WO2019049743A1 - センサユニット、及びそれを用いた多連式センサ - Google Patents

センサユニット、及びそれを用いた多連式センサ Download PDF

Info

Publication number
WO2019049743A1
WO2019049743A1 PCT/JP2018/031909 JP2018031909W WO2019049743A1 WO 2019049743 A1 WO2019049743 A1 WO 2019049743A1 JP 2018031909 W JP2018031909 W JP 2018031909W WO 2019049743 A1 WO2019049743 A1 WO 2019049743A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor unit
sensor
unit
external connection
substrate
Prior art date
Application number
PCT/JP2018/031909
Other languages
English (en)
French (fr)
Inventor
泰幸 片瀬
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to DE112018005031.9T priority Critical patent/DE112018005031T5/de
Priority to US16/642,226 priority patent/US11525720B2/en
Priority to CN201880058626.4A priority patent/CN111095375A/zh
Publication of WO2019049743A1 publication Critical patent/WO2019049743A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path

Definitions

  • the present invention relates to a sensor unit and a multiple sensor using the same.
  • Patent Document 1 discloses an invention related to a wind speed sensor capable of measuring a wind speed.
  • the wind speed sensor of Patent Document 1 is configured to include a substrate, a heater resistor mounted on the substrate, a signal extraction pin, and the like. And the wind speed is detected based on the magnitude
  • Patent Document 1 has a configuration of one chip and can not detect a wide range of wind speeds.
  • the present invention has been made in view of the above problems, and it is possible to detect a wide range of changes in physical quantity with a high degree of freedom as compared with the prior art, and to make sensor information reportable.
  • the purpose is to provide a coupled sensor.
  • the sensor unit includes a substrate, a sensor unit for detecting a change in physical quantity disposed on the substrate, a plurality of external connection terminals electrically connected to the sensor unit, and detection information of the sensor unit as the sensor unit. And an informing unit for informing the user.
  • each of the plurality of external connection terminals can identify the direction of connection.
  • the plurality of external connection terminals have different shapes and sizes.
  • At least one of the plurality of external connection terminals is provided with a mark indicating the direction of connection.
  • the sensor unit, the external connection terminal, and the notification unit are disposed on the same surface side of the substrate.
  • the sensor unit is disposed substantially at the center of the substrate, and the two external connection terminals are disposed on both sides of the sensor unit.
  • the notification unit is a light emitting unit that emits light based on detection information of the sensor unit.
  • the sensor unit is preferably a flow rate detection unit.
  • the multiple sensor includes a substrate, a sensor unit for detecting a change in physical quantity disposed on the substrate, a plurality of external connection terminals electrically connected to the sensor unit, and detection information of the sensor unit.
  • a sensor unit having a notification unit for notifying the outside, and a communication cable in which a plurality of the sensor units are disposed to connect the sensor units, and data communication is possible via the external connection terminal It is characterized by having done.
  • a plurality of sensor units can be easily connected to one another, and a multiple sensor can be configured.
  • a multiple sensor it can detect a wide range of physical quantity changes.
  • the number of connected sensor units can be freely set.
  • the total length of the multiple sensor can be freely adjusted. Therefore, the range of detection can be set freely.
  • the sensor unit itself is provided with means for notifying detection information to the outside, by configuring the multiple sensor, it can be used for various applications.
  • FIG. 1A is a plan view of a sensor unit according to the present embodiment.
  • FIG. 1B is a cross-sectional view of the sensor unit taken along the line AA shown in FIG. 1A and viewed from the arrow direction. It is a circuit diagram of a sensor part. It is a top view which shows the state which connected multiple sensor units of this embodiment. It is a conceptual diagram which shows an example of the multiple sensor of this embodiment. It is a conceptual diagram which shows an example of the multiple sensor of this embodiment.
  • FIG. 6A is a plan view showing another embodiment of a sensor unit different from the sensor unit shown in FIG. 1A.
  • FIG. 6B is a plan view showing another embodiment of the sensor unit different from the sensor unit shown in FIG. 1A.
  • FIG. 6C is a plan view showing another embodiment of a sensor unit different from the sensor unit shown in FIG. 1A. It is a block diagram of a sensor unit of this embodiment. It is a block diagram by the side of a communication line at the time of connecting a plurality of sensor units of this embodiment.
  • FIG. 9 is a block diagram of the communication line side showing a configuration different from that of FIG. 8; It is a block diagram by the side of power supply wiring at the time of connecting multiple sensor units of this embodiment.
  • FIG. 1A is a plan view of the sensor unit of the present embodiment
  • FIG. 1B is a cross-sectional view of the sensor unit taken along the line AA shown in FIG. 1A and viewed in the arrow direction.
  • the sensor unit 1 in the present embodiment is, for example, a flow rate sensor.
  • the sensor unit 1 includes the substrate 2, the sensor unit 3 disposed on the surface 2 a of the substrate 2, the external connection terminals 4 and 5 electrically connected to the sensor unit 3, and the detection information of the sensor unit 3 to the outside And a notification unit 6 to be notified.
  • the sensor unit 3 is disposed substantially at the center of the surface 2 a of the substrate 2.
  • the external connection terminals 4 and 5 are disposed on both sides of the sensor unit 3 on the surface 2 a of the substrate 2. Therefore, the sensor unit 3 and the external connection terminals 4 and 5 are arranged in a line on the substrate 2.
  • the external connection terminals 4 and 5 shown in FIGS. 1A and 1B have different shapes and sizes of the openings 4a and 5a, respectively.
  • the external connection terminals 4 and 5 shown in FIGS. 1A and 1B are USB terminals.
  • a USB-A type is connected to the external connection terminal 4
  • a micro USB type is connected to the external connection terminal 5. Ru.
  • reporting parts 6 are arrange
  • the number of notification units 6 is not limited, and the arrangement location of the notification units 6 is not limited.
  • the notification unit 6 may be provided on the surface of the sensor unit 3 in an overlapping manner.
  • Case 7 may be transparent or non-transparent.
  • the case 7 is provided with a through hole 7 a.
  • the through hole 7a is, for example, a hole for sending a wind to the sensor unit 3, and the wind can be detected through the through hole 7a.
  • Case 7 may be omitted.
  • the surface of the sensor unit 3 may be covered with a sealing resin or the like.
  • FIG. 2 is a circuit diagram of the sensor unit 3.
  • a bridge circuit 18 is configured by the flow rate detecting resistive element 13, the temperature compensating resistive element 14, and the resistors 16 and 17.
  • a first series circuit 19 is configured by the flow rate detecting resistive element 13 and the resistor 16
  • a second series circuit 20 is configured by the temperature compensating resistive element 14 and the resistor 17. ing.
  • the first series circuit 19 and the second series circuit 20 are connected in parallel to form a bridge circuit 18.
  • the output section 21 of the first series circuit 19 and the output section 22 of the second series circuit 20 are connected to a differential amplifier (amplifier) 23 respectively.
  • a feedback circuit 24 including a differential amplifier 23 is connected to the bridge circuit 18.
  • the feedback circuit 24 includes a transistor (not shown) and the like.
  • the resistors 16 and 17 have a smaller temperature coefficient of resistance (TCR) than the flow rate detecting resistive element 13 and the temperature compensating resistive element 14.
  • the flow rate detection resistive element 13 has a predetermined resistance value Rs1 in a heating state controlled to be higher by a predetermined value than a predetermined ambient temperature, for example, and the temperature compensation resistive element 14 is, for example, The above ambient temperature is controlled to have a predetermined resistance value Rs2.
  • the resistance value Rs1 is smaller than the resistance value Rs2.
  • the resistor 16 constituting the flow rate detection resistive element 13 and the first series circuit 19 is, for example, a fixed resistor having a resistance value R1 similar to the resistance value Rs1 of the flow rate detection resistive element 13.
  • the resistor 17 constituting the temperature compensating resistive element 14 and the second series circuit 20 is, for example, a fixed resistor having a resistance value R2 similar to the resistance value Rs2 of the temperature compensating resistive element 14.
  • the flow rate detection resistive element 13 shown in FIG. 2 is disposed on the case 7 side of the sensor unit 3 shown in FIG. 1B, and the temperature compensation resistive element 14 is disposed on the substrate 2 side shown in FIG. 1B.
  • the wind passes through the through hole 7a shown in FIG. 1B and reaches the flow rate detection resistive element 13 disposed on the detection surface.
  • the potential of the output portion 21 of the first series circuit 19 to which the flow rate detection resistive element 13 is connected fluctuates.
  • a differential output can be obtained by the differential amplifier 23.
  • a drive voltage is applied to the flow rate detection resistive element 13 based on the differential output.
  • the microcomputer can convert the wind speed and output it.
  • the circuit configuration of the sensor unit 3 shown in FIG. 2 is an example, and the present invention is not limited to this.
  • a plurality of sensor units 1 can be connected via the communication cable 8.
  • one end of the communication cable 8 is, for example, the micro USB plug 9, and the other end is, for example, the USB-A plug 10.
  • the micro USB plug 9 is connected to the small opening side external connection terminal 5 provided in the sensor unit 1, and the USB-A plug 10 is provided in the large opening side external connection terminal 4 provided in the sensor unit 1.
  • a plurality of sensor units 1 are connected in a line by a communication cable 8, and the tip thereof is connected to the host 11.
  • the host 11 is a device that controls communication, and means a device that becomes a master in communication.
  • the host 11 is a computer device such as a notebook computer, or a portable terminal having a communication control function, and may be in any form.
  • the multiple sensors 12 shown in FIG. 4 can be connected to the plurality of channels 11a provided in the host 11, respectively.
  • a large number of sensor units 1 can be arranged in a matrix.
  • the number of connected sensor units 1 is not limited, but several to several hundreds of sensor units 1 can be connected to configure the multiple sensor 12. As described above, in the present embodiment, since it is only necessary to connect each sensor unit 1 via the communication cable 8, the number of sensors of the multiple sensor 12 can be easily and freely increased. 12 can be applied to various applications.
  • the wind speed can be widely detected. And based on the detection information of the wind speed of each sensor unit 1, the aspect transmitted to the exterior from the alerting
  • the notification unit 6 is an LED, which can give a change in color to the multiple sensor 12, and can appeal to the user's sight as illumination, or for analysis of fluid, etc. Become.
  • the shapes and sizes of the external connection terminals 4 and 5 are different, erroneous connection can be prevented.
  • the external connection terminal 5 is on the side of communication with the host 11 located at the upper level, and the external connection terminal 4 is at the side of communication with the sensor unit 1 located on the lower side, It is possible to prevent an incorrect connection such as connection.
  • the external connection terminals 30, 31 provided in the sensor unit 1 may be the same connector.
  • at least one of the external connection terminals 30 may be provided with a mark 32 indicating the direction of connection.
  • the side provided with the mark 32 is the host 11 side (upper side), and it becomes possible to prevent an erroneous connection.
  • the direction of connection of the external connection terminals 30 and 31 only needs to be distinguishable, and the shape and size of the external connection terminals 30 and 31 described above are made different or the mark 32 is provided. It is also possible to prevent incorrect connection with other configurations.
  • the sensor unit 3 and the external connection terminals 4 and 5 are arranged in a line, but for example, as shown in FIG. You may arrange
  • the alignment direction of the sensor units 1 can be bent by 90 °.
  • the inflection angle in the direction in which the sensor units 1 are arranged can be changed according to the angle between the external connection terminals 4 and 5 via the sensor unit 3.
  • each external connection terminal 33 and 34 may be arrange
  • the alignment direction of the sensor units 1 can be bent by 180 °. Therefore, the sensor unit 1 in which the external connection terminals 4 and 5 shown in FIG. 1A are arranged in a line, and the sensor unit 1 in which the external connection terminals 33 and 34 shown in FIG.
  • FIG. 7 shows a block diagram of the sensor unit 1 of the present embodiment.
  • the sensor unit 1 includes the sensor unit 3 and a microcomputer 40 as a control unit that is electrically connected to the sensor unit 3 and processes a detection signal of the sensor unit 3. Ru.
  • the microcomputer 40 includes a CPU 41, an AD converter (ADC) 42, an input / output port (I / O port) 43, an upper communication control unit 44, and a lower communication control unit 45. It is configured to have.
  • the CPU 41, the AD converter 42, the input / output port 43, the communication control units 44, 45, and the like are configured in one chip.
  • the detection signal from the sensor unit 3 is AD converted by an AD converter (ADC) 42 and processed by a CPU 41.
  • the CPU 41 controls lighting of the LED 47 as a notification unit based on the sensor output, and performs processing such as writing data based on the sensor output in the host transmission memory. In addition, the CPU 41 performs various processing such as processing based on a command from the host 11.
  • the communication control unit is divided into an upper level communication control unit 44 and a lower level communication control unit 45.
  • the host communication control unit 44 controls transmission and reception with the sensor unit 1 on the host 11 side, which is the host device, or the host 11.
  • the lower communication control unit 45 performs transmission / reception control with the sensor unit 1 which is the lower device.
  • the line of reference numeral 46 connected to the upper level communication control unit 44 and the lower level communication control unit 45 indicates the communication line 46 in the communication cable 8 (see FIG. 3).
  • the external connection terminal 5 side corresponds to the upper level communication control unit 44
  • the external connection terminal 4 side corresponds to the lower level communication control unit 45 side.
  • the upper communication control unit 44 and the lower communication control unit 45 are divided.
  • the control unit even when a plurality of sensor units 1 are connected to form a multiple sensor 12, only between adjacent sensor units 1 (or between adjacent hosts 11 and sensor units 1) Only), it is possible to send commands and send / receive data.
  • FIG. 8 only a part of the control unit is illustrated. Further, it can be recognized whether the communication with the host 11 located in the upper apparatus or the communication with the sensor unit 1 located in the lower apparatus. Therefore, for example, when transmitting a command from the sensor unit 1 in the middle shown in FIG. 8 to the sensor unit 1 on the left side in the figure, which is the upper apparatus side, a sensor that is the upper apparatus is appropriately through the upper communication control unit 44 It becomes possible to transmit a command to the unit 1 side.
  • the multiple sensor 12 in which a plurality of sensor units 1 are connected for example, when the host-flow sensor A-flow sensor B-flow sensor C-flow sensor D-flow sensor E is connected, between the respective sensors
  • individual communication can be made between the host and the flow rate sensor A.
  • communication can be performed individually between the flow sensor A and the flow sensor B or between the flow sensor B and the flow sensor C. Therefore, the degree of freedom in transmission and reception of data can be improved.
  • connection communication of FIG. 9 is not excluded, and can be used as an aspect. That is, on a case-by-case basis, connection communication shown in FIG. 8 or bus connection communication shown in FIG. 9 can be performed, or connection communication shown in FIGS. 8 and 9 can be used in combination.
  • the sensor unit 1 includes a circuit power generation unit 51 that generates drive power of the circuit function unit 50 including the sensor unit 3, the microcomputer 40, and the LED 47 (notification unit). Have.
  • the circuit power generation unit 51 is connected to the power supply wiring 49 in the communication cable 8 (see FIG. 3).
  • the circuit power generation unit 51 incorporates a step-down circuit, and generates a drive power supply for the circuit function unit 50. For example, on the host side, AC 100 V is converted to DC 24 V by an AC / DC converter and supplied to the sensor unit 1. Then, in the sensor unit 1, the circuit power generation unit 51 having a step-down circuit steps down the voltage to a predetermined voltage to drive the circuit. At this time, the voltage is stepped down to, for example, 5 V and 3 V in accordance with the mounted IC.
  • the host side reduces the voltage to a predetermined voltage, for example, reduces the voltage to 5 V which is the drive voltage of the sensor unit 1 and supplies the sensor unit 1 with it.
  • a predetermined voltage for example, reduces the voltage to 5 V which is the drive voltage of the sensor unit 1 and supplies the sensor unit 1 with it.
  • the circuit power generation unit 51 is provided in each sensor unit 1 so that the voltage supplied from the host is sufficiently increased.
  • the driving power of can be generated individually.
  • all the power supplies of the microcomputer 40 and the sensor unit 3 which are configured by the circuit function unit 50 can be supplied from the circuit power generation unit 51.
  • the voltage drop can be suppressed, and each sensor unit 1 can be appropriately driven.
  • FIG. 10 only a part of the control unit is illustrated.
  • the sensor unit 1 includes a substrate 2, a sensor unit 3 disposed on the substrate 2 for detecting a change in physical quantity, a plurality of external connection terminals 4 and 5 electrically connected to the sensor unit 3, and a sensor And a notification unit 6 for notifying the detection information of the unit 3 to the outside.
  • the sensor unit 1 although the sensor unit 1 was illustrated above, it is not limited to the sensor unit 1, and sensor unit 1 which can detect physical quantity change, such as temperature change, humidity change, pressure change, etc. It can be done.
  • USB terminal was illustrated as the external connection terminals 4 and 5 in the above, if it is a terminal which can communicate between the sensor units 1, it will not limit to a USB terminal.
  • LED was illustrated as the alerting
  • the notification unit 6 When the notification unit 6 is a device that emits light, for example, the intensity or color of light can be changed according to the wind speed.
  • the notification unit 6 when the notification unit 6 is an audio device, for example, the size or tone of sound is changed according to the wind speed, or when the notification unit 6 is a vibrating device, for example, the magnitude of vibration according to the wind speed. You can change the rhythm of the sheath vibration.
  • the plurality of sensor units 1 can be easily connected to each other via the external connection terminals 4 and 5, and changes in physical quantity can be widely detected. Moreover, the number of connections of the sensor unit 1 can be freely changed, and the total length of the multiple sensor can be freely adjusted. Further, the sensor unit 1 itself is provided with means for notifying the detection information to the outside. For this reason, in the multiple sensor 12 in which a plurality of sensor units 1 are connected, for example, the light emission color can be changed from the tip to the end of the multiple sensor 12 according to the change of the wind speed. can do.
  • the present embodiment it is preferable to enable data communication via the external connection terminals 4 and 5.
  • multiple sensors 12 in which a plurality of sensor units 1 are connected in multiple connection are connected to the host 11 to enable data communication.
  • the detection information of each sensor unit 1 can be appropriately processed by the host 11, or a command can be transmitted from the host 11.
  • the plurality of external connection terminals 4 and 5 can each identify the direction of connection. Thereby, when connecting sensor unit 1 comrades, prevention of a misconnection is attained.
  • the plurality of external connection terminals 4 and 5 have different shapes and sizes. Thereby, the user can easily grasp the direction of connection when connecting the sensor units 1 to each other.
  • at least one external connection terminal 30 may be provided with a mark 32 indicating the direction of connection. Also by this, the user can easily grasp the direction of connection when connecting the sensor units 1 with each other.
  • the same external connection terminals 30, 31 can be used.
  • the sensor unit 3, the external connection terminals 4 and 5, and the notification unit 6 be disposed on the same surface 2a side of the substrate 2. .
  • manufacture of sensor unit 1 can be simplified.
  • the sensor unit 3 and the notification unit 6 can be brought close to each other, and the measurement result of the sensor unit 3 and the deviation of the notification information by the notification unit 6 can be minimized.
  • reporting part 6 are planarly arrange
  • the sensor unit 3 is disposed substantially at the center of the substrate 2 and the two external connection terminals 4 and 5 are disposed on both sides of the sensor unit 3 preferable.
  • each sensor unit 1 can be easily connected in a line.
  • the notification unit 6 is preferably a light emitting unit that emits light based on the detection information of the sensor unit 3.
  • an LED can be illustrated as a light emission part, it is not limited to LED.
  • the sensor unit 3 is not particularly limited as long as it is a sensor that detects a change in physical quantity, but for example, a flow rate detection unit can be presented. It is preferable that the sensor unit 3 be a wind speed sensor capable of detecting the wind speed among the flow rate detection. In the case of a wind speed sensor, by sending wind to the sensor unit 1, it is possible to change the light emission state of the notification unit 6 configured of the LED by the wind speed. Further, with the wind speed sensor, the multiple sensor 12 in which the wind speed sensors are connected in multiples can be easily disposed regardless of indoor or outdoor, and can be used for various applications.
  • a multiple sensor 12 in which a plurality of sensor units 1 are connected between the external connection terminals 4 and 5 via the communication cable 8 may be configured. It can. At this time, the number of sensor units 1 can be set freely, and the length of the multiple sensor 12 can be set freely. Note that if the length of the multiple sensor 12 is increased, the communication quality is reduced in the bus connection communication of FIG. 9, so it is preferable to use the connection communication of FIG. In addition, it is preferable to generate a driving power supply using the circuit power generation unit 51 shown in FIG. As described above, in the present embodiment, the multiple sensor 12 in which the plurality of sensor units 1 are connected can be manufactured easily and with a high degree of freedom, and a wide range of physical quantity changes can be easily detected. .
  • the multiple sensor 12 can be used for various applications. For example, it can be used for indoor or outdoor illumination, for analysis of wind speed, etc. For example, by mounting the multiple sensor 12 of the present embodiment on a building or a moving body, it is possible to easily analyze a wide range of fluid conditions.
  • a plurality of multiple sensors 12 can be used and arranged in a matrix. As a result, it becomes possible to visually grasp how the wind weakens gradually as it departs from the place where the wind is strongly hit, the direction in which the wind is blowing, and the like by light emission change of the matrix and the like.
  • sensor units capable of detecting a change in physical quantity can be connected in multiples.
  • each sensor unit is provided with a notification unit that notifies detection information of the sensor unit to the outside.
  • the degree of connection of the sensor units connected to the multiple sensor and the freedom of the length of the communication cable are high. Therefore, the number of sensors and the total length of the multiple sensor can be changed according to the application. And, it can be applied to various applications using the multiple sensor of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Volume Flow (AREA)

Abstract

従来に比べて、広範な物理量変化を高い自由度にて検知できると共に、検知情報を報知可能にしたセンサユニット、及びそれを用いた多連式センサを提供することを目的とする。本発明における流量センサ(1)は、基板(2)と、基板に配置された物理量変化を検知するセンサ部(3)と、センサ部に電気的に接続された複数の外部接続端子(4、5)と、センサ部の検知情報を外部に報知する報知部(6)と、を有することを特徴とする。本発明では、広範な物理量変化を高い自由度にて検知できる。また、複数のセンサユニットを接続することで、様々なアプリケーションに利用することができる。

Description

センサユニット、及びそれを用いた多連式センサ
 この発明は、センサユニット、及びそれを用いた多連式センサに関する。
 特許文献1には、風速を測定することができる風速センサに関する発明が開示されている。例えば、特許文献1の風速センサは、基板、基板に実装されたヒータ用抵抗、及び、信号取出しピン等を具備して構成されている。そして、風速を、ヒータ用抵抗の放熱作用の大きさに基づいて検知している。
特開平8-35978号公報
 しかしながら、特許文献1に記載の発明では、1チップの構成であり、広範な風速を検知することはできない。
 また、特許文献1の風速センサには、風速の状態を利用者に報知する手段は想定されておらず、風速センサを利用した様々なアプリケーションに用いることは考慮されていない。
 そこで本発明は、上記問題に鑑みてなされたもので、従来に比べて、広範な物理量変化を高い自由度にて検知できると共に、検知情報を報知可能にしたセンサユニット、及びそれを用いた多連式センサを提供することを目的とする。
 本発明におけるセンサユニットは、基板と、前記基板に配置された物理量変化を検知するセンサ部と、前記センサ部に電気的に接続された複数の外部接続端子と、前記センサ部の検知情報を外部に報知する報知部と、を有することを特徴とする。
 本発明では、前記外部接続端子を介してデータ通信を可能とすることが好ましい。
 本発明では、前記複数の外部接続端子は夫々、接続の方向を識別可能とされていることが好ましい。
 本発明では、前記複数の外部接続端子は夫々、形状や大きさが異なることが好ましい。
 本発明では、前記複数の外部接続端子の少なくとも一つに、接続の方向を示すマークが付されていることが好ましい。
 本発明では、前記基板の同じ表面側に、前記センサ部、前記外部接続端子、及び前記報知部が配置されていることが好ましい。
 本発明では、前記センサ部は、前記基板の略中央に配置され、2つの前記外部接続端子が、前記センサ部の両側に配置されることが好ましい。
 本発明では、前記報知部は、前記センサ部の検出情報に基づいて発光する発光部であることが好ましい。
 本発明では、前記センサ部は、流量検出部であることが好ましい。
 本発明における多連式センサは、基板と、前記基板に配置された物理量変化を検知するセンサ部と、前記センサ部に電気的に接続された複数の外部接続端子と、前記センサ部の検知情報を外部に報知する報知部と、を有するセンサユニットと、前記センサユニットが複数配置され、各センサユニット同士を接続する通信ケーブルと、を有し、前記外部接続端子を介してデータ通信を可能としたことを特徴とする。
 本発明によれば、複数のセンサユニット同士を簡単に接続でき、多連式センサを構成できる。多連式センサであるため、広範な物理量変化を検知できる。また、センサユニットの接続数を自由に設定できる。また、多連式センサの全長を自由に調整できる。そのため、検知の範囲を自由に設定できる。また、センサユニット自体が検知情報を外部に報知する手段を備えているため、多連式センサを構成することで、様々なアプリケーションに利用することができる。
図1Aは本実施形態のセンサユニットの平面図である。図1Bは図1Aに示すA-A線に沿って切断し矢印方向から見たセンサユニットの断面図である。 センサ部の回路図である。 本実施形態のセンサユニットを複数接続した状態を示す平面図である。 本実施形態の多連式センサの一例を示す概念図である。 本実施形態の多連式センサの一例を示す概念図である。 図6Aは図1Aに示すセンサユニットと一部異なる別の実施形態のセンサユニットを示す平面図である。図6Bは図1Aに示すセンサユニットと一部異なる別の実施形態のセンサユニットを示す平面図である。図6Cは図1Aに示すセンサユニットと一部異なる別の実施形態のセンサユニットを示す平面図である。 本実施形態のセンサユニットのブロック図である。 本実施形態のセンサユニットを複数接続した際の通信線側のブロック図である。 図8とは別の構成を示す通信線側のブロック図である。 本実施形態のセンサユニットを複数接続した際の電源配線側のブロック図である。
 以下、本発明の一実施の形態(以下、「実施形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 図1Aは、本実施形態のセンサユニットの平面図であり、図1Bは、図1Aに示すA-A線に沿って切断し矢印方向から見たセンサユニットの断面図である。
 本実施形態におけるセンサユニット1は、例えば、流量センサである。
 センサユニット1は、基板2と、基板2の表面2aに配置されたセンサ部3と、センサ部3と電気的に接続された外部接続端子4、5と、センサ部3の検知情報を外部に報知する報知部6と、を有して構成される。
 図1Aに示すように、センサ部3は、基板2の表面2aの略中央に配置される。また、外部接続端子4、5は、基板2の表面2aにて、センサ部3の両側に配置される。従って、センサ部3と、外部接続端子4、5とが、基板2上にて一列に配置されている。図1A、図1Bに示す外部接続端子4、5は、形状や開口部4a、5aの大きさが夫々異なる。図1A、図1Bに示す外部接続端子4、5は、USB端子であり、例えば、外部接続端子4には、USB-Aタイプが接続され、外部接続端子5には、micro USBタイプが接続される。
 図1Aに示すように、複数の報知部6が、基板2の四隅に配置されている(ケース7は図示せず)。なお、報知部6の個数は限定されるものでなく、また、報知部6の配置箇所も限定されない。例えば、報知部6は、センサ部3の表面に重ねて設けられていてもよい。
 図1Bに示すように、センサ部3の表面はケース7に覆われている。ケース7は透明であっても非透明であってもよい。ケース7には貫通孔7aが設けられている。貫通孔7aは、センサ部3に、例えば、風を送るための穴であり、貫通孔7aを通じて、風検知を行うことが可能である。なお、ケース7は無くてもよい。或いは、センサ部3の表面を封止樹脂で覆う等の構成であってもよい。
 次に、センサ部3の構成について説明する。図2は、センサ部3の回路図である。図2に示すように、流量検知用抵抗素子13と、温度補償用抵抗素子14と、抵抗器16、17とでブリッジ回路18を構成している。図2に示すように、流量検知用抵抗素子13と抵抗器16とで第1の直列回路19を構成し、温度補償用抵抗素子14と抵抗器17とで第2の直列回路20を構成している。そして、第1の直列回路19と第2の直列回路20とが、並列に接続されてブリッジ回路18を構成している。
 図2に示すように、第1の直列回路19の出力部21と、第2の直列回路20の出力部22とが、夫々、差動増幅器(アンプ)23に接続されている。ブリッジ回路18には、差動増幅器23を含めたフィードバック回路24が接続されている。フィードバック回路24には、トランジスタ(図示せず)等が含まれる。
 抵抗器16、17は、流量検知用抵抗素子13、及び温度補償用抵抗素子14よりも抵抗温度係数(TCR)が小さい。流量検知用抵抗素子13は、例えば、所定の周囲温度よりも所定値だけ高くなるように制御された加熱状態で、所定の抵抗値Rs1を有し、また、温度補償用抵抗素子14は、例えば、前記の周囲温度にて、所定の抵抗値Rs2を有するように制御されている。なお、抵抗値Rs1は、抵抗値Rs2よりも小さい。流量検知用抵抗素子13と第1の直列回路19を構成する抵抗器16は、例えば、流量検知用抵抗素子13の抵抗値Rs1と同様の抵抗値R1を有する固定抵抗器である。また、温度補償用抵抗素子14と第2の直列回路20を構成する抵抗器17は、例えば、温度補償用抵抗素子14の抵抗値Rs2と同様の抵抗値R2を有する固定抵抗器である。
 図2に示す流量検知用抵抗素子13は、図1Bに示すセンサ部3のケース7側に配置され、温度補償用抵抗素子14は、図1Bに示す基板2側に配置される。
 風は、図1Bに示す貫通孔7aを通って検知面に配置された流量検知用抵抗素子13に到達する。このとき、発熱抵抗である流量検知用抵抗素子13の温度は低下するため、流量検知用抵抗素子13が接続された第1の直列回路19の出力部21の電位が変動する。これにより、差動増幅器23により差動出力が得られる。そして、フィードバック回路24では、差動出力に基づいて、流量検知用抵抗素子13に駆動電圧を印加する。そして、流量検知用抵抗素子13の加熱に要する電圧の変化に基づき、後述するマイコンにて風速を換算し出力することができる。
 なお、図2に示すセンサ部3の回路構成は、一例であり、これに限定されるものではない。
 図3に示すように、本実施形態では、複数のセンサユニット1を、通信ケーブル8を介して接続することができる。図3に示すように、通信ケーブル8の一方の端部が、例えば、micro USBプラグ9であり、他方の端部が、例えば、USB-Aプラグ10である。そして、micro USBプラグ9が、センサユニット1に設けられた小開口側の外部接続端子5に接続され、USB-Aプラグ10が、センサユニット1に設けられた大開口側の外部接続端子4に接続される。
 図4に示すように、複数のセンサユニット1が、通信ケーブル8により一列に接続され、その先端がホスト11に接続されている。ホスト11とは、通信を制御する装置であり、通信においてマスターとなる装置のことを意味する。ホスト11は、ノートパソコンなどコンピュータ機器、或いは、通信の制御機能を備えた携帯端末であって、特に形式を問わない。
 本実施形態では、複数のセンサユニット1を、デイジーチェーン型に多連に接続した多連式センサ12を構成することができる。
 また、図5に示すように、ホスト11に設けられた複数のチャンネル11aに夫々、図4に示した多連式センサ12を接続することができる。図5の接続構造とすることで、多数のセンサユニット1をマトリクス状に配置することができる。
 本実施形態では、センサユニット1の接続数を限定するものでないが、センサユニット1を数個から数百個程度、接続して多連式センサ12を構成することができる。このように、本実施形態では、各センサユニット1を、通信ケーブル8を介して接続するだけでよいため、多連式センサ12のセンサ数を簡単且つ自由に増やすことができ、多連式センサ12を用いて様々なアプリケーションに適用することができる。
 多連式センサ12においては、例えば、風速を広範にわたって検知することができる。そして、各センサユニット1の風速の検知情報に基づいて、各センサユニット1の報知部6から外部に発信される態様を適宜変えることができる。例えば、報知部6は、LEDであり、これにより、多連式センサ12に色の変化を与えることができ、イルミネーションとして、或いは、流体の分析用等として利用者の視覚に訴えることが可能になる。
 また、本実施形態では、図1Aに示したように、外部接続端子4、5の形状や大きさが異なるため、誤接続を防止することができる。例えば、外部接続端子5が、上位に位置するホスト11側との通信側で、外部接続端子4が、下位に位置するセンサユニット1との通信側であると定められている場合に、逆に接続するといった誤った接続を防止することができる。
 ただし、本実施形態では、図6Aに示すように、センサユニット1に設けられる外部接続端子30、31が同一コネクタであってもよい。係る場合、誤接続を防止するためには、例えば、少なくとも一方の外部接続端子30に接続の方向を示すマーク32を設けておけばよい。例えば、マーク32が設けられた側がホスト11側(上位側)であると認識でき、誤接続を防止することが可能になる。
 なお、本実施形態では、外部接続端子30、31の接続の方向が識別可能とされていればよく、上記した外部接続端子30、31の形状や大きさを異ならせたり、マーク32を付与する以外の構成にて誤接続を防止することも可能である。
 また、図1Aでは、センサ部3、及び外部接続端子4、5が一列に並んで配置されているが、例えば、図6Bに示すように、各外部接続端子4、5を、センサ部3を挟んで略90°の方向に配置してもよい。図6Bに示すセンサユニット1を、多連式センサ12の少なくとも一部に用いると、センサユニット1の並び方向を90°曲げることができる。当然のことながら、センサ部3を介した外部接続端子4、5の間の角度に応じて、センサユニット1の並び方向の変曲角度を変えることができる。
 また、図6Cに示すように、各外部接続端子33、34が、センサ部3から見て同じ側に配置されていてもよい。図6Cに示すセンサユニット1を多連式センサ12の少なくとも一部に用いることで、センサユニット1の並び方向を180°曲げることができる。よって、図1Aに示す外部接続端子4、5が一列に並んだセンサユニット1と、図6Cに示す外部接続端子33、34が同じ側に配置されたセンサユニット1とを用いる。これにより、例えば、ホスト11のチャンネル11aが一つでも、センサユニット1がミアンダ状に並んだ多連式センサ12を構成することができる。
 次に、本実施形態のセンサユニット1の制御構造について説明する。図7は、本実施形態のセンサユニット1のブロック図を示す。
 図7に示すように、センサユニット1は、センサ部3と、センサ部3と電気的に接続され、センサ部3の検知信号を処理する制御部としてのマイコン40と、を有して構成される。
 図7に示すように、マイコン40は、CPU41と、AD変換器(ADC)42と、入出力ポート(I/O port)43と、上位通信制御部44と、下位通信制御部45と、を有して構成される。
 このように、マイコン40には、CPU41、AD変換器42、入出力ポート43、及び、通信制御部44、45等がワンチップにて構成されている。
 センサ部3からの検知信号は、AD変換器(ADC)42にてAD変換され、CPU41にて処理される。CPU41は、センサ出力に基づいて、報知部としてのLED47の点灯制御を行なったり、センサ出力によるデータをホスト送信用メモリに書き込む等の処理を行う。その他、CPU41は、ホスト11からのコマンドに基づく処理等、各種処理を行う。
 図7に示すように、本実施形態では、通信制御部が、上位通信制御部44と下位通信制御部45とに分けられている。上位通信制御部44は、上位装置であるホスト11側のセンサユニット1、或いは、ホスト11との間で送受制御を行なう。また、下位通信制御部45は、下位装置であるセンサユニット1との間で送受制御を行なう。ここで、上位通信制御部44及び下位通信制御部45に接続される符号46の線は、通信ケーブル8(図3参照)内の通信線46を示す。図1Aに示す外部接続端子4、5との関係でいえば、外部接続端子5側が上位通信制御部44側であり、外部接続端子4側が下位通信制御部45側に該当する。
 本実施形態のように、上位通信制御部44と下位通信制御部45とを分ける。これにおり、図8に示すように、複数のセンサユニット1を接続して多連式センサ12を構成したときでも、隣り合うセンサユニット1間でのみ(或いは、隣接するホスト11とセンサユニット1でのみ)、コマンド送信やデータの送受信を行うことが可能になる。なお、図8には、制御部の一部のみ図示した。また、上位装置に位置するホスト11側との通信か、下位装置に位置するセンサユニット1との通信かを認識することができる。このため、例えば、図8に示す真ん中のセンサユニット1から上位装置側である図示左側のセンサユニット1へコマンドを送信する際に、上位通信制御部44を介して適切に、上位装置であるセンサユニット1側へコマンドを送信することが可能になる。
 このように、本実施形態では、隣接するセンサユニット1間、或いは、ホスト11とセンサユニット1間での通信になるため、通信品質を高品質に保つことができる。
 また、センサユニット1が複数接続された多連式センサ12において、例えば、ホスト-流量センサA-流量センサB-流量センサC-流量センサD-流量センサEと接続されている場合、各センサ間や、ホスト-流量センサA間にて個々に通信が可能である。例えば、ホスト-流量センサA間で通信している場合に、流量センサA-流量センサB間や、流量センサB-流量センサC間でも個別に通信が可能である。よって、データの送受信に係る自由度を向上させることができる。
 一方、図9に示すように、各センサユニット1に通信制御部48を一つとして、各センサユニット1をバス接続した構成では、ホストからのコマンド送信は、意図しないセンサユニット1を含めた全てのセンサユニット1に対して送信される。すなわち、ホストからのコマンド送信が、例えば、図9に示す真ん中のセンサユニット1に対してのものであった場合でも、全てのセンサユニット1にコマンドが送信される。このため、通信が行われている間、他のコマンド通信をセンサユニット1間や、ホストとセンサユニット1間で行うことができない。また、センサユニット1の接続数が増えていくことで、末端(ホストから遠い側)のセンサユニット1に向けて、徐々にデータ信号の減衰が生じて、通信品質の悪化を招きやすい。
 ただし、本実施形態では、図9のバス接続通信を除外するものでなく、一態様して用いることが可能である。すなわち、ケースバイケースで、図8に示す接続通信、或いは、図9に示すバス接続通信で行い、又は、図8と図9の接続通信を併用することも可能である。
 また、本実施形態のセンサユニット1は、図7に示すように、センサ部3、マイコン40、及びLED47(報知部)を含めた回路機能部50の駆動電源を生成する回路電源生成部51を有する。回路電源生成部51は、通信ケーブル8(図3参照)内の電源配線49に接続される。
 回路電源生成部51には、降圧回路が組込まれており、回路機能部50の駆動電源を生成する。例えば、ホスト側では、AC100VをDC24VにAC/DCコンバータで変換してセンサユニット1に供給する。そして、センサユニット1では、降圧回路を有する回路電源生成部51により所定の電圧まで降圧して回路を駆動させる。このとき、搭載されるICに合わせて、例えば、5Vと3Vとに降圧する。
 一方、本実施形態の回路電源生成部51を有さない構成では、ホスト側で所定の電圧まで降圧して、例えば、センサユニット1の駆動電圧である5Vに降圧してセンサユニット1に供給する。このような構成では、多数のセンサユニット1を多連に接続すると、ホストから離れるほど電圧降下を生じ、センサユニット1の接続数を増やし過ぎたり、通信ケーブルが長すぎると、末端側のセンサユニット1を適切に駆動させることができない場合がある。
 これに対して、図10に示すように、各センサユニット1に回路電源生成部51を設けることで、ホストから供給される電圧を十分高くしたうえで、各センサユニット1にて回路機能部50の駆動電源を個別に生成することができる。本実施形態では、回路機能部50の構成するマイコン40やセンサ部3の電源を全て回路電源生成部51から供給することができる。これにより、多連式センサ12において、電圧降下を抑制でき、各センサユニット1を適切に駆動させることができる。なお、図10では、制御部の一部のみを図示した。
 なお、本実施形態では、図9に示すバス接続通信と、図10の回路電源生成部51とを組み合わせた制御部を構成することもできる。
 本実施形態の特徴的構成について説明する。本実施形態のセンサユニット1は、基板2と、基板2に配置された物理量変化を検知するセンサ部3と、センサ部3に電気的に接続された複数の外部接続端子4、5と、センサ部3の検知情報を外部に報知する報知部6と、を有することを特徴とする。
 ここで、センサユニット1としては、上記ではセンサユニット1を例示したが、センサユニット1に限定するものでなく、温度変化、湿度変化、及び、圧力変化等の物理量変化を検出可能なセンサユニット1とすることができる。
 また、上記では、外部接続端子4、5としてUSB端子を例示したが、センサユニット1間で通信が可能な端子であればUSB端子に限定するものではない。
 また、本実施形態では、報知部6としてLEDを例示したが、LEDに限定されるものでなく、他の発光装置であってもよい。或いは、発光するもの以外に、音声や振動等の動作にて物理量変化を報知する形態であってもよい。
 報知部6が発光する装置である場合、例えば、風速に応じて、光の強度や色を変えることができる。或いは、報知部6が音声装置である場合、例えば、風速に応じて、音声の大きさやトーンを変えたり、また、報知部6が振動装置である場合、例えば、風速に応じて、振動の大きさや振動のリズムを変えることができる。
 以上詳述したセンサユニット1の構造を備えることで、本実施形態では、複数のセンサユニット1同士を、外部接続端子4、5を介して簡単に接続でき、広範にわたって物理量変化を検知できる。また、センサユニット1の接続数を自由に変えることができ、多連式センサの全長を自由に調整することができる。また、センサユニット1自体が検知情報を外部に報知する手段を備えている。このため、複数のセンサユニット1を接続した多連式センサ12では、例えば、風速の変化に応じて、多連式センサ12の先端から末端にかけて発光色を変えることができ、様々なアプリケーションに利用することができる。
 また、本実施形態では、外部接続端子4、5を介してデータ通信を可能とすることが好ましい。本実施形態では、図4、図5に示すように、複数のセンサユニット1を多連に接続した多連式センサ12をホスト11に接続し、データ通信を可能とする。これにより、各センサユニット1の検知情報をホスト11にて適切に処理でき、あるいは、ホスト11からコマンドを送信することができる。これにより、多連式センサ12の用途に応じて、例えば、多連式センサ12の発光状態を変えてみたり、検知精度のレンジを変更したり、制御の自由度を上げることができる。
 本実施形態では、複数の外部接続端子4、5は夫々、接続の方向を識別可能とされていることが好ましい。これにより、センサユニット1同士を接続する際、誤接続の防止が可能になる。
 例えば、図1A、図3に示すように、複数の外部接続端子4、5は夫々、形状や大きさが異なることが好ましい。これにより、利用者は、センサユニット1同士を接続する際、簡単に、接続の方向を把握できる。また、図6Aに示すように、少なくとも一つの外部接続端子30に、接続の方向を示すマーク32が付されていてもよい。これによっても、利用者は、センサユニット1同士を接続する際、簡単に、接続の方向を把握できる。また、図6Aでは、同一の外部接続端子30、31を使用することができる。
 また、本実施形態では、図1A及び、図1Bに示すように、基板2の同じ表面2a側に、センサ部3、外部接続端子4、5、及び報知部6が配置されていることが好ましい。これにより、センサユニット1の製造を容易化できる。また、センサ部3と報知部6とを近接させることが可能であり、センサ部3の測定結果と、報知部6による報知情報のずれと、を極力小さくすることができる。また、図1Aでは、基板2上に平面的に、センサ部3、外部接続端子4、5、及び報知部6が配置されているが、例えば、センサ部3に重ねて報知部6が配置されていてもよい。できる限り、センサユニット1を小型化するには、基板2を小さくしたり、また、基板2上の部品を薄型化し且つ重ね合わせる等する。
 また、本実施形態では、図1A等に示すように、センサ部3は、基板2の略中央に配置され、2つの外部接続端子4、5が、センサ部3の両側に配置されることが好ましい。これにより、複数のセンサユニット1を接続して多連式センサ12としたとき、各センサユニット1を一列に簡単に接続することができる。
 本実施形態では、報知部6は、センサ部3の検出情報に基づいて発光する発光部であることが好ましい。発光部としてはLEDを例示できるが、LEDに限定されるものではない。このように報知部6を発光部で構成することで、利用者の視覚に訴えることができ、様々なアプリケーションに適用することができる。
 また、本実施形態では、センサ部3は、物理量変化を検出するセンサであれば特に限定するものではないが、例えば、流量検出部を提示できる。センサ部3は、流量検出の中でも風速を検知できる風速センサであることが好ましい。風速センサである場合、センサユニット1に風を送ることで、風速により、LEDで構成された報知部6の発光状態を変化させることができる。また、風速センサであれば、風速センサを多連に接続した多連式センサ12を、屋内及び屋外を問わず簡単に配置でき、様々なアプリケーションに用いることができる。
 本実施形態では、図3、図4及び図5に示すように、センサユニット1を複数、外部接続端子4、5間に通信ケーブル8を介して接続した多連式センサ12を構成することができる。このとき、センサユニット1の個数を自由に設定でき、多連式センサ12の長さを自由に設定することができる。なお、多連式センサ12の長さが長くなると、図9のバス接続通信では通信品質が低下するので、図8の接続通信を用いることが好ましい。合わせて、図10に示す回路電源生成部51を用いて駆動電源を生成することが好ましい。このように、本実施形態では、複数のセンサユニット1を接続した多連式センサ12を簡単且つ高い自由度により製造することができ、広範な物理量変化の検知を簡単に行うことが可能になる。
 また、多連式センサ12を用いて様々なアプリケーションに適用することができる。例えば、屋内や屋外のイルミネーションとして用いたり、風速の分析用等として用いることができる。例えば、建物や移動体に本実施形態の多連式センサ12を装着することで、広範な流体状態を簡単に分析することが可能になる。
 また、図5のように、多連式センサ12を複数用いて、マトリクス状となるように並べることができる。これにより、風が強く当たる場所から離れるに従って徐々に風が弱まる様子や風の吹いている方向などをマトリクスの発光変化等で視覚的に捉えることが可能になる。
 本発明では、物理量変化を検知可能なセンサユニットを多連に接続することができる。また、各センサユニットには、センサ部の検知情報を外部に報知する報知部が設けられている。本発明では、多連式センサに接続するセンサユニットの接続数や通信ケーブルの長さの自由度が高い。よって、使用用途に合わせて多連式センサのセンサ数及び全長を変えることができる。そして、本発明の多連式センサを用いて様々なアプリケーションに適用することができる。
 本出願は、2017年9月11日出願の特願2017-173740号に基づく。この内容は全てここに含めておく。

Claims (10)

  1.  基板と、前記基板に配置された物理量変化を検知するセンサ部と、前記センサ部に電気的に接続された複数の外部接続端子と、前記センサ部の検知情報を外部に報知する報知部と、を有することを特徴とするセンサユニット。
  2.  前記外部接続端子を介してデータ通信を可能とすることを特徴とする請求項1に記載のセンサユニット。
  3.  前記複数の外部接続端子は夫々、接続の方向を識別可能とされていることを特徴とする請求項1又は請求項2に記載のセンサユニット。
  4.  前記複数の外部接続端子は夫々、形状や大きさが異なることを特徴とする請求項3に記載のセンサユニット。
  5.  前記複数の外部接続端子の少なくとも一つに、接続の方向を示すマークが付されていることを特徴とする請求項3に記載のセンサユニット。
  6.  前記基板の同じ表面側に、前記センサ部、前記外部接続端子、及び前記報知部が配置されていることを特徴とする請求項1に記載のセンサユニット。
  7.  前記センサ部は、前記基板の略中央に配置され、2つの前記外部接続端子が、前記センサ部の両側に配置されることを特徴とする請求項1に記載のセンサユニット。
  8.  前記報知部は、前記センサ部の検出情報に基づいて発光する発光部であることを特徴とする請求項1に記載のセンサユニット。
  9.  前記センサ部は、流量検出部であることを特徴とする請求項1に記載のセンサユニット。
  10.  基板と、前記基板に配置された物理量変化を検知するセンサ部と、前記センサ部に電気的に接続された複数の外部接続端子と、前記センサ部の検知情報を外部に報知する報知部と、を有するセンサユニットと、
     前記センサユニットが複数配置され、各センサユニット同士を接続する通信ケーブルと、を有し、
    前記外部接続端子を介してデータ通信を可能としたことを特徴とする多連式センサ。
PCT/JP2018/031909 2017-09-11 2018-08-29 センサユニット、及びそれを用いた多連式センサ WO2019049743A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018005031.9T DE112018005031T5 (de) 2017-09-11 2018-08-29 Sensoreneinheit und Mehrfachtypsensor, der sie verwendet
US16/642,226 US11525720B2 (en) 2017-09-11 2018-08-29 Sensor unit, and multiple-type sensor using the same
CN201880058626.4A CN111095375A (zh) 2017-09-11 2018-08-29 传感器单元及使用它的多连式传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017173740A JP7054328B2 (ja) 2017-09-11 2017-09-11 センサユニット、及びそれを用いた多連式センサ
JP2017-173740 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049743A1 true WO2019049743A1 (ja) 2019-03-14

Family

ID=65634806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031909 WO2019049743A1 (ja) 2017-09-11 2018-08-29 センサユニット、及びそれを用いた多連式センサ

Country Status (5)

Country Link
US (1) US11525720B2 (ja)
JP (1) JP7054328B2 (ja)
CN (1) CN111095375A (ja)
DE (1) DE112018005031T5 (ja)
WO (1) WO2019049743A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353108B2 (ja) * 2019-09-12 2023-09-29 Koa株式会社 流量センサ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326002A (ja) * 1998-03-13 1999-11-26 Tokyo Gas Co Ltd フローセンサ
JP2004045239A (ja) * 2002-07-12 2004-02-12 Fujitsu Ltd 三次元空間内の粗密波波面のリアルタイム画像化方法及び疎密波リアルタイム画像化用センサ
US20140265550A1 (en) * 2013-03-14 2014-09-18 Raytheon Bbn Technologies Corp. Redundantly powered and daisy chained power over ethernet

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835978A (ja) * 1994-07-20 1996-02-06 Murata Mfg Co Ltd 風速センサ
JP2002062306A (ja) 2000-08-23 2002-02-28 Tokyo Gas Co Ltd 流速検出装置
JP2004327372A (ja) * 2003-04-28 2004-11-18 Yazaki Corp ワイヤハーネスの製造方法およびワイヤハーネス
JP2005172445A (ja) 2003-12-08 2005-06-30 Osaka Prefecture フローセンサ
JP4502256B2 (ja) * 2004-09-07 2010-07-14 株式会社山武 流量センサ
CN101896814A (zh) * 2007-10-12 2010-11-24 Nxp股份有限公司 传感器、传感器阵列以及操作传感器的方法
US20140266792A1 (en) * 2013-03-13 2014-09-18 Raymond & Lae Engineering, Inc. Universal monitoring system and modular interface and sensor assemblies
JP6043248B2 (ja) 2013-07-24 2016-12-14 日立オートモティブシステムズ株式会社 熱式空気流量計
CN204008692U (zh) * 2014-08-05 2014-12-10 王越 一种风速传感装置
CN204945161U (zh) * 2015-09-21 2016-01-06 诺和君目(北京)科技有限公司 一种风速传感器
JP6706871B2 (ja) * 2015-10-02 2020-06-10 Koa株式会社 流量センサ
JP6747001B2 (ja) 2016-03-25 2020-08-26 富士ゼロックス株式会社 定着装置及び画像形成装置
CN105953940B (zh) * 2016-04-21 2018-03-30 北京卫星环境工程研究所 光纤光栅的温度、湿度和风速一体化复合传感系统
CN106093460B (zh) * 2016-08-11 2022-04-26 珠海格力电器股份有限公司 一种流速测量装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326002A (ja) * 1998-03-13 1999-11-26 Tokyo Gas Co Ltd フローセンサ
JP2004045239A (ja) * 2002-07-12 2004-02-12 Fujitsu Ltd 三次元空間内の粗密波波面のリアルタイム画像化方法及び疎密波リアルタイム画像化用センサ
US20140265550A1 (en) * 2013-03-14 2014-09-18 Raytheon Bbn Technologies Corp. Redundantly powered and daisy chained power over ethernet

Also Published As

Publication number Publication date
US11525720B2 (en) 2022-12-13
JP7054328B2 (ja) 2022-04-13
US20200355531A1 (en) 2020-11-12
DE112018005031T5 (de) 2020-07-02
JP2019049863A (ja) 2019-03-28
CN111095375A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
US9270062B2 (en) Electronic device and connector detection circuit thereof
US10104749B2 (en) Communication device and lighting device comprising same
US7408384B2 (en) Drive circuit of computer system for driving a mode indicator
US10123417B2 (en) Dual printed circuit board assembly, printed circuit board and modular printed circuit board
TW201443653A (zh) 介面檢測電路
WO2019049743A1 (ja) センサユニット、及びそれを用いた多連式センサ
JP2019215163A (ja) 流量センサ装置
US11920966B2 (en) Flow rate sensor device
WO2019049742A1 (ja) センサユニット、及びそれを用いた多連式センサ
US10634977B2 (en) Image display device provided with flow-rate sensor
US11402249B2 (en) Flow rate sensor device
US20050275412A1 (en) Cable power indicator
CN208690918U (zh) 一种过温保护电路
CN207657438U (zh) 用于自助终端设备的打印头保护装置
US20110221362A1 (en) Electronic device
JP2015115148A (ja) 基板ユニット
JP7426170B2 (ja) 流量センサ素子
WO2013121803A1 (ja) 磁気センサ装置
CN106019700A (zh) 显示单元
TW201539178A (zh) 風扇識別系統及伺服器
JP2020051753A (ja) 流量センサ装置及び多連型の流量センサ装置
JP5912630B2 (ja) 磁気センサ装置
TW201944676A (zh) 電子裝置
JP2001301149A (ja) インクジェットヘッド
KR20140006065U (ko) 케이블

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854402

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18854402

Country of ref document: EP

Kind code of ref document: A1