WO2019039893A1 - 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 - Google Patents

양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 Download PDF

Info

Publication number
WO2019039893A1
WO2019039893A1 PCT/KR2018/009756 KR2018009756W WO2019039893A1 WO 2019039893 A1 WO2019039893 A1 WO 2019039893A1 KR 2018009756 W KR2018009756 W KR 2018009756W WO 2019039893 A1 WO2019039893 A1 WO 2019039893A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
coating material
base particles
material base
Prior art date
Application number
PCT/KR2018/009756
Other languages
English (en)
French (fr)
Inventor
선양국
김운혁
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2019039893A1 publication Critical patent/WO2019039893A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material, a method for producing the same, and a lithium secondary battery comprising the same.
  • a technical problem to be solved by the present application is to provide a highly reliable cathode active material, a manufacturing method thereof, and a lithium secondary battery including the same.
  • Another technical problem to be solved by the present application is to provide a high capacity cathode active material, a method for manufacturing the same, and a lithium secondary battery including the same.
  • Another technical problem to be solved by the present application is to provide a long-life cathode active material, a method for producing the same, and a lithium secondary battery comprising the same.
  • Another technical problem to be solved by the present application is to provide a cathode active material having improved thermal stability, a method for producing the same, and a lithium secondary battery comprising the cathode active material.
  • the present invention provides a method for producing a cathode active material.
  • the method for preparing the cathode active material includes the steps of: preparing a cathode active material precursor; mixing and firing the cathode active material precursor and the lithium salt to produce a positive active material base particle; And a coating material containing a metal and a sulfur compound and the cathode active material base particles are mixed and heat treated to permeate the coating material along grain boundaries existing in the cathode active material base particles, And preparing a cathode active material in which at least a part of the grain of the particles is coated with the coating material.
  • the coating material and the cathode active material pre-particles may be dry blended.
  • the coating material and the cathode active material may be mixed in a ball mill manner.
  • the cathode active material precursor may include at least one of nickel, cobalt, manganese, and aluminum.
  • the method of manufacturing a cathode active material may further include a step of grinding the coating material before mixing and heat-treating the coating material and the cathode active material base particles.
  • the step of mixing the coating material and the cathode active material base particles may include a first mixing step of mixing the coating material and the cathode active material base particles at a first strength, and a second mixing step of mixing the coating material and the cathode active material And a second mixing step of mixing the base particles at a second intensity higher than the first intensity.
  • the amount of the coating material may be gradually increased.
  • the present invention provides a cathode active material.
  • the cathode active material may include a cathode active material base particle, and a coating material provided along the grain boundary of the cathode active material base particle, and including metal and sulfur.
  • At least a portion of the grain of the cathode active material base particles may be coated with the coating material.
  • the cathode active material base particles have a first crystal structure having an intrinsic lattice constant in the c-axis direction, and in the charge-discharge process, the first crystal structure has a c- And a third crystal structure having a shorter lattice constant in the c-axis direction than the first crystal structure, and the crystal structure of the positive electrode active material base particles is changed by the change of the crystal structure of the positive electrode active material base particles, A crack is generated in the active material base particles and the coating material can protect the grain of the cathode active material base particles from the electrolytic solution infiltrated into the cracks.
  • the metal of the coating material may comprise at least one of molybdenum, tungsten, or aluminum.
  • the cathode active material may include a cathode active material base particle and a coating material provided along the grain boundary of the cathode active material base particle and including metal and sulfur.
  • a cathode active material base particle may be coated with the coating material, and the grain of the cathode active material base particles can be protected from the electrolytic solution penetrating into the cathode active material base particles during charging and discharging have. Therefore, the charge / discharge characteristics, the capacity characteristics, and the life characteristics of the lithium secondary battery including the cathode active material can be improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a cathode active material according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a cathode active material base particle according to an embodiment of the present invention.
  • FIG 3 is a view for explaining a cathode active material base particle coated with a coating material according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining protection of a coating material according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining a crystal structure of a cathode active material base particle according to an embodiment of the present invention.
  • FIG. 6 is a SEM photograph of the cathode active material base particles according to the comparative example of the present invention before heat treatment.
  • FIG. 11 is a graph showing the capacity characteristics of the secondary battery including the cathode active material according to the comparative example of the present invention and the example 1.
  • FIG. 11 is a graph showing the capacity characteristics of the secondary battery including the cathode active material according to the comparative example of the present invention and the example 1.
  • FIG. 12 is a graph for explaining lifetime characteristics of a secondary battery including a cathode active material according to a comparative example of the present invention and Example 1.
  • Fig. 12 is a graph for explaining lifetime characteristics of a secondary battery including a cathode active material according to a comparative example of the present invention and Example 1.
  • FIG. 13 is a graph showing the capacity characteristics of a secondary battery including a cathode active material according to a comparative example of the present invention and Example 2;
  • FIG. 13 is a graph showing the capacity characteristics of a secondary battery including a cathode active material according to a comparative example of the present invention and Example 2;
  • Example 14 is a graph for explaining lifetime characteristics of a secondary battery including a cathode active material according to a comparative example of the present invention and Example 2;
  • 15 is a graph showing a differential capacity of a secondary battery including a cathode active material according to a comparative example of the present invention.
  • 16 is a graph showing a differential capacity of a secondary battery including a cathode active material according to Example 1 of the present invention.
  • Example 17 is a graph showing a differential capacity of a secondary battery including a cathode active material according to Example 2 of the present invention.
  • first, second, third, etc. in the various embodiments of the present disclosure are used to describe various components, these components should not be limited by these terms. These terms have only been used to distinguish one component from another. Thus, what is referred to as a first component in any one embodiment may be referred to as a second component in another embodiment.
  • Each embodiment described and exemplified herein also includes its complementary embodiment. Also, in this specification, 'and / or' are used to include at least one of the front and rear components.
  • a crystal system may be a triclinic, a monoclinic, an orthorhombic, a tetragonal, a trigonal or a rhombohedral, a hexagonal, , And a cubic system (cubic system).
  • mol% means the amount of any metal contained in the cathode active material or the precursor of the cathode active material, assuming that the sum of the metals other than lithium and oxygen in the cathode active material or the cathode active material precursor is 100% .
  • FIG. 1 is a flow chart for explaining a method for producing a cathode active material according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a cathode active material base particle according to an embodiment of the present invention
  • FIG. FIG. 4 is a view for explaining a positive electrode active material base particle coated with a coating material according to an example
  • FIG. 4 is a view for explaining protection of a coating material according to an embodiment of the present invention.
  • a cathode active material precursor is prepared (S110).
  • the cathode active material precursor may be prepared by coprecipitation using a metal salt aqueous solution.
  • a base aqueous solution containing at least one of nickel, cobalt, manganese, and aluminum is prepared.
  • the base aqueous solution may be nickel sulfate.
  • the base aqueous solution comprises cobalt, for example, the base aqueous solution may be cobalt sulphate.
  • the base aqueous solution may be manganese sulfate.
  • the base aqueous solution may include a plurality of metal salt aqueous solutions.
  • the cathode active material precursor may be prepared by providing the base aqueous solution in the reactor to a metal hydroxide containing at least one of nickel, cobalt, manganese, and aluminum.
  • a metal hydroxide containing at least one of nickel, cobalt, manganese, and aluminum In addition to the base aqueous solution, an ammonia solution may be further provided in the reactor.
  • the cathode active material precursor and the lithium salt may be fired to prepare the cathode active material base particles 100 containing at least one of nickel, cobalt, manganese, or aluminum and a metal oxide containing lithium.
  • the cathode active material base particles 100 may be a metal oxide including nickel, lithium, and oxygen. According to another embodiment, the cathode active material base particle 100 may be a metal oxide including nickel, cobalt, lithium, and oxygen. Alternatively, according to another embodiment, the cathode active material base particle 100 may be a metal oxide including nickel, cobalt, manganese, lithium, and oxygen. Alternatively, according to another embodiment, the cathode active material base particle 100 may be a metal oxide including nickel, cobalt, aluminum, lithium, and oxygen. The technical idea according to the embodiment of the present invention can be applied to the cathode active material base particle 100 including various materials.
  • the concentration of at least one of nickel, cobalt, manganese, or aluminum may be substantially constant within the cathode active material base particle 100.
  • the concentration of at least one of nickel, cobalt, manganese, and aluminum in the cathode active material base particle 100 is higher than the concentration of the cathode active material base particle 100 in the center of the cathode active material base particle 100
  • the cathode active material base particle 100 may have a concentration gradient in the entirety of the cathode active material base particle 100 or a concentration gradient in a part of the cathode active material base particle 100 in the surface direction of the cathode active material base particle 100.
  • the cathode active material base particle 100 may include a core portion and a shell portion having a different concentration of the core portion and metal (at least one of nickel, cobalt, manganese, or aluminum) have.
  • the technical idea according to the embodiment of the present invention can be applied to the cathode active material base particles of various structures and shapes.
  • the cathode active material base particles 100 may be represented by the following formula (1).
  • M1, M2 and M3 are any one selected from the group consisting of nickel, cobalt, manganese and aluminum, 0? A ⁇ 1, 0? B ⁇ 1, 0? C ⁇ b, and c is greater than 0, and M1, M2, and M3 may be different metals.
  • the cathode active material may include 60 mol% or more of nickel.
  • the cathode active material may include 80 mol% or more of nickel.
  • the positive electrode active material base particles 100 may be provided with primary particles and secondary particles in which the primary particles are aggregated.
  • the primary particles may extend in a direction to radiate in a region inside the secondary particle toward the surface of the secondary particle.
  • One region inside the secondary particle may be the center of the secondary particle.
  • the primary particles may be in the form of a rod shape extending from the one area inside the secondary particle toward the surface of the secondary particle.
  • lithium ions and an electrolyte between the primary particles having the rod shape, that is, between the primary particles extending from the central portion of the secondary particles toward the surface portion, May be provided. Accordingly, the charge / discharge efficiency of the lithium secondary battery including the cathode active material according to the embodiment of the present invention can be improved.
  • the primary particles relatively adjacent to the surface of the secondary particles, relative to the primary particles relatively adjacent to the center of the secondary particles, In the direction toward the surface of the secondary particles.
  • the length of the primary particles may be increased as they are adjacent to the surface of the secondary particles.
  • the coating material 120 including the metal and the sulfur compound and the cathode active material base particles 100 may be mixed and heat-treated (S130). According to one embodiment, as shown in FIG. 2, a plurality of cracks 110 may exist in the cathode active material base particle 100. The crack 110 may be formed along a grain boundary existing in the cathode active material base particle 100. The coating material 120 and the cathode active material base particles 100 are mixed and heat treated so that the coating material 120 along the grain boundary 110 existing in the cathode active material base particles 100 A cathode active material in which at least a part of the grain of the cathode active material base particles 100 is coated with the coating material 120 can be manufactured. The metal and sulfur compounds of the coating material 120 and / or the metal and sulfur of the coating material 120 are deposited along the grain boundary (crack 120) of the cathode active material base particle 100 Can be observed.
  • the coating material 120 penetrates into the inside of the cathode active material base particle 100, and at the same time, the cathode active material base particle 100, in the form of a layer, At least a portion of the surface of the substrate. According to another embodiment of the present invention, the coating material 120 penetrates into the inside of the cathode active material base particle 100, and at the same time, the particle of the cathode active material base particle 100 in the form of particles or islands May be provided on the surface.
  • the metal of the coating material 120 may comprise at least one of molybdenum, tungsten, or aluminum.
  • the coating material 120 may include at least one of Mo 2 S, WS 2, and Al 2 S 3 .
  • the coating material 120 may comprise a metal and a nitrogen compound, or a metal and a boron compound.
  • the concentration of sulfur, nitrogen or boron in the cathode active material may be less than 5 mol%.
  • the coating material 120 may be pulverized before the coating material 120 and the cathode active material base particles 100 are mixed and heat treated.
  • the coating material 120 may be ground to a size of 1/10 of the size of the cathode active material base particles 100.
  • the pulverized coating material 120 may be mixed with the cathode active material base particles 100 and heat-treated.
  • the coating material 120 can be easily penetrated into the cathode active material base particle 100 along the grain boundary (crack 120) in the cathode active material base particle 100.
  • the coating of the surface of the cathode active material pre-particle 100 may be removed before the coating material 120 and the cathode active material pre-particle 100 are mixed and heat-treated.
  • the coating may be removed by a heat treatment process (e.g., heat treatment at 300 ⁇ for 3 hours).
  • a path through which the coating material 120 penetrates into the positive electrode active material preliminary particle 100 is easily ensured so that the coating material 120 contacts the grain boundary of the positive electrode active material preliminary particle 100 (120)) of the positive electrode active material base particles (100).
  • the coating material 120 and the cathode active material pre-particles 100 may be dry mixed. Specifically, the coating material 120 and the cathode active material preliminary particle 100 may be mixed in a ball mill manner. The coating source 120 and the cathode active material pre-particles 100 may be dry mixed (e.g., ball milled) in a dry or Ar atmosphere, and the mixed source 120 and the cathode active material The precursor particles 100 can be heat treated in a high purity oxygen atmosphere.
  • mixing the coating material 120 and the cathode active material base particles 100 may include mixing the ground coating material 120 and the cathode active material base particles 100 at a first strength , And a second mixing step of mixing the coating material (120) and the cathode active material base particles (100) at a second strength higher than the first strength.
  • the first mixing step may be performed in a hand mix
  • the second mixing step may be performed in a ball mill process.
  • the amount of the coating material 120 may be gradually increased in the first mixing step. Accordingly, the coating material 120 can be uniformly and easily coated on the cathode active material base particles 100.
  • the pulverized coating material 120 and the cathode active material base particles 100 are mixed from the beginning with a high intensity, or when the coating material in a large amount from the beginning in the first mixing step
  • the pulverized coating material 120 is agglomerated by the physical binding force of the pulverized coating material 120 so that the pulverized coating material 120 is dispersed in the positive active material base particles 100
  • the coating material 120 does not uniformly coat the surface of the cathode active material base particle 100 along the grain boundary 110 of the cathode active material particle 100 by agglomeration of the crushed coating material 120, .
  • the first mixing step of the relatively low strength and the second mixing step of relatively high strength are performed for the crushed coating material 120 and the cathode active material base particle 100
  • the second mixing step of strength may be performed sequentially and the amount of the coating material 120 pulverized in the first mixing step may be gradually increased.
  • the coating material 120 is coated substantially uniformly on the cathode active material base particles 100 and the coating material 120 is coated along the grain boundaries 110 of the cathode active material base particles 100, (120) can be easily infiltrated.
  • the cathode active material base particles 100 may have a hexagonal lattice system in a trigonal crystal system, as shown in FIG. 5, and the crystal structure of the cathode active material base particles 100 may be a And a c-axis.
  • the cathode active material base particles 100 may have an intrinsic lattice constant in the c-axis direction.
  • the lattice constant inherent to the cathode active material base particles 100 in the c-axis direction can be increased or decreased.
  • the cathode active material base particle 100 has a first crystal structure having a lattice constant of a first length inherent in the c-axis direction
  • the increase and decrease of the lattice constant in the c-axis direction can greatly change the volume of the cathode active material. Accordingly, when the ratio of the second crystal structure and the third crystal structure, in which the lattice constant increases or decreases in the c-axis direction, increases or decreases, the lifetime characteristics of the secondary battery may be remarkably deteriorated.
  • a crack may be generated more widely along the grain boundary, a new crack may occur, and the electrolyte 130 may penetrate along a larger crack and / or a newly generated crack, thereby lowering the charge / discharge characteristics of the cathode active material have.
  • the coating material 120 penetrates along the grain boundary (crack 110) of the cathode active material base particle 100, At least a portion of the grain of the coating material (100) may be coated with the coating material (120). Accordingly, the coating material 120 can protect the grain of the cathode active material base particle 100 from the electrolyte 130 permeated into the crack 110, and consequently the cathode active material Life characteristics, charge / discharge characteristics, and stability of the lithium secondary battery can be improved.
  • Nickel: cobalt: manganese 90: 5: 5, molar ratio
  • an aqueous solution of sodium hydroxide at a concentration of 4M and a solution of ammonia at a concentration of 10.5 M were continuously supplied for 15 to 35 hours in an aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate
  • Ni 0.90 Co 0.05 Mn 0.05 (OH) 2 metal complex hydroxide Ni 0.90 Co 0.05 Mn 0.05 (OH) 2 metal complex hydroxide.
  • Ni 0.90 Co 0.05 Mn 0.05 (OH) 2 metal complex hydroxide was filtered, washed with water, and then dried in a 110 ° C vacuum dryer for 12 hours.
  • the cathode active material precursor and lithium hydroxide (LiOH.H 2 O) were mixed at a molar ratio of 1: 1 or a molar ratio of 1: 105, heated at a rate of 2 ° C / min, and maintained at 450 ° C for 5 hours for pre- followeded by calcining at 750 ° C for 10 hours to prepare a cathode active material Li [Ni 0.90 Co 0.05 Mn 0.05 O 2 ] metal complex oxide.
  • the coating material MoS 2 was crushed using Maltese, and the crushed MoS 2 was spread on the wall of Malta.
  • the cathode active material base particles Li [Ni 0.90 Co 0.05 Mn 0.05 ] O 2 metal composite oxide prepared according to the comparative example were added to Malta, and a small amount (0.1 g) of MoS 2 was further added and mixed by a hand mix method. At this time, starting with a small amount, the hand mix proceeded and gradually mixed the total amount (1 g). Thereafter, they were further mixed using a ball mill method and then heat-treated. At this time, the heat treatment was performed at a heating rate of 2 ⁇ / min, and then maintained at 450 ⁇ for 5 hours to prepare a cathode active material according to Example 1 in which 1 mol% of MoS 2 was coated
  • the coating material WS 2 was crushed using Malta, and the crushed WS 2 was spread on the wall of Malta.
  • the cathode active material base particles Li [Ni 0.90 Co 0.05 Mn 0.05 ] O 2 metal composite oxide prepared according to the comparative example were added to Malta, and a small amount (0.1 g) of WS 2 was further added and mixed by a hand mix method. At this time, starting with a small amount, the hand mix proceeded and gradually mixed the total amount (1 g). Thereafter, they were further mixed using a ball mill method and then heat-treated. At this time, the heat treatment was carried out at a heating rate of 2 ° C / min, and then maintained at 450 ° C for 5 hours to prepare a cathode active material according to Example 2 in which WS 2 was coated at 1 mol%
  • FIG. 6 is a SEM photograph of a cathode active material base particle according to a comparative example of the present invention before heat treatment
  • FIG. 7 is a SEM photograph of a cathode active material base particle according to a comparative example of the present invention after heat treatment.
  • the surface of the cathode active material base particles is contaminated to show that a coating exists.
  • the coating is removed. That is, in the case of removing the coating formed by the contamination by heat treating the cathode active material base particles before mixing and heat-treating the cathode active material base particles and the coating material, the coating material easily penetrates into the cathode active material base particles It can be confirmed that a path is obtained.
  • 8 to 10 are SEM photographs of the positive electrode active material according to Examples and Comparative Examples of the present invention.
  • 8 to 10 are SEM photographs of the cathode active material according to Comparative Examples and Examples 1 to 3, respectively.
  • FIG. 11 is a graph showing the capacity characteristics of a secondary battery including a cathode active material according to a comparative example of the present invention and Example 1
  • FIG. 12 is a graph showing the characteristics of a secondary battery including a cathode active material according to Comparative Example of the present invention, And the lifetime characteristics of the battery.
  • a half cell was manufactured using the cathode active material according to the comparative example and the example 2, and the discharge capacity was measured at a cut off of 2.7 to 4.3 V, 0.1 C, and 30 ° C., and cut off
  • the discharge capacity and surface residual lithium according to the number of charge / discharge cycles were measured under the conditions of 2.7 to 4.3 V, 0.5 C and 30 ⁇ .
  • the measurement results are shown in Figs. 11, 12, and Table 1 below.
  • FIG. 13 is a graph showing the capacitance characteristics of the secondary battery including the cathode active material according to the comparative example and the example 2 of the present invention
  • FIG. 14 is a graph showing the characteristics of the secondary battery including the cathode active material according to the comparative example of the present invention, And the lifetime characteristics of the battery.
  • a half cell was manufactured using the cathode active material according to the comparative example and the example 2.
  • the discharge capacity was measured at a cut off of 2.7 to 4.3 V, 0.1 C, and 30 ° C., and cut off
  • the discharge capacity and surface residual lithium according to the number of charge / discharge cycles were measured under the conditions of 2.7 to 4.3 V, 0.5 C and 30 ⁇ . The measurement results are shown in Figs. 13, 14, and Table 2 below.
  • FIG. 15 is a graph showing a differential capacity of a secondary battery including a cathode active material according to a comparative example of the present invention.
  • FIG. 16 is a graph showing the differential capacity of a secondary battery including the cathode active material according to Example 1 of the present invention
  • FIG. 17 is a graph showing a differential capacity of a secondary battery including a cathode active material according to Example 2 of the present invention.
  • a half cell is manufactured using the cathode active material according to Comparative Example 1 and Examples 1 and 2 as shown in FIGS. 15 to 17, The differential capacity was measured.
  • the cathode active materials according to Examples 1 and 2 and Comparative Example 1 exhibit H1 phase, H1 + M phase, M phase, M + H2 phase, H2 phase, H2 + H3 phase, H3 phase, M + H2 phase, M phase, H1 + M phase, and H1 phase.
  • the H1 phase shows a crystal structure having a lattice constant inherent in the c-axis direction of the cathode active material according to the examples and the comparative example
  • the H2 phase shows the crystal structure according to the examples and the comparative example
  • the H3 phase shows a crystal structure in which the cathode active material according to Examples and Comparative Examples has a lattice constant shorter than the intrinsic lattice constant in the c-axis direction
  • M phase Represents a monoclinic crystal structure.
  • Embodiments 1 to 2 as shown in FIGS. 16 to 17, it can be seen that as the number of charging / discharging progresses, the peak value of the H2 and H3 phases decreases little. That is, it can be confirmed that the amount of change in the production ratio of the H2 and H3 phases is remarkably reduced by the coating material depending on the number of charging and discharging. In other words, it is confirmed that the integral area is kept substantially constant in the range of 4.1 to 4.3 V, and as described above, in the embodiments, the reduction in the capacity is minimized according to the number of times of charging and discharging.
  • the cathode active material and the lithium secondary battery including the cathode active material according to an embodiment of the present invention can be utilized in various industrial fields such as portable electronic devices, electric vehicles, and energy storage devices.

Abstract

양극활물질의 제조 방법이 제공된다. 상기 양극활물질의 제조 방법은, 양극활물질 전구체를 제조하는 단계, 상기 양극활물질 전구체와 리튬염을 혼합 및 소성하여, 양극활물질 베이스 입자(positive active material base particle)를 제조하는 단계, 및 금속 및 황의 화합물을 포함하는 코팅 물질 및 상기 양극활물질 베이스 입자를 혼합하고 열처리하여, 상기 양극활물질 베이스 입자 내에 존재하는 그레인 바운더리(grain boundary)를 따라 상기 코팅 물질이 침투되어, 상기 양극활물질 베이스 입자의 그레인의 적어도 일부가 상기 코팅 물질로 코팅된 양극활물질을 제조하는 단계를 포함할 수 있다.

Description

양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
본 출원은 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지에 관련된 것이다.
스마트폰, MP3 플레이어, 태블릿 PC와 같은 휴대용 모바일 전자 기기의 발전으로, 전기 에너지를 저장할 수 있는 이차 전지에 대한 수요가 폭발적으로 증가하고 있다. 특히, 전기 자동차, 중대형 에너지 저장 시스템, 및 고 에너지 밀도가 요구되는 휴대 기기의 등장으로, 리튬 이차 전지에 대한 수요가 증가하고 있는 실정이다.
이러한, 리튬 이차 전지에 대한 수요의 증가로, 리튬 이차 전지에 사용되는 양극활물질에 대한 연구 개발이 진행되고 있다. 예를 들어, 대한민국 특허공개공보 10-2014-0119621(출원번호 10-2013-0150315)에는 니켈, 망간, 코발트를 포함하는 리튬 과량 양극활물질 제조용 전구체를 이용하여, 전구체에서 치환되는 금속의 종류 및 조성을 조절하고, 첨가되는 금속의 종류 및 첨가량을 조절하여, 고전압 용량 및 장수명 특성을 갖는 이차전지가 개시되어 있다.
본 출원이 해결하고자 하는 일 기술적 과제는, 고신뢰성의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 다른 기술적 과제는, 고용량의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 또 다른 기술적 과제는, 장수명의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 또 다른 기술적 과제는, 열적 안정성이 향상된 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 기술적 과제는, 상술된 것에 제한되지 않는다.
상기 기술적 과제를 해결하기 위해, 본 발명은 양극활물질의 제조 방법을 제공한다.
일 실시 예에 따르면, 상기 양극활물질의 제조 방법은, 양극활물질 전구체를 제조하는 단계, 상기 양극활물질 전구체와 리튬염을 혼합 및 소성하여, 양극활물질 베이스 입자(positive active material base particle)를 제조하는 단계, 및 금속 및 황의 화합물을 포함하는 코팅 물질 및 상기 양극활물질 베이스 입자를 혼합하고 열처리하여, 상기 양극활물질 베이스 입자 내에 존재하는 그레인 바운더리(grain boundary)를 따라 상기 코팅 물질이 침투되어, 상기 양극활물질 베이스 입자의 그레인의 적어도 일부가 상기 코팅 물질로 코팅된 양극활물질을 제조하는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 코팅 물질 및 상기 양극활물질 예비 입자는 건식 혼합될 수 있다.
일 실시 예에 따르면, 상기 코팅 물질 및 상기 양극활물질은, 볼밀 방식으로 혼합될 수 있다.
일 실시 예에 따르면, 상기 양극활물질 전구체는, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 양극활물질의 제조 방법은, 상기 코팅 물질 및 상기 양극활물질 베이스 입자를 혼합하고 열처리하기 전, 상기 코팅 물질을 분쇄하는 단계를 더 포함할 수 있다.
일 실시 예에 따르면, 상기 코팅 물질 및 상기 양극활물질 베이스 입자를 혼합하는 단계는, 상기 코팅 물질 및 상기 양극활물질 베이스 입자를 제1 강도로 혼합하는 제1 혼합 단계, 및 상기 코팅 물질 및 상기 양극활물질 베이스 입자를 상기 제1 강도보다 높은 제2 강도로 혼합하는 제2 혼합 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 혼합 단계에서, 상기 코팅 물질의 양을 점차적으로 증가시킬 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 양극활물질을 제공한다.
일 실시 예에 따르면, 상기 양극활물질은, 양극활물질 베이스 입자, 및 상기 양극활물질 베이스 입자의 그레인 바운더리를 따라 제공되고, 금속 및 황을 포함하는 코팅 물질을 포함할 수 있다.
일 실시 예에 따르면, 상기 양극활물질 베이스 입자의 그레인의 적어도 일부가 상기 코팅 물질로 코팅될 수 있다.
일 실시 예에 따르면, 상기 양극활물질 베이스 입자는, c축 방향으로 고유의 격자 상수를 갖는 제1 결정 구조를 가지고, 충방전 과정에서, 상기 제1 결정 구조는, 상기 제1 결정 구조보다 c축 방향으로 긴 격자 상수를 갖는 제2 결정 구조, 및 상기 제1 결정 구조보다 c축 방향으로 짧은 격자 상수를 갖는 제3 결정 구조로 변화되고, 상기 양극활물질 베이스 입자의 결정 구조의 변화에 의해 상기 양극활물질 베이스 입자 내에 크랙이 발생되고, 상기 코팅 물질은, 상기 크랙으로 침투된 전해액으로부터, 상기 양극활물질 베이스 입자의 상기 그레인을 보호할 수 있다.
일 실시 예에 따르면, 상기 코팅 물질의 상기 금속은, 몰리브덴, 텅스텐, 또는 알루미늄 중 적어도 어느 하나를 포함할 수 있다.
본 발명의 실시 예에 따른 양극활물질은, 양극활물질 베이스 입자, 및 양극활물질 베이스 입자의 그레인 바운더리를 따라 제공되고, 금속 및 황을 포함하는 코팅 물질을 포함할 수 있다. 이에 따라, 상기 양극활물질 베이스 입자의 그레인의 적어도 일부가 상기 코팅 물질로 코팅될 수 있고, 충방전 과정에서 상기 양극활물질 베이스 입자로 침투되는 전해액으로부터, 상기 양극활물질 베이스 입자의 상기 그레인이 보호될 수 있다. 이로 인해, 상기 양극활물질을 포함하는 리튬 이차 전지의 충방전 특성, 용량 특성, 수명 특성 등이 개선될 수 있다.
도 1 은 본 발명의 실시 예에 따른 양극활물질의 제조 방법을 설명하기 위한 순서도이다.
도 2는 본 발명의 실시 예에 따른 양극활물질 베이스 입자를 설명하기 위한 도면이다.
도 3은 본 발명의 실시 예에 따라 코팅 물질로 코팅된 양극활물질 베이스 입자를 설명하기 위한 도면이다.
도 4는 본 발명의 실시 예에 따른 코팅 물질을 그레핀을 보호하는 것을 설명하기 위한 도면이다.
도 5는 본 발명의 실시 예에 따른 양극활물질 베이스 입자의 결정 구조를 설명하기 위한 도면이다.
도 6은 본 발명의 비교 예에 따른 양극활물질 베이스 입자의 열처리 전 SEM 사진이다.
도 7은 본 발명의 비교 예에 따른 양극활물질 베이스 입자의 열처리 후 SEM사진이다.
도 8 내지 도 10는 본 발명의 실시 예들 및 비교 예에 따른 양극활물질의 SEM 사진이다.
도 11은 본 발명의 비교 예 및 실시 예 1에 따른 양극활물질을 포함하는 이차 전지이 용량 특성을 측정한 그래프이다.
도 12는 본 발명의 비교 예 및 실시 예 1에 따른 양극활물질을 포함하는 이차 전지의 수명 특성을 설명하기 위한 그래프이다.
도 13은 본 발명의 비교 예 및 실시 예 2에 따른 양극활물질을 포함하는 이차 전지이 용량 특성을 측정한 그래프이다.
도 14는 본 발명의 비교 예 및 실시 예 2에 따른 양극활물질을 포함하는 이차 전지의 수명 특성을 설명하기 위한 그래프이다.
도 15는 본 발명의 비교 예에 따른 양극활물질을 포함하는 이차 전지의 미분 용량을 측정한 그래프이다.
도 16은 본 발명의 실시 예 1에 따른 양극활물질을 포함하는 이차 전지의 미분 용량을 측정한 그래프이다.
도 17은 본 발명의 실시 예 2에 따른 양극활물질을 포함하는 이차 전지의 미분 용량을 측정한 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
또한, 본 출원 명세서에서, 결정계(crystal system)는 삼사정계(triclinic), 단사정계(monoclinic), 사방정계(orthorhombic), 정방정계(tetragonal), 삼방정계(trigonal 또는 rhombohedral), 육방정계(hexagonal), 및 입방정계(cubic)의 7개로 구성될 수 있다.
또한, 본 출원 명세서에서 "mol%"는 양극활물질 또는 양극활물질 전구체에서 리튬과 산소를 제외한 나머지 금속의 합을 100%로 가정했을 경우, 양극활물질 또는 양극활물질 전구체에 포함된 임의의 금속의 함량을 나타내는 의미로 해석된다.
도 1 은 본 발명의 실시 예에 따른 양극활물질의 제조 방법을 설명하기 위한 순서도이고, 도 2는 본 발명의 실시 예에 따른 양극활물질 베이스 입자를 설명하기 위한 도면이고, 도 3은 본 발명의 실시 예에 따라 코팅 물질로 코팅된 양극활물질 베이스 입자를 설명하기 위한 도면이고, 도 4는 본 발명의 실시 예에 따른 코팅 물질을 그레핀을 보호하는 것을 설명하기 위한 도면이다.
도 1 내지 도 4를 참조하면, 양극활물질 전구체가 제조된다(S110). 상기 양극활물질 전구체는, 금속염 수용액을 이용한 공침법으로 제조될 수 있다.
구체적으로, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함하는 베이스 수용액이 준비된다. 상기 베이스 수용액이 니켈을 포함하는 경우, 예를 들어, 상기 베이스 수용액은 황산 니켈일 수 있다. 상기 베이스 수용액이 코발트를 포함하는 경우, 예를 들어, 상기 베이스 수용액은 황산 코발트일 수 있다. 상기 베이스 수용액이 망간을 포함하는 경우, 상기 베이스 수용액은 황산 망간일 수 있다. 상기 베이스 수용액이, 니켈, 코발트, 망간, 또는 알루미늄 중에서 복수개의 금속을 포함하는 경우, 상기 베이스 수용액은, 복수개의 금속염 수용액들을 포함할 수 있다.
상기 베이스 수용액을 상기 반응기에 제공하여, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함하는 금속 수산화물을 포함하는 양극활물질 전구체가 제조될 수 있다. 상기 베이스 수용액 외에, 암모니아 용액이 상기 반응기에 더 제공될 수 있다.
상기 양극활물질 전구체, 및 리튬염을 소성하여, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나 및 리튬를 포함하는 금속 산화물을 포함하는 양극활물질 베이스 입자(100)가 제조될 수 있다.
일 실시 예에 따르면, 상기 양극활물질 베이스 입자(100)는, 니켈, 리튬, 및 산소를 포함하는 금속 산화물일 수 있다. 다른 실시 예에 따르면, 상기 양극활물질 베이스 입자(100)는, 니켈, 코발트, 리튬, 및 산소를 포함하는 금속 산화물일 수 있다. 또는, 또 다른 실시 예에 따르면, 상기 양극활물질 베이스 입자(100)는, 니켈, 코발트, 망간, 리튬, 및 산소를 포함하는 금속 산화물일 수 있다. 또는, 또 다른 실시 예에 따르면, 상기 양극활물질 베이스 입자(100)는, 니켈, 코발트, 알루미늄, 리튬, 및 산소를 포함하는 금속 산화물일 수 있다. 본 발명의 실시 예에 따른 기술적 사상은, 다양한 물질을 포함하는 양극활물질 베이스 입자(100)에 적용될 수 있다.
일 실시 예에 따르면, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나의 농도는 상기 양극활물질 베이스 입자(100) 내에서 실질적으로 일정할 수 있다. 또는, 다른 실시 예에 따르면, 상기 양극활물질 베이스 입자(100) 내에서 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나의 농도는, 상기 양극활물질 베이스 입자(100)의 중심에서 상기 양극활물질 베이스 입자(100)의 표면 방향으로, 상기 양극활물질 베이스 입자(100)의 전체에서 농도 구배를 갖거나, 또는 상기 양극활물질 베이스 입자(100)의 일부에서 농도 구배를 가질 수 있다. 또는, 또 다른 실시 예에 따르면, 상기 양극활물질 베이스 입자(100)는 코어부, 및 상기 코어부와 금속(니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나)의 농도가 다른 쉘부를 포함할 수 있다. 본 발명의 실시 예에 따른 기술적 사상은, 다양한 구조 및 형태의 양극활물질 베이스 입자에 적용될 수 있다.
일 실시 예에 따르면, 상기 양극활물질 베이스 입자(100)는 아래의 <화학식 1>로 표시될 수 있다.
<화학식 1>
LiM1aM2bM3cO2
상기 <화학식 1>에서, M1, M2, M3는 니켈, 코발트, 망간, 또는 알루미늄 중에서 선택된 어느 하나이고, 0≤a<1이고, 0≤b<1이고, 0≤c<1이고, a, b, 및 c 중에서 적어도 어느 하나는 0보다 크고, M1, M2, 및 M3는 서로 다른 금속일 수 있다.
일 실시 예에 따르면, 상기 양극활물질은 60mol% 이상의 니켈을 포함할 수 있다. 또는, 다른 실시 예에 따르면, 상기 양극활물질은 80mol% 이상의 니켈을 포함할 수 있다.
상기 양극활물질 베이스 입자(100)는, 1차 입자들, 및 상기 1차 입자들이 응집된 2차 입자로 제공될 수 있다.
상기 1차 입자들은, 상기 2차 입자 내부의 일 영역에서 상기 2차 입자의 표면을 향하여 방사(放射, radiate)되는 방향으로 연장할 수 있다. 상기 2차 입자 내부의 일 영역은 상기 2차 입자의 중심일 수 있다. 다시 말하면, 상기 1차 입자는 상기 2차 입자 내부의 상기 일 영역에서 상기 2차 입자의 상기 표면을 향하여 연장하는 로드 쉐입(rod shape) 형태일 수 있다.
상기 로드 형태를 갖는 상기 1차 입자들 사이, 다시 말하면, 상기 2차 입자의 상기 중심부에서 상기 표면부 방향으로 연장된 상기 1차 입자들 사이에, 금속 이온(예를 들어, 리튬 이온) 및 전해질의 이동 경로가 제공될 수 있다. 이에 따라, 본 발명의 실시 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 충방전 효율이 향상될 수 있다.
일 실시 예에 따르면, 상기 2차 입자 내부의 상기 중심에 상대적으로 인접한 상기 1차 입자보다, 상기 2차 입자의 상기 표면에 상대적으로 인접한 상기 1차 입자가, 상기 2차 입자의 내부의 상기 중심에서 상기 2차 입자의 상기 표면을 향하는 방향으로, 더 긴 길이를 가질 수 있다. 다시 말하면, 상기 2차 입자의 상기 중심에서 상기 표면으로 연장하는 상기 2차 입자의 적어도 일부분에서, 상기 1차 입자들의 길이가, 상기 2차 입자의 상기 표면에 인접할수록, 증가될 수 있다.
금속 및 황의 화합물을 포함하는 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)를 혼합하고 열처리할 수 있다(S130). 일 실시 예에 따르면, 도 2에 도시된 바와 같이, 상기 양극활물질 베이스 입자(100)의 내부에 복수의 크랙(110)이 존재할 수 있다. 상기 크랙(110)은 상기 양극활물질 베이스 입자(100) 내에 존재하는 그레인 바운더리(grain boundary)를 따라 형성될 수 있다. 상기 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)를 혼합하고 열처리하여, 상기 양극활물질 베이스 입자(100) 내에 존재하는 상기 그레인 바운더리(크랙(110))를 따라 상기 코팅 물질(120)이 침투되어, 상기 양극활물질 베이스 입자(100)의 그레인의 적어도 일부가 상기 코팅 물질(120)로 코팅된 양극활물질이 제조될 수 있다. 이에 따라, 상기 코팅 물질(120)의 상기 금속 및 황의 화합물 및/또는 상기 코팅 물질(120)의 상기 금속 및 황이, 상기 양극활물질 베이스 입자(100)의 상기 그레인 바운더리(크랙(120))을 따라서 관찰될 수 있다.
일 실시 예에 따르면, 도 3에 도시된 바와 같이, 상기 코팅 물질(120)은 상기 양극활물질 베이스 입자(100)의 내부로 침투되는 동시에, 막(layer) 형태로 상기 양극활물질 베이스 입자(100)의 표면의 적어도 일부를 감쌀 수 있다. 또는, 다른 실시 예에 따르면, 상기 코팅 물질(120)은 상기 양극활물질 베이스 입자(100)의 내부로 침투되는 동시에, 파티클(particle) 또는 섬(island) 형태로 상기 양극활물질 베이스 입자(100)의 표면 상에 제공될 수 있다.
일 실시 예에 따르면, 상기 코팅 물질(120)의 상기 금속은 몰리브덴, 텅스텐, 또는 알루미늄 중 적어도 어느 하나를 포함할 수 있다. 예를 들어, 상기 코팅 물질(120)은, Mo2S, WS2 또는 Al2S3 중에서 적어도 어느 하나를 포함할 수 있다. 또는, 다른 실시 예에 따르면, 상기 코팅 물질(120)은 금속 및 질소의 화합물이거나, 또는 금속 및 보론의 화합물 중에서 어느 하나를 포함할 수 있다. 또한, 상기 양극활물질의 황, 질소 또는 보론의 농도는 5mol% 미만일 수 있다.
일 실시 예에 따르면, 상기 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)를 혼합하고 열처리하기 전, 상기 코팅 물질(120)이 분쇄될 수 있다. 예를 들어, 상기 코팅 물질(120)은 상기 양극활물질 베이스 입자(100)의 크기와 비교하여 1/10 크기로 분쇄될 수 있다.
이에 따라, 분쇄된 상기 코팅 물질(120)이 상기 양극활물질 베이스 입자(100)와 혼합되고 열처리될 수 있다. 이에 따라, 상기 코팅 물질(120)이 상기 양극활물질 베이스 입자(100) 내의 상기 그레인 바운더리(크랙(120))을 따라 용이하게 상기 양극활물질 베이스 입자(100) 내부로 침투될 수 있다.
일 실시 예에 따르면, 상기 코팅 물질(120) 및 상기 양극활물질 예비 입자(100)가 혼합 및 열처리되기 전, 상기 양극활물질 예비 입자(100)의 표면의 피막이 제거될 수 있다. 상기 피막은 열처리 공정(예를 들어, 300℃에서 3시간 열처리)으로 제거될 수 있다. 이에 따라, 상기 코팅 물질(120)이 상기 양극활물질 예비 입자(100) 내부로 침투되는 경로가 용이하게 확보되어, 상기 코팅 물질(120)이 상기 양극활물질 예비 입자(100)의 상기 그레인 바운더리(크랙(120))을 따라 용이하게 상기 양극활물질 베이스 입자(100) 내부로 침투될 수 있다.
일 실시 예에 따르면, 상기 코팅 물질(120) 및 상기 양극활물질 예비 입자(100)는 건식 혼합될 수 있다. 구체적으로, 상기 코팅 물질(120) 및 상기 양극활물질 예비 입자(100)는, 볼밀 방식으로 혼합될 수 있다. 상기 코팅 소스(120) 및 상기 양극활물질 예비 입자(100)는 드라이룸 또는 Ar 분위기에서 건식 혼합(예를 들어, 볼밀 공정)될 수 있고, 또한, 혼합된 상기 코팅 소스(120) 및 상기 양극활물질 예비 입자(100)는 고순도 산소 분위기에서 열처리될 수 있다.
일 실시 예에 따르면, 상기 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)를 혼합하는 단계는, 분쇄된 상기 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)를 제1 강도로 혼합하는 제1 혼합 단계, 및 상기 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)를 상기 제1 강도보다 높은 제2 강도로 혼합하는 제2 혼합 단계를 포함할 수 있다. 예를 들어, 상기 제1 혼합 단계는 hand mix로 수행되고, 상기 제2 혼합 단계는 볼밀 공정으로 수행될 수 있다. 또한, 상기 제1 혼합 단계에서 상기 코팅 물질(120) 양이 점차적으로 증가될 수 있다. 이에 따라, 상기 코팅 물질(120)이 상기 양극활물질 베이스 입자(100)에 균일하고 용이하게 코팅될 수 있다.
상술된 바와 달리, 분쇄된 상기 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)를 처음부터 높은 강도로 혼합하는 경우, 또는 상기 제1 혼합 단계에서 처음부터 많은 양의 분쇄된 상기 코팅 물질(120)이 제공되는 경우, 분쇄된 상기 코팅 물질(120)의 물리적 결합력에 의해 분쇄된 상기 코팅 물질(120)이 응집되어, 분쇄된 상기 코팅 물질(120)이 상기 양극활물질 베이스 입자(100)의 표면에 균일하게 코팅되지 않는 것은 물론, 분쇄된 상기 코팅 물질(120)의 응집에 의해 상기 양극활물질 베이스 입자(100)의 상기 그레인 바운더리(크랙(110))을 따라서 상기 코팅 물질(120)이 침투되는 것이 용이하지 않다.
하지만, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 분쇄된 상기 코팅 물질(120) 및 상기 양극활물질 베이스 입자(100)에 대해서, 상대적으로 낮은 강도의 상기 제1 혼합 단계, 및 상대적으로 높은 강도의 상기 제2 혼합 단계가 순차적으로 수행될 수 있고, 상기 제1 혼합 단계에서 분쇄된 상기 코팅 물질(120)의 양이 점차적으로 증가될 수 있다. 이에 따라, 상기 코팅 물질(120)의 상기 양극활물질 베이스 입자(100)에 실질적으로 균일하게 코팅되는 동시에, 상기 양극활물질 베이스 입자(100)의 상기 그레인 바운더리(크랙(110))을 따라서 상기 코팅 물질(120)이 용이하게 침투될 수 있다.
일 실시 예에 따르면, 상기 양극활물질 베이스 입자(100)는, 도 5에 도시된 바와 같이, trigonal crystal system에서 hexagonal lattice system을 가질 수 있고, 상기 양극활물질 베이스 입자(100)의 결정 구조는 a축 및 c축을 가질 수 있다. 상기 양극활물질 베이스 입자(100)는 c축 방향으로, 고유의 격자 상수(lattice constant)를 가질 수 있다.
상기 양극활물질을 포함하는 이차 전지의 충방전 과정에서, 상기 양극활물질 베이스 입자(100)가 c축 방향으로 고유의 격자 상수가 증가되거나, 또는 감소될 수 있다. 다시 말하면, 상기 양극활물질 베이스 입자(100)가 c축 방향으로 고유의 제1 길이의 격자 상수를 갖는 제1 결정 구조를 갖는 경우, 충방전 과정에서, 상기 제1 결정 구조는, 상기 제1 결정 구조보다 c축 방향으로 긴 격자 상수를 갖는 제2 결정 구조, 및 상기 제1 결정 구조보다 c축 방향으로 짧은 격자 상수를 갖는 제3 결정 구조로 변화될 수 있다. c축 방향으로 격자 상수의 증가 및 감소는 상기 양극활물질의 체적을 크게 변화시킬 수 있다. 이에 따라, c축 방향으로 격자 상수가 증가 또는 감소된 상기 제2 결정 구조 및 상기 제3 결정 구조의 비율이 증가하거나, 감소하는 경우, 이차 전지의 수명 특성이 현저하게 저하될 수 있다. 즉, 상기 양극활물질 베이스 입자(100)의 결정 구조의 변화에 따른 상기 양극활물질 베이스 입자(100) 내 그레인의 체적 변화로 인해, 상기 양극활물질 베이스 입자(100) 내의 그레인과 그레인 사이, 다시 말하여 그레인 바운더리를 따라서 크랙이 더 크게 벌어지거나, 새로운 크랙이 발생할 수 있고, 더 크게 벌어진 크랙 및/또는 새롭게 생성된 크랙을 따라 전해액(130)이 침투하여, 상기 양극활물질의 충방전 특성을 저하시킬 수 있다.
하지만, 본 발명의 실시 예에 따르면, 상술된 바와 같이, 상기 양극활물질 베이스 입자(100)의 상기 그레인 바운더리(크랙(110))을 따라서 상기 코팅 물질(120)이 침투하여, 상기 양극활물질 베이스 입자(100)의 그레인의 적어도 일부가 상기 코팅 물질(120)로 코팅될 수 있다. 이에 따라, 상기 코팅 물질(120)이, 상기 크랙(110)으로 침투된 상기 전해액(130)으로부터, 상기 양극활물질 베이스 입자(100)의 상기 그레인을 보호할 수 있고, 결과적으로 상기 양극활물질을 포함하는 리튬 이차 전지의 수명 특성, 충방전 특성, 및 안정성이 향상될 수 있다.
이하, 상술된 본 발명의 실시 예에 따른 양극활물질의 구제적인 실험 예 및 특성 평가 결과가 설명된다.
비교 예에 따른 양극활물질 제조
공침 반응기(용량47L, 회전 모터의 출력 750W 이상)에 증류수 10 리터를 넣은 뒤 N2가스를 반응기에 5리터/분의 속도로 공급하고, 반응기의 온도를 45℃로 유지시키면서 350 rpm으로 교반하였다. 2 M 농도의 황산니켈, 황산코발트, 황산망간 수용액 (니켈:코발트:망간 = 90:5:5, 몰비), 4M 농도의 수산화나트륨 수용액, 10.5M 농도의 암모니아 용액을 15~35 시간 동안 연속적으로 투입하여 Ni0.90Co0.05Mn0.05(OH)2 금속 복합 수산화물을 제조하였다.
제조된 Ni0.90Co0.05Mn0.05(OH)2 금속 복합 수산화물을 여과하고, 물 세척한 후에 110℃ 진공 건조기에서 12시간 건조 시켰다.
양극활물질 전구체와 수산화리튬(LiOH·H2O)을 1:1의 몰비 또는 1:105의 몰비로 혼합한 후에2℃/min의 승온 속도로 가열한 후450℃에서 5시간 유지시켜 예비 소성을 수행하였으며, 뒤이어 750℃에서 10시간 소성시켜 양극활물질 베이스 입자 Li[Ni0.90Co0.05Mn0.05]O2 금속 복합산화물을 제조하였다.
실시 예 1에 따른 양극활물질 제조
몰타를 이용하여 코팅 물질인 MoS2를 분쇄한 후 분쇄한 MoS2를 몰타의 벽면에 퍼트렸다. 몰타에 비교 예에 따라서 제조된 양극활물질 베이스 입자 Li[Ni0.90Co0.05Mn0.05]O2 금속 복합산화물을 추가한 뒤 소량씩(0.1g) MoS2를 추가하여 hand mix 방법으로 혼합하였다. 이때, 소량으로 시작하여 hand mix진행하며 점차적으로 전체양(1g)을 혼합하였다. 이후, Ball mill 방식을 사용하여 추가로 혼합한 후 열처리 하였다. 이때 열처리는 2℃/min의 승온 속도로 가열한 후 450℃에서 5시간 유지시켜 MoS2 가 1mol% 코팅된 실시 예 1에 따른 양극활물질을 제조하였다
실시 예 2에 따른 양극활물질 제조
몰타를 이용하여 코팅 물질인 WS2를 분쇄한 후 분쇄한 WS2를 몰타의 벽면에 퍼트렸다. 몰타에 비교 예에 따라서 제조된 양극활물질 베이스 입자 Li[Ni0.90Co0.05Mn0.05]O2 금속 복합산화물을 추가한 뒤 소량씩(0.1g) WS2을 추가하여 hand mix 방법으로 혼합하였다. 이때, 소량으로 시작하여 hand mix진행하며 점차적으로 전체양(1g)을 혼합하였다. 이후, Ball mill 방식을 사용하여 추가로 혼합한 후 열처리 하였다. 이때 열처리는 2℃/min의 승온 속도로 가열한 후 450℃에서 5시간 유지시켜 WS2 가 1mol% 코팅된 실시 예 2에 따른 양극활물질을 제조하였다
도 6은 본 발명의 비교 예에 따른 양극활물질 베이스 입자의 열처리 전 SEM 사진이고, 도 7은 본 발명의 비교 예에 따른 양극활물질 베이스 입자의 열처리 후 SEM사진이다.
도 6 및 도 7을 참조하면, 비교 예에 따라서 제조된 양극활물질 베이스 입자의 SEM 사진을 촬영하고, 상기 양극활물질 베이스 입자를 300℃에서 3시간 열처리한 후, SEM 사진을 촬영하였다.
도 6에서 알 수 있듯이, 상기 양극활물질 베이스 입자의 표면이 오염되어 피막이 존재하는 것을 알 수 있다. 또한, 도 7에서 알 수 있듯이, 상기 양극활물질 베이스 입자를 열처리하는 경우 피막이 제거되는 것을 확인할 수 있다. 즉, 상기 양극활물질 베이스 입자와 코팅 물질을 혼합 및 열처리하기 전, 상기 양극활물질 베이스 입자를 열처리하여 오염에 의해 형성된 피막을 제거하는 경우, 상기 코팅 물질이 용이하게 상기 양극활물질 베이스 입자 내부로 침투될 수 있는 경로가 확보되는 것을 확인할 수 있다.
도 8 내지 도 10은 본 발명의 실시 예들 및 비교 예에 따른 양극활물질의 SEM 사진이다. 구체적으로, 도 8 내지 도 10은, 각각, 비교 예, 실시 예 1 내지 3에 따른 양극활물질의 SEM 사진이다.
도 8 내지 도 10을 참조하면, 상술된 실시 예 1 내지 실시 예 3 및 비교 예에 따른 양극활물질들의 SEM 사진을 촬영하였다. 도 8 내지 도 10에서 알 수 있듯이, 실시 예 1 내지 실시 예 2에 따라서, MoS2, 및 WS2가 Li[Ni0.90Co0.05Mn0.05]O2 양극활물질 베이스 입자의 표면 상에 코팅된 것을 확인할 수 있다.
도 11은 본 발명의 비교 예 및 실시 예 1에 따른 양극활물질을 포함하는 이차 전지이 용량 특성을 측정한 그래프이고, 도 12는 본 발명의 비교 예 및 실시 예 1에 따른 양극활물질을 포함하는 이차 전지의 수명 특성을 설명하기 위한 그래프이다.
도 11 및 도 12를 참조하면, 비교 예 및 실시 예 2에 따른 양극활물질을 이용하여 half cell을 제조하고, cut off 2.7~4.3V, 0.1C, 30℃ 조건에서, 방전 용량을 측정하였고, cut off 2.7~4.3V, 0.5C, 30℃ 조건에서 충방전 사이클 횟수에 따른 방전 용량 및 표면 잔류 리튬을 측정하였다. 측정 결과는 도 11, 도 12, 및 아래 [표 1]와 같다.
구분 0.1C, 1st Dis-Capa(mAh/g) 1st Efficiency 0.2CCapacity(mAh/g) 0.2C/0.1C 0.5CCapacity (mAh/g) 0.5C/0.1C Cycle 0.5C CycleRetention L/L(mg/cm2)
비교 예 231.4 94.3% 224.6 97.1% 213.2 92.1% 100 82.3% 3.42
실시 예 2 229.9 96.7% 223.5 97.2% 214.5 93.3% 100 88.8% 3.42
230.3 96.7% 223.4 97.0% 215.3 93.5% 100 89.2% 3.02
도 11, 도 12, 및 [표 1]에서 알 수 있듯이, 비교 예에 따른 양극활물질을 이용하여 제조된 이차 전지와 비교하여, 실시 예 1에 따라서 MoS2 코팅 물질을 포함하는 양극활물질의 방전 용량 및 수명 특성이 현저하게 우수한 것을 확인할 수 있다.
도 13은 본 발명의 비교 예 및 실시 예 2에 따른 양극활물질을 포함하는 이차 전지이 용량 특성을 측정한 그래프이고, 도 14는 본 발명의 비교 예 및 실시 예 2에 따른 양극활물질을 포함하는 이차 전지의 수명 특성을 설명하기 위한 그래프이다.
도 13 및 도 14를 참조하면, 비교 예 및 실시 예 2에 따른 양극활물질을 이용하여 half cell을 제조하고, cut off 2.7~4.3V, 0.1C, 30℃ 조건에서, 방전 용량을 측정하였고, cut off 2.7~4.3V, 0.5C, 30℃ 조건에서 충방전 사이클 횟수에 따른 방전 용량 및 표면 잔류 리튬을 측정하였다. 측정 결과는 도 13, 도 14, 및 아래 [표 2]과 같다.
구분 0.1C, 1st Dis-Capa(mAh/g) 1st Efficiency 0.2CCapacity(mAh/g) 0.2C/0.1C 0.5CCapacity (mAh/g) 0.5C/0.1C Cycle 0.5C CycleRetention L/L(mg/cm2)
비교 예 221.9 94.0% 215.9 97.3% 205.7 92.7% 100 85.1% 3.22
실시 예 3 225.2 96.3% 219.1 97.3% 209.2 92.9% 64 95.6% 3.47
도 13, 도 14, 및 [표 2]에서 알 수 있듯이, 비교 예에 따른 양극활물질을 이용하여 제조된 이차 전지와 비교하여, 실시 예 2에 따라서 WS2 코팅 물질을 포함하는 양극활물질의 방전 용량 및 수명 특성이 현저하게 우수한 것을 확인할 수 있다.
도 15는 본 발명의 비교 예에 따른 양극활물질을 포함하는 이차 전지의 미분 용량을 측정한 그래프이고, 도 16은 본 발명의 실시 예 1에 따른 양극활물질을 포함하는 이차 전지의 미분 용량을 측정한 그래프이고, 도 17은 본 발명의 실시 예 2에 따른 양극활물질을 포함하는 이차 전지의 미분 용량을 측정한 그래프이다.
도 15 내지 도 17을 참조하면, 도 15 내지 도 17에 도시된 것과 같이, 비교 예 1, 및 실시 예 1 내지 실시 예 2에 따른 양극활물질을 이용하여 half cell을 제조하고, 충방전 횟수에 따른 미분 용량을 측정하였다.
충방전이 진행됨에 따라서, 실시 예 1 내지 2 및 비교 예 1에 따른 양극활물질이 H1 phase, H1+M phase, M phase, M+H2 phase, H2 phase, H2+H3 phase, H3 phase, H2+H3 phase, M+H2 phase, M phase, H1+M phase, H1 phase를 순차적으로 갖는 것을 확인할 수 있다. 도 15 내지 도 17에서 H1 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수를 갖는 결정 구조를 나타내고, H2 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수 보다 긴 격자 상수를 갖는 결정 구조를 나타내고, H3 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수보다 짧은 격자 상수를 갖는 결정 구조를 나타내고, M phase는 단사정계 결정 구조를 나타낸다.
상기 코팅 물질이 제공되지 않은 비교 예의 경우, 도 15에 도시된 바와 같이, 충방전 횟수가 진행됨에 따라서, H2 및 H3 phase의 피크 값이 급격하게 감소하는 것을 확인할 수 있다. 다시 말하면, 4.1~4.3V 범위에서 적분면적이 급격하게 감소하며, 상술된 바와 같이, 비교 예에 따른 경우, 충방전 횟수에 따라서 용량이 급격하게 감소하는 것을 재확인할 수 있다.
반면, 실시 예 1 내지 실시 예 2에 따른 경우, 도 16 내지 도 17에 도시된 바와 같이, 충방전 횟수가 진행됨에 따라서, H2 및 H3 phase의 피크 값이 감소량이 적은 것을 알 수 있다. 즉, 충방전 횟수에 따라서, H2 및 H3 phase의 생성 비율의 변화량이, 상기 코팅 물질에 의해 현저하게 감소되는 것을 확인할 수 있다. 다시 말하면, 4.1~4.3V 범위에서 적분면적이 실질적으로 일정하게 유지되며, 상술된 바와 같이, 실시 예들에 따른 경우, 충방전 횟수에 따라서 용량이 감소되는 것이 최소화되는 것을 확인할 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 발명의 실시 예에 따른 양극활물질 및 이를 포함하는 리튬 이차 전지는 휴대용 전자 기기, 전기 자동차, 에너지 저장 장치 등 다양한 산업 분야에 활용될 수 있다.

Claims (11)

  1. 양극활물질 전구체를 제조하는 단계;
    상기 양극활물질 전구체와 리튬염을 혼합 및 소성하여, 양극활물질 베이스 입자(positive active material base particle)를 제조하는 단계; 및
    금속 및 황의 화합물을 포함하는 코팅 물질 및 상기 양극활물질 베이스 입자를 혼합하고 열처리하여, 상기 양극활물질 베이스 입자 내에 존재하는 그레인 바운더리(grain boundary)를 따라 상기 코팅 물질이 침투되어, 상기 양극활물질 베이스 입자의 그레인의 적어도 일부가 상기 코팅 물질로 코팅된 양극활물질을 제조하는 단계를 포함하는 양극활물질의 제조 방법.
  2. 제1 항에 있어서,
    상기 코팅 물질 및 상기 양극활물질 예비 입자는 건식 혼합되는 것을 포함하는 양극활물질의 제조 방법.
  3. 제2 항에 있어서,
    상기 코팅 물질 및 상기 양극활물질 예비 입자는, 볼밀 방식으로 혼합되는 것을 포함하는 양극활물질의 제조 방법.
  4. 제1 항에 있어서,
    상기 양극활물질 전구체는, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함하는 양극활물질의 제조 방법.
  5. 제1 항에 있어서,
    상기 코팅 물질 및 상기 양극활물질 베이스 입자를 혼합하고 열처리하기 전,
    상기 코팅 물질을 분쇄하는 단계를 더 포함하는 양극활물질의 제조 방법.
  6. 제1 항에 있어서,
    상기 코팅 물질 및 상기 양극활물질 베이스 입자를 혼합하는 단계는,
    상기 코팅 물질 및 상기 양극활물질 베이스 입자를 제1 강도로 혼합하는 제1 혼합 단계; 및
    상기 코팅 물질 및 상기 양극활물질 베이스 입자를 상기 제1 강도보다 높은 제2 강도로 혼합하는 제2 혼합 단계를 포함하는 양극활물질의 제조 방법.
  7. 제1 항에 있어서,
    상기 제1 혼합 단계에서, 상기 코팅 물질의 양을 점차적으로 증가시키는 것을 포함하는 양극활물질의 제조 방법.
  8. 양극활물질 베이스 입자; 및
    상기 양극활물질 베이스 입자의 그레인 바운더리를 따라 제공되고, 금속 및 황을 포함하는 코팅 물질을 포함하는 양극활물질.
  9. 제8 항에 있어서,
    상기 양극활물질 베이스 입자의 그레인의 적어도 일부가 상기 코팅 물질로 코팅된 것을 포함하는 양극활물질.
  10. 제8 항에 있어서,
    상기 양극활물질 베이스 입자는, c축 방향으로 고유의 격자 상수를 갖는 제1 결정 구조를 가지고,
    충방전 과정에서, 상기 제1 결정 구조는, 상기 제1 결정 구조보다 c축 방향으로 긴 격자 상수를 갖는 제2 결정 구조, 및 상기 제1 결정 구조보다 c축 방향으로 짧은 격자 상수를 갖는 제3 결정 구조로 변화되고,
    상기 양극활물질 베이스 입자의 결정 구조의 변화에 의해 상기 양극활물질 베이스 입자 내에 크랙이 발생되고,
    상기 코팅 물질은, 상기 크랙으로 침투된 전해액으로부터, 상기 양극활물질 베이스 입자의 상기 그레인을 보호하는 것을 포함하는 양극활물질.
  11. 제8 항에 있어서,
    상기 코팅 물질의 상기 금속은, 몰리브덴, 텅스텐, 또는 알루미늄 중 적어도 어느 하나를 포함하는 양극활물질.
PCT/KR2018/009756 2017-08-24 2018-08-23 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 WO2019039893A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0107343 2017-08-24
KR20170107343 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039893A1 true WO2019039893A1 (ko) 2019-02-28

Family

ID=65439520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009756 WO2019039893A1 (ko) 2017-08-24 2018-08-23 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지

Country Status (2)

Country Link
KR (1) KR102138691B1 (ko)
WO (1) WO2019039893A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066740A1 (en) * 2021-10-19 2023-04-27 Basf Se Process for making a coated electrode active material, and coated electrode active material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池
KR20140082189A (ko) * 2012-12-24 2014-07-02 전자부품연구원 고체초강산으로 표면 처리된 비수계 리튬이차전지용 양극활물질 및 그 제조방법
KR20160032664A (ko) * 2014-09-16 2016-03-24 삼성전자주식회사 전고체형 리튬 이온 이차 전지
KR20160059948A (ko) * 2014-11-19 2016-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그리고 이를 포함하는 양극 활물질층 및 리튬 이차 전지
KR20170050562A (ko) * 2015-10-30 2017-05-11 주식회사 엘지화학 황화물계 고체 전해질, 이의 제조방법 및 이를 포함하는 전고체 전지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250120A (ja) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd リチウム二次電池
JP4706090B2 (ja) * 1999-04-23 2011-06-22 三菱化学株式会社 リチウム二次電池用正極材料及び正極、並びにリチウム二次電池
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池
KR20140082189A (ko) * 2012-12-24 2014-07-02 전자부품연구원 고체초강산으로 표면 처리된 비수계 리튬이차전지용 양극활물질 및 그 제조방법
KR20160032664A (ko) * 2014-09-16 2016-03-24 삼성전자주식회사 전고체형 리튬 이온 이차 전지
KR20160059948A (ko) * 2014-11-19 2016-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그리고 이를 포함하는 양극 활물질층 및 리튬 이차 전지
KR20170050562A (ko) * 2015-10-30 2017-05-11 주식회사 엘지화학 황화물계 고체 전해질, 이의 제조방법 및 이를 포함하는 전고체 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066740A1 (en) * 2021-10-19 2023-04-27 Basf Se Process for making a coated electrode active material, and coated electrode active material

Also Published As

Publication number Publication date
KR102138691B1 (ko) 2020-07-28
KR20190022396A (ko) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2021025479A1 (ko) 이차전지용 활물질
WO2015080450A1 (ko) 고체 전해질층을 포함하는 이차전지
WO2014178625A1 (ko) 리튬 이차 전지용 양극활물질
WO2011025080A1 (ko) 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2015060686A1 (ko) 고체 전해질 입자, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2015133692A1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
WO2012064053A2 (ko) 리튬 망간 복합 산화물 및 이의 제조 방법
WO2021075942A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021075940A1 (ko) 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021025370A1 (ko) 리튬 이차전지용 양극 활물질
WO2021215670A1 (ko) 스피넬 복합고용체 산화물을 포함하는 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2016175426A1 (ko) 리튬 코발트 산화물의 표면처리 방법 및 이를 포함하는 리튬이차전지
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
WO2011126182A1 (ko) 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 금속복합산화물을 포함하는 2차 전지용 양극 활물질
WO2014077662A1 (ko) 공침법을 이용한 나트륨 이차전지용 양극활물질 전구체의 제조 방법 및 이에 의하여 제조된 나트륨 이차전지용 양극활물질 전구체
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2020111318A1 (ko) 리튬 이차전지용 양극 활물질
WO2014077663A1 (ko) 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2019013587A1 (ko) 양극 활물질의 제조방법
WO2013085306A1 (ko) 리튬이차전지용 양극 활물질의 제조방법
WO2019093660A2 (ko) 마그헤마이트의 제조방법
WO2019039893A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2016126095A1 (ko) 양극활물질 및 이를 포함하는 이차 전지
WO2022149675A1 (ko) 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849067

Country of ref document: EP

Kind code of ref document: A1