the main circuit power supply and the control power supply. In other words, capacitor unit 10 backs up both “the main circuit power supply for driving motor 30 (motor drive power supply)” and “the control power supply for controlling the drive of motor 30 (that is, the main circuit)”. .
- the capacitor unit 10 continues the power supply to the driver 20, so that, for example, a plurality of axes are controlled synchronously and between mechanisms Collisions are avoided. Further, the capacitor unit 10 supplies the main circuit power supply and the control power supply to the driver 20, backs up both of them, and corresponds to the energy utilization of the regeneration / power running. Furthermore, in the power supply system 1, the capacitor unit 10 backs up the control power supply of the driver 20, so the UPS 98 is unnecessary, and naturally, the installation space for the UPS 98 is also unnecessary.
- control power supply is “single-phase AC power supply”.
- the “control power supply” is "DC power supply (for example, DC 24 V)”. Therefore, in the power supply system 1, the capacitor unit 10 can back up the control power supply of the driver 20 by the first backup capacitor 100.
- the conventional capacitor unit 99 can not control the "brake circuit (brake control circuit)" externally, in other words, the conventional capacitor unit 99 can back up the power supply for the brake circuit. Can not.
- the driver 20 incorporates a "brake circuit (brake control circuit)", and the capacitor unit 10, as illustrated in FIG. Supply to the control circuit. Then, the capacitor unit 10 can supply the charging power of the first backup capacitor 100 to the brake control circuit of the driver 20, that is, can back up the brake power supply.
- the detail is later mentioned using FIG. 6 and FIG.
- the conventional capacitor unit 99 can not (cannot) be added (that is, it can not be electrically connected to the conventional capacitor unit 99 other than its own device). Energy) was less than 1 kW.
- “expansion” is “possible” and “corresponding driver capacity” can be made “3 kW or less” by “expansion”.
- the capacitor unit 10 can realize the following three functions that can not be realized by the conventional capacitor unit. First, the capacitor unit 10 can back up both the main circuit power and the control power of the driver 20. Second, the capacitor unit 10 can cope with the shortage of the electric capacity of at least one of the first backup capacitor 100 and the second backup capacitor 109 by adding the “capacitor unit 10 other than the own device”. it can. Moreover, the capacitor unit 10 can also respond to large regenerative energy by adding "a capacitor unit 10 other than the own device”. For example, the capacitor unit 10 can also cope with 3 kW of regenerative energy, and can also cope with a large liquid agent filling machine or the like having a large regenerative energy.
- the capacitor unit 10 detects "sudden change in input voltage” such as instantaneous voltage drop and momentary power failure, and notifies “sudden change in input voltage” to the outside (for example, detects "sudden change in input voltage” It has a function of outputting a signal to notify the outside of the event.
- the function of “notifying a sudden change in input voltage” included in the capacitor unit 10 will be described in detail.
- the capacitor unit 10 has a function of detecting "a sudden change in input voltage” and outputting it to an external output.
- the capacitor unit 10 illustrated in FIG. 1 is provided with a notification unit 200 that outputs a notification signal to the outside when detecting “a sudden change in input voltage”.
- the capacitor unit 10 can be triggered by the notification signal output from the notification unit 200 that has detected “sudden change in input voltage” and can cause the controller 40 or the like to execute processing necessary for "sudden change in input voltage” Play.
- the controller 40 notified of “a sudden change in input voltage” can cause the plurality of drivers 20 to synchronize and stop the motor 30 connected to each of the plurality of drivers 20.
- Embodiment 2 of this invention is demonstrated based on FIG.
- symbol is appended and the description is abbreviate
- the capacitor unit 11 according to the present embodiment is different from the capacitor unit 10 according to the first embodiment in that the capacitor unit 11 according to the present embodiment has only one power input. The details of the capacitor unit 11 will be described below with reference to FIG.
- FIG. 5 is a diagram showing a circuit configuration of a capacitor unit 11 (power supply device) according to a second embodiment of the present invention.
- the capacitor unit 11 is supplied with three-phase 200 V AC power, supplies 24 V DC current to the control circuit of the driver 20, and supplies 200 V DC current to the main circuit of the driver 20. That is, the AC power received by the AC power input terminal 106 from the external power source is rectified by the rectifier 108, and after the voltage is adjusted to a desired value by the DC / DC power converter module 105, the control power output terminal is used as a control power. It is output to the driver 20 from 101.
- the AC power received by the AC power input terminal 106 from the external power source is rectified by the rectifier 108 and is output from the main circuit power output terminal 110 to the driver 20 as the main circuit power.
- an AC power for example, three-phase 200 V
- the capacitor 107 generates noise (harmonics) from the AC power input to the AC power input terminal 106.
- Wave current The alternating voltage passed through the capacitor 107 is rectified by the rectifier 108.
- the rectifier 108 outputs a DC voltage to the DC / DC power converter module 105 and the main circuit power output terminal 110 via the first backup capacitor 100. That is, the rectifier 108 is connected to the DC / DC power converter module 105 and the main circuit power output terminal 110 via the first backup capacitor 100.
- the DC / DC power converter module 105 connected to the rectifier 108 through the first backup capacitor 100 converts the voltage of the direct current output from the rectifier 108 into a desired voltage (for example, 24 V).
- the DC / DC power converter module 105 outputs the DC current converted into a desired voltage to the control power output terminal 101.
- the control power supply output terminal 101 supplies a direct current whose voltage has been adjusted to a desired value by the DC / DC power supply converter module 105 to the driver 20 as a control power supply (power supply for the control circuit of the driver 20).
- the main circuit power output terminal 110 connected to the rectifier 108 through the first backup capacitor 100 receives the direct current output from the rectifier 108 as the main circuit power (power for the main circuit of the driver 20). ), And supplies it to the driver 20.
- the first backup capacitor 100 is inserted between the rectifier 108 and the control power output terminal 101, for example, between the rectifier 108 and the DC / DC power converter module 105. That is, FIG. 5 shows an example in which the positive terminal of the first backup capacitor 100 is connected between the positive output terminal of the rectifier 108 and the positive input terminal of the DC / DC power converter module 105. ing. In the circuit example shown in FIG. 5, the negative terminal of the first backup capacitor 100 is connected between the negative output terminal of the rectifier 108 and the negative input terminal of the DC / DC power converter module 105.
- the first backup capacitor 100 is charged by the output of the rectifier 108, and when a sudden change in input voltage such as an instantaneous voltage drop due to a lightning strike or an instantaneous power failure occurs, the control circuit of the driver 20 is controlled by a discharge. Supply.
- the first backup capacitor 100 inserted between the rectifier 108 and the main circuit power output terminal 110 also performs backup of the main circuit power.
- the positive terminal of the first backup capacitor 100 is connected between the positive output terminal of the rectifier 108 and the positive output terminal 110 A of the main circuit power output terminal 110.
- the negative terminal of the first backup capacitor 100 is connected between the negative output terminal of the rectifier 108 and the negative output terminal 110 B of the main circuit power output terminal 110.
- the first backup capacitor 100 is charged by the output of the rectifier 108, and when an "instantaneous change in input voltage" such as an instantaneous voltage drop due to lightning strike or an instantaneous blackout occurs, the main circuit of the driver 20 is discharged. Supply power. In other words, the first backup capacitor 100 supplies charging power to the main circuit of the driver 20 when a sudden change in input voltage occurs due to lightning strike or the like.
- the first backup capacitor 100 absorbs regenerative energy from the motor 30.
- the capacitor unit 11 receives an input of one AC power supply (for example, three-phase 200 V AC power supply), and generates two DC power supplies (for example, 24 V DC control power and 200 V DC main circuit power) Output).
- the capacitor unit 11 also performs backup for the two DC power supplies (specifically, the control power supply and the main circuit power supply). That is, the capacitor unit 11 backs up the control power supply and the main circuit power supply by the first backup capacitor 100.
- the capacitor unit 11 is a power supply device for supplying power to the main circuit for supplying motor drive power to the motor 30 of the driver 20 (motor drive device), and receives input from an external AC power supply And a control power output terminal 101 for supplying power to the control circuit for controlling the main circuit of the driver 20, and (1) the rectifier 108 and the control power output
- a first backup capacitor 100 is inserted between the terminal 101 and (2) the first backup capacitor 100 is charged by the output of the rectifier 108.
- (1) the positive output terminal of the first backup capacitor 100 is electrically connected to the positive output terminal of the rectifier 108, and (2) the first output capacitor 100 is connected to the negative output terminal of the rectifier 108.
- the negative terminal of is electrically connected.
- the positive terminal of the first backup capacitor 100 is electrically connected between the positive output terminal of the rectifier 108 and the positive terminal 101 A of the control power output terminal 101.
- the negative terminal of the first backup capacitor 100 is electrically connected between the negative output terminal of the rectifier 108 and the negative terminal 101 B of the control power output terminal 101.
- the capacitor unit 11 includes the first backup capacitor 100 between the rectifier 108 and the control power output terminal 101 for supplying power to the control circuit of the driver 20.
- the first backup capacitor 100 is charged by the output of the rectifier 108.
- the capacitor unit 11 controls the charging power of the first backup capacitor 100 as the control circuit of the driver 20 even when a sudden change in the input voltage such as an instantaneous voltage drop and an instantaneous blackout occurs due to lightning strike or the like. The effect of being able to supply
- the capacitor unit 11 has an effect that the driver 20 can take measures against sudden change in input voltage such as instantaneous voltage drop due to lightning strike and instantaneous blackout without changing the driver 20. .
- the notification unit 200 When a sudden change in the input voltage to the capacitor unit 11 occurs, the notification unit 200 notifies the outside that “a sudden change in the input voltage has occurred”.
- the notification unit 200 is connected to the AC power input terminal 106, and when it detects that the input voltage of the AC power input to the AC power input terminal 106 has changed suddenly, "a sudden change of the input voltage has occurred", It notifies an external device (for example, the controller 40 etc.).
- the DC / DC power supply converter module 105 is not essential, and the voltage of the direct current output from the rectifier 108 is a desired voltage to be input to the control power output terminal 101. In this case, voltage conversion is unnecessary. Further, an inverter circuit (DC / AC inverter circuit) is inserted between the first backup capacitor 100 and the control power output terminal 101, and the control power output terminal 101 supplies an alternating current to the driver 20 as a control power. May be
- FIG. 7 is a view showing a connection example of the capacitor unit 12 with the driver 20.
- the controller 40 as a master device is connected to a plurality of slave devices (specifically, the drivers 20A, 20B and 20C) via the field network 60.
- Each of the drivers 20A, 20B, and 20C is powered by each of the capacitor units 12A, 12B, and 12C.
- Three-phase 200 V AC power is externally supplied to each of the capacitor units 12A, 12B, and 12C.
- the drivers 20A, 20B, and 20C are associated with the “driver 20” to distinguish each of the three “drivers 20” “A”, “B”, and “C” It is attached.
- drivers 20 When it is not necessary to distinguish each of the drivers 20A, 20B, and 20C in particular, they are simply referred to as “drivers 20".
- capacitor units 12A, 12B, and 12C have attached "A", “B", and “C” to "capacitor unit 12" to distinguish each of the three “capacitor units 12". It is a thing. When it is not necessary to distinguish each of the capacitor units 12A, 12B, and 12C, they are simply referred to as "capacitor unit 12".
- the capacitor unit 12 supplies the driver 20 with the main circuit power supply (“PN” in FIG. 7) and the control power supply (“DC 24 V” on the upper side of the paper of FIG. 7). And back up the main circuit power supply and the control power supply. Further, the capacitor unit 12 supplies the brake power supply (“DC 24 V (Brake)” in the lower side of the drawing of FIG. 7) to the driver 20 and also backs up the brake power supply. In other words, capacitor unit 12 performs power supply output for the main circuit power supply, control power supply, and brake power supply to driver 20, and also backs up the main circuit power supply, control power supply, and brake power supply. There is.
- the capacitor unit 12 supplies power to the brake control circuit of the driver 20 when a sudden change in input voltage occurs due to lightning strike or the like, the driver 20 unintentionally brakes the motor 30. I'm preventing. Furthermore, the capacitor unit 12 supports energy utilization of regeneration / power running.
- the DC / DC power supply converter module 105 is not essential, and the voltage of the direct current output from the rectifier 104 is a desired voltage to be input to the control power output terminal 101. In this case, voltage conversion is unnecessary. Further, an inverter circuit (DC / AC inverter circuit) is inserted between the first backup capacitor 100 and the control power output terminal 101, and the control power output terminal 101 supplies an alternating current to the driver 20 as a control power. May be
- the capacitor unit 12 has a brake power output terminal 111, supplies power (brake power) to the brake control circuit of the driver 20, and backs up the brake power.
- the positive terminal of the first backup capacitor 100 is connected to the positive output terminal of the rectifier 104, and the main circuit when a sudden change in input voltage occurs. Decelerating the motor 30 independently of the operation of the brake control circuit is electrically connected between the positive side 111A of the brake power output terminal 111 which is an output terminal for supplying power to the brake control circuit;
- the negative terminal of the backup capacitor 100 is electrically connected between the negative output terminal of the rectifier 104 and the negative terminal 111 B of the brake power output terminal 111.
- the first backup capacitor 100 supplies power to the rectifier 104 and the brake control circuit “decelerate the motor 30 independently from the operation of the main circuit when a sudden change in input voltage occurs”. It is inserted between the brake power supply output terminals 111 to be supplied.
- the capacitor unit 12 supplies the rectifier 104 and the brake control circuit “that decelerates the motor 30 independently from the operation of the main circuit when a sudden change in the input voltage occurs”.
- a first backup capacitor 100 is provided between the output terminal 111 (output terminal).
- the brake control circuit when a sudden change in input voltage occurs due to a lightning strike or the like in a state where power supply to the brake control circuit is not backed up, the brake control circuit is independent of the operation of the main circuit of the driver 20.
- the motor 30 is decelerated. Further, the brake control circuit may maintain the stop of the motor 30 to which the driving power is not supplied from the main circuit of the driver 20 during power interruption or the like.
- the capacitor unit 12 backs up the power supply to the brake control circuit when a sudden change of the input voltage occurs due to a lightning strike or the like. Therefore, in the power supply apparatus, the brake control circuit decelerates the motor independently of the operation of the main circuit even when a sudden change in input voltage caused by lightning strike or the like occurs, as described above. The effect is that it is possible to avoid the occurrence of such unexpected situations.
- the capacitor unit 12 is a circuit that controls “a brake that decelerates the motor 30 independently from the operation of the main circuit of the driver 20 when a sudden change of the input voltage occurs” which exists independently of the driver 20 (control circuit Or brake power may be supplied to the device.
- the capacitor unit 12 is a circuit that controls “a brake that decelerates the motor 30 independently from the operation of the main circuit of the driver 20 when a sudden change of the input voltage occurs” which exists independently of the driver 20 (control circuit Or the brake power supply of the device may be backed up.
- the capacitor unit 12 has a capacitor extension terminal 112, and is electrically connected in parallel with the capacitor unit 12 other than its own device to (pseutically) measure the electric capacity of the second backup capacitor 109 of its own device. It can be enlarged. That is, the capacitor unit 12 can use the electric capacity of the second backup capacitor 109 of the capacitor unit 12 other than the own device.
- the capacitor unit 12 further includes a capacitor expansion terminal 112 (connector) electrically connected to the second backup capacitor 109.
- the capacitor expansion terminal 112 of the capacitor unit 12 is a main circuit power output terminal 110 for supplying power to (1) the capacitor expansion terminal 112 or (2) the main circuit of the driver 20 of the capacitor unit 12 other than the own device. And can be connected.
- the capacitor expansion terminal 112 of the capacitor unit 12A can be connected to the "capacitor expansion terminal 112 or main circuit power output terminal 110" of the capacitor unit 12B.
- the capacitor expansion terminal 112 of the capacitor unit 12A may be connected by wire or directly connected to the "capacitor expansion terminal 112 or main circuit power output terminal 110" of the capacitor unit 12B.
- the main circuit power output terminal 110 for supplying power to the (1) capacitor extension terminal 112 or (2) main circuit of the driver 20 of the capacitor unit 12 other than the own device is electrically connected to the capacitor extension terminal 112.
- the second backup capacitor 109 of the capacitor unit 12 other than the own device and the second backup capacitor 109 of the own device are electrically connected in parallel. That is, the capacitor unit 12 includes the main circuit power output terminal 110 for supplying power to the (1) capacitor extension terminal 112 or (2) the main circuit of the capacitor 20 of the capacitor units 12 other than the own device.
- the capacitance of the second backup capacitor 109 of the capacitor unit 12 other than the own device can be used.
- the capacitor unit 12A is electrically connected in parallel with the capacitor extension terminal 112 of the capacitor unit 12A by electrically connecting “the capacitor extension terminal 112 or the main circuit power output terminal 110” of the capacitor unit 12B in parallel.
- the electric capacity of the second backup capacitor 109 is used.
- the capacitor unit 12 can perform (1) the capacitor extension terminal 112 or (2) the driver 20 of the capacitor unit 12 other than the own device.
- the main circuit power output terminal 110 for supplying power to the main circuit of the second embodiment is electrically connected in parallel to the capacitor expansion terminal 112, whereby the second backup capacitor of the capacitor unit 12 other than the own device connected to the own device is connected. The effect of being able to utilize the electric capacity of 109 is produced.
- the capacitor unit 12 may further be provided with a capacitor (not shown) as a component on the inside or outside of the housing of the self device in order to increase the electric capacity of the second backup capacitor 109 of the self device. Then, the capacitance of the second backup capacitor 109 may be increased by connecting in parallel the second backup capacitor 109 with this capacitor added to the inside or the outside of the housing of the own device.
- each of the first backup capacitor 100 and the second backup capacitor 109 may be realized by one capacitor (capacitor component) or by two or more capacitors (capacitor component). It is also good.
- the first backup capacitor 100 and the second backup capacitor 109 in the capacitor unit 10 are electrically connected in parallel.
- capacitor unit 12 is connected between positive side output terminal 110A and negative side output terminal 110B of main circuit power output terminal 110 for supplying power to the main circuit of driver 20.
- a second backup capacitor 109 is provided.
- the positive terminal of the first backup capacitor 100 is electrically connected to the positive terminal of the second backup capacitor 109, and the negative terminal of the first backup capacitor 100 is electrically connected to the negative terminal of the second backup capacitor 109.
- the capacitor unit 12 is connected between the positive output terminal 110A and the negative output terminal 110B of the main circuit power output terminal 110 for supplying power to the main circuit of the driver 20.
- Capacitor 109 is provided.
- the positive terminal of the first backup capacitor 100 of the capacitor unit 12 is electrically connected to the positive terminal of the second backup capacitor 109, and the negative terminal of the first backup capacitor 100 is the negative terminal of the second backup capacitor 109. It is electrically connected to the terminal. That is, in the capacitor unit 12, the first backup capacitor 100 and the second backup capacitor 109 are electrically connected in parallel.
- capacitor unit 12 supplies the charging power of second backup capacitor 109 electrically connected in parallel to first backup capacitor 100 to the control circuit of driver 20.
- FIG. 6 is a diagram showing a circuit configuration of a capacitor unit 12 according to a third embodiment of the present invention.
- the capacitor unit 12 further includes a brake power output terminal 111 and a capacitor expansion terminal 112 in addition to the configuration of the capacitor unit 10.
- the first backup capacitor 100 and the second backup capacitor 109 are electrically connected in parallel.
- a diode 113 is inserted between the first backup capacitor 100 and the second backup capacitor 109. Except for these configurations, the configuration of the capacitor unit 12 and the configuration of the capacitor unit 10 are the same, and among the configurations of the capacitor unit 12, the description of the same configuration as the capacitor unit 10 will be omitted.
- the brake power output terminal 111 is connected to the DC / DC power converter module 105, and the brake power output terminal 111 uses the DC current whose voltage is adjusted by the DC / DC power converter module 105 as the brake power.
- the brake power output terminal 111 is connected to the first backup capacitor 100 via the DC / DC power converter module 105.
- the first backup capacitor 100 is charged by the output of the rectifier 108, and when the sudden change of the input voltage occurs, discharges to (1) supply the control power to the control circuit of the driver 20, and (2) the driver 20 Supply the brake power to the brake control circuit of
- the capacitor expansion terminal 112 is electrically connected to the second backup capacitor 109.
- the positive side output terminal 110A of the main circuit power supply output terminal 110 for supplying power to the main circuit of the driver 20 and the positive electrode 112A of the capacitor expansion terminal 112 are each the positive terminal of the second backup capacitor 109.
- the negative output terminal 110B of the main circuit power output terminal 110 for supplying power to the main circuit of the driver 20 and the negative electrode 112B of the capacitor expansion terminal 112 are electrically connected to the negative electrode 112B of the capacitor expansion terminal 112, respectively. It is done.
- the main circuit power supply for supplying power to the positive electrode 112A of the capacitor expansion terminal 112 is (1) the positive electrode 112A of the capacitor expansion terminal 112 or (2) the main circuit of the driver 20 of the capacitor unit 12 other than the own device.
- the positive side output terminal 110A of the output terminal 110 is connected.
- the negative side output terminal 110B of the output terminal 110 is connected.
- the capacitor unit 12A and The capacitor unit 12B can be electrically connected in parallel. That is, the capacitor unit 12B can be added to the capacitor unit 12A.
- the second backup capacitor 109 of the capacitor unit 12A and the second backup capacitor 109 of the capacitor unit 12B are electrically connected in parallel.
- the plurality of capacitor units 12 can be electrically connected in parallel via the respective capacitor expansion terminals 112.
- Each of the plurality of capacitor units 12 is electrically connected in parallel by connecting in parallel the capacitor expansion terminal 112 of the own device and the main circuit power output terminal 110 of the capacitor unit 12 other than the own device. Can.
- each of the plurality of capacitor units 12 is electrically connected to the second backup capacitor 109 of the capacitor unit 12 other than its own device. Capacity can be used. That is, the capacitor unit 12 is electrically connected in parallel with the capacitor unit 12 other than its own device via the capacitor extension terminal 112 to virtually increase the electric capacity of the second backup capacitor 109 of the own device can do.
- the second backup capacitor 109 and the first backup capacitor 100 are connected in parallel via the diode 113. Specifically, the positive electrode terminal of the first backup capacitor 100 and the positive electrode terminal of the second backup capacitor 109 are electrically connected, and the positive electrode terminal of the diode 113 is inserted between the two. The negative terminal of the first backup capacitor 100 and the negative terminal of the second backup capacitor 109 are electrically connected, and the negative terminal of the diode 113 is inserted between the two.
- the diode 113 is inserted between the second backup capacitor 109 and the first backup capacitor 100 so that the current flow from the second backup capacitor 109 to the first backup capacitor 100 is in the forward direction. There is.
- the capacitor unit 12 receives inputs of two AC power supplies (for example, single-phase 200 V AC power supply and three-phase 200 V AC power supply), and controls three DC power supplies (for example, DC 24 V) Power supply, DC24V brake power supply, and DC200V main circuit power supply).
- the capacitor unit 10 also backs up the three DC power sources (specifically, the control power source, the brake power source, and the main circuit power source). That is, in the capacitor unit 10, the control power supply and the brake power supply are backed up by the first backup capacitor 100, and the main circuit power supply is backed up by the second backup capacitor 109.
- the capacitor unit 12 artificially increases the capacitance of the first backup capacitor 100 by providing at least one of the following two configurations.
- the capacitor unit 12 can be electrically connected in parallel with the capacitor units 12 other than the own device via the capacitor extension terminal 112.
- the second backup capacitor 109 of the capacitor unit 12 other than the connected own device and the second backup capacitor 109 of the own device are electrically connected by electrically connecting in parallel with the capacitor unit 12 other than the own device. Are connected in parallel.
- the capacitor unit 12 is electrically connected in parallel with the capacitor unit 12 other than the own device, thereby utilizing the electric capacity of the second backup capacitor 109 of the capacitor unit 12 other than the connected own device. Can. That is, the capacitor unit 12 can electrically increase the electric capacity of the second backup capacitor 109 of the own device by connecting in parallel with the capacitor unit 12 other than the own device.
- the capacitor unit 12 (Connection with another capacitor in own device) In the capacitor unit 12, by electrically connecting the first backup capacitor 100 and the second backup capacitor 109 in parallel, the electric capacitance of the first backup capacitor 100 is artificially increased. That is, in the capacitor unit 12, the first backup capacitor 100 charging the backup power of the control power supply and the second backup capacitor 109 charging the backup power of the main circuit power supply are electrically connected in parallel. . By electrically connecting the first backup capacitor 100 and the second backup capacitor 109 in parallel, the electric capacity of the first backup capacitor 100 is artificially increased.
- the capacitor unit 12 backs up not only the control power supply but also the brake power supply by the first backup capacitor 100 by artificially increasing the electric capacity of the first backup capacitor 100.
- FIG. 6 shows an example in which the first backup capacitor 100 is inserted between the rectifier 104 and the brake power output terminal 111 for supplying power to the brake control circuit.
- the configuration for backup of the brake power supply is not limited to the configuration shown in FIG.
- FIG. 8 shows a capacitor unit 13 (FIG. 8A) and a capacitor unit 14 (FIG. 8B) having a circuit configuration different from the circuit configuration shown in FIG. 6 for backup of the brake power supply. It is a figure which shows the principal part structure.
- illustration is abbreviate
- the capacitor unit 13 illustrated in FIG. 8A backs up the brake power supply by a third backup capacitor 114 different from the first backup capacitor 100. That is, in the capacitor unit 13, the third backup capacitor 114 electrically connected in parallel to the first backup capacitor 100 backs up the brake power supply.
- the third backup capacitor 114 is inserted between the rectifier 104 and the brake power output terminal 111 for supplying power to the brake control circuit. Specifically, in FIG. 8A, the positive terminal of the third backup capacitor 114 is connected between the positive output terminal of the rectifier 104 and the positive input terminal of the brake power output terminal 111. . The negative terminal of the third backup capacitor 114 is connected between the negative output terminal of the rectifier 104 and the negative input terminal of the brake power output terminal 111.
- the third backup capacitor 114 is charged by the output of the rectifier 104, and supplies “brake power” to the brake control circuit by discharging when “a sudden change in input voltage” such as an instantaneous voltage drop or an instantaneous power failure due to lightning strike or the like occurs. Do. In other words, the third backup capacitor 114 supplies charging power to the brake control circuit when a sudden change in input voltage occurs due to lightning strike or the like.
- the capacitor unit 13 supplies the charging power of the third backup capacitor 114 as a brake power supply to the brake control circuit when a sudden change of the input voltage caused by a lightning strike or the like occurs. That is, the capacitor unit 13 secures the brake power supply of the brake control circuit, and the brake control circuit decelerates the motor 30 (rapidly decelerating) independently from the main circuit of the driver 20 when a sudden change of the input voltage occurs. prevent.
- the rectifier 104 charging the first backup capacitor 100 is electrically connected to the third backup capacitor 114.
- the rectifier 115 different from the rectifier 104 that charges the first backup capacitor 100 charges the third backup capacitor 114.
- the rectifier 115 is a rectifier circuit that rectifies alternating current input from an external alternating current power supply.
- the third backup capacitor 114 is inserted between the rectifier 115 and the brake power output terminal 111 for supplying power to the brake control circuit.
- the positive terminal of the third backup capacitor 114 is connected between the positive output terminal of the rectifier 115 and the positive input terminal of the brake power output terminal 111.
- the negative terminal of the third backup capacitor 114 is connected between the negative output terminal of the rectifier 115 and the negative input terminal of the brake power output terminal 111.
- the third backup capacitor 114 is charged by the output of the rectifier 115, and supplies “brake power” to the brake control circuit by discharging when “a sudden change in input voltage” occurs, such as an instantaneous voltage drop due to lightning strike or an instantaneous power failure. Do.
- the output voltage of the rectifier 104 is stepped down through the DC / DC power converter module 105 to be the control power output.
- the DC / DC power converter module 105 is unnecessary.
- the present invention is also applicable to the configuration.
- control power supply output is a DC output.
- present invention can also be applied when the control power output is an AC output.
- an inverter circuit for converting direct current into alternating current may be provided instead of the DC / DC power converter module 105 of FIG.
- the power supply device is a power supply device that supplies power to a main circuit of a motor drive device that supplies motor drive power to a motor, and rectifies alternating current input from an external alternating current power supply And a control power supply output terminal for supplying power to a control circuit for controlling the main circuit of the motor drive device, and (1) between the rectification circuit and the control power supply output terminal A first backup capacitor is inserted, and (2) the first backup capacitor is charged by the output of the rectifier circuit.
- the power supply device includes the rectifier circuit and a control power output terminal for supplying power to the control circuit of the motor drive device, and (1) positive output of the rectifier circuit
- the positive terminal of the first backup capacitor is electrically connected between the terminal and the positive side of the control power output terminal, and (2) the negative side output terminal of the rectifier circuit and the control power output terminal
- the negative terminal of the first backup capacitor is electrically connected to the negative side.
- the power supply device includes the first backup capacitor between the rectification circuit and a control power output terminal for supplying power to the control circuit of the motor drive device.
- the first backup capacitor is charged by the output of the rectifier circuit.
- the motor drive apparatus can charge the charging power of the first backup capacitor.
- the above-described control circuit can be supplied.
- the power supply device can take measures against sudden change in input voltage such as instantaneous voltage drop due to lightning strike and instantaneous blackout for the motor drive device without changing the motor drive device. Play an effect with sudden change in input voltage such as instantaneous voltage drop due to lightning strike and instantaneous blackout for the motor drive device without changing the motor drive device. Play an effect with sudden change in input voltage such as instantaneous voltage drop due to lightning strike and instantaneous blackout for the motor drive device without changing the motor drive device. Play an effect with
- control power supply backup mechanism is provided inside the motor control device, the control power supply can not be turned off until the discharge of the backup mechanism in the motor control device is completed.
- the backup mechanism of the control power supply in the power supply device instead of providing it in the motor control device, it becomes possible to easily disconnect and reconnect the control power supply. That is, it is easy to disconnect and reconnect the control power supply simply by disconnecting or reconnecting the electrical connection between the motor control device and the power supply device without waiting for the completion of the discharge of the backup mechanism in the motor control device. Will be able to do.
- the motor control device may require power supply backup depending on the usage condition or the like, or may not require power supply backup.
- the control power supply backup mechanism externally (that is, by providing the power supply device), it is possible to back up the control power supply when the user needs it.
- the control power supply can be easily backed up by the power supply device even when it is necessary to back up the control power supply thereafter.
- the positive terminal of the first backup capacitor further includes a positive output terminal of the rectifier circuit and the main circuit when a sudden change occurs in the input voltage
- the negative terminal of the first backup capacitor is Furthermore, it may be electrically connected between the negative side output terminal of the rectifier circuit and the negative side of the output terminal that supplies power to the brake control circuit.
- the positive terminal of the first backup capacitor further generates a sudden change in input voltage with the positive output terminal of the rectifier circuit. It is electrically connected between the positive side of the output terminal that supplies power to the brake control circuit that decelerates the motor independently of the operation of the circuit, and (2) the negative terminal of the first backup capacitor Are further electrically connected between the negative output terminal of the rectifier circuit and the negative terminal of the output terminal that supplies power to the brake control circuit.
- the power supply device includes the first backup capacitor between the rectifier circuit and an output terminal for supplying power to the brake control circuit. Then, the power supply device supplies the charging power of the first backup capacitor to the brake control circuit when a sudden change of the input voltage occurs due to a lightning strike or the like.
- the brake control circuit independently performs the operation of the main circuit. Reduce the speed of the motor. Further, the brake control circuit may maintain the stop of the motor, to which the driving power is not supplied from the main circuit of the motor control device during power interruption or the like.
- the power supply device backs up the power supply to the brake control circuit when a sudden change in input voltage occurs due to lightning strike or the like. Therefore, the power supply apparatus can avoid the occurrence of such an unexpected situation as the brake control circuit decelerates the motor independently of the operation of the main circuit. Play.
- the power supply device further comprises a second backup capacitor connected between the positive output terminal and the negative output terminal for supplying power to the main circuit of the motor drive device. Good.
- the power supply device further includes a second backup capacitor connected between the positive output terminal and the negative output terminal for supplying power to the main circuit of the motor drive device. There is. Then, the second backup capacitor is charged by the power to be input to the output terminal for supplying power to the main circuit of the motor drive device.
- the motor drive apparatus can use the charging power of the second backup capacitor. The effect of being able to be supplied to the main circuit of
- the power supply device further includes a connector electrically connected to the second backup capacitor, wherein the connector is (1) the connector of the power supply device other than the self device. Alternatively, (2) it may be connectable to an output terminal for supplying power to the main circuit of the motor drive device.
- the power supply device further includes a connector electrically connected to the second backup capacitor.
- the connector can be connected to (1) the connector or (2) an output terminal for supplying power to the main circuit of the motor drive device of the power supply devices other than the self device.
- the connector of the power supply device other than the device itself or (2) an output terminal for supplying power to the main circuit of the motor drive device is electrically connected in parallel to the connector
- the second backup capacitor of the power supply device other than the device itself and the second backup capacitor of the device itself are electrically connected in parallel. That is, the power supply device electrically connects the output terminal for supplying power to the (1) connector of the power supply device other than the device itself or (2) the main circuit of the motor drive device to the connector.
- the power supply device may perform (1) the connector or (2) the motor drive device of the power supply device other than the own device.
- the electric capacity of the second backup capacitor of the power supply device other than the own device connected to the own device is used.
- the positive electrode terminal of the first backup capacitor is electrically connected to the positive electrode terminal of the second backup capacitor
- the negative electrode terminal of the first backup capacitor is the (2) It may be electrically connected to the negative electrode terminal of the backup capacitor.
- the positive terminal of the first backup capacitor is electrically connected to the positive terminal of the second backup capacitor
- the negative terminal of the first backup capacitor is the second backup capacitor. It is electrically connected to the negative electrode terminal. That is, in the power supply device, the first backup capacitor and the second backup capacitor are electrically connected in parallel.
- the power supply device controls the charging power of the second backup capacitor electrically connected in parallel to the first backup capacitor, the control circuit of the motor drive device.
- the power supply device may notify outside that a sudden change of the input voltage has occurred when a sudden change of the input voltage to the own device occurs.
- the power supply device notifies the outside that the sudden change of the input voltage has occurred when the sudden change of the input voltage to the own device occurs.
- the power supply apparatus when the power supply apparatus suddenly changes the input voltage to the own apparatus, it notifies the external controller or the like that the sudden change of the input voltage has occurred, and the controller etc. It has the effect of being able to execute the necessary processing at times. For example, when a sudden change in input voltage to the power supply device occurs, the power supply device notifies an external controller that a sudden change in input voltage has occurred. Then, the controller that has received this notification can, for example, synchronize and stop the motors connected to each of the plurality of motor driving devices to the plurality of motor driving devices.
- Capacitor unit power supply device
- Capacitor unit power supply device
- Capacitor unit power supply device
- Capacitor unit power supply device
- Capacitor unit power supply device
- Driver Motor
- First backup capacitor 101
- Control power output terminal 104
- Rectifier (rectifier circuit) 108 Rectifier (Rectifier circuit)
- Brake power output terminal output terminal for supplying power to the brake control circuit
- 112 Capacitor expansion terminal (connector)
- Output terminal output terminal for supplying power to the main circuit of the motor drive device
- 110A positive side output terminal positive side output terminal for supplying power to main circuit of motor drive device
- 110B negative side output terminal (negative side output terminal for supplying power to main circuit of motor drive device)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Rectifiers (AREA)
- Inverter Devices (AREA)
Abstract
モータ駆動装置の主回路電源および制御電源をバックアップする。第一バックアップ用コンデンサ(100)は、整流器(104)と、ドライバ(20)の制御回路に電力を供給する制御電源出力端子(101)と、の間に挿入される。
Description
本発明は、モータ駆動装置に電力を供給する電力供給装置に関する。
従来、入力電圧の急変(瞬時電圧低下および瞬時停電など)が発生した場合にも、サーボドライバ、サーボアンプなどのモータ駆動装置の主回路に、安定して電力を供給可能な電力供給装置が知られている。例えば、下掲の特許文献1には、整流回路の正側出力端子と負側出力端子との間にコンデンサを接続して、インバータ装置の主回路に電力を供給する電力変換装置が開示されている。
しかしながら、上述のような従来技術は、入力電圧の急変が発生した場合にモータ駆動装置の制御回路に電力を供給することができないという問題がある。
本発明の一態様は、入力電圧の急変が発生した場合に、モータ駆動装置の主回路だけでなく、モータ駆動装置の制御回路にも電力を供給可能な電力供給装置を実現することを目的とする。
上記の課題を解決するために、本発明の一態様に係る電力供給装置は、モータ駆動装置の、モータにモータ駆動電力を供給する主回路に電力を供給する電力供給装置であって、外部の交流電源から入力された交流を整流する整流回路と、前記モータ駆動装置の、前記主回路を制御する制御回路に電力を供給する制御電源出力端子と、を備え、(1)前記整流回路と前記制御電源出力端子との間には第一バックアップ用コンデンサが挿入されており、(2)前記第一バックアップ用コンデンサは前記整流回路の出力により充電されることを特徴としている。
本発明の一態様によれば、入力電圧の急変が発生した場合に、モータ駆動装置の主回路だけでなく、モータ駆動装置の制御回路にも電力を供給することができるという効果を奏する。
〔実施形態1〕
以下、本発明の実施形態1について、図1から図4に基づいて詳細に説明する。図中同一または相当部分には同一符号を付してその説明は繰返さない。本発明の一態様に係るコンデンサユニット10(電力供給装置)についての理解を容易にするため、先ず、コンデンサユニット10を含む電力供給システム1の概要を、図2を用いて説明する。なお、以下の説明において、「AC」は「Alternating Current(交流)」を、「DC」は「Direct Current(直流)」を表わすものとする。
以下、本発明の実施形態1について、図1から図4に基づいて詳細に説明する。図中同一または相当部分には同一符号を付してその説明は繰返さない。本発明の一態様に係るコンデンサユニット10(電力供給装置)についての理解を容易にするため、先ず、コンデンサユニット10を含む電力供給システム1の概要を、図2を用いて説明する。なお、以下の説明において、「AC」は「Alternating Current(交流)」を、「DC」は「Direct Current(直流)」を表わすものとする。
(電力供給システムの概要)
図2は、コンデンサユニット10を含む電力供給システム1の全体概要を示す図である。図2に例示するように、電力供給システム1は、コンデンサユニット10、ドライバ20およびモータ30を含み、さらに、コントローラ40およびツール50を含んでいてもよい。
図2は、コンデンサユニット10を含む電力供給システム1の全体概要を示す図である。図2に例示するように、電力供給システム1は、コンデンサユニット10、ドライバ20およびモータ30を含み、さらに、コントローラ40およびツール50を含んでいてもよい。
コントローラ40は、例えば、PLC(Programmable Logic Controller)であり、電力供給システム1において、フィールドネットワーク60を介したデータ伝送を管理するマスタ装置である。マスタ装置としてのコントローラ40には、スレーブ装置として、ドライバ20が接続される。
なお、図2には、マスタ装置としてのコントローラ40が、1台のドライバ20(スレーブ装置)と接続する例が示されている。しかしながら、マスタ装置に接続するスレーブ装置が1台であることは必須ではなく、マスタ装置としてのコントローラ40は、複数のドライバ20(スレーブ装置)と接続してもよい。後述する図7には、コントローラ40が複数のドライバ20と接続する例を示す。
ドライバ20は、フィールドネットワーク60を介してコントローラ40と接続されるとともに、コントローラ40からの指令値に従ってモータ30を駆動するモータ制御装置である。より具体的には、ドライバ20は、コントローラ40から一定の時間間隔(周期)で、位置指令値、速度指令値、トルク指令値といった指令値を受ける。また、ドライバ20は、モータ30の軸に接続されている位置センサ(ロータリーエンコーダ)およびトルクセンサといった検出器から、位置、速度(典型的には、今回位置と前回位置との差から算出される)、トルクといったモータ30の動作に係る実測値を取得する。そして、ドライバ20は、コントローラ40からの指令値を目標値に設定し、実測値をフィードバック値として、フィードバック制御を行う。すなわち、ドライバ20は、軸ごとの指令値をコントローラ40から受信し、制御対象であるモータ30の軸ごとの出力(つまり、軸ごとの制御量)が軸ごとの指令値に追従するように、フィードバック制御を行う。具体的には、ドライバ20は、実測値が目標値に近づくようにモータ30を駆動するための電流を調整する。なお、ドライバ20は、サーボモータアンプと称されることもある。
ドライバ20は、「モータ30に、モータ30を駆動するための電流(電力)を供給する」主回路と、「主回路の制御等を行う」制御回路と、を含んでいる。ドライバ20は、コンデンサユニット10から、主回路電源(主回路のための直流電源)を得ると共に、制御電源(制御回路のための直流電源)を得る。主回路電源はモータ駆動電源として用いられ、制御電源はマイクロコンピュータ等により構成される制御回路の電源として用いられる。主回路は主回路電源を供給されると、供給された主回路電源をモータ駆動電源に変換してモータ30に供給する。制御回路は制御電源を供給されると、モータ30の制御量がコントローラ40からの指令値に追従するように主回路を制御する。
ドライバ20は、さらに、「入力電圧の急変が発生した場合に、主回路の動作から独立してモータ30を減速させるブレーキ」を制御する回路(ブレーキ制御回路)を備えていてもよい。ドライバ20の備えるブレーキ制御回路は、ブレーキ制御回路に供給される電源について入力電圧の急変が発生すると、主回路の動作から独立してモータ30にブレーキをかけてモータ30を減速させる。また、ブレーキ制御回路は、電断中等においてドライバ20の主回路から駆動電力が供給されていないモータ30の停止を、維持してもよい。
なお、以下の説明においては、「入力電圧の急変が発生した場合に、主回路の動作から独立してモータ30を減速させるブレーキ」を制御する回路(ブレーキ制御回路)がドライバ20に内蔵されている例を説明する。しかしながら、ブレーキ制御回路がドライバ20に内蔵されていることは、電力供給システム1にとって必須ではない。電力供給システム1において、「入力電圧の急変が発生した場合に、ドライバ20の主回路の動作から独立してモータ30を減速させるブレーキ」を制御する回路または装置が、ドライバ20から独立して存在してもよい。
フィールドネットワーク60は、コントローラ40が受信し、またはコントローラ40が送信する各種データを伝送する。フィールドネットワーク60としては、典型的には、各種の産業用イーサネット(登録商標)を用いることができる。産業用イーサネット(登録商標)としては、例えば、EtherCAT(登録商標)、PROFINET(登録商標) IRT、MECHATROLINK(登録商標)-III、Powerlink、SERCOS(登録商標)-III、CIP Motionなどが知られており、これらのうちのいずれを採用してもよい。さらに、産業用イーサネット(登録商標)以外のフィールドネットワークを用いてもよい。例えば、EtherNet/IP(登録商標)、DeviceNet、CompoNet/IP(登録商標)などであってもよい。電力供給システム1では、典型的に、産業用イーサネット(登録商標)であるEtherCAT(登録商標)をフィールドネットワーク60として採用する場合の構成について例示する。
モータ30は、ドライバ20によって駆動を制御され、不図示の負荷機械を駆動する。具体的には、モータ30は、ドライバの主回路から供給される電流に応じて駆動する。モータ30は、例えば、サーボモータであり、またはステッピングモータであってもよい。
なお、図2には、モータ30がサーボモータであり、ドライバ20がサーボドライバである例を示すが、その他の構成、たとえば、モータ30がパルスモータであり、ドライバ20がパルスモータドライバであってもよい。
ツール50は、通信ケーブル70を介して、コントローラ40に接続される。ツール50は、人間と機械とが情報をやり取りするための手段であり、具体的には、人間が機械を操作したり(機械に指示を与えたり)、機械が現在の状態・結果を人間に知らせたりする手段である。ツール50について、人間が機械に指示を与える手段としてはスイッチ、ボタン、ハンドル、ダイヤル、ペダル、リモコン、マイク、キーボード、マウスなどが含まれ、機械が現在の状態・結果等に係る情報を人間に伝える手段としては液晶画面、メーター、ランプ、スピーカーなどが含まれる。ツール50は、典型的には、汎用のコンピュータで構成され、HMI(Human Machine Interface)で構成されてもよい。例えば、ツール50で実行される情報処理プログラムは、不図示のCD-ROM(Compact Disk-Read Only Memory)に格納されて流通してもよい。このCD-ROMに格納されたプログラムは、図示しないCD-ROM駆動装置によって読取られ、ツール50のハードディスクなどへ格納される。あるいは、上位のホストコンピュータなどからネットワークを通じてプログラムをダウンロードするように構成してもよい。
ツール50は、電力供給システム1(特に、コントローラ40)に対して、各種のパラメータを設定してもよい。例えば、状態値の取得(入力リフレッシュ)のタイミングおよび出力値の更新(出力リフレッシュ)のタイミングは、ツール50によって算出および設定されてもよい。また、ツール50は、ユーザが制御目的(たとえば、対象のラインおよびプロセス)に応じてコントローラ40に実行させる制御プログラムとしてのユーザプログラムをプログラミングするための環境を提供してもよい。
コンデンサユニット10は、ドライバ20に電力を供給する電力供給装置であり、商用電源等によってAC電源が入力され、ドライバ20にDC電源を出力する電力供給装置である。具体的には、コンデンサユニット10は、ドライバ20に、主回路電源(図2における「P-N」。ドライバ20の主回路のためのDC電源)と、制御電源(図2における「DC24V」。ドライバ20の制御回路のためのDC電源)と、を供給する。例えば、コンデンサユニット10は、単相200VのAC電源を供給され、24VのDC電流をドライバ20の制御回路に供給する。また、コンデンサユニット10は、三相200VのAC電源を供給され、200VのDC電流をドライバ20の主回路に供給する。さらに、コンデンサユニット10は、単相200VのAC電源を供給され、24VのDC電流をドライバ20のブレーキ制御回路に供給してもよい。なお、コンデンサユニット10が、ドライバ20のブレーキ制御回路に供給する電源を、以下の説明においては「ブレーキ電源」と称することがある。
以上に説明したように、コンデンサユニット10がドライバ20に供給する電力(電源)は、例えば、DC200V系(「主回路電源」)とDC24V系(「制御回路電源」または「制御回路電源およびブレーキ電源」)との2種類である。
詳細は後述するが、コンデンサユニット10は、従来までのモータ制御装置であるドライバ20を変更することなく、ドライバ20について、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変への対策を行なうことができる。コンデンサユニット10は、ドライバ20の制御電源を第一バックアップ用コンデンサ100で確保している。したがって、落雷等を原因とする入力電圧の急変が発生した場合であっても、ドライバ20の制御回路は動作を継続することができる。入力電圧の急変が発生した場合、コンデンサユニット10の第一バックアップ用コンデンサ100の充電電力は、ドライバ20の制御回路の電源として消費され、第二バックアップ用コンデンサ109の充電電力は、ドライバ20の主回路の電源として消費される。
(電力供給装置の概要)
これまで図2を用いて概要を説明してきた電力供給システム1に含まれるコンデンサユニット10について、次に、その構成および処理の内容等を、図1等を用いて説明していく。図1を参照して詳細を説明する前に、コンデンサユニット10についての理解を容易にするため、その概要について以下のように整理しておく。
これまで図2を用いて概要を説明してきた電力供給システム1に含まれるコンデンサユニット10について、次に、その構成および処理の内容等を、図1等を用いて説明していく。図1を参照して詳細を説明する前に、コンデンサユニット10についての理解を容易にするため、その概要について以下のように整理しておく。
コンデンサユニット10(電力供給装置)は、ドライバ20(モータ駆動装置)の、モータ30にモータ駆動電力を供給する主回路に電力を供給する電力供給装置であって、外部の交流電源から入力された交流を整流する整流器104(整流回路)と、ドライバ20の、前記主回路を制御する制御回路に電力を供給する制御電源出力端子101と、を備え、(1)整流器104と制御電源出力端子101との間には第一バックアップ用コンデンサ100が挿入されており、(2)第一バックアップ用コンデンサ100は整流器104の出力により充電される。例えば、(1)整流器104の正側出力端子には第一バックアップ用コンデンサ100の正極端子が電気的に接続されており、(2)整流器104の負側出力端子には第一バックアップ用コンデンサ100の負極端子が電気的に接続されている。
図1において、(1)整流器104の正側出力端子と制御電源出力端子101の正側101Aとの間には第一バックアップ用コンデンサ100の正極端子が電気的に接続されている。また、(2)整流器104の負側出力端子と制御電源出力端子101の負側101Bとの間には第一バックアップ用コンデンサ100の負極端子が電気的に接続されている。
前記の構成によれば、コンデンサユニット10は、整流器104と、ドライバ20の制御回路に電力を供給する制御電源出力端子101と、の間に第一バックアップ用コンデンサ100を備えている。そして、第一バックアップ用コンデンサ100は、整流器104の出力によって充電される。
したがって、コンデンサユニット10は、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変が発生した場合であっても、第一バックアップ用コンデンサ100の充電電力を、ドライバ20の制御回路に供給することができるとの効果を奏する。
また、コンデンサユニット10は、ドライバ20を変更することなく、ドライバ20について、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変への対策を行なうことができるとの効果を奏する。
コンデンサユニット10は、ドライバ20の主回路に電力を供給する正側出力端子110Aと負側出力端子110Bとの間に接続された第二バックアップ用コンデンサ109をさらに備えてもよい。
前記の構成によれば、コンデンサユニット10は、ドライバ20の主回路に電力を供給する正側出力端子110Aと負側出力端子110Bとの間に接続された第二バックアップ用コンデンサ109をさらに備えている。そして、第二バックアップ用コンデンサ109は、ドライバ20の主回路に電力を供給する主回路電源出力端子110へ入力されることになる電力によって、充電される。
したがって、コンデンサユニット10は、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変が発生した場合であっても、第二バックアップ用コンデンサ109の充電電力を、ドライバ20の主回路に供給することができるとの効果を奏する。
コンデンサユニット10は、自装置への入力電圧の急変が発生すると、入力電圧の急変が発生したことを外部に通知する。具体的には、コンデンサユニット10は通知部200を備え、通知部200は、自装置に入力されるAC電源の入力電圧が急変したことを検出すると、「入力電圧の急変が発生した」ことを、外部(例えば、コントローラ40)に通知する。
前記の構成によれば、コンデンサユニット10は、自装置への入力電圧の急変が発生すると、コントローラ40等に、入力電圧の急変が発生したことを通知して、コントローラ40等に、「入力電圧の急変」時に必要な処理を実行させることができるとの効果を奏する。例えば、コンデンサユニット10は、自装置への入力電圧の急変が発生すると、コントローラ40に、入力電圧の急変が発生したことを通知する。そして、この通知を受けたコントローラ40は、例えば、複数のドライバ20に、複数のドライバ20の各々に接続されているモータ30を同期させて停止させることができる。
(コンデンサユニットの詳細)
図1は、本発明の実施形態1に係るコンデンサユニット10(電力供給装置)の回路構成を示す図である。図1に示すように、コンデンサユニット10は、AC電源入力端子102、コンデンサ103、整流器104、第一バックアップ用コンデンサ100、DC/DC電源コンバータモジュール105、制御電源出力端子101、AC電源入力端子106、コンデンサ107、整流器108、第二バックアップ用コンデンサ109、および、主回路電源出力端子110を含む。
図1は、本発明の実施形態1に係るコンデンサユニット10(電力供給装置)の回路構成を示す図である。図1に示すように、コンデンサユニット10は、AC電源入力端子102、コンデンサ103、整流器104、第一バックアップ用コンデンサ100、DC/DC電源コンバータモジュール105、制御電源出力端子101、AC電源入力端子106、コンデンサ107、整流器108、第二バックアップ用コンデンサ109、および、主回路電源出力端子110を含む。
(制御電源供給回路)
外部電源からAC電源入力端子102が受容したAC電源は、整流器104により整流され、DC/DC電源コンバータモジュール105により電圧を所望の値に調整された後、制御電源として、制御電源出力端子101からドライバ20に出力される。
外部電源からAC電源入力端子102が受容したAC電源は、整流器104により整流され、DC/DC電源コンバータモジュール105により電圧を所望の値に調整された後、制御電源として、制御電源出力端子101からドライバ20に出力される。
AC電源入力端子102には、商用電源等によって、AC電源(例えば、単相200V)が入力される。AC電源入力端子102にはコンデンサ103を介して整流器104が接続されている。コンデンサ103は、前記AC電源からノイズ(高調波電流)を低減する。コンデンサ103を通過した交流電圧は、整流器104にて整流される。
整流器104は、直流電圧を、第一バックアップ用コンデンサ100を介してDC/DC電源コンバータモジュール105に出力する。整流器104から出力された直流電流は、DC/DC電源コンバータモジュール105を介して、制御電源出力端子101に入力される。
図1、図5、および図6において、「Power supply」との記載は、コンバータを示している。DC/DC電源コンバータモジュール105は、整流器104から出力された直流電流の電圧を、所望の電圧(例えば、24V)へと変換し、所望の電圧に変換した直流電流を、制御電源出力端子101に出力する電圧変換回路である。
なお、コンデンサユニット10、図5を用いて後述するコンデンサユニット11、および、図6を用いて後述するコンデンサユニット12において、DC/DC電源コンバータモジュール105は必須ではない。例えば、コンデンサユニット10において、整流器104から出力された直流電流の電圧が、制御電源出力端子101へと入力すべき所望の電圧である場合、電圧変換は不要となるため、DC/DC電源コンバータモジュール105は必要ではない。
制御電源出力端子101は、DC/DC電源コンバータモジュール105によって電圧が所望の値へと調整された直流電流を、制御電源(ドライバ20の制御回路のための電源)として、ドライバ20に供給する。
なお、コンデンサユニット10、図5を用いて後述するコンデンサユニット11、および、図6を用いて後述するコンデンサユニット12において、制御電源出力端子101が直流電流をドライバ20に供給することは必須ではない。コンデンサユニット10、コンデンサユニット11、および、コンデンサユニット12において、制御電源出力端子101は交流電流を、制御電源としてドライバ20に供給してもよい。その場合、例えば、第一バックアップ用コンデンサ100と制御電源出力端子101との間に、インバータ回路(DC/ACインバータ回路)を挿入してもよい。インバータ回路は、整流器104(第一バックアップ用コンデンサ100)からの直流電流を交流電流に変換し、変換した交流電流を制御電源出力端子101に出力することで、制御電源出力端子101が、制御電源として交流電流をドライバ20に供給してもよい。
第一バックアップ用コンデンサ100は、整流器104と制御電源出力端子101との間に挿入され、例えば、整流器104とDC/DC電源コンバータモジュール105との間に挿入される。すなわち、図1には、第一バックアップ用コンデンサ100の正極端子が、整流器104の正側出力端子とDC/DC電源コンバータモジュール105の正側入力端子との間に接続されている例が示されている。図1に示す回路例においては、第一バックアップ用コンデンサ100の負極端子は、整流器104の負側出力端子とDC/DC電源コンバータモジュール105の負側入力端子との間に接続されている。
第一バックアップ用コンデンサ100は、整流器104の出力によって充電され、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、放電によりドライバ20の制御回路に制御電源を供給する。言い換えれば、第一バックアップ用コンデンサ100は、落雷等を原因とする入力電圧の急変が発生した場合に、充電電力を、ドライバ20の制御回路に供給する。また、第一バックアップ用コンデンサ100は、モータ30からの回生エネルギーを吸収する。
コンデンサユニット10は、落雷等を原因とする入力電圧の急変が発生した場合に、第一バックアップ用コンデンサ100の充電電力を、制御電源として、ドライバ20に供給する。つまり、コンデンサユニット10は、ドライバ20の制御電源を確保し、ドライバ20の制動回路によるドライバ20の主回路の制御を(つまり、モータ30の駆動の制御を)可能とする。入力電圧の急変が発生した場合にも、第一バックアップ用コンデンサ100に残された電荷を利用することによって、ドライバ20の制御回路は動作を続けることができる。
(主回路電源供給回路)
外部電源からAC電源入力端子106が受容したAC電源は、整流器108により整流され、主回路電源として、主回路電源出力端子110からドライバ20に出力される。
外部電源からAC電源入力端子106が受容したAC電源は、整流器108により整流され、主回路電源として、主回路電源出力端子110からドライバ20に出力される。
AC電源入力端子106には、商用電源等によって、AC電源(例えば、三相200V)が入力される。AC電源入力端子106にはコンデンサ107を介して整流器108が接続されている。コンデンサ107は、前記AC電源からノイズ(高調波電流)を低減する。コンデンサ107を通過した交流電圧は、整流器108にて整流される。
整流器108は、直流電圧を、第二バックアップ用コンデンサ109を介して第二バックアップ用コンデンサ109に出力する。整流器108から出力された直流電流は、主回路電源出力端子110に入力され、主回路電源出力端子110は、整流器108から出力された直流電流を、主回路電源(ドライバ20の主回路のための電源)として、ドライバ20に供給する。
第二バックアップ用コンデンサ109は、整流器108と主回路電源出力端子110との間に挿入される。すなわち、図1には、第二バックアップ用コンデンサ109の正極端子が、整流器108の正側出力端子と主回路電源出力端子110の正側出力端子110Aとの間に接続されている例が示されている。図1に示す回路例においては、第二バックアップ用コンデンサ109の負極端子は、整流器108の負側出力端子と主回路電源出力端子110の負側出力端子110Bとの間に接続されている。
第二バックアップ用コンデンサ109は、整流器108の出力によって充電され、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、放電によりドライバ20の主回路に主回路電源を供給する。言い換えれば、第二バックアップ用コンデンサ109は、落雷等を原因とする入力電圧の急変が発生した場合に、充電電力を、ドライバ20の主回路に供給する。また、第二バックアップ用コンデンサ109は、モータ30からの回生エネルギーを吸収する。
コンデンサユニット10は、落雷等を原因とする入力電圧の急変が発生した場合に、第二バックアップ用コンデンサ109から主回路電源をドライバ20に供給し、つまり、ドライバ20の主回路電源を確保する。入力電圧の急変が発生した場合にも、ドライバ20の主回路は、第二バックアップ用コンデンサ109に残された電荷を利用することができる。
以上に説明したとおり、コンデンサユニット10は、2系統のAC電源(例えば、単相200VのAC電源と三相200VのAC電源)の入力を受けて、2系統のDC電源(例えば、DC24Vの制御電源とDC200Vの主回路電源)の出力を行う。コンデンサユニット10は、また、その2系統のDC電源(具体的には、制御電源と主回路電源)について、バックアップを行なっている。すなわち、コンデンサユニット10は、第一バックアップ用コンデンサ100によって制御電源を、第二バックアップ用コンデンサ109によって主回路電源を、バックアップしている。
なお、主回路電源のバックアップ用電力を充電する第二バックアップ用コンデンサ109の電気容量(静電容量、コンデンサ容量)は、制御回路電源のバックアップ用電力を充電する第一バックアップ用コンデンサ100の電気容量よりも大きい。ただし、第二バックアップ用コンデンサ109の電気容量が、第一バックアップ用コンデンサ100の電気容量よりも大きいことは必須ではない。例えば、第二バックアップ用コンデンサ109の電気容量と、第一バックアップ用コンデンサ100の電気容量とは等しくてもよい。
(通知部)
コンデンサユニット10は、機能ブロックとして、通知部200を備えている。なお、記載の簡潔性を担保するため、本実施の形態に直接関係のない構成は、説明および図1の回路図から省略している。ただし、実施の実情に則して、コンデンサユニット10は、当該省略された構成を備えてもよい。図1に例示した通知部200は、例えば、CPU(central processing unit)などが、ROM(read only memory)、NVRAM(non-Volatile random access memory)等で実現された記憶装置(不図示)に記憶されているプログラムを不図示のRAM(random access memory)等に読み出して実行することで実現することができる。
コンデンサユニット10は、機能ブロックとして、通知部200を備えている。なお、記載の簡潔性を担保するため、本実施の形態に直接関係のない構成は、説明および図1の回路図から省略している。ただし、実施の実情に則して、コンデンサユニット10は、当該省略された構成を備えてもよい。図1に例示した通知部200は、例えば、CPU(central processing unit)などが、ROM(read only memory)、NVRAM(non-Volatile random access memory)等で実現された記憶装置(不図示)に記憶されているプログラムを不図示のRAM(random access memory)等に読み出して実行することで実現することができる。
通知部200は、コンデンサユニット10への入力電圧の急変が発生すると、「入力電圧の急変が発生した」ことを外部に通知する。通知部200は、例えば、AC電源入力端子102およびAC電源入力端子106と接続している。通知部200は、AC電源入力端子102およびAC電源入力端子106の少なくとも一方に入力されるAC電源の入力電圧が急変したことを検出すると、「入力電圧の急変が発生した」ことを、外部の装置(例えば、コントローラ40等)に通知する。
(ドライバとの接続例)
図3は、コンデンサユニット10についてドライバ20(モータ駆動装置)との接続例を示す図である。なお、図3の説明において、コンデンサユニット10Aおよび10Bは、2つの「コンデンサユニット10」の各々を区別するために「コンデンサユニット10」に付合「A」および「B」を付したものである。コンデンサユニット10Aおよびコンデンサユニット10Bの各々を特に区別する必要がない場合は、単に「コンデンサユニット10」と称する。
図3は、コンデンサユニット10についてドライバ20(モータ駆動装置)との接続例を示す図である。なお、図3の説明において、コンデンサユニット10Aおよび10Bは、2つの「コンデンサユニット10」の各々を区別するために「コンデンサユニット10」に付合「A」および「B」を付したものである。コンデンサユニット10Aおよびコンデンサユニット10Bの各々を特に区別する必要がない場合は、単に「コンデンサユニット10」と称する。
図3において、コンデンサユニット10Aは、ドライバ20に、主回路電源(図3における「P-N」)と、制御電源(図3の、紙面上側における「DC24V」)と、を供給するとともに、主回路電源と制御電源とをバックアップしている。
図3において、コンデンサユニット10Aは、さらに、ドライバ20のブレーキ制御回路に、DC電流(図3の、紙面下側における「DC24V(Brake)」)を供給している。ブレーキ制御回路は、ブレーキ制御回路に供給される電源について入力電圧の急変が発生すると、モータ30にブレーキをかけてモータ30を減速(急減速)させる。また、ブレーキ制御回路は、電断中等においてドライバ20の主回路から駆動電力が供給されていないモータ30の停止を、維持してもよい。
しかしながら、ブレーキ制御回路がモータ30を急停止させることにより、不測の事態が発生し得る。そこで、コンデンサユニット10Aは、ドライバ20のブレーキ制御回路への電源(ブレーキ電源)をバックアップすることによって、モータ30の急停止に伴う不測の事態の発生を回避している。
コンデンサユニット10Aには、コンデンサユニット10Bが接続されている。コンデンサユニット10Aとコンデンサユニット10Bとは並列接続され、コンデンサユニット10Aとコンデンサユニット10Bとに、外部から、AC電源(図3における「三相AC200V」)が入力されている。
図3に例示するように、コンデンサユニット10Aには、コンデンサユニット10Bを増設することができ、コンデンサユニット10Aの電気容量が不足する等の事態が発生した場合に、コンデンサユニット10Aの電気容量を擬似的に大きくすることができる。より正確には、コンデンサユニット10Aは、コンデンサユニット10Bと電気的に並列に接続されることにより、コンデンサユニット10Bの電気容量を利用することができる。
すなわち、コンデンサユニット10(例えば、コンデンサユニット10A)は、「自装置以外のコンデンサユニット10(コンデンサユニット10B)」と電気的に接続するためのコネクタ(外部コネクタ)を備えている。コンデンサユニット10(例えば、コンデンサユニット10A)は、コネクタで、「自装置以外のコンデンサユニット10(コンデンサユニット10B)」を増設する(電気的に接続する)ことができる。コンデンサユニット10Aとコンデンサユニット10Bとは、互いのコネクタを直結し、または、互いのコネクタを有線でつないで、相互に電気的に並列接続する。
コンデンサユニット10は、コネクタを介して「自装置以外のコンデンサユニット10」と電気的に並列に接続することによって、(疑似的に)電気容量を増やし、つまり、「自装置以外のコンデンサユニット10」の電気容量を利用することができる。すなわち、コンデンサユニット10は、コネクタで、「自装置以外のコンデンサユニット10(コンデンサユニット10B)」を増設して、(疑似的に)第一バックアップ用コンデンサ100の電気容量を大きくすることができる。したがって、コンデンサユニット10は、第二バックアップ用コンデンサ109の電気容量が不足するといった事態に対応することが可能である。
なお、図3には、コンデンサユニット10(図3の例ではコンデンサユニット10A)が、コネクタを介して、1台の「自装置以外のコンデンサユニット10(図3の例ではコンデンサユニット10B)」と電気的に並列接続する例が示されている。しかしながら、コンデンサユニット10が、コネクタを介して、電気的に並列接続することのできる「自装置以外のコンデンサユニット10」は1台に限られない。コンデンサユニット10は、コネクタを介して、複数台(例えば、2台または3台)の「自装置以外のコンデンサユニット10」と、電気的に並列接続することができる。言い換えれば、コンデンサユニット10は、「自装置以外のコンデンサユニット10」と電気的に接続するためのコネクタ(外部コネクタ)を、複数備えている。
また、図3には、コンデンサユニット10(図3の例ではコンデンサユニット10A)のコネクタと、別のコンデンサユニット10(図3の例ではコンデンサユニット10B)のコネクタとが、有線で、電気的に接続される例が示されている。しかしながら、複数のコンデンサユニット10の各々のコネクタ間が、有線で電気的に接続させることは必須ではない。複数のコンデンサユニット10の各々のコネクタ間が直結してもよい。例えば、コンデンサユニット10Aのコネクタと、コンデンサユニット10Bのコネクタとは直結してもよい。
なお、ここで述べた「コネクタ(外部コネクタ)」は、図6に示す「コンデンサ増設端子112」に相当し、その詳細は図6を用いて後述する。
(従来の電力供給システムとの比較)
図4は、電力供給システム1および従来の電力供給システムの各々の概要および両者の比較を示している。図4の(A)は、従来の電力供給システムの全体概要を示す図である。従来の電力供給システムは、ドライバ97の主回路に、従来のコンデンサユニット99が主回路電源を供給し、ドライバ97の制御回路に、UPS(Uninterruptible Power Supply、無停電電源装置)98が制御電源を供給する構成である。図4の(B)は、図2に例示した電力供給システム1のうち、特にコンデンサユニット10がドライバ20に供給する電力(電源)について説明する図である。図4の(C)は、図4の(A)に例示した「従来の電力供給システム」と、図4の(B)に例示した電力供給システム1と、を比較する表である。図4の(C)の表において、「ドライバ97+UPS98+従来のコンデンサユニット99」の「組合せ」は、「従来の電力供給システム」を示し、「ドライバ20+コンデンサユニット10」の「組合せ」は、電力供給システム1を示している。
図4は、電力供給システム1および従来の電力供給システムの各々の概要および両者の比較を示している。図4の(A)は、従来の電力供給システムの全体概要を示す図である。従来の電力供給システムは、ドライバ97の主回路に、従来のコンデンサユニット99が主回路電源を供給し、ドライバ97の制御回路に、UPS(Uninterruptible Power Supply、無停電電源装置)98が制御電源を供給する構成である。図4の(B)は、図2に例示した電力供給システム1のうち、特にコンデンサユニット10がドライバ20に供給する電力(電源)について説明する図である。図4の(C)は、図4の(A)に例示した「従来の電力供給システム」と、図4の(B)に例示した電力供給システム1と、を比較する表である。図4の(C)の表において、「ドライバ97+UPS98+従来のコンデンサユニット99」の「組合せ」は、「従来の電力供給システム」を示し、「ドライバ20+コンデンサユニット10」の「組合せ」は、電力供給システム1を示している。
以上に構成を説明した電力供給システム1および従来の電力供給システムについて、先ず、両者に共通する、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」の発生に伴うリスクについて、説明しておく。
(入力電圧の急変に伴うリスク)
ドライバ20およびドライバ97の動作中に、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、ドライバ20またはドライバ97が制御している複数のメカ同士が干渉し合うなどして、ワークの破損等が発生し得る。例えば、液剤充填に係る作業においては複数軸が同期して動くため、入力電圧の急変時に、慣性の異なる複数のメカ同士(例えば、ノズル部分のメカと搬送部分のメカと)が干渉したり衝突したりすることによって、高価なノズルが折れることがある。より具体的には、長いコンベヤはイナーシャが大であるのに対し、液剤充填機はイナーシャが小さいため、「入力電圧の急変」が発生した場合、位置ズレが大きくなり、高価なノズルが割れることがある。また、液剤充填機の稼働する無菌空間等での復旧作業には、莫大な工数が掛かるだけでなく、廃棄ロスおよび液剤の補充等に莫大な額の損害が発生し得る。
ドライバ20およびドライバ97の動作中に、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、ドライバ20またはドライバ97が制御している複数のメカ同士が干渉し合うなどして、ワークの破損等が発生し得る。例えば、液剤充填に係る作業においては複数軸が同期して動くため、入力電圧の急変時に、慣性の異なる複数のメカ同士(例えば、ノズル部分のメカと搬送部分のメカと)が干渉したり衝突したりすることによって、高価なノズルが折れることがある。より具体的には、長いコンベヤはイナーシャが大であるのに対し、液剤充填機はイナーシャが小さいため、「入力電圧の急変」が発生した場合、位置ズレが大きくなり、高価なノズルが割れることがある。また、液剤充填機の稼働する無菌空間等での復旧作業には、莫大な工数が掛かるだけでなく、廃棄ロスおよび液剤の補充等に莫大な額の損害が発生し得る。
ここで、落雷等を原因とする入力電圧の急変(瞬時電圧低下および瞬時停電など)時にモータ30等に正常な停止をさせるには、「ドライバ20またはドライバ97」の主回路および制御回路の双方に電力を供給する必要がある。すなわち、「ドライバ20またはドライバ97」の主回路電源だけでなく、制御電源もバックアップされていなくては、落雷等を原因とする入力電圧の急変に伴って、ノズルの破損等を含む巨額の損失を被ることになる。
しかしながら、そのような液剤充填機が稼働している工場等において、ドライバ20またはドライバ97の電源をバックアップするための機器の設置スペースは、限られていることが多い。
(従来の電力供給システム)
図4の(A)に例示する従来の電力供給システムにおいては、「入力電圧の急変」に伴う上述のリスクの回避策として、つまり、入力電圧の急変時に複数軸(複数のメカ)を同期させたまま停止させるために、以下のような構成が採用されていた。
図4の(A)に例示する従来の電力供給システムにおいては、「入力電圧の急変」に伴う上述のリスクの回避策として、つまり、入力電圧の急変時に複数軸(複数のメカ)を同期させたまま停止させるために、以下のような構成が採用されていた。
すなわち、従来、上述の特許文献1に係るような「ドライバ97の主回路電源のみをバックアップ可能な、従来のコンデンサユニット99」と、「ドライバ97の制御電源のみをバックアップするUPS98」と、を併用していた。図4の(A)に例示するように、従来の電力供給システムにおいて、「ドライバ97の制御電源」については、「ドライバ97の主回路電源」をバックアップする従来のコンデンサユニット99とは別の、UPS98等によってバックアップしていた。
しかしながら、上述の通り、工場等においてはドライバ97の電源をバックアップするための場所が限られているため、ドライバ97の制御電源のバックアップに用いるUPS98は、小型で高性能だが高価なものを選択せざるを得ない。また、UPS09は、バッテリの定期交換等のメンテナンスが必要な上、一般に、電気容量が不足する場合に増設が困難である。
(本実施形態に係る電力供給システム)
図4の(B)に例示するコンデンサユニット10は、ドライバ20の主回路電源および制御電源の2系統の電源出力を行ない、主回路電源および制御電源の双方をバックアップしている。言い換えれば、コンデンサユニット10は、「モータ30を駆動させるための主回路電源(モータ駆動電源)」および「モータ30の駆動(つまり、主回路)を制御するための制御電源」の両者をバックアップする。
図4の(B)に例示するコンデンサユニット10は、ドライバ20の主回路電源および制御電源の2系統の電源出力を行ない、主回路電源および制御電源の双方をバックアップしている。言い換えれば、コンデンサユニット10は、「モータ30を駆動させるための主回路電源(モータ駆動電源)」および「モータ30の駆動(つまり、主回路)を制御するための制御電源」の両者をバックアップする。
したがって、落雷等を原因とする入力電圧の急変が発生した場合であっても、コンデンサユニット10がドライバ20への電源供給を継続するので、例えば、複数軸は同期して制御され、メカ間の衝突が回避される。また、コンデンサユニット10は、ドライバ20に主回路電源および制御電源を供給するとともに、両者のバックアップを行ない、さらに、回生/力行のエネルギー活用に対応している。さらに、電力供給システム1においては、コンデンサユニット10がドライバ20の制御電源をバックアップするため、UPS98が不要であり、また当然に、UPS98のための設置スペースが不要となる。
(比較表)
図4の(C)を用いて、図4の(A)に例示した「従来の電力供給システム」と、図4の(B)に例示した電力供給システム1と、の違いについて整理しておく。なお、図4の(C)に示されている通り、「従来の電力供給システム」と電力供給システム1とで、「主回路電源」および「出力」についてはほとんど違いが無いので、「主回路電源」および「出力」について詳細は略記する。
図4の(C)を用いて、図4の(A)に例示した「従来の電力供給システム」と、図4の(B)に例示した電力供給システム1と、の違いについて整理しておく。なお、図4の(C)に示されている通り、「従来の電力供給システム」と電力供給システム1とで、「主回路電源」および「出力」についてはほとんど違いが無いので、「主回路電源」および「出力」について詳細は略記する。
「従来の電力供給システム(ドライバ97+UPS98+従来のコンデンサユニット99)」において、「制御電源」は「単相AC電源」である。これに対して、電力供給システム1(ドライバ20+コンデンサユニット10)において、「制御電源」は「DC電源(例えば、DC24V)」である。したがって、電力供給システム1においてコンデンサユニット10は、第一バックアップ用コンデンサ100によって、ドライバ20の制御電源をバックアップすることができる。
また、従来のコンデンサユニット99は、「ブレーキ回路(ブレーキ制御回路)」を外付けでコントロールすることができず、言い換えれば、従来のコンデンサユニット99は、ブレーキ回路のための電源をバックアップすることができない。これに対し、電力供給システム1において、ドライバ20は「ブレーキ回路(ブレーキ制御回路)」を内蔵しており、コンデンサユニット10は、図3に例示したように、24VのDC電流をドライバ20のブレーキ制御回路に供給する。そして、コンデンサユニット10は、第一バックアップ用コンデンサ100の充電電力を、ドライバ20のブレーキ制御回路に供給することができ、つまり、ブレーキ電源をバックアップすることができる。なお、第一バックアップ用コンデンサ100によるブレーキ電源のバックアップについて、詳細は図6および図7を用いて後述する。
さらに、従来のコンデンサユニット99は、「増設(つまり、自装置以外の、従来のコンデンサユニット99との電気的な接続)」ができず(不可)、「対応ドライバ容量(つまり、吸収可能な回生エネルギー)」は「1kW以下」であった。これに対し、コンデンサユニット10は、「増設」が「可能」であり、「増設」によって、「対応ドライバ容量」を「3kW以下」とすることができる。
(コンデンサユニットが実現する機能)
コンデンサユニット10は、従来のコンデンサユニットが実現することのできなかった下記の3つの機能を実現することができる。第一に、コンデンサユニット10は、ドライバ20の主回路電源および制御電源の双方をバックアップすることができる。第二に、コンデンサユニット10は、「自装置以外のコンデンサユニット10」を増設することによって、第一バックアップ用コンデンサ100および第二バックアップ用コンデンサ109の少なくとも一方の電気容量の不足に対応することができる。また、コンデンサユニット10は、「自装置以外のコンデンサユニット10」を増設することによって、大きな回生エネルギーにも対応することができる。例えば、コンデンサユニット10は、3kWの回生エネルギーにも対応することができ、回生エネルギーが大きい大型の液剤充填機等にも対応することができる。第三に、コンデンサユニット10は、瞬時電圧低下および瞬時停電などの「入力電圧の急変」を検知して、「入力電圧の急変」を外部に通知する(例えば、「入力電圧の急変」を検知したことを外部に通知する信号を出力する)機能を備えている。以下、コンデンサユニット10の備える「入力電圧の急変を通知する」機能について、詳細を説明する。
コンデンサユニット10は、従来のコンデンサユニットが実現することのできなかった下記の3つの機能を実現することができる。第一に、コンデンサユニット10は、ドライバ20の主回路電源および制御電源の双方をバックアップすることができる。第二に、コンデンサユニット10は、「自装置以外のコンデンサユニット10」を増設することによって、第一バックアップ用コンデンサ100および第二バックアップ用コンデンサ109の少なくとも一方の電気容量の不足に対応することができる。また、コンデンサユニット10は、「自装置以外のコンデンサユニット10」を増設することによって、大きな回生エネルギーにも対応することができる。例えば、コンデンサユニット10は、3kWの回生エネルギーにも対応することができ、回生エネルギーが大きい大型の液剤充填機等にも対応することができる。第三に、コンデンサユニット10は、瞬時電圧低下および瞬時停電などの「入力電圧の急変」を検知して、「入力電圧の急変」を外部に通知する(例えば、「入力電圧の急変」を検知したことを外部に通知する信号を出力する)機能を備えている。以下、コンデンサユニット10の備える「入力電圧の急変を通知する」機能について、詳細を説明する。
(「入力電圧の急変を通知する」機能)
コンデンサユニット10は、「入力電圧の急変」を検知して外部出力に出す機能を備えている。図1に例示するコンデンサユニット10は、「入力電圧の急変」を検知すると通知信号を外部に出力する通知部200を備えている。コンデンサユニット10は、「入力電圧の急変」を検知した通知部200の出力する通知信号をトリガとして、コントローラ40等に、「入力電圧の急変」時に必要な処理を実行させることができるとの効果を奏する。例えば、「入力電圧の急変」を通知されたコントローラ40は、複数のドライバ20に、複数のドライバ20の各々に接続されているモータ30を同期させて停止させることができる。
コンデンサユニット10は、「入力電圧の急変」を検知して外部出力に出す機能を備えている。図1に例示するコンデンサユニット10は、「入力電圧の急変」を検知すると通知信号を外部に出力する通知部200を備えている。コンデンサユニット10は、「入力電圧の急変」を検知した通知部200の出力する通知信号をトリガとして、コントローラ40等に、「入力電圧の急変」時に必要な処理を実行させることができるとの効果を奏する。例えば、「入力電圧の急変」を通知されたコントローラ40は、複数のドライバ20に、複数のドライバ20の各々に接続されているモータ30を同期させて停止させることができる。
〔実施形態2〕
本発明の実施形態2について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本実施形態におけるコンデンサユニット11が、上述の実施形態1におけるコンデンサユニット10と異なるのは、本実施形態に係るコンデンサユニット11の電源入力は1つであるという点である。以下、図5を用いて、コンデンサユニット11の詳細について説明する。
本発明の実施形態2について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本実施形態におけるコンデンサユニット11が、上述の実施形態1におけるコンデンサユニット10と異なるのは、本実施形態に係るコンデンサユニット11の電源入力は1つであるという点である。以下、図5を用いて、コンデンサユニット11の詳細について説明する。
図5は、本発明の実施形態2に係るコンデンサユニット11(電力供給装置)の回路構成を示す図である。コンデンサユニット11は、三相200VのAC電源を供給され、24VのDC電流をドライバ20の制御回路に供給するとともに、200VのDC電流をドライバ20の主回路に供給する。すなわち、外部電源からAC電源入力端子106が受容したAC電源は、整流器108により整流され、DC/DC電源コンバータモジュール105により電圧を所望の値に調整された後、制御電源として、制御電源出力端子101からドライバ20に出力される。また、外部電源からAC電源入力端子106が受容したAC電源は、整流器108により整流され、主回路電源として、主回路電源出力端子110からドライバ20に出力される。
具体的には、AC電源入力端子106には、商用電源等によって、AC電源(例えば、三相200V)が入力され、コンデンサ107は、AC電源入力端子106に入力されたAC電源からノイズ(高調波電流)を低減する。コンデンサ107を通過した交流電圧は、整流器108にて整流される。整流器108は、直流電圧を、第一バックアップ用コンデンサ100を介して、DC/DC電源コンバータモジュール105および主回路電源出力端子110へと出力する。すなわち、整流器108は、第一バックアップ用コンデンサ100を介して、DC/DC電源コンバータモジュール105および主回路電源出力端子110に接続している。
第一バックアップ用コンデンサ100を介して整流器108と接続しているDC/DC電源コンバータモジュール105は、整流器108から出力された直流電流の電圧を、所望の電圧(例えば、24V)へと変換する。DC/DC電源コンバータモジュール105は、所望の電圧に変換した直流電流を、制御電源出力端子101に出力する。制御電源出力端子101は、DC/DC電源コンバータモジュール105によって電圧が所望の値に調整された直流電流を、制御電源(ドライバ20の制御回路のための電源)として、ドライバ20に供給する。
同様に、第一バックアップ用コンデンサ100を介して整流器108と接続している主回路電源出力端子110は、整流器108から出力された直流電流を、主回路電源(ドライバ20の主回路のための電源)として、ドライバ20に供給する。
(制御電源のバックアップ)
第一バックアップ用コンデンサ100は、整流器108と制御電源出力端子101との間に挿入され、例えば、整流器108とDC/DC電源コンバータモジュール105との間に挿入される。すなわち、図5には、第一バックアップ用コンデンサ100の正極端子が、整流器108の正側出力端子とDC/DC電源コンバータモジュール105の正側入力端子との間に接続されている例が示されている。図5に示す回路例においては、第一バックアップ用コンデンサ100の負極端子は、整流器108の負側出力端子とDC/DC電源コンバータモジュール105の負側入力端子との間に接続されている。第一バックアップ用コンデンサ100は、整流器108の出力によって充電され、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、放電によりドライバ20の制御回路に制御電源を供給する。
第一バックアップ用コンデンサ100は、整流器108と制御電源出力端子101との間に挿入され、例えば、整流器108とDC/DC電源コンバータモジュール105との間に挿入される。すなわち、図5には、第一バックアップ用コンデンサ100の正極端子が、整流器108の正側出力端子とDC/DC電源コンバータモジュール105の正側入力端子との間に接続されている例が示されている。図5に示す回路例においては、第一バックアップ用コンデンサ100の負極端子は、整流器108の負側出力端子とDC/DC電源コンバータモジュール105の負側入力端子との間に接続されている。第一バックアップ用コンデンサ100は、整流器108の出力によって充電され、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、放電によりドライバ20の制御回路に制御電源を供給する。
(主回路電源のバックアップ)
コンデンサユニット11において、整流器108と主回路電源出力端子110との間に挿入された第一バックアップ用コンデンサ100は、主回路電源のバックアップも行っている。図5において、第一バックアップ用コンデンサ100の正極端子は、整流器108の正側出力端子と主回路電源出力端子110の正側出力端子110Aとの間に接続されている。また、第一バックアップ用コンデンサ100の負極端子は、整流器108の負側出力端子と主回路電源出力端子110の負側出力端子110Bとの間に接続されている。
コンデンサユニット11において、整流器108と主回路電源出力端子110との間に挿入された第一バックアップ用コンデンサ100は、主回路電源のバックアップも行っている。図5において、第一バックアップ用コンデンサ100の正極端子は、整流器108の正側出力端子と主回路電源出力端子110の正側出力端子110Aとの間に接続されている。また、第一バックアップ用コンデンサ100の負極端子は、整流器108の負側出力端子と主回路電源出力端子110の負側出力端子110Bとの間に接続されている。
第一バックアップ用コンデンサ100は、整流器108の出力によって充電され、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、放電によりドライバ20の主回路に主回路電源を供給する。言い換えれば、第一バックアップ用コンデンサ100は、落雷等を原因とする入力電圧の急変が発生した場合に、充電電力を、ドライバ20の主回路に供給する。
また、第一バックアップ用コンデンサ100は、モータ30からの回生エネルギーを吸収する。
以上に説明したとおり、コンデンサユニット11は、1系統のAC電源(例えば、三相200VのAC電源)の入力を受けて、2系統のDC電源(例えば、DC24Vの制御電源とDC200Vの主回路電源)の出力を行う。コンデンサユニット11は、また、その2系統のDC電源(具体的には、制御電源と主回路電源)について、バックアップを行なっている。すなわち、コンデンサユニット11は、第一バックアップ用コンデンサ100によって、制御電源と主回路電源とについて、バックアップを行なっている。
すなわち、コンデンサユニット11(電力供給装置)は、ドライバ20(モータ駆動装置)の、モータ30にモータ駆動電力を供給する主回路に電力を供給する電力供給装置であって、外部の交流電源から入力された交流を整流する整流器108(整流回路)と、ドライバ20の、前記主回路を制御する制御回路に電力を供給する制御電源出力端子101と、を備え、(1)整流器108と制御電源出力端子101との間には第一バックアップ用コンデンサ100が挿入されており、(2)第一バックアップ用コンデンサ100は整流器108の出力により充電される。例えば、(1)整流器108の正側出力端子には第一バックアップ用コンデンサ100の正極端子が電気的に接続されており、(2)整流器108の負側出力端子には第一バックアップ用コンデンサ100の負極端子が電気的に接続されている。
図5において、(1)整流器108の正側出力端子と制御電源出力端子101の正側101Aとの間には第一バックアップ用コンデンサ100の正極端子が電気的に接続されている。また、(2)整流器108の負側出力端子と制御電源出力端子101の負側101Bとの間には第一バックアップ用コンデンサ100の負極端子が電気的に接続されている。
前記の構成によれば、コンデンサユニット11は、整流器108と、ドライバ20の制御回路に電力を供給する制御電源出力端子101と、の間に第一バックアップ用コンデンサ100を備えている。そして、第一バックアップ用コンデンサ100は、整流器108の出力によって充電される。
したがって、コンデンサユニット11は、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変が発生した場合であっても、第一バックアップ用コンデンサ100の充電電力を、ドライバ20の制御回路に供給することができるとの効果を奏する。
また、コンデンサユニット11は、ドライバ20を変更することなく、ドライバ20について、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変への対策を行なうことができるとの効果を奏する。
通知部200は、コンデンサユニット11への入力電圧の急変が発生すると、「入力電圧の急変が発生した」ことを外部に通知する。通知部200は、AC電源入力端子106と接続しており、AC電源入力端子106に入力されるAC電源の入力電圧が急変したことを検出すると、「入力電圧の急変が発生した」ことを、外部の装置(例えば、コントローラ40等)に通知する。
なお、前述の通り、コンデンサユニット11において、DC/DC電源コンバータモジュール105は必須ではなく、整流器108から出力された直流電流の電圧が、制御電源出力端子101へと入力すべき所望の電圧である場合、電圧変換は不要となる。また、第一バックアップ用コンデンサ100と制御電源出力端子101との間に、インバータ回路(DC/ACインバータ回路)を挿入し、制御電源出力端子101が、制御電源として交流電流をドライバ20に供給してもよい。
〔実施形態3〕
本発明の実施形態3について、図6および図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本実施形態に係るコンデンサユニット12(電力供給装置)についての理解を容易にするため、先ず、コンデンサユニット12について、ドライバ20(モータ駆動装置)との接続例を、図7を用いて説明する。
本発明の実施形態3について、図6および図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本実施形態に係るコンデンサユニット12(電力供給装置)についての理解を容易にするため、先ず、コンデンサユニット12について、ドライバ20(モータ駆動装置)との接続例を、図7を用いて説明する。
(ドライバとの接続例)
図7は、コンデンサユニット12について、ドライバ20との接続例を示す図である。図7には、マスタ装置としてのコントローラ40が、フィールドネットワーク60を介して、複数のスレーブ装置(具体的には、ドライバ20A、20B、および20C)と接続する例が示されている。ドライバ20A、20B、および20Cの各々は、コンデンサユニット12A、12B、および12Cの各々によって、電力を供給されている。コンデンサユニット12A、12B、および12Cの各々には、外部から、三相200VのAC電源を供給されている。
図7は、コンデンサユニット12について、ドライバ20との接続例を示す図である。図7には、マスタ装置としてのコントローラ40が、フィールドネットワーク60を介して、複数のスレーブ装置(具体的には、ドライバ20A、20B、および20C)と接続する例が示されている。ドライバ20A、20B、および20Cの各々は、コンデンサユニット12A、12B、および12Cの各々によって、電力を供給されている。コンデンサユニット12A、12B、および12Cの各々には、外部から、三相200VのAC電源を供給されている。
なお、図7の説明において、ドライバ20A、20B、および20Cは、3つの「ドライバ20」の各々を区別するために「ドライバ20」に付合「A」、「B」、および「C」を付したものである。ドライバ20A、20B、および20Cの各々を特に区別する必要がない場合は、単に「ドライバ20」と称する。同様に、コンデンサユニット12A、12B、および12Cは、3つの「コンデンサユニット12」の各々を区別するために「コンデンサユニット12」に付合「A」、「B」、および「C」を付したものである。コンデンサユニット12A、12B、および12Cの各々を特に区別する必要がない場合は、単に「コンデンサユニット12」と称する。
図7に示すように、コンデンサユニット12は、ドライバ20に、主回路電源(図7における「P-N」)と、制御電源(図7の、紙面上側における「DC24V」)と、を供給するとともに、主回路電源と制御電源とをバックアップしている。また、コンデンサユニット12は、ドライバ20に、ブレーキ電源(図7の、紙面下側における「DC24V(Brake)」)を供給するとともに、ブレーキ電源をバックアップしている。言い換えれば、コンデンサユニット12は、ドライバ20に対し、主回路電源、制御電源、および、ブレーキ電源の3系統の電源出力を行なうとともに、主回路電源、制御電源、および、ブレーキ電源のバックアップを行なっている。コンデンサユニット12は、落雷等を原因とする入力電圧の急変が発生した場合にドライバ20のブレーキ制御回路に電力を供給することによって、ドライバ20が意図せずモータ30にブレーキをかけてしまう事態を防いでいる。さらに、コンデンサユニット12は、回生/力行のエネルギー活用に対応している。
なお、前述の通り、コンデンサユニット12において、DC/DC電源コンバータモジュール105は必須ではなく、整流器104から出力された直流電流の電圧が、制御電源出力端子101へと入力すべき所望の電圧である場合、電圧変換は不要となる。また、第一バックアップ用コンデンサ100と制御電源出力端子101との間に、インバータ回路(DC/ACインバータ回路)を挿入し、制御電源出力端子101が、制御電源として交流電流をドライバ20に供給してもよい。
(コンデンサユニットの概要)
これまで図7を用いて概要を説明してきたコンデンサユニット12について、次に、その詳細を、図6を用いて説明していく。なお、図6に回路構成を例示するコンデンサユニット12は、図1に回路構成を例示するコンデンサユニット10と、以下の3点において異なっている。
これまで図7を用いて概要を説明してきたコンデンサユニット12について、次に、その詳細を、図6を用いて説明していく。なお、図6に回路構成を例示するコンデンサユニット12は、図1に回路構成を例示するコンデンサユニット10と、以下の3点において異なっている。
第1に、コンデンサユニット12はブレーキ電源出力端子111を備え、ドライバ20のブレーキ制御回路に電力(ブレーキ電源)を供給するとともに、ブレーキ電源をバックアップしている。具体的には、コンデンサユニット12(電力供給装置)において、(1)第一バックアップ用コンデンサ100の正極端子は、整流器104の正側出力端子と、「入力電圧の急変が発生した場合に主回路の動作から独立してモータ30を減速させる」ブレーキ制御回路に電力を供給する出力端子であるブレーキ電源出力端子111の正側111Aと、の間に電気的に接続されており、(2)第一バックアップ用コンデンサ100の負極端子は、整流器104の負側出力端子と、ブレーキ電源出力端子111の負側111Bと、の間に電気的に接続されている。言い換えれば、コンデンサユニット12において、第一バックアップ用コンデンサ100は、整流器104と、「入力電圧の急変が発生した場合に主回路の動作から独立してモータ30を減速させる」ブレーキ制御回路に電力を供給するブレーキ電源出力端子111と、の間に挿入されている。
前記の構成によれば、コンデンサユニット12は、整流器104と、「入力電圧の急変が発生した場合に主回路の動作から独立してモータ30を減速させる」ブレーキ制御回路に電力を供給するブレーキ電源出力端子111(出力端子)と、の間に第一バックアップ用コンデンサ100を備えている。そして、コンデンサユニット12は、落雷等を原因とする入力電圧の急変が発生した場合、「入力電圧の急変が発生した場合に主回路の動作から独立してモータ30を減速させる」ブレーキ制御回路に、第一バックアップ用コンデンサ100の充電電力を供給する。
ここで、前記ブレーキ制御回路への電源供給がバックアップされていない状態で、落雷等を原因とする入力電圧の急変が発生した場合、前記ブレーキ制御回路は、ドライバ20の主回路の動作から独立してモータ30を減速させる。また、前記ブレーキ制御回路は、電断中等においてドライバ20の主回路から駆動電力が供給されていないモータ30の停止を、維持してもよい。
しかしながら、例えば、前記主回路によるモータ30の制御から独立して、前記ブレーキ制御回路がモータ30を急減速させた場合、ワークの破損等、前記主回路がモータ30を制御している時には発生しなかった不測の事態が、発生し得る。
これに対して、コンデンサユニット12は、落雷等を原因とする入力電圧の急変が発生した場合に、前記ブレーキ制御回路への電源供給をバックアップする。したがって、前記電力供給装置は、落雷等を原因とする入力電圧の急変が発生した場合であっても、前記ブレーキ制御回路が前記主回路の動作から独立して前記モータを減速させることにより前述のような不測の事態が発生するのを回避することができるとの効果を奏する。
なお、前述の通り、コンデンサユニット12にとって、ブレーキ制御回路がドライバ20に内蔵されていることは必須ではない。コンデンサユニット12は、ドライバ20から独立して存在する、「入力電圧の急変が発生した場合に、ドライバ20の主回路の動作から独立してモータ30を減速させるブレーキ」を制御する回路(制御回路)または装置にブレーキ電源を供給してもよい。コンデンサユニット12は、ドライバ20から独立して存在する、「入力電圧の急変が発生した場合に、ドライバ20の主回路の動作から独立してモータ30を減速させるブレーキ」を制御する回路(制御回路)または装置のブレーキ電源をバックアップしてもよい。
第2に、コンデンサユニット12はコンデンサ増設端子112を備え、自装置以外のコンデンサユニット12と電気的に並列接続することによって、(疑似的に)自装置の第二バックアップ用コンデンサ109の電気容量を大きくすることができる。すなわち、コンデンサユニット12は、自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109の電気容量を利用することができる。
具体的には、コンデンサユニット12は、第二バックアップ用コンデンサ109に電気的に接続されたコンデンサ増設端子112(コネクタ)をさらに備えている。そして、コンデンサユニット12のコンデンサ増設端子112は、自装置以外のコンデンサユニット12の、(1)コンデンサ増設端子112、または、(2)ドライバ20の主回路に電力を供給する主回路電源出力端子110と接続可能である。
例えば、コンデンサユニット12Aのコンデンサ増設端子112は、コンデンサユニット12Bの「コンデンサ増設端子112、または、主回路電源出力端子110」と接続可能である。なお、コンデンサユニット12Aのコンデンサ増設端子112は、コンデンサユニット12Bの「コンデンサ増設端子112、または、主回路電源出力端子110」と、有線で接続されてもよいし、直結されてもよい。
そのため、自装置以外のコンデンサユニット12の、(1)コンデンサ増設端子112、または、(2)ドライバ20の主回路に電力を供給する主回路電源出力端子110が、コンデンサ増設端子112に電気的に並列接続されると、自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109と、自装置の第二バックアップ用コンデンサ109とは、電気的に並列接続されることになる。つまり、コンデンサユニット12は、自装置以外のコンデンサユニット12の、(1)コンデンサ増設端子112、または、(2)ドライバ20の主回路に電力を供給する主回路電源出力端子110を、コンデンサ増設端子112に電気的に並列接続させることにより、自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109の電気容量を利用することができる。例えば、コンデンサユニット12Aのコンデンサ増設端子112に、コンデンサユニット12Bの「コンデンサ増設端子112、または、主回路電源出力端子110」を電気的に並列接続させることにより、コンデンサユニット12Aは、コンデンサユニット12Bの第二バックアップ用コンデンサ109の電気容量を利用する。
したがって、コンデンサユニット12は、自装置の第二バックアップ用コンデンサ109の電気容量が不足する場合等において、自装置以外のコンデンサユニット12の、(1)コンデンサ増設端子112、または、(2)ドライバ20の主回路に電力を供給する主回路電源出力端子110を、コンデンサ増設端子112に電気的に並列接続させることにより、自装置に接続している自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109の電気容量を利用することができるとの効果を奏する。
(コンデンサに係る注記)
なお、コンデンサユニット12は、自装置の第二バックアップ用コンデンサ109の電気容量を大きくするために、自装置の筺体の内側または外側に不図示のコンデンサを部品としてさらに設けてもよい。そして、自装置の筺体の内側または外側に追加したこのコンデンサを、第二バックアップ用コンデンサ109に並列接続させることによって、第二バックアップ用コンデンサ109の電気容量を大きくしてもよい。
なお、コンデンサユニット12は、自装置の第二バックアップ用コンデンサ109の電気容量を大きくするために、自装置の筺体の内側または外側に不図示のコンデンサを部品としてさらに設けてもよい。そして、自装置の筺体の内側または外側に追加したこのコンデンサを、第二バックアップ用コンデンサ109に並列接続させることによって、第二バックアップ用コンデンサ109の電気容量を大きくしてもよい。
また、上述までの第一バックアップ用コンデンサ100および第二バックアップ用コンデンサ109の各々は、1つのコンデンサ(コンデンサ部品)によって実現してもよいし、2つ以上のコンデンサ(コンデンサ部品)によって実現してもよい。
第3に、コンデンサユニット12において、コンデンサユニット10における第一バックアップ用コンデンサ100と、第二バックアップ用コンデンサ109と、は電気的に並列接続されている。具体的には、コンデンサユニット12は、コンデンサユニット10と同様に、ドライバ20の主回路に電力を供給する主回路電源出力端子110の正側出力端子110Aと負側出力端子110Bとの間に接続された第二バックアップ用コンデンサ109を備えている。そして、第一バックアップ用コンデンサ100の正極端子は第二バックアップ用コンデンサ109の正極端子と電気的に接続し、第一バックアップ用コンデンサ100の負極端子は第二バックアップ用コンデンサ109の負極端子と電気的に接続している。
前記の構成によれば、コンデンサユニット12は、ドライバ20の主回路に電力を供給する主回路電源出力端子110の正側出力端子110Aと負側出力端子110Bとの間に接続された第二バックアップ用コンデンサ109を備えている。そして、コンデンサユニット12の第一バックアップ用コンデンサ100の正極端子は第二バックアップ用コンデンサ109の正極端子と電気的に接続し、第一バックアップ用コンデンサ100の負極端子は第二バックアップ用コンデンサ109の負極端子と電気的に接続している。すなわち、コンデンサユニット12において、第一バックアップ用コンデンサ100と、第二バックアップ用コンデンサ109とは、電気的に並列接続されている。
したがって、コンデンサユニット12は、入力電圧の急変が発生した場合、第一バックアップ用コンデンサ100に電気的に並列接続されている第二バックアップ用コンデンサ109の充電電力を、ドライバ20の制御回路に供給することができるとの効果を奏する。
(コンデンサユニットの詳細)
図6は、本発明の実施形態3に係るコンデンサユニット12の回路構成を示す図である。なお、前述の通り、コンデンサユニット12は、コンデンサユニット10の構成に加えて、ブレーキ電源出力端子111およびコンデンサ増設端子112をさらに備えている。また、コンデンサユニット12においては、第一バックアップ用コンデンサ100と、第二バックアップ用コンデンサ109と、が電気的に並列に接続されている。そして、第一バックアップ用コンデンサ100と、第二バックアップ用コンデンサ109との間には、ダイオード113が挿入されている。これらの構成以外は、コンデンサユニット12の構成とコンデンサユニット10の構成とは同様であり、コンデンサユニット12の構成のうち、コンデンサユニット10と同様の構成については、説明を省略する。
図6は、本発明の実施形態3に係るコンデンサユニット12の回路構成を示す図である。なお、前述の通り、コンデンサユニット12は、コンデンサユニット10の構成に加えて、ブレーキ電源出力端子111およびコンデンサ増設端子112をさらに備えている。また、コンデンサユニット12においては、第一バックアップ用コンデンサ100と、第二バックアップ用コンデンサ109と、が電気的に並列に接続されている。そして、第一バックアップ用コンデンサ100と、第二バックアップ用コンデンサ109との間には、ダイオード113が挿入されている。これらの構成以外は、コンデンサユニット12の構成とコンデンサユニット10の構成とは同様であり、コンデンサユニット12の構成のうち、コンデンサユニット10と同様の構成については、説明を省略する。
ブレーキ電源出力端子111は、DC/DC電源コンバータモジュール105に接続されており、ブレーキ電源出力端子111は、DC/DC電源コンバータモジュール105によって電圧を調整された直流電流を、ブレーキ電源として、ドライバ20に供給する。ここで、ブレーキ電源出力端子111は、DC/DC電源コンバータモジュール105を介して、第一バックアップ用コンデンサ100に接続している。入力電圧の急変が発生すると、整流器108の出力によって第一バックアップ用コンデンサ100に充電されていた電力が、ブレーキ電源出力端子111に供給される。言い換えれば、第一バックアップ用コンデンサ100は、整流器108の出力によって充電され、入力電圧の急変が発生すると、放電によって、(1)ドライバ20の制御回路に制御電源を供給し、(2)ドライバ20のブレーキ制御回路にブレーキ電源を供給する。
コンデンサ増設端子112は、第二バックアップ用コンデンサ109に電気的に接続されている。具体的には、ドライバ20の主回路に電力を供給する主回路電源出力端子110の正側出力端子110Aと、コンデンサ増設端子112の正極112Aとは、各々、第二バックアップ用コンデンサ109の正極端子に電気的に接続されている。また、ドライバ20の主回路に電力を供給する主回路電源出力端子110の負側出力端子110Bと、コンデンサ増設端子112の負極112Bとは、各々、コンデンサ増設端子112の負極112Bに電気的に接続されている。
そして、コンデンサ増設端子112の正極112Aには、自装置以外のコンデンサユニット12の、(1)コンデンサ増設端子112の正極112A、または、(2)ドライバ20の主回路に電力を供給する主回路電源出力端子110の正側出力端子110Aが接続される。また、コンデンサ増設端子112の負極112Bには、自装置以外のコンデンサユニット12の、(1)コンデンサ増設端子112の負極112B、または、(2)ドライバ20の主回路に電力を供給する主回路電源出力端子110の負側出力端子110Bが接続される。
例えば、コンデンサユニット12Aのコンデンサ増設端子112と、コンデンサユニット12Bの、(1)コンデンサ増設端子112、または、(2)主回路電源出力端子110と、を電気的に接続して、コンデンサユニット12Aとコンデンサユニット12Bとを電気的に並列接続させることができる。つまり、コンデンサユニット12Aにコンデンサユニット12Bを増設することができる。
コンデンサユニット12Aとコンデンサユニット12Bとを電気的に並列接続させると、コンデンサユニット12Aの第二バックアップ用コンデンサ109と、コンデンサユニット12Bの第二バックアップ用コンデンサ109とは、電気的に並列接続される。
以上を整理すると、複数のコンデンサユニット12は、各々のコンデンサ増設端子112を介して、電気的に並列接続することができる。また、複数のコンデンサユニット12は、各々、自装置のコンデンサ増設端子112と、自装置以外のコンデンサユニット12の主回路電源出力端子110と、を並列接続することにより、電気的に並列接続することができる。
複数のコンデンサユニット12が互いに電気的に並列接続することにより、複数のコンデンサユニット12の各々は、互いに、電気的に接続している自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109の電気容量を利用することができる。すなわち、コンデンサユニット12は、コンデンサ増設端子112を介して自装置以外のコンデンサユニット12と電気的に並列に接続することによって、擬似的に、自装置の第二バックアップ用コンデンサ109の電気容量を大きくすることができる。
コンデンサユニット12において、第二バックアップ用コンデンサ109と第一バックアップ用コンデンサ100とは、ダイオード113を介して並列に接続されている。具体的には、第一バックアップ用コンデンサ100の正極端子と第二バックアップ用コンデンサ109の正極端子とは電気的に接続されており、両者の間に、ダイオード113の正極端子が挿入されている。また、第一バックアップ用コンデンサ100の負極端子と第二バックアップ用コンデンサ109の負極端子とは電気的に接続されており、両者の間に、ダイオード113の負極端子が挿入されている。
ダイオード113は、第二バックアップ用コンデンサ109から第一バックアップ用コンデンサ100への電流の流れが順方向となるように、第二バックアップ用コンデンサ109と第一バックアップ用コンデンサ100との間に挿入されている。
以上に説明したとおり、コンデンサユニット12は、2系統のAC電源(例えば、単相200VのAC電源と三相200VのAC電源)の入力を受けて、3系統のDC電源(例えば、DC24Vの制御電源、DC24Vのブレーキ電源、および、DC200Vの主回路電源)の出力を行う。コンデンサユニット10は、また、その3系統のDC電源(具体的には、制御電源、ブレーキ電源、および主回路電源)について、バックアップを行なっている。すなわち、コンデンサユニット10は、第一バックアップ用コンデンサ100によって制御電源およびブレーキ電源を、第二バックアップ用コンデンサ109によって主回路電源を、バックアップしている。
(電気容量について)
コンデンサユニット12は、以下の2つの構成の少なくとも一方を備えることによって、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくしている。
コンデンサユニット12は、以下の2つの構成の少なくとも一方を備えることによって、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくしている。
(自装置以外のコンデンサユニットとの接続)
コンデンサユニット12は、コンデンサ増設端子112を介して、自装置以外のコンデンサユニット12と電気的に並列に接続することができる。自装置以外のコンデンサユニット12と電気的に並列に接続することにより、接続された自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109と、自装置の第二バックアップ用コンデンサ109とは、電気的に並列接続される。
コンデンサユニット12は、コンデンサ増設端子112を介して、自装置以外のコンデンサユニット12と電気的に並列に接続することができる。自装置以外のコンデンサユニット12と電気的に並列に接続することにより、接続された自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109と、自装置の第二バックアップ用コンデンサ109とは、電気的に並列接続される。
したがって、コンデンサユニット12は、自装置以外のコンデンサユニット12と電気的に並列に接続することで、接続している自装置以外のコンデンサユニット12の第二バックアップ用コンデンサ109の電気容量を利用することができる。つまり、コンデンサユニット12は、自装置以外のコンデンサユニット12と電気的に並列に接続することで、自装置の第二バックアップ用コンデンサ109の電気容量を疑似的に大きくすることができる。
(自装置内の別のコンデンサとの接続)
コンデンサユニット12において、第一バックアップ用コンデンサ100と第二バックアップ用コンデンサ109とを電気的に並列に接続することによって、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくしている。すなわち、コンデンサユニット12において、制御電源のバックアップ電力を充電する第一バックアップ用コンデンサ100と、主回路電源のバックアップ電力を充電する第二バックアップ用コンデンサ109と、は電気的に並列に接続されている。第一バックアップ用コンデンサ100と第二バックアップ用コンデンサ109とを電気的に並列に接続することによって、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくしている。
コンデンサユニット12において、第一バックアップ用コンデンサ100と第二バックアップ用コンデンサ109とを電気的に並列に接続することによって、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくしている。すなわち、コンデンサユニット12において、制御電源のバックアップ電力を充電する第一バックアップ用コンデンサ100と、主回路電源のバックアップ電力を充電する第二バックアップ用コンデンサ109と、は電気的に並列に接続されている。第一バックアップ用コンデンサ100と第二バックアップ用コンデンサ109とを電気的に並列に接続することによって、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくしている。
(ブレーキ電源について)
コンデンサユニット12は、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくすることによって、第一バックアップ用コンデンサ100によって、制御電源だけでなく、ブレーキ電源についても、バックアップしている。
コンデンサユニット12は、第一バックアップ用コンデンサ100の電気容量を疑似的に大きくすることによって、第一バックアップ用コンデンサ100によって、制御電源だけでなく、ブレーキ電源についても、バックアップしている。
(ブレーキ電源のバックアップの変形例について)
図6には、第一バックアップ用コンデンサ100が、整流器104と、ブレーキ制御回路に電力を供給するブレーキ電源出力端子111と、の間に挿入される例が示されている。しかしながら、ブレーキ電源のバックアップのための構成は、図6に示す構成に限られない。
図6には、第一バックアップ用コンデンサ100が、整流器104と、ブレーキ制御回路に電力を供給するブレーキ電源出力端子111と、の間に挿入される例が示されている。しかしながら、ブレーキ電源のバックアップのための構成は、図6に示す構成に限られない。
図8は、ブレーキ電源のバックアップのための、図6に示す回路構成とは異なる回路構成を備えたコンデンサユニット13(図8の(A))およびコンデンサユニット14(図8の(B))の要部構成を示す図である。図8の(A)および図8の(B)において、図6と同様である構成については図示を省略している。
図8の(A)に例示するコンデンサユニット13は、第一バックアップ用コンデンサ100とは別の第三バックアップ用コンデンサ114によって、ブレーキ電源をバックアップする。すなわち、コンデンサユニット13においては、第一バックアップ用コンデンサ100に電気的に並列接続している第三バックアップ用コンデンサ114が、ブレーキ電源をバックアップする。
第三バックアップ用コンデンサ114は、整流器104とブレーキ制御回路に電力を供給するブレーキ電源出力端子111との間に挿入される。具体的には、図8の(A)において、第三バックアップ用コンデンサ114の正極端子は、整流器104の正側出力端子とブレーキ電源出力端子111の正側入力端子との間に接続されている。また、第三バックアップ用コンデンサ114の負極端子は、整流器104の負側出力端子とブレーキ電源出力端子111の負側入力端子との間に接続されている。
第三バックアップ用コンデンサ114は、整流器104の出力によって充電され、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、放電によりブレーキ制御回路にブレーキ電源を供給する。言い換えれば、第三バックアップ用コンデンサ114は、落雷等を原因とする入力電圧の急変が発生した場合に、充電電力を、ブレーキ制御回路に供給する。
コンデンサユニット13は、落雷等を原因とする入力電圧の急変が発生した場合に、第三バックアップ用コンデンサ114の充電電力を、ブレーキ電源として、ブレーキ制御回路に供給する。つまり、コンデンサユニット13は、ブレーキ制御回路のブレーキ電源を確保し、入力電圧の急変が発生した場合にブレーキ制御回路がドライバ20の主回路から独立してモータ30を減速(急減速)させることを防ぐ。
ここで、ブレーキ電源のバックアップのためには、第一バックアップ用コンデンサ100を充電する整流器104が、第三バックアップ用コンデンサ114と電気的に接続していることも必須ではない。
図8の(B)に例示するコンデンサユニット14において、第一バックアップ用コンデンサ100を充電する整流器104とは別の整流器115が、第三バックアップ用コンデンサ114を充電する。
整流器115は、外部の交流電源から入力された交流を整流する整流回路である。第三バックアップ用コンデンサ114は、整流器115とブレーキ制御回路に電力を供給するブレーキ電源出力端子111との間に挿入される。具体的には、図8の(B)において、第三バックアップ用コンデンサ114の正極端子は、整流器115の正側出力端子とブレーキ電源出力端子111の正側入力端子との間に接続されている。また、第三バックアップ用コンデンサ114の負極端子は、整流器115の負側出力端子とブレーキ電源出力端子111の負側入力端子との間に接続されている。第三バックアップ用コンデンサ114は、整流器115の出力によって充電され、落雷等を原因とする瞬時電圧低下および瞬時停電などの「入力電圧の急変」が発生すると、放電によりブレーキ制御回路にブレーキ電源を供給する。
(DC/DC電源コンバータモジュールの変形例について)
図1に記載の実施例では、DC/DC電源コンバータモジュール105を介することで整流器104の出力電圧を降圧して制御電源出力としている。しかし、整流器104の出力電圧を降圧する必要がない場合は、DC/DC電源コンバータモジュール105は不要である。その構成においても本発明は適用することができる。
図1に記載の実施例では、DC/DC電源コンバータモジュール105を介することで整流器104の出力電圧を降圧して制御電源出力としている。しかし、整流器104の出力電圧を降圧する必要がない場合は、DC/DC電源コンバータモジュール105は不要である。その構成においても本発明は適用することができる。
(制御電源の変形例について)
図1に記載の実施例では、制御電源出力はDC出力としている。しかしながら、制御電源出力がAC出力の場合も、本発明は適用することができる。制御電源出力をAC出力とする場合には、図1のDC/DC電源コンバータモジュール105の替わりに、直流を交流に変換するインバータ回路を備えるとよい。
図1に記載の実施例では、制御電源出力はDC出力としている。しかしながら、制御電源出力がAC出力の場合も、本発明は適用することができる。制御電源出力をAC出力とする場合には、図1のDC/DC電源コンバータモジュール105の替わりに、直流を交流に変換するインバータ回路を備えるとよい。
(付記事項)
本発明の一態様に係る電力供給装置は、モータ駆動装置の、モータにモータ駆動電力を供給する主回路に電力を供給する電力供給装置であって、外部の交流電源から入力された交流を整流する整流回路と、前記モータ駆動装置の、前記主回路を制御する制御回路に電力を供給する制御電源出力端子と、を備え、(1)前記整流回路と前記制御電源出力端子との間には第一バックアップ用コンデンサが挿入されており、(2)前記第一バックアップ用コンデンサは前記整流回路の出力により充電されることを特徴としている。
本発明の一態様に係る電力供給装置は、モータ駆動装置の、モータにモータ駆動電力を供給する主回路に電力を供給する電力供給装置であって、外部の交流電源から入力された交流を整流する整流回路と、前記モータ駆動装置の、前記主回路を制御する制御回路に電力を供給する制御電源出力端子と、を備え、(1)前記整流回路と前記制御電源出力端子との間には第一バックアップ用コンデンサが挿入されており、(2)前記第一バックアップ用コンデンサは前記整流回路の出力により充電されることを特徴としている。
前記の構成によれば、前記電力供給装置は、前記整流回路と、前記モータ駆動装置の前記制御回路に電力を供給する制御電源出力端子と、を備え、(1)前記整流回路の正側出力端子と前記制御電源出力端子の正側との間には第一バックアップ用コンデンサの正極端子が電気的に接続されており、(2)前記整流回路の負側出力端子と前記制御電源出力端子の負側との間には前記第一バックアップ用コンデンサの負極端子が電気的に接続されている。言い換えれば、前記電力供給装置は、前記整流回路と、前記モータ駆動装置の前記制御回路に電力を供給する制御電源出力端子と、の間に前記第一バックアップ用コンデンサを備えている。そして、前記第一バックアップ用コンデンサは、前記整流回路の出力によって充電される。
したがって、前記電力供給装置は、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変が発生した場合であっても、前記第一バックアップ用コンデンサの充電電力を、前記モータ駆動装置の前記制御回路に供給することができるとの効果を奏する。
また、前記電力供給装置は、前記モータ駆動装置を変更することなく、前記モータ駆動装置について、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変への対策を行なうことができるとの効果を奏する。
例えば、モータ制御装置で用いる各種のパラメータを変更する場合、および、モータ制御装置に発生した異常を解除する場合等において、制御電源をいったん切った後、制御電源を入れ直すこと(モータ制御装置の制御電源の再投入)が必要となることがある。ここで、モータ制御装置の内部に制御電源のバックアップ機構を設けた場合、モータ制御装置内のバックアップ機構の放電が完了するまで、制御電源を切ることはできない。しかしながら、制御電源のバックアップ機構を、モータ制御装置内に設けるのではなく、前記電力供給装置に設けることによって、制御電源の切断および再投入を容易に行うことができるようになる。すなわち、モータ制御装置内のバックアップ機構の放電完了を待つことなく、モータ制御装置と前記電力供給装置との電気的接続を切断し、または再接続するだけで、制御電源の切断および再投入を容易に行うことができるようになる。
また、モータ制御装置は、使用状況等に応じて、電源バックアップが必要な場合もあれば、電源バックアップが不要である場合もある。制御電源のバックアップ機構を、外付けにする(つまり、前記電源供給装置に設ける)ことにより、ユーザが必要な時に、制御電源のバックアップを行なうことができる。さらに、当初は制御電源のバックアップが不要であったモータ制御装置について、その後に制御電源のバックアップが必要となった場合にも、前記電力供給装置によって容易に制御電源をバックアップすることができる。
本発明の一態様に係る電力供給装置において、(1)前記第一バックアップ用コンデンサの正極端子は、さらに、前記整流回路の正側出力端子と、入力電圧の急変が発生した場合に前記主回路の動作から独立して前記モータを減速させるブレーキ制御回路に電力を供給する出力端子の正側と、の間に電気的に接続されており、(2)前記第一バックアップ用コンデンサの負極端子は、さらに、前記整流回路の負側出力端子と、前記ブレーキ制御回路に電力を供給する出力端子の負側と、の間に電気的に接続されていてもよい。
前記の構成によれば、前記電力供給装置において、(1)前記第一バックアップ用コンデンサの正極端子は、さらに、前記整流回路の正側出力端子と、入力電圧の急変が発生した場合に前記主回路の動作から独立して前記モータを減速させるブレーキ制御回路に電力を供給する出力端子の正側と、の間に電気的に接続されており、(2)前記第一バックアップ用コンデンサの負極端子は、さらに、前記整流回路の負側出力端子と、前記ブレーキ制御回路に電力を供給する出力端子の負側と、の間に電気的に接続されている。言い換えれば、前記電力供給装置は、前記整流回路と、前記ブレーキ制御回路に電力を供給する出力端子と、の間に前記第一バックアップ用コンデンサを備えている。そして、前記電力供給装置は、落雷等を原因とする入力電圧の急変が発生した場合、前記ブレーキ制御回路に、前記第一バックアップ用コンデンサの充電電力を供給する。
ここで、前記ブレーキ制御回路への電源供給がバックアップされていない状態で、落雷等を原因とする入力電圧の急変が発生した場合、前記ブレーキ制御回路は、前記主回路の動作から独立して前記モータを減速させる。また、前記ブレーキ制御回路は、電断中等において前記モータ制御装置の主回路から駆動電力が供給されていない前記モータの停止を、維持してもよい。
しかしながら、例えば、前記主回路による前記モータの制御から独立して、前記ブレーキ制御回路が前記モータを急減速させた場合、ワークの破損等、前記主回路が前記モータを制御している時には発生しなかった不測の事態が、発生し得る。
これに対して、前記電力供給装置は、落雷等を原因とする入力電圧の急変が発生した場合に、前記ブレーキ制御回路への電源供給をバックアップする。したがって、前記電力供給装置は、前記ブレーキ制御回路が前記主回路の動作から独立して前記モータを減速させることにより前述のような不測の事態が発生するのを回避することができるとの効果を奏する。
本発明の一態様に係る電力供給装置は、前記モータ駆動装置の主回路に電力を供給する正側出力端子と負側出力端子との間に接続された第二バックアップ用コンデンサをさらに備えてもよい。
前記の構成によれば、前記電力供給装置は、前記モータ駆動装置の主回路に電力を供給する正側出力端子と負側出力端子との間に接続された第二バックアップ用コンデンサをさらに備えている。そして、前記第二バックアップ用コンデンサは、前記モータ駆動装置の前記主回路に電力を供給する出力端子へ入力されることになる電力によって、充電される。
したがって、前記電力供給装置は、落雷等を原因とする瞬時電圧低下および瞬時停電などの入力電圧の急変が発生した場合であっても、前記第二バックアップ用コンデンサの充電電力を、前記モータ駆動装置の前記主回路に供給することができるとの効果を奏する。
本発明の一態様に係る電力供給装置は、前記第二バックアップ用コンデンサに電気的に接続されたコネクタをさらに備え、前記コネクタは、自装置以外の前記電力供給装置の、(1)前記コネクタ、または、(2)前記モータ駆動装置の主回路に電力を供給する出力端子と接続可能であってもよい。
前記の構成によれば、前記電力供給装置は、前記第二バックアップ用コンデンサに電気的に接続されたコネクタをさらに備えている。そして、前記コネクタは、自装置以外の前記電力供給装置の、(1)前記コネクタ、または、(2)前記モータ駆動装置の主回路に電力を供給する出力端子と接続可能である。
そのため、自装置以外の前記電力供給装置の、(1)前記コネクタ、または、(2)前記モータ駆動装置の主回路に電力を供給する出力端子が、前記コネクタに電気的に並列接続されると、自装置以外の前記電力供給装置の前記第二バックアップ用コンデンサと、自装置の前記第二バックアップ用コンデンサとは、電気的に並列接続されることになる。つまり、前記電力供給装置は、自装置以外の前記電力供給装置の、(1)前記コネクタ、または、(2)前記モータ駆動装置の主回路に電力を供給する出力端子を、前記コネクタに電気的に並列接続させることにより、自装置以外の前記電力供給装置の前記第二バックアップ用コンデンサの電気容量を利用することができる。
したがって、前記電力供給装置は、前記第二バックアップ用コンデンサの電気容量が不足する場合等において、自装置以外の前記電力供給装置の、(1)前記コネクタ、または、(2)前記モータ駆動装置の主回路に電力を供給する出力端子を、前記コネクタに電気的に並列接続させることにより、自装置に接続している自装置以外の前記電力供給装置の前記第二バックアップ用コンデンサの電気容量を利用することができるとの効果を奏する。
本発明の一態様に係る電力供給装置は、前記第一バックアップ用コンデンサの正極端子は前記第二バックアップ用コンデンサの正極端子と電気的に接続し、前記第一バックアップ用コンデンサの負極端子は前記第二バックアップ用コンデンサの負極端子と電気的に接続していてもよい。
前記の構成によれば、前記第一バックアップ用コンデンサの正極端子は前記第二バックアップ用コンデンサの正極端子と電気的に接続し、前記第一バックアップ用コンデンサの負極端子は前記第二バックアップ用コンデンサの負極端子と電気的に接続している。すなわち、前記電力供給装置において、前記第一バックアップ用コンデンサと、前記第二バックアップ用コンデンサとは、電気的に並列接続されている。
したがって、前記電力供給装置は、入力電圧の急変が発生した場合、前記第一バックアップ用コンデンサに電気的に並列接続されている前記第二バックアップ用コンデンサの充電電力を、前記モータ駆動装置の制御回路に供給することができるとの効果を奏する。
本発明の一態様に係る電力供給装置は、自装置への入力電圧の急変が発生すると、入力電圧の急変が発生したことを外部に通知してもよい。
前記の構成によれば、前記電力供給装置は、自装置への入力電圧の急変が発生すると、入力電圧の急変が発生したことを外部に通知する。
したがって、前記電力供給装置は、自装置への入力電圧の急変が発生すると、外部のコントローラ等に、入力電圧の急変が発生したことを通知して、前記コントローラ等に、「入力電圧の急変」時に必要な処理を実行させることができるとの効果を奏する。例えば、前記電力供給装置は、自装置への入力電圧の急変が発生すると、外部のコントローラに、入力電圧の急変が発生したことを通知する。そして、この通知を受けたコントローラは、例えば、複数の前記モータ駆動装置に、複数の前記モータ駆動装置の各々に接続されている前記モータを同期させて停止させることができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
10 コンデンサユニット(電力供給装置)
11 コンデンサユニット(電力供給装置)
12 コンデンサユニット(電力供給装置)
20 ドライバ(モータ駆動装置)
30 モータ
100 第一バックアップ用コンデンサ
101 制御電源出力端子
104 整流器(整流回路)
108 整流器(整流回路)
111 ブレーキ電源出力端子(ブレーキ制御回路に電力を供給する出力端子)
112 コンデンサ増設端子(コネクタ)
110 出力端子(モータ駆動装置の主回路に電力を供給する出力端子)
110A 正側出力端子(モータ駆動装置の主回路に電力を供給する正側出力端子)
110B 負側出力端子(モータ駆動装置の主回路に電力を供給する負側出力端子)
109 第二バックアップ用コンデンサ
11 コンデンサユニット(電力供給装置)
12 コンデンサユニット(電力供給装置)
20 ドライバ(モータ駆動装置)
30 モータ
100 第一バックアップ用コンデンサ
101 制御電源出力端子
104 整流器(整流回路)
108 整流器(整流回路)
111 ブレーキ電源出力端子(ブレーキ制御回路に電力を供給する出力端子)
112 コンデンサ増設端子(コネクタ)
110 出力端子(モータ駆動装置の主回路に電力を供給する出力端子)
110A 正側出力端子(モータ駆動装置の主回路に電力を供給する正側出力端子)
110B 負側出力端子(モータ駆動装置の主回路に電力を供給する負側出力端子)
109 第二バックアップ用コンデンサ
Claims (6)
- モータ駆動装置の、モータにモータ駆動電力を供給する主回路に電力を供給する電力供給装置であって、
外部の交流電源から入力された交流を整流する整流回路と、
前記モータ駆動装置の、前記主回路を制御する制御回路に電力を供給する制御電源出力端子と、を備え、
(1)前記整流回路と前記制御電源出力端子との間には第一バックアップ用コンデンサが挿入されており、(2)前記第一バックアップ用コンデンサは前記整流回路の出力により充電されることを特徴とする電力供給装置。 - (1)前記第一バックアップ用コンデンサの正極端子は、さらに、
前記整流回路の正側出力端子と、
入力電圧の急変が発生した場合に前記主回路の動作から独立して前記モータを減速させるブレーキ制御回路に電力を供給する出力端子の正側と、
の間に電気的に接続されており、
(2)前記第一バックアップ用コンデンサの負極端子は、さらに、
前記整流回路の負側出力端子と、
前記ブレーキ制御回路に電力を供給する出力端子の負側と、
の間に電気的に接続されていることを特徴とする請求項1に記載の電力供給装置。 - 前記モータ駆動装置の主回路に電力を供給する正側出力端子と負側出力端子との間に接続された第二バックアップ用コンデンサをさらに備えることを特徴とする請求項1または2に記載の電力供給装置。
- 前記第二バックアップ用コンデンサに電気的に接続されたコネクタをさらに備え、
前記コネクタは、自装置以外の前記電力供給装置の、(1)前記コネクタ、または、(2)前記モータ駆動装置の主回路に電力を供給する出力端子と接続可能であることを特徴とする請求項3に記載の電力供給装置。 - 前記第一バックアップ用コンデンサの正極端子は前記第二バックアップ用コンデンサの正極端子と電気的に接続し、前記第一バックアップ用コンデンサの負極端子は前記第二バックアップ用コンデンサの負極端子と電気的に接続していることを特徴とする請求項3または4に記載の電力供給装置。
- 自装置への入力電圧の急変が発生すると、入力電圧の急変が発生したことを外部に通知することを特徴とする請求項1から5のいずれか1項に記載の電力供給装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880053236.8A CN111033997B (zh) | 2017-09-15 | 2018-08-24 | 电力供给装置 |
US16/639,129 US11190110B2 (en) | 2017-09-15 | 2018-08-24 | Power supply device |
EP18856748.1A EP3683947A4 (en) | 2017-09-15 | 2018-08-24 | ELECTRICAL POWER SUPPLY |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-177316 | 2017-09-15 | ||
JP2017177316A JP6848778B2 (ja) | 2017-09-15 | 2017-09-15 | 電力供給装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019054160A1 true WO2019054160A1 (ja) | 2019-03-21 |
Family
ID=65722738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031425 WO2019054160A1 (ja) | 2017-09-15 | 2018-08-24 | 電力供給装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11190110B2 (ja) |
EP (1) | EP3683947A4 (ja) |
JP (1) | JP6848778B2 (ja) |
CN (1) | CN111033997B (ja) |
WO (1) | WO2019054160A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10322688B2 (en) * | 2016-12-30 | 2019-06-18 | Textron Innovations Inc. | Controlling electrical access to a lithium battery on a utility vehicle |
US11424692B2 (en) * | 2020-12-23 | 2022-08-23 | Hamilton Sundstrand Corporation | Multi-level single-phase AC-to-DC converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001218476A (ja) * | 2000-02-04 | 2001-08-10 | Tsubakimoto Chain Co | 電動機の制御装置 |
JP2004222447A (ja) * | 2003-01-16 | 2004-08-05 | Disco Abrasive Syst Ltd | 瞬停・瞬時電圧低下対策ユニット |
JP2017005837A (ja) | 2015-06-09 | 2017-01-05 | 三菱電機エンジニアリング株式会社 | 電力変換装置 |
JP2017118646A (ja) * | 2015-12-22 | 2017-06-29 | 株式会社ノーリツ | 給湯装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5889572A (ja) * | 1981-11-16 | 1983-05-27 | 三菱電機株式会社 | 交流エレベ−タの運転装置 |
JPH04322186A (ja) * | 1991-04-22 | 1992-11-12 | Hitachi Ltd | 電動ドア装置 |
JP3472433B2 (ja) * | 1997-03-24 | 2003-12-02 | ファナック株式会社 | 停電落下防止制御装置 |
JPH10337027A (ja) * | 1997-06-02 | 1998-12-18 | Yaskawa Electric Corp | コンバータの制御方法および装置 |
JP4040982B2 (ja) * | 2003-01-17 | 2008-01-30 | 住友重機械工業株式会社 | 成形機及びその保護方法 |
US7554276B2 (en) * | 2005-09-21 | 2009-06-30 | International Rectifier Corporation | Protection circuit for permanent magnet synchronous motor in field weakening operation |
CN101142738B (zh) * | 2006-03-15 | 2010-12-22 | 三菱电机株式会社 | 电动机驱动装置和压缩机驱动装置 |
JP5865715B2 (ja) * | 2012-01-25 | 2016-02-17 | 三菱電機株式会社 | モータ制御装置 |
CN204361943U (zh) * | 2014-12-19 | 2015-05-27 | 杭州索肯科技有限公司 | 多驱动单元变频器电路 |
EP3293876B1 (en) * | 2016-09-09 | 2021-06-23 | Black & Decker Inc. | Dual-inverter for a brushless motor |
-
2017
- 2017-09-15 JP JP2017177316A patent/JP6848778B2/ja active Active
-
2018
- 2018-08-24 EP EP18856748.1A patent/EP3683947A4/en active Pending
- 2018-08-24 US US16/639,129 patent/US11190110B2/en active Active
- 2018-08-24 CN CN201880053236.8A patent/CN111033997B/zh active Active
- 2018-08-24 WO PCT/JP2018/031425 patent/WO2019054160A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001218476A (ja) * | 2000-02-04 | 2001-08-10 | Tsubakimoto Chain Co | 電動機の制御装置 |
JP2004222447A (ja) * | 2003-01-16 | 2004-08-05 | Disco Abrasive Syst Ltd | 瞬停・瞬時電圧低下対策ユニット |
JP2017005837A (ja) | 2015-06-09 | 2017-01-05 | 三菱電機エンジニアリング株式会社 | 電力変換装置 |
JP2017118646A (ja) * | 2015-12-22 | 2017-06-29 | 株式会社ノーリツ | 給湯装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111033997A (zh) | 2020-04-17 |
JP6848778B2 (ja) | 2021-03-24 |
US11190110B2 (en) | 2021-11-30 |
EP3683947A4 (en) | 2021-09-01 |
US20200212819A1 (en) | 2020-07-02 |
JP2019054644A (ja) | 2019-04-04 |
CN111033997B (zh) | 2023-03-24 |
EP3683947A1 (en) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5612058B2 (ja) | 送り軸モータおよび主軸モータを有する工作機械の制御装置 | |
CN104426457B (zh) | 具备主轴的机床的控制装置 | |
CN109391175B (zh) | 电动机控制装置和机床系统 | |
US20140292232A1 (en) | Motor controller for synchronously controlling multiple motors | |
US9248539B2 (en) | Motor control device for implementing power failure protection of machine tool | |
JP5708632B2 (ja) | 多軸モータ駆動システム | |
JP2013115994A (ja) | 停電の有無を判定する停電判定部を有するモータ駆動装置 | |
WO2019054160A1 (ja) | 電力供給装置 | |
US10437227B2 (en) | Motor drive system including abnormality detection unit of power storage device | |
JP5363598B2 (ja) | 直流交流変換装置を接続可能なモータ駆動制御装置 | |
JP5469205B2 (ja) | スレーブ装置の数に応じてデータの通信速度を変更するマスタ装置 | |
Meike et al. | New type of power converter for common-ground DC bus sharing to increase the energy efficiency in drive systems | |
JPH10243675A (ja) | モータ停止回路 | |
JP2009201260A (ja) | 多軸モータ駆動装置 | |
JP2000305634A (ja) | 系統連系システム | |
KR102235194B1 (ko) | Ess의 통합 제어가 가능한 전력 시스템 | |
JP6034757B2 (ja) | 直流交流変換装置を接続可能なモータ駆動制御装置 | |
WO2022097311A1 (ja) | 電力供給システム、及び電力供給ユニット | |
JP2008220135A (ja) | サーボモータ制御システム | |
CN105529968B (zh) | 一种主电机和从电机断电同步控制系统及其同步控制方法 | |
JP2020108273A (ja) | 電力分配システム | |
JPH04168924A (ja) | 自家用発電設備の受電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18856748 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018856748 Country of ref document: EP Effective date: 20200415 |