WO2019039326A1 - スラグのフォーミング抑制方法および転炉精錬方法 - Google Patents

スラグのフォーミング抑制方法および転炉精錬方法 Download PDF

Info

Publication number
WO2019039326A1
WO2019039326A1 PCT/JP2018/030076 JP2018030076W WO2019039326A1 WO 2019039326 A1 WO2019039326 A1 WO 2019039326A1 JP 2018030076 W JP2018030076 W JP 2018030076W WO 2019039326 A1 WO2019039326 A1 WO 2019039326A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
converter
discharge
blowing
forming
Prior art date
Application number
PCT/JP2018/030076
Other languages
English (en)
French (fr)
Inventor
玲洋 松澤
政憲 沼田
智 尾林
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2019538078A priority Critical patent/JP6835233B2/ja
Priority to KR1020197037733A priority patent/KR20200010423A/ko
Priority to CN201880046869.6A priority patent/CN110892083A/zh
Publication of WO2019039326A1 publication Critical patent/WO2019039326A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • C21C2005/366Foam slags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for suppressing slag forming (foaming) and a converter refining method.
  • the hot metal produced in blast furnaces etc. in the steel making process has a high C concentration of 4-5% by mass and a P concentration of around 0.1% by mass, and if solidified as it is into pig iron, it has low workability and toughness. It is difficult to use as a steel product. Therefore, while carrying out dephosphorization and decarburization treatment in the refining process, various components are adjusted to produce steel satisfying the required quality. In this dephosphorization and decarburization treatment, C and P in the molten iron are oxidized and removed by the slag containing oxygen gas and FeO, but Si contained in the molten metal is more easily oxidized than P, so substantially desiliconization and decarburization Dephosphorization and decarburization reactions proceed in parallel.
  • Non-Patent Document 1 discloses a method (hereinafter, referred to as a continuous treatment method) in which the carbon black is discharged from the furnace opening and the converter is returned to the vertical direction and subsequently decarburization blowing is performed.
  • Patent Document 1 discloses a method of charging in a furnace again and performing decarburization blowing (hereinafter referred to as a separation treatment method).
  • the former is an operation mode using one converter, and is a system in which slag discharge from the furnace opening is performed between desiliconization / dephosphorization blowing and decarburization blowing.
  • the latter is an operation mode using two or more converters, and at least one converter is used for desiliconization and dephosphorization blowing, in which the slag discharge from the furnace port is removed by desiliconization and It is a method performed in the middle of dephosphorization blowing.
  • the operation of discharging the slag in the converter between the two blows is also referred to as intermediate discharge.
  • it is common to increase the volume of the slag by utilizing the forming (foaming) phenomenon of the slag generated during blowing.
  • the forming of the converter slag is generated by reaction between C in the hot metal and oxygen gas in the molten metal or FeO in the slag to generate a large number of CO bubbles and staying in the slag.
  • the formed slag is discharged from the furnace port and accommodated in a waste pan installed below the converter. As the amount of slag discharged to the waste pan increases, the amount of SiO 2 and P 2 O 5 remaining in the furnace can be reduced, and the amount of refined materials such as quick lime used can be reduced in the refining after intermediate dumping. be able to.
  • Patent Document 2 discloses a forming inhibitor which inserts carbonate such as raw dolomite and suppresses generation of CO gas by heat absorption at the time of thermal decomposition. ing. The other is a method of breaking (breaking) bubbles retained in the slag.
  • Patent Document 3 discloses a forming soothing agent mainly composed of pulp waste.
  • the forming sedative agent rapidly generates a gas in the slag by the reaction of combustion and thermal decomposition, and is ruptured by its volume expansion energy to shrink the slag.
  • Patent Documents 4 to 6 in view of the fact that water is rapidly vaporized at high temperature, availability is easy, and inexpensiveness, mist-like or jet-like water is sprayed to the molten slag to A method is disclosed to quench forming by breaking or solidifying the surface.
  • waste ladle containing the discharged slag is transported by a truck or a railway, but CO bubbles continue to be generated gradually during this period, so "post-bulging" that the slag gradually expands occurs. There is a risk of overflow during transport, and the amount of slag discharged to the waste ladle may have to be limited.
  • Patent Documents 2 to 6 do not consider the relationship between the discharge rate of slag and the injection rate of the forming inhibitor, and like the middle waste, the slag is continuously fed to the waste pan. In the process of discharging, it is difficult to discharge a large amount of slag in a short time. With regard to post-swelling after discharge, the method of Patent Document 2 promotes the solidification (skinning) of the slag surface because CaO and MgO generated by thermal decomposition of the added carbonate raise the melting point of the slag, It becomes easy for CO bubbles to stagnate and to cause post blistering.
  • the post-expansion can not be suppressed unless the sedative agent is added even during transportation.
  • the covering of the surface of the slag is promoted, and post-expansion tends to occur as in Patent Document 2.
  • the slag discharge amount can not cope with the variation in each charge, it is difficult to reliably suppress the post expansion and there is a possibility that the post expansion may occur with a certain probability.
  • the present invention has been made in view of such problems, and in the process of continuously discharging formed slag from the furnace port to the discharge pan, the slag forming in the discharge pan is efficiently suppressed and discharged.
  • An object of the present invention is to provide a method for improving the amount of slag discharge by suppressing the post expansion after chewing.
  • the method for suppressing forming according to the present invention includes a converter refining method in which deboration / dephosphorization blowing, intermediate displacement and decarburization blowing are continuously performed in one converter, or at least one of two or more converters. It can be used in the converter smelting system, which performs desiliconization, middle displacement and dephosphorization blowing on a base basis.
  • the forming suppression method of the slag which concerns on this invention which meets the said objective is as follows. (1) When the slag is discharged from the furnace port of the converter to the discharge pan installed below the converter, the water jet is discharged at a speed satisfying the range of the formula (1) after the start of the discharge of the slag.
  • the forming control method of slag characterized by spraying to the slag fall position of a pot.
  • V water Spray speed of water jet from discharge start to discharge end (kg / min)
  • Vslag Slag discharge rate (kg / min) for 2 minutes from the start of discharge
  • the converter refining method according to the present invention is as follows. (3) After charging the molten metal into one converter and performing desiliconization and dephosphorization blowing, the converter is tilted while leaving the molten metal in the furnace to discharge slag from the furnace opening, The converter according to (1) or (2), wherein the method for suppressing forming according to (1) or (2) is used at the time of slag discharge after dephosphorization blowing in a refining method in which decarburization blowing is subsequently carried out after returning the furnace vertically. How to refine.
  • forming can be efficiently suppressed by blowing water jets at an appropriate speed corresponding to the slag discharge rate from the converter, and a large amount of slag can be discharged without causing slag overflow from the discharge pan. it can.
  • slag is gradually expanded during conveyance of the drainage pan, it is possible to suppress swelling.
  • dephosphorization blowing in the converter oxidizes P of molten iron by blowing oxygen jet at high speed hot metal surface, is removed as P 2 O 5 to the slag.
  • Si in the hot metal is also oxidized and transferred to the slag as SiO 2 .
  • C in the hot metal reacts with oxygen gas or FeO in the slag to generate CO bubbles, and a part thereof is retained in the slag to cause forming.
  • the slag is discharged from the furnace port to a discharge pan installed below the converter, but the forming also occurs in the discharge pan. This is because, during blowing, a part of the hot metal is torn off by the oxygen jet and suspended as granular iron in the slag, and carbon (C) contained in the granular iron is expressed by the formula (2) in the waste pan In order to generate CO bubbles due to the reaction of
  • the inventors conducted a small-scale furnace experiment under the conditions of the composition and temperature that assume the above-described furnace outlet slag of the continuous treatment method and the separation treatment method in order to study the effective utilization method of water.
  • H 1.5 Slag height (mm) 1.5 minutes after pouring the pig iron (30 seconds before immersion in paper waste)
  • H 2.5 Slag height (mm) 2.5 minutes after pouring the pig iron (after 30 seconds immersion in paper waste)
  • the time-dependent change of slag height is shown in FIG.
  • the slag height hardly changed even if the paper waste was immersed. After that, C in the pig iron was gradually consumed, so the generation of CO bubbles decreased, and the slag height decreased.
  • the water content was 0.05 g (open triangles)
  • re-forming post-bulging
  • the relationship between the water content and the sedation rate is shown in FIG.
  • the sedation rate was highest when the water content was 0.1 to 0.2 g, and decreased at 0.4 g.
  • the forming sedative mechanism of the slag is a mechanism that suppresses the formation of air bubbles in the slag and, as described in Patent Document 6 described above (see paragraph [0023] in the same publication), stagnation in the slag. It is classified into the mechanism which breaks up the bubble (break). Therefore, it was examined which of the two types of mechanisms was the main factor in the slag forming quenching mechanism by the addition of water observed above.
  • the inventors conducted a heat balance analysis in order to verify the possibility of the sedation of the forming as a result of the lowering of the slag temperature and the generation of CO bubbles due to the input of water. The results are shown in FIG.
  • the slag is cooled by the heat of vaporization of H 2 O, the water content is only about 10 to 20 ° C. when the water content is 0.1 to 0.2 g.
  • the temperature of the slag decreases by 35 to 70 ° C. Furthermore, the temperature reduction of the total of evaporation and decomposition at a water content of 0.4 g is 145 ° C. and is cooled to 1205 ° C. In this temperature range, the slag does not fully solidify, but is in the coexistence of the solid phase and the liquid phase.
  • the sedative effect of water is mainly due to the suppression of the generation of CO bubbles due to slag cooling. That is, the slag temperature is lowered along with the evaporation / decomposition reaction of H 2 O, and the generation rate of CO bubbles is lowered and the bubble discharge from the slag proceeds. On the other hand, if it is excessively cooled, the slag is in a solid-liquid coexistence state, and air bubbles are likely to remain inside the slag. Thus, there is an amount of water that maximizes the sedative effect.
  • the forming sedative mechanism is caused by the suppression of the generation of CO bubbles
  • the timing to start the spray of the water jet be performed within 30 seconds after the start of the discharge of the slag in the middle drainage.
  • the timing to start the spray of the water jet since the sedative mechanism of forming is considered to be due to the break of the water flow, there is no particular mention of the timing to start the spray of the water jet, and the jet time related to the flow rate of water exclusively Only mentioned (see paragraph [0026] of the same publication).
  • the slag composition had a basicity (CaO / SiO 2 ) of 1.0 to 1.2, an iron oxide concentration of 20 to 30% by mass, and a temperature of 1330 to 1350 ° C.
  • the tilting of the converter was once stopped to stop the drainage, and after the forming height was lowered by the spraying of a water jet, the converter was tilted again to restart the drainage. If the slag is about to overflow under the condition without water jet spraying, the converter's tilting is stopped once to stop the drainage, and after confirming that the forming height has stopped rising, the converter is tilted again. And he resumed his exclusion.
  • the converter When the slag overflowed from the discharge pan, the converter was tilted again to restart the discharge after the forming height dropped.
  • the drainage time was 5 minutes including the time during which the drainage was interrupted. After 5 minutes, even though slag discharge continued, the exhaust ended and the converter was erected.
  • the “falling position” is defined as a range within a radius of 1 m from the falling center of the drainage flow. At this position, since the slag is vigorously stirred, water can be caught in the slag, and the forming can be efficiently suppressed.
  • the forming suppression effect was evaluated by the displacement rate (%) of Formula (4). As the effect of suppressing forming is more excellent, the rate of displacement and the interruption of displacement are eliminated, so that the displacement rate becomes higher.
  • the mass ( Wslag ) of slag in the furnace was determined by calculating the mass balance from the mass of the added refined material such as quick lime and the component value of the collected slag.
  • the temperature of the slag was measured by a radiation thermometer after displacement.
  • V water (kg / min) of the water jet was constant from the discharge start to the discharge end, and V water was changed variously to carry out slag discharge.
  • the inventors internally use the slag collected during the drainage test in the actual machine test, the slag collected after the drainage, and the slag collected after the drainage pan is inverted for watering and cooling.
  • the slag temperature at the completion of the displacement was 1320 ° C.
  • the C concentration in the granular iron is 1.6 to 2.2 mass% of the slag collected during the drainage, and 1.5 for the slag collected after the drainage
  • the content was 2.1 to 2.1% by mass
  • the slag after cooling was 1.5 to 2.0% by mass.
  • the slag temperature after displacement was 1260 ° C.
  • the Fe-C system phase diagram is shown in FIG. 6, and after cooling, the granular iron C concentration of the slag substantially corresponds to the solidus of gamma iron.
  • the granular iron content in the slag has the liquid phase ratio gradually decreased since the C concentration is lowered by the generation of CO bubbles, and the generation of the CO bubbles is stopped in the solidus composition. For this reason, it is considered that the lower the slag temperature, the smaller the amount of CO generated until the solidus composition is reached, and the post-expulsion becomes difficult to occur.
  • Formula (5) was obtained as a suitable condition for spraying a water jet.
  • V water Spray speed of water jet from discharge start to discharge end (kg / min)
  • Vslag Slag discharge rate (kg / min) for 2 minutes from the start of discharge
  • the spraying of the water jet does not have to be continued until the end of the discharge, and may be interrupted if it can be predicted that slag overflow will not occur in view of the forming status of the slag in the discharge pan.
  • the molten iron is charged into the converter and blowing is performed, and the blowing is temporarily interrupted and the converter is tilted while leaving the molten iron in the furnace, and the slag is disposed in the waste ladle installed below the furnace body.
  • the converter is tilted with slag remaining in the furnace to leave slag. It is a converter blowing method that discharges from the furnace opening and returns the converter vertically to be followed by dephosphorization blowing. Since the form which discharges slag from a furnace opening using a forming phenomenon is the same as these, the effect can be enjoyed by using this invention.
  • the overflow of the slag can be suppressed by using the present invention.
  • Hot metal is charged into the converter and blowing is performed, and the blowing is interrupted once and the converter is tilted while leaving the hot metal in the furnace, and a waste pot installed below the furnace (internal volume: 70 m 3 ) For 5 minutes.
  • a water jet was continuously blown to the slag in the discharge pan, and the appearance in the discharge pan was visually observed. In the condition without water jet spray, only slag was discharged to the waste pan.
  • the tilting of the converter was once stopped to stop the drainage, and after the forming height was lowered by the spraying of a water jet, the converter was tilted again to restart the drainage. If the slag is about to overflow under the condition without water jet spraying, the converter's tilting is stopped once to stop the displacement, and after confirming that the forming height has stopped rising, the converter is tilted again. And he resumed his exclusion. In addition, even if the slag overflowed from the waste ladle, when the forming height decreased thereafter, the converter was tilted again to resume the waste removal.
  • the drainage time was 5 minutes including the time during which the drainage was interrupted.
  • Table 1 shows an example of intermediate disposal after desiliconization and dephosphorization blowing in a continuous treatment system. Underlines in the table indicate parts outside the scope of the present invention.
  • V water / V slag is the ratio of the spray speed of water jet (V water ) to the slag discharge speed (V slag ) of 2 minutes from the start of discharge. If this value is 0.15 to 0.60, the above equation (1) is satisfied, and the spray speed is within the range of the present invention.
  • the "spraying position" is A: within a radius of 1 m from the dropping position of the drainage flow, and B: within a radius of 1 m or more from the dropping position of the drainage flow.
  • the slag composition had a basicity (CaO / SiO 2 ) of 1.0 to 1.2, an iron oxide concentration of 20 to 30% by mass, and a temperature of 1330 to 1350 ° C.
  • Examples 1 to 4 in Table 1 are invention examples, and since the method of spraying the water jet is all within the scope of the present invention, the slag can be discharged without overflowing from the discharge pan, and the discharge rate is 55 It became over%. In addition, no post-discharge swelling occurred. Further, in Examples 1 to 3, since the spraying of the water jet was started within 30 seconds after the start of the slag displacement, the slag overflowed and no post-swelling after the displacement occurred. On the other hand, since Example 4 started spraying of a water jet after lapse of 30 seconds or more after slag discharge start of a slag, it became a result to which a discharge rate falls a little compared with other invention examples.
  • Examples 5 to 8 are comparative examples.
  • Example 5 since the water jet was not sprayed, even when the drainage was interrupted temporarily, the forming continued in the drainage pan and the slag overflowed, and the drainage rate remained at 20%. However, swelling did not occur after displacement.
  • Example 6 since V water / Vslag was too small compared with the scope of the present invention, the forming suppression effect is small, and although the drainage was interrupted temporarily, the forming continued in the drainage pan and the slag overflowed. For this reason, the exclusion rate remained at 40%. In addition, post swelling occurred after displacement.
  • Example 7 since V water / Vslag was larger than the range of the present invention, a sufficient forming suppression effect was not obtained, and although the slag overflow did not occur, the rejection rate remained at 48%. However, post swelling did not occur after displacement.
  • Example 8 since the spray position of the water jet was out of the drop position of the drainage flow, the forming suppression effect is small, and even if the drainage is temporarily interrupted, the forming continues in the drainage pan and the drainage rate is 35%. Stayed In addition, post swelling occurred after displacement.
  • Spraying position A Within a radius of 1 m from falling position of drainage flow
  • Spraying position B Within a radius of 1 m or more from falling position of drainage flow
  • Table 2 shows an example of intermediate waste after desiliconization in the separation treatment system.
  • the slag composition had a basicity (CaO / SiO 2 ) of 0.6 to 0.8, an iron oxide concentration of 20 to 30% by mass, and a temperature of 1300 to 1350 ° C.
  • Examples 9 to 12 are invention examples, and since the spray method of the water jet was all within the range of the present invention, the slag can be discharged without overflowing from the discharge pan, and the discharge rate is over 45%. became. In addition, since the spraying of the water jet was started within 30 seconds after the start of the slag discharge, the slag overflowed and no post-swelling after the discharge occurred. In Examples 9 to 11, since the spraying of the water jet was started within 30 seconds after the start of the slag displacement, the slag overflowed and no post-swelling after the displacement occurred. On the other hand, since Example 12 started spraying of a water jet after lapse of 30 seconds or more after slag discharge start of a slag, it resulted in the discharge rate to fall a little compared with other invention examples.
  • Examples 13 to 16 are comparative examples.
  • Example 13 since the water jet was not sprayed, even if the drainage was interrupted temporarily, the forming continued in the drainage pan, the slag overflowed from the drainage pan, and the drainage rate remained at 15%. However, swelling did not occur after displacement.
  • Example 14 since V water / Vslag was too small compared with the scope of the present invention, the forming suppression effect is small, and although the drainage was interrupted temporarily, the forming continued in the drainage pan and the slag overflowed. Therefore, the exclusion rate was only 30%. In addition, post swelling occurred after displacement.
  • Example 15 Since V water / V slag in Example 15 was significantly more than the scope of the present invention, it can not be obtained a sufficient forming inhibiting effect, Haikasuritsu was only 43% despite the slag overflow did not occur. However, post swelling did not occur after displacement. In Example 16, since the spraying position of the water jet was out of the dropping position of the drainage flow, even if the drainage was interrupted temporarily, the forming continued in the drainage pan and the drainage rate remained at 25%. In addition, post swelling occurred after displacement.
  • Spraying position A Within a radius of 1 m from falling position of drainage flow
  • Spraying position B Within a radius of 1 m or more from falling position of drainage flow

Abstract

スラグのフォーミング方法は、転炉の下方に設置された排滓鍋へ転炉の炉口からスラグを排出する際に、スラグの排出開始後式(1)の範囲を満たす速度で水噴流を前記排滓鍋のスラグ落下位置に吹き付ける。(1)Vwater:排滓開始から排滓終了までの水噴流の吹き付け速度(kg/分) Vslag:排滓開始から2分間のスラグの排出速度(kg/分)

Description

スラグのフォーミング抑制方法および転炉精錬方法
 本発明はスラグのフォーミング(泡立ち)抑制方法および転炉精錬方法に関する。
 鉄鋼製造プロセスにおいて高炉などで製造された溶銑はC濃度が4~5質量%、P濃度が0.1質量%程度と高く、そのまま凝固させて銑鉄としたのでは加工性や靱性が低いために鉄鋼製品として用いることが困難である。したがって精錬プロセスにおいて脱燐・脱炭処理を行うとともに各種成分を調整して要求品質を満たす鋼を製造している。この脱燐・脱炭処理では酸素ガスやFeOを含むスラグにより溶鉄中のC、Pを酸化除去するが、溶銑に含まれるSiがPよりも酸化されやすいために、実質的には脱珪・脱燐・脱炭反応が並行して進行する。
 現在、精錬の予備処理プロセスは生産性と反応効率が良好な転炉方式が主流である。その操業方法としては、高炉溶銑を転炉に装入して脱珪・脱燐吹錬を行った後、吹錬を一旦停止して転炉を傾動させ、脱珪・脱燐スラグの一部を炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う方法(以降、連続処理方式と表記)が非特許文献1において開示されている。また別の操業方法としては、高炉溶銑を転炉に装入して脱珪吹錬を行った後、吹錬を一旦停止して転炉を傾動させ、脱珪スラグの一部を炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行い、さらに脱燐吹錬後は転炉から溶銑を一旦排出して脱燐スラグと分離し、該溶銑のみを別の転炉に再度装入して脱炭吹錬を行う方法(以降、分離処理方式と表記)が特許文献1で開示されている。前者は1基の転炉を用いる操業形態であって、炉口からのスラグ排出を脱珪・脱燐吹錬と脱炭吹錬の中間で行う方式である。後者は2基以上の転炉を用いる操業形態であって、少なくとも1基の転炉を脱珪・脱燐吹錬に使用し、該転炉において炉口からのスラグ排出を脱珪吹錬と脱燐吹錬の中間で行う方式である。以下、2回の吹錬の間に転炉内のスラグを排出する操作を中間排滓ともいう。両者ともに、炉口からスラグを効率的に排出するために、吹錬中に発生するスラグのフォーミング(泡立ち)現象を利用してスラグの体積を増加させる点が共通している。
 転炉スラグのフォーミングは、吹錬中に溶銑中のCと酸素ガスあるいはスラグ中のFeOが反応してCO気泡が多数生成し、スラグ中に滞留することで発生する。連続処理方式、分離処理方式のいずれもこのフォーミングしたスラグを炉口から排出し、転炉下方に設置した排滓鍋へ収容する。排滓鍋へのスラグ排出量が増加するほど、炉内に残留するSiO2やP25を少なくすることができ、中間排滓後に行う精錬において、生石灰など精錬材の使用量を低減することができる。したがって短時間で多量のスラグを排出することが望ましいが、排滓鍋へ排出された後もスラグはフォーミングするため、排滓鍋から溢れてしまうと周辺設備を焼損して復旧に多大な時間と労力を必要とする。スラグ排出速度を下げる、あるいはスラグ排出を一時中断するといった方法により溢れを回避することは可能であるが、これは生産性を低下させる。そこで、スラグのフォーミングを抑制する物質が排滓鍋へ投入される。
 フォーミングやスロッピングに伴う精錬容器からのスラグ溢れは、排滓鍋に限らず混銑車や溶銑鍋、転炉などでも生産性を阻害する事象である。このため、これまでに様々なフォーミング抑制方法が試みられてきた。従来のフォーミング抑制方法は大きく2つに分類できる。まず1つは気泡の生成を抑制する方法であり、例えば特許文献2では生ドロマイトのような炭酸塩を投入し、熱分解する際の吸熱によりCOガスの発生を抑制するフォーミング防止剤が開示されている。もう1つはスラグ内に滞留した気泡を破壊(破泡)する方法であり、例えば特許文献3ではパルプ廃滓を主体としたフォーミング鎮静剤が開示されている。このフォーミング鎮静剤はスラグ内で燃焼や熱分解の反応により急速にガスを発生し、その体積膨張エネルギーにより破泡してスラグを収縮させる。また特許文献4~6では、水が高温で迅速に気化すること、入手が容易であること、安価であることに着目して、溶融スラグに対してミスト状や噴流状の水を吹き付け、スラグ表面の破泡や固化を行うことでフォーミングを鎮静する方法が開示されている。
特開2013-167015号公報 特開2003-213314号公報 特開昭54-32116号公報 特開平5-195040号公報 特開平8-325619号公報 特許5888445号公報
鉄と鋼、第87年(2001)第1号、第21~28頁
 前記した連続処理方式や分離処理方式では、スラグが転炉の炉口から連続的に排出され、落下位置で激しく撹拌されるため、スラグ中に懸濁している銑鉄粒のCとスラグのFeOが反応して多量のCO気泡が継続的に発生し、排滓鍋の中でも急速にフォーミングする。排滓鍋の容積は転炉よりも大幅に小さいのが通例であるから、フォーミングを効率的に抑制して多量のスラグを転炉から短時間で排滓鍋へ排出するには、スラグの排出速度に対応した投入速度でフォーミング抑制剤を投入することが重要である。
 さらに、排出されたスラグを収容した排滓鍋は、台車や鉄道などにより搬送されるが、この間もCO気泡は徐々に発生し続けるため、スラグが徐々に膨張する「後膨れ」が発生して搬送中に溢れるリスクがあり、排滓鍋へ排出するスラグ量を制限せざるを得ない場合がある。
 これらの課題に対し、特許文献2~6の方法はスラグの排出速度とフォーミング抑制剤の投入速度の関係については考慮されておらず、中間排滓のように排滓鍋へ連続的にスラグを排出するプロセスにおいて、多量のスラグを短時間で排出することが難しい。排滓後の後膨れに関しても、特許文献2の方法は投入した炭酸塩が熱分解して生成するCaOやMgOがスラグの融点を上昇させるため、スラグ表面の固化(皮張り)を助長し、CO気泡が滞留しやすくなって後膨れが起きやすくなる。また特許文献3の方法では、搬送中にも鎮静剤を投入しなければ後膨れを抑制できない。特許文献4~5の方法では、排滓後のスラグ表面に散水するため、スラグ表面の皮張りを助長し、特許文献2と同様に後膨れが起きやすくなる。さらに特許文献6の方法では、スラグ排出量が各チャージでばらつくことに対応できないため、後膨れを確実に抑制することが難しく、一定の確率で後膨れが発生する恐れがある。
 本発明はこのような問題を鑑みてなされたもので、フォーミングしたスラグを炉口から連続的に排滓鍋へ排出するプロセスにおいて、排滓鍋内のスラグフォーミングを効率的に抑制し、かつ排滓後の後膨れも抑制することでスラグ排出量を向上させる方法を提供することを目的とする。本発明のフォーミング抑制方法は、1基の転炉で脱珪・脱燐吹錬、中間排滓および脱炭吹錬を連続して行う転炉精錬方式や、2基以上の転炉の少なくとも1基で脱珪吹錬、中間排滓および脱燐吹錬を行う転炉精錬方式で用いることができる。
 前記目的に沿う本発明に係るスラグのフォーミング抑制方法は、以下の通りである。
(1)転炉の下方に設置した排滓鍋へ前記転炉の炉口からスラグを排出する際に、前記スラグの排出開始後式(1)の範囲を満たす速度で水噴流を前記排滓鍋のスラグ落下位置に吹き付けることを特徴とする、スラグのフォーミング抑制方法。
Figure JPOXMLDOC01-appb-M000002
  Vwater:排滓開始から排滓終了までの水噴流の吹き付け速度(kg/分)
  Vslag:排滓開始から2分間のスラグ排出速度(kg/分)
(2)(1)に記載のスラグのフォーミング抑制方法において、前記スラグの排出開始後、30秒以内に水噴流の吹き付けを開始することを特徴とする、スラグのフォーミング抑制方法。
 また、本発明に係る転炉精錬方法は、以下の通りである。
(3)1基の転炉に溶銑を装入して脱珪・脱燐吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う精錬方法において、脱燐吹錬後のスラグ排出時に(1)または(2)に記載のフォーミング抑制方法を用いることを特徴とする転炉精錬方法。
(4)2基以上の転炉の少なくとも1基の転炉に溶銑を装入して脱珪吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行う精錬方法において、脱珪吹錬後のスラグ排出時に(1)または(2)に記載のフォーミング抑制方法を用いることを特徴とする転炉精錬方法。
 本発明によれば、転炉からのスラグ排出速度に対応した適切な速度で水噴流を吹き付けることで効率的にフォーミングを抑制でき、排滓鍋からのスラグ溢れを起こすことなく多量のスラグを排出できる。また、排滓鍋の搬送中にスラグが徐々に膨張する後膨れを抑制することができる。
小型炉実験におけるスラグ高さの経時変化を示す図。 水分量と鎮静率の関係を示す図。 水分によるスラグ冷却効果を示す図。 水噴流の吹き付け速度と排滓開始から2分間のスラグ排出速度の比が排滓率および排滓後スラグ温度に及ぼす影響を示す図。 水噴流の吹き付けがスラグ中の粒鉄C濃度に及ぼす影響を示す図。 Fe-C系状態図における粒鉄C濃度の範囲を示す図。
 以下、本発明の実施の形態について詳細に説明する。転炉における脱燐吹錬では、高速で酸素ジェットを溶銑表面に吹き付けることで溶銑中のPを酸化し、スラグへP25として除去している。これと並行して、溶銑中のSiも酸化され、スラグへSiO2として移
行する。また、溶銑中のCは酸素ガスあるいはスラグ中のFeOと反応してCO気泡を発生し、その一部がスラグ内に滞留することでフォーミングが起こる。
 スラグが適度にフォーミングした後、転炉の下方に設置した排滓鍋へ炉口からスラグを排出するが、排滓鍋の中でもフォーミングが発生する。これは、吹錬中に溶銑の一部が酸素ジェットにより引きちぎられてスラグ中に粒鉄として懸濁しており、この粒鉄中に含まれる炭素(C)が排滓鍋内で式(2)の反応によりCO気泡を発生するためである。
Figure JPOXMLDOC01-appb-M000003
 排滓鍋内では落下してきたスラグの運動エネルギーにより強い攪拌が起こり、CO気泡が多量に発生してスラグが激しくフォーミングする。そのためフォーミング抑制効果のある物質を投入し、スラグの溢れを防止する必要がある。
 発明者らは、水分の有効利用法を検討するため、前記した連続処理方式や分離処理方式の炉口排出スラグを想定した組成および温度の条件において小型炉実験を行った。
 すなわち、鉄坩堝内で、塩基度(CaO/SiO2)が0.9~1.0、酸化鉄濃度が30~35質量%であるスラグ100gを1350℃において溶解し、このスラグに銑鉄を上方より投入してフォーミングを発生させた。銑鉄投入後は30秒間隔(5分後からは1分間隔)で鉄棒をスラグに浸漬して付着させ、スラグ高さを測定した。銑鉄添加の2分後には所定量(0g~0.4g)の水分を含ませた紙製ウエスをスラグ中に浸漬し、スラグの鎮静効果を評価した。鎮静効果の指標には、式(3)で定義する「鎮静率」を用いた。
Figure JPOXMLDOC01-appb-M000004
  H1.5:銑鉄投入後1.5分(紙製ウエス浸漬30秒前)のスラグ高さ(mm)
  H2.5:銑鉄投入後2.5分(紙製ウエス浸漬30秒後)のスラグ高さ(mm)
 スラグ高さの経時変化を図1に示す。水分量が0g(紙製ウエスのみ)(×印)の場合は、紙製ウエスを浸漬してもスラグ高さはほとんど変化しなかった。その後は銑鉄中のCが次第に消費されるためにCO気泡の発生が減少し、スラグ高さは低下した。これに対し、水分量が0.05gの場合(白三角印)は紙製ウエスの浸漬によりスラグ高さが低下し、水分の効果で鎮静することを確認した。ただし、鎮静後には再フォーミング(後膨れ)が発生した。このように、水分量が0.05gでは鎮静後の再フォーミング(後膨れ)が発生したが、0.1g~0.2g(白菱形、白四角印)では後膨れが小さく、0.4g(黒菱形印)では後膨れは発生しなかった。
 水分量と鎮静率の関係を図2に示す。水分量が0.1~0.2gの場合において鎮静率が最も大きく、0.4gでは鎮静率が低下した。
 前述のように、スラグのフォーミング鎮静機構は、スラグ内での気泡の生成を抑制する機構と、前述した特許文献6に記載されるように(同公報段落[0023]参照)、スラグ内に滞留した気泡を破壊(破泡)する機構に分類される。そこで、上記観察された水分添加によるスラグフォーミング鎮静機構が、当該2種類のうちのいずれの機構を主要要因としてなされているかについて検討した。
 水分によるスラグのフォーミング鎮静機構を破泡効果とすると、水分量が多くなるほど鎮静効果は高くなるはずであり、図2の結果を説明することはできない。そこで発明者らは、水分の投入によりスラグ温度が低下してCO気泡の発生が抑制され、その結果としてフォーミングが鎮静した可能性を検証するため、熱収支解析を行った。その結果を図3に示す。H2Oの蒸発熱によりスラグが冷却される場合、水分量が0.1~0.2gでは10~20℃程度しか低下しない。一方、蒸発したH2OがH2とO2に分解し、その分解熱もスラグ冷却に寄与する場合、スラグの温度は35~70℃低下する。さらに、水分量が0.4gにおける蒸発と分解合計の温度低下代は145℃になり、1205℃まで冷却される。この温度域でスラグは完全凝固には至らないが、固相と液相の共存状態にある。
 熱収支解析から、水分の鎮静効果は、主にスラグ冷却によるCO気泡の発生抑制に起因すると考えられる。すなわち、H2Oの蒸発・分解反応に伴ってスラグ温度が低下し、CO気泡の発生速度は低下するとともにスラグからの気泡排出が進行する。これに対し、過剰に冷却されるとスラグが固液共存状態になって気泡がスラグ内部に残留しやすくなる。したがって、鎮静効果が最大になる水分量が存在する。
 CO気泡を発生する式(2)の反応は吸熱反応であるため、温度が低下すると反応が進行しにくくなり、CO気泡の発生速度が低下する。水分投入後も銑鉄中のCとスラグ中のFeOの反応は起こるが、水分投入量が多いほどスラグ温度が低下するため、CO気泡の発生が遅くなり、鎮静後の後膨れが起こりにくくなる。したがって、水分量が0.05gでは後膨れが起こったのに対し、0.1~0.2gでは後膨れが小さく、0.4gでは後膨れが発生しなかった。
 フォーミング鎮静機構が、CO気泡の発生抑制に起因すると考えると、水噴流の吹き付けを開始するタイミングは、早ければ早いほどCO気泡の発生を抑制できるはずである。具体的には、水噴流の吹き付けを開始するタイミングは、中間排滓におけるスラグの排出開始後、30秒以内に行うのが好ましい。
 前記特許文献6では、フォーミングの鎮静機構を水流の破泡によるものと考えているため、水噴流の吹き付けを開始するタイミングについては特に言及されておらず、専ら水の流量に関連する噴流時間についてしか言及されていない(同公報段落[0026]参照)。
 また、前記特許文献6では、表1からわかるように、7分以上の時間をかけて中間排滓を行っている。
 これに対して、本発明では中間排滓に要する時間を5分以内と想定して、フォーミングの抑制を行うことを狙いとしている。したがって、フォーミング鎮静機構がCO気泡の発生抑制に起因するのであれば、スラグの排出開始後、より早い時間に水噴流の吹き付けを開始することにより、短時間でかつ少ない水量でフォーミング抑制効果があるという利点もある。
 小型炉実験で得られた知見に基づき、実機で転炉からの排滓中に水噴流を吹き付ける試験を行った。すなわち、転炉へ溶銑を装入して脱珪・脱燐吹錬を行った後、吹錬を一旦中断して炉内に溶銑を残したまま転炉を傾動させ、炉体下方に設置した排滓鍋(内容積:70m3)に5分間排出した。排滓開始直後から排滓鍋内のスラグへ水噴流を連続的に吹き
付け、排滓鍋内の様子を目視で観察した。比較のため、排滓鍋へのスラグ排出のみを行う、水噴流吹き付けなしの条件も実施した。
 スラグ組成は塩基度(CaO/SiO2)が1.0~1.2、酸化鉄濃度が20~30質量%であり、温度は1330~1350℃であった。
 スラグが溢れそうになった場合は転炉の傾動を一旦停止して排滓を中断し、水噴流の吹き付けによりフォーミング高さが低下した後に再び転炉を傾動して排滓を再開した。水噴流吹き付けなしの条件でスラグが溢れそうになった場合は、転炉の傾動を一旦停止して排滓を中断し、フォーミング高さの上昇が止まったのを確認した後に再び転炉を傾動して排滓を再開した。
 スラグが排滓鍋から溢れた場合は、その後にフォーミング高さが低下した後に、再び転炉を傾動して排滓を再開した。排滓時間は、排滓を中断している時間も含んで5分間とした。5分経過後は、スラグ排出が継続していても排滓を終了して転炉を直立させた。
 H2Oの蒸発・分解反応に伴う吸熱作用を効果的に発揮するには、吹き付けた水をスラグ内へ巻き込ませることが必要である。そのため、水噴流は排滓流の落下位置に吹き付けた。なお、「落下位置」とは排滓流の落下中心部から半径1m以内の範囲と定義する。この位置ではスラグが激しく撹拌されるため、水分をスラグ内に巻き込ませることができ、フォーミングを効率的に抑制しやすくなる。
 フォーミング抑制効果は、式(4)の排滓率(%)により評価した。フォーミング抑制効果が優れるほど、排滓速度の低下や排滓中断がなくなるため、排滓率が高い値となる。
Figure JPOXMLDOC01-appb-M000005
  wslag:排出したスラグの質量(t)
  Wslag:炉内スラグの質量(t)
 排出したスラグの質量(wslag)と、排滓開始から2分間のスラグ排出速度Vslag(kg/分)(2分間の平均値)を、排滓鍋を設置する移動台車に取り付けた秤量機で測定した。また炉内スラグの質量(Wslag)は、生石灰などの投入した精錬材の質量と、採取したスラグの成分値から物質収支を計算して求めた。また、排滓後にはスラグの温度を放射温度計により測定した。
 水噴流の吹き付け速度Vwater(kg/分)は排滓開始から排滓終了まで一定とし、Vwaterを種々変更し、スラグ排出を行った。
 実機試験の結果を図4に示す。水噴流の吹き付け速度Vwaterと排滓開始から2分間のスラグ排出速度Vslag(2分間の平均値)の比率(Vwater/Vslag)が0.18以上の場合に、排滓率が55%超となって高いフォーミング抑制効果が得られた。スラグ排出速度Vslagを排滓開始から2分間の平均値で評価したのは、特にスラグの撹拌が強いためにフォーミングが成長しやすいためである。排滓開始から2分間のスラグ排出速度に応じた速度で水噴流を排滓終了まで吹き付けることで、フォーミング抑制効果が得られることが分かった。ただしVwaterとVslagの比率(Vwater/Vslag)が0.6超になると、スラグが過剰に冷却されて気泡が残留しやすくなるため、フォーミング抑制効果が低下した。
 前記の実機試験では、Vwater/Vslagが0.18以上になると排滓完了時点のスラグ温度が1300℃を十分下回り、後膨れが抑制されることも分かった。
 発明者らは、その理由を明らかにするため、実機試験の排滓中に採取したスラグ、排滓後に採取したスラグ、および排滓鍋を反転させて散水冷却した後に採取したスラグについて、内部に存在する粒鉄中のC濃度をEPMAにより定量分析した。その結果を図5に示す。Vwater/Vslag=0.1の場合、粒鉄中のC濃度は排滓中に採取したスラグで1.6~2.2質量%、排滓後に採取したスラグで1.2~1.8質量%、冷却後のスラグで1.0~1.6質量%であった。また、排滓完了時点のスラグ温度は1320℃であった。これに対しVwater/Vslag=0.4の場合、粒鉄中のC濃度は排滓中に採取したスラグで1.6~2.2質量%、排滓後に採取したスラグで1.5~2.1質量%、冷却後のスラグで1.5~2.0質量%であった。また、排滓後のスラグ温度は1260℃であった。Fe-C系状態図を図6に示すが、この冷却後スラグの粒鉄C濃度はγ鉄の固相線とほぼ対応する。すなわち、スラグ中の粒鉄は、CO気泡の発生によりC濃度が低下するため徐々に液相率が低下し、固相線組成でCO気泡の発生が停止するといえる。このために、スラグ温度が低くなるほど固相線組成に到達するまでのCO発生量が少なく、後膨れが起こりにくくなったと考えられる。
 以上の結果から、水噴流を吹き付ける好適な条件として式(5)が得られた。
Figure JPOXMLDOC01-appb-M000006
  Vwater:排滓開始から排滓終了までの水噴流の吹き付け速度(kg/分)
  Vslag:排滓開始から2分間のスラグ排出速度(kg/分)
 なお、排滓流の落下位置から外れた箇所に水噴流を吹き付ける試験も行ったが、この場合は式(5)を満たす条件であっても十分なフォーミング抑制効果を得ることができなかった。排滓流の落下位置から外れた箇所では水分の巻き込みが弱く、スラグ冷却効果を十分に発揮する前に蒸発してしまうためと考えられる。したがって、水噴流は排滓流の落下位置に吹き付けることが必要である。
 本発明の方法を実施することにより、転炉の炉口からスラグを排出する際の排滓鍋内におけるスラグのフォーミングを抑制でき、スラグ溢れを起こすことなく多量のスラグを転炉から排出できる。さらに、スラグの後膨れも抑制できるため、排滓鍋の搬送中にスラグが溢れ出すことも防止できる。
 水噴流の吹き付けは、排滓終了まで投入を継続する必要はなく、排滓鍋内のスラグのフォーミング状況を見てスラグ溢れが起こらないと予想できる場合は途中で中断しても良い。
 排滓終了後は水分の投入を停止することが好ましい。排滓終了後はスラグの撹拌が弱くなり、表面がいわゆる「皮張り」の状態になる。ここに水分を投入し、その一部が皮張りスラグの隙間から内部の溶融スラグに侵入すると、気化した水が放散されずに滞留し、水蒸気爆発を起こす恐れがあるためである。
 本発明は、転炉へ溶銑を装入して吹錬を行い、吹錬を一旦中断して炉内に溶銑を残したまま転炉を傾動させて炉体下方に設置した排滓鍋にスラグを排出する転炉精錬方法に用いることができる。具体的には、1基の転炉に溶銑を装入して脱珪・脱燐吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う転炉吹錬方法である。また他の転炉吹錬方法としては、2基以上の転炉の少なくとも1基の転炉において脱珪吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行う転炉吹錬方法である。これらはフォーミング現象を利用して炉口からスラグを排出するという形態は同様であるから、本発明を用いることでその効果を享受できる。
 前記した精錬方法以外においても、ある精錬容器から別の精錬容器へスラグが排出・流出する段階でフォーミングの抑制が必要な場合は、本発明を用いることでスラグの溢れを抑制できる。
 以下に表1~2を基にして本発明の実施例を具体的に説明する。転炉へ溶銑を装入して吹錬を行い、吹錬を一旦中断して炉内に溶銑を残したまま転炉を傾動させ、炉体下方に設置した排滓鍋(内容積:70m3)に5分間排出した。排滓開始直後から排滓鍋内のスラグへ水噴流を連続的に吹き付け、排滓鍋内の様子を目視で観察した。水噴流吹き付けなしの条件では、排滓鍋へのスラグ排出のみを行った。
 スラグが溢れそうになった場合は転炉の傾動を一旦停止して排滓を中断し、水噴流の吹き付けによりフォーミング高さが低下した後に再び転炉を傾動して排滓を再開した。水噴流吹き付けなしの条件でスラグが溢れそうになった場合、転炉の傾動を一旦停止して排滓を中断し、フォーミング高さの上昇が止まったのを確認した後に再び転炉を傾動して排滓を再開した。なお、スラグが排滓鍋から溢れても、その後にフォーミング高さが低下した場合は、再び転炉を傾動して排滓を再開した。排滓時間は、排滓を中断している時間も含んで5分間とした。
 表1および表2において、本発明範囲から外れる数値に下線を付した。
 表1に連続処理方式の脱珪・脱燐吹錬後の中間排滓における実施例を示す。表中の下線は、本発明の範囲外となる部分を表す。「Vwater/Vslag」は水噴流の吹き付け速度(Vwater)と排滓開始から2分間のスラグ排出速度(Vslag)の比である。この値が0.15~0.60であれば前記式(1)を満たしており、吹き付け速度は本発明の範囲内である。また「吹き付け位置」はA:排滓流の落下位置から半径1m以内の範囲、B:排滓流の落下位置から半径1m超の範囲、である。
 なお、スラグ組成は塩基度(CaO/SiO2)が1.0~1.2、酸化鉄濃度が20~30質量%であり、温度は1330~1350℃であった。
 表1の実施例1~4は発明例であり、いずれも水噴流の吹き付け方法が本発明の範囲内であったため、スラグを排滓鍋から溢れさせることなく排滓でき、排滓率は55%超になった。また、排滓後の後膨れは発生しなかった。
 また、実施例1~3は、スラグの排滓開始後、30秒以内に水噴流の吹き付けを開始しているため、スラグの溢れ、排滓後の後膨れも生じなかった。これに対して、実施例4はスラグの排滓開始後、30秒以上経過してから水噴流の吹き付けを開始したため、排滓率が他の発明例よりも若干低下する結果となった。
 実施例5~8は比較例である。実施例5では水噴流を吹き付けなかったため、排滓を一時中断しても排滓鍋内でフォーミングが継続してスラグが溢れ、排滓率は20%にとどまった。ただし、排滓後の後膨れは発生しなかった。実施例6ではVwater/Vslagが本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓を一時中断したものの排滓鍋内でフォーミングが継続してスラグが溢れた。このため排滓率は40%にとどまった。また、排滓後に後膨れが発生した。実施例7ではVwater/Vslagが本発明の範囲より過大であったため、十分なフォーミング抑制効果が得られず、スラグ溢れは起こらなかったものの排滓率は48%にとどまった。ただし、排滓後に後膨れは発生しなかった。実施例8では水噴流の吹き付け位置が排滓流の落下位置から外れていたためフォーミング抑制効果が小さく、排滓を一時中断しても排滓鍋内でフォーミングが継続して排滓率は35%にとどまった。また、排滓後に後膨れが発生した。
Figure JPOXMLDOC01-appb-T000007
 吹き付け位置A:排滓流の落下位置から半径1m以内の範囲
 吹き付け位置B:排滓流の落下位置から半径1m超の範囲
 表2に分離処理方式における脱珪吹錬後の中間排滓における実施例を示す。スラグ組成は塩基度(CaO/SiO2)が0.6~0.8、酸化鉄濃度が20~30質量%であり、温度は1300~1350℃であった。
 実施例9~12は発明例であり、いずれも水噴流の吹き付け方法が本発明の範囲内であったため、スラグを排滓鍋から溢れさせることなく排滓でき、排滓率は45%超になった。また、スラグの排滓開始後、30秒以内に水噴流の吹き付けを開始しているため、スラグの溢れ、排滓後の後膨れも生じなかった。
 実施例9~11は、スラグの排滓開始後、30秒以内に水噴流の吹き付けを開始しているため、スラグの溢れ、排滓後の後膨れも生じなかった。これに対して、実施例12はスラグの排滓開始後、30秒以上経過してから水噴流の吹き付けを開始したため、排滓率が他の発明例よりも若干低下する結果となった。
 実施例13~16は比較例である。実施例13では水噴流を吹き付けなかったため、排滓を一時中断しても排滓鍋内でフォーミングが継続して排滓鍋からスラグが溢れ、排滓率は15%にとどまった。ただし、排滓後の後膨れは発生しなかった。実施例14ではVwater/Vslagが本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓を一時中断したものの排滓鍋内でフォーミングが継続してスラグが溢れた。このため排滓率は30%にとどまった。また、排滓後に後膨れが発生した。実施例15ではVwater/Vslagが本発明の範囲より過大であったため、十分なフォーミング抑制効果が得られず、スラグ溢れは起こらなかったものの排滓率は43%にとどまった。ただし、排滓後に後膨れは発生しなかった。実施例16では水噴流の吹き付け位置が排滓流の落下位置から外れていたため排滓を一時中断しても排滓鍋内でフォーミングが継続して排滓率は25%にとどまった。また、排滓後に後膨れが発生した。
Figure JPOXMLDOC01-appb-T000008
 吹き付け位置A:排滓流の落下位置から半径1m以内の範囲
 吹き付け位置B:排滓流の落下位置から半径1m超の範囲
 

Claims (4)

  1.  転炉の下方に設置された排滓鍋へ前記転炉の炉口からスラグを排出する際に、前記スラグの排出開始後式(1)の範囲を満たす速度で水噴流を前記排滓鍋のスラグ落下位置に吹き付けることを特徴とする、スラグのフォーミング抑制方法。
    Figure JPOXMLDOC01-appb-M000001
     
      Vwater:排滓開始から排滓終了までの水噴流の吹き付け速度(kg/分)
      Vslag:排滓開始から2分間のスラグの排出速度(kg/分)
  2.  請求項1に記載のスラグのフォーミング抑制方法において、
     前記スラグの排出開始後、30秒以内に水噴流の吹き付けを開始することを特徴とする、スラグのフォーミング抑制方法。
  3.  1基の転炉に溶銑を装入して脱珪・脱燐吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う精錬方法において、脱燐吹錬後のスラグ排出時に請求項1または請求項2に記載のフォーミング抑制方法を用いることを特徴とする転炉精錬方法。
  4.  2基以上の転炉の少なくとも1基の転炉に溶銑を装入して脱珪吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行う精錬方法において、脱珪吹錬後のスラグ排出時に請求項1または請求項2に記載のフォーミング抑制方法を用いることを特徴とする転炉精錬方法。
     
PCT/JP2018/030076 2017-08-25 2018-08-10 スラグのフォーミング抑制方法および転炉精錬方法 WO2019039326A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019538078A JP6835233B2 (ja) 2017-08-25 2018-08-10 スラグのフォーミング抑制方法および転炉精錬方法
KR1020197037733A KR20200010423A (ko) 2017-08-25 2018-08-10 슬래그의 포밍 억제 방법 및 전로 정련 방법
CN201880046869.6A CN110892083A (zh) 2017-08-25 2018-08-10 抑制炉渣发泡的方法以及转炉精炼方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017162330 2017-08-25
JP2017-162330 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039326A1 true WO2019039326A1 (ja) 2019-02-28

Family

ID=65438815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030076 WO2019039326A1 (ja) 2017-08-25 2018-08-10 スラグのフォーミング抑制方法および転炉精錬方法

Country Status (5)

Country Link
JP (1) JP6835233B2 (ja)
KR (1) KR20200010423A (ja)
CN (1) CN110892083A (ja)
TW (1) TWI665309B (ja)
WO (1) WO2019039326A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105571A (ja) * 2018-12-27 2020-07-09 日本製鉄株式会社 スラグのフォーミング抑制方法および転炉精錬方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270178A (ja) * 2008-05-09 2009-11-19 Nippon Steel Corp スラグのフォーミング鎮静材及びその鎮静方法
JP2013167015A (ja) * 2012-01-19 2013-08-29 Jfe Steel Corp 溶銑の予備処理方法
JP2016148061A (ja) * 2015-02-10 2016-08-18 Jfeスチール株式会社 溶融スラグのフォーミング鎮静方法及びスラグ製品の製造方法
JP2017031446A (ja) * 2015-07-29 2017-02-09 新日鐵住金株式会社 スラグのフォーミング抑制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948925B2 (ja) 1977-08-15 1984-11-29 新日本製鐵株式会社 転炉滓のフオ−ミング鎮静剤
JPS5888445A (ja) 1981-11-19 1983-05-26 Mikuni Kogyo Co Ltd 燃料先行電子制御気化器
JPH02118011A (ja) * 1988-10-26 1990-05-02 Nkk Corp 鋳床脱珪のフォーミング防止剤
JPH05195040A (ja) 1992-01-13 1993-08-03 Daido Steel Co Ltd 製鋼スラグの処理方法
JPH08325619A (ja) * 1995-05-29 1996-12-10 Nippon Steel Corp 製鋼スラグのフォーミング抑制方法
JP3972660B2 (ja) 2002-01-17 2007-09-05 Jfeスチール株式会社 溶銑の鋳床脱珪処理におけるフォーミング防止剤およびその投入方法
JP4580435B2 (ja) * 2008-05-27 2010-11-10 新日本製鐵株式会社 排滓鍋スラグのフォーミング鎮静材及びその鎮静方法
JP6263144B2 (ja) * 2015-03-23 2018-01-17 日新製鋼株式会社 製鋼スラグからカルシウムを含有する固体成分を回収する方法、および回収された固体成分

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270178A (ja) * 2008-05-09 2009-11-19 Nippon Steel Corp スラグのフォーミング鎮静材及びその鎮静方法
JP2013167015A (ja) * 2012-01-19 2013-08-29 Jfe Steel Corp 溶銑の予備処理方法
JP2016148061A (ja) * 2015-02-10 2016-08-18 Jfeスチール株式会社 溶融スラグのフォーミング鎮静方法及びスラグ製品の製造方法
JP2017031446A (ja) * 2015-07-29 2017-02-09 新日鐵住金株式会社 スラグのフォーミング抑制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105571A (ja) * 2018-12-27 2020-07-09 日本製鉄株式会社 スラグのフォーミング抑制方法および転炉精錬方法
JP7147550B2 (ja) 2018-12-27 2022-10-05 日本製鉄株式会社 スラグのフォーミング抑制方法および転炉精錬方法

Also Published As

Publication number Publication date
KR20200010423A (ko) 2020-01-30
JP6835233B2 (ja) 2021-02-24
JPWO2019039326A1 (ja) 2020-04-02
TWI665309B (zh) 2019-07-11
CN110892083A (zh) 2020-03-17
TW201912796A (zh) 2019-04-01

Similar Documents

Publication Publication Date Title
JP5888445B1 (ja) 溶融スラグのフォーミング鎮静方法及びスラグ製品の製造方法
CN109207672B (zh) 一种超低磷钢生产过程中的排渣方法以及超低磷钢的生产方法
JP6816777B2 (ja) スラグのフォーミング抑制方法および転炉精錬方法
WO2019039326A1 (ja) スラグのフォーミング抑制方法および転炉精錬方法
JP6915522B2 (ja) スラグのフォーミング抑制方法および転炉精錬方法
JP5286892B2 (ja) 溶銑の脱りん精錬方法
JP7147550B2 (ja) スラグのフォーミング抑制方法および転炉精錬方法
JP6468084B2 (ja) 転炉排滓方法
JPH05222425A (ja) カルシウム・アルミネートによる溶銑脱硫および脱硫滓の処理方法
JP7464843B2 (ja) スラグのフォーミング鎮静方法および転炉精錬方法
JP5402383B2 (ja) 転炉を用いる製鋼精錬プロセスおよび低燐鋼の製造方法
KR20110050197A (ko) 고효율 슬래그 배제 방법
JP5574468B2 (ja) 鋳鉄の精錬方法及び精錬装置
JP2000096115A (ja) スラグフォーミングの鎮静方法
JP6468083B2 (ja) 転炉排滓方法
JP2671063B2 (ja) スラグフォーミング防止法
WO2018146754A1 (ja) スラグのフォーミング抑制方法
JP2002173707A (ja) 溶銑脱りん方法
JP4403055B2 (ja) 製鋼スラグの処理方法
JP2005139528A (ja) 溶銑の脱燐精錬方法
JP2002212618A (ja) 溶銑予備処理におけるスロッピング抑制方法
JPH059533A (ja) 溶銑処理方法
JP2019059990A (ja) 溶銑の脱珪処理方法
JP2018104802A (ja) 製鋼スラグの改質方法
JP2002105522A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538078

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037733

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847439

Country of ref document: EP

Kind code of ref document: A1