WO2019038877A1 - 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子 - Google Patents

窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子 Download PDF

Info

Publication number
WO2019038877A1
WO2019038877A1 PCT/JP2017/030282 JP2017030282W WO2019038877A1 WO 2019038877 A1 WO2019038877 A1 WO 2019038877A1 JP 2017030282 W JP2017030282 W JP 2017030282W WO 2019038877 A1 WO2019038877 A1 WO 2019038877A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
main surface
nitride semiconductor
ultraviolet light
Prior art date
Application number
PCT/JP2017/030282
Other languages
English (en)
French (fr)
Inventor
平野 光
長澤 陽祐
Original Assignee
創光科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創光科学株式会社 filed Critical 創光科学株式会社
Priority to EP17868513.7A priority Critical patent/EP3474338B1/en
Priority to PCT/JP2017/030282 priority patent/WO2019038877A1/ja
Priority to CN201780009804.XA priority patent/CN109791962B/zh
Priority to JP2017554614A priority patent/JP6329709B1/ja
Priority to US15/772,612 priority patent/US10505087B2/en
Priority to KR1020187012134A priority patent/KR102054604B1/ko
Priority to TW107115004A priority patent/TWI657592B/zh
Publication of WO2019038877A1 publication Critical patent/WO2019038877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present invention relates to a nitride semiconductor ultraviolet light emitting device configured by forming an AlGaN-based semiconductor layer on the main surface of a sapphire substrate and emitting light (ultraviolet light) having an emission center wavelength of 365 nm or less, and a method of manufacturing the same.
  • nitride semiconductor ultraviolet light emitting devices such as LEDs (Light Emitting Diodes) and LDs (Laser Diodes) configured by forming an AlGaN-based semiconductor layer on the main surface of a sapphire substrate, for example, to enhance the light extraction efficiency May be provided with a lens.
  • Non-Patent Document 1 a nitride semiconductor ultraviolet light emitting device in which a hemispherical lens is joined to the back surface of the sapphire substrate opposite to the main surface (the surface on which the device structure for emitting light is formed). has been proposed.
  • Patent Document 1 proposes a light emitting element in which the back surface and the side surface of a sapphire substrate are sealed with a glass material whose surface shape is a spherical surface.
  • the glass material used in the light emitting device proposed in Patent Document 1 is mainly composed of TeO 2 and is resistant to ultraviolet light and blue light, but has a larger refractive index than sapphire. It is.
  • Non-Patent Document 1 Although it is necessary to bond the substrate and the lens, a layer that affects the progress of light emitted from the device structure or a device structure emits light. It is not permissible to provide a layer that is degraded by light, in particular UV light, between the substrate and the lens. Therefore, in the nitride semiconductor ultraviolet light emitting device proposed in Non-Patent Document 1, it is necessary to bond the substrate and the lens by a special bonding method of atomic diffusion bonding (ADB) or surface activated bonding (SAB).
  • ADB and SAB not only prepare a special environment of a degree of vacuum higher than ultra-high vacuum, but also form a special surface state of joining only by contact under the environment, and a special device And because advanced technology is essential, it can not be implemented easily.
  • the refractive index of the glass material used in the light emitting device proposed in Patent Document 1 is about 2.0, the refractive index of sapphire is about 1.8, and the refractive index of air is about 1.0. is there.
  • the difference in refractive index between the lens and the air is increased to cause light from the lens into air.
  • the interface reflection at the time of taking out is increased, which prevents the improvement of the light taking-out efficiency. That is, even if a lens is provided to improve the light extraction efficiency, the effect is reduced by interface reflection when light is extracted from the lens into the air.
  • the present invention provides a nitride semiconductor ultraviolet light emitting device that can be easily manufactured and can effectively improve the light extraction efficiency, and a method of manufacturing the same.
  • the present invention is an element having a sapphire substrate and a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and emitting light with an emission center wavelength of 365 nm or less by energizing And a substrate processing step of grinding the substrate with respect to a chip having a structure portion, wherein the substrate processing step includes at least four corners on the main surface and a surface opposite to the main surface.
  • the present invention provides a method for producing a nitride semiconductor ultraviolet light emitting device, which is a step of grinding each of the four corners on the back surface.
  • the nitrided lens having the lens is obtained by the simple technique of grinding the substrate without using the advanced technique (see non-patent document 1) of bonding the substrate and the lens.
  • An object semiconductor ultraviolet light emitting element can be obtained.
  • a sapphire substrate is used instead of using a glass material having a refractive index further larger than that of sapphire as in the light emitting element proposed in Patent Document 1, a sapphire substrate is used. Because it is used as a lens, interface reflection can be suppressed when light is taken out into the air.
  • the grinding step grinds at least four corners on the main surface and four corners on the back surface to a convex curved surface. It is preferable that it is a process to process.
  • the incident angle of light emitted from the device structure and reaching the side peripheral surface on the main surface side of the substrate can be further increased, and from the device structure Since the incident angle of the light which is emitted and reaches the side peripheral surface on the back surface side of the substrate can be further reduced, more light can be extracted from the opposite side of the main surface.
  • the grinding process is a process of grinding the substrate such that a plane parallel to the main surface remains on the back surface side.
  • the nitride semiconductor ultraviolet light emitting device can be manufactured by isotropic grinding which can be mass-produced.
  • the substrate in a plan view seen from a direction perpendicular to the main surface is circular, oval or 4
  • the substrate is ground so that two corners have a rounded square shape.
  • nitride semiconductor ultraviolet light emitting device According to the method of manufacturing a nitride semiconductor ultraviolet light emitting device, it is possible to reduce the loss of light at the side of the substrate (the transmission of light at the side of the main surface and the total reflection of light at the side of the back surface). A possible nitride semiconductor ultraviolet light emitting device can be obtained.
  • the substrate processing step includes a first step of forming a protective material covering the surface of the element structure portion with respect to the chip; It is preferable to include a second step of grinding the substrate of the formed chip and a third step of removing the protective material after the second step.
  • the substrate can be ground while protecting the device structure portion by the protective material.
  • one or more of the chips are rolled to form the concave shape in a container having a concave curved surface to which abrasive grains are attached. It is preferable to collide with a curved surface.
  • the method of manufacturing a nitride semiconductor ultraviolet light emitting device only the corner of the chip collides with the concave curved surface and is ground, so that the side surface of the substrate can be efficiently processed into a spherical surface. Furthermore, the tip can be ground isotropically by rolling the tip. Further, according to the method of manufacturing a nitride semiconductor ultraviolet light emitting device, since a plurality of chips can be placed in a container and simultaneously ground processed, the nitride semiconductor ultraviolet light emitting device can be mass-produced.
  • the length of one side of the main surface of the substrate which is a square is L before performing the second step, and the diameter of the circumscribed circle of the element structure portion Let R be The thickness D of the substrate is Is preferable.
  • the side surface of the substrate can be ground to a spherical surface while preventing grinding of the element structure.
  • the protective material be dissolved in a solvent and removed.
  • the protective material can be removed without applying a great deal of stress to the device structure. That is, damage to the element structure 20 can be prevented.
  • a transmitting material forming step of forming the transmitting material which is the outermost surface of the amorphous fluorine resin and transmits the light emitted from the element structure portion.
  • a nitride semiconductor ultraviolet light emitting device capable of suppressing the reflection of light on the side peripheral surface on the back surface side of the substrate.
  • the substrate processing step grinds four corners of the back surface so as to leave a part of the back surface parallel to the main surface and flat. Processing is performed, and the transmitting material forming step includes the steps of forming an antireflective layer at least on the back surface, and forming the amorphous fluorocarbon resin on the surface of the antireflective layer. ,preferable.
  • a nitride semiconductor ultraviolet light emitting device capable of effectively extracting at least the light reaching the back surface.
  • a nitride semiconductor ultraviolet light emitting device having the above-mentioned feature, at least a part of the surface exposed by grinding processing of four corners of the main surface of the substrate in the substrate processing step It is preferable to further include a reflective material forming step of forming a reflective material that reflects the light emitted from the structure portion.
  • a nitride semiconductor ultraviolet light emitting device capable of promoting the reflection of light on the side peripheral surface on the main surface side of the substrate.
  • a sapphire substrate and an element structure portion having a plurality of AlGaN based semiconductor layers stacked on the main surface of the substrate and emitting light with a light emission center wavelength of 365 nm or less by energizing.
  • the cross-sectional area of the cross section parallel to the main surface continuously increases as the substrate moves away from the main surface, and the opposite side of the main surface
  • the cross-sectional area of the cross section parallel to the main surface continuously increases with distance from the opposite side of the main surface, and the first distance and the second distance The sum is equal to or less than the thickness of the substrate.
  • This nitride semiconductor ultraviolet light emitting element can be obtained by a simple technique of processing a substrate without using the advanced technique (see Non-patent Document 1) of bonding a substrate and a lens. Furthermore, since this nitride semiconductor ultraviolet light emitting device uses a sapphire substrate as a lens instead of using a glass material having a refractive index larger than that of sapphire as a light emitting device proposed in Patent Document 1 as a lens, It is possible to suppress interface reflection when taking out light into the air.
  • the unit increase amount of the cross-sectional area parallel to the main surface when the first portion is separated by a unit distance in the direction away from the main surface is As the distance from the main surface decreases, the second portion increases by a unit amount of the cross-sectional area parallel to the main surface when the second portion is separated by a unit distance in the direction away from the opposite side of the main surface, It is preferable for the distance to decrease continuously from the opposite side of the main surface.
  • the side peripheral surfaces of the first portion and the second portion of the substrate become convex curved surfaces and are emitted from the element structure to reach the side peripheral surface of the first portion of the substrate
  • the incident angle of light emitted from the element structure and reaching the side peripheral surface of the second portion of the substrate can be further reduced. More light can be extracted from the side.
  • a surface parallel to the main surface be present on the opposite side of the main surface in the substrate.
  • the nitride semiconductor ultraviolet light emitting device can be manufactured by isotropic grinding which can be mass-produced.
  • the substrate has a circular shape, an oval shape, or a quadrangular shape with rounded four corners in a plan view seen from the direction perpendicular to the main surface. Is preferable.
  • this nitride semiconductor ultraviolet light emitting device it is possible to reduce the loss of light at the side of the substrate (the transmission of light at the side of the first portion, and the total reflection of light at the side of the second portion).
  • the outermost surface is made of an amorphous fluorine resin on at least a part or the whole of the side peripheral surface of the second portion of the substrate and the light is emitted from the element structure portion It is preferable that a transmitting material that transmits the light to be formed is formed.
  • this nitride semiconductor ultraviolet light emitting element it is possible to suppress the reflection of light on the side peripheral surface of the second portion of the substrate.
  • the transmitting material is a part of the back surface.
  • the transmitting material includes an antireflective layer formed at least on the back surface.
  • this nitride semiconductor ultraviolet light emitting device According to this nitride semiconductor ultraviolet light emitting device, light reaching at least the back surface can be effectively extracted.
  • a reflecting material for reflecting light emitted from the element structure portion is formed on at least a part of the side peripheral surface of the first portion of the substrate. ,preferable.
  • this nitride semiconductor ultraviolet light emitting device it is possible to promote the reflection of light on the side peripheral surface of the first portion of the substrate.
  • a nitride semiconductor ultraviolet light emitting device in which light extraction efficiency is effectively improved by suppressing interface reflection at the time of extracting light in air is disclosed. It can be easily manufactured by the simple technique of grinding processing.
  • the light extraction efficiency can be effectively improved by suppressing the interface reflection at the time of taking out the light into the air. Furthermore, the nitride semiconductor ultraviolet light emitting device of the above-mentioned features can be easily manufactured only by processing the substrate.
  • FIG. 1 is a plan view showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention.
  • Sectional drawing which showed the AA cross section of FIG.
  • the top view which exposed and showed the p electrode and n electrode of FIG.
  • Sectional drawing which showed an example of the structure of an AlGaN system semiconductor layer.
  • the top view which showed an example of the structure of the chip
  • FIG. 7 is a perspective view showing an example of a grinding apparatus for grinding the chip of FIG. 6; The perspective view which showed the process in which the chip
  • FIG. 14 is a plan view showing a structure of a fourth modification of the nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention.
  • a light comprising an sapphire substrate and an element structure having a plurality of AlGaN based semiconductor layers stacked on the main surface of the substrate and having a light emission center wavelength of 365 nm or less by energization
  • a nitride semiconductor ultraviolet light emitting device which is a light emitting diode emitting (ultraviolet light) and a method of manufacturing the same will be exemplified.
  • the structure of the device structure may be any, It is not limited to the structure of the element structure part in the nitride semiconductor ultraviolet light emitting element illustrated in FIG.
  • FIG. 1 is a plan view showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an AA cross section of FIG.
  • FIG. 3 is a plan view showing the p electrode and the n electrode of FIG. In the cross-sectional view shown in FIG.
  • the thickness of the substrate, the semiconductor layer and the electrodes (the length in the vertical direction in the figure) is schematically shown for convenience of illustration, so the actual dimensional ratio is not necessarily It does not match. In particular, the thickness of the semiconductor layer is illustrated larger than in reality.
  • the nitride semiconductor ultraviolet light emitting device 1 includes a substrate 10 and an element structure portion 20 formed on the major surface 101 of the substrate 10.
  • the nitride semiconductor ultraviolet light emitting element 1 is mounted (flip chip mounted) with the element structure 20 side (upper side in the drawing in FIG. 2) facing the mounting base.
  • the taking-out direction is the substrate 10 side (lower side in the drawing in FIG. 2).
  • L1 to L3 shown in FIG. 2 are light beams of part of the light emitted from the element structure section 20.
  • the element structure portion 20 is a portion that contributes to light emission, in other words, a portion through which most of the supplied current flows, and a portion that causes trouble in light emission if broken.
  • the substrate 10 is made of sapphire, and the main surface 101 and the back surface 102 are flat, and the side peripheral surface 111 connected to the main surface 101 and the side peripheral surface 121 connected to the back surface 102 have convex curved surfaces, respectively.
  • the shape is In other words, the substrate 10 has a shape in which the upper and lower sides of the sphere are flat (the main surface 101 and the back surface 102).
  • the substrate 10 has a first portion 110 from the main surface 101 to the first distance, and a second portion 120 from the opposite side of the main surface (that is, the back surface 102) to the second distance,
  • first portion 110 the cross-sectional area of the cross section parallel to the main surface 101 continuously increases as the distance from the main surface 101 increases
  • second portion 120 the cross-sectional area of the cross section parallel to the main surface 101 is It increases continuously as it separates from the opposite side of the main surface 101.
  • the unit increase amount of the cross-sectional area (that is, the differential value of the cross-sectional area)
  • the unit increase amount of the above-mentioned cross-sectional area in the case of being continuously decreased and separated by a unit distance in the direction away from the opposite side of the main surface 101 (that is, the back surface 102) in the second portion 120 It decreases continuously as you move away from the Since the first distance corresponds to the thickness of the first portion 110 and the second distance corresponds to the thickness of the second portion, the sum of them naturally becomes equal to or less than the thickness of the substrate 10.
  • the substrate 10 is an example in which the sum of the first distance and the second distance is equal to the thickness of the substrate.
  • the element structure unit 20 includes an AlGaN-based semiconductor layer 21, a p electrode 22, an n electrode 23, a p plating electrode 24, an n plating electrode 25, and an insulating film 26.
  • an example of the structure of the AlGaN-based semiconductor layer 21 will be described with reference to the drawings.
  • FIG. 4 is a cross-sectional view showing an example of the structure of the AlGaN-based semiconductor layer.
  • the AlGaN-based semiconductor layer 21 is composed of an underlayer 211, an n-type cladding layer 212 composed of n-type AlGaN, an active layer 213, and p-type AlGaN in this order from the substrate 10 side. And a p-type cladding layer 215 composed of p-type AlGaN, and a p-type contact layer 216 composed of p-type GaN.
  • the underlayer 211 is made of AlN and is formed on the major surface 101 of the substrate 10.
  • the underlayer 211 may have a structure in which AlGaN is stacked on the top surface of AlN.
  • the active layer 213 has a single or multiple quantum well structure in which a well layer composed of AlGaN or GaN is sandwiched by a barrier layer composed of n-type AlGaN.
  • the above-described layers 211 to 216 are formed in the light emitting region 31 and the uppermost surface is the p-type contact layer 216, but active in the peripheral region 32 surrounding the light emitting region 31.
  • the layers 213 to 216 above the layer 213 are not formed, and the n-type cladding layer 212 is exposed.
  • the p electrode 22 is formed on the upper surface of the p-type contact layer 216 in the light emitting region 31, and the n electrode 23 is formed on the upper surface of the n-type cladding layer 212 in the peripheral region 32.
  • each of the supplied holes and electrons reaches the active layer 213 of the light emitting region 31, and the active layer At 213, the holes and electrons recombine to emit light.
  • the layers 211 to 216 constituting the AlGaN-based semiconductor layer 21 are formed by a well-known epitaxial growth method such as an organic metal compound vapor phase epitaxy (MOVPE) method or a molecular beam epitaxy (MBE) method.
  • MOVPE organic metal compound vapor phase epitaxy
  • MBE molecular beam epitaxy
  • Si is added as a donor impurity
  • Mg is added as an acceptor impurity to the p-type layer.
  • a partial region region corresponding to the peripheral region 32
  • etching method such as reactive ion etching.
  • the p electrode 22 is made of, for example, Ni / Au, and is formed on the upper surface of the p-type contact layer 216 in the light emitting region 31 as described above.
  • the n-electrode 23 is made of, for example, Ti / Al / Ti / Au, and is formed on the upper surface of the n-type cladding layer 212 in the peripheral region 32 as described above. The n electrode 23 is formed to surround the light emitting region 31.
  • the p electrode 22 and the n electrode 23 not only supply power to the AlGaN-based semiconductor layer 21 but also reflect light generated in the active layer 213 of the light emitting region 31 to the substrate 10 side.
  • the n electrode 23 formed so as to surround the light emitting region 31 reflects the light which tends to leak out of the peripheral region 32 to the outside without passing through the substrate 10, whereby the substrate 10 is formed. The amount of light passing through can be effectively increased.
  • Each of the p plating electrode 24 and the n plating electrode 25 is configured, for example, by covering the main body of Cu formed by electrolytic plating with one or more metal layers whose outermost surface formed by electroless plating is Au. Be done. Further, each of the p plating electrode 24 and the n plating electrode 25 is separated from each other, the upper surface is flattened, and the same height is equalized. Furthermore, a part of the p plating electrode 24 is in contact with the p electrode 22, and a part of the n plating electrode 25 is in contact with the n electrode 23.
  • the p-plated electrode 24 and the n-plated electrode 25 are connected to the mounting base to supply power to the AlGaN-based semiconductor layer 21, and the heat generated by the nitride semiconductor light emitting element 1 is used as the mounting base. It is provided for transmission and heat dissipation. In particular, since the p-plating electrode 24 is provided in the entire light emitting region 31 where current concentrates, it is possible to effectively dissipate heat.
  • the insulating film 26 is made of, for example, SiO 2 or Al 2 O 3 or the like, and the n electrode 23 excluding the connection portion with the upper surface and the side surface of the p electrode 22 excluding the connection portion with the p plating electrode 24 and the n plating electrode 25.
  • the insulating film 26 prevents the contact between the n electrode 23 and the p plating electrode 24 formed in a wide area above the main surface 101 of the substrate 10, and protects the side surface of the light emitting region 31 of the AlGaN based semiconductor layer 21.
  • the nitride semiconductor ultraviolet light emitting device 1 As shown in FIG. 2, in the nitride semiconductor ultraviolet light emitting device 1 according to the embodiment of the present invention, light emitted from the device structure 20 and incident on the substrate 10 travels inside the substrate 10 to form a side circumferential surface. 111 and 121 and the back surface 102 are reached. At this time, most of the light L1 reaching the side circumferential surface 111 of the first portion 110 is totally reflected because the incident angle is large, and most of the totally reflected light is on the back surface 102 or side circumference of the second portion 120. It is emitted from the surface 121 into the air.
  • this nitride semiconductor ultraviolet light emitting element 1 as in the light emitting element proposed in Patent Document 1, a glass material having a refractive index larger than that of sapphire is not used as a lens, but a sapphire substrate 10 is used as a lens. Therefore, interface reflection at the time of extracting light into the air can be suppressed. Therefore, the light extraction efficiency can be effectively improved.
  • the nitride semiconductor ultraviolet light emitting element 1 has a simple technique of processing the substrate 10 without using the advanced technique of bonding the substrate and the lens as in Non-patent Document 1. It can be manufactured using.
  • the method of processing the substrate 10 will be described in ⁇ Example of Method of Manufacturing Nitride Semiconductor Ultraviolet Light Emitting Device> described later.
  • size of the n electrode 23 may be what.
  • the n electrode 23 may be circular or provided on the entire surface of the peripheral region 32 (it may reach the end of the substrate 10 or may slightly recede from the end).
  • the p-plated electrode 24 has a circular shape, and the diameter of the p-plated electrode 24 is larger than the diameter of the inscribed circle with respect to the outer contour line (square outline line) of the n electrode 23.
  • the shape and size of the p plating electrode 24 may be any shape.
  • FIG. 2 exemplifies the case where the side circumferential surface 111 of the first portion 110 and the side circumferential surface 121 of the second portion 120 of the substrate 10 are convex curved surfaces, concave curved surfaces instead of convex shapes. It may be a flat surface instead of a curved surface. Even if the substrate 10 has such a shape, the side peripheral surface of the first portion 110 of the substrate 10 is emitted from the element structure 20 as compared to the case where the side surface of the substrate is a flat surface perpendicular to the main surface. The incident angle of the light reaching 111 can be increased, and the incident angle of the light emitted from the element structure portion 20 and reaching the side peripheral surface 121 of the second portion 120 of the substrate 10 can be reduced.
  • Much light can be extracted from the other side of the 101.
  • the side peripheral surfaces 111 and 121 of the first portion 110 and the second portion 120 of the substrate 10 are convexly curved, the light is emitted from the element structure portion 20 to the side peripheral surface 111 of the first portion 110 of the substrate 10
  • the incident angle of the arriving light can be further increased, and the incident angle of the light emitted from the element structure portion 20 and reaching the side circumferential surface 121 of the second portion 120 of the substrate 10 can be further reduced.
  • And more light can be extracted from the opposite side of the main surface 101.
  • the chip-like nitride semiconductor ultraviolet light emitting device 1 as shown in FIGS. 1 and 2 has a wafer formed such that a plurality of device structure parts are aligned on the main surface of a flat substrate. It is obtained by dividing each element structure portion.
  • the substrate 10 provided in the chip-like nitride semiconductor ultraviolet light emitting element 1 shown in FIG. 2 has a shape in which the side peripheral surface 111 of the first portion 110 and the side peripheral surface 121 of the second portion 120 are convexly curved. Therefore, it is necessary to process the substrate 10 into such a shape.
  • the nitride semiconductor according to the embodiment of the present invention mainly on the process of processing the side peripheral surface 111 of the first portion 110 and the side peripheral surface 121 of the second portion 120 of the substrate 10 into a convex curved surface.
  • a method of manufacturing the ultraviolet light emitting element 1 will be described with reference to the drawings.
  • FIG. 5 is a plan view showing an example of the structure of a chip obtained by dividing the wafer, and is a view showing the same plane as FIG.
  • FIG. 6 is a cross-sectional view showing an example of the structure of the chip before processing the substrate, and is a view showing the same cross section as FIG.
  • a protective material 50 is provided to cover the surface of the device structure 20 in the substrate 10.
  • the nitride semiconductor ultraviolet light emitting device 1 having the substrate 10 shaped as shown in FIG. 2 is obtained by removing the protective material 50 after grinding the chip 40.
  • a glue or a resin material for example, epoxy, acrylic
  • the glue can be removed by dissolving it in an aqueous solvent (pure water, hot water, etc.), and the resin material can be removed by dissolving it in an organic solvent such as trichlene or acetone.
  • FIG. 7 is a perspective view showing an example of a grinding apparatus for grinding the chip of FIG.
  • the grinding apparatus 60 rotates a cylindrical side wall 61 with abrasive grains made of diamond or the like attached to the inside, a circular bottom 62 inscribed in the side wall 61, and a bottom 62. And a rotating shaft 63.
  • this grinding processing device 60 for example, a grinding processing device as proposed in Japanese Patent Application Laid-Open Nos. 2008-168358 and 2006-35334 may be used.
  • the above-mentioned chip 40 is put in the space surrounded by the side wall 61 and the bottom 62 of the grinding apparatus 60, and a lid (not shown) for shielding the space to prevent the chip 40 from popping out is a side wall.
  • a lid (not shown) for shielding the space to prevent the chip 40 from popping out is a side wall.
  • the side surfaces of the substrate 10 are ground into spherical surfaces.
  • the thickness of the substrate 10 is excessively large, the main surface 101 rather than the side surface of the substrate 10 is ground preferentially, and the element structure portion 20 is ground. Therefore, it is preferable to make the thickness of the substrate 10 equal to or less than the upper limit value shown on the right side of the following formula (1).
  • D is the thickness of the substrate
  • L is the length of one side of the main surface 101 of the substrate 10 which is a square
  • R is the diameter of the circumscribed circle of the element structure 20. (See FIGS. 5 and 6).
  • the condition of the following formula (1) is that, when the side surface of the substrate 10 is ground to a spherical surface (that is, when the radius of the sphere becomes L / 2), It is a condition for an ungrounded area to remain (ie, the element structure 20 not be ground).
  • the circumscribed circle of the element structure 20 of diameter R has a size including the respective electrodes 23 to 26 and is larger than the circumscribed circle of the outermost electrode 25 Large (for example, a margin is secured by at least the thickness of the electrode 25).
  • the thickness of the substrate 10 when the thickness of the substrate 10 is excessively small, the side surface of the substrate 10 may be processed into a spherical surface, but the light emitted from the element structure 20 does not sufficiently reach the side surface of the substrate 10 and the substrate 10 is ground. The effect of processing may be insufficient. Therefore, it is preferable to set the thickness of the substrate 10 such that the light emitted from the element structure portion 20 sufficiently reaches the side surface of the substrate 10. For example, as disclosed in International Publication No. WO 2015/111134, which is an international application by the present applicant, when the thickness of the substrate 10 is set to 0.45 ⁇ L or more, light emitted from the element structure portion 20 is the substrate 10 In order to reach the side of
  • FIG. 8 is a perspective view showing the process of grinding the chip of FIG. 6 by the grinding apparatus of FIG. 7; (a), (b), (c), (d), (e), ((a)
  • the grinding process proceeds in the order of f).
  • the corners are ground isotropically by grinding with the grinding apparatus 60. Specifically, the corners are ground sequentially from the four corners of each of the main surface 101 and the back surface 102 (see FIG. 6) in the substrate 10, and finally all of the surfaces are shown in FIG. 8 (f). The corners are ground to be spherical.
  • the protective material 50 of the chip 40 after grinding is dissolved in a solvent, whereby the nitride semiconductor ultraviolet light emitting device 1 as shown in FIG. 2 is obtained.
  • the protective material 50 when the protective material 50 is dissolved in a solvent and removed, the protective material 50 can be removed without applying a large stress to the element structure portion 20. That is, damage to the element structure 20 can be prevented.
  • the plurality of chips 40 can be ground at one time while preventing breakage of the element structure portion 20. That is, the nitride semiconductor ultraviolet light emitting element 1 can be mass-produced.
  • the grinding apparatus 60 shown in FIG. 7 is merely an example, and the grinding process of the tip 40 may be performed using another grinding apparatus.
  • the grinding apparatus 60 shown in FIG. 7 rolls the tip 40 by rotating the bottom portion 62 which is a part of the container around the vertical direction, but at least a part of the container is in the horizontal direction
  • a grinding processing apparatus may be used which rotates the chip 40 by rotating around a direction having the component of (1).
  • the above-described grinding apparatus 60 is used. It is preferable because the same effect as in the case can be obtained.
  • the side surface of the substrate 10 may be ground to a spherical surface by using an NC (Numerical Control) lathe or the like.
  • NC Numerical Control
  • the side surface of the substrate 10 is processed into a spherical surface using the grinding apparatus 60 as shown in FIG. 7, fine irregularities are formed on the side peripheral surface 121 of the second portion 120 of the substrate 10 by grinding processing. As a result, the light reaching the side circumferential surface 121 is likely to be reflected, which may reduce the light extraction efficiency. Therefore, in order to prevent this, the side circumferential surface 121 of the second portion 120 of the substrate 10 may be polished on the chip 40 after the grinding process.
  • the surface of the tip 40 after grinding may be polished using a well-known sphere polishing apparatus such as a barrel polishing machine.
  • FIG. 9 is a cross-sectional view showing a structure of a first modified example of the nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention, and a view corresponding to FIG.
  • a transmitting material 70 is formed on the side peripheral surface 121 and the back surface 102 of the second portion 120 of the substrate 10 provided in the nitride semiconductor ultraviolet light emitting element 1A. It is preferable that the transmitting material 70 is made of a material that transmits the light emitted from the element structure unit 20 and is not easily deteriorated (resistant) by the light. Furthermore, from the viewpoint of suppressing the reflection of light on the side peripheral surface 121 and the back surface 102 of the second portion 120 of the substrate 10, the transmitting material 70 is a material having a smaller refractive index than sapphire constituting the substrate 10 and larger than air. Is preferable. Specifically, for example, it is preferable that the transmitting material 70 be made of an amorphous fluorine resin.
  • the transmitting material 70 not only the side peripheral surface 121 and the back surface 102 of the second portion 120 of the substrate 10, but also other portions may be covered with the transmitting material 70.
  • the whole of the one or more nitride semiconductor ultraviolet light emitting elements mounted on the base may be sealed (embedded) with the transmitting material 70.
  • at least one surface of p-plated electrode 24 and n-plated electrode 25 is covered with transmitting material 70 Short circuit can be prevented.
  • the transmitting material 70 is made of non-bonding amorphous fluorine resin, migration of metal atoms can be suitably prevented, which is preferable.
  • the non-bonding amorphous fluorocarbon resin is disadvantageous in that the bonding strength with respect to metals, sapphire constituting the substrate 10 and the like is weak.
  • the transmitting material 70 is inserted into the gap between the nitride semiconductor ultraviolet light emitting element 1A and the base to make at least one of the p plating electrode 24 and the n plating electrode 25 If the surface of the transparent substrate 70 is covered with the transmitting material 70, the transmitting material 70 becomes difficult to peel off.
  • the anchor effect is obtained between the side peripheral surfaces 111 and 121 and the transmitting material 70. Since the bonding strength is increased, it is difficult for the permeable material 70 to peel off.
  • amorphous fluorine resin for example, a copolymer obtained by copolymerizing a fluorine resin of a crystalline polymer and amorphizing it as a polymer alloy, a copolymer of perfluorodioxole (trade name Teflon made by DuPont) Examples thereof include AF (registered trademark) and cyclized polymers of perfluorobutenyl vinyl ether (trade name Cytop (registered trademark) manufactured by Asahi Glass Co., Ltd.).
  • the structural unit constituting the polymer or copolymer has a fluorine-containing aliphatic ring structure
  • the terminal functional group is a perfluoroalkyl group such as CF 3 or the like.
  • An amorphous fluorine resin is mentioned.
  • the perfluoroalkyl group does not have a reactive terminal functional group that exhibits bonding to metals and the like.
  • the bonding amorphous fluorine resin is bonded to a metal or the like as an end functional group. It differs from non-bonding amorphous fluorine resin in that it has possible reactive functional groups.
  • the reactive functional group is, for example, a carboxyl group (COOH) or an ester group (COOR). However, R represents an alkyl group.
  • unit A a unit based on a cyclic fluorine-containing monomer (hereinafter referred to as “unit A”) or a cyclic polymerization of a diene fluorine-containing monomer is formed
  • unit B a unit based on a cyclic fluorine-containing monomer (hereinafter, "unit A”) or a cyclic polymerization of a diene fluorine-containing monomer is formed
  • unit A unit a unit based on a cyclic fluorine-containing monomer
  • unit B a unit based on a cyclic polymerization of a diene fluorine-containing monomer
  • Cytop (made by Asahi Glass Co., Ltd.) etc. are mentioned as an example of a commercial item of non-bonding amorphous fluorine resin.
  • Cytop whose terminal functional group is CF 3 is a polymer of the unit B shown in the following Chemical Formula 1.
  • the covering material 70 may be made of different materials.
  • the transmitting material 70 covering at least one of the p plating electrode 24 and the n plating electrode 25 is made of non-bonding amorphous fluorine resin from the viewpoint of suppressing migration of metal atoms, and the second portion 120 of the substrate 10
  • the permeable material 70 covering the side peripheral surface 121 and the back surface 102 may be made of an amorphous fluorine resin which is not non-bonding.
  • the transmitting material 70 can suppress the reflection of light at the interface with air if the outermost surface is an amorphous fluorine resin, the amorphous fluorine resin and the substrate 10 (especially, the second portion A layer of another material that transmits the light emitted from the element structure portion 20 may be provided between the side peripheral surface 121) of 120 and the side peripheral surface 121).
  • the transmitting material 70 may have a layer of an inorganic material such as SiO 2 or HfO 2 between the amorphous fluorocarbon resin and the substrate 10, and may have a plurality of these layers. .
  • the transmitting material 70 may have a layer of HfO 2 formed on the surface of the substrate 10 and a layer of SiO 2 further formed on the surface.
  • the transmitting material 70 may be provided with a single-layer or multi-layer antireflection layer between the amorphous fluorocarbon resin and the substrate 10.
  • the thickness of one antireflection layer is ⁇ / 4n
  • n is the refractive index of the antireflection layer
  • is the wavelength of light emitted from the element structure portion 20.
  • one antireflection layer is made of SiO 2 or HfO 2 .
  • the antireflection layer in order to obtain the antireflection effect by the antireflection layer, it is important to form the antireflection layer with the designed thickness, but the back surface 102 which is a flat surface parallel to the main surface 101 On the other hand, it is possible to provide an antireflective layer of the thickness as designed easily. Therefore, it is preferable to form an antireflective layer at least on the back surface 102 of the substrate 10.
  • a layer such as SiO 2 or HfO 2 is provided between the amorphous fluorocarbon resin and the substrate 10 as described above, first, SiO 2 or HfO is applied to the substrate 10 by a known film forming method such as sputtering.
  • a layer of 2 or the like may be formed, and thereafter, a layer of an amorphous fluorine resin may be formed or sealing with an amorphous fluorine resin may be performed.
  • a layer of an amorphous fluorine resin may be formed or sealing with an amorphous fluorine resin may be performed.
  • the anti-reflective layer which designed thickness to corner light.
  • the critical angle is 48.6 °.
  • FIG. 9 illustrates the nitride semiconductor ultraviolet light emitting element 1A in which the transmitting material 70 is provided also on the back surface 102 of the substrate 10, but the transmitting material 70 may not be provided on the back surface 102.
  • the side circumferential surface 121 of the second portion 120 of the substrate 10 does not have the above-mentioned unevenness due to grinding, amorphous fluorine having a refractive index smaller than sapphire and larger than air
  • the side peripheral surface 121 with the transparent material 70 having the resin formed on the outermost surface, it is possible to suppress the reflection of light at the interface with air.
  • the side peripheral surface 111 of the first portion 110 of the substrate 10 may be polished on the chip 40 after the grinding process.
  • the surface of the tip 40 after grinding may be polished using a well-known sphere polishing apparatus such as a barrel polishing machine.
  • FIG. 10 is a cross-sectional view showing a structure of a second modified example of the nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention, and a view corresponding to FIG.
  • a reflective material 80 is formed on the side peripheral surface 111 of the first portion 110 of the substrate 10 provided in the nitride semiconductor ultraviolet light emitting element 1B.
  • the reflector 80 is made of a material that reflects the light emitted from the element structure unit 20, and is preferably made of, for example, a material containing at least one of Al, Ni, and Rh.
  • the reflecting material 80 is provided on the side circumferential surface 111 of the first portion 110 thus, it is possible to promote the reflection on the side circumferential surface 111 of the first portion 110.
  • FIG. 11 is a cross-sectional view showing a structure of a third modified example of the nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention, and a view corresponding to FIG.
  • the side peripheral surface 121C of the second portion 120C is hemispherical.
  • the nitride semiconductor ultraviolet light emitting device 1C having the substrate 10C having such a shape can be obtained, for example, by grinding the chip 40 (see FIG. 6) using an NC lathe.
  • the side peripheral surface 121C of the second portion 120C is hemispherical, it is emitted from the element structure 20 and reaches the side peripheral surface 121C of the second portion 120C. Can be made extremely small. However, in order to process the substrate 10C into such a shape, it is necessary to grind the entire back surface while leaving the main surface 101 on which the element structure portion 20 is formed, which is realized by isotropic grinding processing It is not suitable for mass production because it is difficult to do. Further, as in the case of the nitride semiconductor ultraviolet light emitting device 1 (see FIG.
  • a plan view of the substrate 10 and the light emitting region 31 viewed from the direction perpendicular to the major surface 101 of the substrate 10 (hereinafter referred to as “from the viewpoint of preventing light from being biased in a specific direction in the substrate 10 It is preferable that it is a rotationally symmetric shape of two or more rotational symmetry where the centers coincide with each other in a plan view). Further, from the viewpoint of efficiently supplying power to the active layer 213, it is preferable that the light emitting region 31 has a shape protruding radially in a plurality of directions from the center of rotational symmetry in plan view.
  • FIG. 12 is a plan view showing a structure of a fourth modified example of the nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention, and is a view showing a plane corresponding to FIG.
  • the light emitting region (the region in which the p electrode 22D is formed) in the nitride semiconductor ultraviolet light emitting device shown in FIG. 12 has a chrysanthemum shape that protrudes radially in eight directions from the center of rotational symmetry in plan view. It is a symmetrical shape. Although the shape is not limited to the eight-fold symmetry as shown in FIG. 10, the light passing through the substrate 10 can be made uniform by forming the light-emitting region into a high-order rotational symmetry (for example, four-fold symmetry or more). It will be possible to
  • all of the side peripheral surfaces 111 and 121 of the substrate 10 are curved (spherical) Although a plane may remain in a part of the side peripheral surfaces 111 and 121 of the substrate 10 in the example.
  • the substrate 10 may have a shape obtained by finishing the grinding process of the chip 40 in each state of FIGS. 8 (b) to 8 (e).
  • the chip before grinding may not be cubic, and the main surface of the chip before grinding may not be square.
  • each of at least the main surface 101 and the back surface 102 of the substrate is provided. It is necessary that the four corners in are ground.
  • the plan view as shown in FIGS. 8 (d) to 8 (f) rather than the substrate being in a square shape in plan view.
  • the light loss at the side of the substrate (the transmission of light at the side of the first part 110, the second It is preferable because the total reflection of light on the side can be reduced.
  • the p-plated electrode 24 is illustrated in the form of a film (see FIGS. 1 and 2 etc.). (Protrusion).
  • the adhesion can be improved in the case of manufacturing the chip 40 as shown in FIG.
  • the present invention is applicable to a nitride semiconductor ultraviolet light emitting device which is configured by forming an AlGaN-based semiconductor layer on the main surface of a sapphire substrate and emits light (ultraviolet light) having an emission center wavelength of 365 nm or less is there.
  • nitride semiconductor ultraviolet light emitting element 10 substrate 101: main surface 102: back surface 110: first portion 111: side peripheral surface 120, 120C: second portion 121, 121C: side peripheral surface 20: Element structure part 21, 21 D: AlGaN based semiconductor layer 211: Base layer 212: n-type cladding layer (n-type AlGaN) 213: Active layer 214: Electron block layer (p-type AlGaN) 215: p-type cladding layer (p-type AlGaN) 216: p-type contact layer (p-type GaN) 22, 22D: p electrode 23, 23D: n electrode 24: p plating electrode 25: n plating electrode 26: insulating film 31: light emitting region 32: peripheral region 40: tip 50: protective material 60: Grinding apparatus 61: Side wall 62: Bottom 63: Rotating shaft 70: Transmission material 80: Reflection material L1 to L3: Light beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Abstract

窒化物半導体紫外線発光素子1は、サファイア基板10と、基板10の主面101上に形成される素子構造部20とを備える。基板10は、主面101から第1距離までの第1部分110において、主面101と平行な断面の断面積が、主面101から離れるにつれて連続的に増加し、主面101の反対側から第2距離までの第2部分120において、主面101と平行な断面の断面積が、主面101の反対側から離れるにつれて連続的に増加する。第1距離及び前記第2距離の和は、基板10の厚さ以下である。

Description

窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子
 本発明は、サファイア基板の主面上にAlGaN系半導体層を形成して構成されて発光中心波長が365nm以下の光(紫外線)を出射する窒化物半導体紫外線発光素子及びその製造方法に関する。
 サファイア基板の主面上にAlGaN系半導体層を形成して構成されているLED(Light Emitting Diode)やLD(Laser Diode)などの窒化物半導体紫外線発光素子において、光の取出効率を高める等の目的でレンズが設けられることがある。
 例えば、非特許文献1では、サファイア基板における主面(通電により光を出射する素子構造部が形成される面)の反対側の裏面に対して半球状のレンズを接合した窒化物半導体紫外線発光素子が提案されている。
 また例えば、特許文献1では、表面形状が球面であるガラス材料でサファイア基板の裏面及び側面を封止した発光素子が提案されている。なお、特許文献1で提案されている発光素子で用いられているガラス材料は、TeOを主成分とするものであり、紫外線や青色光に対する耐性はあるが、サファイアよりも屈折率が大きい材料である。
特開2007-150232号公報
Masatsugu Ichikawa,etal.,"High-output-power deep ultraviolet light-emitting diode assembly using direct bonding",Applied Physics Express 9, 072101 (2016)
 非特許文献1で提案されている窒化物半導体紫外線発光素子では、基板とレンズを接合する必要があるが、素子構造部が出射する光の進行に影響を与える層や、素子構造部が出射する光(特に、紫外線)によって劣化する層を、基板とレンズの間に設けることは許されない。そのため、非特許文献1で提案されている窒化物半導体紫外線発光素子では、ADB(Atomic Diffusion Bonding)またはSAB(Surface Activated Bonding)という特殊な接合方法によって基板とレンズを接合する必要がある。しかし、ADB及びSABは、超高真空以上の真空度という特殊な環境を用意するだけでなく、当該環境下において接触しただけで接合するという特殊な表面状態を形成するものであり、特殊な装置及び高度な技術が必要不可欠であるから、容易に実施することはできない。
 また、特許文献1で提案されている発光素子で用いられているガラス材料の屈折率は約2.0であり、サファイアの屈折率は約1.8、空気の屈折率は約1.0である。特許文献1で提案されている発光素子のように、サファイアよりもさらに屈折率が大きいガラス材料を用いてレンズを形成すると、レンズ及び空気の屈折率差が大きくなることによってレンズから空気中に光を取り出す際の界面反射が大きくなるため、光の取出効率の改善が妨げられるという問題がある。即ち、せっかくレンズを設けて光の取出効率の改善を図ったとしても、レンズから空気中に光を取り出す際の界面反射によってその効果が減殺されてしまう。
 そこで、本発明は、容易に製造可能であって光の取出効率を効果的に改善することが可能である窒化物半導体紫外線発光素子及びその製造方法を提供する。
 上記目的を達成するため、本発明は、サファイア基板と、当該基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備えるチップに対して、前記基板を研削加工する基板加工工程を備え、前記基板加工工程は、少なくとも、前記主面における4つの角と、前記主面の反対側の面である裏面における4つの角と、のそれぞれを研削加工する工程であることを特徴とする窒化物半導体紫外線発光素子の製造方法を提供する。
 この窒化物半導体紫外線発光素子の製造方法によれば、基板とレンズを接合するという高度な技術(非特許文献1参照)を用いることなく、基板を研削加工するという簡単な技術によってレンズを有する窒化物半導体紫外線発光素子を得ることできる。さらに、この窒化物半導体紫外線発光素子の製造方法によれば、特許文献1で提案されている発光素子のようにサファイアよりもさらに屈折率が大きいガラス材料をレンズとして用いるのではなく、サファイア基板をレンズとして用いるため、空気中に光を取り出す際の界面反射を抑制することができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記研削加工工程は、少なくとも、前記主面における4つの角と、前記裏面における4つの角と、のそれぞれを凸状の曲面に研削加工する工程であると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、素子構造部から出射されて基板の主面側の側周面に到達する光の入射角をより大きくすることができるとともに、素子構造部から出射されて基板の裏面側の側周面に到達する光の入射角をより小さくすることができるため、主面の反対側からより多くの光を取り出すことができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記研削加工工程は、前記裏面側に前記主面と平行な面が残るように、前記基板を研削加工する工程であると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、量産が可能である等方的な研削加工によって窒化物半導体紫外線発光素子を製造することができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程が、前記主面に対して垂直な方向から見た平面視における前記基板が円形状、長円形状、または、4つの角が丸い四角形状になるように、前記基板を研削加工する工程であると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、基板の側辺における光の損失(主面側の側辺における光の透過、裏面側の側辺における光の全反射)を低減することが可能な窒化物半導体紫外線発光素子を得ることができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程が、前記チップに対して、前記素子構造部の表面を覆う保護材を形成する第1工程と、前記保護材が形成された前記チップの前記基板を研削加工する第2工程と、前記第2工程の後に前記保護材を除去する第3工程と、を備えると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、保護材によって素子構造部を保護しながら基板を研削加工することができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第2工程において、砥粒が付着された凹状の曲面を有する容器内で、1以上の前記チップを転動させて前記凹状の曲面に衝突させると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、凹状の曲面に対してチップの角のみが衝突して研削されるため、効率良く基板の側面を球面に加工することができる。さらに、チップを転動させることによって、チップを等方的に研削加工することができる。また、この窒化物半導体紫外線発光素子の製造方法によれば、容器内に複数のチップを入れて同時に研削加工することができるため、窒化物半導体紫外線発光素子を量産することができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第2工程を行う前において、正方形である前記基板の主面の一辺の長さをL、前記素子構造部の外接円の直径をRとするとき、
 前記基板の厚さDは、
Figure JPOXMLDOC01-appb-I000002

を満たすと、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、素子構造部の研削を防止しつつ、基板の側面を球面に研削することができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第3工程において、前記保護材を溶媒に溶解させて除去すると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、素子構造部に対して多大な応力を加えることなく、保護材を除去することができる。即ち、素子構造部20の破損を防止することができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、少なくとも、前記基板加工工程によって前記基板の前記裏面における4つの角が研削加工されて表出した面の一部または全部に対して、最表面が非晶質フッ素樹脂であるとともに前記素子構造部から出射される光を透過する透過材を形成する透過材形成工程を、さらに備えると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、基板の裏面側の側周面における光の反射を抑制することが可能な窒化物半導体紫外線発光素子を得ることができる。
 さらに、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程は、前記主面と平行であって平坦である前記裏面の一部が残るように前記裏面の4つの角を研削加工するものであり、前記透過材形成工程は、少なくとも前記裏面に対して反射防止層を形成する工程と、前記反射防止層の表面に前記非晶質フッ素樹脂を形成する工程と、を含むと、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、少なくとも裏面に到達した光を効果的に取り出すことが可能な窒化物半導体紫外線発光素子を得ることができる。
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程によって前記基板の前記主面における4つの角が研削加工されて表出した面の少なくとも一部に対して、前記素子構造部から出射される光を反射する反射材を形成する反射材形成工程を、さらに備えると、好ましい。
 この窒化物半導体紫外線発光素子の製造方法によれば、基板の主面側の側周面における光の反射を促進することが可能な窒化物半導体紫外線発光素子を得ることができる。
 また、本発明は、サファイア基板と、前記基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備え、前記基板は、前記主面から第1距離までの第1部分において、前記主面と平行な断面の断面積が、前記主面から離れるにつれて連続的に増加し、前記主面の反対側から第2距離までの第2部分において、前記主面と平行な断面の断面積が、前記主面の反対側から離れるにつれて連続的に増加しており、前記第1距離及び前記第2距離の和は、前記基板の厚さ以下であることを特徴とする窒化物半導体紫外線発光素子を提供する。
 この窒化物半導体紫外線発光素子は、基板とレンズを接合するという高度な技術(非特許文献1参照)を用いることなく、基板の加工という簡単な技術によって得ることができる。さらに、この窒化物半導体紫外線発光素子は、特許文献1で提案されている発光素子のようにサファイアよりもさらに屈折率が大きいガラス材料をレンズとして用いるのではなく、サファイア基板をレンズとして用いるため、空気中に光を取り出す際の界面反射を抑制することができる。
 また、上記特徴の窒化物半導体紫外線発光素子において、前記第1部分は、前記主面から離れる方向に単位距離だけ離れた場合における前記主面と平行な断面の断面積の単位増加量が、前記主面から離れるにつれて連続的に減少し、前記第2部分は、前記主面の反対側から離れる方向に単位距離だけ離れた場合における前記主面と平行な断面の断面積の単位増加量が、前記主面の反対側から離れるにつれて連続的に減少すると、好ましい。
 この窒化物半導体紫外線発光素子によれば、基板の第1部分及び第2部分の側周面が凸状の曲面になり、素子構造部から出射されて基板の第1部分の側周面に到達する光の入射角をより大きくすることができるとともに、素子構造部から出射されて基板の第2部分の側周面に到達する光の入射角をより小さくすることができるため、主面の反対側からより多くの光を取り出すことができる。
 また、上記特徴の窒化物半導体紫外線発光素子において、前記基板における前記主面の反対側に、前記主面と平行な面があると、好ましい。
 この窒化物半導体紫外線発光素子によれば、量産が可能である等方的な研削加工によって窒化物半導体紫外線発光素子を製造することができる。
 また、上記特徴の窒化物半導体紫外線発光素子において、前記主面に対して垂直な方向から見た平面視において、前記基板が、円形状、長円形状、または、4つの角が丸い四角形状であると、好ましい。
 この窒化物半導体紫外線発光素子によれば、基板の側辺における光の損失(第1部分の側辺における光の透過、第2部分の側辺における光の全反射)を低減することができる。
 また、上記特徴の窒化物半導体紫外線発光素子において、少なくとも、前記基板における前記第2部分の側周面の一部または全部に、最表面が非晶質フッ素樹脂であるとともに前記素子構造部から出射される光を透過する透過材が形成されていると、好ましい。
 この窒化物半導体紫外線発光素子によれば、基板の第2部分の側周面における光の反射を抑制することができる。
 さらに、上記特徴の窒化物半導体紫外線発光素子において、前記基板における前記主面の反対側に、前記主面と平行であって平坦な面である裏面があり、前記透過材が前記裏面の一部または全部に形成されており、前記透過材は、少なくとも前記裏面に対して形成されている反射防止層を含むと、好ましい。
 この窒化物半導体紫外線発光素子によれば、少なくとも裏面に到達した光を効果的に取り出すことができる。
 また、上記特徴の窒化物半導体紫外線発光素子において、前記基板における前記第1部分の側周面の少なくとも一部に、前記素子構造部から出射される光を反射する反射材が形成されていると、好ましい。
 この窒化物半導体紫外線発光素子によれば、基板の第1部分の側周面における光の反射を促進することができる。
 上記特徴の窒化物半導体紫外線発光素子の製造方法によれば、空気中に光を取り出す際の界面反射を抑制することによって光の取出効率を効果的に改善した窒化物半導体紫外線発光素子を、基板を研削加工するという簡単な技術によって容易に製造することができる。
 また、上記特徴の窒化物半導体紫外線発光素子によれば、空気中に光を取り出す際の界面反射を抑制することで、光の取出効率を効果的に改善することができる。さらに、上記特徴の窒化物半導体紫外線発光素子は、基板を加工するだけで容易に製造することができる。
本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例を示した平面図。 図1のA-A断面を示した断面図。 図1のp電極及びn電極を露出させて示した平面図。 AlGaN系半導体層の構造の一例を示した断面図。 ウエハを分断して得られたチップの構造の一例を示した平面図。 基板を加工する前のチップの構造の一例を示した断面図。 図6のチップを研削加工する研削加工装置の一例を示した斜視図。 図6のチップが図7の研削加工装置によって研削加工される経過を示した斜視図。 本発明の実施形態に係る窒化物半導体紫外線発光素子の第1変形例の構造を示した断面図。 本発明の実施形態に係る窒化物半導体紫外線発光素子の第2変形例の構造を示した断面図。 本発明の実施形態に係る窒化物半導体紫外線発光素子の第3変形例の構造を示した断面図。 本発明の実施形態に係る窒化物半導体紫外線発光素子の第4変形例の構造を示した平面図。
 以下、本発明の実施形態を説明するにあたり、サファイア基板と当該基板の主面上に積層された複数のAlGaN系半導体層を有する素子構造部とを備えて通電により発光中心波長が365nm以下の光(紫外線)を出射する発光ダイオードである窒化物半導体紫外線発光素子と、その製造方法とを例示する。ここで、AlGaN系半導体層の各層を構成する材料であるAlGaN系半導体は、一般式AlGa1-xN(xはAlNのモル分率であり、0≦x≦1)で表わされる3元系または2元系の化合物半導体を基本とし、そのバンドギャップエネルギがGaN(x=0)のバンドギャップエネルギ(約3.4eV)以上である3族窒化物半導体であり、当該バンドギャップエネルギに関する条件を満たす限りにおいて微量のIn等を含み得る。
 ただし、本発明に係る窒化物半導体紫外線発光素子及びその製造方法は、主として基板の形状または基板の加工方法に関するものであるため、素子構造部の構造はどのようなものであってもよく、以下に例示する窒化物半導体紫外線発光素子における素子構造部の構造に限定されるものではない。
<窒化物半導体紫外線発光素子の構造例>
 最初に、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例について、図面を参照して説明する。図1は、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例を示した平面図である。図2は、図1のA-A断面を示した断面図である。図3は、図1のp電極及びn電極を示した平面図である。なお、図2に示す断面図では、図示の都合上、基板、半導体層及び電極の厚さ(図中の上下方向の長さ)を模式的に示しているため、必ずしも実際の寸法比とは一致しない。特に、半導体層の厚さを、実際よりも拡大して図示している。
 図1~図3に示すように、本発明の実施形態に係る窒化物半導体紫外線発光素子1は、基板10と、基板10の主面101上に形成される素子構造部20と、を備える。この窒化物半導体紫外線発光素子1は、実装用の基台に対して素子構造部20側(図2における図中上側)を向けて実装される(フリップチップ実装される)ものであり、光の取出方向は基板10側(図2における図中下側)である。なお、図2に示すL1~L3は、素子構造部20から出射される光の一部の光線である。また、素子構造部20とは、発光に寄与する部分であって、換言すると、通電した電流の大部分が流れる部分、破壊されれば発光に支障をきたす部分である。
 基板10は、サファイアで構成されており、主面101及び裏面102が平坦であって、主面101に接続する側周面111及び裏面102に接続する側周面121のそれぞれが凸状の曲面になっている形状である。換言すると、基板10は、球体の上下が平坦な断面(主面101及び裏面102)になっている形状である。
 具体的に、基板10は、主面101から第1距離までの第1部分110と、主面の反対側(即ち、裏面102)から第2距離までの第2部分120を有しており、第1部分110では、主面101と平行な断面の断面積が、主面101から離れるにつれて連続的に増加しており、第2部分120では、主面101と平行な断面の断面積が、主面101の反対側から離れるにつれて連続的に増加している。特に、基板10は、第1部分110において、主面101から離れる方向に単位距離だけ離れた場合における上記断面積の単位増加量(即ち、断面積の微分値)が、主面101から離れるにつれて連続的に減少し、第2部分120において、主面101の反対側(即ち、裏面102)から離れる方向に単位距離だけ離れた場合における上記断面積の単位増加量が、主面101の反対側から離れるにつれて連続的に減少している。なお、第1距離は第1部分110の厚さに相当し、第2距離は第2部分の厚さに相当するから、これらの和は当然に基板10の厚さ以下になる。また、基板10は、第1距離及び第2距離の和と基板の厚さとが等しい場合の例である。
 素子構造部20は、AlGaN系半導体層21と、p電極22と、n電極23と、pメッキ電極24と、nメッキ電極25と、絶縁膜26とを備える。ここで、AlGaN系半導体層21の構造の一例について図面を参照して説明する。図4は、AlGaN系半導体層の構造の一例を示した断面図である。
 図4に示すように、AlGaN系半導体層21は、基板10側から順番に、下地層211と、n型AlGaNで構成されるn型クラッド層212と、活性層213と、p型AlGaNで構成される電子ブロック層214と、p型AlGaNで構成されるp型クラッド層215と、p型GaNで構成されるp型コンタクト層216とを積層した構造である。
 下地層211は、AlNで構成されており、基板10の主面101に対して形成される。なお、下地層211は、AlNの上面にAlGaNを積層した構造であってもよい。また、活性層213は、AlGaNまたはGaNで構成される井戸層をn型AlGaNで構成されるバリア層で挟んだ単一または多重量子井戸構造を備えている。
 AlGaN系半導体層21において、発光領域31には上述した各層211~216が形成されており、最上面がp型コンタクト層216になっているが、発光領域31を包囲する周辺領域32には活性層213以上の各層213~216が形成されておらず、n型クラッド層212が露出している。そして、発光領域31におけるp型コンタクト層216の上面にp電極22が形成されており、周辺領域32におけるn型クラッド層212の上面にn電極23が形成されている。このp電極22から正孔が供給されるとともにn電極23から電子が供給されるように通電すると、供給された正孔及び電子のそれぞれが発光領域31の活性層213に到達し、当該活性層213において正孔及び電子が再結合して発光する。
 AlGaN系半導体層21を構成する各層211~216は、有機金属化合物気相成長(MOVPE)法や分子線エピタキシ(MBE)法等の周知のエピタキシャル成長法により形成されるとともに、n型の層にはドナー不純物として例えばSiが添加され、p型の層にはアクセプタ不純物として例えばMgが添加される。さらに、基板10の主面101上に各層211~216を積層した後、反応性イオンエッチング等の周知のエッチング手段により一部の領域(周辺領域32に相当する領域)を選択的にエッチングして当該領域のn型クラッド層212を露出させることで、発光領域31及び周辺領域32のそれぞれが形成される。
 p電極22は、例えばNi/Auで構成され、上述のように発光領域31のp型コンタクト層216の上面に形成される。n電極23は、例えばTi/Al/Ti/Auで構成され、上述のように周辺領域32のn型クラッド層212の上面に形成される。また、n電極23は、発光領域31を包囲するように形成される。
 p電極22及びn電極23は、AlGaN系半導体層21に電力を供給するだけでなく、発光領域31の活性層213で生じた光を基板10側に反射させる。特に、発光領域31を包囲するように形成されるn電極23が、基板10を通過せずに周辺領域32から外部に漏れ出そうとする光を基板10側に反射することで、基板10を通過する光の量を効果的に増大させることができる。
 pメッキ電極24及びnメッキ電極25のそれぞれは、例えば、電解メッキで形成されるCuの本体部を、無電解メッキで形成される最表面がAuである一層以上の金属層で被覆して構成される。また、pメッキ電極24及びnメッキ電極25のそれぞれは、相互に離間するとともに上面が平坦化されて同じ高さに揃えられている。さらに、pメッキ電極24の一部はp電極22に接触しており、nメッキ電極25の一部はn電極23に接触している。
 pメッキ電極24及びnメッキ電極25は、実装用の基台と接続してAlGaN系半導体層21に電力を供給するだけでなく、窒化物半導体発光素子1が生じる熱を実装用の基台に伝達させて放熱するために設けられている。特に、pメッキ電極24は、電流が集中する発光領域31の全部に設けられているため、効果的な放熱を行うことができる。
 絶縁膜26は、例えばSiOやAlなどで構成され、pメッキ電極24との接続部分を除くp電極22の上面及び側面と、nメッキ電極25との接続部分を除くn電極23の上面及び側面と、p電極22及びn電極23が形成されておらず露出しているAlGaN系半導体層21の発光領域31及び周辺領域32における上面並びに発光領域31における側面とを覆うように形成される。絶縁膜26は、基板10における主面101の上方において広範囲に形成されるn電極23及びpメッキ電極24の接触を防止したり、AlGaN系半導体層21の発光領域31における側面を保護したりするために設けられている。
 図2に示すように、本発明の実施形態に係る窒化物半導体紫外線発光素子1において、素子構造部20から出射されて基板10に入射した光は、基板10の内部を進行して側周面111,121や裏面102に到達する。このとき、第1部分110の側周面111に到達する光L1は、入射角が大きいために大部分が全反射し、全反射した光の大部分は第2部分120の裏面102または側周面121から空気中に出射される。一方、第2部分120の裏面102または側周面121に到達する光L2,L3は、入射角が小さいために大部分が全反射せず、そのまま空気中に出射される。このように、窒化物半導体紫外線発光素子1では、光の取出方向である主面101の反対側から多くの光を取り出すことができる。
 さらに、この窒化物半導体紫外線発光素子1では、特許文献1で提案されている発光素子のようにサファイアよりもさらに屈折率が大きいガラス材料をレンズとして用いるのではなく、サファイア基板10をレンズとして用いるため、空気中に光を取り出す際の界面反射を抑制することができる。したがって、光の取出効率を効果的に改善することができる。
 また、本発明の実施形態に係る窒化物半導体紫外線発光素子1は、非特許文献1のように基板とレンズを接合するという高度な技術を用いることなく、基板10を加工するという簡単な技術を用いて製造することができる。なお、基板10の加工方法については、後述の<窒化物半導体紫外線発光素子の製造方法例>において説明する。
 なお、図1及び図3では、n電極23の外側の輪郭線が正方形状である場合について例示しているが、n電極23の形状及び大きさはどのようなものであってもよい。例えば、n電極23が円形状であってもよいし、周辺領域32の全面(基板10の端部に到達していてもよいし端部から僅かに後退していてもよい)に設けられていてもよい。また、図1では、pメッキ電極24が円形状であり、pメッキ電極24の直径がn電極23の外側の輪郭線(正方形状の輪郭線)に対する内接円の直径よりも大きい場合について例示しているが、pメッキ電極24の形状及び大きさはどのようなものであってもよい。
 また、図2では、基板10の第1部分110の側周面111及び第2部分120の側周面121が凸状の曲面である場合について例示しているが、凸状ではなく凹状の曲面であってもよいし、曲面でなく平面であってもよい。基板10がこれらのような形状であっても、基板の側面が主面に垂直な平面である場合と比較して、素子構造部20から出射されて基板10の第1部分110の側周面111に到達する光の入射角を大きくするとともに、素子構造部20から出射されて基板10の第2部分120の側周面121に到達する光の入射角を小さくすることができるため、主面101の反対側から多くの光を取り出すことができる。ただし、基板10の第1部分110及び第2部分120の側周面111,121を凸状の曲面にすると、素子構造部20から出射されて基板10の第1部分110の側周面111に到達する光の入射角をより大きくすることができるとともに、素子構造部20から出射されて基板10の第2部分120の側周面121に到達する光の入射角をより小さくすることができるため、主面101の反対側からより多くの光を取り出すことができる。
<窒化物半導体紫外線発光素子の製造方法例>
 一般的に、図1及び図2に示したようなチップ状の窒化物半導体紫外線発光素子1は、平板状の基板の主面上に複数の素子構造部が整列するように形成したウエハを、素子構造部ごとに分断することで得られる。ただし、図2に示したチップ状の窒化物半導体紫外線発光素子1が備える基板10は、第1部分110の側周面111及び第2部分120の側周面121が凸状の曲面となる形状であるため、基板10をこのような形状に加工する工程が必要である。そこで、以下では、基板10の第1部分110の側周面111及び第2部分120の側周面121を凸状の曲面に加工する工程を中心に、本発明の実施形態に係る窒化物半導体紫外線発光素子1の製造方法について図面を参照して説明する。
 図5は、ウエハを分断して得られたチップの構造の一例を示した平面図であり、図1と同様の平面を示した図である。図6は、基板を加工する前のチップの構造の一例を示した断面図であり、図2と同様の断面を示した図である。本発明の実施形態に係る窒化物半導体紫外線発光素子1の製造方法では、図6に示すように、基板10における素子構造部20の表面を覆う保護材50を設ける。なお、図6では、素子構造部20の表面とその近傍を保護材50で覆う場合について例示しているが、これよりも広範囲(例えば、基板10の主面101側の全面)を保護材50で覆ってもよい。そして、以下説明するように、このチップ40を研削加工した後に保護材50を除去することによって、図2に示すような形状の基板10を有する窒化物半導体紫外線発光素子1が得られる。
 保護材50として、例えば、にかわや樹脂材料(例えば、エポキシ、アクリル)などを用いることができる。にかわは、水系の溶媒(純水、湯など)に溶解させて除去することが可能であり、樹脂材料は、トリクレンやアセトンなどの有機溶媒に溶解させて除去することが可能である。
 図7は、図6のチップを研削加工する研削加工装置の一例を示した斜視図である。図7に示すように、研削加工装置60は、ダイヤモンドなどから成る砥粒が内側に付着された円筒状の側壁部61と、側壁部61に内接する円形状の底部62と、底部62を回転させる回転軸63とを備えている。なお、この研削加工装置60として、例えば、特開2008-168358号公報や特開2006-35334号公報で提案されているような研削加工装置を用いてもよい。
 研削加工装置60の側壁部61及び底部62で囲われた空間内に上述のチップ40を入れ、当該空間を遮蔽してチップ40の飛び出しを防止するための蓋部(不図示)を、側壁部61の開口している端部(図中上側)に設置してから底部62を回転させると、チップ40は転動しながら側壁部61に衝突して研削される。このとき、側壁部61の内側は凹状の曲面になっているため、チップ40の角が衝突して研削される。さらに、チップ40が転動するため、チップ40は等方的に研削される。
 上記のようにチップ40を等方的に研削すると、基板10の側面は球面に研削される。ただし、基板10の厚さが過度に大きいと、基板10の側面ではなく主面101が優先的に研削されてしまい、素子構造部20が研削されてしまう。そこで、基板10の厚さを、下記式(1)の右辺に示す上限値以下にすると、好ましい。
 下記式(1)において、Dは基板の厚さ、Lは正方形である基板10の主面101の一辺の長さ、Rは素子構造部20の外接円の直径であり、いずれも研削加工前の値である(図5及び図6参照)。また、下記式(1)の条件は、基板10の側面が球面に研削された時点(即ち、球の半径がL/2になった時点)で、主面101上に半径R/2以上の未研削の領域が残っている(即ち、素子構造部20が研削されない)ための条件である。なお、図5及び図6に例示するチップ40において、直径Rの素子構造部20の外接円は、それぞれの電極23~26を包含する大きさであり、最も外側の電極25の外接円よりも大きい(例えば、少なくとも電極25の厚さ分だけマージンが確保されている)。
Figure JPOXMLDOC01-appb-M000003
 一方、基板10の厚さが過度に小さいと、基板10の側面は球面に加工され得るが、素子構造部20から出射された光が基板10の側面まで十分に到達せず、基板10を研削加工したことによる効果が不十分になる場合がある。そこで、基板10の厚さを、素子構造部20から出射された光が基板10の側面まで十分に到達する厚さにすると、好ましい。例えば、本願出願人による国際出願である国際公開第2015/111134に開示されている通り、基板10の厚さを0.45×L以上にすると、素子構造部20から出射された光が基板10の側面まで十分に到達するため、好ましい。
 図8は、図6のチップが図7の研削加工装置によって研削加工される経過を示した斜視図であり、(a)、(b)、(c)、(d)、(e)、(f)の順番で研削加工が進行する様子を示している。図8に示すように、チップ40は、研削加工装置60による研削加工によって、角が等方的に研削されていく。具体的には、基板10における主面101及び裏面102(図6参照)のそれぞれの4つの角から順番に角が研削されていき、最終的には図8(f)に示すように全ての角が研削されて球面になる。
 そして、研削加工後のチップ40が有する保護材50を溶媒に溶解させることで、図2に示したような窒化物半導体紫外線発光素子1が得られる。このように、保護材50を、溶媒に溶解させて除去すると、素子構造部20に対して多大な応力を加えることなく、保護材50を除去することができる。即ち、素子構造部20の破損を防止することができる。
 以上のような研削加工方法によって基板10を研削加工すると、素子構造部20の破損を防止しながらも、一度に複数のチップ40を研削加工することができる。即ち、窒化物半導体紫外線発光素子1を量産することができる。
 なお、図7に示した研削加工装置60は一例に過ぎず、他の研削加工装置を用いてチップ40の研削加工をしてもよい。例えば、図7に示した研削加工装置60は、容器の一部である底部62が鉛直方向を軸として回転することでチップ40を転動させるものであるが、容器の少なくとも一部が水平方向の成分を有する方向を軸として回転してチップ40を転動させる研削加工装置を用いてもよい。ただし、砥粒が付着された凹状の曲面を有する容器内でチップ40を転動させて、当該曲面にチップ40を衝突させることができる研削加工装置を用いると、上述の研削加工装置60を用いる場合と同様の効果を得ることができるため、好ましい。
 また、NC(Numerical Control)旋盤などを用いて基板10の側面を球面に研削加工してもよい。ただし、このような研削加工方法では、図7に示した研削加工装置60を用いる場合とは異なり、一度に複数のチップ40の研削加工を行うことは難しい。
<変形等>
[1] 図7に示したような研削加工装置60を用いて基板10の側面を球面に加工した場合、研削加工によって基板10の第2部分120の側周面121に微細な凹凸が形成されることで当該側周面121に到達した光が反射され易くなり、それによって光の取出効率が低下し得る。そこで、これを防止するために、研削加工後のチップ40に対して、基板10の第2部分120の側周面121の研磨加工をしてもよい。例えば、バレル研磨機などの周知の球体研磨装置を用いて、研削加工後のチップ40の表面を研磨してもよい。
 また、チップ40を研磨加工する代わりに、基板10の第2部分120の側周面121の凹部を何らかの膜で覆って埋めることによって、当該側周面121に到達した光の反射を抑制して光の取出効率の低下を防止してもよい。この場合の窒化物半導体紫外線発光素子の構造について、図面を参照して説明する。図9は、本発明の実施形態に係る窒化物半導体紫外線発光素子の第1変形例の構造を示した断面図であり、図2に相当する断面を示した図である。
 図9に示すように、窒化物半導体紫外線発光素子1Aが備える基板10の第2部分120の側周面121及び裏面102には、透過材70が形成されている。透過材70は、素子構造部20が出射する光を透過するとともに当該光によって劣化し難い(耐性がある)材料で構成されていると、好ましい。さらに、透過材70は、基板10の第2部分120の側周面121及び裏面102における光の反射を抑制する観点から、基板10を構成するサファイアよりも小さく空気よりも大きい屈折率を有する材料で構成されていると、好ましい。具体的に例えば、透過材70を非晶質フッ素樹脂で構成すると好ましい。
 また、基板10の第2部分120の側周面121及び裏面102に限らず、他の部分を透過材70で覆ってもよい。例えば、基台に実装した1または複数の窒化物半導体紫外線発光素子の全体を、透過材70で封止(埋め込み)してもよい。この場合、pメッキ電極24及びnメッキ電極25の少なくとも一方の表面(実装用の基台における電極と接触しない部分の表面であって、図9における上面を除いた側面)を透過材70で覆うことによって、短絡を防止することができる。特に、透過材70を非結合性の非晶質フッ素樹脂で構成すると、金属原子のマイグレーションを好適に防止することができるため、好ましい。
 非結合性の非晶質フッ素樹脂は、金属や基板10を構成するサファイア等に対する結合力が弱いところが難点である。しかし、窒化物半導体紫外線発光素子1Xを基台に実装した後に、窒化物半導体紫外線発光素子1Aと基台との間隙に透過材70を入り込ませてpメッキ電極24及びnメッキ電極25の少なくとも一方の表面を透過材70で覆うようにすれば、透過材70は剥離し難くなる。また、基板10の第1部分110の側周面111及び第2部分120の側周面121に多数の凹凸が形成されていれば、アンカー効果によって当該側周面111,121と透過材70の結合力が大きくなるため、透過材70は剥離し難くなる。
 非晶質のフッ素樹脂として、例えば、結晶性ポリマーのフッ素樹脂を共重合化してポリマーアロイとして非晶質化させたものや、パーフルオロジオキソールの共重合体(デュポン社製の商品名テフロンAF(登録商標))やパーフルオロブテニルビニルエーテルの環化重合体(旭硝子社製の商品名サイトップ(登録商標))などが挙げられる。さらに、非結合性の非晶質フッ素樹脂としては、重合体または共重合体を構成する構造単位が含フッ素脂肪族環構造を有し、末端官能基がCF等のパーフルオロアルキル基である非晶質フッ素樹脂が挙げられる。パーフルオロアルキル基は、金属等に対して結合性を呈する反応性の末端官能基を有していない。なお、結合性の非晶質フッ素樹脂は、重合体または共重合体を構成する構造単位が、同じ含フッ素脂肪族環構造を有していても、末端官能基として、金属等に対して結合可能な反応性官能基を有する点で、非結合性の非晶質フッ素樹脂と相違する。当該反応性の官能基は、一例として、カルボキシル基(COOH)またはエステル基(COOR)である。但し、Rはアルキル基を表す。
 また、含フッ素脂肪族環構造を有する構造単位としては、環状含フッ素単量体に基づく単位(以下、「単位A」)、または、ジエン系含フッ素単量体の環化重合により形成される単位(以下、「単位B」)が好ましい。なお、非晶質フッ素樹脂の組成及び構造は、本願発明の本旨ではないため、当該単位A及び単位Bに関する詳細な説明は割愛するが、当該単位A及び単位Bに関しては、国際公開第2014/178288号の段落[0031]~[0062]に詳細に説明されているので、参照されたい。
 非結合性の非晶質フッ素樹脂の市販品の一例として、サイトップ(旭硝子社製)等が挙げられる。なお、末端官能基がCFであるサイトップは、下記の化1に示す上記単位Bの重合体である。
Figure JPOXMLDOC01-appb-C000004
 なお、上述のように、基板10の第2部分120の側周面121及び裏面102だけでなく、pメッキ電極24及びnメッキ電極25の少なくとも一方をも透過材70で覆う場合において、それぞれを覆う透過材70を異なる材料で構成してもよい。例えば、pメッキ電極24及びnメッキ電極25の少なくとも一方を覆う透過材70は、金属原子のマイグレーションを抑制する観点から非結合性の非晶質フッ素樹脂で構成し、基板10の第2部分120の側周面121及び裏面102を覆う透過材70は、非結合性ではない非晶質フッ素樹脂で構成してもよい。
 また、透過材70は、最表面が非晶質フッ素樹脂であれば空気との界面における光の反射を抑制することが可能であるため、非晶質フッ素樹脂と基板10(特に、第2部分120の側周面121)との間に、素子構造部20から出射される光を透過する別の材料の層を有していてもよい。例えば、透過材70が、非晶質フッ素樹脂と基板10との間に、SiOやHfOなどの無機材料の層を有していてもよく、これらの層を複数有していてもよい。具体的に例えば、透過材70が、基板10の表面に形成されるHfOの層と、さらにその表面に形成されるSiOの層とを有していてもよい。
 特に、透過材70が、非晶質フッ素樹脂と基板10との間に、単層または多層の反射防止層を備えていてもよい。1つの反射防止層の厚さはλ/4nであり、nは反射防止層の屈折率、λは素子構造部20から出射される光の波長である。例えば、1つの反射防止層は、SiOやHfOで構成される。このような反射防止層を設けることで、光の取出効率をさらに改善することができる。なお、反射防止層による反射防止効果を得るためには、反射防止層を設計した通りの厚さで形成することが重要であるが、主面101と平行であって平坦な面である裏面102に対しては、容易に設計した通りの厚さの反射防止層を設けることができる。そのため、少なくとも基板10の裏面102に対して反射防止層を形成すると好ましい。また、上記のように非晶質フッ素樹脂と基板10との間にSiOやHfOなどの層を設ける場合、まず、スパッタなどの周知の成膜方法により基板10に対してSiOやHfOなどの層を形成し、その後に、非晶質フッ素樹脂の層の形成や、非晶質フッ素樹脂による封止をすればよい。また、基板10の裏面102に対して反射防止層を形成する場合、素子構造部20から出射された光がある程度広がる(即ち、裏面102に到達する光の入射角がある程度大きくなる)ことを考慮して、当該入射角の光を反射し得る厚さの反射防止層を形成してもよい。具体的に、素子構造部20から出射されて裏面102に対して垂直に入射する光(即ち、入射角が0°の光)ではなく、例えば、0°より大きく臨界角よりも小さい所定の入射角の光に合わせて厚さを設計した反射防止層を形成してもよい。なお、サファイアの屈折率を1.8、非晶質フッ素樹脂の屈折率を1.35とした場合の臨界角は48.6°であり、このような反射防止層を形成することで、入射角が臨界角よりも小さい光を効果的に取り出すことが可能になるとともに、裏面102の過度な研削を不要とすることができる。
 また、図9では、基板10の裏面102にも透過材70を設けた窒化物半導体紫外線発光素子1Aを例示しているが、裏面102に透過材70を設けなくてもよい。また、基板10の第2部分120の側周面121に、上述のような研削加工に起因する凹凸がない場合であっても、サファイアよりも小さく空気よりも大きい屈折率を有する非晶質フッ素樹脂が最表面に形成された透過材70を側周面121に設けることで、空気との界面における光の反射を抑制することができる。
[2] 図7に示したような研削加工装置60を用いて基板10の側面を研削加工した場合、基板10の第1部分110の側周面111に微細な凹凸が形成されることで光を反射し難くなり、それによって光の取出効率が低下し得る。そこで、これを防止するために、研削加工後のチップ40に対して、基板10の第1部分110の側周面111の研磨加工をしてもよい。例えば、バレル研磨機などの周知の球体研磨装置を用いて、研削加工後のチップ40の表面を研磨してもよい。
 また、チップ40を研磨加工する代わりに、基板10の第1部分110における側周面111の表面における凹凸を何らかの膜で覆って埋めることによって、素子構造部20が出射する光の散乱を抑制して光の取出効率の低下を防止してもよい。この場合の窒化物半導体紫外線発光素子の構造について、図面を参照して説明する。図10は、本発明の実施形態に係る窒化物半導体紫外線発光素子の第2変形例の構造を示した断面図であり、図2に相当する断面を示した図である。
 図10に示すように、窒化物半導体紫外線発光素子1Bが備える基板10の第1部分110の側周面111には、反射材80が形成されている。反射材80は、素子構造部20が出射する光を反射する材料で構成されており、例えばAl,Ni,Rhの少なくとも1つを含む材料で構成すると好ましい。
 また、基板10の第1部分110の側周面111に、上述のような研削加工に起因する凹凸がない場合であっても、第1部分110の側周面111に反射材80を設けることで、第1部分110の側周面111における反射を促進することが可能である。
[3] 上述の実施形態では、基板10の主面101及び裏面102が平坦である窒化物半導体紫外線発光素子1を例示したが(図2参照)、平坦な裏面102がなく、主面101の反対側が曲面であってもよい。この場合の窒化物半導体紫外線発光素子の構造について、図面を参照して説明する。図11は、本発明の実施形態に係る窒化物半導体紫外線発光素子の第3変形例の構造を示した断面図であり、図2に相当する断面を示した図である。
 図11に示すように、窒化物半導体紫外線発光素子1Cが備える基板10Cは、第2部分120Cの側周面121Cが半球状になっている。なお、このような形状の基板10Cを有する窒化物半導体紫外線発光素子1Cは、例えば、NC旋盤を用いてチップ40(図6参照)を研削加工することで得られる。
 図11に示す窒化物半導体紫外線発光素子1Cのように、第2部分120Cの側周面121Cが半球状であれば、素子構造部20から出射されて第2部分120Cの側周面121Cに到達する光の入射角を極めて小さくすることができる。ただし、基板10Cをこのような形状に加工するためには、素子構造部20が形成されている主面101を残しつつ裏面の全部を研削加工する必要があり、等方的な研削加工では実現することが困難であるから、量産には向いていない。また、上述の実施形態における窒化物半導体紫外線発光素子1(図2参照)のように、基板10において平坦な裏面102が残っていたとしても、素子構造部20から出射されて裏面102に到達する光の入射角は十分に小さくなるため、平坦な裏面102が残っていても、それによる光の取出効率の低下は小さい。さらに、平坦な裏面102が残っていれば、裏面102をバキュームピックアップすることが可能になるなど、ハンドリングが容易になる。
[4] 基板10内の特定の一方向に光が偏ることを防止する観点から、基板10及び発光領域31が、基板10の主面101に対して垂直な方向から見た平面視(以下、単に平面視という)において中心が一致する2回対称以上の回転対称の形状であると、好ましい。また、活性層213に対して効率よく電力を供給する観点から、発光領域31が、平面視において回転対称の中心から複数の方向に放射状に突出した形状であると、好ましい。
 図1~図4に示した窒化物半導体紫外線発光素子1における基板10の主面101及び発光領域31(p電極22が形成されている領域)は上記の条件を満たす形状であり、発光領域31は2回対称であるが、これよりも高次の回転対称性を有する発光領域を設けてもよい。この場合の窒化物半導体紫外線発光素子の構造について、図面を参照して説明する。図12は、本発明の実施形態に係る窒化物半導体紫外線発光素子の第4変形例の構造を示した平面図であり、図3に相当する平面を示した図である。
 図12に示す窒化物半導体紫外線発光素子における発光領域(p電極22Dが形成されている領域)は、平面視において回転対称の中心から8方向に対して放射状に突出した菊花形状であり、8回対称の形状である。図10に示したような8回対称の形状には限られないが、発光領域を高次の回転対称(例えば、4回対称以上)の形状にすることで、基板10を通過する光を均一にすることが可能になる。
[5] 上述の<窒化物半導体紫外線発光素子の構造例>及び<窒化物半導体紫外線発光素子の製造方法例>では、基板10の側周面111,121の全部が曲面(球面)である場合を例に挙げて説明しているが、基板10の側周面111,121の一部に平面が残っていてもよい。例えば、基板10が、図8(b)~(e)のそれぞれの状態でチップ40の研削加工を終了して得られるような形状であってもよい。また、研削加工前のチップが立方体状でなくてもよいし、研削加工前のチップの主面が正方形状でなくてもよい。
 ただし、基板を通過する光を収束して光の取出効率を効果的に改善するためには、図8(b)~(f)に示すように、少なくとも基板の主面101及び裏面102のそれぞれにおける4つの角が研削されていることが必要である。この場合において、第1に、図8(b)及び(c)に示すように平面視において基板が四角形状になっているよりも、図8(d)~(f)に示すように平面視において基板が円形状(あるいは長円形状)または4つの角が丸い四角形状である方が、基板の側辺における光の損失(第1部分110の側辺における光の透過、第2部分120の側辺における光の全反射)を低減することができるため、好ましい。第2に、図8(b)~(e)に示すように基板の側面に平面が残っている形状よりも、図8(f)に示すように当該平面が残っていない形状の方が、基板の側面における光の損失(第1部分110の側面における光の透過、第2部分120の側面における光の全反射)を低減することができるため、好ましい。
[6] 上述の実施形態では、pメッキ電極24が膜状である場合について例示したが(図1及び図2等参照)、このpメッキ電極24を、例えばAuで構成される多数のバンプ(突起)で構成してもよい。この場合、素子構造部20の最表面の表面積が大きくなるため、図6に示したようなチップ40を作製する場合において接着力を向上することができる。
[7] 上述の実施形態及び変形例は、それぞれ任意に組み合わせ実施することが可能である。なお、上記[1]及び[2]を組み合わせる場合において、窒化物半導体紫外線発光素子の全体に透過材70で封止する場合は、先に基板10の第1部分110の側周面111に反射材80を形成し、その後で窒化物半導体紫外線発光素子1B(図10参照)を透過材70で封止すればよい。
 本発明は、サファイア基板の主面上にAlGaN系半導体層を形成して構成されて発光中心波長が365nm以下の光(紫外線)を出射する窒化物半導体紫外線発光素子及びその製造方法に利用可能である。
 1,1A~1C :窒化物半導体紫外線発光素子
 10,10C :基板
 101 :主面
 102 :裏面
 110 :第1部分
 111 :側周面
 120,120C :第2部分
 121,121C :側周面
 20  :素子構造部
 21,21D :AlGaN系半導体層
 211 :下地層
 212 :n型クラッド層(n型AlGaN)
 213 :活性層
 214 :電子ブロック層(p型AlGaN)
 215 :p型クラッド層(p型AlGaN)
 216 :p型コンタクト層(p型GaN)
 22,22D :p電極
 23,23D :n電極
 24  :pメッキ電極
 25  :nメッキ電極
 26  :絶縁膜
 31  :発光領域
 32  :周辺領域
 40  :チップ
 50  :保護材 
 60  :研削加工装置
 61  :側壁部
 62  :底部
 63  :回転軸
 70  :透過材
 80  :反射材
 L1~L3 :光線

Claims (18)

  1.  サファイア基板と、当該基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備えるチップに対して、前記基板を研削加工する基板加工工程を備え、
     前記基板加工工程は、少なくとも、前記主面における4つの角と、前記主面の反対側の面である裏面における4つの角と、のそれぞれを研削加工する工程であることを特徴とする窒化物半導体紫外線発光素子の製造方法。
  2.  前記研削加工工程は、少なくとも、前記主面における4つの角と、前記裏面における4つの角と、のそれぞれを凸状の曲面に研削加工する工程であることを特徴とする請求項1に記載の窒化物半導体紫外線発光素子の製造方法。
  3.  前記研削加工工程は、前記裏面側に前記主面と平行な面が残るように、前記基板を研削加工する工程であることを特徴とする請求項1または2に記載の窒化物半導体紫外線発光素子の製造方法。
  4.  前記基板加工工程が、前記主面に対して垂直な方向から見た平面視における前記基板が円形状、長円形状、または、4つの角が丸い四角形状になるように、前記基板を研削加工する工程であることを特徴とする請求項1~3のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
  5.  前記基板加工工程が、
     前記チップに対して、前記素子構造部の表面を覆う保護材を形成する第1工程と、
     前記保護材が形成された前記チップの前記基板を研削加工する第2工程と、
     前記第2工程の後に前記保護材を除去する第3工程と、
     を備えることを特徴とする請求項1~4のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
  6.  前記第2工程において、砥粒が付着された凹状の曲面を有する容器内で、1以上の前記チップを転動させて前記凹状の曲面に衝突させることを特徴とする請求項5に記載の窒化物半導体紫外線発光素子の製造方法。
  7.  前記第2工程を行う前において、正方形である前記基板の主面の一辺の長さをL、前記素子構造部の外接円の直径をRとするとき、
     前記基板の厚さDは、
    Figure JPOXMLDOC01-appb-I000001

    を満たすことを特徴とする請求項6に記載の窒化物半導体紫外線発光素子の製造方法。
  8.  前記第3工程において、前記保護材を溶媒に溶解させて除去することを特徴とする請求項5~7のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
  9.  少なくとも、前記基板加工工程によって前記基板の前記裏面における4つの角が研削加工されて表出した面の一部または全部に対して、最表面が非晶質フッ素樹脂であるとともに前記素子構造部から出射される光を透過する透過材を形成する透過材形成工程を、さらに備えることを特徴とする請求項1~8のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
  10.  前記基板加工工程は、前記主面と平行であって平坦である前記裏面の一部が残るように前記裏面の4つの角を研削加工するものであり、
     前記透過材形成工程は、少なくとも前記裏面に対して反射防止層を形成する工程と、前記反射防止層の表面に前記非晶質フッ素樹脂を形成する工程と、を含むことを特徴とする請求項9に記載の窒化物半導体紫外線発光素子の製造方法。
  11.  前記基板加工工程によって前記基板の前記主面における4つの角が研削加工されて表出した面の少なくとも一部に対して、前記素子構造部から出射される光を反射する反射材を形成する反射材形成工程を、さらに備えることを特徴とする請求項1~10のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
  12.  サファイア基板と、
     前記基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備え、
     前記基板は、
     前記主面から第1距離までの第1部分において、前記主面と平行な断面の断面積が、前記主面から離れるにつれて連続的に増加し、
     前記主面の反対側から第2距離までの第2部分において、前記主面と平行な断面の断面積が、前記主面の反対側から離れるにつれて連続的に増加しており、
     前記第1距離及び前記第2距離の和は、前記基板の厚さ以下であることを特徴とする窒化物半導体紫外線発光素子。
  13.  前記第1部分は、前記主面から離れる方向に単位距離だけ離れた場合における前記主面と平行な断面の断面積の単位増加量が、前記主面から離れるにつれて連続的に減少し、
     前記第2部分は、前記主面の反対側から離れる方向に単位距離だけ離れた場合における前記主面と平行な断面の断面積の単位増加量が、前記主面の反対側から離れるにつれて連続的に減少することを特徴とする請求項12に記載の窒化物半導体紫外線発光素子。
  14.  前記基板における前記主面の反対側に、前記主面と平行な面があることを特徴とする請求項12または13に記載の窒化物半導体紫外線発光素子。
  15.  前記主面に対して垂直な方向から見た平面視において、前記基板が、円形状、長円形状、または、4つの角が丸い四角形状であることを特徴とする請求項12~14のいずれか1項に記載の窒化物半導体紫外線発光素子。
  16.  少なくとも、前記基板における前記第2部分の側周面の一部または全部に、最表面が非晶質フッ素樹脂であるとともに前記素子構造部から出射される光を透過する透過材が形成されていることを特徴とする請求項12~15のいずれか1項に記載の窒化物半導体紫外線発光素子。
  17.  前記基板における前記主面の反対側に、前記主面と平行であって平坦な面である裏面があり、前記透過材が前記裏面の一部または全部に形成されており、
     前記透過材は、少なくとも前記裏面に対して形成されている反射防止層を含むことを特徴とする請求項16に記載の窒化物半導体紫外線発光素子。
  18.  前記基板における前記第1部分の側周面の少なくとも一部に、前記素子構造部から出射される光を反射する反射材が形成されていることを特徴とする請求項12~17のいずれか1項に記載の窒化物半導体紫外線発光素子。
PCT/JP2017/030282 2017-08-24 2017-08-24 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子 WO2019038877A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17868513.7A EP3474338B1 (en) 2017-08-24 2017-08-24 Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
PCT/JP2017/030282 WO2019038877A1 (ja) 2017-08-24 2017-08-24 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子
CN201780009804.XA CN109791962B (zh) 2017-08-24 2017-08-24 氮化物半导体紫外线发光元件的制造方法和氮化物半导体紫外线发光元件
JP2017554614A JP6329709B1 (ja) 2017-08-24 2017-08-24 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子
US15/772,612 US10505087B2 (en) 2017-08-24 2017-08-24 Method for manufacturing nitride semiconductor ultraviolet light-emitting element and nitride semiconductor ultraviolet light-emitting element
KR1020187012134A KR102054604B1 (ko) 2017-08-24 2017-08-24 질화물 반도체 자외선 발광 소자의 제조 방법 및 질화물 반도체 자외선 발광 소자
TW107115004A TWI657592B (zh) 2017-08-24 2018-05-03 氮化物半導體紫外線發光元件之製造方法及氮化物半導體紫外線發光元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030282 WO2019038877A1 (ja) 2017-08-24 2017-08-24 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子

Publications (1)

Publication Number Publication Date
WO2019038877A1 true WO2019038877A1 (ja) 2019-02-28

Family

ID=62186716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030282 WO2019038877A1 (ja) 2017-08-24 2017-08-24 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子

Country Status (7)

Country Link
US (1) US10505087B2 (ja)
EP (1) EP3474338B1 (ja)
JP (1) JP6329709B1 (ja)
KR (1) KR102054604B1 (ja)
CN (1) CN109791962B (ja)
TW (1) TWI657592B (ja)
WO (1) WO2019038877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036556A (ja) * 2019-08-30 2021-03-04 日機装株式会社 半導体発光素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086547A (zh) * 2019-06-13 2020-12-15 光宝光电(常州)有限公司 发光二极管封装结构
CN113707787B (zh) * 2020-05-22 2023-07-18 重庆康佳光电技术研究院有限公司 球形倒装微型led及其制造方法、显示面板

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191636A (ja) * 1997-12-26 1999-07-13 Nichia Chem Ind Ltd 光半導体素子及びその製造方法
JP2004289047A (ja) * 2003-03-25 2004-10-14 Toyoda Gosei Co Ltd 半導体発光素子及びその製造方法
JP2005057266A (ja) * 2003-07-31 2005-03-03 Lumileds Lighting Us Llc 光取り出し効率が改善された発光装置
JP2006035334A (ja) 2004-07-23 2006-02-09 Amatsuji Steel Ball Mfg Co Ltd 脆性材料の球体成形加工装置及び加工方法
JP2007150232A (ja) 2005-04-15 2007-06-14 Asahi Glass Co Ltd ガラス封止発光素子、ガラス封止発光素子付き回路基板、ガラス封止発光素子の製造方法およびガラス封止発光素子の実装方法
WO2008041771A1 (en) * 2006-10-05 2008-04-10 Asahi Glass Co., Ltd. Glass coated light emitting element, wiring board with light emitting element, method for producing wiring board with light emitting element, lighting device and projector
JP2008168358A (ja) 2007-01-09 2008-07-24 Olympus Corp 球体加工装置
WO2014178288A1 (ja) 2013-04-30 2014-11-06 創光科学株式会社 紫外線発光装置
JP2015015281A (ja) * 2013-07-03 2015-01-22 ウシオ電機株式会社 発光装置
WO2015111134A1 (ja) 2014-01-21 2015-07-30 創光科学株式会社 窒化物半導体発光素子
US20150311249A1 (en) * 2014-04-23 2015-10-29 Lite-On Opto Technology (Changzhou) Co., Ltd. Chip-scale packaged led device
WO2016157518A1 (ja) * 2015-04-03 2016-10-06 創光科学株式会社 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645646A (ja) * 1992-07-23 1994-02-18 Nisshin Steel Co Ltd p−nヘテロ接合を有する赤外発光ダイオード及びその製造方法
US5831277A (en) * 1997-03-19 1998-11-03 Northwestern University III-nitride superlattice structures
JP4812369B2 (ja) 2004-08-27 2011-11-09 京セラ株式会社 発光素子の製造方法
JP4939038B2 (ja) * 2005-11-09 2012-05-23 日立電線株式会社 Iii族窒化物半導体基板
JP4395812B2 (ja) * 2008-02-27 2010-01-13 住友電気工業株式会社 窒化物半導体ウエハ−加工方法
JP2010092975A (ja) * 2008-10-06 2010-04-22 Hitachi Cable Ltd 窒化物半導体基板
JP5040977B2 (ja) * 2009-09-24 2012-10-03 住友電気工業株式会社 窒化物半導体基板、半導体装置およびそれらの製造方法
US9165833B2 (en) * 2010-01-18 2015-10-20 Semiconductor Components Industries, Llc Method of forming a semiconductor die
KR101641365B1 (ko) * 2010-03-09 2016-07-20 엘지디스플레이 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR101894025B1 (ko) 2011-12-16 2018-09-03 엘지이노텍 주식회사 발광소자
US10096742B2 (en) 2012-03-28 2018-10-09 Sensor Electronic Technology, Inc. Light emitting device substrate with inclined sidewalls
US9276170B2 (en) * 2012-10-23 2016-03-01 Toyoda Gosei Co., Ltd. Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JP2016149380A (ja) * 2013-06-14 2016-08-18 パナソニックIpマネジメント株式会社 発光素子
JP6044611B2 (ja) * 2014-09-24 2016-12-14 岩崎電気株式会社 導光部品、及び光源装置
JP5995950B2 (ja) 2014-12-26 2016-09-21 株式会社大一商会 遊技機
TWI711787B (zh) * 2015-01-08 2020-12-01 韓商Lg伊諾特股份有限公司 光學透鏡及具有光學透鏡之發光模組
TWM512219U (zh) 2015-02-26 2015-11-11 Te-En Tsao 發光二極體
US10199216B2 (en) * 2015-12-24 2019-02-05 Infineon Technologies Austria Ag Semiconductor wafer and method
CN106229399A (zh) * 2016-08-16 2016-12-14 东晶电子金华有限公司 一种iii‑氮化物半导体发光器件图形化衬底及其制备方法
WO2018061080A1 (ja) * 2016-09-27 2018-04-05 創光科学株式会社 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191636A (ja) * 1997-12-26 1999-07-13 Nichia Chem Ind Ltd 光半導体素子及びその製造方法
JP2004289047A (ja) * 2003-03-25 2004-10-14 Toyoda Gosei Co Ltd 半導体発光素子及びその製造方法
JP2005057266A (ja) * 2003-07-31 2005-03-03 Lumileds Lighting Us Llc 光取り出し効率が改善された発光装置
JP2006035334A (ja) 2004-07-23 2006-02-09 Amatsuji Steel Ball Mfg Co Ltd 脆性材料の球体成形加工装置及び加工方法
JP2007150232A (ja) 2005-04-15 2007-06-14 Asahi Glass Co Ltd ガラス封止発光素子、ガラス封止発光素子付き回路基板、ガラス封止発光素子の製造方法およびガラス封止発光素子の実装方法
WO2008041771A1 (en) * 2006-10-05 2008-04-10 Asahi Glass Co., Ltd. Glass coated light emitting element, wiring board with light emitting element, method for producing wiring board with light emitting element, lighting device and projector
JP2008168358A (ja) 2007-01-09 2008-07-24 Olympus Corp 球体加工装置
WO2014178288A1 (ja) 2013-04-30 2014-11-06 創光科学株式会社 紫外線発光装置
JP2015015281A (ja) * 2013-07-03 2015-01-22 ウシオ電機株式会社 発光装置
WO2015111134A1 (ja) 2014-01-21 2015-07-30 創光科学株式会社 窒化物半導体発光素子
US20150311249A1 (en) * 2014-04-23 2015-10-29 Lite-On Opto Technology (Changzhou) Co., Ltd. Chip-scale packaged led device
WO2016157518A1 (ja) * 2015-04-03 2016-10-06 創光科学株式会社 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASATSUGU ICHIKAWA ET AL.: "High-output-power deep ultraviolet light-emitting diode assembly using direct bonding", APPLIED PHYSICS EXPRESS, vol. 9, 2016, pages 072101

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036556A (ja) * 2019-08-30 2021-03-04 日機装株式会社 半導体発光素子
JP7284043B2 (ja) 2019-08-30 2023-05-30 日機装株式会社 半導体発光素子

Also Published As

Publication number Publication date
EP3474338A4 (en) 2019-08-21
TW201914050A (zh) 2019-04-01
JP6329709B1 (ja) 2018-05-23
TWI657592B (zh) 2019-04-21
EP3474338B1 (en) 2020-12-23
US20190123249A1 (en) 2019-04-25
US10505087B2 (en) 2019-12-10
KR20190087957A (ko) 2019-07-25
KR102054604B1 (ko) 2019-12-10
EP3474338A1 (en) 2019-04-24
CN109791962A (zh) 2019-05-21
CN109791962B (zh) 2021-07-09
JPWO2019038877A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
US8723201B2 (en) Light-emitting devices with substrate coated with optically denser material
US7789531B2 (en) LED system and method
KR102075172B1 (ko) 금속화된 측벽을 가진 반도체 발광 디바이스
US20080113460A1 (en) Laser Lift-Off of Sapphire From a Nitride Flip-Chip
US8993993B2 (en) Semiconductor light emitting device and method for fabricating the same
US20080121918A1 (en) High light extraction efficiency sphere led
KR20070074649A (ko) 복합 광학 소자(들)을 갖는 고휘도 led 패키지
US20120273751A1 (en) Light emitting device and a manufacturing method thereof
JP2009518874A (ja) 高効率発光ダイオード(led)
JP2008518466A (ja) 多数の光学要素を有する高輝度ledパッケージ
US11056669B2 (en) Flip-chip light emitting diode and manufacturing method thereof
JP6329709B1 (ja) 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子
KR20150104624A (ko) 측면 방출을 위한 형상의 성장 기판을 가지는 led
WO2015112943A1 (en) Led device with bragg reflector and method of singulating led wafer substrates into dice with same
CN113314650A (zh) 提高侧向出光强度的发光二极管芯片及其制造方法
US7915621B2 (en) Inverted LED structure with improved light extraction
JP6686155B2 (ja) 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子
TW200843151A (en) LED light source with converging extractor in an optical element
TW202203449A (zh) 用於微型顯示應用的間隙子的微型發光二極體結構
US9082892B2 (en) GaN Based LED having reduced thickness and method for making the same
Jiang et al. Nitride deep-ultraviolet light-emitting diodes with microlens array

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017554614

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187012134

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017868513

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017868513

Country of ref document: EP

Effective date: 20180518

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE