WO2019038943A1 - リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法 - Google Patents

リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法 Download PDF

Info

Publication number
WO2019038943A1
WO2019038943A1 PCT/JP2017/045797 JP2017045797W WO2019038943A1 WO 2019038943 A1 WO2019038943 A1 WO 2019038943A1 JP 2017045797 W JP2017045797 W JP 2017045797W WO 2019038943 A1 WO2019038943 A1 WO 2019038943A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
precursor
complex oxide
glass
phosphorus
Prior art date
Application number
PCT/JP2017/045797
Other languages
English (en)
French (fr)
Inventor
達也 手塚
Original Assignee
株式会社住田光学ガラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住田光学ガラス filed Critical 株式会社住田光学ガラス
Priority to US16/622,560 priority Critical patent/US11345597B2/en
Priority to EP17922472.0A priority patent/EP3674270B1/en
Priority to CN201780091955.4A priority patent/CN110785386B/zh
Publication of WO2019038943A1 publication Critical patent/WO2019038943A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor glass of lithium phosphorus complex oxide and a method of manufacturing the same, a method of manufacturing a precursor crystallized glass of lithium phosphorus complex oxide, a lithium phosphorus complex oxide powder and a method of manufacturing the same.
  • Crystals of the lithium-phosphorus complex oxide are chemically stable and show high lithium ion conductivity at room temperature, and thus are expected as solid electrolyte materials for lithium ion secondary batteries.
  • a typical lithium phosphorus complex oxide that can be used for the solid electrolyte material one represented by Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1.0) can be mentioned.
  • those with 0 ⁇ x ⁇ 1.0 are also referred to as “LATP”.
  • the lithium phosphorus complex oxide used for the solid electrolyte material be micronized in order to be used for batteries of various forms and shapes, such as an all-solid battery having a high degree of freedom in shape.
  • patent document 2 particle-forms the crystal
  • Patent Document 2 can obtain crystal particles without grinding, a certain amount of Zn component may be solid-solved in the crystal particles and remain as an impurity. Therefore, there is room for improvement in the art as well in terms of improving the quality of particles to be produced.
  • the present invention was made in view of the above-mentioned viewpoint, and provides a method for producing a precursor glass capable of obtaining high quality lithium phosphorus composite oxide powder, and the precursor glass.
  • the purpose is Another object of the present invention is to provide a method for producing a precursor crystallized glass capable of obtaining a high quality lithium phosphorus composite oxide powder using the above precursor glass.
  • the object of the present invention is to provide a method for producing a high quality lithium phosphorus complex oxide powder using the above precursor crystallized glass, and to provide the lithium phosphorus complex oxide powder. Do.
  • the present inventor uses the lithium and phosphorus in a predetermined ratio as an additional raw material in addition to the raw material containing its constituent elements in preparing the lithium phosphorus complex oxide.
  • the second intermediate product precursor crystallized glass
  • the method for producing a precursor glass of lithium phosphorus complex oxide of the present invention is Melting the raw material containing the constituent elements of the lithium phosphorus complex oxide to be produced together with the additional raw material containing lithium and phosphorus, It is characterized in that the molar ratio of lithium to phosphorus in the additional raw material is more than 1 and less than 3.
  • the proportion of Li 2 O in the precursor glass is preferably 30 mol% or more.
  • the precursor glass manufactured by the above method for producing a precursor glass is heated to form a crystal of the lithium phosphorus complex oxide And the step of precipitating lithium pyrophosphate crystals.
  • the method for producing a lithium phosphorus complex oxide powder according to the present invention comprises the steps of acid-treating the precursor crystallized glass produced by the above method for producing a precursor crystallized glass and eluting lithium pyrophosphate It is characterized by including.
  • the precursor glass of the lithium phosphorus complex oxide of the present invention has a molar ratio of Li 2 O: 1+ x + y or more and less than 1 + x + 3 y M III 2 O 3 : 0.9 x or more, 1.1 x or less M IV O 2 : 4-2.2 x or more, 4-1.8 x or less P 2 O 5 : 3+ y (Where, 0 ⁇ x ⁇ 1, 1 ⁇ y ⁇ 5, M III represents an element selected from Al, Sc, Cr, Fe, Ga and In, and M IV represents Si, Ti, Ge And represents an element selected from Zr and Zr).
  • the lithium phosphorus complex oxide powder of the present invention is Li 1 + x M III x M IV 2-x (PO 4 ) 3 (Where 0 ⁇ x ⁇ 1, M III represents an element selected from Al, Sc, Cr, Fe, Ga and In, and M IV is selected from Si, Ti, Ge and Zr It represents an element, and the concentration of Zn as an impurity is less than 100 ppm.
  • the method for manufacturing the precursor glass which can obtain high quality lithium phosphorus complex oxide powder, and the said precursor glass can be provided. Further, according to the present invention, it is possible to provide a method for producing a precursor crystallized glass capable of obtaining a high quality lithium phosphorus composite oxide powder using the above precursor glass. Furthermore, according to the present invention, there is provided a method for producing a high quality lithium phosphorus complex oxide powder using the above precursor crystallized glass, and the lithium phosphorus complex oxide powder. it can.
  • FIG. 2 is a view showing an X-ray diffraction pattern of precursor crystallized glass in Example 1.
  • FIG. 7 is a view showing an X-ray diffraction pattern of precursor crystallized glass in Example 2.
  • FIG. 6 is a view showing an X-ray diffraction pattern of precursor crystallized glass in Example 3.
  • FIG. 16 is a view showing an X-ray diffraction pattern of precursor crystallized glass in Example 4.
  • FIG. 16 is a view showing an X-ray diffraction pattern of precursor crystallized glass in Example 5.
  • FIG. 16 is a view showing an X-ray diffraction pattern of precursor crystallized glass in Example 6. It is the figure which showed the X-ray-diffraction pattern of the precursor crystallized glass in the comparative example 1.
  • FIG. 2 is a view showing an X-ray diffraction pattern of the powder in Example 1.
  • FIG. 6 is a view showing an X-ray diffraction pattern of a powder in Example 2.
  • FIG. 6 is a view showing an X-ray diffraction pattern of a powder in Example 3.
  • FIG. 6 is a view showing an X-ray diffraction pattern of a powder in Example 4.
  • FIG. 10 is a view showing an X-ray diffraction pattern of a powder in Example 5.
  • FIG. 6 is a view showing an X-ray diffraction pattern of a powder in Example 2.
  • FIG. 7 is a view showing an X-ray diffraction pattern of a powder in Example 6.
  • FIG. 6 is a view showing an X-ray diffraction pattern of a powder in Comparative Example 1; It is the figure which showed the X-ray-diffraction pattern of the powder in the comparative example 2.
  • FIG. FIG. 6 is a view showing an X-ray diffraction pattern of a powder in Comparative Example 3;
  • FIG. 2 is a view showing a SEM image of the powder in Example 1.
  • FIG. 16 is a view showing a SEM image of a powder in Example 4.
  • precursor glass production method (Method for producing precursor glass of lithium phosphorus complex oxide)
  • precursor glass production method (hereinafter sometimes referred to as "precursor glass production method according to the present embodiment")
  • the precursor glass manufacturing method which concerns on this embodiment is a method for manufacturing precursor glass which can be positioned as a 1st intermediate product at the time of manufacturing high quality lithium phosphorus complex oxide powder.
  • the precursor glass manufacturing method which concerns on this embodiment uses lithium and phosphorus for the raw material (Hereafter, it may be called a "constitutive raw material.") Containing the constitutent element of lithium phosphorus complex oxide which it is going to manufacture.
  • additional raw material including (melting step), and the molar ratio of lithium to phosphorus (Li / P) in the additional raw material is , Greater than 1 and less than 3.
  • lithium phosphorus complex oxide refers to a compound containing at least lithium, phosphorus and oxygen, and as a specific composition of lithium phosphorus complex oxide to be produced, It is not limited and can be appropriately selected according to the purpose.
  • the “raw material containing constituent elements of lithium phosphorus complex oxide” (constitutive raw material) prepared in the melting step includes, in its composition, a compound containing lithium and phosphorus or a compound containing lithium and a compound containing phosphorus Furthermore, depending on the composition of the lithium-phosphorus composite oxide to be produced, compounds containing other elements can be included.
  • the above-mentioned other elements are not particularly limited and may be appropriately selected according to the purpose. In addition to M III and M IV described later, an element having an oxidation number of + I, an oxidation number of + II Elements may also be mentioned.
  • the above-mentioned constitutive raw materials are not particularly limited, and can be, for example, one or more selected from oxides, hydroxides, carbonates, nitrates, and phosphates.
  • the constitutive raw material usually consists of a plurality of compounds, and the molar ratio of each element in the constitutive raw material corresponds to the molar ratio of the element in the lithium phosphorus complex oxide to be produced (however, oxygen is except).
  • the lithium-phosphorus complex oxide to be produced is Li 1 + x Al x Ti 2-x (PO 4 ) 3
  • Li: Al: Ti: P 1 + x: x: 2-x: 3
  • Constitutive raw materials containing these elements are prepared to have a molar ratio).
  • additional raw materials (additional raw materials) containing lithium and phosphorus are prepared and mixed to obtain a mixture.
  • additional raw materials additional raw materials containing lithium and phosphorus are prepared and mixed to obtain a mixture.
  • the present inventors have surprisingly found that, in addition to the raw materials such as lithium and phosphorus constituting the powder, a raw material containing lithium and phosphorus in a predetermined ratio is added in preparing the lithium-phosphorus composite oxide powder. It has been found that the quality improvement of the obtained lithium phosphorus complex oxide powder can be achieved by using it, mixing it, and treating it through appropriate steps.
  • lithium and phosphorus correspond to constituent elements of the lithium-phosphorus composite oxide, even if they are additionally introduced, substantially no solid solution of impurities occurs in the process of production. Therefore, the lithium phosphorus complex oxide powder finally obtained is considered to be reduced in the mixing of impurities.
  • the "additional raw material containing lithium and phosphorus" (additional raw material) to be prepared in the melting step can contain a compound containing lithium and phosphorus or a compound containing lithium and a compound containing phosphorus.
  • the additional raw material is not particularly limited, and may be, for example, one or more selected from oxides, hydroxides, carbonates, nitrates, and phosphates.
  • the molar ratio of lithium to phosphorus is greater than 1 and less than 3 in the additional feed.
  • the above molar ratio is 1 or less, there is a possibility that the glass can not be vitrified stably, and a phase which can not be eluted with an acid is formed, and a lithium phosphorus composite oxide powder having a desired quality is formed. There is a risk that you can not get.
  • the above molar ratio is 3 or more, a phase which can not be eluted with an acid is formed, and there is a possibility that a lithium phosphorus composite oxide powder having a desired quality can not be obtained.
  • the above molar ratio is preferably 1.5 or more, more preferably 1.8 or more, from the viewpoint of more reliably improving the quality of the obtained lithium phosphorus complex oxide powder. And 2.5 or less are preferable, and 2.2 or less is more preferable.
  • the ratio of lithium in the additional raw material to the total lithium in the mixture of the structural raw material and the additional raw material is not particularly limited, but is preferably 53% by mol or more, and 93% by mol or less Is preferred.
  • the proportion of lithium in the additional raw material among all the lithium is more preferably 58 mol% or more, and more preferably 88 mol% or less.
  • the mixture of the constitutive raw materials weighed to a predetermined ratio and the additive raw materials weighed to a predetermined ratio are melted and vitrified.
  • the mixture is put into a container such as a non-reactive platinum crucible, heated to 1200 to 1500 ° C. in an electric furnace and appropriately stirred while melting, and then clarified and homogenized in an electric furnace .
  • the molten solution is poured into a water tank in which water is sufficiently stored, and water-quenching is performed to obtain a precursor glass as a first intermediate product.
  • the proportion of Li 2 O in the mixture and the precursor glass to be obtained is not particularly limited, but is preferably 30 mol% or more.
  • the proportion of Li 2 O is at least 30 mol%, crystallization can be avoided during preparation of the precursor glass, and more stable vitrification can be achieved, and a finally obtained lithium phosphorus system
  • the particle size of the composite oxide powder can be made more uniform.
  • the above “Li 2 O” includes not only Li 2 O derived from lithium in the additional raw material, but also Li 2 O derived from lithium in the structural raw material.
  • precursor glass of lithium phosphorus complex oxide a precursor glass of a lithium-phosphorus composite oxide according to an embodiment of the present invention (hereinafter, may be referred to as "precursor glass according to the present embodiment") will be specifically described.
  • the precursor glass according to the present embodiment has a molar ratio: Li 2 O: 1+ x + y or more and less than 1 + x + 3 y M III 2 O 3 : 0.9 x or more, 1.1 x or less M IV O 2 : 4-2.2 x or more, 4-1.8 x or less P 2 O 5 : 3+ y It consists of Here, 0 ⁇ x ⁇ 1, 1 ⁇ y ⁇ 5, M III represents an element selected from Al, Sc, Cr, Fe, Ga and In, and M IV represents Si, Ti, Ge and Represents an element selected from Zr.
  • a lithium-phosphorus complex oxide specifically, a lithium-phosphorus complex oxide represented by Li 1 + x M III x M IV 2-x (PO 4 ) 3 Powders can be obtained with high quality.
  • the precursor glass which concerns on this embodiment can be positioned as a 1st intermediate product at the time of manufacturing high quality lithium phosphorus complex oxide powder, and, for example, the precursor which concerns on this embodiment mentioned above It can be manufactured by the glass manufacturing method.
  • the precursor glass according to the present embodiment has a molar ratio: Li 2 O: more than 1 + x + y and less than 1 + x + 3y M III 2 O 3 : x M IV O 2 : 4-2x P 2 O 5 : 3+ y It is preferable to consist of
  • x is a variable that contributes to the molar ratio of Li 2 O, M III 2 O 3 and M IV O 2 in the precursor glass, and is related to the composition of the lithium phosphorus complex oxide to be produced, 0
  • the above is one or less.
  • x is preferably 0.8 or less, more preferably 0.6 or less, from the viewpoint of more reliably avoiding collapse of the crystal structure.
  • y is a variable that contributes to the molar ratio of Li 2 O and P 2 O 5 in the precursor glass and can affect the quality of the lithium-phosphorus composite oxide powder finally produced, and is 1 or more and 5 It is below. Further, y is preferably 1.5 or more, more preferably 2 or more, and more preferably 4.5 or more, from the viewpoint of further improving the quality of the powder of the lithium-phosphorus composite oxide finally obtained. It is preferable that it is the following and it is more preferable that it is four or less.
  • the molar ratio of Li 2 O in the precursor glass according to the present embodiment is more than 1 + x + y and less than 1 + x + 3y.
  • Examples of the raw material of Li 2 O include phosphates such as LiPO 3 and carbonates such as Li 2 CO 3 .
  • the molar ratio of M III 2 O 3 in the precursor glass according to the present embodiment is 0.9 x or more and 1.1 x or less.
  • M III represents an element selected from Al, Sc, Cr, Fe, Ga and In, and can have an oxidation number of + III.
  • M III is preferably an element selected from Al, Cr and Fe.
  • phosphate (Al (PO 3 ) 3 etc.) phosphate (Al (PO 3 ) 3 etc.), hydroxide (Al (OH) 3 etc.), oxide (Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 etc.) and the like.
  • the molar ratio of M IV O 2 in the precursor glass according to the present embodiment is 4-2.2 ⁇ or more and 4-1.8 ⁇ or less.
  • M IV represents an element selected from Si, Ti, Ge and Zr, and can have an oxidation number of + IV. Further, among these elements, M IV is preferably an element selected from Ti and Zr.
  • phosphate TiP 2 O 7 or the like
  • oxide TiO 2 , SiO 2 , GeO 2 , ZrO 2 or the like
  • the molar ratio of P 2 O 5 in the precursor glass according to the present embodiment is 3 + y.
  • Examples of the raw material of P 2 O 5 include arbitrary phosphates, acids such as H 3 PO 4 , and oxides such as P 2 O 5 .
  • the precursor glass which concerns on this embodiment is not crystallized. Since the precursor glass is not crystallized, the particle size of the finally obtained lithium phosphorus complex oxide powder can be made more uniform.
  • a method for producing a precursor crystallized glass of a lithium phosphorus complex oxide according to an embodiment of the present invention (hereinafter, may be referred to as “a precursor crystallized glass production method according to the present embodiment”). This will be described specifically.
  • the precursor crystallized glass production method according to the present embodiment is a method for producing a precursor crystallized glass, which can be positioned as a second intermediate product in producing a high quality lithium phosphorus composite oxide powder. is there.
  • the precursor crystallization glass manufacturing method concerning this embodiment heats the precursor glass mentioned above, and the process (precipitation process) of making the crystal of lithium phosphorus complex oxide and the crystal of lithium pyrophosphate precipitate. Including.
  • the heating of the precursor glass in the deposition step can be, for example, two-step heating at 400 to 600 ° C. for 10 to 30 hours and at 600 to 900 ° C. for 10 to 30 hours.
  • a precursor crystallized glass as a second intermediate product in which at least crystals of lithium phosphorus complex oxide and crystals of lithium pyrophosphate (Li 4 P 2 O 7 ) are precipitated by this heat treatment is obtained.
  • the precipitation step only the above-described crystals may be precipitated, and, for example, crystals such as lithium metaphosphate (LiPO 3 ) or lithium phosphate (Li 3 PO 4 ) may be further precipitated.
  • crystals such as lithium metaphosphate (LiPO 3 ) or lithium phosphate (Li 3 PO 4 )
  • the amount of precipitated crystals of lithium metaphosphate (LiPO 3 ), lithium phosphate (Li 3 PO 4 ), etc. should be small. Is preferred.
  • the method of producing a powder according to the present embodiment includes the step of acid-treating the above-described precursor crystallized glass to elute lithium pyrophosphate (acid treatment step).
  • the crystallized precursor glass can be immersed in 1 to 5 N nitric acid or 1 to 5 N hydrochloric acid at 30 to 90 ° C. for 2 to 24 hours. Moreover, it is preferable to stir with a stirrer etc. at the time of immersion.
  • this acid treatment it is possible to selectively elute crystals other than the lithium phosphorus complex oxide crystals, that is, crystals containing at least lithium pyrophosphate crystals.
  • the crystals of the lithium phosphorus complex oxide and the eluate are separated by filtration or the like, and the crystals are dried, whereby a high quality lithium phosphorus complex oxide powder can be obtained. .
  • the crystal of lithium pyrophosphate has high solubility in acid compared to the crystal of zinc pyrophosphate (Zn 2 P 2 O 7 ) deposited by the prior art. Therefore, the method for producing a powder according to the present embodiment has a high effect of elution and removal of a phase that can be an impurity, as compared with the prior art.
  • the lithium phosphorus complex oxide powder according to the present embodiment is Li 1 + x M III x M IV 2-x (PO 4 ) 3 (where 0 ⁇ x ⁇ 1 and M III is Al, Sc, Cr. Represents an element selected from Fe, Ga and In, and M IV represents an element selected from Si, Ti, Ge and Zr), and the concentration of Zn as an impurity is less than 100 ppm.
  • the lithium-phosphorus composite oxide powder according to the present embodiment is reduced in impurities and high in quality.
  • the lithium phosphorus complex oxide powder which concerns on this embodiment can be manufactured, for example by the manufacturing method of the powder which concerns on this embodiment mentioned above.
  • the concentration of Zn can be measured by fluorescent X-ray analysis.
  • x, M III and M IV are the same as those described above for the lithium-phosphorus complex oxide precursor glass.
  • the lithium-phosphorus composite oxide powder preferably has a particle diameter of 0.1 to 10 ⁇ m as measured by a laser diffraction / scattering method. In addition, it is preferable that the standard deviation of the particle diameter of the lithium phosphorus complex oxide powder is less than 2 ⁇ m. Furthermore, the lithium phosphorus complex oxide powder preferably has a low concentration of impurities other than Zn. For example, the concentration of elements other than the constituent elements of the lithium phosphorus complex oxide is preferably less than 2000 ppm.
  • Example 1 Production of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 A lithium-phosphorus complex oxide represented by Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 was produced by the following procedure.
  • Li: Al: Ti: P 1.4: 0.4: 1.6: 3 (Modified with Li 2 O: 1.4, Al 2 O 3 : 0.4, TiO 2 : 3) in molar ratio .2.
  • LiPO 3 , Al (PO 3 ) 3 , Ti 2 P 2 O 7 , and TiO 2 weighed to predetermined amounts were prepared as constitutive raw materials so that P 2 O 5 : 3) was obtained.
  • LiPO 3 , Al (PO 3 ) 3 , Ti 2 P 2 O 7 , and TiO 2 weighed to predetermined amounts were prepared as constitu
  • the proportion of Li 2 O in the mixture and the precursor glass is calculated to be 43.5 mol%.
  • this precursor glass was heated at 500 ° C. for 10 hours and at 700 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, the precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 2 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder. In addition, it was confirmed that at least lithium pyrophosphate was eluted in the filtrate.
  • LiTi 2 (PO 4 ) 3 The lithium phosphorus complex oxide represented by LiTi 2 (PO 4 ) 3 was produced by the following procedure.
  • LiPO 3 weighed to a predetermined amount so that the molar ratio is Li: Ti: P 1: 2: 3 (Li 2 O: 1, TiO 2 : 4, P 2 O 5 : 3 in oxide conversion) , Ti 2 P 2 O 7 , and TiO 2 were prepared as constitutive raw materials.
  • LiPO 3 and Li 2 CO 3 were weighed to a predetermined amount such that Li 2 O: 4.5 and P 2 O 5 : 3 (Li / P 1.5) in molar ratio in oxide conversion. was prepared as an additional ingredient.
  • the proportion of Li 2 O in the mixture and the precursor glass is calculated to be 35.5 mol%.
  • this precursor glass was heated at 500 ° C. for 10 hours and at 700 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, the precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 2 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder. In addition, it was confirmed that at least lithium pyrophosphate was eluted in the filtrate.
  • Example 3 Production of Li 1.2 Cr 0.2 Ti 1.8 (PO 4 ) 3 A lithium-phosphorus composite oxide represented by Li 1.2 Cr 0.2 Ti 1.8 (PO 4 ) 3 was produced by the following procedure.
  • the proportion of Li 2 O in the mixture and the precursor glass is calculated to be 41.3 mol%.
  • this precursor glass was heated at 500 ° C. for 10 hours and at 700 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, the precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 2 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder. In addition, it was confirmed that at least lithium pyrophosphate was eluted in the filtrate.
  • Example 4 Preparation of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 A lithium-phosphorus complex oxide represented by Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 was produced by the following procedure.
  • Li: Al: Ti: P 1.4: 0.4: 1.6: 3 (Modified with Li 2 O: 1.4, Al 2 O 3 : 0.4, TiO 2 : 3) in molar ratio .2.
  • LiPO 3 , Al (PO 3 ) 3 , Ti 2 P 2 O 7 and TiO 2 weighed to predetermined amounts were prepared as constitutive raw materials so as to be P 2 O 5 : 3).
  • the produced precursor glass was crystallized. Also, the proportion of Li 2 O in the mixture and the precursor glass is calculated to be 27.6 mol%.
  • this precursor glass was heated at 500 ° C. for 10 hours and at 700 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, the precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 12 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder. In addition, it was confirmed that at least lithium pyrophosphate was eluted in the filtrate.
  • Example 5 Production of Li 1.3 Fe 0.3 Ti 1.7 (PO 4 ) 3
  • the Li 1.3 Fe 0.3 Ti 1.7 (PO 4) lithium-phosphorus compound oxide represented by 3 was manufactured by the following procedure.
  • the proportion of Li 2 O in the mixture and the precursor glass is calculated to be 42.9 mol%.
  • this precursor glass was heated at 500 ° C. for 10 hours and at 700 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, this precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 3 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder. In addition, it was confirmed that at least lithium pyrophosphate was eluted in the filtrate.
  • LiZr 2 (PO 4 ) 3 A lithium-phosphorus complex oxide represented by LiZr 2 (PO 4 ) 3 was produced by the following procedure.
  • LiPO 3 weighed to a predetermined amount so that the molar ratio is Li: Zr: P 1: 2: 3 (Li 2 O: 1, ZrO 2 : 4, P 2 O 5 : 3 in oxide conversion) , ZrO 2 and H 3 PO 4 were prepared as constitutive raw materials.
  • the proportion of Li 2 O in the mixture and the precursor glass is calculated to be 47.8 mol%.
  • this precursor glass was heated at 450 ° C. for 10 hours and at 650 ° C. for 10 hours to produce a precursor crystallized glass. Thereafter, this precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 3 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder. In addition, it was confirmed that at least lithium pyrophosphate was eluted in the filtrate.
  • Li: Al: Ti: P 1.4: 0.4: 1.6: 3 (Modified with Li 2 O: 1.4, Al 2 O 3 : 0.4, TiO 2 : 3) in molar ratio .2.
  • Li 2 O: 4.4, Al 2 O 3 : 0.4, TiO 2 : 3.2, P 2 O 5 : 6 (molar ratio) did.
  • the proportion of Li 2 O in the mixture and the precursor glass is calculated to be 31.4 mol%.
  • this precursor glass was heated at 500 ° C. for 10 hours and at 700 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, the precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 10 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder.
  • Li: Al: Ti: P 1.4: 0.4: 1.6: 3 (Modified with Li 2 O: 1.4, Al 2 O 3 : 0.4, TiO 2 : 3) in molar ratio .2.
  • LiPO 3 , Al (PO 3 ) 3 , TiP 2 O 7 and TiO 2 weighed to predetermined amounts were prepared as constitutive raw materials so as to be P 2 O 5 : 3).
  • LiPO 3 , Al (PO 3 ) 3 , TiP 2 O 7 and TiO 2 weighed to predetermined amounts were prepared as constitutive raw materials so as to
  • Li 2 O 10.4, Al 2 O 3 : 0.4, TiO 2 : 3.2, P 2 O 5 : 6 (molar ratio) did.
  • the proportion of Li 2 O in the mixture and precursor glass is calculated to be 52.0 mol%.
  • this precursor glass was heated at 500 ° C. for 10 hours and at 700 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, the precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 2 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder.
  • the precursor glass was heated at 500 ° C. for 10 hours and at 800 ° C. for 10 hours to prepare a precursor crystallized glass. Thereafter, the precursor crystallized glass was immersed in a 3 mol / L HNO 3 aqueous solution, and stirred at 60 ° C. for 10 hours for acid treatment to obtain a cloudy solution. Then, dispersed particles were taken out from the white turbid solution by filtration and dried at 120 ° C. to obtain a white powder.
  • the X-ray diffraction spectrum of the white powder obtained in each Example and Comparative Example was measured with an X-ray diffractometer Ultima IV (manufactured by Rigaku Corporation).
  • the X-ray diffraction spectra of the white powders of Examples 1 to 6 and Comparative Examples 1 to 3 are shown in FIGS. 10 to 18, respectively.
  • main peaks are main peaks other than the peaks tentatively determined as LiTi 2 (PO 4 ) 3 or LiZr 2 (PO 4 ) 3 I could not see it.
  • FIGS. 16 and 17 in the X-ray diffraction spectra according to Comparative Examples 1 and 2, a peak of the subphase was observed.
  • the method for manufacturing the precursor glass which can obtain high quality lithium phosphorus complex oxide powder, and the said precursor glass can be provided. Further, according to the present invention, it is possible to provide a method for producing a precursor crystallized glass capable of obtaining a high quality lithium phosphorus composite oxide powder using the above precursor glass. Furthermore, according to the present invention, there is provided a method for producing a high quality lithium phosphorus complex oxide powder using the above precursor crystallized glass, and the lithium phosphorus complex oxide powder. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

高品質なリチウムリン系複合酸化物粉末を提供する。リチウムリン系複合酸化物粉末は、Li1+xMIII xMIV 2-x(PO4)3(ここで、0≦x≦1であり、MIIIは、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、MIVは、Si、Ti、Ge及びZrから選択される元素を表す)からなり、不純物としてのZnの濃度が100ppm未満である、ことを特徴とする。

Description

リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法
 本発明は、リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法に関する。
 リチウムリン系複合酸化物の結晶は、化学的に安定で、室温で高いリチウムイオン伝導性を示すことから、リチウムイオン二次電池の固体電解質材料として期待されている。固体電解質材料に用いられ得る代表的なリチウムリン系複合酸化物としては、Li1+xAlTi2-x(PO(0≦x≦1.0)で表されるものが挙げられ、このうち、x=0のものは「LTP」、0<x≦1.0のものは「LATP」とも呼ばれる。
 また、固体電解質材料に用いられるリチウムリン系複合酸化物は、形状自由度が高い全固体電池など、様々な形態及び形状の電池に用いるためには、微粉末化されていることが望まれる。
 ここで、上述したリチウムリン系複合酸化物の結晶の一般的な製造方法としては、固相法及びゾルゲル法が挙げられる。また、その他にも、上述したような結晶を製造する技術として、特許文献1は、所定の構成成分を含有する原ガラスを溶融成形後、800~1000℃の温度で熱処理することで、主結晶相としてLi1+x(Al、Ga)Ti2-x(PO(x=0~0.8)を析出させることを開示している。
 しかしながら、固相法やゾルゲル法によりリチウムリン系複合酸化物の結晶を製造した場合、微粉末化のためには、物理的な粉砕が更に必要となる。そして、物理的な粉砕を行うと、異物の混入や、応力による結晶構造における歪みの発生などの問題が生じる虞がある。加えて、粉砕品の粒子径分布をシャープにするためには、高度な技術や高額な装置が必要となる。
 また、特許文献1に開示の技術では、ガラスの耐失透安定性が低いため、ガラス作製の時点で結晶が析出する。この結晶は、後の熱処理によって析出させる結晶に比べ、粒子径が非常に大きい。そのため、最終的に、均一に微粉末化された結晶を得ることができない。
 一方、特許文献2は、リチウムリン系複合酸化物を構成する成分に加えて、ZnOを必須成分として用いてガラスを作製した後、所定の処理を行うことで、LTP又はLATPの結晶を粒子状で得られることを開示している。
特開平9-142874号公報 特開2016-155057号公報
 しかしながら、特許文献2に開示の技術は、粉砕を行うことなく結晶粒子を得ることができるものの、一定量のZn成分が当該結晶粒子中に固溶し、不純物として残存し得る。そのため、当該技術においても、製造する粒子を高品質化する点で、改良の余地があった。
 本発明は、上記の観点に鑑みてなされたもので、高品質なリチウムリン系複合酸化物粉末を得ることが可能な前駆体ガラスを製造するための方法、及び、当該前駆体ガラスを提供することを目的とする。また、本発明は、上記前駆体ガラスを用いた、高品質なリチウムリン系複合酸化物粉末を得ることが可能な前駆体結晶化ガラスを製造するための方法を提供することを目的とする。更に、本発明は、上記前駆体結晶化ガラスを用いた、高品質なリチウムリン系複合酸化物粉末を製造するための方法、及び、当該リチウムリン系複合酸化物粉末を提供することを目的とする。
 本発明者は、鋭意検討した結果、リチウムリン系複合酸化物を調製するに当たり、その構成元素を含む原料に加え、所定比率のリチウム及びリンを付加的な原料として用いることで、第1中間製品(前駆体ガラス)及び第2中間製品(前駆体結晶化ガラス)を経て、最終的に高品質な粉末状のリチウムリン系複合酸化物が得られることを見出し、本発明を完成させた。
 前記課題を解決するための手段としては以下の通りである。即ち、本発明のリチウムリン系複合酸化物の前駆体ガラスの製造方法は、
 製造しようとするリチウムリン系複合酸化物の構成元素を含む原料を、リチウム及びリンを含む付加的な原料とともに熔解する工程を含み、
 前記付加的な原料における、リンに対するリチウムのモル比が、1を超え、且つ3未満である、ことを特徴とする。
 本発明のリチウムリン系複合酸化物の前駆体ガラスの製造方法は、前記前駆体ガラスにおけるLiOの割合が30モル%以上であることが好ましい。
 また、本発明のリチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法は、上記の前駆体ガラスの製造方法により製造された前駆体ガラスを加熱して、リチウムリン系複合酸化物の結晶と、ピロリン酸リチウムの結晶とを析出させる工程を含む、ことを特徴とする。
 また、本発明のリチウムリン系複合酸化物粉末の製造方法は、上記の前駆体結晶化ガラスの製造方法により製造された前駆体結晶化ガラスを酸処理して、ピロリン酸リチウムを溶出させる工程を含む、ことを特徴とする。
 また、本発明のリチウムリン系複合酸化物の前駆体ガラスは、モル比で、
LiO:1+x+yを超え、且つ1+x+3y未満
III :0.9x以上、1.1x以下
IV:4-2.2x以上、4-1.8x以下
:3+y
(ここで、0≦x≦1、1≦y≦5であり、MIIIは、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、MIVは、Si、Ti、Ge及びZrから選択される元素を表す)からなる、ことを特徴とする。
 そして、本発明のリチウムリン系複合酸化物粉末は、
 Li1+xIII IV 2-x(PO)
(ここで、0≦x≦1であり、MIIIは、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、MIVは、Si、Ti、Ge及びZrから選択される元素を表す)からなり、不純物としてのZnの濃度が100ppm未満である、ことを特徴とする。
 本発明によれば、高品質なリチウムリン系複合酸化物粉末を得ることが可能な前駆体ガラスを製造するための方法、及び、当該前駆体ガラスを提供することができる。また、本発明によれば、上記前駆体ガラスを用いた、高品質なリチウムリン系複合酸化物粉末を得ることが可能な前駆体結晶化ガラスを製造するための方法を提供することができる。更に、本発明によれば、上記前駆体結晶化ガラスを用いた、高品質なリチウムリン系複合酸化物粉末を製造するための方法、及び、当該リチウムリン系複合酸化物粉末を提供することができる。
実施例1における前駆体結晶化ガラスのX線回折パターンを示した図である。 実施例2における前駆体結晶化ガラスのX線回折パターンを示した図である。 実施例3における前駆体結晶化ガラスのX線回折パターンを示した図である。 実施例4における前駆体結晶化ガラスのX線回折パターンを示した図である。 実施例5における前駆体結晶化ガラスのX線回折パターンを示した図である。 実施例6における前駆体結晶化ガラスのX線回折パターンを示した図である。 比較例1における前駆体結晶化ガラスのX線回折パターンを示した図である。 比較例2における前駆体結晶化ガラスのX線回折パターンを示した図である。 比較例3における前駆体結晶化ガラスのX線回折パターンを示した図である。 実施例1における粉末のX線回折パターンを示した図である。 実施例2における粉末のX線回折パターンを示した図である。 実施例3における粉末のX線回折パターンを示した図である。 実施例4における粉末のX線回折パターンを示した図である。 実施例5における粉末のX線回折パターンを示した図である。 実施例6における粉末のX線回折パターンを示した図である。 比較例1における粉末のX線回折パターンを示した図である。 比較例2における粉末のX線回折パターンを示した図である。 比較例3における粉末のX線回折パターンを示した図である。 実施例1における粉末のSEM画像を示した図である。 実施例4における粉末のSEM画像を示した図である。
(リチウムリン系複合酸化物の前駆体ガラスの製造方法)
 まず、本発明の一実施形態に係るリチウムリン系複合酸化物の前駆体ガラスの製造方法(以下、「本実施形態に係る前駆体ガラス製法」と称することがある。)を具体的に説明する。
 本実施形態に係る前駆体ガラス製法は、高品質なリチウムリン系複合酸化物粉末を製造する際の第1中間製品として位置づけることができる、前駆体ガラスを製造するための方法である。そして、本実施形態に係る前駆体ガラス製法は、製造しようとするリチウムリン系複合酸化物の構成元素を含む原料(以下、「構成的原料」と称することがある。)を、リチウム及びリンを含む付加的な原料(以下、「付加的原料」と称することがある。)とともに熔解する工程(熔解工程)を含み、また、付加的原料における、リンに対するリチウムのモル比(Li/P)が、1を超え、且つ3未満である。
 なお、本明細書において「リチウムリン系複合酸化物」とは、リチウム、リン及び酸素を少なくとも含む化合物を指すものとし、製造しようとするリチウムリン系複合酸化物の具体的な組成としては、特に制限されず、目的に応じて適宜選択することができる。
 熔解工程で準備する「リチウムリン系複合酸化物の構成元素を含む原料」(構成的原料)は、その組成上、リチウム及びリンを含む化合物、或いは、リチウムを含む化合物及びリンを含む化合物を含み、更に、製造しようとするリチウムリン系複合酸化物の組成に応じて、他の元素を含む化合物を含むことができる。また、上記の他の元素としては、特に制限されず、目的に応じて適宜選択することができ、後述するMIII及びMIVの他、+Iの酸化数をとる元素、+IIの酸化数をとる元素なども挙げられる。そして、上記の構成的原料は、特に制限されず、例えば、酸化物、水酸化物、炭酸塩、硝酸塩、及びリン酸塩から選択される1種以上とすることができる。
 また、構成的原料は、通常は複数の化合物からなり、構成的原料における各元素のモル比は、製造しようとするリチウムリン系複合酸化物における当該元素のモル比に対応させる(但し、酸素は除く)。例えば、製造しようとするリチウムリン系複合酸化物がLi1+xAlTi2-x(POである場合には、Li:Al:Ti:P=1+x:x:2-x:3(モル比)となるように、これらの元素を含む構成的原料を準備する。
 また、熔解工程では、上述した構成的原料に加え、更に、リチウム及びリンを含む付加的な原料(付加的原料)を準備し、混合して混合物を得る。本発明者らは、驚くべきことに、リチウムリン系複合酸化物粉末を調製するに当たり、当該粉末を構成するリチウム及びリンなどの原料に加えて、リチウム及びリンを所定比率で含む原料を付加的に用いて混合し、適切な工程を経て処理することにより、得られるリチウムリン系複合酸化物粉末の高品質化を達成できることを見出した。
 具体的な作用としては、所定比率のリチウム及びリンを付加的に導入することにより、それらが、ガラス化を促進するとともに、酸に溶け得る相を形成することができる。そして、形成した相は、酸により容易に溶出除去が可能である。また、リチウム及びリンは、リチウムリン系複合酸化物の構成元素に相当するので、付加的に導入したとしても、製造の過程で不純物の固溶を実質的に生じさせない。従って、最終的に得られるリチウムリン系複合酸化物粉末は、不純物の混入が低減されるものと考えられる。
 熔融工程で準備する「リチウム及びリンを含む付加的な原料」(付加的原料)は、リチウム及びリンを含む化合物、或いは、リチウムを含む化合物及びリンを含む化合物を含むことができる。また、上記の付加的原料は、特に制限されず、例えば、酸化物、水酸化物、炭酸塩、硝酸塩、及びリン酸塩から選択される1種以上とすることができる。
 上述の通り、付加的原料において、リンに対するリチウムのモル比(Li/P)は、1を超え、且つ3未満である。上記のモル比が1以下であると、安定的にガラス化することができない虞がある上、酸では溶出することができない相が形成されて、所望の品質を有するリチウムリン系複合酸化物粉末を得ることができない虞がある。また、上記のモル比が3以上であると、酸では溶出することができない相が形成されて、所望の品質を有するリチウムリン系複合酸化物粉末を得ることができない虞がある。また、上記のモル比は、得られるリチウムリン系複合酸化物粉末をより確実に高品質化する観点から、1.5以上であることが好ましく、1.8以上であることがより好ましく、また、2.5以下であることが好ましく、2.2以下であることがより好ましい。
 構成的原料及び付加的原料からなる混合物において、全てのリチウムのうち付加的原料のリチウムが占める割合は、特に制限されないが、53モル%以上であることが好ましく、また、93モル%以下であることが好ましい。上記の割合が53モル%以上であることにより、酸では溶出しない不所望な相(例えば、ピロリン酸チタンの相)の形成をより十分に抑制することができ、また、93モル%以下であることにより、歩留まりの悪化をより十分に抑制することができる。同様の観点から、全てのリチウムのうち付加的原料のリチウムが占める割合は、58モル%以上であることがより好ましく、また、88モル%以下であることがより好ましい。
 そして、熔解工程では、所定の割合となるように秤量した構成的原料、及び、所定の割合となるように秤量した付加的原料の混合物を熔解し、ガラス化する。具体的には、例えば、反応性のない白金坩堝等の容器に混合物を投入し、電気炉にて1200~1500℃に加熱して熔融しながら適時撹拌した後、電気炉で清澄、均質化する。そして、十分に水を貯めた水槽内に熔解液を流し込み、水砕急冷する等により、第1中間製品としての前駆体ガラスを得ることができる。
 ここで、混合物及び得られる前駆体ガラスにおけるLiOの割合は、特に制限されないが、30モル%以上であることが好ましい。LiOの割合が30モル%以上であることにより、前駆体ガラスの調製時に結晶化するのを回避して、より安定的にガラス化することができるとともに、最終的に得られるリチウムリン系複合酸化物粉末の粒子径をより均一化することができる。なお、上記の「LiO」には、付加的原料中のリチウムに由来するLiOだけでなく、構成的原料中のリチウムに由来するLiOも含まれるものとする。
(リチウムリン系複合酸化物の前駆体ガラス)
 次に、本発明の一実施形態に係るリチウムリン系複合酸化物の前駆体ガラス(以下、「本実施形態に係る前駆体ガラス」と称することがある。)を具体的に説明する。本実施形態に係る前駆体ガラスは、モル比で、
LiO:1+x+yを超え、且つ1+x+3y未満
III :0.9x以上、1.1x以下
IV:4-2.2x以上、4-1.8x以下
:3+y
からなる。ここで、0≦x≦1、1≦y≦5であり、MIIIは、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、MIVは、Si、Ti、Ge及びZrから選択される元素を表す。本実施形態に係る前駆体ガラスによれば、リチウムリン系複合酸化物、具体的には、Li1+xIII IV 2-x(PO)で表されるリチウムリン系複合酸化物の粉末を、高い品質をもって得ることができる。
 なお、本実施形態に係る前駆体ガラスは、高品質なリチウムリン系複合酸化物粉末を製造する際の第1中間製品として位置づけることができ、また、例えば、上述した本実施形態に係る前駆体ガラス製法により、製造することができる。
 また、本実施形態に係る前駆体ガラスは、モル比で、
LiO:1+x+yを超え、且つ1+x+3y未満
III :x
IV:4-2x
:3+y
からなることが好ましい。
 なお、xは、前駆体ガラスにおけるLiO、MIII 及びMIVのモル比に寄与し、製造しようとするリチウムリン系複合酸化物の組成に関係する変数であり、0以上1以下である。また、xは、結晶構造の崩れをより確実に回避する観点から、0.8以下であることが好ましく、0.6以下であることがより好ましい。
 一方、yは、前駆体ガラスにおけるLiO及びPのモル比に寄与し、最終的に製造されるリチウムリン系複合酸化物粉末の品質に影響し得る変数であり、1以上5以下である。また、yは、最終的に得られるリチウムリン系複合酸化物の粉末の品質をより高める観点から、1.5以上であることが好ましく、2以上であることがより好ましく、また、4.5以下であることが好ましく、4以下であることがより好ましい。
 本実施形態に係る前駆体ガラスにおけるLiOのモル比は、1+x+yを超え、且つ1+x+3y未満である。LiOの原料としては、例えば、LiPO等のリン酸塩、LiCO等の炭酸塩などが挙げられる。
 本実施形態に係る前駆体ガラスにおけるMIII のモル比は、0.9x以上1.1x以下である。MIIIは、上述の通り、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、+IIIの酸化数をとることができる。また、MIIIは、これらの元素の中でも、Al、Cr及びFeから選択される元素であることが好ましい。MIII の原料としては、例えば、リン酸塩(Al(PO等)、水酸化物(Al(OH)等)、酸化物(Al、Cr、Fe等)などが挙げられる。
 本実施形態に係る前駆体ガラスにおけるMIVのモル比は、4-2.2x以上4-1.8x以下である。MIVは、上述の通り、Si、Ti、Ge及びZrから選択される元素を表し、+IVの酸化数をとることができる。また、MIVは、これらの元素の中でも、Ti及びZrから選択される元素であることが好ましい。MIVの原料としては、例えば、リン酸塩(TiP等)、酸化物(TiO、SiO、GeO、ZrO等)などが挙げられる。
 本実施形態に係る前駆体ガラスにおけるPのモル比は、3+yである。Pの原料としては、例えば、任意のリン酸塩、HPO等の酸、P等の酸化物などが挙げられる。
 また、本実施形態に係る前駆体ガラスは、結晶化されていないことが好ましい。前駆体ガラスが結晶化されていないことにより、最終的に得られるリチウムリン系複合酸化物粉末の粒子径をより均一なものとすることができる。
(リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法)
 次に、本発明の一実施形態に係るリチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法(以下、「本実施形態に係る前駆体結晶化ガラス製法」と称することがある。)を具体的に説明する。
 本実施形態に係る前駆体結晶化ガラス製法は、高品質なリチウムリン系複合酸化物粉末を製造する際の第2中間製品として位置づけることができる、前駆体結晶化ガラスを製造するための方法である。そして、本実施形態に係る前駆体結晶化ガラス製法は、上述した前駆体ガラスを加熱して、リチウムリン系複合酸化物の結晶と、ピロリン酸リチウムの結晶とを析出させる工程(析出工程)を含む。
 析出工程における前駆体ガラスの加熱は、例えば、400~600℃で10~30時間、及び、600~900℃で10~30時間の2段階加熱とすることができる。この加熱処理により、内部にリチウムリン系複合酸化物の結晶と、ピロリン酸リチウム(Li)の結晶とが少なくとも析出した、第2中間製品としての前駆体結晶化ガラスを得ることができる。
 なお、析出工程では、上述した結晶のみを析出させてもよく、例えば、メタリン酸リチウム(LiPO)やリン酸リチウム(LiPO)などの結晶を更に析出させてもよい。但し、最終的に得られるリチウムリン系複合酸化物の粉末の品質をより高める観点から、メタリン酸リチウム(LiPO)やリン酸リチウム(LiPO)などの結晶の析出量は、少ない方が好ましい。
(リチウムリン系複合酸化物粉末の製造方法)
 次に、本発明の一実施形態に係るリチウムリン系複合酸化物粉末の製造方法(以下、「本実施形態に係る粉末の製法」と称することがある。)を具体的に説明する。
 本実施形態に係る粉末の製法は、上述した前駆体結晶化ガラスを酸処理して、ピロリン酸リチウムを溶出させる工程(酸処理工程)を含む。
 酸処理工程では、例えば、前駆体結晶化ガラスを、30~90℃の1~5N硝酸又は1~5N塩酸に、2~24時間浸漬することができる。また、浸漬時には、スターラー等で撹拌することが好ましい。この酸処理により、リチウムリン系複合酸化物の結晶以外の結晶、即ち、少なくともピロリン酸リチウムの結晶を含む結晶を選択的に溶出させることができる。そして、酸処理後には、ろ過等により、リチウムリン系複合酸化物の結晶と、溶出液とを分離し、結晶を乾燥させることにより、高品質なリチウムリン系複合酸化物粉末を得ることができる。
 なお、ピロリン酸リチウムの結晶は、従来技術で析出させるピロリン酸亜鉛(Zn)の結晶に比べ、酸に対する溶解度が高い。そのため、本実施形態に係る粉末の製法は、従来技術に比べ、不純物となり得る相の溶出除去効果が高い。
(リチウムリン系複合酸化物粉末)
 そして、本発明の一実施形態に係るリチウムリン系複合酸化物粉末(以下、「本実施形態に係るリチウムリン系複合酸化物粉末」と称することがある。)を具体的に説明する。
 本実施形態に係るリチウムリン系複合酸化物粉末は、Li1+xIII IV 2-x(PO)(ここで、0≦x≦1であり、MIIIは、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、MIVは、Si、Ti、Ge及びZrから選択される元素を表す)からなり、不純物としてのZnの濃度が100ppm未満である。このように、本実施形態に係るリチウムリン系複合酸化物粉末は、不純物が低減されており、高品質である。
 なお、本実施形態に係るリチウムリン系複合酸化物粉末は、例えば、上述した本実施形態に係る粉末の製法により、製造することができる。
 また、Znの濃度は、蛍光X線分析により測定することができる。
 x、MIII及びMIVの好ましい態様は、リチウムリン系複合酸化物の前駆体ガラスについて既述したものと同様である。
 リチウムリン系複合酸化物粉末は、レーザー回折・散乱法により測定される粒子径が0.1~10μmであることが好ましい。また、リチウムリン系複合酸化物粉末は、粒子径の標準偏差が2μm未満であることが好ましい。
 更に、リチウムリン系複合酸化物粉末は、Zn以外の不純物の濃度も低いことが好ましく、例えば、リチウムリン系複合酸化物の構成元素以外の元素の濃度が2000ppm未満であることが好ましい。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1:Li1.4Al0.4Ti1.6(POの製造)
 Li1.4Al0.4Ti1.6(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Al:Ti:P=1.4:0.4:1.6:3(酸化物換算でLiO:1.4、Al:0.4、TiO:3.2、P:3)となるように、所定量に秤量されたLiPO、Al(PO、Ti、及びTiOを構成的原料として準備した。また、酸化物換算のモル比でLiO:6、P:3(Li/P=2)となるように、所定量に秤量されたLiPO及びLiCOを付加的原料として準備した。これらを混合し、熔解して、LiO:7.4、Al:0.4、TiO:3.2、P:6(モル比)からなる前駆体ガラス(x=0.4、y=3)を作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、43.5モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、700℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で2時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。なお、ろ液には、少なくともピロリン酸リチウムが溶出していることを確認した。
(実施例2:LiTi(POの製造)
 LiTi(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Ti:P=1:2:3(酸化物換算でLiO:1、TiO:4、P:3)となるように、所定量に秤量されたLiPO、Ti、及びTiOを構成的原料として準備した。また、酸化物換算のモル比でLiO:4.5、P:3(Li/P=1.5)となるように、所定量に秤量されたLiPO及びLiCOを付加的原料として準備した。これらを混合し、熔解して、LiO:5.5、TiO:4、P:6(モル比)からなる前駆体ガラス(x=0、y=3)を作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、35.5モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、700℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で2時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。なお、ろ液には、少なくともピロリン酸リチウムが溶出していることを確認した。
(実施例3:Li1.2Cr0.2Ti1.8(POの製造)
 Li1.2Cr0.2Ti1.8(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Cr:Ti:P=1.2:0.2:1.8:3(酸化物換算でLiO:1.2、Cr:0.2、TiO:3.6、P:3)となるように、所定量に秤量されたLiPO、Ti、Cr及びTiOを構成的原料として準備した。また、酸化物換算のモル比でLiO:5、P:2(Li/P=2.5)となるように、所定量に秤量されたLiPO及びLiCOを付加的原料として準備した。これらを混合し、熔解して、LiO:6.2、Cr:0.2、TiO:3.6、P:5(モル比)からなる前駆体ガラス(x=0.2、y=2)を作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、41.3モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、700℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で2時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。なお、ろ液には、少なくともピロリン酸リチウムが溶出していることを確認した。
(実施例4:Li1.4Al0.4Ti1.6(POの製造)
 Li1.4Al0.4Ti1.6(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Al:Ti:P=1.4:0.4:1.6:3(酸化物換算でLiO:1.4、Al:0.4、TiO:3.2、P:3)となるように、所定量に秤量されたLiPO、Al(PO、Ti及びTiOを構成的原料として準備した。また、酸化物換算のモル比でLiO:1.5、P:1(Li/P=1.5)となるように、所定量に秤量されたLiPO及びLiCOを付加的原料として準備した。これらを混合し、熔解して、LiO:2.9、Al:0.4、TiO:3.2、P:4(モル比)からなる前駆体ガラス(x=0.4、y=1)を作製した。なお、作製した前駆体ガラスは、結晶化していた。また、混合物及び前駆体ガラスにおけるLiOの割合は、27.6モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、700℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で12時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。なお、ろ液には、少なくともピロリン酸リチウムが溶出していることを確認した。
(実施例5:Li1.3Fe0.3Ti1.7(POの製造)
 Li1.3Fe0.3Ti1.7(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Fe:Ti:P=1.3:0.3:1.7:3(酸化物換算でLiO:1.3、Fe:0.3、TiO:3.4、P:3)となるように、所定量に秤量されたLiPO、Fe、Ti及びTiOを構成的原料として準備した。また、酸化物換算のモル比でLiO:6、P:3(Li/P=2)となるように、所定量に秤量されたLiPO及びLiCOを付加的原料として準備した。これらを混合し、熔解して、LiO:7.3、Fe:0.3、TiO:3.4、P:6(モル比)からなる前駆体ガラス(x=0.3、y=3)を作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、42.9モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、700℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で3時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。なお、ろ液には、少なくともピロリン酸リチウムが溶出していることを確認した。
(実施例6:LiZr(POの製造)
 LiZr(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Zr:P=1:2:3(酸化物換算でLiO:1、ZrO:4、P:3)となるように、所定量に秤量されたLiPO、ZrOおよびHPOを構成的原料として準備した。また、酸化物換算のモル比でLiO:10、P:5(Li/P=2)となるように、所定量に秤量されたLiPO及びLiCOを付加的原料として準備した。これらを混合し、熔解して、LiO:11、ZrO:4、P:8(モル比)からなる前駆体ガラス(x=0、y=5)を作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、47.8モル%と算出される。
 次いで、この前駆体ガラスを450℃で10時間、650℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で3時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。なお、ろ液には、少なくともピロリン酸リチウムが溶出していることを確認した。
(比較例1)
 Li1.4Al0.4Ti1.6(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Al:Ti:P=1.4:0.4:1.6:3(酸化物換算でLiO:1.4、Al:0.4、TiO:3.2、P:3)となるように、所定量に秤量されたLiPO、Al(PO、TiP及びTiOを構成的原料として準備した。また、酸化物換算のモル比でLiO:3、P:3(Li/P=1)となるように、所定量に秤量されたLiPOを付加的原料として準備した。これらを混合し、熔解して、LiO:4.4、Al:0.4、TiO:3.2、P:6(モル比)からなる前駆体ガラスを作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、31.4モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、700℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で10時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。
(比較例2)
 Li1.4Al0.4Ti1.6(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 モル比でLi:Al:Ti:P=1.4:0.4:1.6:3(酸化物換算でLiO:1.4、Al:0.4、TiO:3.2、P:3)となるように、所定量に秤量されたLiPO、Al(PO、TiP及びTiOを構成的原料として準備した。また、酸化物換算のモル比でLiO:9、P:3(Li/P=3)となるように、所定量に秤量されたLiPO及びLiCOを付加的原料として準備した。これらを混合し、熔解して、LiO:10.4、Al:0.4、TiO:3.2、P:6(モル比)からなる前駆体ガラスを作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、52.0モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、700℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で2時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。
(比較例3)
 Li1.4Al0.4Ti1.6(POで表されるリチウムリン系複合酸化物を、以下の手順で製造した。
 所定量に秤量されたLiPO、Al(PO、Zn(PO、TiO、及びZnOを準備し、これらを混合し、熔解して、LiO:1.4、Al:0.4、TiO:3.2、P:6、ZnO:6(モル比)からなる前駆体ガラスを作製した。なお、混合物及び前駆体ガラスにおけるLiOの割合は、8.2モル%と算出される。
 次いで、この前駆体ガラスを500℃で10時間、800℃で10時間加熱して、前駆体結晶化ガラスを作製した。
 その後、この前駆体結晶化ガラスを、3mol/LのHNO水溶液に浸漬し、60℃で10時間撹拌することで酸処理し、白濁溶液を得た。そして、この白濁溶液からろ過によって分散粒子を取り出し、それを120℃で乾燥させることで、白色粉末を得た。
(前駆体結晶化ガラスのX線回折スペクトル)
 各実施例・比較例のリチウムリン系複合酸化物粉末の製造の過程で得られた前駆体結晶化ガラスについて、X線回折スペクトルを、X線回折装置UltimaIV(株式会社リガク製)で測定した。実施例1~6及び比較例1~3の前駆体結晶化ガラスについてのX線回折スペクトルを、図1~9にそれぞれ示す。
 図1~6に示すように、実施例1~6に係るX線回折スペクトルでは、LiTi(PO又はLiZr(POと仮判定されるピークと、ピロリン酸リチウムのピークとが主として見られた。一方、図7に示すように、比較例1に係るX線回折スペクトルでは、メタリン酸リチウム(LiPO)のピークが比較的多く見られた。また、図8に示すように、比較例2に係るX線回折スペクトルでは、リン酸リチウム(LiPO)のピークが比較的多く見られた。また、図9に示すように、比較例3に係るX線回折スペクトルでは、ピロリン酸亜鉛(Zn)のピークが見られた。
(白色粉末のX線回折スペクトル)
 各実施例・比較例で得られた白色粉末についてのX線回折スペクトルを、X線回折装置UltimaIV(株式会社リガク製)で測定した。実施例1~6及び比較例1~3の白色粉末についてのX線回折スペクトルを、図10~18にそれぞれ示す。
 図10~15に示すように、実施例1~6に係るX線回折スペクトルでは、LiTi(PO又はLiZr(POと仮判定されるピーク以外に、主なピークが見られなかった。一方、図16、17に示すように、比較例1,2に係るX線回折スペクトルでは、副相のピークが見られた。
(白色粉末の元素分析)
 各実施例・比較例で得られた白色粉末について、エネルギー分散型X線分析を、JED-2300T(日本電子株式会社製)を用いて行った。その結果、いずれの例においても、目的のリチウムリン系複合酸化物の結晶がそれぞれ形成されていると判断された。
 また、各実施例・比較例で得られた白色粉末について、蛍光X線分析を、EA1000VX(株式会社日立ハイテクサイエンス製)を用いて行った。具体的には、粉末中に不純物として含まれ得るZnの濃度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~6の白色粉末は、Znの濃度が100ppm未満であり、不純物が著しく少ないことが分かる。なお、比較例3では、多量のZnが残存しており、Znが不純物として固溶しているものと考えられる。
(白色粉末のSEM画像)
 電子顕微鏡IT-300(日本電子株式会社製)を用い、実施例1、4の白色粉末のSEM画像を得た。結果をそれぞれ図19、20に示す。これらの図から、実施例1の白色粉末は、実施例4の白色粉末に比べ、粒子径が小さく、且つ均一になっていることが分かる。このことは、実施例1において前駆体ガラスを作製する際、混合物におけるLiOの割合を比較的高くしたこと等に因るものと考えられる。
(白色粉末の粒子径及びその標準偏差)
 粒子径分布測定装置LA-300(株式会社堀場製作所製)を用い、実施例1~3,5の白色粉末の粒子径及びその標準偏差を測定した。その結果、これら全ての白色粉末において、粒子径が0.1~10μmの範囲内であること、及び、標準偏差が2μm未満であることが少なくとも確認できた。
 本発明によれば、高品質なリチウムリン系複合酸化物粉末を得ることが可能な前駆体ガラスを製造するための方法、及び、当該前駆体ガラスを提供することができる。また、本発明によれば、上記前駆体ガラスを用いた、高品質なリチウムリン系複合酸化物粉末を得ることが可能な前駆体結晶化ガラスを製造するための方法を提供することができる。更に、本発明によれば、上記前駆体結晶化ガラスを用いた、高品質なリチウムリン系複合酸化物粉末を製造するための方法、及び、当該リチウムリン系複合酸化物粉末を提供することができる。
 

Claims (6)

  1.  リチウムリン系複合酸化物の前駆体ガラスの製造方法であって、
     製造しようとするリチウムリン系複合酸化物の構成元素を含む原料を、リチウム及びリンを含む付加的な原料とともに熔解する工程を含み、
     前記付加的な原料における、リンに対するリチウムのモル比が、1を超え、且つ3未満である、ことを特徴とする、リチウムリン系複合酸化物の前駆体ガラスの製造方法。
  2.  前記前駆体ガラスにおけるLiOの割合が30モル%以上である、請求項1に記載の前駆体ガラスの製造方法。
  3.  請求項1又は2に記載の方法により製造された前駆体ガラスを加熱して、リチウムリン系複合酸化物の結晶と、ピロリン酸リチウムの結晶とを析出させる工程を含む、ことを特徴とする、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法。
  4.  請求項3に記載の方法により製造された前駆体結晶化ガラスを酸処理して、ピロリン酸リチウムを溶出させる工程を含む、ことを特徴とする、リチウムリン系複合酸化物粉末の製造方法。
  5.  モル比で、
    LiO:1+x+yを超え、且つ1+x+3y未満
    III :0.9x以上、1.1x以下
    IV:4-2.2x以上、4-1.8x以下
    :3+y
    (ここで、0≦x≦1、1≦y≦5であり、MIIIは、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、MIVは、Si、Ti、Ge及びZrから選択される元素を表す)からなる、ことを特徴とする、リチウムリン系複合酸化物の前駆体ガラス。
  6.  Li1+xIII IV 2-x(PO)
    (ここで、0≦x≦1であり、MIIIは、Al、Sc、Cr、Fe、Ga及びInから選択される元素を表し、MIVは、Si、Ti、Ge及びZrから選択される元素を表す)からなり、不純物としてのZnの濃度が100ppm未満である、ことを特徴とする、リチウムリン系複合酸化物粉末。
     
PCT/JP2017/045797 2017-08-24 2017-12-20 リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法 WO2019038943A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/622,560 US11345597B2 (en) 2017-08-24 2017-12-20 Precursor glass of lithium phosphorus complex oxide and method of producing same, method of producing precursor crystallized glass of lithium phosphorus complex oxide, and lithium phosphorus complex oxide powder and method of producing same
EP17922472.0A EP3674270B1 (en) 2017-08-24 2017-12-20 Precursor glass of lithium phosphorous complex oxide and method of producing same, method of producing precursor crystallized glass of lithium phosphorous complex oxide, and lithium phosphorous complex oxide powder and method of producing same
CN201780091955.4A CN110785386B (zh) 2017-08-24 2017-12-20 锂磷系复合氧化物的前驱体玻璃及其制造方法、前驱体晶化玻璃以及粉末的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-160744 2017-08-24
JP2017160744A JP6992966B2 (ja) 2017-08-24 2017-08-24 リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019038943A1 true WO2019038943A1 (ja) 2019-02-28

Family

ID=65438556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045797 WO2019038943A1 (ja) 2017-08-24 2017-12-20 リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法

Country Status (5)

Country Link
US (1) US11345597B2 (ja)
EP (1) EP3674270B1 (ja)
JP (1) JP6992966B2 (ja)
CN (1) CN110785386B (ja)
WO (1) WO2019038943A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427454B1 (ko) * 2019-11-26 2022-08-01 주식회사 세븐킹에너지 이온 전도성 세라믹 및 그의 제조 방법
CN114436638B (zh) * 2022-01-24 2023-04-07 中国地质大学(武汉) 一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法
CN115073162A (zh) * 2022-04-06 2022-09-20 东风汽车集团股份有限公司 一种陶瓷型固体电解质及其制备方法和应用
CN114773051B (zh) * 2022-04-24 2023-04-21 中山大学 一种改良溶胶-凝胶法制备α相的LiZr2(PO4)3固态电解质的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142874A (ja) 1995-11-15 1997-06-03 Ohara Inc リチウムイオン伝導性ガラスセラミックス及びその製造方法
JP2008117542A (ja) * 2006-10-31 2008-05-22 Ohara Inc リチウム二次電池およびリチウム二次電池用の電極
WO2012133566A1 (ja) * 2011-03-28 2012-10-04 兵庫県 二次電池用電極材料、二次電池用電極材料の製造方法および二次電池
JP2016119276A (ja) * 2014-12-24 2016-06-30 トヨタ自動車株式会社 非水電解質二次電池の製造方法
JP2016155057A (ja) 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 水処理装置
JP2016155707A (ja) * 2015-02-24 2016-09-01 株式会社住田光学ガラス Ltpまたはlatp結晶粒子の製造方法
WO2017195232A1 (ja) * 2016-05-10 2017-11-16 株式会社住田光学ガラス Ltpまたはlatp結晶粒子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140020222A (ko) * 2010-09-06 2014-02-18 효고켄 이온 전도성 재료 및 그 제조 방법
KR101181858B1 (ko) 2011-03-07 2012-09-11 삼성에스디아이 주식회사 리튬 이차 전지용 고체 전해질 및 이를 포함하는 리튬 이차 전지
JP6265580B2 (ja) * 2011-10-06 2018-01-24 株式会社村田製作所 電池およびその製造方法
CN102590377A (zh) * 2012-02-03 2012-07-18 合肥国轩高科动力能源有限公司 一种磷酸亚铁锂正极材料中杂质磷酸锂和焦磷酸锂含量的同步测定方法
JP2013199386A (ja) 2012-03-23 2013-10-03 Nippon Electric Glass Co Ltd リチウムイオン伝導体前駆体ガラスおよびリチウムイオン伝導体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142874A (ja) 1995-11-15 1997-06-03 Ohara Inc リチウムイオン伝導性ガラスセラミックス及びその製造方法
JP2008117542A (ja) * 2006-10-31 2008-05-22 Ohara Inc リチウム二次電池およびリチウム二次電池用の電極
WO2012133566A1 (ja) * 2011-03-28 2012-10-04 兵庫県 二次電池用電極材料、二次電池用電極材料の製造方法および二次電池
JP2016119276A (ja) * 2014-12-24 2016-06-30 トヨタ自動車株式会社 非水電解質二次電池の製造方法
JP2016155057A (ja) 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 水処理装置
JP2016155707A (ja) * 2015-02-24 2016-09-01 株式会社住田光学ガラス Ltpまたはlatp結晶粒子の製造方法
WO2017195232A1 (ja) * 2016-05-10 2017-11-16 株式会社住田光学ガラス Ltpまたはlatp結晶粒子の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IDE, JUNKO ET AL.: "XAFS study of six-coordinated silicon in R2O-SiO2-P2O5 (R=Li,Na,K) glasses", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 353, no. 18-21, 9 May 2007 (2007-05-09), pages 1966 - 1969, XP022382986 *
KUMAR, SUNDEEP ET AL.: "Lithium ion transport in german ophosphate glasses", SOLID STATE IONICS, vol. 170, no. 3-4, 2004, pages 191 - 199, XP004515921 *
NOCUN, MAREK: "Structural studies of phosphate glasses with high ionic conductivity", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 333, 2004, pages 90 - 94, XP004479770, DOI: doi:10.1016/j.jnoncrysol.2003.09.047 *
See also references of EP3674270A4

Also Published As

Publication number Publication date
JP6992966B2 (ja) 2022-01-13
EP3674270A1 (en) 2020-07-01
EP3674270A4 (en) 2021-05-12
US11345597B2 (en) 2022-05-31
CN110785386A (zh) 2020-02-11
CN110785386B (zh) 2022-06-28
US20200369521A1 (en) 2020-11-26
JP2019038711A (ja) 2019-03-14
EP3674270B1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP6992966B2 (ja) リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法
KR102028362B1 (ko) 가넷형 산화물 고체 전해질의 제조 방법
EP2181971B1 (en) Glass and glass-ceramics
WO2015110385A1 (de) Ionenleitende glaskeramik mit granatartiger kristallstruktur
CN111072276B (zh) 含复合澄清剂的锂铝硅微晶玻璃及其制备方法
JPWO2018012352A1 (ja) 歯科用ガラス、歯科用組成物
CN113348148B (zh) 磷酸钛锂的制造方法
KR101945363B1 (ko) Ltp 또는 latp 결정입자 제조 방법
JP6438798B2 (ja) Ltpまたはlatp結晶粒子の製造方法
CN106007385A (zh) 表面析晶微晶玻璃的制备方法
CN104995153B (zh) 制备陶瓷材料的溶胶‑凝胶方法
TWI606019B (zh) Crystal particle production method
CN114538780B (zh) 一种前牙饰面瓷材料及其制备方法
CN117623632A (zh) 一种齿科修复二硅酸锂微晶玻璃的制备方法
CN116675437A (zh) 非线性光学玻璃及其制备方法和应用
Popova et al. PHASE FORMATION IN THE SYSTEM SnO–BaP
JPS6096543A (ja) リン酸カルシウム系結晶化ガラスの製造方法
WO2023049228A1 (en) Opaque quartz and method of making the same
JPH0249262B2 (ja)
JP2023048303A (ja) 固体電解質部材の製造方法
CN115721565A (zh) 一种牙贴面切削瓷及其制备方法和牙帖面
TWI409234B (zh) MgO-AlO-SiO系結晶性玻璃及結晶化玻璃及其製造方法
KR20190024301A (ko) 달걀껍질을 이용하여 제조한 생체적합성 인산칼슘계 유리 및 이의 제조방법
JPS61251532A (ja) アパタイトと多量のウオラストナイトを含有する高強度結晶化ガラスとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017922472

Country of ref document: EP

Effective date: 20200324