WO2019044887A1 - 新規β-グルコシダーゼ、これを含む酵素組成物およびこれらを用いた糖液の製造方法 - Google Patents
新規β-グルコシダーゼ、これを含む酵素組成物およびこれらを用いた糖液の製造方法 Download PDFInfo
- Publication number
- WO2019044887A1 WO2019044887A1 PCT/JP2018/031910 JP2018031910W WO2019044887A1 WO 2019044887 A1 WO2019044887 A1 WO 2019044887A1 JP 2018031910 W JP2018031910 W JP 2018031910W WO 2019044887 A1 WO2019044887 A1 WO 2019044887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glucosidase
- seq
- enzyme composition
- derived
- trichoderma
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2445—Beta-glucosidase (3.2.1.21)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01021—Beta-glucosidase (3.2.1.21)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a novel ⁇ -glucosidase, an enzyme composition containing the ⁇ -glucosidase, and a method of producing a sugar liquid from cellulose-containing biomass using the same.
- Enzymatic degradation of cellulose involves multiple enzyme species, and can be roughly classified into three types, cellobiohydrolase, endoglucanase, and ⁇ -glucosidase.
- Cellobiohydrolase is characterized by hydrolysis from the terminal part of cellulose, and is an enzyme capable of decomposing the crystalline domain of cellulose.
- endoglucanase is an enzyme that is characterized by hydrolysis from the inner region of cellulose molecular chain, and promotes reduction of molecular weight by cellulose decomposition.
- ⁇ -glucosidase is an enzyme that mainly degrades cellobiose, which is a disaccharide in which glucose is ⁇ -1,4 linked, and catalyzes the formation of glucose, which is the final degradation product, and sufficiently obtains glucose useful as a fermentation raw material Is an essential enzyme for
- cellobiohydrolase or endoglucanase causes reaction inhibition by accumulation of cellobiose generated by cellulose decomposition. That is, since ⁇ -glucosidase can significantly reduce the accumulation of cellobiose generated by cellulose decomposition, it has an effect of significantly improving the cellulose decomposition efficiency.
- filamentous fungi are known as microorganisms producing cellulase.
- Trichoderma is known to produce a large amount of endo- and exo-type cellulases in a culture solution in large amounts outside the cell.
- Trichoderma-derived cellulase is the most frequently used for the enzymatic degradation of cellulose-containing biomass.
- some of the ⁇ -glucosidases produced by Trichoderma are localized to the cell wall (non-patent document 1), and in cellulases prepared from Trichoderma culture medium, the amount of ⁇ -glucosidase contained therein and There was a problem that activity was not enough.
- Non-patent Document 2 discloses a problem of causing glucosidase activity inhibition and preventing an increase in the amount of accumulated glucose in the glycation reaction solution.
- An object of the present invention is to provide a ⁇ -glucosidase gene having an effect of efficiently promoting saccharification in the hydrolysis of a cellulose-containing biomass, by taking it out from a group of difficult-to-culture termite symbiotic protozoans.
- the inventors of the present invention have obtained earnest research and obtained expression genes from a small amount of RNA of a difficult-to-culture termite symbiotic protozoan by using a one-cell transcriptome analysis method.
- the candidate sequence of ⁇ -glucosidase is obtained from the sequence information of the cDNA library, the ⁇ -glucosidase activity of the transformant containing the ⁇ -glucosidase candidate sequence and the effect on saccharification of the cellulose-containing biomass are examined, and the sequence having ⁇ -glucosidase activity
- the present inventors have found that a novel ⁇ -glucosidase derived from Protozoa belonging to the genus Pseudotrichonympha can be applied to the decomposition of a cellulose-containing biomass, thereby completing the present invention.
- [5] A transformant comprising the polynucleotide of [2] or [3] or the expression vector of [4].
- [6] A transformed Trichoderma filamentous fungus, which has the polynucleotide of [2] or [3] or the expression vector of [4].
- [7] A method for producing an enzyme composition, comprising the step of culturing the transformant according to [5] or the transformed Trichoderma filamentous fungus according to [6].
- [8] A method for producing a sugar liquid from cellulose-containing biomass, which comprises the step of producing the enzyme composition according to [7] and using the enzyme composition obtained by the step.
- the present specification includes the disclosure content of Japanese Patent Application No. 2017-165787 based on which the priority of the present application is based.
- ⁇ -glucosidase having the effect of efficiently promoting saccharification in hydrolysis of cellulose-containing biomass.
- the ⁇ -glucosidase of the present invention can be suitably used for producing a sugar solution by hydrolysis of cellulose-containing biomass.
- FIG. 7 is a photograph of an SDS-PAGE of the ⁇ -glucosidase according to the present invention ( ⁇ -glucosidase comprising the amino acid sequence set forth in SEQ ID NO: 1) according to the present invention expressed and purified in E. coli in Example 7.
- FIG. 10 is a photograph of an SDS-PAGE of ⁇ -glucosidase according to the present invention ( ⁇ -glucosidase containing the amino acid sequence set forth in SEQ ID NO: 1) expressed in Trichoderma filamentous fungi in Example 10.
- FIG. It is a photograph of SDS-PAGE of the glycation supernatant in Example 14.
- FIG. 10 is a photograph of SDS-PAGE of Aspergillus genera-derived ⁇ -glucosidase ( ⁇ -glucosidase containing the amino acid sequence set forth in SEQ ID NO: 10) expressed in Trichoderma filamentous fungi in Comparative Example 1.
- FIG. It is a graph of the measurement result of the beta-glucosidase activity inhibitory effect by glucose of beta-glucosidase of this invention and the beta-glucosidase variant of this invention in Example 18.
- ⁇ -glucosidase means an enzyme that catalyzes a reaction of hydrolyzing sugar ⁇ -glucosidic bonds.
- the method for measuring ⁇ -glucosidase activity is measured by a reaction using p-nitrophenyl- ⁇ -D-glucopyranoside (pNP-Glc) as a substrate. Specifically, the enzyme solution is added to a substrate solution of pNP-Glc dissolved in 50 mM acetic acid-sodium acetate buffer solution (pH 5.0), reacted at 30 ° C.
- the ⁇ -glucosidase of the present invention is characterized by being derived from a protozoan genus Pseudotrichonympha, and specific examples thereof include a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 1 or a homolog thereof.
- the pseudotrichonympha protozoan derived ⁇ -glucosidase of the present invention is a polypeptide of any one of the following (A) to (C).
- a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 1 (B) From the amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1 And a polypeptide having ⁇ -glucosidase activity
- C A polypeptide comprising an amino acid sequence having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 and having ⁇ -glucosidase activity.
- the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 1 or a homolog thereof can be prepared by a known method, and the preparation method is not particularly limited as long as it is a polypeptide having ⁇ -glucosidase activity. .
- the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 1 or a homolog thereof can be extracted from nature by known methods or can be prepared using known methods known as peptide synthesis methods, and amino acids of the polypeptide
- a polynucleotide encoding a sequence can also be prepared by genetic recombination technology.
- a homologue of the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 1 is a polypeptide having ⁇ -glucosidase activity, for example, one or several amino acids, preferably 1 to 10 in the amino acid sequence set forth in SEQ ID NO: 1 It may be a polypeptide consisting of an amino acid sequence in which one, more preferably 1 to 5, more preferably 1 or 2 amino acids are substituted, deleted, inserted and / or added.
- the homologue of the polypeptide set forth in SEQ ID NO: 1 is a polypeptide having ⁇ -glucosidase activity, it is at least 70%, preferably at least 80%, more preferably at least 90 with the amino acid sequence set forth in SEQ ID NO: 1. It may be a polypeptide consisting of an amino acid sequence having a sequence identity of at least 95%, at least 97%, at least 99%.
- the polypeptide described in SEQ ID NO: 6 can be mentioned as a polypeptide consisting of an amino acid sequence of 88% identity to SEQ ID NO: 1.
- polypeptide described in SEQ ID NO: 8 can be mentioned as a polypeptide consisting of an amino acid sequence having 80% sequence identity to SEQ ID NO: 1.
- sequence identity between the amino acid sequence described in SEQ ID NO: 1 and the amino acid sequence of known ⁇ -glucosidase includes, for example, Trichoderma reesei-derived ⁇ -glucosidase I (BGLI) consisting of 744 amino acids; The sequence identity of is 29%.
- BGLI Trichoderma reesei-derived ⁇ -glucosidase I
- the homolog of the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 1 is a polypeptide having a ⁇ -glucosidase activity and is derived from a protagonist of Pseudotrichonympha, preferably Pseudotrichonympha hertwigi, Pseudotrichonympha paulistana, Pseudotrichonympha polysci from Pseudotrichonympha. It may be a peptide.
- the pseudotrichonympha protozoan-derived ⁇ -glucosidase of the present invention preferably belongs to the GH3 family.
- the "GH3 family” means a polypeptide comprising a glycosyl hydrolases family 3 active site.
- the Glycosyl hydrolases family 3 active site is defined by the following amino acid sequence consisting of 18 amino acids.
- the Glycosyl hydrolases family 3 active site includes one amino acid selected from L (leucine), I (isoleucine), V (valine), and M (methionine) a, amino acid K (lysine), R (arginine) And one amino acid selected from any of amino acids E (glutamic acid), Q (glutamine), K (lysine), R (arginine), and D (aspartic acid).
- the Glycosyl hydrolases family 3 active site contained in the polypeptide can be easily accessed by anyone at the database site PROSITE (Database of protein domains, families and functional sites) website (http://prosite.expasy.org/). It can be examined (Christian, et al. 2002, Briefings in Bioinfomatics. VOL 3. NO 3. 265-274).
- a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 1, 6 or 8 belongs to the GH3 family.
- the ⁇ -glucosidase derived from the Protozoa genus Pseudotrichonympha of the present invention is less susceptible to inhibition of ⁇ -glucosidase activity by glucose.
- the ⁇ -glucosidase activity in the absence of glucose is 1, the ⁇ -glucosidase activity under the conditions of a glucose concentration of 8 g / L (or in the presence of 8 g / L of glucose) is preferably 0.
- the ⁇ -glucosidase activity in the absence of glucose is 1 in addition to the activity of ⁇ -glucosidase under the condition of glucose concentration 8 g / L, the condition of glucose concentration 20 g / L (or 20 g / L)
- the ⁇ -glucosidase activity in the presence of glucose of L is preferably 0.5 or more, more preferably 0.6 or more, particularly preferably 0.7 or more.
- the method of measuring ⁇ -glucosidase activity uses the result of measurement by the same method as described above except that 8 g / L or 20 g / L of glucose is added at the time of measurement.
- ⁇ -glucosidase activity can be kept high even when glucose is produced in the saccharification reaction solution by cellulose decomposition in saccharification of cellulose-containing biomass Because it is preferable.
- polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 2 or a homolog thereof is particularly limited if it is a polypeptide encoding the amino acid sequence set forth in SEQ ID NO: 1 or a polynucleotide encoding the homolog thereof It is not a thing.
- polynucleotide means cDNA, genomic DNA, synthetic DNA, mRNA, synthetic RNA, replicon RNA, etc., although it does not ask for its origin, but is preferably DNA. In addition, it may be single-stranded or double-stranded having its complementary strand. In addition, natural or artificial nucleotide derivatives may be included.
- the homologue of the polynucleotide shown in SEQ ID NO: 2 is a polynucleotide encoding a polypeptide having ⁇ -glucosidase activity, for example, one or several, preferably, the base sequences shown in SEQ ID NO: 2 are preferred. 1 to 40, more preferably 1 to 30, more preferably 1 to 20, particularly preferably 1 to 10, optimally preferably 1 to 5 bases of substitution, deletion, insertion and / or addition It may be a polynucleotide consisting of the nucleotide sequence shown.
- the homologue of the polynucleotide set forth in SEQ ID NO: 2 is a polynucleotide encoding a polypeptide having ⁇ -glucosidase activity
- the polynucleotide consisting of the base sequence set forth in SEQ ID NO: 2 or a complementary strand thereof It may be a polynucleotide that hybridizes to the whole or a part thereof under stringent conditions.
- "a polynucleotide which hybridizes under stringent conditions” means, for example, any at least 20, preferably at least 25, and more preferably at least 30 consecutive sequences of the original base sequence.
- a known hybridization technique Current Protocols I Molecular Biology edit.
- the stringent conditions are, for example, a hybridization temperature of 37 ° C. in the presence of 50% formamide, a more severe condition of 42 ° C., and a more severe condition of 65 ° C. This can be achieved by washing with a saline-sodium citrate solution (composition of 1 ⁇ SSC solution: 150 mM sodium chloride, 15 mM sodium citrate).
- the homologue of the polynucleotide set forth in SEQ ID NO: 2 is preferably at least 50%, preferably at least 50% relative to the base sequence set forth in SEQ ID NO: 2, if it is a polynucleotide encoding a polypeptide having ⁇ -glucosidase activity.
- polynucleotide described in SEQ ID NO: 3 can be mentioned as a polynucleotide consisting of a nucleotide sequence of 66% identity to SEQ ID NO: 2.
- polynucleotide described in SEQ ID NO: 7 or 9 can be mentioned as a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 2 and sequence identity of 53%.
- identity refers to the degree of identity between two different amino acid sequences or base sequences when aligned and compared using a sequence alignment program. Specifically, it is the ratio (%) of the number of identical amino acids to the total number of amino acids of SEQ ID NO: 1 or the ratio (%) of the number of identical bases to the total number of bases of SEQ ID NO: 2.
- sequence alignment program used to align and compare two sequences BLAST (blastn, blastp) which is a software widely used in this field is used. BLAST is available to anyone at the home page of the National Center for Biotechnology Information (NCBI) and can be easily checked for identity using default parameters.
- the homolog of the polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 2 is a Pseudotrichonympha protozoan derived from the genus Pseudotrichonympha, preferably Pseudotrichonympha hertwigi of the genus Pseudotrichonympha, as long as it is a polynucleotide encoding a polypeptide having ⁇ -glucosidase activity. It may be a polynucleotide derived from Pseudotrichonympha paulistana or Pseudotrichonympha grassii.
- a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 2 can be prepared by cloning from a protozoan genus Pseudotrichonympha, but can also be chemically synthesized.
- Cloning from Pseudotrichonympha protozoa can be isolated using commonly known methods, and such methods include, for example, the entire ORF from cDNA reverse transcribed from RNA isolated from Pseudotrichonympha protozoa cells It is possible to determine the sequence and then amplify by PCR, which can also be chemically synthesized directly on a DNA synthesizer.
- An expression vector comprising the polynucleotide can be produced by ligating the polynucleotide downstream of a host cell expressible promoter using a restriction enzyme and a DNA ligase.
- the expression vector may be any vector as long as it can introduce a target gene in a host cell in an expressible manner. It may be a plasmid capable of self-replication in a form in which the target gene is introduced outside the host genome, or it may be a DNA fragment in a form in which the target gene is introduced in the host genome.
- the expression vector examples include bacterial plasmids, phage DNAs such as yeast plasmids and lambda phage, viral DNAs such as retrovirus, baculovirus, vaccinia virus, adenovirus and the like, and Agrobacterium as a vector.
- bacterial plasmids phage DNAs such as yeast plasmids and lambda phage
- viral DNAs such as retrovirus, baculovirus, vaccinia virus, adenovirus and the like
- Agrobacterium as a vector.
- the promoter may be any promoter as long as it is appropriate for the host cell used for gene expression.
- lac promoter, Trp promoter, PL promoter, PR promoter and the like can be mentioned.
- the host cell is a cellulase-producing filamentous fungus, it is preferably a cellulose-inducible promoter, more preferably cbh promoter, egl promoter, bgl promoter, xyn promoter, bxl promoter.
- Escherichia coli Escherichia coli, bacterial cells, yeast cells, fungal cells, insect cells, plant cells, animal cells and the like are preferable.
- yeast cells include Pichia, Saccharomyces, Schizosaccharomyces and the like.
- Insect cells include Sf9 and the like, plant cells include dicotyledonous plants and the like, and animal cells include CHO, HeLa, HEK293 and the like.
- fungal cells that are filamentous fungi, more preferably Aspergillus filamentous fungi, and more preferably Trichoderma filamentous fungi. By using Trichoderma filamentous fungi as host cells, it becomes possible to produce more ⁇ -glucosidases of the present invention.
- Transformation or transfection can be performed by known methods such as calcium phosphate method, electroporation, and Agrobacterium method.
- the ⁇ -glucosidase of the present invention can be expressed under the control of a promoter in a host cell transformed or transfected as described above, and the product can be recovered and obtained.
- a promoter is induced by temperature shift or chemical induction by medium components, and the cells are cultured for a further fixed period.
- the enzyme composition refers to a mixture of Pseudotrichonympha protozoan derived ⁇ -glucosidase and one or more other enzymes.
- the enzyme composition may be produced by separately producing the ⁇ -glucosidase and one or more other enzymes and then mixing them, or may be a polynucleotide or expression vector encoding a polypeptide having the ⁇ -glucosidase activity.
- the culture includes, in addition to the culture supernatant, transformants or disrupted transformants.
- cellulase As the enzyme mixed with the ⁇ -glucosidase, cellulase is preferable.
- the cellulase referred to here is not particularly limited as long as it is an enzyme having an activity of degrading cellulose, and may be a mixture of two or more kinds of enzymes. Examples of such enzymes include cellulase, hemicellulase, cellobiohydrolase, endoglucanase, exoglucanase, xylanase, mannanase and the like.
- the activity of cellobiohydrolase and endoglucanase contained in cellulase is p-nitrophenyl- ⁇ -D-lactopyranoside (pNP-Lac) as a substrate, and the activity of ⁇ -xylosidase is p-nitrophenyl- ⁇ -D-xylopyranoside ( pNP-Xyl) is measured as a substrate.
- the enzyme solution is added to a substrate solution of pNP-Lac dissolved in 50 mM acetic acid-sodium acetate buffer solution (pH 5.0), reacted at 30 ° C.
- the cellulase is preferably a filamentous fungus-derived cellulase.
- the filamentous fungus-derived cellulase is a mixture comprising at least both endoglucanase and cellobiohydrolase.
- Examples of the microorganism producing the filamentous fungus-derived cellulase include microorganisms such as Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humicola, Acremonium, Irpex, Mucor, Talaromyces and the like.
- these microorganisms may use the culture solution as unrefined filamentous fungus-derived cellulase as it is, or a culture solution purified and formulated into a filamentous fungus-derived cellulase. It may be used as a cellulase mixture.
- the filamentous fungus-derived cellulase is preferably a Trichoderma genus cellulase.
- the Trichoderma genus produces in the culture solution a cellulase comprising at least two endoglucanases and at least two cellobiohydrolases, and the cellulase prepared from such a culture solution is preferably used in the present invention Can. That is, the ⁇ -glucosidase of the present invention can increase sugar yield in saccharification of cellulose-containing biomass when it is used as an enzyme composition together with cellulase derived from Trichoderma.
- the ⁇ -glucosidase of the present invention having high residual activity can be recovered from the saccharified solution obtained by the enzyme treatment.
- the ⁇ -glucosidase of the present invention having high residual activity also from a saccharified solution obtained by enzymatic treatment of a cellulose-containing biomass using the enzyme composition containing the ⁇ -glucosidase of the present invention and the above-mentioned filamentous fungus-derived cellulase Glucosidase can be recovered.
- filamentous fungus-derived enzyme composition a filamentous solution obtained by enzymatic treatment of a cellulose-containing biomass using the enzyme composition containing the ⁇ -glucosidase of the present invention and the above-mentioned filamentous fungus-derived cellulase
- a filamentous fungus-derived cellulase having a high residual activity can be recovered as compared with a saccharified solution obtained by enzymatic treatment of cellulose-containing biomass using only fungus-derived cellulase.
- filamentous fungus-derived cellulase Trichoderma genus-derived endoglucanase, cellobiohydrolase, ⁇ -xylosidase and the like are preferable, and ⁇ -xylosidase is particularly preferable.
- Trichoderma is a cellulase derived from Trichoderma reesei.
- Trichoderma reesei As a cellulase mixture derived from Trichoderma reesei, Trichoderma reesei QM9414, Trichoderma reesei QM 9123, Trichoderma reesei Rut-30, Trichoderma reesei PC 3-7, Trichoderma reesei CL-847, Trichoderma reesei MCG 77, Trichoderma reeide aich A mixture is mentioned.
- it may be a cellulase mixture derived from a mutant strain derived from the Trichoderma genus and subjected to mutation treatment with a mutagen or ultraviolet irradiation to improve cellulase productivity.
- a method for producing an enzyme composition comprising the step of culturing a transformant in which a polynucleotide encoding a polypeptide having a ⁇ -glucosidase activity or an expression vector has been introduced is capable of expressing the ⁇ -glucosidase Any method may be used as long as the method includes a culture step.
- expression of a polypeptide having ⁇ -glucosidase activity is newly imparted or enhanced in the transformant, and as a result, one or more types of the ⁇ -glucosidase and host cell origin are extracted from the culture.
- An enzyme composition comprising the enzyme of The culture may be, in addition to the culture supernatant, any of transformants or disrupted transformants.
- a well-known method is employ
- Various culture methods such as shaking culture, stirring culture, shaking shaking culture, stationary culture, continuous culture, and the like can be adopted for culture.
- a medium for culturing the transformant any medium containing a carbon source, nitrogen source, inorganic salts and the like which can be assimilated by the transformant, and which can efficiently culture the transformant can be used.
- a natural medium or a synthetic medium can be used.
- the transformant is a Trichoderma filamentous fungus, culture in a medium containing cellulose-containing biomass is more preferable.
- Trichoderma filamentous fungus By culturing a transformed Trichoderma filamentous fungus into which a polynucleotide or expression vector encoding the ⁇ -glucosidase of the present invention has been introduced in a cellulose-containing biomass-containing medium, the Trichoderma filamentous fungus-derived cellulase is expressed, and the Trichoderma filamentous fungus is expressed It is possible to produce an enzyme composition comprising a fungal cellulase and the ⁇ -glucosidase.
- the cellulose-containing biomass is not limited as long as it contains at least cellulose. Specifically, bagasse, corn stover, corn cob, switchgrass, rice straw, wheat straw, trees, wood, waste construction materials, newspaper, waste paper, pulp and the like. Although these cellulose-containing biomass contain impurities such as high molecular weight aromatic compounds lignin and hemicellulose, lignin and hemicellulose are wholly or partially used as pretreatment, using acid, alkali, pressurized hot water, etc. What was decomposed or removed can also be used as a cellulose-containing biomass.
- the method for producing a sugar liquid from cellulose-containing biomass using the above-mentioned enzyme composition is not particularly limited.
- the sugar solution production by this enzyme composition may be carried out batchwise or continuously.
- the used enzyme composition can be isolate
- the method for separating and recovering the enzyme is not particularly limited, but the saccharified solution can be filtered through an ultrafiltration membrane or the like and recovered on the non-permeate side. If necessary, solids may be removed from the saccharified solution as a pre-filtration step.
- the recovered enzyme composition can be used again for the saccharification reaction.
- Protein Concentration Measurement Method A commercially available protein concentration measurement reagent (Quick Start Bradford protein assay, manufactured by Bio-Rad) was used. 5 ⁇ L of a filamentous fungus-derived cellulase solution diluted in 250 ⁇ L of a protein concentration measurement reagent returned to room temperature was added, and the absorbance at 595 nm after standing for 5 minutes at room temperature was measured with a microplate reader. Using BSA as a standard product, the protein concentration was calculated based on the calibration curve.
- the main culture was inoculated into 2.5 L of the main culture shown in Table 2 in which each 250 mL of the preculture was placed in a 5 L mini jar, and culture was performed for 4 days under culture conditions of 28 ° C., 700 rpm, 1 vvm, pH 5. Neutralization used 10% ammonia and 1N sulfuric acid. After centrifuging the culture solution 4 days after the start of the culture, the supernatant was filtered through an ultrafiltration membrane, and the cell bodies were removed to obtain cellulase derived from Trichoderma filamentous fungus.
- the blank is a mixed solution containing 0, 4, 8 or 20 g / L of 1 mM p-nitrophenyl- ⁇ -glucopyranoside, 50 mM sodium acetate buffer and glucose in the same amount as the mixed solution before addition of the enzyme solution of the above reaction solution. After 10 ⁇ L of 2 M sodium carbonate was added to the mixture and mixed well, the enzyme solution was added so that the total volume of the blank became 110 ⁇ L and reacted at 30 ° C. for 30 minutes. Thereafter, the increase in absorbance at 405 nm was measured.
- RNA-Seq and .BETA.-glucosidase candidate sequences from 1 culture-poor lesser termite termite symbionts.
- Pseudotrichonympha grassii cells from among a group of termite symbiotic protozoans contained in low culture potential termite intestine extract.
- Were selected, fractionated with a microcapillary, RNA extraction from one cell, reverse transcription, cDNA amplification, conversion to a library, and sequencing were performed by the Hirokawa et al. Quartz-seq method (Sasagawa, Y. et al. et al .: Genome Biol., 14: R31, 2013).
- Example 2 Preparation of .beta.-glucosidase gene-transformed Escherichia coli
- SEQ ID NO: 2 a nucleotide sequence encoding a .beta.-glucosidase candidate gene derived from a Protozoa genus genus Protozoa
- NdeI of pET14b Plasmids linked to the XhoI and XhoI restriction enzyme sites were synthesized by artificial gene synthesis service (Genscript).
- the construction of the above plasmid sequence was designed to express ⁇ -glucosidase having the amino acid sequence described in SEQ ID NO: 1 to which a His-tag was added at the N-terminus in the transformant.
- the plasmid was transformed into E. coli (Rossetta 2 (DE3)) strain.
- Example 3 Preparation of .beta.-glucosidase gene-transformed E. coli cell-free extract
- the .beta.-glucosidase gene-transformed E. coli prepared in Example 2 is inoculated into 10 mL of LB medium containing ampicillin, and shake culture is carried out overnight at 37.degree. (Pre-culture) was performed.
- the main culture the cells obtained in the pre-culture were inoculated into LB medium containing ampicillin, and shaking culture was performed at 37 ° C. until the turbidity OD600 at a wavelength of 600 nm was 0.8.
- IPTG isopropyl-1-thio- ⁇ -D-galactoside
- the total ⁇ -glucosidase activity obtained from 1 L of culture solution of ⁇ -glucosidase gene-transformed E. coli was 21.6 U.
- cell-free extracts of transformants of plasmids containing no ⁇ -glucosidase candidate gene were similarly prepared, and ⁇ -glucosidase activity was not detected when ⁇ -glucosidase activity was measured.
- the ⁇ -glucosidase activity was detected only from the cell-free extract in which the polypeptide in which the His-tag was added to the amino acid sequence of SEQ ID NO: 1 was expressed, it consists of the amino acid sequence of SEQ ID NO: 1
- the polypeptide was found to be a Pseudotrichonympha protozoan derived ⁇ -glucosidase sequence.
- Example 4 Preparation of ⁇ -glucosidase mutant gene-transformed E. coli. Similar to Example 2, SEQ ID NO: 7 with sequence identity 53% with SEQ ID NO: 2 and SEQ ID NO: 9 with sequence identity 53% with SEQ ID NO: 2 A plasmid in which the polynucleotide described in was ligated to the NdeI and XhoI restriction enzyme sites of pET14b, respectively, was synthesized by artificial gene synthesis service (Genscript). Here, the construction of the above plasmid sequence was designed to express ⁇ -glucosidase having the amino acid sequence set forth in SEQ ID NO: 6 and SEQ ID NO: 8 to which His-tag was added at the N-terminus in the transformant. The plasmid was transformed into E. coli (Rossetta 2 (DE3)) strain.
- E. coli Rossetta 2 (DE3)
- Example 5 Preparation of .beta.-glucosidase mutant gene-transformed E. coli cell-free extract
- the .beta.-glucosidase mutant gene-transformed E. coli prepared in Example 4 is inoculated in 10 mL of LB medium containing ampicillin, An overnight shaking culture (pre-culture) was performed.
- pre-culture As the main culture, the cells obtained in the pre-culture were inoculated into LB medium containing ampicillin, and shaking culture was performed at 37 ° C. until the turbidity OD600 at a wavelength of 600 nm was 0.8.
- IPTG isopropyl-1-thio- ⁇ -D-galactoside
- Example 6 Preparation of an enzyme composition containing a cell extract of ⁇ -glucosidase gene-transformed E. coli and cellulase derived from Trichoderma spp., And a method for saccharifying wood-based powdery cellulose According to Reference Example 7, Trichoderma reesei is cultured to obtain Trichoderma sp. A filamentous fungus-derived cellulase was produced. An enzyme composition was prepared by mixing the cell-free extract of ⁇ -glucosidase gene-transformed E. coli prepared in Example 3 with the Trichoderma filamentous fungus-derived cellulase, and used for a glycation reaction.
- the above enzyme composition had a protein concentration of 0.2 g / L of Trichoderma filamentous fungus cellulase protein per 1 mL of the glycation reaction liquid, and a protein concentration of 2.1 g / L of the cell-free extract of ⁇ -glucosidase gene-transformed E. coli. Mixed to become.
- Wood biomass powdered cellulose Arbocel registered trademark (J. Rettenmaier & Sohne) was used as biomass to be saccharified. The saccharification reaction was performed as follows.
- the supernatant was filtered with a 0.22 ⁇ m filter, and the filtrate was subjected to sugar analysis according to Reference Example 5.
- a cell-free extract of E. coli transformed with only a vector containing no ⁇ -glucosidase gene is used as a control for comparison, and the protein concentration per 1 mL of the glycation reaction solution is 2.1 g / L as described above.
- the glycation reaction and the sugar analysis of the glycated supernatant were carried out by mixing with cellulase derived from bacteria.
- Example 7 His-tag crude purification of ⁇ -glucosidase His-tag purification of the cell-free extract of ⁇ -glucosidase gene-transformed E. coli whose enzyme activity could be confirmed in Example 3 was carried out. His-tag purification was carried out using His ⁇ Bind Purification Kit (Merck Millipore) according to the batch method of the instruction. The purified fraction was subjected to SDS-PAGE according to Reference Example 6. As a result, the darkest band was detected between 75 kDa and 100 kDa in the eluted fraction, and His-tagged ⁇ -glucosidase having a theoretical molecular weight of 83.9 kDa was It could be confirmed that it was purified.
- FIG. 1 A photograph of the SDS-PAGE gel is shown in FIG. Using the gel filtration column PD-10 (GE Healthcare), the buffer of the elution fraction was exchanged with 20 mM Tris-HCl (PH 7.6) according to the method of the instruction, and this was used as a crudely purified ⁇ -glucosidase.
- the protein concentration and ⁇ -glucosidase activity of the crudely purified ⁇ -glucosidase were determined to be 3.50 U per 1 mg of protein contained in the crudely purified ⁇ -glucosidase.
- Example 8 Preparation of an enzyme composition containing crudely purified ⁇ -glucosidase and cellulase derived from Trichoderma spp., And cellulose saccharification as a wood raw material powder Trichoderma reesei is cultured according to Reference Example 7 to produce cellulase derived from Trichoderma sp. did.
- An enzyme composition was prepared by mixing the crudely purified ⁇ -glucosidase prepared in Example 7 with the Trichoderma filamentous fungus-derived cellulase, and was used for the saccharification reaction.
- the enzyme composition was mixed such that the protein concentration of Trichoderma filamentous fungus-derived cellulase was 0.2 g / L and the protein concentration of crudely purified ⁇ -glucosidase was 0.017 g / L per mL of the glycation reaction liquid.
- the saccharification reaction and the sugar analysis of the saccharification supernatant were performed in the same manner as in Example 6 except that crude purified ⁇ -glucosidase was used for the enzyme composition.
- Trichoderma filamentous fungus-derived cellulase alone is used as described above, and Trichoderma filamentous fungus-derived cellulase is added so that the protein concentration per 1 mL of the saccharification reaction solution is 2.1 g / L, as in the above. Sugar analysis of the supernatant was performed.
- the ⁇ -glucosidase activity of the enzyme composition containing the crudely purified ⁇ -glucosidase used for the above-mentioned glycation reaction and the Trichoderma filamentous fungus-derived cellulase was 1.6 times the activity of the Trichoderma filamentous fungus-derived cellulase alone.
- Example 9 Preparation of filamentous fungus of Trichoderma genus transformed with ⁇ -glucosidase gene
- SEQ ID NO: 2 Sequence sequence encoding a ⁇ -glucosidase gene derived from a Protozoa genus of ProteoTrichonympha gene
- sequence identity 66% of sequence identity A plasmid in which the polynucleotide described in 3 was linked to the NdeI and XhoI restriction enzyme sites of pET14b was synthesized by artificial gene synthesis service (Genscript).
- the base sequence portion of SEQ ID NO: 3 is amplified by PCR from the above plasmid, and ligated in-frame to the secretion signal sequence of Aspergillus aculeatus ⁇ -glucosidase downstream of the Trichoderma reesei-derived endoglucanase 1 promoter.
- the sequence and hygromycin resistance gene of transformants were cloned between T-DNA borders of pBI101 plasmid.
- the sequence between the T-DNA border of the prepared plasmid is shown in SEQ ID NO: 4.
- SEQ ID NO: 4 is the expression of the ⁇ -glucosidase having the amino acid sequence described in SEQ ID NO: 1, which sequence is introduced into the genome of the host cell and encoded by the following base numbers 978 to 3161 (SEQ ID NO: 3). Designed to be secreted.
- the configuration of SEQ ID NO: 4 is shown below.
- LB left T-DNA border: nucleotide numbers 1 to 26
- Pegl1 endoglucanase 1 promoter from Trichoderma reesei: base number 27 to 920
- Sbgl ⁇ -glucosidase secretion signal from Aspergillus aculeatus: base numbers 921 to 977
- bgl Pseudotrichonympha Protozoa-derived ⁇ -glucosidase: base numbers 978 to 3161 (SEQ ID NO: 3)
- Tegl1 endoglucanase 1 terminator from Trichoderma reesei: base numbers 3162-4019
- the prepared plasmid was introduced into Agrobacterium tumefaciens AGL1 strain, Trichoderma reesei was infected with the transformed Agrobacterium to obtain a ⁇ -glucosidase transformed Trichoderma strain.
- Agrobacterium-mediated transformation of Trichoderma is based on the method of Marcel et al. (Marcel, et al. 2006, Nat Biotechnol 16: 839-842) in an Induction medium (IM) liquid medium containing glucose and acetosyringone.
- IM Induction medium
- the transformed Agrobacterium cultured for 8 hours is mixed with Trichoderma reesei spore solution and cultured on cellophane loaded on solid medium of Induction medium (IM) for 3 days, followed by potato dextrose agar containing cefotaxime and hygromycin. Place cellophane on the plate (selection medium), pick up the colonies grown on the selection medium, repeat the purification culture twice on the selection medium, and transform Tri. Choderma shares were obtained.
- IM Induction medium
- Example 10 Production of an Enzyme Composition by Cultivation of Trichoderma Filamentous Fungus Transformed with ⁇ -Glucosidase Gene
- the Trichoderma Filamentous Fungus Transformed with ⁇ -glucosidase gene prepared in Example 9 was cultured in the same manner as in Reference Example 7 After centrifuging the culture solution 4 days after the initiation of culture, the supernatant is filtered through an ultrafiltration membrane, and the ⁇ -glucosidase and Trichoderma of the present invention expressed in a filamentous fungus of Trichoderma are removed by removing the cells.
- An enzyme composition comprising a genus filamentous fungus-derived cellulase was prepared.
- the protein concentration of the enzyme composition was measured according to Reference Example 1, and SDS-PAGE was performed according to Reference Example 6 to confirm the expressed protein.
- SDS-PAGE was performed according to Reference Example 6 to confirm the expressed protein.
- using only the Trichoderma filamentous fungus-derived cellulase obtained by culturing the non-transformed Trichoderma filamentous fungus, culture, supernatant collection, culture supernatant filtration and SDS-PAGE were performed in the same manner.
- the band of the ⁇ -glucosidase of the present invention is 10 minutes of the total of the bands of the enzyme composition which can be confirmed by SDS-PAGE.
- the ⁇ -glucosidase gene-transformed Trichoderma filamentous fungus it is confirmed that the ⁇ -glucosidase of the present invention is expressed in large amounts.
- a photograph of the SDS-PAGE gel is shown in FIG.
- the ⁇ -glucosidase activity of the enzyme composition containing the above-mentioned ⁇ -glucosidase and Trichoderma filamentous fungus-derived cellulase was measured.
- the ⁇ -glucosidase activity of the enzyme composition containing ⁇ -glucosidase and cellulase derived from Trichoderma spp. was 2.0 times that of the cellulase derived from Trichoderma sp. Only.
- the total ⁇ -glucosidase activity obtained from 1 L of culture solution of Trichoderma genus filamentous fungus transformed with ⁇ -glucosidase gene is about 1.80 ⁇ 10 3 U
- the expression of ⁇ -glucosidase in Trichoderma filamentous fungi is an example. It was found that about 850-fold ⁇ -glucosidase was obtained from the same volume of culture solution as compared to ⁇ -glucosidase expression in E. coli E. 3, and the productivity of the ⁇ -glucosidase of the present invention was high.
- Example 11 Saccharification of microcrystalline cellulose by an enzyme composition containing ⁇ -glucosidase and cellulase derived from Trichoderma spp.
- a biomass to be saccharified Cellulose microcrystalline (manufactured by Merck), which is microcrystalline cellulose, was used.
- the sugar analysis of the saccharification reaction and the saccharification supernatant was performed in the same manner as in Example 6 except for the used biomass.
- the amount of enzyme added was 8 mg / g biomass.
- the saccharification reaction and the sugar analysis of the saccharification supernatant were similarly performed using only Trichoderma filamentous fungus-derived cellulase as a comparison control.
- the amount of accumulated glucose is increased by about 1.6 times as compared to the glycation using only the Trichoderma filamentous fungus-derived cellulase.
- the accumulation of cellobiose decreased.
- the results of glucose cellobiose in sugar analysis are shown in Table 6.
- Example 12 Wood raw material powdery cellulose saccharification by an enzyme composition containing ⁇ -glucosidase and Trichoderma filamentous fungus-derived cellulase
- the saccharification reaction and the sugar analysis of the saccharification supernatant were performed in the same manner as in Example 11 except for the used biomass.
- Example 13 Alkali-treated bagasse saccharification with an enzyme composition containing ⁇ -glucosidase and Trichoderma filamentous fungus-derived cellulase
- the enzyme composition containing ⁇ -glucosidase prepared in Example 10 and Trichoderma filamentous fungus-derived cellulase is subjected to glycation reaction used.
- An alkali-treated (pretreated) bagasse was used as biomass to be saccharified.
- the saccharification reaction and the sugar analysis of the saccharification supernatant were performed in the same manner as in Example 11 except for the used biomass.
- Example 14 Confirmation of saccharified supernatant residual component of enzyme composition containing ⁇ -glucosidase and cellulase derived from Trichoderma spp. Glycosylated enzyme composition containing ⁇ -glucosidase prepared in Example 10 and cellulase derived from Trichoderma spp. Used for the reaction.
- biomass to be saccharified wood raw material powdery cellulose Arbocel (registered trademark) (J. Rettenmaier & Sohne), alkali-treated bagasse and non-treated bagasse not subjected to pretreatment were used.
- the saccharification reaction was carried out in the same manner as in Example 11 under the reaction conditions of 35 ° C., and the sample after the saccharification reaction for 24 hours was centrifuged at 10,000 ⁇ g for 5 minutes to recover the saccharification supernatant.
- 3.5 ⁇ L of the glycated supernatant was aliquoted, mixed with an equal volume of sample buffer, heated at 95 ° C. for 10 minutes, and subjected to SDS-PAGE according to Reference Example 6.
- the enzyme composition diluted to the same concentration in the saccharification reaction solution was also subjected to SDS-PAGE in the same manner as the above-mentioned saccharification supernatant.
- the glucosidase band was clearly observed, and it was confirmed that the ⁇ -glucosidase of the present invention was easier to recover as a glycated supernatant than many other cellulase components derived from Trichoderma filamentous fungi. Moreover, in the woody material powdery cellulose saccharification, in the glycated supernatant of the enzyme composition containing ⁇ -glucosidase and cellulase derived from Trichoderma spp., Trichoderma spp.
- Trichoderma filamentous fungus-derived cellulase is also recovered as a glycated supernatant It has been confirmed that it becomes easier.
- a photograph of the SDS-PAGE gel is shown in FIG.
- Example 15 Wood raw material powdery cellulose saccharification supernatant residual activity measurement of enzyme composition containing ⁇ -glucosidase and Trichoderma filamentous fungus-derived cellulase Wood raw material powdery cellulose saccharification supernatant of the above enzyme composition recovered in Example 14 The enzyme activity was measured according to Reference Examples 2, 3 and 4 for The enzyme activity was similarly measured for the enzyme composition diluted to the same concentration in the saccharification reaction solution in Example 14. The ratio of the enzyme activity of the glycated supernatant when the enzyme activity of the enzyme composition diluted to the same concentration in the glycation reaction solution is 100% is shown in Table 9 as the remaining activity in the glycated supernatant.
- the ⁇ -glucosidase of the present invention is easier to recover as a glycated supernatant than ⁇ -glucosidase derived from Trichoderma filamentous fungi.
- the ⁇ -glucosidase of the present invention is used as an enzyme composition together with cellulase derived from Trichoderma sp. It was confirmed that xylosidase, cellobiohydrolase and endoglucanase could be easily recovered as glycated supernatant.
- Example 16 Measurement of untreated bagasse saccharified supernatant residual activity of an enzyme composition containing ⁇ -glucosidase and cellolase derived from Trichoderma spp. With respect to the untreated bagasse saccharified supernatant of the enzyme composition recovered in Example 14. The enzyme activity was measured according to Reference Examples 2, 3 and 4. The enzyme activity was similarly measured for the enzyme composition diluted to the same concentration in the saccharification reaction solution in Example 14. The ratio of the enzyme activity of the glycated supernatant when the enzyme activity of the enzyme composition diluted to the same concentration in the glycation reaction solution is 100% is shown in Table 10 as the remaining activity in the glycated supernatant.
- the ⁇ -glucosidase of the present invention is easier to recover as a glycated supernatant than ⁇ -glucosidase derived from Trichoderma filamentous fungi.
- the ⁇ -glucosidase of the present invention is used as an enzyme composition together with cellulase derived from Trichoderma sp. It was confirmed that xylosidase, cellobiohydrolase and endoglucanase could be easily recovered as glycated supernatant.
- Example 17 Alkali-treated bagasse saccharified supernatant residual activity measurement of enzyme composition containing ⁇ -glucosidase and Trichoderma filamentous fungus-derived cellulase About the alkali-treated bagasse saccharified supernatant of the enzyme composition recovered in Example 14, The enzyme activity was measured according to Reference Examples 2, 3 and 4. The enzyme activity was similarly measured for the enzyme composition diluted to the same concentration in the saccharification reaction solution in Example 14. The ratio of the enzyme activity of the glycated supernatant when the enzyme activity of the enzyme composition diluted to the same concentration in the glycation reaction solution is 100% is shown in Table 11 as the remaining activity in the glycated supernatant.
- the ⁇ -glucosidase of the present invention is easier to recover as a glycated supernatant than the Trichoderma filamentous fungus-derived ⁇ -glucosidase.
- the ⁇ -glucosidase of the present invention is used as an enzyme composition together with cellulase derived from Trichoderma sp. It was confirmed that xylosidase, cellobiohydrolase and endoglucanase could be easily recovered as glycated supernatant.
- the plasmid was introduced into Agrobacterium tumefaciens AGL1 strain and Trichoderma reesei was infected with the transformed Agrobacterium to obtain a ⁇ -glucosidase-transformed Trichoderma strain.
- the Aspergillus genera-derived ⁇ -glucosidase gene-transformed Trichoderma genera Trichoderma filamentous fungus prepared above is cultured in the same manner as in Reference Example 7, and the culture solution after 4 days from the start of culture is centrifuged.
- the supernatant is filtered through an ultrafiltration membrane and the cells are removed to prepare an enzyme composition containing Aspergillus-derived filamentous fungus-derived ⁇ -glucosidase and Trichoderma filamentous fungus-derived cellulase expressed in a filamentous fungus of Trichoderma. did.
- the enzyme composition was subjected to SDS-PAGE according to Reference Example 6 to confirm the expression protein.
- SDS-PAGE As a control for comparison, using only the Trichoderma filamentous fungus-derived cellulase obtained by culturing the non-transformed Trichoderma filamentous fungus, culture, supernatant collection, culture supernatant filtration and SDS-PAGE were performed in the same manner.
- Example 18 Method for measuring ⁇ -glucosidase activity inhibitory action by glucose
- the ⁇ -glucosidase prepared in Example 10 and the cellulase derived from Trichoderma spp. And the ⁇ -glucosidase mutant gene trait prepared in Example 5 The ⁇ -glucosidase activity inhibitory action by glucose of the enzyme composition containing the transformed E. coli cell-free extract was measured.
- As a comparative control only Trichoderma filamentous fungus-derived cellulase was used, and the ⁇ -glucosidase activity inhibitory action by glucose was similarly measured. The value of the relative activity in the presence of glucose is shown in FIG.
- coli were both cellulases derived from Trichoderma genus filamentous fungus only and Aspergillus genera of Comparative Example 1.
- the decrease in ⁇ -glucosidase activity by glucose was smaller compared to the enzyme composition containing ⁇ -glucosidase derived from filamentous fungi and cellulase derived from Trichoderma sp. That is, the enzyme composition containing the ⁇ -glucosidase of the present invention and a cellulase derived from Trichoderma spp.
- the ⁇ -glucosidase mutant gene-transformed E. coli cell-free extract both contain only the cellulase derived from Trichoderma spp.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Botany (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
Abstract
Description
[1]下記(A)~(C)のいずれか1つのポリペプチド。
(A)配列番号1に記載のアミノ酸配列からなるポリペプチド
(B)配列番号1に記載のアミノ酸配列において、1もしくは数個のアミノ酸が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチド
(C)配列番号1に記載のアミノ酸配列と少なくとも70%の配列同一性を有するアミノ酸配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチド
[2]下記(a)~(d)のいずれか1つのポリヌクレオチド。
(a)配列番号2に記載の塩基配列からなるポリヌクレオチド
(b)配列番号2に記載の塩基配列において、1もしくは数個の塩基が置換、欠失、挿入および/または付加された塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(c)配列番号2に記載の塩基配列と少なくとも60%の配列同一性を有する塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(d)[1]に記載のポリペプチドをコードするポリヌクレオチド
[3]下記(a)~(d)のいずれか1つのポリヌクレオチド。
(a)配列番号2に記載の塩基配列からなるポリヌクレオチド
(b)配列番号2に記載の塩基配列において、1もしくは数個の塩基が置換、欠失、挿入および/または付加された塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(c)配列番号2に記載の塩基配列と少なくとも50%の配列同一性を有する塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(d)[1]に記載のポリペプチドをコードするポリヌクレオチド
[4][2]または[3]に記載のポリヌクレオチドを含む、発現ベクター。
[5][2]または[3]に記載のポリヌクレオチドまたは[4]に記載の発現ベクターを有する、形質転換体。
[6][2]または[3]に記載のポリヌクレオチドまたは[4]に記載の発現ベクターを有する、形質転換Trichoderma属糸状菌。
[7][5]に記載の形質転換体または[6]に記載の形質転換Trichoderma属糸状菌を培養する工程を含む、酵素組成物の製造方法。
[8][7]に記載の酵素組成物を製造する工程を含み、当該工程によって得られた酵素組成物を用いて、セルロース含有バイオマスから糖液を製造する方法。
[9]グルコース非存在下でのβ-グルコシダーゼの活性を1としたとき、グルコース濃度8g/Lの条件下でのβ-グルコシダーゼ活性が0.5以上であることを特徴とする、Pseudotrichonympha属原生生物由来β-グルコシダーゼ。
[10]Pseudotrichonympha属原生生物由来β-グルコシダーゼと、糸状菌由来セルラーゼとを含む酵素組成物。
[11]前記糸状菌がTrichoderma属糸状菌であることを特徴とする、[10]に記載の酵素組成物。
[12][10]または[11]に記載の酵素組成物を用いて、セルロース含有バイオマスから糖液を製造する方法。
[13]前記糖液から[10]または[11]に記載の酵素組成物を回収する工程を含む、[12]に記載の糖液を製造する方法。
(A)配列番号1に記載のアミノ酸配列からなるポリペプチド
(B)配列番号1に記載のアミノ酸配列において、1もしくは数個のアミノ酸が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチド
(C)配列番号1に記載のアミノ酸配列と少なくとも70%の配列同一性を有するアミノ酸配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチド。
市販のタンパク質濃度測定試薬(Quick Start Bradfordプロテインアッセイ、Bio-Rad製)を使用した。室温に戻したタンパク質濃度測定試薬250μLに希釈した糸状菌由来セルラーゼ溶液を5μL添加し、室温で5分間静置後の595nmにおける吸光度をマイクロプレートリーダーで測定した。標準品としてBSAを使用し、検量線に照らし合わせてタンパク質濃度を算出した。
1mMp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加して30℃で10分間反応させた。その後2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義した。ブランクは1mM p-ニトロフェニル-β-グルコピラノシドを含有する50mM酢酸ナトリウムバッファー90μLに2M炭酸ナトリウム10μLを加えてよく混合し、その後酵素希釈液10μLを添加し30℃で30分間反応させた。その後、405nmの吸光度の増加を測定した。この際に405nmの吸光度が1を超えないように酵素液を希釈しておいた。また、検量線はp-ニトロフェノール溶液を濃度0.1mM、0.2mM、1mM、2mMになるように調製し、酵素希釈液の代わりに10μLを入れ、2M炭酸ナトリウム10μLを加えてよく混合して発色させ、測定した吸光度から作成した。
1mMp-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で30分間反応させた。その後、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義した。ブランクは1mMp-ニトロフェニル-β-キシロピラノシドを含有する50mM酢酸バッファー90μLに2M炭酸ナトリウム10μLを加えてよく混合し、その後酵素希釈液10μLを添加し30℃で30分間反応させた。その後、405nmの吸光度の増加を測定した。この際に405nmの吸光度が1を超えないように酵素液を希釈しておいた。また、検量線はp-ニトロフェノール溶液を濃度0.1mM、0.2mM、1mM、2mMになるように調製し、酵素希釈液の代わりに10μLを入れ、2M炭酸ナトリウム10μLを加えてよく混合して発色させ、測定した吸光度から作成した。
1mMp-ニトロフェニル-β-ラクトピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で60分間反応させた。その後、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義した。ブランクは1mMp-ニトロフェニル-β-ラクトピラノシドを含有する50mM酢酸バッファー90μLに2M炭酸ナトリウム10μLを加えてよく混合し、その後酵素希釈液10μLを添加し30℃で30分間反応させた。その後、405nmの吸光度の増加を測定した。この際に405nmの吸光度が1を超えないように酵素液を希釈しておいた。また、検量線はp-ニトロフェノール溶液を濃度0.1mM、0.2mM、1mM、2mMになるように調製し、酵素希釈液の代わりに10μLを入れ、2M炭酸ナトリウム10μLを加えてよく混合して発色させ、測定した吸光度から作成した。
グルコース、セロビオースは、ACQUITY UPLC システム(Waters)を用いて、以下の条件で定量分析した。
グルコース、セロビオースの標品で作成した検量線をもとに、定量分析した。セロビオースが1g/Lより低い値の場合は、検出限界以下とした。
カラム:AQUITY UPLC BEH Amide 1.7μm 2.1×100mm Column
分離法:HILIC
移動相:移動相A:80%アセトニトリル、0.2%TEA(トリエチルアミン)水溶液、移動相B:30%アセトニトリル、0.2%TEA(トリエチルアミン)水溶液とし、下記グラジエントに従った。グラジエントは下記の時間に対応する混合比に到達する直線的なグラジエントとした。
開始条件:(A99.90%、B0.10%)、開始2分後:(A96.70%、B3.30%)、開始3.5分後:(A95.00%、B5.00%)、開始3.55分後:(A99.90%、B0.10%)、開始6分後:(A99.90%、B0.10%)。
検出方法:ELSD(蒸発光散乱検出器)
流速:0.3mL/min
温度:55℃
SDS-PAGEは15%ポリアクリルアミドゲルe-PAGEL(アトー)を使用した。該β-グルコシダーゼ形質転換Trichoderma株酵素5μgを、等体積のサンプルバッファーEz-apply(アトー)と混合し、95℃10分加熱して、泳動サンプルとした。分子量マーカーは、Precision Plus Protein Dual Color Standards(バイオラッド)を使用した。泳動バッファーは25mMトリス、192mMグリシン、0.1%SDS水溶液とし、20mA定電流で90分間電気泳動を行った。電気泳動後のゲルはBio-Safe Comassie G-250 Stain(バイオラッド)により染色し、純水で脱染した。
Trichoderma属糸状菌の胞子を1.0×107/mLになるように生理食塩水で希釈し、その希釈胞子溶液2.5mLを1Lバッフル付フラスコに入れた表1に記した組成で構成される培養液250mLへ接種し、28℃、160rpmの培養条件にて3日間培養(前培養)を行った。本培養は前培養液250mLをそれぞれ5L容ミニジャーに入れた表2に示した本培養液2.5Lへ接種させ、28℃、700rpm、1vvm、pH5の培養条件にて4日間培養を行った。中和は10%アンモニアと1N硫酸を使用した。培養開始4日後の培養液を遠心分離した後、上清を限外ろ過膜にてろ過し、菌体除去を行うことで、Trichoderma属糸状菌由来セルラーゼを取得した。
1mMp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)、50mM酢酸バッファーおよびグルコースを0、4、8または20g/L含有する混合液に酵素液を添加して反応液合計が100μLとなるように調製し、30℃で100分間反応させた。その後2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義した。ブランクは、上記反応液の酵素液添加前の混合液と同量の、1mM p-ニトロフェニル-β-グルコピラノシド、50mM酢酸ナトリウムバッファーおよびグルコースを0、4、8または20g/Lを含有する混合液に2M炭酸ナトリウム10μLを加えてよく混合した後、酵素液を、ブランクの総液量が110μLになるよう添加し30℃で30分間反応させた。その後、405nmの吸光度の増加を測定した。
イエシロアリ腸管抽出物中に含まれる難培養性のシロアリ共生原生生物群の中からPseudotrichonympha grassii細胞を選定し、マイクロキャピラリーで分画して、1細胞からのRNA抽出、逆転写、cDNA増幅、ライブラリーへの変換、およびシークエンシングを笹川らのQuartz-seq法によって行った(Sasagawa,Y.et al.:Genome Biol.,14: R31,2013)。シークエンシングの結果から、β-グルコシダーゼ候補をコードする塩基配列の選定を行った。タンパク質のシグナル配列を予測するツールSignalP(http:www.cbs.dtu.dk/services/SignalP/)を用いて前記塩基配列がコードするアミノ酸配列の、シグナル配列部分を予測した。結果、シグナル配列を除いたβ-グルコシダーゼ候補配列として配列番号1に記載のアミノ酸配列、該アミノ酸配列をコードする塩基配列として配列番号2の塩基配列を取得した。配列番号1に記載のアミノ酸配列のファミリーをPROSITEで調べたところ、配列番号1の259番目から276番目にGlycosyl hydrolases family 3 active siteにあたる配列番号5のアミノ酸配列を有していることが分かった。
実施例1で取得した、配列番号2(Pseudotrichonympha属原生生物由来β-グルコシダーゼ候補遺伝子をコードする塩基配列)に記載のポリヌクレオチドをpET14bのNdeIおよびXhoI制限酵素サイトに連結したプラスミドを人工遺伝子合成サービス(Genscript社)により合成した。ここで、上記プラスミド配列の構成は形質転換体においてN末端にHis-tagが付加された、配列番号1に記載のアミノ酸配列をもつβ-グルコシダーゼが発現するように設計した。前記プラスミドを大腸菌(Rossetta2(DE3))株に形質転換した。
実施例2で作製したβ-グルコシダーゼ遺伝子形質転換大腸菌をアンピシリン含有LB培地10mLに植菌し、37℃で一晩振とう培養(前培養)を行った。本培養として、アンピシリン含有LB培地に、前培養で得られた菌体を植菌し、波長600nmでの濁度OD600が0.8となるまで37℃で振とう培養を行った。その後、最終濃度が0.1mMになるようにイソプロピル-1-チオ-β-D-ガラクトシド(IPTG)を加え、さらに16℃で一晩培養した。培養後、菌体を遠心分離により回収し、50mM Tris-HCl緩衝液(pH7.6)に再懸濁した。この溶液を氷冷しながら、超音波破砕を行い、その上清を無細胞抽出液として遠心分離により回収した。前記β-グルコシダーゼ候補遺伝子形質転換大腸菌の無細胞抽出液のβ-グルコシダーゼ活性を測定したところ、無細胞抽出液に含まれるタンパク質1mgあたり0.14Uであった。また、β-グルコシダーゼ遺伝子形質転換大腸菌の培養液1Lから得られる全β-グルコシダーゼ活性は21.6Uであった。比較対照として、β-グルコシダーゼ候補遺伝子を含まないプラスミドの形質転換体の無細胞抽出液を同様に調製し、β-グルコシダーゼ活性を測定したところ、β-グルコシダーゼ活性は検出されなかった。すなわち、配列番号1に記載のアミノ酸配列にHis-tagが付加したポリペプチドを発現した無細胞抽出液からのみ、β-グルコシダーゼ活性が検出されたことから、配列番号1に記載のアミノ酸配列からなるポリペプチドは、Pseudotrichonympha属原生生物由来β-グルコシダーゼ配列であることが分かった。
実施例2と同様に、配列番号2と配列同一性53%の配列番号7および配列番号2と配列同一性53%の配列番号9に記載のポリヌクレオチドをそれぞれpET14bのNdeIおよびXhoI制限酵素サイトに連結したプラスミドを人工遺伝子合成サービス(Genscript社)により合成した。ここで、上記プラスミド配列の構成は形質転換体においてN末端にHis-tagが付加された、配列番号6および配列番号8に記載のアミノ酸配列をもつβ-グルコシダーゼがそれぞれ発現するように設計した。前記プラスミドを大腸菌(Rossetta2(DE3))株に形質転換した。
実施例4で作製したβ-グルコシダーゼ変異体遺伝子形質転換大腸菌をアンピシリン含有LB培地10mLに植菌し、37℃で一晩振とう培養(前培養)を行った。本培養として、アンピシリン含有LB培地に、前培養で得られた菌体を植菌し、波長600nmでの濁度OD600が0.8となるまで37℃で振とう培養を行った。その後、最終濃度が0.1mMになるようにイソプロピル-1-チオ-β-D-ガラクトシド(IPTG)を加え、さらに16℃で一晩培養した。培養後、菌体を遠心分離により回収し、50mM Tris-HCl緩衝液(pH7.6)に再懸濁した。この溶液を氷冷しながら、超音波破砕を行い、その上清を無細胞抽出液として遠心分離により回収した後、限外ろ過膜ユニットで抽出液体積を12分の1にした後、β-グルコシダーゼ活性の有無を調べた。比較対照として、β-グルコシダーゼ候補遺伝子を含まないプラスミドの形質転換体の無細胞抽出液を同様に調製し、β-グルコシダーゼ活性の有無を調べたところ、β-グルコシダーゼ活性は検出されなかった。すなわち、配列番号1と配列同一性88%の配列番号6および配列番号1と配列同一性80%の配列番号8に記載のアミノ酸配列にHis-tagが付加したポリペプチドを発現した無細胞抽出液からのみ、β-グルコシダーゼ活性が検出されたことから、配列番号6および配列番号8に記載のアミノ酸配列からなるポリペプチドは、β-グルコシダーゼ活性を持つことが分かった。β-グルコシダーゼ活性測定の結果を表3に示した。
参考例7に従って、Trichoderma reeseiの培養を行い、Trichoderma属糸状菌由来セルラーゼを製造した。実施例3で作製したβ-グルコシダーゼ遺伝子形質転換大腸菌の無細胞抽出液を、前記Trichoderma属糸状菌由来セルラーゼと混合した酵素組成物を調製し、糖化反応に使用した。前記酵素組成物は、糖化反応液1mLあたりのTrichoderma属糸状菌由来セルラーゼのタンパク濃度が0.2g/L、β-グルコシダーゼ遺伝子形質転換大腸菌の無細胞抽出液のタンパク濃度が2.1g/Lとなるように混合した。糖化対象のバイオマスとしては、木材原料粉末セルロースArbocel(登録商標)(J.Rettenmaier&Sohne)を使用した。糖化反応は以下のようにして行った。2mLチューブの中にバイオマスを50mg分入れ、酢酸ナトリウムバッファー(pH5.2)を終濃度50mMになるように添加し、木材原料粉末セルロースの固形分濃度が反応開始時に5重量%となるように純水を加えた。さらに、前記酵素組成物を、前記調製液に添加し、ヒートブロックローテーターを用いて、35℃の反応条件で反応を開始した。24時間糖化反応後のサンプルを10,000×gの条件下で5分間遠心分離を行い、上清を分取し、上清のボリュームの10分の1量の1N 水酸化ナトリウム水溶液を添加し、糖化反応を停止した。その上清を0.22μmのフィルターでろ過し、そのろ液を参考例5に従い糖分析に供した。比較対照として、β-グルコシダーゼ遺伝子を含まないベクターのみを形質転換した大腸菌の無細胞抽出液を用い、上記と同様に糖化反応液1mLあたりのタンパク濃度が2.1g/LになるようTrichoderma属糸状菌由来セルラーゼと混合して、糖化反応、および糖化上清の糖分析を行った。なお、上記糖化反応に使用したβ-グルコシダーゼ遺伝子形質転換大腸菌無細胞抽出液とTrichoderma属糸状菌由来セルラーゼを含む酵素組成物のβ-グルコシダーゼ活性はβ-グルコシダーゼ遺伝子形質転換大腸菌無細胞抽出液を含まないTrichoderma属糸状菌由来セルラーゼの活性の2.6倍となった。糖化反応の結果、β-グルコシダーゼ遺伝子形質転換大腸菌無細胞抽出液とTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を添加した場合、本発明のβ-グルコシダーゼを含まないTrichoderma属糸状菌由来セルラーゼを添加した場合に比べて、グルコース蓄積量が約2.7倍に増加し、セロビオースの蓄積量は減少した。糖分析のグルコース・セロビオースの結果を表4に示した。
実施例3で酵素活性を確認できたβ-グルコシダーゼ遺伝子形質転換大腸菌の無細胞抽出液のHis-tag精製を行った。His-tag精製はHis・Bind Purification Kit(メルクミリポア)を用い、説明書のバッチメソッドに従った。参考例6に従って、精製画分のSDS-PAGEを行ったところ、溶出画分において分子量75kDaから100kDaの間に最も濃いバンドが検出され、理論分子量83.9kDaであるHis-tag付きβ-グルコシダーゼが精製されたことが確認できた。SDS-PAGEゲルの写真を図1に示した。ゲルろ過カラムPD-10(GEヘルスケア)を用いて説明書の方法に従い、前記溶出画分のバッファーを20mMTris-HCl(PH7.6)に交換し、これを粗精製β-グルコシダーゼとした。該粗精製β-グルコシダーゼのタンパク質濃度およびβ-グルコシダーゼ活性を測定したところ、粗精製β-グルコシダーゼに含まれるタンパク質1mgあたり3.50Uであった。
参考例7に従って、Trichoderma reeseiの培養を行い、Trichoderma属糸状菌由来セルラーゼを製造した。実施例7で作製した粗精製β-グルコシダーゼを前記Trichoderma属糸状菌由来セルラーゼと混合した酵素組成物を調製し、糖化反応に使用した。前記酵素組成物は、糖化反応液1mLあたりのTrichoderma属糸状菌由来セルラーゼのタンパク濃度が0.2g/L、粗精製β-グルコシダーゼのタンパク濃度が0.017g/Lとなるように混合した。酵素組成物に粗精製β-グルコシダーゼを用いた以外は、実施例6と同様に糖化反応、および糖化上清の糖分析を行った。比較対照としてTrichoderma属糸状菌由来セルラーゼのみを用い、上記と同様に糖化反応液1mLあたりのタンパク濃度が2.1g/LになるようTrichoderma属糸状菌由来セルラーゼを添加して、糖化反応、および糖化上清の糖分析を行った。なお、上記糖化反応に使用した粗精製β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物のβ-グルコシダーゼ活性は、Trichoderma属糸状菌由来セルラーゼのみの活性の1.6倍となった。糖化反応の結果、Trichodermaセルラーゼに粗精製β-グルコシダーゼを混合した酵素組成物を添加した場合、Trichoderma属糸状菌由来セルラーゼのみを添加した場合に比べて、いずれもグルコース蓄積量が約1.8倍に増加し、セロビオースの蓄積量は減少した。糖分析のグルコース・セロビオースの結果を表5に示した。
配列番号2に記載の塩基配列(PseudoTrichonympha属原生生物由来β-グルコシダーゼ遺伝子をコードする塩基配列)と配列同一性66%の配列番号3に記載のポリヌクレオチドをpET14bのNdeIおよびXhoI制限酵素サイトに連結したプラスミドを、人工遺伝子合成サービス(Genscript社)により合成した。前記プラスミドから、配列番号3の塩基配列部分をPCRにより増幅し、Trichoderma reesei由来エンドグルカナーゼ1プロモーターの下流に、Aspergillus aculeatusのβ-グルコシダーゼの分泌シグナル配列とin-frameになるように連結し、該配列と形質転換体のハイグロマイシン耐性遺伝子をpBI101プラスミドのT-DNAボーダー間にクローニングした。作製したプラスミドのT-DNAボーダー間の配列を配列番号4に示した。ここで、配列番号4は上記配列が宿主細胞のゲノム中に導入され、下記塩基番号978~3161(配列番号3)がコードする、配列番号1に記載のアミノ酸配列をもつβ-グルコシダーゼが発現し、分泌されるように設計した。配列番号4の構成を下記に示す。
Pegl1=Trichoderma reesei由来エンドグルカナーゼ1プロモーター:塩基番号27~920
Sbgl=Aspergillus aculeatus由来β-グルコシダーゼ分泌シグナル:塩基番号921~977
bgl=Pseudotrichonympha属原生生物由来β-グルコシダーゼ:塩基番号978~3161(配列番号3)
Tegl1=Trichoderma reesei由来エンドグルカナーゼ1ターミネーター:塩基番号3162~4019
PamdS=Aspergillus nidulans由来アセトアミダーゼプロモーター:塩基番号4020~5027
hygR=ストレプトマイセス・ハイグロスコピカス由来ハイグロマイシンBホスホトランスフェラーゼ:塩基番号5028~6065
TamdS=Aspergillus nidulans由来アセトアミダーゼターミネーター:塩基番号6066~6786
RB=右T-DNAボーダー:塩基番号6787~6810。
実施例9で作製したβ-グルコシダーゼ遺伝子形質転換Trichoderma属糸状菌を参考例7と同様の方法で培養し、培養開始4日後の培養液を遠心分離した後、上清を限外ろ過膜にてろ過し、菌体除去を行うことで、Trichoderma属糸状菌で発現した本発明のβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を調製した。前記酵素組成物のタンパク質濃度を参考例1に従って測定し、参考例6に従ってSDS-PAGEを行い、発現タンパクの確認を行った。比較対照として非形質転換Trichoderma属糸状菌の培養により得られたTrichoderma属糸状菌由来セルラーゼのみを用い、同様に培養、上清回収、培養上清ろ過およびSDS-PAGEを行った。SDS-PAGEの結果、前記β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物では、本発明のβ-グルコシダーゼのバンドが、SDS-PAGEで確認できる酵素組成物のバンドの合計の10分の1より多いバンドとして観察され、β-グルコシダーゼ遺伝子形質転換Trichoderma属糸状菌では本発明のβ-グルコシダーゼが多量に発現していることが確認できた。SDS-PAGEゲルの写真を図2に示した。
実施例10で調製したβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を糖化反応に使用した。糖化対象のバイオマスとしては、微結晶セルロースであるCellulose microcrystalline(Merck社製)を使用した。使用バイオマス以外は実施例6と同様に糖化反応および糖化上清の糖分析を行った。酵素の添加量は8mg/g-バイオマスとした。比較対照としてTrichoderma属糸状菌由来セルラーゼのみを用い、同様に糖化反応、および糖化上清の糖分析を行った。結果、前記β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を用いた糖化では、Trichoderma属糸状菌由来セルラーゼのみを用いた糖化に比べて、グルコース蓄積量が約1.6倍に増加し、セロビオースの蓄積量は減少した。糖分析のグルコース・セロビオースの結果を表6に示した。
実施例10で調製したβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を糖化反応に使用した。糖化対象のバイオマスとしては、木材原料粉末セルロースArbocel(登録商標)(J.Rettenmaier&Sohne)を使用した。使用バイオマス以外は実施例11と同様にして、糖化反応、および糖化上清の糖分析を行った。比較対照としてTrichoderma属糸状菌由来セルラーゼのみを用い、同様に糖化、および糖化上清の糖分析を行った。結果、前記β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を用いた糖化では、Trichoderma属糸状菌由来セルラーゼのみを用いた糖化に比べて、グルコース蓄積量が約1.8倍に増加し、セロビオースの蓄積は検出されなかった。糖分析のグルコース・セロビオースの結果を表7に示した。
実施例10で調製したβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を糖化反応に使用した。糖化対象のバイオマスとして、アルカリ処理(前処理)を行ったバガスを使用した。使用バイオマス以外は実施例11と同様にして、糖化反応、および糖化上清の糖分析を行った。比較対照として、Trichoderma属糸状菌由来セルラーゼのみを用い、同様に糖化、および糖化上清の糖分析を行った。結果、前記β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を用いた糖化では、Trichoderma属糸状菌由来セルラーゼのみを用いた糖化に比べて、グルコース蓄積量が約1.8倍に増加し、セロビオースの蓄積は検出されなかった。糖分析のグルコース・セロビオースの結果を表8に示した。
実施例10で調製したβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を糖化反応に使用した。糖化対象のバイオマスとして、木材原料粉末セルロースArbocel(登録商標)(J.Rettenmaier&Sohne)、アルカリ処理バガスおよび前処理を行っていない無処理バガスを使用した。35℃の反応条件で実施例11と同様に糖化反応を行い、24時間糖化反応後のサンプルを10,000×gの条件下で5分間遠心分離を行い、糖化上清を回収した。該糖化上清3.5μLを分取し、等量のサンプルバッファーと混合し、95℃10分加熱して、参考例6に従ってSDS-PAGEを行った。糖化に供した酵素のバンドの確認のため、糖化反応液中と同濃度になるように希釈した前記酵素組成物も、前記糖化上清と同様にSDS-PAGEを行った。比較対照として非形質転換Trichoderma属糸状菌の培養により得られたTrichoderma属糸状菌由来セルラーゼのみを用い、同様に糖化、および糖化上清の回収、SDS-PAGEを行った。結果、木材原料粉末セルロース糖化、アルカリ処理バガス糖化および無処理バガス糖化のいずれの場合も、前記β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物の糖化上清中では、本発明のβ-グルコシダーゼのバンドが明瞭に見られ、本発明のβ-グルコシダーゼはTrichoderma属糸状菌由来の他の多くのセルラーゼ成分よりも糖化上清として回収しやすいことが確認できた。また、木材原料粉末セルロース糖化では、β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物の糖化上清中では、Trichoderma属糸状菌由来セルラーゼのみの糖化上清中に比べて、Trichoderma属糸状菌由来の多くのセルラーゼ成分のバンドがより多く観察され、本発明のβ-グルコシダーゼがTrichoderma属糸状菌由来セルラーゼとともに酵素組成物として用いられると、Trichoderma属糸状菌由来セルラーゼも糖化上清として回収しやすくなることが確認できた。SDS-PAGEゲルの写真を図3に示した。
実施例14で回収した、前記酵素組成物の木材原料粉末セルロース糖化上清について、参考例2、3および4に従って、酵素活性測定を行った。実施例14で糖化反応液中と同濃度になるように希釈した前記酵素組成物についても同様に酵素活性測定を行った。糖化反応液中と同濃度になるように希釈した前記酵素組成物の酵素活性を100%としたときの糖化上清の酵素活性の割合を糖化上清中の残存活性として表9に示した。β-グルコシダーゼ残存活性の結果から、本発明のβ-グルコシダーゼは、Trichoderma属糸状菌由来のβ-グルコシダーゼよりも糖化上清として回収しやすいことが確認できた。また、β-キシロシダーゼ残存活性およびセロビオハイドロラーゼ・エンドグルカナーゼ残存活性の結果から、本発明のβ-グルコシダーゼがTrichoderma属糸状菌由来セルラーゼとともに酵素組成物として用いられると、Trichoderma属糸状菌由来β-キシロシダーゼ、セロビオハイドロラーゼおよびエンドグルカナーゼが糖化上清として回収しやすくなることが確認できた。
実施例14で回収した、前記酵素組成物の未処理バガス糖化上清について、参考例2、3および4に従って、酵素活性測定を行った。実施例14で糖化反応液中と同濃度になるように希釈した前記酵素組成物についても同様に酵素活性測定を行った。糖化反応液中と同濃度になるように希釈した前記酵素組成物の酵素活性を100%としたときの糖化上清の酵素活性の割合を糖化上清中の残存活性として表10に示した。β-グルコシダーゼ残存活性の結果から、本発明のβ-グルコシダーゼは、Trichoderma属糸状菌由来のβ-グルコシダーゼよりも糖化上清として回収しやすいことが確認できた。また、β-キシロシダーゼ残存活性およびセロビオハイドロラーゼ・エンドグルカナーゼ残存活性の結果から、本発明のβ-グルコシダーゼがTrichoderma属糸状菌由来セルラーゼとともに酵素組成物として用いられると、Trichoderma属糸状菌由来β-キシロシダーゼ、セロビオハイドロラーゼおよびエンドグルカナーゼが糖化上清として回収しやすくなることが確認できた。
実施例14で回収した、前記酵素組成物のアルカリ処理バガス糖化上清について、参考例2、3および4に従って、酵素活性測定を行った。実施例14で糖化反応液中と同濃度になるように希釈した前記酵素組成物についても同様に酵素活性測定を行った。糖化反応液中と同濃度になるように希釈した前記酵素組成物の酵素活性を100%としたときの糖化上清の酵素活性の割合を糖化上清中の残存活性として表11に示した。β-グルコシダーゼ残存活性の結果から、本発明のβ-グルコシダーゼは、Trichoderma属糸状菌由来β-グルコシダーゼよりも糖化上清として回収しやすいことが確認できた。また、β-キシロシダーゼ残存活性およびセロビオハイドロラーゼ・エンドグルカナーゼ残存活性の結果から、本発明のβ-グルコシダーゼがTrichoderma属糸状菌由来セルラーゼとともに酵素組成物として用いられると、Trichoderma属糸状菌由来β-キシロシダーゼ、セロビオハイドロラーゼおよびエンドグルカナーゼが糖化上清として回収しやすくなることが確認できた。
実施例9と同様に、配列番号11に記載の塩基配列(Aspergillus属糸状菌由来β-グルコシダーゼ遺伝子をコードする塩基配列)が宿主細胞のゲノム中に導入され、配列番号10に記載のアミノ酸配列をもつβ-グルコシダーゼが発現し、分泌されるように設計したプラスミドを作製した。該プラスミドをアグロバクテリウム・ツメファシエンスAGL1株に導入し、Trichoderma reeseiに該形質転換アグロバクテリウムを感染させて、β-グルコシダーゼ形質転換Trichoderma株を取得した。実施例10と同様に、上記で作製したAspergillus属糸状菌由来β-グルコシダーゼ遺伝子形質転換Trichoderma属糸状菌を参考例7と同様の方法で培養し、培養開始4日後の培養液を遠心分離した後、上清を限外ろ過膜にてろ過し、菌体除去を行うことで、Trichoderma属糸状菌で発現したAspergillus属糸状菌由来β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物を調製した。参考例6に従って前記酵素組成物のSDS-PAGEを行い、発現タンパクの確認を行った。比較対照として非形質転換Trichoderma属糸状菌の培養により得られたTrichoderma属糸状菌由来セルラーゼのみを用い、同様に培養、上清回収、培養上清ろ過およびSDS-PAGEを行った。SDS-PAGEの結果、Aspergillus属糸状菌由来β-グルコシダーゼが発現していることが確認できた。SDS-PAGEゲルの写真を図4に示した。参考例8に従い、該Aspergillus属糸状菌由来β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物のグルコースによるβ-グルコシダーゼ活性阻害作用測定を行い、結果を実施例18との比較に用いた。
参考例8に従い、実施例10で調製したβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼおよび実施例5で作製したβ-グルコシダーゼ変異体遺伝子形質転換大腸菌無細胞抽出液を含む酵素組成物のグルコースによるβ-グルコシダーゼ活性阻害作用測定を行った。比較対照としてTrichoderma属糸状菌由来セルラーゼのみを用い、同様にグルコースによるβ-グルコシダーゼ活性阻害作用を測定した。反応液中のグルコース濃度が0g/Lの条件のβ-グルコシダーゼ活性を1として標準化したときの、グルコース存在下での相対活性の値を図5に示した。また、反応液中のグルコース濃度が0g/Lの条件のβ-グルコシダーゼ活性を1として標準化したときの、グルコース8g/Lの条件下での相対活性の値を表12に、グルコース20g/Lの条件下での相対活性の値を表13に示した。結果、前記β-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物およびβ-グルコシダーゼ変異体遺伝子形質転換大腸菌無細胞抽出液は、いずれもTrichoderma属糸状菌由来セルラーゼのみおよび比較例1のAspergillus属糸状菌由来のβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物と比較して、グルコースによるβ-グルコシダーゼ活性の低下が小さかった。すなわち、本発明のβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物およびβ-グルコシダーゼ変異体遺伝子形質転換大腸菌無細胞抽出液は、いずれもTrichoderma属糸状菌由来セルラーゼのみおよび比較例1のAspergillus属糸状菌由来のβ-グルコシダーゼとTrichoderma属糸状菌由来セルラーゼを含む酵素組成物と比較して、グルコースによるβ-グルコシダーゼ活性阻害を受けにくかった。
Claims (13)
- 下記(A)~(C)のいずれか1つのポリペプチド。
(A)配列番号1に記載のアミノ酸配列からなるポリペプチド
(B)配列番号1に記載のアミノ酸配列において、1もしくは数個のアミノ酸が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチド
(C)配列番号1に記載のアミノ酸配列と少なくとも70%の配列同一性を有するアミノ酸配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチド - 下記(a)~(d)のいずれか1つのポリヌクレオチド。
(a)配列番号2に記載の塩基配列からなるポリヌクレオチド
(b)配列番号2に記載の塩基配列において、1もしくは数個の塩基が置換、欠失、挿入および/または付加された塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(c)配列番号2に記載の塩基配列と少なくとも60%の配列同一性を有する塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(d)請求項1に記載のポリペプチドをコードするポリヌクレオチド - 下記(a)~(d)のいずれか1つのポリヌクレオチド。
(a)配列番号2に記載の塩基配列からなるポリヌクレオチド
(b)配列番号2に記載の塩基配列において、1もしくは数個の塩基が置換、欠失、挿入および/または付加された塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(c)配列番号2に記載の塩基配列と少なくとも50%の配列同一性を有する塩基配列からなり、かつβ-グルコシダーゼ活性を有するポリペプチドをコードするポリヌクレオチド
(d)請求項1に記載のポリペプチドをコードするポリヌクレオチド - 請求項2または3に記載のポリヌクレオチドを含む、発現ベクター。
- 請求項2または3に記載のポリヌクレオチドまたは請求項4に記載の発現ベクターを有する、形質転換体。
- 請求項2または3に記載のポリヌクレオチドまたは請求項4に記載の発現ベクターを有する、形質転換Trichoderma属糸状菌。
- 請求項5に記載の形質転換体または請求項6に記載の形質転換Trichoderma属糸状菌を培養する工程を含む、酵素組成物の製造方法。
- 請求項7に記載の酵素組成物を製造する工程を含み、当該工程によって得られた酵素組成物を用いて、セルロース含有バイオマスから糖液を製造する方法。
- グルコース非存在下でのβ-グルコシダーゼの活性を1としたとき、グルコース濃度8g/Lの条件下でのβ-グルコシダーゼ活性が0.5以上であることを特徴とする、Pseudotrichonympha属原生生物由来β-グルコシダーゼ。
- Pseudotrichonympha属原生生物由来β-グルコシダーゼと、糸状菌由来セルラーゼとを含む酵素組成物。
- 前記糸状菌がTrichoderma属糸状菌であることを特徴とする、請求項10に記載の酵素組成物。
- 請求項10または11に記載の酵素組成物を用いて、セルロース含有バイオマスから糖液を製造する方法。
- 前記糖液から請求項10または11に記載の酵素組成物を回収する工程を含む、請求項12に記載の糖液を製造する方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/642,551 US11162087B2 (en) | 2017-08-30 | 2018-08-29 | Beta-glucosidase, enzyme composition including same, and method for manufacturing sugar solution using same |
CN201880046983.9A CN110892072A (zh) | 2017-08-30 | 2018-08-29 | 新的β-葡糖苷酶、包含该酶的酶组合物和使用它们的糖液的制造方法 |
BR112020003088-0A BR112020003088A2 (pt) | 2017-08-30 | 2018-08-29 | polipeptídeo, polinucleotídeos, vetor de expressão, transformante, fungo filamentoso transformado, métodos para produzir uma composição enzimática e para produzir uma solução de açúcar, ß-glucosidase e composição enzimática |
AU2018327090A AU2018327090A1 (en) | 2017-08-30 | 2018-08-29 | Novel beta-glucosidase, enzyme composition including same, and method for manufacturing sugar solution using same |
JP2019539569A JP7250282B2 (ja) | 2017-08-30 | 2018-08-29 | 新規β-グルコシダーゼ、これを含む酵素組成物およびこれらを用いた糖液の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017165787 | 2017-08-30 | ||
JP2017-165787 | 2017-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019044887A1 true WO2019044887A1 (ja) | 2019-03-07 |
Family
ID=65527475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031910 WO2019044887A1 (ja) | 2017-08-30 | 2018-08-29 | 新規β-グルコシダーゼ、これを含む酵素組成物およびこれらを用いた糖液の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11162087B2 (ja) |
JP (1) | JP7250282B2 (ja) |
CN (1) | CN110892072A (ja) |
AU (1) | AU2018327090A1 (ja) |
BR (1) | BR112020003088A2 (ja) |
WO (1) | WO2019044887A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003070475A (ja) * | 2001-09-03 | 2003-03-11 | Japan Science & Technology Corp | シロアリ共生原生動物由来のセルラーゼ遺伝子 |
WO2008108116A1 (ja) * | 2007-03-02 | 2008-09-12 | Riken | セルラーゼ酵素及びその製法 |
JP2010516296A (ja) * | 2007-01-30 | 2010-05-20 | ヴェレニウム コーポレイション | リグノセルロース性物質を処理する酵素、前記をコードする核酸並びに前記を製造及び使用する方法 |
JP2010178677A (ja) * | 2009-02-05 | 2010-08-19 | Toyota Central R&D Labs Inc | セルラーゼを発現する形質転換酵母及びその利用 |
JP2011110011A (ja) * | 2009-11-30 | 2011-06-09 | National Institute Of Advanced Industrial Science & Technology | 高濃度のグルコース耐性を有するβ−グルコシダーゼ |
JP2011205992A (ja) * | 2010-03-30 | 2011-10-20 | National Institute Of Advanced Industrial Science & Technology | グルコース存在下で活性を増加するβ−グルコシダーゼ |
JP2013500019A (ja) * | 2009-07-24 | 2013-01-07 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 糖輸送、混合糖の発酵および生物燃料の産生を促進させる方法ならびに組成物 |
JP2016111952A (ja) * | 2014-12-12 | 2016-06-23 | 本田技研工業株式会社 | 耐熱性β−グルコシダーゼ |
WO2016170155A1 (en) * | 2015-04-23 | 2016-10-27 | Institut National De La Recherche Agronomique | Mutant yeast strain capable of degrading cellobiose |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009085864A2 (en) * | 2007-12-19 | 2009-07-09 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
BRPI0915828A2 (pt) * | 2008-07-07 | 2015-11-03 | Mascoma Corp | expressão heteróloga de celulases de cupim em levedura |
EP2478095A1 (en) * | 2009-09-18 | 2012-07-25 | Novozymes Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
CA2780179A1 (en) * | 2009-11-06 | 2011-05-12 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
CN109022394A (zh) * | 2011-11-22 | 2018-12-18 | 诺维信股份有限公司 | 具有β-木糖苷酶活性的多肽和编码该多肽的多核苷酸 |
-
2018
- 2018-08-29 AU AU2018327090A patent/AU2018327090A1/en not_active Abandoned
- 2018-08-29 BR BR112020003088-0A patent/BR112020003088A2/pt not_active Application Discontinuation
- 2018-08-29 WO PCT/JP2018/031910 patent/WO2019044887A1/ja active Application Filing
- 2018-08-29 JP JP2019539569A patent/JP7250282B2/ja active Active
- 2018-08-29 CN CN201880046983.9A patent/CN110892072A/zh active Pending
- 2018-08-29 US US16/642,551 patent/US11162087B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003070475A (ja) * | 2001-09-03 | 2003-03-11 | Japan Science & Technology Corp | シロアリ共生原生動物由来のセルラーゼ遺伝子 |
JP2010516296A (ja) * | 2007-01-30 | 2010-05-20 | ヴェレニウム コーポレイション | リグノセルロース性物質を処理する酵素、前記をコードする核酸並びに前記を製造及び使用する方法 |
WO2008108116A1 (ja) * | 2007-03-02 | 2008-09-12 | Riken | セルラーゼ酵素及びその製法 |
JP2010178677A (ja) * | 2009-02-05 | 2010-08-19 | Toyota Central R&D Labs Inc | セルラーゼを発現する形質転換酵母及びその利用 |
JP2013500019A (ja) * | 2009-07-24 | 2013-01-07 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 糖輸送、混合糖の発酵および生物燃料の産生を促進させる方法ならびに組成物 |
JP2011110011A (ja) * | 2009-11-30 | 2011-06-09 | National Institute Of Advanced Industrial Science & Technology | 高濃度のグルコース耐性を有するβ−グルコシダーゼ |
JP2011205992A (ja) * | 2010-03-30 | 2011-10-20 | National Institute Of Advanced Industrial Science & Technology | グルコース存在下で活性を増加するβ−グルコシダーゼ |
JP2016111952A (ja) * | 2014-12-12 | 2016-06-23 | 本田技研工業株式会社 | 耐熱性β−グルコシダーゼ |
WO2016170155A1 (en) * | 2015-04-23 | 2016-10-27 | Institut National De La Recherche Agronomique | Mutant yeast strain capable of degrading cellobiose |
Non-Patent Citations (7)
Also Published As
Publication number | Publication date |
---|---|
US20210079435A1 (en) | 2021-03-18 |
JP7250282B2 (ja) | 2023-04-03 |
BR112020003088A2 (pt) | 2020-09-01 |
AU2018327090A1 (en) | 2020-02-20 |
CN110892072A (zh) | 2020-03-17 |
US11162087B2 (en) | 2021-11-02 |
JPWO2019044887A1 (ja) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9434919B2 (en) | Fungal proteases | |
JP7007645B2 (ja) | 変異型bxl1遺伝子を有するトリコデルマ属真菌及びそれを使用したキシロオリゴ糖とグルコースの製造方法 | |
JP2010536390A (ja) | セルラーゼを生成するための方法 | |
CA2829918A1 (en) | Cellulase compositions and methods of using the same for improved conversion of lignocellulosic biomass into fermentable sugars | |
CN110997701A (zh) | 具有海藻糖酶活性的多肽以及编码其的多核苷酸 | |
CN111094562A (zh) | 具有海藻糖酶活性的多肽及其在产生发酵产物的方法中的用途 | |
WO2012061382A1 (en) | Improved fungal strains | |
JP6562735B2 (ja) | 新規キシラナーゼ | |
AU2015344324A2 (en) | Endoxylanase mutant, enzyme composition for biomass decomposition, and method for producing sugar solution | |
EP2754712B1 (en) | Mutant endoglucanase | |
WO2013096244A1 (en) | Endoglucanase 1b (eg1b) variants | |
JP7250282B2 (ja) | 新規β-グルコシダーゼ、これを含む酵素組成物およびこれらを用いた糖液の製造方法 | |
JP6361870B2 (ja) | β−グルコシダーゼ | |
KR102092429B1 (ko) | 저온에서 강화된 베타-글루코시다아제 활성을 갖는 폴리펩티드 | |
WO2019167788A1 (ja) | 変異β-グルコシダーゼ | |
JP6518107B2 (ja) | 転写因子変異株 | |
JP2015136324A (ja) | 糖化酵素組成物 | |
JP6361869B2 (ja) | β−グルコシダーゼ | |
JP6849749B2 (ja) | 新規キシラナーゼ | |
WO2015076260A1 (ja) | 耐熱性キシラナーゼ | |
WO2012165577A1 (ja) | サーモスポロスリックス・ハザケンシスに由来する新規セルラーゼ | |
JP2015033377A (ja) | β−グルコシダーゼ | |
WO2019074828A1 (en) | CELLOBIOSE DEHYDROGENASE VARIANTS AND METHODS OF USE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18849653 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018327090 Country of ref document: AU Date of ref document: 20180829 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020003088 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2019539569 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112020003088 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200213 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18849653 Country of ref document: EP Kind code of ref document: A1 |