WO2019039722A1 - 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템 - Google Patents

납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템 Download PDF

Info

Publication number
WO2019039722A1
WO2019039722A1 PCT/KR2018/007384 KR2018007384W WO2019039722A1 WO 2019039722 A1 WO2019039722 A1 WO 2019039722A1 KR 2018007384 W KR2018007384 W KR 2018007384W WO 2019039722 A1 WO2019039722 A1 WO 2019039722A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
carbon material
electrode layer
lead
surface area
Prior art date
Application number
PCT/KR2018/007384
Other languages
English (en)
French (fr)
Inventor
문건오
신동석
이승복
류민웅
Original Assignee
주식회사 에너지플래닛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에너지플래닛 filed Critical 주식회사 에너지플래닛
Publication of WO2019039722A1 publication Critical patent/WO2019039722A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead-acid based battery system, and more particularly, to a lead-acid battery multi-layered electrode having improved electrode life and performance by forming a multi-layered structure, and a lead-acid battery cell system including the same.
  • Portable rechargeable energy storage devices such as rechargeable electrochemical batteries and capacitors, are becoming increasingly essential as a driving force in the modern transportation and communications sector.
  • a flooded lead-acid battery can be operated with a partial state of charge (PSoC), for example, approximately 50 to 80% charged state, It differs from the usual SLI (start, ignition, and ignition) that is activated.
  • PSoC partial state of charge
  • HEV hybrid electric vehicle
  • a battery of a hybrid electric vehicle (HEV) can operate at PSoC, for example, at about 50 to 80% charge.
  • HEV hybrid electric vehicle
  • Pb 2+ ions there is the formation of PbSO 4 determined by the discharge of the PbSO 4 determines local PbSO 4 to form a localized electron transfer channel is decreasing the area of contact between the electrode surface and the electrolyte as it grows, by reducing the surface electrical conductivity Crystals are largely formed, the utilization ratio of the electrode active material is decreased, and PbO 2 / Pb can not be returned to the battery during the charging process, thereby shortening the lifetime of the battery.
  • the improved lead-acid based battery system is a technology developed to improve the life of existing lead-acid batteries.
  • the carbon mixture layer When the carbon mixture layer is applied to the surface, it prevents localized lead sulphate (PbSO 4 ) crystal growth due to the increased surface electrical conductivity, 2 / Pb to improve battery life.
  • the improved lead-acid based battery system attempts to improve the lifetime of the electrode by introducing a carbon mixed layer on the surface of the electrode.
  • the electric conductivity of the carbon mixed layer is low, the PbSO 4 crystal growth can not be prevented or the carbon layer is removed from the cathode electrode Still remained.
  • Another object of the present invention is to provide a lead acid battery system capable of not only improving the capacity reduction during a high rate charge / discharge operation but also improving the system life by employing a multi-layered electrode for a lead battery having excellent adhesion between a carbon layer and an electrode .
  • the present invention provides an electrode support comprising: an electrode; A first electrode layer including a lead active material and carbon formed on the surface of the support; And a carbon-containing second electrode layer formed on the surface of the first electrode layer.
  • the first electrode layer comprises a high specific surface area carbon material, a high conductivity carbon material, a lead active material and a binder.
  • the weight ratio of the lead active material content to the sum of the high specific surface area carbon material, the high conductivity carbon material and the binder is 1: 9 to 9: 1.
  • the high specific surface area carbon material, the high conductivity carbon material, and the binder are 25 to 80 wt%, 15 to 70 wt%, and 1 to 40 wt%, respectively, of the total content.
  • the second electrode layer comprises a high specific surface area carbon material, a high conductivity carbon material and a binder.
  • the high specific surface area carbon material comprises 25 to 80 wt%
  • the high conductivity carbon material comprises 15 to 70 wt%
  • the binder is 1 to 40 wt%.
  • the high specific surface area carbon material has a specific surface area of 500 to 3,000 m 2 / g.
  • the highly conductive carbon material has an electric conductivity of 20 S / m or more.
  • the binder is at least one selected from the group consisting of polyester, PET, PTFE, PVdF, and CMC.
  • the first electrode layer and the second electrode layer are formed to a thickness of 10 ⁇ to 500 ⁇ .
  • the present invention also provides a lead-acid based battery system comprising any one of the above-described multi-layered electrodes.
  • the electrode is a cathode.
  • the multi-layer structure electrode for a lead-acid battery of the present invention can solve the problem that the carbon layer coated on the lead-acid battery negative electrode is removed by improving the adhesion force as well as reducing the resistance of the electrode interface.
  • the lead-acid battery system of the present invention employs a multi-layered electrode for a lead-acid battery having excellent adhesion between a carbon layer and an electrode, thereby improving the capacity reduction and the life of the system during high- Cycle performance can be realized.
  • FIG. 1 is a graph showing a capacity evaluation test result using an electrode in a multi-layer structure obtained according to an embodiment of the present invention.
  • FIG. 2 is a graph of a life test result using an electrode in a multi-layer structure obtained according to an embodiment of the present invention.
  • the technical feature of the present invention resides in a multi-layer structure electrode for a lead-acid battery which forms a carbon layer by first forming a layer containing a lead active material and carbon before forming a carbon layer on the electrode surface of the lead-acid battery.
  • a lead active material having a surface property similar to that of a lead-acid electrode of a lead-acid battery and a lead-containing active material and a carbon-containing layer simultaneously containing carbon having a surface similar to that of the carbon layer are formed on the electrode surface,
  • the adhesion between the electrode and the carbon layer is improved and the resistance of the electrode interface is reduced, thereby improving the performance of the electrode as well as the life of the electrode.
  • the present invention provides an electrode support comprising: an electrode; A first electrode layer including a lead active material and carbon formed on the surface of the support; And a carbon-containing second electrode layer formed on the surface of the first electrode layer.
  • the first electrode layer comprises a high specific surface area carbon material, a high conductivity carbon material, a lead active material and a binder
  • the second electrode layer may comprise a high specific surface area carbon material, a high conductivity carbon material and a binder.
  • the first electrode layer is formed by replacing the carbon material contained in the second electrode layer with a certain amount of lead active material.
  • the weight ratio of the lead active material content to the sum of the high specific surface area carbon material, the high conductivity carbon material and the binder is 1: 9 to 9: 1. If the weight ratio is less than the above range, there is a problem that the lead active material does not act as an additive and the electrical conductivity of the first mixed layer is inferior. If the weight ratio is exceeded, the specific surface area of the second mixed layer may decrease have. In this case, 25 to 80% by weight of the high specific surface area carbon material, 15 to 70% by weight of the high conductivity carbon material, and 1 to 40% by weight of the binder may be contained in the total content. The weight ratio was determined experimentally, and an appropriate effect could not be obtained outside the weight ratio range.
  • the second mixed layer may also contain 25 to 80 wt% of the high specific surface area carbon material, 15 to 70 wt% of the high conductive carbon material, and 1 to 40 wt% of the binder.
  • the weight ratio was determined experimentally, and an appropriate effect could not be obtained outside the weight ratio range.
  • the lead active material contained only in the first mixed layer may be at least one powder selected from the group consisting of Pb, PbO, PbO 2 , PbCl 2 , and PbSO 4 and may be used in a size of 0.1 to 100 ⁇ m.
  • the high specific surface area carbon material contained in the first electrode layer and the second electrode layer may be a carbon material having a specific surface area of 500 to 3,000 m 2 / g.
  • the specific surface area of the high specific surface area carbon material is less than 500 m 2 / g,
  • the electrode is coated with a small amount of the electrode, the electrolyte does not penetrate into the electrode, thereby deteriorating the electrode performance.
  • the excess surface area exceeding 3,000 m 2 / g promotes the generation of hydrogen, .
  • the high specific surface area carbon material used in the present invention may be any of known carbon materials as long as it is within the specific surface area described above, and may be activated carbon, carbon black, acetylene black or a combination thereof in one embodiment.
  • the scattering of the carbon material causes the stability of the working process to be very low, and the electrode layer having a size of more than 100 mu m Since uniform mixing is not achieved in constituting the slurry to be formed.
  • the highly conductive carbon material contained in the first electrode layer and the second electrode layer may be a carbon material having an electrical conductivity of 20 S / m or more. If the electrical conductivity of the highly conductive carbon material is less than 20 S / m, the electrical conductivity of the carbon active material decreases, The electrical resistance is increased.
  • the highly conductive carbon material used in the present invention may be any known carbon material as long as it is in the range of the above-mentioned electric conductivity, in one embodiment may be graphite, graphene, carbon nanotube or a combination thereof . Highly Conductive Carbon Material Powders of the same size as the high specific surface area carbon material may also be used.
  • the binder contained in the first electrode layer and the second electrode layer may be any known polymer material for the binder, and may be one or more selected from the group consisting of, for example, polyester, PET, PTFE, PVdF and CMC. Particularly, since the binder must be uniformly mixed with the carbon material, it can be used in a mixed state with the solvent.
  • the first electrode layer and the second electrode layer may be formed by dip coating method after each of the slurry for electrode coating including the above-described components is manufactured. After coating the first electrode layer, a second electrode layer is formed on the first electrode layer So that an electrode having a multilayered structure can be realized. At this time, the thicknesses of the first electrode layer and the second electrode layer coated on the electrode may be respectively 10 ⁇ ⁇ to 500 ⁇ ⁇ . Particularly, in the case of the second electrode layer, if the thickness is less than 10 ⁇ , a significant performance of the carbon layer can not be expected. If the thickness is 500 ⁇ or more, the electrode surface may be clogged by the carbon layer,
  • the multi-layered electrode of the present invention is manufactured by preparing a slurry for a first electrode layer and a second electrode layer, dip coating a lead electrode slurry on the first electrode layer slurry, For 0.5 to 10 hours to form a first electrode layer, dip coating the second electrode layer slurry, and then drying the same to form a second electrode layer.
  • the lead-acid based battery system of the present invention includes the above-described multi-layered electrode. That is, the electrode plate having the above-described structure may be implemented as a secondary battery including at least one of a cathode electrode and a cathode electrode.
  • the anode of the present invention may be used for both the anode and the cathode, It is possible to implement a secondary battery with a structure impregnated with sulfuric acid.
  • the lead-acid based battery system of the present invention can realize the above-described multi-layered electrode as a cathode.
  • Activated carbon as high specific surface area carbon and graphite as high electric conductivity carbon were selected, and activated carbon and graphite were pulverized to prepare powders having a size of 10-30 ⁇ .
  • PbO was selected as a lead active material and pulverized to prepare powders having a size of 10-30 ⁇ .
  • a second electrode layer active material composed of only carbon powder (content ratio of activated carbon and graphite: 1: 1) was prepared.
  • Slurry 1 for the first electrode layer was prepared by mixing 90 wt% of the first electrode layer active material and 10 wt% of CMC as a binder as solids and distilled water so that the solids concentration was 40 wt%.
  • slurry 1 for a second electrode layer was prepared by mixing 90 wt% of the second electrode active material and 10 wt% of CMC as a binder as solids and distilled water so that the solids concentration was 40 wt%.
  • a single layer electrode 1 having a first electrode layer having a thickness of 50 ⁇ ⁇ was prepared through dip coating using a slurry for a first electrode layer on an electrode plate coated with a flux.
  • Layer electrode 1 was formed by further forming a second electrode layer having a thickness of 50 ⁇ ⁇ on the surface of the first electrode layer through dip coating using the slurry for the second electrode layer with the first electrode layer formed thereon.
  • the electrode 2 in the multilayer structure was prepared in the same manner as in Example 1 except that the first electrode layer active material was composed of 75 wt% of carbon powder (content ratio of activated carbon and graphite: 1: 1) and 25 wt% of lead active material.
  • the electrode 1 in the multi-layer structure obtained in Example 1 was used as a cathode electrode, fixed to a case using a positive electrode and a separator, and then impregnated with a sulfuric acid solution having a specific gravity of 1.3 to prepare a unit cell 1.
  • Unit cell 2 was prepared in the same manner as in Example 3, except that the electrode 2 in the multilayer structure obtained in Example 2 was used as a cathode electrode.
  • a comparative electrode was prepared in the same manner as in Example 1, except that the second electrode layer was directly formed on the electrode plate coated with the flux without forming the first electrode layer.
  • a comparative unit cell was prepared in the same manner as in Example 3, except that the comparative anode was used as the cathode electrode.
  • the capacity was evaluated by charging until it reached 2.45 V with a current of 0.1 C (10 hour current), leaving it for 10 minutes for voltage and temperature stabilization, then discharging at a current of 0.1 C until reaching 1.75 V Respectively.
  • FIG. 1 shows only the results of the discharge. As shown in FIG. 1, the capacity of the unit cell including the electrode in the multilayer structure obtained in the present invention is improved.
  • Example 3 The unit cell 1, the unit cell 2 and the comparative unit cell obtained in Example 3, Example 4, and Comparative Example 2 were evaluated for life as described below, and the results are shown in FIG.
  • the life cycle is evaluated by charging each unit cell at a current of 0.1 C and charging it at 0.5 C (2 hour current) for 61 seconds. The discharge for 60 seconds was repeated at 0.5C. The cycle was terminated when the discharge end voltage reached 1.2V.

Abstract

본 발명은 납산 기반 축전지 시스템에 대한 것으로, 다층구조를 형성함으로써 전극 수명 및 성능이 향상된 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템에 대한 것이다.

Description

납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템
본 발명은 납산 기반 축전지 시스템에 대한 것으로, 다층구조를 형성함으로써 전극 수명 및 성능이 향상된 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템에 대한 것이다.
재충전가능한 전기화학적 배터리 및 커패시터와 같은, 휴대용 재충전가능한 에너지 저장 디바이스는 현대 운송 및 통신 수단 분야의 동력원으로서 더욱 더 필수적인 것으로 되고 있다.
납축전지는 오랜 시간 동안, 모바일 전력의 소스에 대한 요구들이 늘어남에 따라 진화되어왔다. 특정 서비스분야들에서, 플러디드(flooded) 납 축전지는 부분 충전 상태(partial state of charge; PSoC)로, 예컨대 대략 50 내지 80 % 의 충전 상태로 작동될 수 있으며, 이는 보통 100 % 의 충전 상태에서 작동되는 통상적인 SLI(시동, 점등 및 점화)와는 다르다. 예컨대, 하이브리드 전기 차량(hybrid electric vehicle; HEV)의 배터리는 PSoC 에서, 예컨대, 대략 50 내지 80% 충전에서 작동할 수 있다. 그럼으로써, 배터리는 적은 충전/재충전 사이클들을 겪을 수 있고, 물의 해리(dissociation)가 수소와 산소를 발생시키고 셀(cell) 내에서 층형 산(stratified acid)과 혼합되는 과충전(overcharge)을 겪지 않을 수 있다.
많은 에너지 저장소 성질들과 달리, 납축전지들에서는, 전해질 뿐만 아니라 전극 판 내의 활성물질들(예컨대, PbO 등)이 전자 화학 반응에 참여한다. 전자 화학 프로세스 동안, 황산납(lead sulfate)이 음성 전극에 끌어당겨지고 시드 결정(seed-crystal)들의 형태로 석출된다. 통상적인 완전히 충전된 작동 하에서, 결정들은 작고 판 표면에 잘 분산된 채로 남아있는다. 전극의 공극률은 미미하게 변한다. 하지만, PSoC 작동에서, 황산염 결정의 형성은 현저하게 덜 제어된다. 그 결과는 전극 공극률이 손상되는 정도까지의 광범위한 황산염 결정 성장일 수 있다. 이러한 스테이지에서, 결정 형성이 비가역적이기 때문에 판은 "황산화된(sulfated)" 것으로 지칭된다. 전하를 수용하기 위한 음성 전극의 능력은 급격하게 감소될 수 있고 결과적으로 배터리의 수명의 종료에 도달될 수 있다.
즉, 충전/방전과정에서 전극활물질인 납결정(Pb)은 납 이온(Pb2+)으로 변화한다. Pb2+ 이온은 방전과정에서 PbSO4 결정을 형성하게 되는데 PbSO4 결정이 성장함에 따라 전극 표면과 전해액 간의 접촉 면적이 줄고, 표면 전기전도성이 감소하여 국부적인 전자 이동 채널을 형성하여 국부적으로 PbSO4 결정이 크게 형성되어 전극 활물질의 이용률이 떨어지며, 충전 과정 중에 PbO2/Pb로 되돌아가지 못하여 전지의 수명이 급감하기 때문이다.
개량된 납산 기반 축전지 시스템은 기존 납산전지의 수명을 개선시키고자 개발된 기술이며, 카본 혼합물 층이 표면에 도포된 경우 증가된 표면 전기전도성으로 인해 국부적인 황산납(PbSO4)결정 성장을 막고 PbO2/Pb로 회복되는 것을 도와 전지의 수명을 향상시킨다.
하지만 개량된 납산 기반 축전지 시스템은 전극 표면에 카본 혼합층을 도입하여 전극의 수명을 향상시키고자 하였으나, 카본 혼합층의 전기전도성이 낮아 PbSO4 결정 성장을 막지 못하거나, 카본층이 음극전극에서 탈락되는 문제점이 여전히 남아있었다.
따라서, 본 발명의 목적은 납산전지용 음극에 코팅된 카본층이 탈락되는 문제점을 결착력 향상은 물론 전극계면의 저항감소 등을 통해 해결하여 전극 수명이 향상된 납축전지용 다층구조상 전극을 제공하는 것이다.
본 발명의 다른 목적은 카본층과 전극과의 결착력이 우수한 납축전지용 다층구조상 전극을 채용함으로써, 고율 충전/방전 조작 시에 용량 감소를 개선할 뿐만 아니라 시스템 수명도 향상시킬 수 있는 납산 기반 축전지 시스템을 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술된 본 발명의 목적을 달성하기 위해, 본 발명은 납으로 구성된 전극지지체; 상기 지지체 표면에 형성되는 납활물질 및 카본 포함 제1전극층; 및 상기 제1전극층 표면에 형성되는 카본포함 제2전극층;을 포함하는 납산전지용 다층구조상 전극을 제공한다.
바람직한 실시예에 있어서, 상기 제1전극층은 고비표면적 카본재료, 고전도성 카본재료, 납활물질 및 바인더를 포함한다.
바람직한 실시예에 있어서, 상기 납활물질의 함량과 상기 고 비표면적 카본재료, 고 전도성 카본재료 및 바인더의 합산함량의 중량비는 1:9 내지 9:1이다.
바람직한 실시예에 있어서, 상기 합산함량 중 상기 고 비표면적 카본 재료는 25 내지 80 중량%, 상기 고 전도성 카본 재료는 15 내지 70중량%, 및 바인더는 1 내지 40중량%이다.
바람직한 실시예에 있어서, 상기 제2전극층은 고비표면적 카본재료, 고전도성 카본재료 및 바인더를 포함한다.
바람직한 실시예에 있어서, 상기 고 비표면적 카본 재료는 25 내지 80 중량%, 상기 고 전도성 카본 재료는 15 내지 70중량%, 및 바인더는 1 내지 40중량%로 포함된다.
바람직한 실시예에 있어서, 상기 고비표면적 카본재료는 비표면적이 500 내지 3,000 m2/g이다.
바람직한 실시예에 있어서, 상기 고전도성 카본재료는 전기전도도가 20S/m이상이다.
바람직한 실시예에 있어서, 상기 바인더는 폴리에스테르, PET, PTFE, PVdF, CMC로 구성된 그룹에서 선택되는 1개 이상이다.
바람직한 실시예에 있어서, 상기 제1전극층 및 제2전극층은 10㎛ 내지 500㎛ 두께로 형성된다.
또한, 본 발명은 상술된 어느 하나의 다층구조상 전극을 포함하는 납산 기반 축전지 시스템을 제공한다.
바람직한 실시예에 있어서, 상기 전극은 음극이다.
먼저, 본 발명의 납축전지용 다층구조상 전극은 납산전지용 음극에 코팅된 카본층이 탈락되는 문제점을 결착력 향상은 물론 전극계면의 저항감소 등을 통해 해결하여 전극 수명을 향상시킬 수 있다.
또한, 본 발명의 납산 기반 축전지 시스템은 카본층과 전극과의 결착력이 우수한 납축전지용 다층전극을 채용함으로써, 고율 충전/방전 조작 시에 용량 감소를 개선할 뿐만 아니라 시스템 수명도 향상시킬 수 있어 우수한 사이클 성능의 2차전지를 구현할 수 있다.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따라 얻어진 다층구조상 전극을 이용한 용량평가 실험 결과그래프이다.
도 2는 본 발명의 실시예에 따라 얻어진 다층구조상 전극을 이용한 수명평가 실험 결과그래프이다.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.
본 발명의 기술적 특징은 납산전지의 전극 표면에 카본층을 형성하기 전에 납활물질과 카본이 포함된 층을 먼저 형성한 후 카본층을 형성하는 납산전지용 다층구조상 전극에 있다.
즉, 납산 전지의 납 소재 전극의 표면과 비슷한 표면 특성을 갖는 납활물질과 카본층과 비슷한 표면을 특성을 갖는 카본을 동시에 포함하는 납활물질 및 카본 포함 층을 전극표면에 형성한 후 카본층을 형성하게 되면 전극과 카본층의 결착력이 향상되고 전극 계면의 저항이 줄어들어 전극의 성능향상은 물론 수명까지도 증가시킬 수 있기 때문이다.
따라서, 본 발명은 납으로 구성된 전극지지체; 상기 지지체 표면에 형성되는 납활물질 및 카본 포함 제1전극층; 및 상기 제1전극층 표면에 형성되는 카본포함 제2전극층;을 포함하는 납산전지용 다층구조상 전극을 제공한다.
제1전극층은 고비표면적 카본재료, 고전도성 카본재료, 납활물질 및 바인더를 포함하고, 제2전극층은 고비표면적 카본재료, 고전도성 카본재료 및 바인더를 포함할 수 있다.
특히, 제1전극층은 제2전극층에 포함된 카본재료를 일정함량 납활물질로 대체한 것으로, 납활물질의 함량과 상기 고 비표면적 카본재료, 고 전도성 카본재료 및 바인더의 합산함량의 중량비가 1:9 내지 9:1로 포함될 수 있는데, 상기 중량비 미만인 경우 납 활물질이 첨가제로서 작동하지 않아 제 1 혼합층의 전기전도성이 떨어지는 문제가 있고, 초과하게 되면 제 2 혼합층의 비표면적이 감소하는 문제가 있을 수 있다. 이 때, 합산함량 중 고비표면적 카본 재료는 25 내지 80 중량%, 상기 고 전도성 카본 재료는 15 내지 70중량%, 및 바인더는 1 내지 40중량%일 수 있다. 상기 중량비는 실험적으로 결정된 것으로, 상기 중량비 범위 밖에서는 적절한 효과를 얻을 수 없었다.
제 2 혼합층 또한 고비표면적 카본 재료는 25 내지 80 중량%, 상기 고 전도성 카본 재료는 15 내지 70중량%, 및 바인더는 1 내지 40중량%으로 포함할 수 있다. 상기 중량비는 실험적으로 결정된 것으로, 상기 중량비 범위 밖에서는 적절한 효과를 얻을 수 없었다.
제1 혼합층에만 포함되는 납활물질은 Pb, PbO, PbO2, PbCl2, PbSO4 으로 구성된 그룹에서 선택되는 하나 이상으로서 0.1 내지 100㎛ 크기의 분말이 사용될 수 있다.
제1전극층 및 제2전극층에 포함되는 고비표면적 카본재료는 비표면적이 500 내지 3,000 m2/g인 카본재료일 수 있는데, 고 비표면적 카본재료의 비표면적이 500m2/g 미만이면 기공이 너무 작아 전극을 코팅하였을 경우, 전해액이 전극 내부로 침투되지 않아 전극 성능이 떨어지는 문제가 있고, 3,000 m2/g을 초과하게 과도한 비표면적으로 인해 수소발생이 촉진되어 전해액의 감소가 극심해져 전극의 수명이 감소하게 된다. 본 발명에서 사용되는 고비표면적 카본재료는 상술된 비표면적의 범위에 있기만 하면 공지된 모든 카본재료가 사용될 수 있는데 일 구현예로서 활성탄, 카본블랙, 아세틸렌 블랙 또는 이들의 조합 중 어느 하나일 수 있다. 고비표면적 카본재료는 0.1 내지 100㎛ 크기의 분말이 사용될 수 있는데, 고 비표면적 카본 재료의 크기가 0.1㎛ 미만이면 카본 재료의 비산으로 작업공정의 안정성이 매우 저하되고, 100㎛를 초과하게 전극층을 형성하기 위한 슬러리를 구성하는데 있어 균일한 혼합이 이뤄지지 않기 때문이다.
제1전극층 및 제2전극층에 포함되는 고전도성 카본재료는 전기전도도가 20S/m이상인 카본재료일 수 있는데, 고전도성 카본재료의 전기전도도가 20S/m 미만이면 탄소 활물질의 전기전도도가 감소하여 코팅층을 구성하였을 경우 전기저항이 증가하기 때문이다. 본 발명에서 사용되는 고전도성 카본재료는 상술된 전기전도도의 범위에 있기만 하면 공지된 모든 카본재료가 사용될 수 있는데 일 구현예로서 그라파이트, 그래핀, 탄소 나노튜브 또는 이들의 조합 중 어느 하나일 수 있다. 고전도성카본재료 또한 고비표면적 카본재료와 동일한 크기의 분말이 사용될 수 있다.
제1전극층 및 제2전극층에 포함되는 바인더는 공지된 모든 바인더용 고분자 물질일 수 있는데, 예를 들면 폴리에스테르, PET, PTFE, PVdF, CMC로 구성된 그룹에서 선택되는 하나 이상일 수 있다. 특히 바인더는 카본 재료와 균일하게 혼합되어 있어야 하므로 용매와 혼합된 상태로 사용될 수 있다.
제1전극층과 제2전극층은 상술된 구성요소를 포함한 전극코팅용 슬러리를 각각 제조한 후 전극에 딥코팅 방법으로 형성할 수 있는데, 제1전극층을 코팅한 후 제1전극층 상에 제2전극층이 형성되도록 함으로써 다중 층상구조를 갖는 전극을 구현할 수 있다. 이때, 전극에 코팅되는 제1전극층 및 제2전극층의 두께는 각각 10㎛ 내지 500㎛로 형성될 수 있다. 특히 제2전극층의 경우 두께가 10㎛ 미만이면 카본 층의 의미 있는 성능을 기대할 수 없으며, 500㎛ 이상이면 카본층에 의해 전극 표면이 막혀 전극 성능이 떨어질 수 있기 때문이다.
일 구현예로서 본 발명의 다층구조상 전극은 제1전극층용 슬러리 및 제2전극층용 슬러리를 제조한 후, 납 소재 전극지지체를 제1전극층용 슬러리에 딥코팅한 후 25-80℃로 유지되는 건조기에서 0.5-10시간 유지하여 건조시킴으로써 제1전극층을 형성한 후 다시 제2전극층용 슬러리에 딥코팅한 후 동일한 건조과정을 거쳐 제2전극층을 형성함으로써 제조될 수 있다.
본 발명의 납산 기반 축전지 시스템은 상술된 다층구조상 전극을 포함한다. 즉 상술된 구조의 전극판을 음극전극, 양극전극 중 하나 이상을 포함한 2차전지로 구현할 수 있는데, 예를 들어 양극 및 음극을 모두 본 발명의 전극을 사용하고 양극전극과 음극전극 사이에 격리막을 두고 황산으로 함침한 구조로 2차전지를 구현할 수 있을 것이다.
특히, 본 발명의 납산 기반 축전지 시스템은 상술된 다층구조상 전극을 음극으로 구현할 수 있다.
실시예 1
1. 카본재료 준비
고비표면적 카본으로 활성탄, 고전기전도성 카본으로 그라파이트를 선택하고, 활성탄 및 그라파이트를 분쇄하여 10-30㎛ 크기의 분말을 제조하였다.
2. 납활물질 준비
납활물질로 PbO를 선택하고, 분쇄하여 10-30㎛ 크기의 분말을 제조하였다.
3. 제1전극층용 활물질 및 제2전극층용 활물질제조
카본분말(활성탄 및 그라파이트의 함량비 1:1) 25 중량% 및 납활물질 75 중량%로 구성된 제1전극층용 활물질을 제조하였다.
또한, 카본분말(활성탄 및 그라파이트의 함량비 1:1)만으로 구성된 제2전극층용활물질을 제조하였다.
4. 제1전극층용 슬러리 및 제2전극층용 슬러리 제조
제1전극층용 활물질 90 중량% 및 바인더로서 CMC 10 중량%를 고형물로 포함하고, 고형물 농도가 40 중량%가 되도록 증류수를 혼합하여 제1전극층용 슬러리 1을 제조하였다.
또한, 제2전극용 활물질 90 중량% 및 바인더로서 CMC 10 중량%를 고형물로 포함하고, 고형물 농도가 40 중량%가 되도록 증류수를 혼합하여 제2전극층용 슬러리 1을 제조하였다.
5. 제1전극층 형성
연분이 도장된 전극판에 제1전극층용 슬러리를 이용하여 딥코팅을 통해 두께가 50㎛로 제1전극층이 형성된 단층전극1을 제조하였다.
6. 제2전극층 형성
제1전극층이 형성된 단층전극1을 제2전극층용 슬러리를 이용하여 딥코팅을 통해 제1전극층의 표면에 두께가 50㎛인 제2전극층을 더 형성하여 다층구조상 전극1을 제조하였다.
실시예 2
제1전극층용 활물질을 카본분말(활성탄 및 그라파이트의 함량비 1:1) 75 중량% 및 납활물질 25 중량%로 구성한 것을 제외하면 실시예1과 동일한 방법을 수행하여 다층구조상 전극2를 제조하였다.
실시예 3
실시예 1에서 얻어진 다층구조상 전극1을 음극전극으로 하고 양극전극 및 격리판을 이용하여 케이스에 고정시킨 후 비중 1.3의 황산 용액을 함침하여 단위셀 1을 제조하였다.
실시예 4
실시예 2에서 얻어진 다층구조상 전극2를 음극전극으로 하는 것을 제외하면 실시예 3과 동일한 방법으로 단위셀 2를 제조하였다.
비교예 1
제1전극층을 형성하지 않고 연분이 도장된 전극판에 제2전극층을 바로 형성한 것을 제외하면 실시예1과 동일한 방법으로 비교예전극을 제조하였다.
비교예 2
비교예전극을 음극전극으로 하는 것을 제외하면 실시예3과 동일한 방법으로 비교예단위셀을 제조하였다.
실험예 1
실시예3, 실시예4 및 비교예2에서 얻어진 단위셀1, 단위셀2 및 비교예단위셀을 대상으로 다음과 같이 용량을 평가하고 그 결과를 도 1에 도시하였다.
용량평가는 0.1C(10시간율 전류)의 전류로 2.45V에 도달할 때까지 충전 후, 전압 및 온도 안정화를 위해 10분 동안 방치한 다음, 1.75V에 도달할 때까지 0.1C의 전류로 방전하여 실시하였다.
도 1에는 방전에 대한 결과만을 나타내었는데, 도 1에 도시된 바와 같이 본 발명에서 얻어진 다층상구조상 전극을 포함하는 단위셀의 용량이 향상됨을 알 수 있었다.
실험예 2
실시예3, 실시예4 및 비교예2에서 얻어진 단위셀1, 단위셀2 및 비교예단위셀을 대상으로 다음과 같이 수명을 평가하고 그 결과를 도 2에 도시하였다.
수명평가는 각 단위셀을 0.1C의 전류로 충전한 뒤, 0.5C(2시간율 전류)로 61초 충전 후. 0.5C로 60초 방전을 반복하였다. 방전 종지전압이 1.2V가 되면 사이클을 종료하였다.
도 2에 도시된 바와 같이 본 발명에서 얻어진 다층상구조상 전극을 포함하는 단위셀의 수명이 현저하게 향상됨을 확인 할 수 있었다.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.

Claims (12)

  1. 납으로 구성된 전극지지체;
    상기 지지체 표면에 형성되는 납활물질 및 카본 포함 제1전극층; 및
    상기 제1전극층 표면에 형성되는 카본포함 제2전극층;을 포함하는 납산전지용 다층구조상 전극.
  2. 제 1 항에 있어서,
    상기 제1전극층은 고비표면적 카본재료, 고전도성 카본재료, 납활물질 및 바인더를 포함하는 것을 특징으로 하는 납산전지용 다층구조상 전극.
  3. 제 2 항에 있어서,
    상기 납활물질의 함량과 상기 고 비표면적 카본재료, 고 전도성 카본재료 및 바인더의 합산함량의 중량비는 1:9 내지 9:1인 것을 특징으로 하는 납산전지용 다층구조상 전극.
  4. 제 3 항에 있어서,
    상기 합산함량 중 상기 고 비표면적 카본 재료는 25 내지 80 중량%, 상기 고 전도성 카본 재료는 15 내지 70중량%, 및 바인더는 1 내지 40중량%인 것을 특징으로 하는 납산전지용 다층구조상 전극.
  5. 제 1 항에 있어서,
    상기 제2전극층은 고비표면적 카본재료, 고전도성 카본재료 및 바인더를 포함하는 것을 특징으로 하는 납산전지용 다층구조상 전극.
  6. 제 5 항에 있어서,
    상기 고 비표면적 카본 재료는 25 내지 80 중량%, 상기 고 전도성 카본 재료는 15 내지 70중량%, 및 바인더는 1 내지 40중량%로 포함되는 것을 특징으로 하는 납산전지용 다층구조상 전극.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 고비표면적 카본재료는 비표면적이 500 내지 3,000 m2/g인 것을 특징으로 하는 납산전지용 다층구조상 전극.
  8. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 고전도성 카본재료는 전기전도도가 20S/m이상인 것을 특징으로 하는 납산전지용 다층구조상 전극.
  9. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 바인더는 폴리에스테르, PET, PTFE, PVdF, CMC로 구성된 그룹에서 선택되는 1개 이상인 것을 특징으로 하는 납산전지용 다층구조상 전극.
  10. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 제1전극층 및 제2전극층은 10㎛ 내지 500㎛ 두께로 형성되는 것을 특징으로 하는 납산전지용 다층구조상 전극.
  11. 제 1 항 내지 제 6 항 중 어느 한 항의 다층구조상 전극을 포함하는 납산 기반 축전지 시스템.
  12. 제 11 항에 있어서,
    상기 전극은 음극인 것을 특징으로 하는 납산 기반 축전지 시스템.
PCT/KR2018/007384 2017-08-25 2018-06-29 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템 WO2019039722A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170108124A KR102085301B1 (ko) 2017-08-25 2017-08-25 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템
KR10-2017-0108124 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039722A1 true WO2019039722A1 (ko) 2019-02-28

Family

ID=65440050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007384 WO2019039722A1 (ko) 2017-08-25 2018-06-29 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템

Country Status (2)

Country Link
KR (1) KR102085301B1 (ko)
WO (1) WO2019039722A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051306A (ja) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The 鉛蓄電池用負極
JP2010257673A (ja) * 2009-04-23 2010-11-11 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2011071112A (ja) * 2009-08-27 2011-04-07 Furukawa Battery Co Ltd:The 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池
JP5348130B2 (ja) * 2008-03-24 2013-11-20 日本ゼオン株式会社 鉛蓄電池用電極
JP2014505968A (ja) * 2010-12-21 2014-03-06 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション 鉛蓄電池システム用の電極及び蓄電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051306A (ja) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The 鉛蓄電池用負極
JP5348130B2 (ja) * 2008-03-24 2013-11-20 日本ゼオン株式会社 鉛蓄電池用電極
JP2010257673A (ja) * 2009-04-23 2010-11-11 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2011071112A (ja) * 2009-08-27 2011-04-07 Furukawa Battery Co Ltd:The 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池
JP2014505968A (ja) * 2010-12-21 2014-03-06 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション 鉛蓄電池システム用の電極及び蓄電装置

Also Published As

Publication number Publication date
KR20190022166A (ko) 2019-03-06
KR102085301B1 (ko) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2011159051A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2012165758A1 (ko) 리튬 이차전지
WO2014109523A1 (ko) 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2013062337A2 (ko) 케이블형 이차전지
WO2015023154A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2013055190A1 (ko) 케이블형 이차전지
US20190305370A1 (en) Solid electrolyte laminate and all-solid-state battery using the same
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2009134047A1 (ko) 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
WO2014168327A1 (ko) 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2011153105A1 (en) Si composite electrode with li metal doping for advanced lithium-ion battery
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2012118338A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2014129720A1 (ko) 실리콘-금속 합금계 음극 활물질을 포함하는 이차전지
WO2014133372A1 (ko) 리튬 황 전지용 양극 및 이를 포함하는 리튬 황 전지
WO2020122459A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
WO2019004655A1 (ko) 전극 조립체 및 그를 포함하는 리튬 이차전지
WO2016111605A1 (ko) 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2019009560A1 (ko) 전극 및 이를 포함하는 리튬 이차전지
WO2012111935A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2015080357A1 (ko) 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법
WO2019039722A1 (ko) 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847846

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18847846

Country of ref document: EP

Kind code of ref document: A1