WO2019049440A1 - スパークプラグの製造方法 - Google Patents

スパークプラグの製造方法 Download PDF

Info

Publication number
WO2019049440A1
WO2019049440A1 PCT/JP2018/020721 JP2018020721W WO2019049440A1 WO 2019049440 A1 WO2019049440 A1 WO 2019049440A1 JP 2018020721 W JP2018020721 W JP 2018020721W WO 2019049440 A1 WO2019049440 A1 WO 2019049440A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
welded
tip
center
electrode
Prior art date
Application number
PCT/JP2018/020721
Other languages
English (en)
French (fr)
Inventor
駿介 真木
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US16/635,679 priority Critical patent/US10903628B2/en
Priority to DE112018004902.7T priority patent/DE112018004902T5/de
Priority to CN201880056770.4A priority patent/CN111052522A/zh
Publication of WO2019049440A1 publication Critical patent/WO2019049440A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/351Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices

Definitions

  • the present invention relates to a method of manufacturing a spark plug, and more particularly to a method of manufacturing a spark plug in which a tip is joined to a ground electrode by resistance welding.
  • Patent Document 1 There is known a spark plug in which a tip containing a noble metal is joined to a ground electrode in order to enhance spark erosion resistance.
  • One of the means for joining the tip to the ground electrode is resistance welding.
  • Patent Document 1 after grinding and roughening the surface of the ground electrode to which the chip is to be bonded, the chip is stacked on the surface and held between the electrodes, and electricity is applied between the electrodes to cause resistance heat generation.
  • the contact resistance between the chip and the ground electrode is increased by increasing the surface roughness of the entire contact surface of the ground electrode with which the chip contacts, thereby increasing the amount of heat generation to form a nugget.
  • the current flowing between the electrodes once spreads in the material to be joined (the tip and the ground electrode) due to the fringing phenomenon, so the current density is the edge portion of the contact surface where the tip and the ground electrode contact Becomes higher.
  • the bonding strength near the center of the chip may be lower than the bonding strength near the edge of the chip.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method of manufacturing a spark plug which can secure bonding strength in the vicinity of the center of the chip while suppressing the occurrence of scattering.
  • the present invention is a manufacturing method for manufacturing a spark plug including a ground electrode having a joint surface of a tip welded to each other, wherein the ground electrode of the ground electrode is more than an edge of a portion to be welded
  • a chip is joined by resistance welding to a processing step of processing the area including the center of the planned welding part rougher than the part excluding the scope within the planned welding section and the planned welding part of the ground electrode after the processing process And a bonding step.
  • the present invention is a manufacturing method of manufacturing a spark plug including a ground electrode in which a joint surface of a chip is welded, and a range including an inner edge of the joint surface of the chip and including a center of the joint surface Providing a processing step of processing rougher than the portion excluding the range of the bonding surface, and a bonding step of bonding the bonding surface after the processing step by resistance welding to a portion to be welded of the tip of the ground electrode; There is.
  • the tip is bonded by resistance welding to the portion to be welded of the ground electrode after the processing step.
  • the current density between the tip and the area including the center of the roughly processed welding portion can be made higher at the beginning of energization than in the surrounding current density, so that the current flowing between the electrodes is not increased.
  • the temperature of the material to be joined (tip and ground electrode) can be increased from the range including the center of the portion to be welded, and the melting region can be expanded. Therefore, the bonding strength in the vicinity of the center of the chip can be secured while suppressing the occurrence of the scattering.
  • the range including the center of the bonding surface which is inside the edge of the bonding surface of the chip and which includes the center of the bonding surface is more than the portion excluding the region It is roughly processed.
  • the bonding surface of the tip after the processing step is bonded by resistance welding to a portion of the ground electrode to be welded to which the tip is to be welded.
  • the current density between the ground electrode and the area including the center of the roughly processed chip can be made higher than the current density around it at the beginning of energization, even without increasing the current flowing between the electrodes
  • the temperature of the material to be joined (the tip and the ground electrode) can be increased from the range including the center of the tip to widen the melting region. Therefore, the bonding strength in the vicinity of the center of the chip can be secured while suppressing the occurrence of the scattering.
  • a plane perpendicular to an axis extending from one end to the other end of the ground electrode having one end joined to the metal shell and the tip welded to the other end When a range is divided into a first portion on one end side and a second portion on the other end side by a plane passing through the center of a portion to be welded or the center of a joining surface after a joining process, the first portion The area of is larger than the area of the second part.
  • the temperature of the material to be joined (the tip and the ground electrode) can be increased from the first part on the one end side of the ground electrode joined to the metal shell, and the melting region can be expanded.
  • the range is made rough by the irradiation of the laser beam in the first step of the processing step, and the oxide film formed in the first step is the second step of the processing step. It is removed by the irradiation of the laser beam of smaller output than the first step. Therefore, in addition to the effect of any one of claims 1 to 3, the oxide film can hardly affect the behavior of formation and growth of nuggets in the bonding step.
  • the plating layer is not formed prior to melting of the ground electrode because the plating layer is not formed on at least the portion to be welded among the ground electrodes. It can be done. Therefore, in addition to the effect of any one of claims 1 to 4, it is possible to prevent the plating layer from affecting the behavior of formation and growth of nuggets in the bonding step.
  • FIG. 1 is a half sectional view of a spark plug according to an embodiment of the present invention. It is sectional drawing of a main metal fitting and a ground electrode. It is a perspective view of a chip and a grounding electrode after a processing process in a 1st embodiment.
  • (A) is sectional drawing of the ground electrode in the 1st process of a manufacturing process
  • (b) is sectional drawing of the ground electrode in the 2nd process of a manufacturing process. It is a side view of a tip and a ground electrode pinched by electrodes. It is a perspective view of the chip
  • FIG. 1 is a half sectional view of a spark plug 10 according to an embodiment of the present invention.
  • the lower side in the drawing is referred to as the tip end side of the spark plug 10
  • the upper side in the drawing is referred to as the rear end side of the spark plug 10.
  • the spark plug 10 includes an insulator 11, a metal shell 16 and a ground electrode 17.
  • the insulator 11 is a cylindrical member made of alumina or the like which is excellent in mechanical characteristics and insulation under high temperature, and has an axial hole 12 penetrating along the axis O.
  • the center electrode 13 is disposed on the tip end side of the shaft hole 12.
  • the center electrode 13 is a rod-like member extending along the axis O, and a core material mainly made of copper or copper is covered with a nickel or nickel base alloy.
  • the center electrode 13 is held by the insulator 11, and the tip is exposed from the axial hole 12.
  • the center electrode 13 has a tip 14 containing a noble metal bonded to its tip.
  • the terminal fitting 15 is a rod-like member to which a high voltage cable (not shown) is connected, and is formed of a conductive metal material (for example, low carbon steel).
  • the terminal fitting 15 is fixed to the rear end of the insulator 11 in a state where the front end side is inserted into the shaft hole 12.
  • the metal shell 16 is fixed to the outer periphery of the insulator 11.
  • the metal shell 16 is a substantially cylindrical member formed of a conductive metal material (for example, low carbon steel).
  • a ground electrode 17 is joined to the end of the metal shell 16.
  • the ground electrode 17 is a rod-like metal (for example, a nickel-based alloy) member to which a tip 30 containing a noble metal is bonded.
  • the ground electrode 17 has one end 18 joined to the metal shell 16 and the other end 19 welded to the tip 30. In the present embodiment, the ground electrode 17 is bent at the other end 19 side.
  • the tip 30 joined to the other end 19 of the ground electrode 17 forms a spark gap with the center electrode 13 (tip 14).
  • the spark plug 10 is manufactured, for example, by the following method. First, the center electrode 13 with the tip 14 bonded to the tip in advance is inserted into the shaft hole 12 of the insulator 11, and the tip of the center electrode 13 is disposed so as to be exposed to the outside from the shaft hole 12. After inserting the terminal fitting 15 into the axial hole 12 and securing the conduction between the terminal fitting 15 and the center electrode 13, the metal shell 16 to which the ground electrode 17 is joined in advance is assembled on the outer periphery of the insulator 11. After the tip 30 is joined to the other end 19 of the ground electrode 17 by resistance welding, the ground electrode 17 is bent so that the tip 30 faces the center electrode 13 (tip 14), and the spark plug 10 is obtained.
  • FIG. 2 is a cross-sectional view including the axial line O of the metal shell 16 and the ground electrode 17.
  • FIG. 2 shows the state before the metal shell 16 is assembled to the insulator 11 and the state before the ground electrode 17 is bent.
  • the ground electrode 17 before the chip 30 is bonded is formed in a straight line along an axis 20 extending from one end 18 to the other end 19.
  • the ground electrode 17 of FIG. 2 is illustrated in a cross-sectional view cut at a cutting plane including the shaft 20.
  • a plating layer 21 is formed on the surface of the metal shell 16 to which the ground electrode 17 is bonded.
  • the plating layer 21 is a surface treatment layer mainly for improving the corrosion resistance of the metal shell 16, and is mainly made of, for example, zinc, zinc subjected to chromate treatment, or the like.
  • the plating layer 21 is formed by subjecting the metal shell 16 to which the ground electrode 17 is joined to a barrel plating process.
  • the plating layer 21 is formed not only on the surface of the metal shell 16 but also on the surface of the ground electrode 17.
  • the plating layer 21 melts prior to the melting of the ground electrode 17, so the plating layer 21 affects the welding quality of the chip 30.
  • at least the plating layer 21 of the planned welding portion 22 to which the tip 30 is welded is removed so that melting of the plating layer 21 does not have to be taken into consideration at the time of resistance welding.
  • the plating layer 21 is partially removed by physical removal means such as ion etching or shot blast, or chemical removal means for immersing the ground electrode 17 in a stripping solution.
  • the ground electrode 17 is only required to have at least the plating layer 21 of the welding planned portion 22 removed, but the plating layer 21 present on the same surface as the welding planned portion 22 should be removed widely to near the metal shell 16. Is of course possible. In this case, it is preferable to remove the plating layer 21 of the ground electrode 17 beyond the portion where the ground electrode 17 bends toward the center electrode 13. When the ground electrode 17 is bent toward the center electrode 13 in a state where the plating layer 21 is formed on the ground electrode 17, there is a possibility that part of the plating layer 21 may be peeled off along with the bending. Then, spark discharge may occur between the peeled portion of the plating layer 21 and the center electrode 13 to reduce the ignitability. This can be suppressed by eliminating the plating layer 21 in the portion where the ground electrode 17 is bent.
  • FIG. 3 is a perspective view of the chip 30 and the ground electrode 17 after the processing step in the first embodiment.
  • the processing step is a step of increasing the surface roughness of a part of the planned welding portion 22 to which the tip 30 is to be welded.
  • the portion to be welded 22 is a portion of the ground electrode 17 to which the joint surface 31 of the tip 30 is pressed at the time of resistance welding. Therefore, the portion to be welded 22 has the same size and the same shape as the joint surface 31 of the tip 30.
  • the tip 30 is disk-shaped, and the portion to be welded 22 is circular.
  • the area to be welded 22 is inside the edge 23 of the area to be welded 22 and includes the center 24 of the area to be welded 22 than the portion 29 excluding the area 26 in the area to be welded 22 It is roughly processed.
  • the range 26 is similar to the bonding surface 31 of the chip 30. Examples of means for roughening the range 26 include plastic working using a transfer mold, grinding, electrical discharge machining, blasting, peening, irradiation with a laser beam or an electron beam, and etching. In the present embodiment, the case where the area 26 is roughened by irradiating a laser beam that can be easily processed in the atmosphere and is easily microfabricated will be described.
  • the range 26 is a flat surface 25 perpendicular to the axis 20 of the ground electrode 17 and bisecting the range 26 at the flat surface 25 passing through the center 24 of the planned welding portion 22. 2) and the second part 28 on the other end 19 (see FIG. 2) side.
  • the position of the range 26 with respect to the center 24 of the planned welding portion 22 is set such that the area of the first portion 27 is larger than the area of the second portion 28.
  • FIG. 4A is a cross-sectional view of the ground electrode 17 in the first step of the processing step
  • FIG. 4B is a cross-sectional view of the ground electrode 17 in the second step of the processing step.
  • the welding planned portion 22 of the ground electrode 17 is irradiated with the laser beam 41 emitted from the processing head 40.
  • the portion to be welded 22 is partially melted and dented to form a liquid phase.
  • the laser beam 41 moves along the welding scheduled portion 22, so that the liquid phase flows and solidifies by the action of surface tension, thereby forming a series of depressions and projections. Thereby, the surface roughness of a part of the range 26 (see FIG. 3) of the planned welding portion 22 can be increased.
  • the oxide film 42 is formed on the surface of the unevenness.
  • the oxide film 42 is irradiated with a laser beam 41 having an output smaller than that in the first step, and the surface is formed in the first step while maintaining the surface roughness in the first step.
  • the oxide film 42 is melted or sublimated to remove the oxide film 42 formed on the portion to be welded 22.
  • the laser beam 41 either a pulse oscillation laser or a continuous oscillation laser can be used.
  • FIG. 5 is a side view of the tip 30 and the ground electrode 17 sandwiched by the electrodes (the first electrode 43 and the second electrode 44).
  • a part of the ground electrode 17 is illustrated by a partial cross-sectional view including the axis 20 (see FIG. 2).
  • the metal shell 16 assembled to the outer periphery of the insulator 11 has the ground electrode 17 joined in advance.
  • the tip 30 is stacked on the portion to be welded 22 (see FIG. 3) of the ground electrode 17, and the ground electrode 17 and the tip 30 (hereinafter referred to as “material to be joined”) are the first electrode 43 and the second electrode 44. Sandwich.
  • the workpiece Prior to energization, the workpiece is pressurized by the first electrode 43 and the second electrode 44. After the pressurization is stabilized, current is applied between the first electrode 43 and the second electrode 44. Since the current tends to once spread in the material to be joined due to the fringing phenomenon, the current density tends to be high in the vicinity of the welding planned portion 22 (see FIG. 3) and the edges 23 and 32 of the joint surface 31.
  • the ground electrode 17 is inside the edge 23 of the planned welding portion 22 (see FIG. 3), and a range 26 including the center 24 of the planned welding portion 22 is a portion 29 excluding the range 26 of the planned welding portion 22.
  • the contact resistance in the range 26 can be higher than the contact resistance in the portion 29 since it is processed more roughly.
  • the current density in the range 26 including the center 24 of the welding scheduled portion 22 becomes high, and the temperature in the range 26 starts to rise. Thereafter, the temperature of the range 26 further rises, and the temperature of the portion 29 around the range 26 also rises.
  • the material to be joined starts to melt, and the melting region spreads with the increase of the heat input, that is, the current and the current application time.
  • the melting region solidifies, and a nuggets in which the tip 30 and the ground electrode 17 melt and solidify are formed.
  • the bonding step as the pressing force of the material to be bonded by the first electrode 43 and the second electrode 44 is increased, the bonding surface 31 of the chip 30 adheres to the minute unevenness formed in the range 26 of the ground electrode 17 Since this facilitates the process, the contact area between the unevenness in the range 26 and the bonding surface 31 increases, the current density decreases, and the amount of heat generation decreases. In order to increase the amount of heat generation, it is necessary to increase the current flowing between the first electrode 43 and the second electrode 44. Conversely, as the pressing force of the bonding material by the first electrode 43 and the second electrode 44 is reduced, the contact area between the unevenness of the range 26 and the bonding surface 31 becomes narrow, and the current density of the range 26 is high. Therefore, the calorific value near the center of the bonding surface 31 of the chip 30 becomes larger than the calorific value around it.
  • the bonding step by adjusting the pressing force of the material to be bonded by the first electrode 43 and the second electrode 44, the area 26 including the center 24 of the welding scheduled portion 22 roughly processed at the initial stage of energization and the tip 30 Since the current density can be made higher than the current density around it, the range 26 including the center 24 of the planned welding portion 22 without increasing the current flowing between the first electrode 43 and the second electrode 44
  • the temperature of the materials to be joined (the tip 30 and the ground electrode 17) can be raised to widen the melting region. Therefore, it is possible to secure the bonding strength in the vicinity of the center of the bonding surface 31 of the chip 30 while suppressing the occurrence of scattering (scattering of the molten metal).
  • the bonding strength in the vicinity of the center of the bonding surface 31 of the chip 30 is lower than the bonding strength in the vicinity of the edge 32 of the bonding surface 31, the side surface of the chip 30 is largely consumed by sparks and the nugget is consumed from the surroundings. There is a possibility that the chip 30 may come off from the ground electrode 17 due to lack of the cross-sectional area of the chip.
  • the bonding strength near the center of the bonding surface 31 of the chip 30 can be secured, the cross-sectional area of the nugget can be secured even when the side surface of the chip 30 is largely consumed by sparks. Therefore, detachment of the chip 30 from the ground electrode 17 can be prevented.
  • one end portion of the ground electrode 17 joined to the metal shell 16 when the range 26 is divided by a plane 25 perpendicular to the axis 20 of the ground electrode 17 and passing through the center 24 of the welding scheduled portion 22.
  • the area of the first portion 27 on the 18 side is made in the planned welding portion 22 so as to be larger than the area of the second portion 28 on the other end 19 side.
  • the bonding strength of the first part 27 (one end 18 side of the ground electrode 17) Can be secured.
  • the bonding surface 31 of the chip 30 and the area 26 are similar shapes, the nugget formed on the ground electrode 17 and the chip 30 (material to be bonded) can be easily made into an appropriate shape according to the shape of the bonding surface 31 of the chip 30 . Thereby, the bonding strength of the chip 30 can be easily secured.
  • the range 26 is roughened by the irradiation of the laser beam 41 in the first step, and the oxide film 42 formed in the first step is irradiated with the laser beam 41 having a smaller output than the first step in the second step.
  • the oxide film 42 which affects the contact resistance between the welding scheduled portion 22 of the ground electrode 17 and the bonding surface 31 of the tip 30 can be made to be in the same state between the workpieces.
  • the surface roughness of the planned welding portion 22 in the first step is maintained, so that the contact resistance between the joint surface 31 of the tip 30 and the planned welding portion 22 of the ground electrode 17 can be stabilized. Therefore, it is possible to prevent the occurrence of variations in the behavior of formation and growth of nuggets in the bonding step.
  • a plurality of projections and depressions are formed in the area 26, and the size of one recess is smaller than the area of the joint surface 31 of the tip 30.
  • Contact When pressure is applied thereto through the first electrode 43 and the second electrode 44, the convex is elastically or plastically deformed to obtain a predetermined contact surface.
  • current flows from the first electrode 43 and the second electrode 44, current concentrates on the contact surface. Since the contact surface is high in resistance as compared to the other parts, it is heated and softened and collapsed to form a new contact surface. As the current tends to flow to the new contact surface, the new contact surface is heated. As described above, the contact area is spread while heating to form a molten region, so that the behavior of formation and growth of nuggets in the bonding step can be less likely to occur.
  • the plating layer 21 is not formed at least in the portion to be welded 22, so that the plating layer 21 can be prevented from melting prior to the melting of the ground electrode 17.
  • the contact area is increased, the current density is decreased, and the calorific value is decreased, so that the behavior of formation and growth of the nugget tends to be uneven.
  • the plating layer 21 is not formed in the portion to be welded 22, it is possible to prevent the plating layer 21 from affecting the behavior of nugget formation and growth.
  • FIG. 6 is a perspective view of the chip 50 and the ground electrode 17 after the processing step in the second embodiment.
  • the chip 50 is in the shape of a rectangular solid and contains a noble metal.
  • the processing step is a step of increasing the surface roughness of a part of the bonding surface 51 where the tip 50 is welded to the ground electrode 17.
  • the joint surface 51 is pressed against the ground electrode 17 at the time of resistance welding among the chips 50.
  • the welding planned portion 58 of the ground electrode 17 is a portion to which the joint surface 51 of the tip 50 is pressed. Therefore, the portion to be welded 58 has the same size and the same shape as the joint surface 51 of the tip 50.
  • the bonding surface 51 of the chip 50 is rectangular.
  • the chip 50 is disposed on the ground electrode 17 so that the long side of the bonding surface 51 is orthogonal to the axis 20.
  • the chip 50 is processed so that the range 54 that is inside the edge 52 of the bonding surface 51 and that includes the center 53 of the bonding surface 51 is rougher than the portion 57 of the bonding surface 51 excluding the range 54.
  • the center 53 of the joint surface 51 is an intersection point of diagonal lines connecting the vertices of the joint surface 51.
  • the range 54 is similar to the bonding surface 51 of the chip 50.
  • the means for roughening the range 54 is the same as the means described in the first embodiment, and thus the description thereof is omitted here.
  • the area 54 is a plane 25 perpendicular to the axis 20 of the ground electrode 17 and is joined to the metal shell 16 (see FIG. 2) when the area 54 is bisected at the plane 25 passing through the center 59 of the planned welding portion 58 It is divided into a first part 55 on one end 18 side and a second part 56 on the other end 19 (see FIG. 2) side.
  • the position of the center 59 of the portion to be welded 58 is the same position as the center 53 of the joint surface 51 of the tip 50 after the joining process.
  • the position of the range 54 with respect to the center 53 of the bonding surface 51 is set such that the area of the first portion 55 is larger than the area of the second portion 56.
  • the tip 50 is overlapped on the portion to be welded 58 of the ground electrode 17, and the ground electrode 17 and the tip 50 (member to be joined) are sandwiched by the first electrode 43 and the second electrode 44 (both refer to FIG. 5).
  • the workpiece Prior to energization, the workpiece is pressurized by the first electrode 43 and the second electrode 44. After the pressurization is stabilized, current is applied between the first electrode 43 and the second electrode 44.
  • the current density tends to be high in the vicinity of the edge 52 of the bonding surface 51 because the current tends to once spread in the workpiece due to the fringing phenomenon.
  • the chip 50 is inside the edge 52 of the bonding surface 51 and the bonding surface 5 Since the range 54 including the center 53 of 1 is processed rougher than the portion 57 of the joint surface 51 excluding the range 54, the contact resistance in the range 54 can be higher than the contact resistance in the portion 57. As a result, at the initial stage of energization, the current density in the range 54 including the center 53 of the bonding surface 51 increases, and the temperature in the range 54 starts to rise. Thereafter, the temperature of the range 54 further rises, and the temperature of the peripheral portion 57 of the range 54 also rises.
  • the material to be joined begins to melt, and the molten region spreads with the increase in the amount of heat input, that is, the current and the conduction time.
  • the melting region solidifies, and a nuggets in which the tip 50 and the ground electrode 17 melt and solidify are formed.
  • the bonding step since the current density of the range 54 including the center 53 of the bonding surface 51 of the roughly processed chip 50 and the ground electrode 17 can be increased at the initial stage of energization, the first electrode 43 and the second electrode 44.
  • the bonding strength in the vicinity of the center of the bonding surface 51 of the chip 50 can be secured while suppressing the occurrence of scattering (scattering of molten metal).
  • the shape of the chip 30 is a cylinder and the shape of the bonding surface 31 is a circle
  • the case where the shape of the chip 50 is a rectangular solid and the shape of the bonding surface 51 is a rectangle is described. Absent.
  • the shape of the chip and the bonding surface can be set arbitrarily.
  • the center of the joint surface or the planned welding portion coincides with the center of gravity of the planar figure when the joint surface or the planned welding portion is a planar figure.
  • the areas 26 and 54 for roughening a part of the welding planned portion 22 of the ground electrode 17 and the bonding surface 51 of the tip 50 are similar to the welding planned portion 22 and the welding surface 51. Not necessarily limited to this.
  • the shape and size of the ranges 26 and 54 can be appropriately set according to conditions such as pressure and current value at the time of energization of resistance welding.
  • the present invention is not limited to this. Absent. It is possible to remove the plating layer 21 formed on the ground electrode 17 after attaching the metal shell 16 to which the ground electrode 17 is joined to the insulator 11 as a matter of course.
  • the present invention is not necessarily limited to this. It is of course possible to perform plating after masking the tip of the ground electrode 17 with a rubber tube or the like. In this case, since the tip of the ground electrode 17 (the portion including the planned welding portion 22 and 58) can be prevented from coming into contact with the plating solution by masking, the remaining portion except at least the planned welding portion 22 and 58 is The plating layer 21 is formed.
  • the metal shell 16 to which the ground electrode 17 is joined is subjected to barrel plating to form the plating layer 21 on the metal shell 16 and the ground electrode 17.
  • the present invention is not limited to this. Absent. After the plating layer 21 is formed on the metal shell 16 before the ground electrode 17 is bonded by the rack method, barrel plating process, etc., the ground electrode 17 on which the plating layer 21 is not formed is bonded to the metal shell 16 Of course it is possible. In this case, the operation of removing the plating layer 21 formed on the ground electrode 17 can be omitted. Although the description is omitted in the embodiment, it is naturally possible to join the chips 30 and 50 on the plating layer 21 formed on the ground electrode 17.
  • the chips 30 and 50 are overlapped on the welding planned portions 22 and 58 of the ground electrode 17, and the back surface of the welding planned portion 22 of the ground electrode 17 is brought into contact with the first electrode 43, and the chips 30 and 50 are manufactured second
  • the case of direct type resistance welding in which the first electrode 43 and the second electrode 44 are energized in contact with the electrode 44 has been described, this is not necessarily the case.
  • the chips 30 and 50 are overlapped on the welding planned portions 22 and 58 of the ground electrode 17, and the chips 30 and 50 are brought into contact with the second electrode 44.
  • the shape and size of the first electrode 43 and the second electrode 44 can be set as appropriate.
  • the ground electrode 17 joined to the metal shell 16 is bent has been described. However, it is not necessarily limited to this. It is of course possible to use a straight ground electrode instead of using the bent ground electrode 17.
  • the front end side of the metal shell 16 is extended in the direction of the axis O, and a linear ground electrode is joined to the metal shell 16 so that the ground electrode faces the center electrode 13.
  • the ground electrode 17 is disposed so that the chips 30 and 50 face the center electrode 13 in the direction of the axis O.
  • the present invention is not necessarily limited to this, and the positional relationship between the ground electrode 17 and the center electrode 13 can be set appropriately.
  • disposing the ground electrode 17 so that the side surface of the center electrode 13 (the tip 14) and the tips 30, 50 face each other can be mentioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

散りの発生を抑制しつつ、チップの中央付近の接合強度を確保できるスパークプラグの製造方法を提供すること。チップの接合面が溶接された接地電極を備えるスパークプラグを製造する製造方法であって、接地電極のうちチップが溶接される溶接予定部の縁よりも内側であって溶接予定部の中心を含む範囲を、溶接予定部のうち範囲を除く部分よりも粗く加工する加工工程と、加工工程後の接地電極の溶接予定部に抵抗溶接によりチップを接合する接合工程と、を備えている。

Description

スパークプラグの製造方法
本発明はスパークプラグの製造方法に関し、特に抵抗溶接で接地電極にチップを接合するスパークプラグの製造方法に関するものである。
耐火花消耗性を高めるため、貴金属を含有するチップが接地電極に接合されたスパークプラグが知られている。チップを接地電極に接合する手段の一つに抵抗溶接がある。特許文献1には、接地電極のうちチップが接合される面を研削して粗くした後、その面にチップを重ねて電極で挟み、電極間に通電して抵抗発熱させ、チップと接地電極とが溶融・凝固したナゲットを形成する技術が開示されている。特許文献1では、チップが接触する接地電極の接触面の全部の表面粗さを大きくすることで、チップと接地電極との接触抵抗を増加させて発熱量を大きくし、ナゲットを形成する。
特開2003-123937号公報
しかしながら上記従来の技術では、電極間に流れる電流はフリンジング現象により被接合材(チップ及び接地電極)の中で一旦広がるので、電流密度は、チップと接地電極とが接触する接触面のエッジ部分が高くなる。その結果、チップのエッジ部分から被接合材の温度が上昇し始め溶融領域が広がるので、チップの中央付近の接合強度がチップのエッジ付近の接合強度よりも低くなることがある。 
一方、チップの中央付近の接合強度を確保するために、電極間に電流を多く流して発熱量をより大きくすると、被接合材が局所的に過熱されて溶融金属の飛散(いわゆる散り)が生じ易くなり、ナゲット径のばらつきやチップ周辺の汚損が生じ易くなる。 
本発明は上述した問題点を解決するためになされたものであり、散りの発生を抑制しつつ、チップの中央付近の接合強度を確保できるスパークプラグの製造方法を提供することを目的としている。
この目的を達成するために本発明は、チップの接合面が溶接された接地電極を備えるスパークプラグを製造する製造方法であって、接地電極のうちチップが溶接される溶接予定部の縁よりも内側であって溶接予定部の中心を含む範囲を、溶接予定部のうち範囲を除く部分よりも粗く加工する加工工程と、加工工程後の接地電極の溶接予定部に抵抗溶接によりチップを接合する接合工程と、を備えている。 
また、本発明は、チップの接合面が溶接された接地電極を備えるスパークプラグを製造する製造方法であって、チップの接合面の縁よりも内側であって接合面の中心を含む範囲を、接合面のうち範囲を除く部分よりも粗く加工する加工工程と、接地電極のうちチップが溶接される溶接予定部に、加工工程後の接合面を抵抗溶接により接合する接合工程と、を備えている。
請求項1記載のスパークプラグの製造方法によれば、加工工程により、接地電極のうちチップが溶接される溶接予定部の縁よりも内側であって溶接予定部の中心を含む範囲が、溶接予定部のうちその範囲を除く部分よりも粗く加工される。接合工程により、加工工程後の接地電極の溶接予定部に抵抗溶接によりチップが接合される。接合工程において、通電初期に、粗く加工された溶接予定部の中心を含む範囲とチップとの電流密度を、その周囲の電流密度に比べて高くできるので、電極間に流す電流を多くしなくても、溶接予定部の中心を含む範囲から被接合材(チップ及び接地電極)の温度を上昇させ、溶融領域を広げることができる。よって、散りの発生を抑制しつつ、チップの中央付近の接合強度を確保できる。 
請求項2記載のスパークプラグの製造方法によれば、加工工程によって、チップの接合面の縁よりも内側であって接合面の中心を含む範囲が、接合面のうちその範囲を除く部分よりも粗く加工される。接合工程よって、接地電極のうちチップが溶接される溶接予定部に、加工工程後のチップの接合面が抵抗溶接により接合される。接合工程において、通電初期に、粗く加工されたチップの中心を含む範囲と接地電極との電流密度を、その周囲の電流密度に比べて高くできるので、電極間に流す電流を多くしなくても、チップの中心を含む範囲から被接合材(チップ及び接地電極)の温度を上昇させ、溶融領域を広げることができる。よって、散りの発生を抑制しつつ、チップの中央付近の接合強度を確保できる。 
請求項3記載のスパークプラグの製造方法によれば、一端部が主体金具に接合され、他端部にチップが溶接される接地電極の一端部から他端部へと延びる軸に垂直な平面であって、溶接予定部の中心または接合工程後の接合面の中心を通る平面によって、一端部側の第1部と他端部側の第2部とに範囲を二分した場合に、第1部の面積は第2部の面積よりも大きい。これにより、接地電極のうち主体金具に接合された一端部側の第1部から被接合材(チップ及び接地電極)の温度を上昇させ、溶融領域を広げることができる。主体金具との距離が近く、抵抗溶接時に熱量が増加し難い一端部側のナゲットの断面積を確保し易くできるので、請求項1又は2の効果に加え、第1部(接地電極の一端部側)の接合強度を確保できる。 
請求項4記載のスパークプラグの製造方法によれば、加工工程の第1工程によりレーザビームの照射によって範囲が粗くされ、第1工程において形成された酸化皮膜が、加工工程の第2工程により、第1工程よりも小さな出力のレーザビームの照射によって除去される。よって、請求項1から3のいずれかの効果に加え、接合工程におけるナゲットの形成・成長の挙動に酸化皮膜が影響を与え難くできる。 
請求項5記載のスパークプラグの製造方法によれば、接合工程において、接地電極のうち、少なくとも溶接予定部にはめっき層が形成されていないので、接地電極の溶融に先立ってめっき層が溶融しないようにできる。よって、請求項1から4のいずれかの効果に加え、接合工程におけるナゲットの形成・成長の挙動にめっき層が影響を与えないようにできる。
本発明の一実施の形態におけるスパークプラグの片側断面図である。 主体金具および接地電極の断面図である。 第1実施の形態における加工工程後のチップ及び接地電極の斜視図である。 (a)は加工工程の第1工程における接地電極の断面図であり、(b)は加工工程の第2工程における接地電極の断面図である。 電極で挟まれたチップ及び接地電極の側面図である。 第2実施の形態における加工工程後のチップ及び接地電極の斜視図である。
以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の一実施の形態におけるスパークプラグ10の片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。スパークプラグ10は、絶縁体11、主体金具16及び接地電極17を備えている。 
絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された円筒状の部材であり、軸線Oに沿って貫通する軸孔12が形成されている。軸孔12の先端側に中心電極13が配置される。 
中心電極13は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われている。中心電極13は絶縁体11に保持され、先端が軸孔12から露出する。中心電極13は、貴金属を含有するチップ14が先端に接合されている。 
端子金具15は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具15は、先端側が軸孔12に挿入された状態で、絶縁体11の後端に固定されている。絶縁体11の外周に主体金具16が固定されている。 
主体金具16は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具16の先端に接地電極17が接合されている。接地電極17は、貴金属を含有するチップ30が接合された棒状の金属製(例えばニッケル基合金製)の部材である。接地電極17は、一端部18が主体金具16に接合され、他端部19にチップ30が溶接されている。本実施の形態では、接地電極17は他端部19側が屈曲している。接地電極17の他端部19に接合されたチップ30は、中心電極13(チップ14)との間に火花ギャップを形成する。 
スパークプラグ10は、例えば、以下のような方法によって製造される。まず、予めチップ14が先端に接合された中心電極13を絶縁体11の軸孔12に挿入し、中心電極13の先端が軸孔12から外部に露出するように配置する。軸孔12に端子金具15を挿入し、端子金具15と中心電極13との導通を確保した後、予め接地電極17が接合された主体金具16を絶縁体11の外周に組み付ける。抵抗溶接によって接地電極17の他端部19にチップ30を接合した後、チップ30が中心電極13(チップ14)と対向するように接地電極17を屈曲して、スパークプラグ10を得る。 
図2から図5を参照して接地電極17にチップ30を接合する方法を説明する。まず、図2から図4を参照してチップ30が接合される前の接地電極17について説明する。図2は主体金具16及び接地電極17の軸線Oを含む断面図である。図2は絶縁体11に主体金具16が組み付けられる前の状態であって、接地電極17が屈曲される前の状態が図示されている。チップ30が接合される前の接地電極17は、一端部18から他端部19へと延びる軸20に沿う直線状に形成されている。図2の接地電極17は、軸20を含む切断面で切り取られた断面が図示されている。 
図2に示すように、接地電極17が接合された主体金具16は、表面にめっき層21が形成されている。めっき層21は、主に主体金具16の耐食性を向上するための表面処理層であり、例えば亜鉛、クロメート処理された亜鉛、ニッケル等を主体とする。めっき層21は、接地電極17が接合された主体金具16にバレルめっき処理を施して形成される。 
その結果、めっき層21は、主体金具16の表面だけでなく接地電極17の表面にも形成される。接地電極17に形成されためっき層21の上にチップ30を抵抗溶接すると、接地電極17の溶融に先立ってめっき層21が溶融するので、めっき層21がチップ30の溶接品質に影響を与える。本実施の形態では、抵抗溶接時にめっき層21の溶融を考慮しなくて済むように、少なくとも、チップ30が溶接される溶接予定部22のめっき層21が除去されている。めっき層21は、イオンエッチングやショットブラスト等の物理的な除去手段や、接地電極17を剥離液に浸漬する化学的な除去手段によって部分的に除去される。 
接地電極17は、少なくとも溶接予定部22のめっき層21が除去されていれば良いが、溶接予定部22と同一面上に存在するめっき層21を、主体金具16の近くまで広範囲に除去することは当然可能である。この場合、中心電極13へ向けて接地電極17が屈曲する部分を超えて、接地電極17のめっき層21を除去することが好ましい。接地電極17にめっき層21が形成された状態で接地電極17を中心電極13へ向けて屈曲させると、屈曲に伴いめっき層21の一部が剥離するおそれがある。そうすると、めっき層21の剥離した部分と中心電極13との間で火花放電が生じ、着火性が低下する可能性がある。接地電極17が屈曲する部分のめっき層21をなくすことで、これを抑制できる。 
図3は第1実施の形態における加工工程後のチップ30及び接地電極17の斜視図である。加工工程は、チップ30が溶接される予定の溶接予定部22の一部の表面粗さを大きくする工程である。溶接予定部22は、接地電極17のうち抵抗溶接時にチップ30の接合面31が押し付けられる
部分である。従って、溶接予定部22は、チップ30の接合面31と同じ大きさであり同じ形状をしている。本実施の形態では、チップ30は円盤状であり、溶接予定部22は円形である。 
加工工程において、溶接予定部22は、溶接予定部22の縁23よりも内側であって溶接予定部22の中心24を含む範囲26が、溶接予定部22のうち範囲26を除く部分29よりも粗く加工される。本実施形態では、範囲26はチップ30の接合面31と相似形である。範囲26を粗くする手段としては、転写型を用いた塑性加工、研削、放電加工、ブラスト加工、ピーニング加工、レーザビームや電子ビームの照射、エッチング等が挙げられる。本実施形態では、微細加工が容易で大気中で処理できるレーザビームを照射して範囲26を粗くする場合について説明する。 
範囲26は、接地電極17の軸20に垂直な平面25であって溶接予定部22の中心24を通る平面25で範囲26を二分した場合に、主体金具16に接合された一端部18(図2参照)側の第1部27と、他端部19(図2参照)側の第2部28と、に分けられる。第1部27の面積が第2部28の面積よりも大きくなるように、溶接予定部22の中心24に対する範囲26の位置が設定される。 
図4(a)は加工工程の第1工程における接地電極17の断面図であり、図4(b)は加工工程の第2工程における接地電極17の断面図である。図4(a)に示す第1工程では、接地電極17の溶接予定部22に、加工ヘッド40から出射するレーザビーム41が照射される。溶接予定部22にレーザビーム41が照射されることにより、溶接予定部22が部分的に溶融して凹み、液相が形成される。レーザビーム41は溶接予定部22に沿って移動するので、その液相が表面張力の作用によって流動し固化して、凹みが連なった凹凸が形成される。これにより溶接予定部22の一部の範囲26(図3参照)の表面粗さを大きくできる。レーザビーム41の出力にもよるが、凹凸の表面には酸化皮膜42が形成される。 
図4(b)に示す第2工程では、第1工程よりも小さな出力のレーザビーム41を酸化皮膜42に照射し、第1工程による表面粗さを保ったまま、第1工程において形成された酸化皮膜42を溶融または昇華して、溶接予定部22に形成された酸化皮膜42を除去する。なお、レーザビーム41は、パルス発振レーザ、連続発振レーザのいずれも用いることができる。 
図5を参照して、加工工程後の接地電極17とチップ30との抵抗溶接について説明する。図5は電極(第1電極43及び第2電極44)で挟まれたチップ30及び接地電極17の側面図である。図5では、軸20(図2参照)を含む部分断面図によって接地電極17の一部が図示されている。 
図5に示すように、絶縁体11の外周に組み付けられた主体金具16は、予め接地電極17が接合されている。接合工程において、接地電極17の溶接予定部22(図3参照)にチップ30を重ね、接地電極17及びチップ30(以下「被接合材」と称す)を第1電極43及び第2電極44で挟む。通電に先立ち第1電極43及び第2電極44によって被接合材を加圧する。加圧が安定してから第1電極43と第2電極44との間に通電する。電流はフリンジング現象により被接合材の中で一旦広がる傾向があるので、電流密度は溶接予定部22(図3参照)及び接合面31の縁23,32の付近が高くなる傾向がある。 
しかし、接地電極17は、溶接予定部22(図3参照)の縁23よりも内側であって溶接予定部22の中心24を含む範囲26が、溶接予定部22のうち範囲26を除く部分29よりも粗く加工されているので、範囲26における接触抵抗を部分29における接触抵抗よりも高くできる。その結果、通電初期に、溶接予定部22の中心24を含む範囲26の電流密度が高くなり、範囲26の温度が上がり始める。その後、範囲26の温度はさらに上昇し、範囲26の周囲の部分29の温度も上昇する。範囲26及び部分29の温度が被接合材の融点を超えると被接合材が溶融し始め、投入する熱量、即ち電流および通電時間の増加と共に溶融領域が広がっていく。通電を停止すると溶融領域は凝固し、チップ30と接地電極17とが溶融・凝固したナゲットが形成される。 
ここで、接合工程において、第1電極43及び第2電極44による被接合材の加圧力を高くするにつれて、接地電極17の範囲26に形成された微小な凹凸にチップ30の接合面31が密着し易くなるので、範囲26の凹凸と接合面31との接触面積が広がり、電流密度が低下して発熱量が小さくなる。発熱量を大きくするためには、第1電極43と第2電極44との間に流す電流を多くする必要がある。これとは逆に、第1電極43及び第2電極44による被接合材の加圧力を低くするにつれて、範囲26の凹凸と接合面31との接触面積が狭くなり、範囲26の電流密度が高くなるので、チップ30の接合面31の中央付近の発熱量が、その周囲の発熱量に比べて大きくなる。 
接合工程において、第1電極43及び第2電極44による被接合材の加圧力を調整することにより、通電初期に、粗く加工された溶接予定部22の中心24を含む範囲26とチップ30との電流密度を、その周囲の電流密度に比べて高くできるので、第1電極43と第2電極44との間に流す電流を多くしなくても、溶接予定部22の中心24を含む範囲26から被接合材(チップ30及び接地電極17)の温度を上昇させ、溶融領域を広げることができる。よって、散り(溶融金属の飛散)の発生を抑制しつつ、チップ30の接合面31の中央付近の接合強度を確保できる。 
仮に、チップ30の接合面31の中央付近の接合強度が接合面31の縁32付近の接合強度よりも低いと、チップ30の側面が大きく火花消耗してナゲットが周囲から消耗した場合に、ナゲットの断面積が不足してチップ30が接地電極17から脱落するおそれがある。これに対し本実施形成によれば、チップ30の接合面31の中央付近の接合強度を確保できるので、チップ30の側面が大きく火花消耗した場合も、ナゲットの断面積を確保できる。よって、接地電極17からのチップ30の脱落を防止できる。 
加工工程において、範囲26は、接地電極17の軸20に垂直、且つ、溶接予定部22の中心24を通る平面25によって二分された場合に、主体金具16に接合された接地電極17の一端部18側の第1部27の面積が、他端部19側の第2部28の面積よりも大きくなるように溶接予定部22内に作られている。これにより接合工程では、第1部27から被接合材(チップ30及び接地電極17)の温度を上昇させ、溶融領域を広げることができる。主体金具16との距離が近く、抵抗溶接時に熱量が増加し難い一端部18側のナゲットの断面積を確保し易くできるので、第1部27(接地電極17の一端部18側)の接合強度を確保できる。 
チップ30の接合面31と範囲26とは相似形なので、接地電極17及びチップ30(被接合材)に形成されるナゲットを、チップ30の接合面31の形状に応じた適切な形状にし易くできる。これにより、チップ30の接合強度を確保し易くできる。 
加工工程において、第1工程によりレーザビーム41の照射によって範囲26が粗くされ、第1工程において形成された酸化皮膜42が、第2工程により、第1工程よりも小さな出力のレーザビーム41の照射によって除去される。これにより接地電極17の溶接予定部22とチップ30の接合面31との接触抵抗に影響を与える酸化皮膜42をワーク間で同じような状態にできる。第2工程では、第1工程による溶接予定部22の表面粗さは保たれるので、チップ30の接合面31と接地電極17の溶接予定部22との接触抵抗を安定化できる。よって、接合工程におけるナゲットの形成・成長の挙動にばらつきを生じ難くできる。 
範囲26には複数の凹凸が形成されており、1つの凹みの大きさはチップ30の接合面31の面積より小さいので、溶接予定部22にチップ30を重ねると、複数の凸がチップ30に接触する。これに第1電極43及び第2電極44を通じて圧力を加えると、凸が弾性変形ないしは塑性変形して所定の接触面が得られる。ここに第1電極43及び第2電極44から電流を通じると、接触面に電流が集中して流れる。接触面は他の部分に比べて抵抗が高いので、加熱されて軟化し、潰れて新しい接触面を生じる。新しい接触面に電流が流れ易くなるので、新しい接触面が加熱される。このように加熱しながら接触面を広げて溶融領域が形成されるので、接合工程におけるナゲットの形成・成長の挙動にばらつきを生じ難くできる。 
接地電極17のうち、少なくとも溶接予定部22にはめっき層21が形成されていないので、接地電極17の溶融に先立ってめっき層21が溶融しないようにできる。めっき層21が溶融すると、接触面積が増加して電流密度が低下し発熱量が低下する等、ナゲットの形成・成長の挙動にばらつきが生じ易くなる。これに対し本実施形態では、溶接予定部22にめっき層21が形成されていないので、ナゲットの形成・成長の挙動にめっき層21が影響を与えないようにできる。 
次に図6を参照して第2実施の形態について説明する。第1実施の形態では、接地電極17の溶接予定部22の一部の表面粗さを大きくする場合について説明した。これに対し第2実施の形態では、チップ50の接合面51の一部の表面粗さを大きくする場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図6は第2実施の形態における加工工程後のチップ50及び接地電極17の斜視図である。 
図6に示すようにチップ50は直方体の形状をしており、貴金属を含有している。加工工程は、チップ50が接地電極17に溶接される接合面51の一部の表面粗さを大きくする工程である。接合面51は、チップ50のうち抵抗溶接時に接地電極17に押し付けられる。接地電極17の溶接予定部58は、チップ50の接合面51が押し付けられる部分である。従って、溶接予定部58は、チップ50の接合面51と同じ大きさであり同じ形状をしている。本実施の形態では、チップ50の接合面51は矩形状である。チップ50は、接合面51の長辺が軸20と直交するように接地電極17に配置される。 
加工工程において、チップ50は、接合面51の縁52よりも内側であって接合面51の中心53を含む範囲54が、接合面51のうち範囲54を除く部分57よりも粗く加工される。接合面51の中心53は、接合面51の頂点を結ぶ対角線の交点である。本実施形態では、範囲54はチップ50の接合面51と相似形である。範囲54を粗くする手段は、第1実施の形態で説明した手段と同様なので、ここでの説明は省略する。 
範囲54は、接地電極17の軸20に垂直な平面25であって溶接予定部58の中心59を通る平面25で範囲54を二分した場合に、主体金具16(図2参照)に接合された一端部18側の第1部55と、他端部19(図2参照)側の第2部56と、に分けられる。溶接予定部58の中心59の位置は、接合工程後のチップ50の接合面51の中心53と同じ位置である。加工工程では、第1部55の面積が第2部56の面積よりも大きくなるように、接合面51の中心53に対する範囲54の位置が設定される。 
接合工程において、接地電極17の溶接予定部58にチップ50を重ね、接地電極17及びチップ50(被接合材)を第1電極43及び第2電極44(いずれも図5参照)で挟む。通電に先立ち第1電極43及び第2電極44によって被接合材を加圧する。加圧が安定してから第1電極43と第2電極44との間に通電する。電流はフリンジング現象により被接合材の中で一旦広がる傾向があるので、電流密度は接合面51の縁52の付近が高くなる傾向がある。 
しかし、チップ50は、接合面51の縁52よりも内側であって接合面5
1の中心53を含む範囲54が、接合面51のうち範囲54を除く部分57よりも粗く加工されているので、範囲54における接触抵抗を部分57における接触抵抗より高くできる。その結果、通電初期に、接合面51の中心53を含む範囲54の電流密度が高くなり、範囲54の温度が上がり始める。その後、範囲54の温度はさらに上昇し、範囲54の周囲の部分57の温度も上昇する。範囲54及び部分57の温度が被接合材の融点を超えると被接合材が溶融し始め、投入する熱量、即ち電流および通電時間の増加と共に溶融領域が広がっていく。通電を停止すると溶融領域は凝固し、チップ50と接地電極17とが溶融・凝固したナゲットが形成される。 
以上のように接合工程において、通電初期に、粗く加工されたチップ50の接合面51の中心53を含む範囲54と接地電極17との電流密度を高くできるので、第1電極43と第2電極44との間に流す電流を多くしなくても、チップ50の接合面51の中心53を含む範囲54から被接合材(チップ50及び接地電極17)の温度を上昇させ、溶融領域を広げることができる。よって、第1実施の形態と同様に、散り(溶融金属の飛散)の発生を抑制しつつ、チップ50の接合面51の中央付近の接合強度を確保できる。 
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 
実施の形態では、チップ30の形状が円柱で接合面31の形状が円の場合、チップ50の形状が直方体で接合面51の形状が長方形の場合について説明したが、必ずしもこれに限られるものではない。チップや接合面の形状は任意に設定できる。チップや接合面の形状が任意に設定された場合、接合面や溶接予定部の中心は、接合面や溶接予定部を平面図形としたときの平面図形の重心と一致する。 
実施の形態では、接地電極17の溶接予定部22やチップ50の接合面51の一部を粗くする範囲26,54を、溶接予定部22や接合面51と相似形にする場合について説明したが、必ずしもこれに限られるものでない。範囲26,54の形状や大きさは、抵抗溶接の通電時の圧力や電流値などの条件に応じて適宜設定できる。 
実施の形態では、接地電極17が接合された主体金具16を絶縁体11に取り付ける前に、接地電極17に形成されためっき層21を除去する場合について説明したが、必ずしもこれに限られるものではない。接地電極17が接合された主体金具16を絶縁体11に取り付けた後に、接地電極17に形成されためっき層21を除去することは当然可能である。 
実施の形態では、接地電極17の先端側を剥離液(図示せず)に浸漬して、接地電極17を覆うめっき層21を化学的に除去する場合、イオンエッチングやショットブラスト等の物理的な除去手段により接地電極17を覆うめっき層21を除去する場合について説明したが、必ずしもこれに限られるものではない。接地電極17の先端部をゴムチューブ等で覆うマスキングを施した後にめっきを行うことは当然可能である。この場合には、マスキングにより接地電極17の先端部(溶接予定部22,58を含む部分)がめっき液と接触しないようにできるので、溶接予定部22,58を少なくとも除いて、残りの部分にめっき層21が形成される。 
実施の形態では、接地電極17が接合された主体金具16にバレルめっき処理を施して主体金具16及び接地電極17にめっき層21が形成される場合について説明したが、必ずしもこれに限られるものではない。接地電極17が接合される前の主体金具16に、ラック法やバレルめっき処理等によってめっき層21を形成した後、めっき層21が形成されていない接地電極17を主体金具16に接合することは当然可能である。この場合には、接地電極17に形成されためっき層21を除去する作業を省略できる。なお、実施の形態では説明を省略したが、接地電極17に形成されためっき層21の上にチップ30,50接合することは当然可能である。 
実施の形態では、接地電極17の溶接予定部22,58にチップ30,50を重ね、接地電極17のうち溶接予定部22の裏面を第1電極43に接触させ、チップ30,50を第2電極44に接触させて第1電極43及び第2電極44に通電するダイレクト式の抵抗溶接の場合について説明したが、必ずしもこれに限られるものではない。 
例えば、接地電極17の溶接予定部22,58にチップ30,50を重ね、チップ30,50を第2電極44に接触させ、接地電極17のうち溶接予定部22,58と同一面に第1電極43を接触させて第1電極43及び第2電極44に通電するインダイレクト式の抵抗溶接を行うことは当然可能である。なお、第1電極43や第2電極44の形状や大きさは適宜設定できる。 
実施の形態では、主体金具16に接合された接地電極17を屈曲させる場合について説明した。しかし、必ずしもこれに限られるものではない。屈曲した接地電極17を用いる代わりに、直線状の接地電極を用いることは当然可能である。この場合には、主体金具16の先端側を軸線O方向に延ばし、直線状の接地電極を主体金具16に接合して、接地電極を中心電極13と対向させる。 
実施の形態では、チップ30,50が中心電極13と軸線O方向に対向するように接地電極17を配置する場合について説明した。しかし、必ずしもこれに限られるものではなく、接地電極17と中心電極13との位置関係は適宜設定できる。接地電極17と中心電極13との他の位置関係としては、例えば、中心電極13(チップ14)の側面とチップ30,50とが対向するように接地電極17を配置すること等が挙げられる。この場合には、接地電極17の端面に溶接予定部22,58を設け、その溶接予定部22,58にチップ30,50を接合することが可能である。



 10    スパークプラグ



 17    接地電極



 18    一端部



 19    他端部



 20    軸



 21    めっき層



 22,58 溶接予定部



 23    溶接予定部の縁



 24,59 溶接予定部の中心



 25    平面



 26    範囲



 27    第1部



 28    第2部



 29    範囲を除く部分



 30,50 チップ



 31,51 接合面



 41    レーザビーム



 42    酸化皮膜



 52    接合面の縁



 53    接合面の中心



 54    範囲



 55    第1部



 56    第2部



 57    範囲を除く部分

Claims (5)

  1. チップの接合面が溶接された接地電極を備えるスパークプラグを製造する製造方法であって、















     前記接地電極のうち前記チップが溶接される溶接予定部の縁よりも内側であって前記溶接予定部の中心を含む範囲を、前記溶接予定部のうち前記範囲を除く部分よりも粗く加工する加工工程と、















     前記加工工程後の前記接地電極の前記溶接予定部に抵抗溶接により前記チップを接合する接合工程と、を備えるスパークプラグの製造方法。
  2. チップの接合面が溶接された接地電極を備えるスパークプラグを製造する製造方法であって、















     前記チップの前記接合面の縁よりも内側であって前記接合面の中心を含む範囲を、前記接合面のうち前記範囲を除く部分よりも粗く加工する加工工程と、















     前記接地電極のうち前記チップが溶接される溶接予定部に、前記加工工程後の前記接合面を抵抗溶接により接合する接合工程と、を備えるスパークプラグの製造方法。
  3. 前記スパークプラグは主体金具を備え、















     前記接地電極は、一端部が前記主体金具に接合され、他端部に前記チップが溶接され、







     前記一端部から前記他端部へと延びる前記接地電極の軸に垂直な平面であって、前記溶接予定部の前記中心または前記接合工程後の前記接合面の前記中心を通る平面によって、















    前記一端部側の第1部と前記他端部側の第2部とに前記範囲を二分した場合に、前記第1部の面積は前記第2部の面積よりも大きい請求項1又は2に記載のスパークプラグの製造方法。
  4. 前記加工工程は、レーザビームを照射して前記範囲を粗くする第1工程と、















     前記第1工程において形成された酸化皮膜を、前記第1工程よりも小さな出力でレーザビームを照射して除去する第2工程と、を備える請求項1から3のいずれかに記載のスパークプラグの製造方法。
  5. 前記接合工程において、前記接地電極のうち、少なくとも前記溶接予定部にはめっき層が形成されていない請求項1から4のいずれかに記載のスパークプラグの製造方法。
PCT/JP2018/020721 2017-09-06 2018-05-30 スパークプラグの製造方法 WO2019049440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/635,679 US10903628B2 (en) 2017-09-06 2018-05-30 Method for manufacturing spark plug
DE112018004902.7T DE112018004902T5 (de) 2017-09-06 2018-05-30 Verfahren zur Herstellung von Zündkerzen
CN201880056770.4A CN111052522A (zh) 2017-09-06 2018-05-30 火花塞的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-171079 2017-09-06
JP2017171079A JP6595546B2 (ja) 2017-09-06 2017-09-06 スパークプラグの製造方法

Publications (1)

Publication Number Publication Date
WO2019049440A1 true WO2019049440A1 (ja) 2019-03-14

Family

ID=65635046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020721 WO2019049440A1 (ja) 2017-09-06 2018-05-30 スパークプラグの製造方法

Country Status (5)

Country Link
US (1) US10903628B2 (ja)
JP (1) JP6595546B2 (ja)
CN (1) CN111052522A (ja)
DE (1) DE112018004902T5 (ja)
WO (1) WO2019049440A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233379B2 (en) * 2019-05-10 2022-01-25 University Of Massachusetts Spark plugs via surface modifications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149353A (en) * 1976-06-04 1977-12-12 Mitsubishi Electric Corp Method of welding nobleemetal contact material and metal material
JP2002141154A (ja) * 2000-11-06 2002-05-17 Denso Corp スパークプラグの製造方法
JP2003123937A (ja) * 2001-10-16 2003-04-25 Denso Corp スパークプラグおよびその製造方法
JP2003229230A (ja) * 2002-01-31 2003-08-15 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2276207B (en) * 1993-03-18 1996-09-04 Nippon Denso Co A spark plug and a method of producing the same
EP2393171B1 (en) * 2009-02-02 2018-10-17 NGK Sparkplug Co., Ltd. Spark plug and process for producing same
EP2667465B1 (en) * 2011-01-20 2019-11-20 Ngk Spark Plug Co., Ltd. Manufacturing method for spark plug
JP6166004B1 (ja) * 2016-06-22 2017-07-19 日本特殊陶業株式会社 スパークプラグの製造方法
JP6263286B1 (ja) * 2017-01-13 2018-01-17 日本特殊陶業株式会社 スパークプラグの製造方法
JP6592476B2 (ja) * 2017-05-11 2019-10-16 日本特殊陶業株式会社 点火プラグ及び点火プラグの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149353A (en) * 1976-06-04 1977-12-12 Mitsubishi Electric Corp Method of welding nobleemetal contact material and metal material
JP2002141154A (ja) * 2000-11-06 2002-05-17 Denso Corp スパークプラグの製造方法
JP2003123937A (ja) * 2001-10-16 2003-04-25 Denso Corp スパークプラグおよびその製造方法
JP2003229230A (ja) * 2002-01-31 2003-08-15 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Also Published As

Publication number Publication date
US10903628B2 (en) 2021-01-26
JP6595546B2 (ja) 2019-10-23
CN111052522A (zh) 2020-04-21
JP2019046732A (ja) 2019-03-22
US20200366068A1 (en) 2020-11-19
DE112018004902T5 (de) 2020-06-04

Similar Documents

Publication Publication Date Title
KR100517462B1 (ko) 보호캡을 가진 납땜 인두 팁
EP0011466B1 (en) A bimetal resistance welding electrode and method of making same
JP4051264B2 (ja) スパークプラグの製造方法
US7355142B2 (en) Resistance welding electrode, welded copper flex lead, and method for making same
US10730135B2 (en) Welding electrodes and adapter therefor
WO2019049440A1 (ja) スパークプラグの製造方法
US10201876B2 (en) Laser welding method, method for manufacturing welded body, method for manufacturing electrode for spark plug, and method for manufacturing spark plug
JP6263286B1 (ja) スパークプラグの製造方法
CN107453208B (zh) 火花塞
JP2005203121A (ja) スパークプラグの製造方法
TWI442429B (zh) Manufacturing method of lead terminal for capacitor
CN116076161B (zh) 加热嘴单元
JP2020001078A (ja) 接合装置及び接合方法
JP2020001079A (ja) 接合装置及び接合方法
JP3710742B2 (ja) 絶縁被覆導線と導電部材の接続構造およびその接続方法
JPH11179536A (ja) 半田用チップおよびその製造方法
TWI705865B (zh) 接觸子及接觸子的製造方法
JP3888077B2 (ja) 金属接合用電極及びその製造方法、並びに金属接合用電極を備えた溶接設備及びそれにより溶接された製品
JP6971956B2 (ja) 点火プラグの製造方法、および、点火プラグ
TW202223947A (zh) 電解電容器的引線端子及其製造方法
JP4766239B2 (ja) セラミック電子部品及びその製造方法
JP5534985B2 (ja) ヒュージング用端子と被膜付導電線の接続方法
JP3008447B2 (ja) プラズマアーク加工用電極およびその製造方法
JP2005219100A (ja) 接合体及び接合体の製造方法
JPH02229695A (ja) プラズマ加工用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853648

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18853648

Country of ref document: EP

Kind code of ref document: A1