WO2019035445A1 - 複合部材 - Google Patents

複合部材 Download PDF

Info

Publication number
WO2019035445A1
WO2019035445A1 PCT/JP2018/030208 JP2018030208W WO2019035445A1 WO 2019035445 A1 WO2019035445 A1 WO 2019035445A1 JP 2018030208 W JP2018030208 W JP 2018030208W WO 2019035445 A1 WO2019035445 A1 WO 2019035445A1
Authority
WO
WIPO (PCT)
Prior art keywords
cte
conductive insulating
heat
adhesive film
insulating adhesive
Prior art date
Application number
PCT/JP2018/030208
Other languages
English (en)
French (fr)
Inventor
澤口 壽一
直宏 田中
香織 坂口
健次 安東
英宣 小林
Original Assignee
東洋インキScホールディングス株式会社
トーヨーケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーケム株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR1020207005996A priority Critical patent/KR102535298B1/ko
Priority to US16/638,752 priority patent/US11407201B2/en
Priority to EP18845778.2A priority patent/EP3671827A4/en
Priority to CN201880052316.1A priority patent/CN111052358B/zh
Publication of WO2019035445A1 publication Critical patent/WO2019035445A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • B32B2264/1052Aluminum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/303Average diameter greater than 1µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a composite member in which a heat dissipating base substrate is adhered to at least one surface of a heat generating member including a heat generating portion capable of generating heat via a thermally conductive insulating adhesive film.
  • a heat conductive insulating adhesive film is disposed between the heat generating member and the heat generating member. It is preferable that the thermally conductive insulating adhesive film contains a thermally conductive insulating filler and a binder resin because high thermal conductivity can be exhibited.
  • the thermally conductive insulating adhesive film may be, for example, a thermally conductive insulating sheet containing a thermally conductive filler and an uncured and / or semi-cured material of a binder resin which is a thermosetting resin, between the heat dissipation member and the heat generating member. It can form easily by arrange
  • Patent Document 1 includes a semiconductor module in which a metal plate, a solder layer, and a semiconductor chip are stacked in this order, a heat dissipation member, and an epoxy resin monomer between the metal plate and the heat dissipation member.
  • a power semiconductor device is disclosed in which a cured product of an epoxy resin composition containing a novolak resin curing agent and a mixed filler of ⁇ -alumina and boron nitride is disposed (claim 17).
  • the semiconductor module is a heat generating member
  • the cured product of the epoxy resin composition is a thermally conductive insulating adhesive film.
  • an epoxy resin composition (preferably, a sheet-like molded body) in a semi-cured state is disposed between a heat dissipation member and a semiconductor module which is a heat generation member, and cured by heating and pressing. Strong adhesion is expressed.
  • the cured product of the epoxy resin composition is very hard, the effect of relieving the stress resulting from the expansion or contraction of the heat dissipating member and the heat generating member due to the temperature change is very weak. Therefore, the thermal conductive insulating adhesive film made of the cured product of the epoxy resin composition may be cracked and / or peeled off due to stress strain due to temperature change, and the insulating property and / or thermal conductivity may be lowered.
  • the operating environment temperature is severe, for example, about -40 ° C as a low temperature environment temperature (for example, winter in a high latitude area)
  • the heat generation temperature of the heat generating member as a high temperature environmental temperature, for example, around 150 ° C. or more (the heat generating temperature depends on the output of the heat generating member), it is widely used.
  • the thermally conductive insulating adhesive film can maintain high insulation and high thermal conductivity without the occurrence of cracking and peeling.
  • the present invention has been made in view of the above circumstances, and a heat dissipating base substrate is bonded to at least one surface of a heat generating member including a heat generating portion capable of generating heat via a heat conductive insulating adhesive film.
  • An object of the present invention is to provide a composite member excellent in durability even if it has a structure and is used under conditions of large temperature change.
  • the composite member of the present invention is A composite member in which a heat dissipating base substrate is bonded via a thermally conductive insulating adhesive film to at least one surface of a heat generating member including a heat generating portion capable of generating heat,
  • the following formulas (1-0) to (4-0) are satisfied (provided that
  • each symbol indicates the following parameter.
  • X Shear adhesion (MPa) at 25 ° C. between the heat release base substrate and the heat generating member bonded via the heat conductive insulating adhesive film
  • Y Elongation at break ( ⁇ ) at 25 ° C. of thermally conductive insulating adhesive film
  • E Elastic modulus (MPa) at 25 ° C. of thermally conductive insulating adhesive film
  • CTE (A) linear expansion coefficient (° C. -1 ) of the heat dissipation base substrate
  • CTE (B) linear expansion coefficient (° C. -1 ) of the thermally conductive insulating adhesive film
  • CTE (C) linear expansion coefficient (° C.
  • L (BA) Initial maximum uniaxial length (m) of the region of the heat conductive insulating adhesive film in contact with the heat dissipation base substrate
  • L (BC) Initial maximum uniaxial length (m) of the region of the heat conductive insulating adhesive film in contact with the heat generating member.
  • At least one surface of the heat generating member including the heat generating portion capable of generating heat has a structure in which the heat dissipation base substrate is adhered via the heat conductive insulating adhesive film, Even when used under large conditions, a composite member with excellent durability can be provided.
  • the present invention relates to a composite member in which a heat dissipating base substrate is adhered to at least one surface of a heat generating member including a heat generating portion capable of generating heat via a thermally conductive insulating adhesive film.
  • the heat conductive insulating adhesive film is cracked and / or peeled off due to stress strain caused by temperature change due to difference in linear expansion coefficient of each member, and insulation property and And / or thermal conductivity may be reduced.
  • the temperature range of the composite member is the lower limit of the low-temperature external environment temperature at which the composite member is used and the upper limit of the high-temperature heat environment temperature to which the composite member is exposed when the heat generating member generates heat.
  • a heat generating member a power semiconductor element and a power card including the same can be mentioned.
  • the lower limit of the low-temperature external environment temperature is assumed to be, for example, about -40 ° C (for example, winter in a high latitude area).
  • about 150 ° C. or more (the heat generation temperature depends on the output of the heat generating member) is assumed.
  • the assumed ⁇ T is, for example, 50 ° C. or more, 100 ° C. or more, 150 ° C. or more, or 200 ° C. or more. Even when used under such a large temperature change condition, it is preferable to suppress the occurrence of cracking and / or peeling of the heat conductive insulating adhesive film.
  • the peeling of the thermally conductive insulating adhesive film is suppressed if the shear adhesive strength of the thermally conductive insulating adhesive film is sufficiently high with respect to the thermal stress. If the breaking elongation of the thermally conductive insulating adhesive film is sufficiently high with respect to the magnitude (strain length) of the strain generated by the difference in linear expansion coefficient of each member, the crack of the thermally conductive insulating adhesive film is suppressed it is conceivable that.
  • X Shear adhesion (MPa) at 25 ° C. between the heat release base substrate and the heat generating member bonded via the heat conductive insulating adhesive film
  • Y Elongation at break ( ⁇ ) at 25 ° C. of thermally conductive insulating adhesive film
  • E Elastic modulus (MPa) at 25 ° C. of thermally conductive insulating adhesive film
  • CTE (A) linear expansion coefficient (° C. -1 ) of the heat dissipation base substrate
  • CTE (B) linear expansion coefficient (° C. -1 ) of the thermally conductive insulating adhesive film
  • CTE (C) linear expansion coefficient (° C.
  • L (BA) Initial maximum uniaxial length (m) of the region of the heat conductive insulating adhesive film in contact with the heat dissipation base substrate
  • L (BC) Initial maximum uniaxial length (m) of the region of the heat conductive insulating adhesive film in contact with the heat generating member.
  • the sufficiently high shear adhesion of the thermally conductive insulating adhesive film to the thermal stress is represented by the following formulas (1-A) and (2-A).
  • ⁇ ⁇ T) (1 ⁇ A)
  • the linear expansion coefficient is an index indicating the degree of expansion per 1 ° C., if the temperature change ⁇ T is multiplied by the absolute value of the linear expansion coefficient difference of the materials of adjacent members, the adjacent ones in the temperature change ⁇ T will be adjacent The difference in the degree of expansion of the material of the member is represented.
  • a thermal stress is expressed by multiplying this by the elastic modulus of the thermally conductive insulating adhesive film. If the shear adhesive strength of the thermally conductive insulating adhesive film is equal to or greater than this value, it can be said that the shear adhesive strength of the thermally conductive insulating adhesive film is sufficiently high against the thermal stress.
  • ⁇ T is 50 ° C. or more, preferably 100 ° C. or more, more preferably 150 ° C. or more, particularly preferably 200 ° C. or more, and the above formulas (1-B) and (2-B) Can be satisfied.
  • the sufficiently high elongation at break of the thermally conductive insulating adhesive film with respect to the strain length is represented by the following formulas (3-A) and (4-A).
  • the linear expansion coefficient is an index indicating the degree of expansion per 1 ° C., if the temperature change ⁇ T is multiplied by the absolute value of the linear expansion coefficient difference of the materials of adjacent members, the adjacent ones in the temperature change ⁇ T will be adjacent The difference in the degree of expansion of the material of the member is represented.
  • the breaking elongation of the heat conductive insulating adhesive film is equal to or more than this value, it can be said that the breaking elongation of the heat conductive insulating adhesive film is sufficiently high relative to the strain length.
  • the "initial maximum uniaxial length of the region in which the thermally conductive insulating adhesive film is in contact with the adjacent member” is determined under an environment of 25 ° C. “Maximum uniaxial length” is the maximum length in one axial direction in the plane of the contact area, and for example, if the shape of the contact area is substantially rectangular, the length of the major axis, the shape of the contact area Is the length of the major axis in the case of a substantially elliptical shape. Also, “initial” means before measurement of elongation at break.
  • ⁇ T is 50 ° C. or more, preferably 100 ° C. or more, more preferably 150 ° C. or more, particularly preferably 200 ° C. or more, and the above formulas (3-B) and (4-B) Can be satisfied.
  • the composite member of the present invention satisfies the following formulas (1-0) to (4-0) (provided that
  • > 0) (corresponding to the condition of ⁇ T 50 (° C.)).
  • the composite member of the present invention has the above formulas (1-0) to (4-0), preferably (1-1) to (4-1), more preferably (1-2) to (4-2), In order to satisfy (1-3) to (4-3), it is particularly preferable that the temperature change is large (specifically, the temperature change ⁇ T is 50 ° C. or more, 100 ° C. or more, 150 ° C. or more, or 200 ° C. or more) Even if it is used in the above, the occurrence of cracking and / or peeling of the heat conductive insulating adhesive film is effectively suppressed, and the durability is excellent.
  • the choice of the material of the heat dissipating base substrate and the material of the surface of the heat generating member in contact with the thermally conductive insulating adhesive film are limited. Therefore, depending on the linear expansion coefficients of these materials, the above formulas (1-0) to (4-0), preferably (1-1) to (4-1), more preferably (1-2) to ( 4-2), particularly preferably, to satisfy (1-3) to (4-3), the linear expansion coefficient, the elastic modulus, the breaking elongation, and the adhesive strength (heat dissipating base substrate) of the thermally conductive insulating adhesive film And the heat generation member may be designed.
  • the method of adjusting the linear expansion coefficient, the elastic modulus, the breaking elongation, and the adhesion of the thermally conductive insulating adhesive film will be described later.
  • the heat conductive insulating adhesive film has a modulus of 10 GPa or less in the range of -40 ° C. or more and less than 25 ° C. and has a flexibility of 25 ° C. or more and 200 ° C. or less because it has sufficient flexibility and can effectively relieve thermal stress.
  • the elastic modulus in the range is preferably 1 GPa or less.
  • the elastic modulus of the heat conductive insulating adhesive film in the range of -40 to 200 ° C. is preferably 0.1 MPa or more.
  • the thermally conductive insulating adhesive film has a small coefficient of linear expansion coefficient from the heat dissipating base substrate, and from the material of the surface of the heat generating member in contact with the thermally conductive insulating adhesive film. Is preferred. Since the choice of the material of the heat dissipating base substrate and the material of the surface of the heat generating member in contact with the thermally conductive insulating adhesive film is limited, and the difference with the linear expansion coefficient of these materials is small, the thermally conductive insulating adhesive film
  • the linear expansion coefficient of is preferably 10 ⁇ 10 ⁇ 6 to 160 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ), more preferably 10 ⁇ 10 ⁇ 6 to 120 ⁇ 10 ⁇ 6 (° C.
  • thermally conductive insulating adhesive film can follow the expansion or contraction due to the temperature change of the heat dissipation base substrate and the heat generating member well, and the thermal stress Is effectively reduced.
  • the breaking elongation at 25 ° C. of the thermally conductive insulating adhesive film is preferably 0.02 ( ⁇ ) or more, more preferably 0.05 ( ⁇ ) or more, and particularly preferably 0.1 ( ⁇ ) or more.
  • the elongation at break of the heat conductive insulating adhesive film is 0.02 ( ⁇ ) or more, it is difficult to be broken due to thermal stress, and the generation of cracks is effectively suppressed.
  • the thermal conductivity of the thermally conductive insulating adhesive film is not particularly limited. Generally, the larger the output of the heat generating member such as the power semiconductor element and the power card including the same, and the smaller the heat generating member, the larger the amount of heat generation per unit volume, and the higher the heat dissipation Is required.
  • the thermal conductivity of the thermally conductive insulating adhesive film is preferably high, preferably 1 W / m ⁇ K or more, and more preferably 3 W / m ⁇ K or more.
  • the thermal conductivity can be calculated back from, for example, the thermal resistance.
  • the thermal conductivity also indicates the thermal diffusivity (mm 2 / s) representing the rate of heat conduction in the sample, the specific heat capacity of the sample (J / (g ⁇ K)), and the density (g / cm 3 ) From this, it can be obtained by the following equation.
  • Thermal conductivity (W / m ⁇ K) thermal diffusivity (mm 2 / s) ⁇ specific heat capacity (J / (g ⁇ K)) ⁇ density (g / cm 3 )
  • Examples of the method of measuring the thermal diffusivity include a periodic heating method, a hot disk method, a temperature wave analysis method, and a flash method.
  • the thermal diffusivity can be measured using a xenon flash analyzer LFA 447 NanoFlash (manufactured by NETZSCH).
  • the dielectric breakdown voltage of the heat conductive insulating adhesive film is preferably high, preferably 0.5 kV or more, more preferably 3 kV or more, and particularly preferably 6 kV or more.
  • the durability to temperature change can be evaluated by performing a thermal cycle test. For example, using a thermal thermal shock apparatus TSE-12-A manufactured by ESPEC Co., Ltd., 3000 thermal cooling cycles are performed on the composite member after holding at -40 ° C. for 15 minutes and then holding at 150 ° C. for 15 minutes.
  • the insulation durability can be evaluated by measuring the dielectric breakdown voltage before and after. As shown in the item of [Examples] below, the composite member of the present invention can maintain a good dielectric breakdown voltage even after the above-mentioned thermal cycle test.
  • the thickness of the thermally conductive insulating adhesive film is not particularly limited, and is preferably 40 to 1100 ⁇ m, more preferably 50 to 1000 ⁇ m from the viewpoints of insulation, thermal conductivity, handling, and thermal stress relaxation. If the thickness is 40 ⁇ m or more, the durability and the insulation tend to be improved. If the thickness is 1100 ⁇ m or less, the thermal conductivity tends to be suitable.
  • the heat dissipation base substrate is a base substrate of a heat dissipation member such as a heat sink.
  • Metal and / or ceramics are generally used as the material of the heat dissipating base substrate.
  • aluminum, copper, iron, tungsten, molybdenum, magnesium, copper-tungsten alloy, copper-molybdenum alloy, copper-tungsten-molybdenum alloy, aluminum nitride, silicon carbide, silicon nitride and the like can be mentioned. These can be used alone or in combination of two or more.
  • the surface roughness (Ra) of the surface of the heat dissipation base substrate in contact with the heat conductive insulating adhesive film is preferably 0.1 to 2 ⁇ m, more preferably 0.2 to 1.7 ⁇ m. If Ra is 0.1 ⁇ m or more, the adhesion between the heat dissipation base substrate and the heat conductive insulating adhesive film is improved by the anchor effect, and the durability is improved. When Ra is 2 ⁇ m or less, the surface unevenness of the heat dissipation base substrate is small, and the insulation property is improved. In the present specification, Ra is arithmetic mean roughness and can be measured according to JIS B0601 2001.
  • a well-known fin may be attached to the heat dissipation base substrate in order to enhance the heat dissipation efficiency.
  • the fins include, for example, straight fins, wavey fins, offset fins, pin fins, and corrugated fins. These fins may be integrated with the heat dissipation base substrate.
  • the heat generating member includes a heat generating portion capable of generating heat.
  • a heat generating member integrated circuits, IC chips, semiconductor packages such as hybrid packages, semiconductor modules such as multi-modules, power transistors, power semiconductor elements, power cards including power semiconductor elements, surface resistors, thermoelectric conversion modules, etc.
  • semiconductor modules such as multi-modules, power transistors, power semiconductor elements, power cards including power semiconductor elements, surface resistors, thermoelectric conversion modules, etc.
  • Various electronic components of the present invention building materials; members of vehicles, aircraft, ships and the like.
  • the composite member of the present invention is suitable, for example, when the heat generating member is a power semiconductor module such as a power card including a power semiconductor element.
  • a power semiconductor module such as a power card
  • one or more power semiconductor elements are mounted on a substrate having at least the surface (mounting surface of the power semiconductor element) having conductivity via a bonding agent such as solder, preferably epoxy It is sealed by a sealing material such as a resin.
  • a power semiconductor element is a heat generating portion.
  • a heat dissipation base substrate can be adhered to one side or both sides thereof via a thermally conductive insulating adhesive film.
  • the member in contact with the heat conductive insulating adhesive film of the heat generating member is a substrate having at least a surface conductivity, and / or a sealing material such as an epoxy resin.
  • Examples of the substrate at least the surface of which has conductivity include conductive substrates such as silver, copper, aluminum, nickel, tin, iron, lead, alloys thereof, and carbon.
  • a circuit pattern may be formed on the conductive substrate.
  • the substrate having at least the surface conductivity may be a substrate in which a conductive film is formed on a nonconductive substrate such as a resin and a ceramic.
  • the surface roughness (Ra) of the surface of the heat generating member in contact with the heat conductive insulating adhesive film is preferably It is 0.1 to 2 ⁇ m, more preferably 0.2 to 1.7 ⁇ m. If Ra is 0.1 ⁇ m or more, the adhesion between the heat generating member and the heat conductive insulating adhesive film is improved by the anchor effect, and the durability is improved. When Ra is 2 ⁇ m or less, the surface unevenness of the heat generation member is small, and the insulation property is improved.
  • the thermally conductive insulating adhesive film may have thermal conductivity and insulating properties, and may be capable of satisfactorily bonding the heat dissipation base substrate and the heat generating member. It is preferable that the thermally conductive insulating adhesive film contains a thermally conductive insulating filler and a binder resin because high thermal conductivity can be exhibited.
  • the thermally conductive insulating filler is not particularly limited, and examples thereof include metal oxides such as aluminum oxide, calcium oxide and magnesium oxide; metal nitrides such as aluminum nitride and boron nitride; aluminum hydroxide and magnesium hydroxide Metal hydroxides such as calcium carbonate and magnesium carbonate; metal silicates such as calcium silicate; hydrated metal compounds; crystalline silica, non-crystalline silica, silicon carbide, and composites thereof Etc. These can be used alone or in combination of two or more. Among them, alumina, aluminum nitride and boron nitride are preferable.
  • the form of the thermally conductive insulating filler is not particularly limited, and includes primary particles, granules obtained by granulating primary particles, aggregates thereof, and combinations thereof.
  • the thermally conductive insulating filler preferably includes a boron nitride filler having high thermal conductivity.
  • a boron nitride filler has poor wettability and is irregular in shape, so when only a boron nitride filler is used as a thermally conductive insulating filler, voids tend to be generated inside.
  • the thermally conductive insulating filler preferably contains a thermally conductive spherical filler excluding boron nitride and a boron nitride filler.
  • spherical can be represented by, for example, “degree of circularity”.
  • “spherical particles” have an average circularity of 0. 0 when the average circularity of particles is measured using a flow type particle image analyzer FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd. 9 to 1 Preferably, the average circularity is 0.96 to 1.
  • the type of the thermally conductive spherical filler may be any one having thermal conductivity other than boron nitride, for example, metal oxides such as alumina, calcium oxide, magnesium oxide, crystalline silica, and non-crystalline silica; Metal nitrides such as aluminum; metal hydroxides such as aluminum hydroxide and magnesium hydroxide; metal carbides such as silicon carbide; metal carbonates such as calcium carbonate and magnesium carbonate; metal silicates such as calcium silicate; water Sum metal compounds; combinations thereof and the like can be mentioned. These can be used alone or in combination of two or more. From the viewpoint of sphericity, thermal conductivity, and insulation, the thermally conductive spherical filler is preferably selected from the group consisting of alumina and aluminum nitride.
  • the binder resin is not particularly limited, and examples thereof include polyurethane resin, polyester resin, polyester urethane resin, alkyd resin, butyral resin, acetal resin, polyamide resin, acrylic resin, styrene-acrylic resin, styrene resin, nitrocellulose, benzyl cellulose, Cellulose (tri) acetate, casein, shellac, gylsonite, gelatin, styrene-maleic anhydride resin, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinylidene fluoride resin, polyvinyl acetate resin, ethylene vinyl acetate resin, chloride Vinyl / vinyl acetate copolymer resin, vinyl chloride / vinyl acetate / maleic acid copolymer resin, fluorocarbon resin, silicone resin, epoxy resin, phenoxy resin, phenol resin, Murray Acid resin, urea resin, melamine resin, benzoguanamine resin,
  • polyurethane resins and polyamide resins are suitably used from the viewpoint of flexibility, and epoxy resins and the like are suitably used from the viewpoint of insulation and heat resistance when used as electronic parts.
  • binder resin those which are cured by the binder resin itself or cured by a reaction with a suitable curing agent can be used.
  • a reactive group such as a carboxy group, an amino group, and a phenolic hydroxyl group
  • a curing agent capable of reacting with this reactive group an epoxy group-containing compound having two or more functions, an isocyanate group containing two or more functions
  • an epoxy group-containing compound having two or more functions an isocyanate group containing two or more functions
  • an epoxy group-containing compound having two or more functions an isocyanate group containing two or more functions
  • an epoxy group-containing compound having two or more functions an isocyanate group containing two or more functions
  • an isocyanate group containing two or more functions Compounds, carbodiimide group-containing compounds having two or
  • the heat conductive insulating adhesive film may contain, if necessary, a flame retardant, a filler, and various other additives, as long as the effects of the present invention are not impaired.
  • a flame retardant aluminum hydroxide, magnesium hydroxide, and a phosphoric acid compound etc. are mentioned, for example.
  • Other additives include, for example, a coupling agent for enhancing the adhesion to a substrate; an ion scavenger and an antioxidant for enhancing the reliability at the time of moisture absorption or at a high temperature; a leveling agent and the like.
  • the thermally conductive insulating adhesive film is a thermally conductive insulating sheet containing a thermally conductive insulating filler and an uncured and / or semi-cured material of a binder resin which is a thermosetting resin, and between the heat dissipation member and the heat generating member It is preferable that it is formed by being placed on the substrate and cured by heating and pressing.
  • the thermally conductive insulating adhesive film can include a thermally conductive insulating filler and a cured product of a thermosetting resin.
  • the quantity one may be called the main agent more and less one may be called a hardening
  • the thermally conductive insulating sheet can be obtained, for example, by the following method.
  • a coating liquid containing a thermally conductive insulating filler, a binder resin, a solvent, and, if necessary, other optional components is prepared, coated on a peelable sheet, and then the solvent is volatilized and dried.
  • Conductive insulating sheet can be obtained.
  • a peelable sheet peels.
  • the coating liquid can be produced by stirring and mixing the thermally conductive insulating filler, the binder resin, the solvent, and other optional components as required.
  • the stirring mixer is not particularly limited, and examples thereof include a disperser, a mixer, a kneader, scandex, a paint conditioner, a sand mill, a grinder, a medialess disperser, a triple roll, and a bead mill.
  • the degassing method is not particularly limited, and examples thereof include vacuum degassing and ultrasonic degassing.
  • a peelable sheet for example, a polyester film, a polyethylene film, a polypropylene film, and a plastic film such as a polyimide film which has been subjected to release treatment can be mentioned.
  • a coating method of the coating liquid to a peelable sheet For example, knife coat, blade coat, comma coat, die coat, lip coat, roll coat, curtain coat, bar coat, gravure coat, flexo coat, Examples include dip coating, spray coating, screen coating, spin coating, a method using a dispenser, and inkjet printing.
  • Type and / or concentration of the thermally conductive insulating filler, and / or binder resin by overlapping the heat conductive insulating sheets having a plurality of single layer structures obtained by the above method and pressing at a temperature that does not completely cure It is also possible to obtain a thermally conductive insulating sheet of a laminated structure in which the type and / or concentration changes in the thickness direction.
  • the heat conductive insulating sheet having such a laminated structure the heat and heat of the laminated structure in which the type and / or concentration of the thermally conductive insulating filler and / or the type and / or concentration of the binder resin are changed in the thickness direction
  • a conductive insulating adhesive film can be obtained.
  • the heat conductive insulating adhesive film for example, two or more heat conductive layers (A) and a heat conductive insulating film containing a heat conductive insulating filler at a relatively low density so as to increase the flexibility and adhesiveness.
  • a configuration in which one or more heat conductive layers (B) containing a filler at a relatively high density are alternately stacked so that the heat conductive layer (A) is the outermost layer may be mentioned.
  • the outermost layer heat conduction layer (A) secures adhesion and adhesion to the heat dissipation base substrate and the heat generating member, and the heat conduction layer (B) ensures high heat conductivity. Is possible.
  • a thermally conductive insulating adhesive film can be obtained by arranging a thermally conductive insulating sheet having a single layer structure or a laminated structure between the heat dissipation member and the heat generating member, and heating and pressing. Heating and pressing reduces the air gap and improves the thermal conductivity and insulation.
  • the thermally conductive insulating sheet contains a thermosetting resin, a curing reaction occurs by heating and pressing, the cohesion of the thermally conductive insulating adhesive film is improved, and the adhesive strength and the durability are improved.
  • a plurality of thermally conductive insulating sheets may be used to form a thermally conductive insulating adhesive film.
  • the coefficient of linear expansion, elastic modulus, elongation at break, and adhesive strength of the heat conductive insulating adhesive film are the types of binder resin, molecular weight of binder resin, ratio of curing agent, type and amount of heat conductive insulating filler, etc. It can be adjusted by the composition of the conductive insulating sheet and the heating and pressurizing conditions of the thermally conductive insulating sheet.
  • the composite member 1 of the first embodiment shown in FIG. 1 has a heat dissipation base substrate 30 bonded to one side of a heat generation member 10 such as a power semiconductor element via a thermally conductive insulating adhesive film 20.
  • the composite member 2 of the second embodiment shown in FIG. 2 has a heat dissipation base substrate 30 bonded to both surfaces of a heat generating member 10 such as a power semiconductor element via a thermally conductive insulating adhesive film 20.
  • substantially the entire heat generating member 10 is a heat generating portion.
  • reference numeral 50 denotes a power semiconductor module (heat generation member) such as a power card including a power semiconductor element.
  • the power semiconductor element 53 is mounted via the solder layer 52 on the substrate 51 having at least the surface (mounting surface of the power semiconductor element) such as a metal substrate conductive, and a sealing material such as epoxy resin It is sealed at 54.
  • the power semiconductor element 53 is a heat generating portion.
  • a plurality of power semiconductor elements 53 may be mounted on the substrate 51.
  • the composite member 4 according to the fourth embodiment shown in FIG. 4 has the heat dissipation base substrate 30 bonded to both surfaces of the power semiconductor module 50 through the thermally conductive insulating adhesive film 20.
  • reference numeral 60 denotes a power semiconductor module (heat generating member) such as a power card including a power semiconductor element.
  • the power semiconductor element 63 is mounted via the first solder layer 62 on the first substrate 61 in which at least one surface (surface on the power semiconductor element side) such as a metal substrate has conductivity.
  • a second substrate 65 having conductivity on at least one surface of the metal substrate (surface on the power semiconductor element side) is bonded thereon via the second solder layer 64, and sealing of epoxy resin or the like is performed. It is sealed with a material 66.
  • the power semiconductor element 63 is a heat generating portion.
  • a plurality of power semiconductor elements 63 may be mounted on the first substrate 61.
  • the composite member 5 of the fifth embodiment shown in FIG. 5 has the heat dissipation base substrate 30 bonded to both surfaces of the power semiconductor module 60 through the thermally conductive insulating adhesive film 20.
  • the composite members shown in FIGS. 1 to 5 can be appropriately changed in design.
  • the heat radiation base substrate is adhered to at least one surface of the heat generating member including the heat generating portion capable of generating heat via the heat conductive insulating adhesive film. Even when used under conditions of large temperature changes, the occurrence of cracks and / or peeling of the thermally conductive insulating adhesive film can be effectively suppressed, and a composite member excellent in durability can be provided.
  • a heat conductive and insulating sheet for forming a heat conductive and insulating adhesive film is sandwiched between two peelable sheets, and the same heat and pressure conditions (60 minutes at 150 ° C., 3 MPa heat and pressure conditions as in the test piece production of the composite member) Alternatively, after heat pressing at 150 ° C. for 60 minutes under heating and pressure conditions of 1 MPa, the two peelable sheets were peeled off to obtain a heat conductive insulating adhesive film alone. A strip-shaped sample having a width of 10 mm and a length of 50 mm was cut out from the heat conductive insulating adhesive film alone.
  • Average particle size The average particle size of the filler was measured using a particle size distribution analyzer Mastersizer 2000 manufactured by Malvern Instruments. A dry unit was used for measurement, and the air pressure was 2.5 bar. The feed rate was optimized by the sample.
  • Solid content (remaining mass (g) / 1 g) ⁇ 100
  • MW Weight average molecular weight (MW) Mw was measured using Tosoh GPC (gel permeation chromatography) "HLC 8220 GPC".
  • GPC is a liquid chromatography that separates and quantifies a substance dissolved in a solvent (THF; tetrahydrofuran) by the difference in molecular size.
  • THF tetrahydrofuran
  • the calibration curve was prepared, the molecular weight and the peak area were calculated, and the Mw was determined with the range of retention time 5 to 9.85 minutes as an analysis target.
  • the heat conductive insulating filler used is as follows.
  • PTX-25 PTX-25
  • agg 100 granulated boron nitride filler having an average particle diameter of 65 to 85 ⁇ m
  • agg 50 Granulated boron nitride filler having an average particle diameter of 15 to 30 ⁇ m (Aglomerates 50, manufactured by 3M Japan Co., Ltd.).
  • Synthesis Example 1 Synthesis of Solution of Polyurethane Polyurea Resin (Resin R1)
  • thermosetting polyurethane polyurea resin resin R1 having a solid content of 30% by mass, a Mw of 120,000, and a viscosity of 3,000 mPa ⁇ s was obtained.
  • Synthesis Example 2 Synthesis of Solution of Polyamide Resin (Resin R2)
  • a four-necked flask equipped with a stirrer, a reflux condenser equipped with a moisture determination receiver, a nitrogen inlet tube, and a thermometer is a polybasic having 36 carbon atoms.
  • the obtained coating liquid was coated on a peelable sheet so that the film thickness after drying was 50 ⁇ m, and dried.
  • a sheet (A′-1) containing two types of thermally conductive insulating fillers and an uncured binder resin on a peelable sheet was obtained. Two sets of this were prepared.
  • a resin R1, DAW-45 as an alumina filler, and PTX60 as a boron nitride filler were mixed.
  • the compounding ratio was 40% by volume of resin R1, 10% by volume of DAW-45, and 50% by volume of PTX-60.
  • a 50% toluene solution of Epicoat 1001 (manufactured by Japan Epoxy Resins Co., Ltd.) as a curing agent is added so as to be 2% with respect to the resin as a solid content conversion so that the total solid content is 50%. Adjusted with toluene.
  • the obtained coating liquid was coated on a peelable sheet so that the film thickness after drying was 100 ⁇ m, and dried.
  • a sheet (B'-1) containing two types of thermally conductive insulating fillers and an uncured binder resin was formed on the peelable sheet.
  • seat This laminate is subjected to roll lamination under the conditions of a pair of roll temperature 80 ° C., laminating pressure 1.5 MPa, speed 0.5 m / min, and the two peelable sheets are peeled off to form a thermally conductive insulating adhesive film A three-layer heat conductive insulating sheet (S-1) was obtained.
  • Production Example 2 Production of Thermally Conductive Insulating Sheet (S-2) Except that resin R1 was changed to resin R2 and the curing agent was changed to TETRAD-X (Mitsubishi Gas Chemical Co., Ltd., 5% toluene solution) A sheet (A′-2) was formed on the peelable sheet in the same manner as the sheet (A′-1) of Production Example 1. Peeling in the same manner as in the sheet (B'-1) of Production Example 1 except that resin R1 was changed to resin R2 and the curing agent was changed to TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd., 5% toluene solution) Sheet (B'-2) was formed on the porous sheet.
  • TETRAD-X Mitsubishi Gas Chemical Co., Ltd., 5% toluene solution
  • a laminate of releasable sheet / sheet (A'-2) / sheet (B'-2) / sheet (A'-2) / releasable sheet was obtained by the same method as in Production Example 1 and roll laminated.
  • the two peelable sheets were peeled off to obtain a three-layered heat conductive insulation sheet (S-2) for forming a heat conductive insulating adhesive film.
  • a laminate of peelable sheet / sheet (A'-3) / sheet (B'-3) / sheet (A'-3) / peelable sheet was obtained and roll laminated in the same manner as in Production Example 2. Then, the two peelable sheets were peeled off to obtain a three-layered heat conductive insulating sheet (S-3) for forming a heat conductive insulating adhesive film.
  • Production Example 4 Production of Thermally Conductive Insulating Sheet (S-4)
  • a sheet (A'-4) was formed on the peelable sheet in the same manner as in the above.
  • a sheet (B'-4) on a peelable sheet was prepared in the same manner as the sheet (B'-2) of Production Example 2 except that the amount of the curing agent added was changed to 10% by mass relative to the resin in terms of solid content. Formed.
  • a laminate of peelable sheet / sheet (A'-4) / sheet (B'-4) / sheet (A'-4) / peelable sheet was obtained and roll laminated in the same manner as in Production Example 2.
  • the two peelable sheets were peeled off to obtain a three-layered heat conductive insulation sheet (S-2) for forming a heat conductive insulating adhesive film.
  • Production Example 5 Production of Thermally Conductive Insulating Sheet (S-5) A production example except that resin R2 was changed to resin R3 and the amount of addition of the curing agent was changed to 10% by mass relative to resin in terms of solid content.
  • a sheet (A'-5) was formed on the peelable sheet in the same manner as the second sheet (A'-2). Peelable sheet in the same manner as the sheet (B'-2) of Production Example 2 except that the resin R2 was changed to the resin R3 and the addition amount of the curing agent was changed to 10% by mass relative to the resin in terms of solid content.
  • a sheet (B'-5) was formed on top.
  • a laminate of peelable sheet / sheet (A'-5) / sheet (B'-5) / sheet (A'-5) / peelable sheet was obtained and roll laminated in the same manner as in Production Example 2.
  • the two peelable sheets were peeled off to obtain a three-layered thermally conductive insulating sheet (S-5) for forming a thermally conductive insulating adhesive film.
  • Production Example 7 Production of Thermally Conductive Insulating Sheet (S-7) Peeling was carried out in the same manner as in Production Example 6 except that the addition amount of the resin R1 was changed to 55% by volume and the addition amount of the alumina filler was changed to 45% by volume.
  • Production Example 8 Production of Thermally Conductive Insulating Sheet (S-8) Production Example 6 except that 25% by volume of resin R2 was used, and 75% by volume of boron nitride filler PTX25 was used instead of the alumina filler.
  • a heat conductive insulating sheet (S-8) having a single layer structure including one heat conductive insulating filler and an uncured binder resin was formed on the peelable sheet.
  • Production Example 9 Production of Thermally Conductive Insulating Sheet (S-9)
  • the amount of resin R2 added is 45% by volume, 35% by volume of AO 509 is used as an alumina filler, and 20% by volume of agg 50 is used as a boron nitride filler.
  • a sheet (A'-9) was formed on the peelable sheet in the same manner as the sheet (A'-2) of Production Example 2 except for the above.
  • the addition amount of the resin R2 is 50% by volume
  • the alumina filler is not used, and the addition amount of PTX 60 is 50% by volume
  • a sheet (B'-9) was formed.
  • a laminate of peelable sheet / sheet (A'-9) / sheet (B'-9) / sheet (A'-9) / peelable sheet was obtained and roll laminated in the same manner as in Production Example 2.
  • the two peelable sheets were peeled off to obtain a three-layered heat conductive insulating sheet (S-9) for forming a heat conductive insulating adhesive film.
  • Production Example 11 Production of Thermally Conductive Insulating Sheet (S-12) A peelable sheet was produced in the same manner as in Production Example 10, except that the amount of the curing agent added was changed to 5% of the resin in terms of solid content. A thermally conductive insulating sheet (S-12) having a single layer structure including one thermally conductive insulating filler and an uncured binder resin was formed thereon.
  • Examples 1 to 11, Comparative Examples 1 and 2 In each of Examples 1 to 11 and Comparative Examples 1 and 2, the heat dissipation base substrate (width 25 mm, length 100 mm, thickness 2 mm) of materials and linear expansion coefficients shown in Table 1 and thermal conductivity shown in Table 1 An insulating sheet and a member (width 25 mm, length 100 mm, thickness 2 mm) in contact with the heat conductive insulating adhesive film of the heat generating member having the material and linear expansion coefficient shown in Table 1 are stacked, and the heating and pressing conditions shown in Table 1 The hot press was carried out to obtain a test piece of the composite member.
  • the size of the portion sandwiched by the upper and lower members of the heat conductive insulating adhesive sheet was 25 mm in width and 40 mm in length. This "length 40 mm" is the initial maximum uniaxial axial length.
  • the heat pressing is performed under the heating and pressing conditions shown in Table 1, and the breaking elongation degree of the obtained thermally conductive insulating adhesive film alone
  • the evaluation results of the expansion coefficient are shown in Table 1.
  • Other main production conditions are shown in Table 1. Evaluation of shear adhesion and evaluation of initial breakdown voltage (withstand voltage) were carried out on the obtained test pieces by the following method.
  • thermal thermal shock apparatus TSE-12-A manufactured by ESPEC Corp.
  • 3000 thermal thermal cycles were carried out, which were held at -40 ° C. for 15 minutes and then held at 150 ° C. for 15 minutes.
  • evaluation of dielectric breakdown voltage (withstand voltage) was carried out again by the following method.
  • Shear adhesion The shear adhesion was measured in accordance with JIS K 6850. The shear force was measured on a test piece of the composite member using SHIMADZU / Autogragh AGS-X manufactured by Shimadzu Corporation at a temperature of 25 ° C. and a tensile speed of 1 mm / min. The measurement was performed twice, and the average value was taken as the shear adhesion.
  • the breakdown voltage was measured by the following method. After the test piece of the composite member was left overnight in an environment of 25 ° C. and 50% RH, the breakdown voltage was measured. Electrodes are attached to the heat dissipation base substrate and the member in contact with the heat conductive insulating adhesive film of the heat generation member using a withstand voltage tester (TM650 manufactured by Tsuruga Electric Co., Ltd.) under an environment of 25 ° C. and 50% RH. The voltage was raised from 0 kV to 10 kV over 100 seconds, and the voltage at the time of exceeding the threshold 2 mA was read.
  • a withstand voltage tester TM650 manufactured by Tsuruga Electric Co., Ltd.
  • the breakdown voltage is 6 kV or more.
  • breakdown voltage is 3 kV or more and less than 6 kV.
  • more than 0 kV and less than 3 kV.
  • Dielectric breakdown occurs immediately after voltage application and measurement is not possible.
  • test pieces of a composite member satisfying formulas (1-3) to (4-3) could be manufactured.
  • the test piece of the composite member obtained in each of Examples 1 to 11 has a temperature change ⁇ T of 50 ° C. or more, preferably 100 ° C. or more, more preferably 150 ° C. or more, particularly preferably 200 ° C. or more. It is considered that it can have good durability.
  • all of the test pieces of the composite members obtained in Examples 1 to 11 had good initial breakdown voltage and good, and the thermal energy was varied between -40 ° C. and 150 ° C. Even after the cycle test was conducted, the decrease in dielectric breakdown voltage was small and the durability was good.
  • the thermally conductive insulating adhesive sheet containing a thermosetting epoxy resin is used as the binder resin, the flexibility of the thermally conductive insulating adhesive film is low.
  • the elastic modulus of the conductive insulating adhesive film was remarkably large as compared with Examples 1 to 11, and the breaking elongation of the thermally conductive insulating adhesive film was remarkably small.
  • the test piece of the composite member obtained in Comparative Examples 1 and 2 has a value on the left side of Formulas (1-B) to (3-B) or Formulas (1-B) to (4-B) of less than 50. there were.
  • test piece of the composite member obtained in Comparative Examples 1 and 2 can not have good durability against a temperature change ⁇ T of 100 ° C. or more.
  • all of the test pieces of the composite member obtained in Comparative Examples 1 and 2 had relatively good initial breakdown voltage, but the temperature changed between -40 ° C and 150 ° C.
  • the dielectric breakdown occurred immediately after the voltage application.
  • the thermally conductive insulating adhesive film can not relieve the thermal stress, and it is considered that cracking and / or peeling have occurred.
  • heat generation member 20 heat conductive insulating adhesive film 30 heat dissipation base substrate 50, 60 power semiconductor module (heat generation member) 51, 61, 65 Substrate 52, 62, 64 Solder layer 53, 63 Power semiconductor element (heat generating portion) 54, 66 Sealant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

複合部材(1)は熱発生部材(10)に熱伝導性絶縁接着膜(20)を介して放熱ベース基板(30)が接着され、以下の式を充足する。X/(E×|CTE(B)-CTE(A)|)≧50, X/(E×|CTE(B)-CTE(C)|)≧50, Y/|CTE(B)-CTE(A)|×L(BA)≧50, Y/|CTE(B)-CTE(C)|×L(BC)≧50。X:放熱ベース基板/熱発生部材間のせん断接着力(MPa)、Y:熱伝導性絶縁膜の破断伸度(-)、E:熱伝導性絶縁膜の弾性率(MPa)、CTE(A):放熱ベース基板の線膨張係数(℃-1)、CTE(B):熱伝導性絶縁膜の線膨張係数(℃-1)、CTE(C):熱発生部材の熱伝導性絶縁膜と接する面の材質の線膨張係数(℃-1)、L(BA):熱伝導性絶縁膜と放熱ベース基板との初期接触長さ(m)、L(BC):熱伝導性絶縁膜と熱発生部材との初期接触長さ(m)。

Description

複合部材
 本発明は、熱を発生し得る熱発生部を含む熱発生部材の少なくとも1つの面に、熱伝導性絶縁接着膜を介して放熱ベース基板が接着された複合部材に関する。
 各種電子部品(例えばパワー半導体素子およびこれを含むパワーカード等)の熱を発生し得る熱発生部材からヒートシンク等の放熱部材への熱伝導を促し、放熱を促すために、放熱部材の放熱ベース基板と熱発生部材との間に熱伝導性絶縁接着膜を配置することが好ましい。高熱伝導性を発現できることから、熱伝導性絶縁接着膜は、熱伝導性絶縁フィラーとバインダー樹脂とを含むことが好ましい。
 熱伝導性絶縁接着膜は例えば、熱伝導性フィラーと熱硬化性樹脂であるバインダー樹脂の未硬化物および/または半硬化物とを含む熱伝導性絶縁シートを放熱部材と熱発生部材との間に配置し、加熱および加圧により硬化させることで、簡易に形成することができる。
 例えば、特許文献1には、金属板、半田層、および半導体チップがこの順に積層された半導体モジュールと、放熱部材とを含み、前記金属板と前記放熱部材との間に、エポキシ樹脂モノマーと、ノボラック樹脂硬化剤と、α-アルミナおよび窒化ホウ素の混合フィラーとを含有するエポキシ樹脂組成物の硬化体が配置されたパワー半導体装置が開示されている(請求項17)。このパワー半導体装置では、半導体モジュールが熱発生部材であり、エポキシ樹脂組成物の硬化体が熱伝導性絶縁接着膜である。
特開2016-155985号公報
 特許文献1では、半硬化状態であるエポキシ樹脂組成物(好ましくはシート状成形体)を放熱部材と熱発生部材である半導体モジュールとの間に配置し、加熱および加圧により硬化させることで、強固な接着力を発現させている。しかしながら、エポキシ樹脂組成物の硬化体は非常に硬いので、温度変化に伴う放熱部材および熱発生部材の膨張または伸縮から生じる応力を緩和する作用が非常に弱い。そのため、温度変化による応力ひずみによってエポキシ樹脂組成物の硬化体からなる熱伝導性絶縁接着膜にクラックおよび/または剥がれが生じて、絶縁性および/または熱伝導性が低下する恐れがある。
 パワー半導体素子およびこれを含むパワーカード等の熱発生部材が車等に搭載されて使用される場合、使用環境温度は過酷であり、低温環境温度として例えば-40℃程度(例えば高緯度地域の冬場)から、高温環境温度として熱発生部材の発熱温度である例えば150℃程度またはそれ以上(発熱温度は熱発生部材の出力による)まで、広範囲に渡る。このような温度変化の大きい条件で使用されたとしても、熱伝導性絶縁接着膜はクラックおよび剥がれの発生がなく、高絶縁性および高熱伝導性を維持できることが好ましい。
 本発明は上記事情に鑑みてなされたものであり、熱を発生し得る熱発生部を含む熱発生部材の少なくとも1つの面に、熱伝導性絶縁接着膜を介して放熱ベース基板が接着された構造を有し、温度変化の大きい条件で使用されたとしても、耐久性に優れた複合部材を提供することを目的とする。
 本発明の複合部材は、
 熱を発生し得る熱発生部を含む熱発生部材の少なくとも1つの面に、熱伝導性絶縁接着膜を介して放熱ベース基板が接着された複合部材であって、
 下記式(1-0)~(4-0)を充足する(ただし、|CTE(B)-CTE(A)|>0、|CTE(B)-CTE(C)|>0)ものである。
X/(E×|CTE(B)-CTE(A)|)≧50…(1-0)
X/(E×|CTE(B)-CTE(C)|)≧50…(2-0)
Y/|CTE(B)-CTE(A)|×L(BA)≧50…(3-0)
Y/|CTE(B)-CTE(C)|×L(BC)≧50…(4-0)
 上記式中、各符号は以下のパラメータを示す。
X:熱伝導性絶縁接着膜を介して接着された放熱ベース基板と熱発生部材との間の25℃におけるせん断接着力(MPa)、
Y:熱伝導性絶縁接着膜の25℃における破断伸度(-)、
E:熱伝導性絶縁接着膜の25℃における弾性率(MPa)、
CTE(A):放熱ベース基板の線膨張係数(℃-1)、
CTE(B):熱伝導性絶縁接着膜の線膨張係数(℃-1)、
CTE(C):熱発生部材の熱伝導性絶縁接着膜と接する面の材質の線膨張係数(℃-1)、
L(BA):熱伝導性絶縁接着膜の放熱ベース基板と接する領域の初期の最大一軸方向長さ(m)、
L(BC):熱伝導性絶縁接着膜の熱発生部材と接する領域の初期の最大一軸方向長さ(m)。
 本発明によれば、熱を発生し得る熱発生部を含む熱発生部材の少なくとも1つの面に、熱伝導性絶縁接着膜を介して放熱ベース基板が接着された構造を有し、温度変化の大きい条件で使用されたとしても、耐久性に優れた複合部材を提供することができる。
本発明に係る第1実施形態の複合部材の模式断面図である。 本発明に係る第2実施形態の複合部材の模式断面図である。 本発明に係る第3実施形態の複合部材の模式断面図である。 本発明に係る第4実施形態の複合部材の模式断面図である。 本発明に係る第5実施形態の複合部材の模式断面図である。
[複合部材]
 本発明は、熱を発生し得る熱発生部を含む熱発生部材の少なくとも1つの面に、熱伝導性絶縁接着膜を介して放熱ベース基板が接着された複合部材に関する。
 一般的に、上記構成の複合部材においては、各部材の線膨張係数の差に起因して温度変化により生じる応力ひずみによって熱伝導性絶縁接着膜にクラックおよび/または剥がれが生じて、絶縁性および/または熱伝導性が低下する恐れがある。
 複合部材の温度領域は、複合部材が使用される低温外部環境温度の下限~熱発生部材の発熱時に複合部材が晒される高温発熱環境温度の上限である。例えば、熱発生部材として、パワー半導体素子およびこれを含むパワーカード等が挙げられる。かかる熱発生部材が車等に搭載されて使用される場合、低温外部環境温度の下限としては例えば-40℃程度が想定され(例えば高緯度地域の冬場)、高温発熱環境温度の上限としては、例えば150℃程度またはそれ以上(発熱温度は熱発生部材の出力による)が想定される。
 複合部材の温度変化をΔT(℃)とすると、想定されるΔTは例えば50℃以上、100℃以上、150℃以上、または200℃以上である。このような温度変化の大きい条件で使用されたとしても、熱伝導性絶縁接着膜のクラックおよび/または剥がれの発生が抑制されることが好ましい。
 熱応力に対して熱伝導性絶縁接着膜のせん断接着力が充分に高ければ、熱伝導性絶縁接着膜の剥がれが抑制されると考えられる。各部材の線膨張係数の差により生じるひずみの大きさ(ひずみ長さ)に対して熱伝導性絶縁接着膜の破断伸度が充分に高ければ、熱伝導性絶縁接着膜のクラックが抑制されると考えられる。
 本明細書において、以下の各符号はそれぞれ以下のパラメータを示す。
X:熱伝導性絶縁接着膜を介して接着された放熱ベース基板と熱発生部材との間の25℃におけるせん断接着力(MPa)、
Y:熱伝導性絶縁接着膜の25℃における破断伸度(-)、
E:熱伝導性絶縁接着膜の25℃における弾性率(MPa)、
CTE(A):放熱ベース基板の線膨張係数(℃-1)、
CTE(B):熱伝導性絶縁接着膜の線膨張係数(℃-1)、
CTE(C):熱発生部材の熱伝導性絶縁接着膜と接する面の材質の線膨張係数(℃-1)、
L(BA):熱伝導性絶縁接着膜の放熱ベース基板と接する領域の初期の最大一軸方向長さ(m)、
L(BC):熱伝導性絶縁接着膜の熱発生部材と接する領域の初期の最大一軸方向長さ(m)。
 熱応力に対して熱伝導性絶縁接着膜のせん断接着力が充分に高いことは、下記式(1-A)、(2-A)で表される。
X≧E×(|CTE(B)-CTE(A)|×ΔT)…(1-A)
X≧E×(|CTE(B)-CTE(C)|×ΔT)…(2-A)
 線膨張係数は1℃あたりの膨張の程度を表す指標であるから、互いに隣り合う部材の材質の線膨張係数差の絶対値に対して温度変化ΔTを乗すれば、温度変化ΔTにおける互いに隣り合う部材の材質の膨張の程度の差が表される。これに熱伝導性絶縁接着膜の弾性率を乗すことで、熱応力が表される。この値に対して、熱伝導性絶縁接着膜のせん断接着力が同一以上であれば、熱応力に対して熱伝導性絶縁接着膜のせん断接着力が充分に高いと言える。
 上記式(1-A)、(2-A)から、下記式(1-B)、(2-B)が求められる。
X/(E×|CTE(B)-CTE(A)|)≧ΔT…(1-B)
X/(E×|CTE(B)-CTE(C)|)≧ΔT…(2-B)
 本発明の複合部材においては、ΔTが50℃以上、好ましくは100℃以上、より好ましくは150℃以上、特に好ましくは200℃以上の条件において、上記式(1-B)、(2-B)を充足することができる。
 ひずみ長さに対して熱伝導性絶縁接着膜の破断伸度が充分に高いことは、下記式(3-A)、(4-A)で表される。
Y≧|CTE(B)-CTE(A)|×ΔT/L(BA)…(3-A)
Y≧|CTE(B)-CTE(C)|×ΔT/L(BC)…(4-A)
 線膨張係数は1℃あたりの膨張の程度を表す指標であるから、互いに隣り合う部材の材質の線膨張係数差の絶対値に対して温度変化ΔTを乗すれば、温度変化ΔTにおける互いに隣り合う部材の材質の膨張の程度の差が表される。これを熱伝導性絶縁接着膜の隣接部材との初期接触長さで除すことで、温度変化ΔTにおける互いに隣り合う部材の材質の膨張の程度を単位長さ当たりに換算することができる。この値に対して、熱伝導性絶縁接着膜の破断伸度が同一以上であれば、ひずみ長さに対して熱伝導性絶縁接着膜の破断伸度が充分に高いと言える。
 本明細書において、「熱伝導性絶縁接着膜が、隣接する部材と接する領域の初期の最大一軸方向長さ」は、25℃の環境下で求められる。「最大一軸方向長さ」は、前記接する領域の面内における一軸方向の最大長さであり、例えば、前記接する領域の形状が略矩形の場合には長軸の長さ、前記接する領域の形状が略楕円の場合には長軸の長さである。また、「初期」とは、破断伸度の測定前を意味する。
 上記式(3-A)、(4-A)から、下記式(3-B)、(4-B)が求められる。
Y/|CTE(B)-CTE(A)|×L(BA)≧ΔT…(3-B)
Y/|CTE(B)-CTE(C)|×L(BC)≧ΔT…(4-B)
 本発明の複合部材においては、ΔTが50℃以上、好ましくは100℃以上、より好ましくは150℃以上、特に好ましくは200℃以上の条件において、上記式(3-B)、(4-B)を充足することができる。
 具体的には、本発明の複合部材は、下記式(1-0)~(4-0)を充足する(ただし、|CTE(B)-CTE(A)|>0、|CTE(B)-CTE(C)|>0)ことができる(ΔT=50(℃)の条件に相当)。
X/(E×|CTE(B)-CTE(A)|)≧50…(1-0)
X/(E×|CTE(B)-CTE(C)|)≧50…(2-0)
Y/|CTE(B)-CTE(A)|×L(BA)≧50…(3-0)
Y/|CTE(B)-CTE(C)|×L(BC)≧50…(4-0)
 本発明の複合部材は好ましくは、下記式(1-1)~(4-1)を充足することができる(ΔT=100(℃)の条件に相当)。
X/(E×|CTE(B)-CTE(A)|)≧100…(1-1)
X/(E×|CTE(B)-CTE(C)|)≧100…(2-1)
Y/|CTE(B)-CTE(A)|×L(BA)≧100…(3-1)
Y/|CTE(B)-CTE(C)|×L(BC)≧100…(4-1)
 本発明の複合部材は好ましくは、下記式(1-2)~(4-2)を充足することができる(ΔT=150(℃)の条件に相当)。
X/(E×|CTE(B)-CTE(A)|)≧150…(1-2)
X/(E×|CTE(B)-CTE(C)|)≧150…(2-2)
Y/|CTE(B)-CTE(A)|×L(BA)≧150…(3-2)
Y/|CTE(B)-CTE(C)|×L(BC)≧150…(4-2)
 本発明の複合部材はより好ましくは、下記式(1-3)~(4-3)を充足することができる(ΔT=200(℃)の条件に相当)。
X/(E×|CTE(B)-CTE(A)|)≧200…(1-3)
X/(E×|CTE(B)-CTE(C)|)≧200…(2-3)
Y/|CTE(B)-CTE(A)|×L(BA)≧200…(3-3)
Y/|CTE(B)-CTE(C)|×L(BC)≧200…(4-3)
 本発明の複合部材は、上記式(1-0)~(4-0)、好ましくは(1-1)~(4-1)、より好ましくは(1-2)~(4-2)、特に好ましくは(1-3)~(4-3)を充足するため、温度変化の大きい条件(具体的には温度変化ΔTが50℃以上、100℃以上、150℃以上、または200℃以上)で使用されたとしても、熱伝導性絶縁接着膜のクラックおよび/または剥がれの発生が効果的に抑制され、耐久性に優れる。
 放熱ベース基板の材質および熱発生部材の熱伝導性絶縁接着膜と接する面の材質は選択肢が限られている。したがって、これら材質の線膨張係数に応じて、上記式(1-0)~(4-0)、好ましくは(1-1)~(4-1)、より好ましくは(1-2)~(4-2)、特に好ましくは(1-3)~(4-3)を充足するように、熱伝導性絶縁接着膜の線膨張係数、弾性率、破断伸度、および接着力(放熱ベース基板と熱発生部材とを接着する力)を設計すればよい。熱伝導性絶縁接着膜の線膨張係数、弾性率、破断伸度、および接着力の調整方法について、後記する。
 充分な柔軟性を有し熱応力を効果的に緩和できることから、熱伝導性絶縁接着膜は、-40℃以上25℃未満の範囲における弾性率が10GPa以下であり、25℃以上200℃以下の範囲における弾性率が1GPa以下であることが好ましい。また、-40~200℃の範囲における熱伝導性絶縁接着膜の弾性率は0.1MPa以上であることが好ましい。
 熱伝導性絶縁接着膜は、放熱ベース基板との間の線膨張係数差、および、熱発生部材の熱伝導性絶縁接着膜と接する面の材質との間の線膨張係数差がいずれも小さいことが好ましい。放熱ベース基板の材質および熱発生部材の熱伝導性絶縁接着膜と接する面の材質の選択肢が限られており、これら材質の線膨張係数との差が小さくなることから、熱伝導性絶縁接着膜の線膨張係数は、好ましくは10×10-6~160×10-6(℃-1)、より好ましくは10×10-6~120×10-6(℃-1)、特に好ましくは10×10-6~100×10-6(℃-1)、特に好ましくは15×10-6~80×10-6(℃-1)である。熱伝導性絶縁接着膜の線膨張係数がかかる範囲内であれば、熱伝導性絶縁接着膜が放熱ベース基板および熱発生部材の温度変化による膨張または伸縮に良好に追従することができ、熱応力が効果的に低減される。
 熱伝導性絶縁接着膜の25℃における破断伸度は、好ましくは0.02(-)以上、より好ましくは0.05(-)以上、特に好ましくは0.1(-)以上である。熱伝導性絶縁接着膜の破断伸度が0.02(-)以上であれば、熱応力に対して破断しにくく、クラックの発生が効果的に抑制される。
 熱伝導性絶縁接着膜の熱伝導率は特に限定されない。一般的に、パワー半導体素子およびこれを含むパワーカード等の熱発生部材の出力が大きくなる程、また熱発生部材の小型化が進む程、単位体積あたりの発熱量が大きくなり、より高い放熱性が求められる。熱伝導性絶縁接着膜の熱伝導率は高い方が好ましく、好ましくは1W/m・K以上、より好ましくは3W/m・K以上である。
 熱伝導率は例えば、熱抵抗から逆算することができる。
 熱伝導率はまた、試料中を熱が伝導する速度を表す熱拡散率(mm/s)と、試料の比熱容量(J/(g・K))と、密度(g/cm)とから、下記式で求めることができる。
熱伝導率(W/m・K)=熱拡散率(mm/s)×比熱容量(J/(g・K))×密度(g/cm
 熱拡散率の測定方法としては例えば、周期加熱法、ホットディスク法、温度波分析法、およびフラッシュ法等が挙げられる。例えば、フラッシュ法であれば、キセノンフラッシュアナライザーLFA447 NanoFlash(NETZSCH社製)を用いて熱拡散率を測定することができる。
 熱伝導性絶縁接着膜の絶縁性は高い方が好ましい。熱伝導性絶縁接着膜の絶縁破壊電圧は高い方が好ましく、好ましくは0.5kV以上、より好ましくは3kV以上、特に好ましくは6kV以上である。
 温度変化に対する耐久性は、冷熱サイクル試験を行うことで評価することができる。例えば、エスペック株式会社製冷熱衝撃装置TSE-12-Aを用い、複合部材に対して-40℃で15分間保持した後150℃で15分間保持する冷熱サイクルを3000サイクル実施し、冷熱サイクル試験の前後で絶縁破壊電圧を測定することで、絶縁耐久性を評価することができる。後記[実施例]の項で示すように、本発明の複合部材は、上記冷熱サイクル試験後においても、良好な絶縁破壊電圧を維持することができる。
 熱伝導性絶縁接着膜の厚みは特に制限されず、絶縁性、熱伝導性、ハンドリング、および熱応力緩和の観点から、好ましくは40~1100μm、より好ましくは50~1000μmである。厚みが40μm以上であれば、耐久性および絶縁性が向上する傾向がある。厚みが1100μm以下であれば、熱伝導性が好適となる傾向がある。
 本明細書において、各種パラメータは特に明記しない限り、後記[実施例]の項に記載の方法にて求めるものとする。
(放熱ベース基板)
 放熱ベース基板は、ヒートシンク等の放熱部材のベース基板である。
 放熱ベース基板の材質としては一般的に金属および/またはセラミックスが使用される。例えば、アルミニウム、銅、鉄、タングステン、モリブデン、マグネシウム、銅―タングステン合金、銅―モリブデン合金、銅―タングステンーモリブデン合金、窒化アルミニウム、炭化ケイ素、および窒化ケイ素等が挙げられる。これらは1種または2種以上用いることができる。
 放熱ベース基板の熱伝導性絶縁接着膜と接する面の表面粗さ(Ra)は好ましくは0.1~2μm、より好ましくは0.2~1.7μmである。Raが0.1μm以上であれば、アンカー効果によって放熱ベース基板と熱伝導性絶縁接着膜との密着性が向上し、耐久性が向上する。Raが2μm以下であれば、放熱ベース基板の表面凹凸が小さく、絶縁性が向上する。
 本明細書において、Raは算術平均粗さであり、JIS B0601 2001に準じて測定することができる。
 放熱ベース基板には、放熱効率を高めるために公知のフィンが取り付けられていてもよい。フィンとしては例えば、ストレートフィン、ウェイビーフィン、オフセットフィン、ピンフィン、およびコルゲートフィン等が挙げられる。これらフィンは放熱ベース基板と一体化されていてもよい。
(熱発生部材)
 熱発生部材は、熱を発生し得る熱発生部を含む。熱発生部材としては、集積回路、ICチップ、ハイブリッドパッケージ等の半導体パッケージ、マルチモジュール等の半導体モジュール、パワートランジスタ、パワー半導体素子、パワー半導体素子を含むパワーカード、面抵抗器、および熱電変換モジュール等の各種電子部品;建材;車両、航空機、および船舶等の部材等が挙げられる。
 本発明の複合部材は例えば、熱発生部材がパワー半導体素子を含むパワーカード等のパワー半導体モジュールである場合に、好適である。
 パワーカード等のパワー半導体モジュールは、少なくとも表面(パワー半導体素子の実装面)が導電性を有する基板上に半田等の接合剤を介して1つまたは複数のパワー半導体素子が実装され、好ましくはエポキシ樹脂等の封止材で封止されたものである。パワーカード等のパワー半導体モジュールでは、パワー半導体素子が熱発生部である。パワーカード等のパワー半導体モジュールでは、その片面または両面に、熱伝導性絶縁接着膜を介して放熱ベース基板を接着することができる。この場合、熱発生部材の熱伝導性絶縁接着膜と接する部材は、少なくとも表面が導電性を有する基板、および/または、エポキシ樹脂等の封止材である。
 少なくとも表面が導電性を有する基板としては例えば、銀、銅、アルミニウム、ニッケル、スズ、鉄、鉛、これらの合金、およびカーボン等の導電性基板が挙げられる。導電性基板には、回路パターンが形成されていてもよい。少なくとも表面が導電性を有する基板は、樹脂およびセラミックス等の非導電性基板上に導電膜が形成された基板であってもよい。
 熱発生部材と熱伝導性絶縁接着膜との密着性が向上し、耐久性が向上することから、熱発生部材の熱伝導性絶縁接着膜と接する面の表面粗さ(Ra)は、好ましくは0.1~2μm、より好ましくは0.2~1.7μmである。Raが0.1μm以上であれば、アンカー効果によって熱発生部材と熱伝導性絶縁接着膜との密着性が向上し、耐久性が向上する。Raが2μm以下であれば、熱発生部材の表面凹凸が小さく、絶縁性が向上する。
(熱伝導性絶縁接着膜)
 熱伝導性絶縁接着膜は、熱伝導性および絶縁性を有し、放熱ベース基板と熱発生部材とを良好に接着できるものであればよい。高熱伝導性を発現できることから、熱伝導性絶縁接着膜は、熱伝導性絶縁フィラーとバインダー樹脂とを含むことが好ましい。
 熱伝導性絶縁フィラーとしては特に限定されず、例えば、酸化アルミニウム、酸化カルシウム、および酸化マグネシウム等の金属酸化物;窒化アルミニウム、および窒化ホウ素等の金属窒化物;水酸化アルミニウム、および水酸化マグネシウム等の金属水酸化物;炭酸カルシウム、および炭酸マグネシウム等の炭酸金属塩;ケイ酸カルシウム等のケイ酸金属塩;水和金属化合物;結晶性シリカ、非結晶性シリカ、炭化ケイ素、およびこれらの複合物等が挙げられる。これらは、1種または2種以上用いることができる。中でも、アルミナ、窒化アルミニウム、および窒化ホウ素等が好ましい。
 熱伝導性絶縁フィラーの形態は特に制限されず、一次粒子、一次粒子を造粒した造粒体、これらの凝集体、およびこれらの組合せが挙げられる。
 熱伝導性絶縁フィラーは、熱伝導率の高い窒化ホウ素フィラーを含むことが好ましい。一般的に窒化ホウ素フィラーは濡れ性が悪くまた形状が不揃いであるので、熱伝導性絶縁フィラーとして、窒化ホウ素フィラーのみを用いる場合、内部にボイドができやすい傾向がある。高熱伝導率と低空隙率の観点から、熱伝導性絶縁フィラーは、窒化ホウ素を除く熱伝導性球状フィラーと窒化ホウ素フィラーとを含むことが好ましい。
 本明細書において「球状」は、例えば、「円形度」で表すことができる。「円形度」は、粒子をSEM(走査型電子顕微鏡)等で撮影した写真から任意の数の粒子を選び、粒子の面積をS、周囲長をLとしたとき、式:(円形度)=4πS/L2から求めることができる。本明細書において「球状の粒子」は特に明記しない限り、東亜医用電子(株)製フロー式粒子像分析装置FPIA-1000を用いて粒子の平均円形度を測定した際の平均円形度が0.9~1のものをいう。好ましくは、平均円形度が0.96~1である。
 熱伝導性球状フィラーの種類は、窒化ホウ素以外の熱伝導性を有するものであればよく、例えば、アルミナ、酸化カルシウム、酸化マグネシウム、結晶性シリカ、および非結晶性シリカ等の金属酸化物;窒化アルミニウム等の金属窒化物;水酸化アルミニウムおよび水酸化マグネシウム等の金属水酸化物;炭化ケイ素等の金属炭化物;炭酸カルシウムおよび炭酸マグネシウム等の炭酸金属塩;ケイ酸カルシウム等のケイ酸金属塩;水和金属化合物;これらの組合せ等が挙げられる。これらは、1種または2種以上用いることができる。
 球形度、熱伝導性、および絶縁性の観点から、熱伝導性球状フィラーは、アルミナおよび窒化アルミニウムからなる群より選ばれることが好ましい。
 バインダー樹脂としては特に制限されず、例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリエステルウレタン樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、アクリル樹脂、スチレン-アクリル樹脂、スチレン樹脂、ニトロセルロース、ベンジルセルロース、セルロース(トリ)アセテート、カゼイン、シェラック、ギルソナイト、ゼラチン、スチレン-無水マレイン酸樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン樹脂、ポリ酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル/酢酸ビニル共重合体樹脂、塩化ビニル/酢酸ビニル/マレイン酸共重合体樹脂、フッ素樹脂、シリコン樹脂、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、マレイン酸樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ケトン樹脂、石油樹脂、ロジン、ロジンエステル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルニトロセルロース、エチレン/ビニルアルコール樹脂、ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、および塩素化ポリウレタン樹脂等が挙げられる。バインダー樹脂は、1種または2種以上を用いることができる。
 上記の中でも、柔軟性の観点からはポリウレタン樹脂およびポリアミド樹脂等が好適に用いられ、電子部品として用いる際の絶縁性および耐熱性等の観点からはエポキシ系樹脂等が好適に用いられる。
 バインダー樹脂としては、バインダー樹脂自体硬化するか、もしくは適当な硬化剤との反応により硬化するものを用いることができる。
 例えば、バインダー樹脂がカルボキシ基、アミノ基、およびフェノール性水酸基等の反応基を有する場合、この反応基と反応し得る硬化剤として、2官能以上のエポキシ基含有化合物、2官能以上のイソシアネート基含有化合物、2官能以上のカルボジイミド基含有化合物、2官能以上の金属キレート化合物、2官能以上の金属アルコキシド化合物、および2官能以上の金属アシレート化合物等を好ましく用いることができる。
 熱伝導性絶縁接着膜は本発明の効果を妨げない範囲で、必要に応じて、難燃剤、充填剤、およびその他各種添加剤を含むことができる。難燃剤としては例えば、水酸化アルミニウム、水酸化マグネシウム、およびリン酸化合物等が挙げられる。他の添加剤としては例えば、基材密着性を高めるためのカップリング剤;吸湿時または高温時の信頼性を高めるためのイオン捕捉剤および酸化防止剤;レベリング剤等が挙げられる。
 熱伝導性絶縁接着膜は、熱伝導性絶縁フィラーと熱硬化性樹脂であるバインダー樹脂の未硬化物および/または半硬化物とを含む熱伝導性絶縁シートを放熱部材と熱発生部材との間に配置し、加熱および加圧により硬化させて形成されたものであることが好ましい。この場合、熱伝導性絶縁接着膜は、熱伝導性絶縁フィラーと熱硬化性樹脂の硬化物とを含むことができる。
 なお、本明細書では、相互に反応し得る官能基を有する複数種の熱硬化性樹脂を用いる場合、量的に多い方を主剤、少ない方を硬化剤と称すこともある。
 熱伝導性絶縁シートは例えば、以下のような方法で得ることができる。
 熱伝導性絶縁フィラー、バインダー樹脂、溶剤、および必要に応じて他の任意成分を含有する塗液を調製し、これを剥離性シート上に塗工した後、溶剤を揮発乾燥させることで、剥離性シート付きの熱伝導性絶縁シートを得ることができる。なお、熱伝導性絶縁シートを使用する際に、剥離性シートは剥離される。
 塗液は、熱伝導性絶縁フィラー、バインダー樹脂、溶剤、および必要に応じて他の任意成分を撹拌混合することで製造することができる。撹拌混合機としては特に限定されず、例えば、ディスパー、ミキサー、混練機、スキャンデックス、ペイントコンディショナー、サンドミル、らいかい機、メディアレス分散機、三本ロール、およびビーズミル等が挙げられる。撹拌混合後は、塗液から気泡を除去するために、脱泡工程を実施することが好ましい。脱泡方法としては特に制限されず、例えば、真空脱泡および超音波脱泡等が挙げられる。
 剥離性シートとしては例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、およびポリイミドフィルム等のプラスチックフィルムに離型処理したもの等が挙げられる。
 剥離性シートへの塗液の塗工方法としては特に限定されず、例えば、ナイフコート、ブレードコオート、コンマコート、ダイコート、リップコート、ロールコート、カーテンコート、バーコート、グラビアコート、フレキソコート、ディップコート、スプレーコート、スクリーンコート、スピンコート、ディスペンサーを用いる方法、およびインクジェット印刷等が挙げられる。
 上記方法にて得られる複数種の単層構造の熱伝導性絶縁シートを重ね、完全硬化しない温度で加圧することで、熱伝導性絶縁フィラーの種類および/または濃度、および/または、バインダー樹脂の種類および/または濃度が厚み方向に変化した積層構造の熱伝導性絶縁シートを得ることも可能である。このような積層構造の熱伝導性絶縁シートを用いることで、熱伝導性絶縁フィラーの種類および/または濃度、および/または、バインダー樹脂の種類および/または濃度が厚み方向に変化した積層構造の熱伝導性絶縁接着膜を得ることができる。
 熱伝導性絶縁接着膜の好ましい積層構成としては例えば、柔軟性および接着性が高くなるよう熱伝導性絶縁フィラーを比較的低密度で含む2層以上の熱伝導層(A)と熱伝導性絶縁フィラーを比較的高密度で含む1層以上の熱伝導層(B)とを、熱伝導層(A)が最外層となるように、交互積層した構成が挙げられる。このような積層構成では、最外層をなす熱伝導層(A)によって放熱ベース基板および熱発生部材に対する密着性および接着性を確保し、熱伝導層(B)によって高い熱伝導性を確保することが可能である。
 単層構造または積層構造の熱伝導性絶縁シートを放熱部材と熱発生部材との間に配置し、加熱および加圧することで、熱伝導性絶縁接着膜を得ることができる。加熱および加圧により空隙が低減され、熱伝導性および絶縁性が向上する。熱伝導性絶縁シートが熱硬化性樹脂を含む場合、加熱および加圧により硬化反応が起こり、熱伝導性絶縁接着膜の凝集力が向上し、接着力および耐久性が向上する。複数枚の熱伝導性絶縁シートを用いて、熱伝導性絶縁接着膜を形成してもよい。
 熱伝導性絶縁接着膜の線膨張係数、弾性率、破断伸度、および接着力は、バインダー樹脂の種類、バインダー樹脂の分子量、硬化剤の割合、熱伝導性絶縁フィラーの種類および量等の熱伝導性絶縁シートの組成、並びに、熱伝導性絶縁シートの加熱加圧条件等によって、調整することができる。
(複合部材の実施形態)
 図面を参照して、本発明に係る第1~第5実施形態の複合部材の構造について、説明する。図1~図5は模式断面図であり、同じ構成要素には同じ参照符号を付してある。
 図1に示す第1実施形態の複合部材1は、パワー半導体素子等の熱発生部材10の片面に熱伝導性絶縁接着膜20を介して放熱ベース基板30が接着されたものである。
 図2に示す第2実施形態の複合部材2は、パワー半導体素子等の熱発生部材10の両面に熱伝導性絶縁接着膜20を介して放熱ベース基板30が接着されたものである。
 複合部材1、2では、熱発生部材10のほぼ全体が熱発生部である。
 図3、図4において、符号50はパワー半導体素子を含むパワーカード等のパワー半導体モジュール(熱発生部材)である。パワー半導体モジュール50は、金属基板等の少なくとも表面(パワー半導体素子の実装面)が導電性を有する基板51上に半田層52を介してパワー半導体素子53が実装され、エポキシ樹脂等の封止材54で封止されたものである。パワー半導体モジュール50では、パワー半導体素子53が熱発生部である。基板51上に複数のパワー半導体素子53が実装されていてもよい。
 図3に示す第3実施形態の複合部材3は、上記のパワー半導体モジュール50の片面(基板51の非実装面)に熱伝導性絶縁接着膜20を介して放熱ベース基板30が接着されたものである。図3に示す例では、基板51側に熱伝導性絶縁接着膜20と放熱ベース基板30とを配置しているが、封止材54側にこれらを配置してもよい。
 図4に示す第4実施形態の複合部材4は、上記のパワー半導体モジュール50の両面に熱伝導性絶縁接着膜20を介して放熱ベース基板30が接着されたものである。
 図5において、符号60はパワー半導体素子を含むパワーカード等のパワー半導体モジュール(熱発生部材)である。パワー半導体モジュール60は、金属基板等の少なくとも一方の面(パワー半導体素子側の面)が導電性を有する第1の基板61上に第1の半田層62を介してパワー半導体素子63が実装され、その上に、第2の半田層64を介して金属基板等の少なくとも一方の面(パワー半導体素子側の面)が導電性を有する第2の基板65が接合され、エポキシ樹脂等の封止材66で封止されたものである。パワー半導体モジュール60では、パワー半導体素子63が熱発生部である。第1の基板61上に複数のパワー半導体素子63が実装されていてもよい。
 図5に示す第5実施形態の複合部材5は、上記のパワー半導体モジュール60の両面に熱伝導性絶縁接着膜20を介して放熱ベース基板30が接着されたものである。
 図1~図5に示す複合部材は、適宜設計変更が可能である。
 以上説明したように、本発明によれば、熱を発生し得る熱発生部を含む熱発生部材の少なくとも1つの面に、熱伝導性絶縁接着膜を介して放熱ベース基板が接着された構造を有し、温度変化の大きい条件で使用されたとしても、熱伝導性絶縁接着膜のクラックおよび/または剥がれの発生を効果的に抑制され、耐久性に優れた複合部材を提供することができる。
 以下、本発明に係る実施例および比較例について、説明する。なお、[実施例]の項において、「部」および「%」は特に明記しない限り、それぞれ「質量部」、「質量%」を表す。RHは相対湿度を表す。
[各部材の評価項目と評価方法]
(線膨張係数)
 金属等の線膨張係数が公知である材料については、文献値を用いた。熱伝導性絶縁接着膜等の線膨張係数が未知の材料については、下記手法により線膨張係数を求めた。
 幅4mm、長さ20mmの短冊状の試料に対して、TAインスツルメント社製TMA Q400を用い、5gの荷重で-40℃から180℃まで昇温速度10℃/分の条件で加熱負荷をかけたときの変位を測定した。線膨張係数は、試料温度を横軸に変位を縦軸に取ってプロットした際の-40~150℃の間の傾きの平均により求めた。
(弾性率、破断伸度)
 熱伝導性絶縁接着膜形成用の熱伝導性絶縁シートを2枚の剥離性シートで挟み、複合部材のテストピース製造と同じ加熱加圧条件(150℃で60分間、3MPaの加熱加圧条件、または150℃で60分間、1MPaの加熱加圧条件)で熱プレスした後、2枚の剥離性シートを剥がして、熱伝導性絶縁接着膜単体を得た。この熱伝導性絶縁接着膜単体から幅10mm長さ50mmの短冊状の試料を切り出した。オリエンテック社製テンシロンRTE-1210を用い、一対のチャックで試料の両端部を把持し、25℃-50%RH、-40℃、及び175℃の雰囲気下、引張速度2mm/分の条件で測定を実施した。試験開始時の一対のチャック間距離は25mmとした。
 得られた測定値を用い、JIS-K7161:1994に準拠して、弾性率を算出した。また、試料が破断したときの長さを求め、下記式より破断伸度を求めた。なお、初期長さは25mm(試験開始時の一対のチャック間距離)である。
破断伸度(-)=((破断したときの長さ)-(初期長さ))/(初期長さ)
[フィラーの評価項目と評価方法]
(平均粒子径)
 フィラーの平均粒子径は、Malvern Instruments社製粒度分布計マスターサイザー2000を用いて測定した。測定の際には乾式ユニットを用い、空気圧は2.5バールとした。フィード速度はサンプルにより最適化した。
[樹脂溶液の評価項目と評価方法]
(固形分量)
 薄型蓋付き金属容器内に樹脂溶液1gを量り採り、200℃のオーブンで20分間加熱した後の残質量を測定し、次式により固形分量を求めた。
固形分量(質量%)=(残質量(g)/1g)×100
(重量平均分子量(MW))
 東ソー製GPC(ゲルパーミエーションクロマトグラフィー)「HLC8220GPC」を用いて、Mwを測定した。GPCは、溶媒(THF;テトラヒドロフラン)に溶解した物質を分子サイズの差によって分離定量する液体クロマトグラフィーである。
 カラムとして、2本の「TOSOH TSKgel Super HZM-N」(東ソー社製)を直列に接続したものを用い、試料濃度0.1質量%、流量0.34ml/min、圧力7.4MPa、カラム温度40℃の条件で、測定を実施して、ポリスチレン換算のMwを求めた。装置内蔵ソフトを使用して、検量線の作成、分子量およびピーク面積の算出を行い、保持時間5~9.85分の範囲を分析対象としてMwを求めた。
(粘度)
 樹脂溶液10gをガラス製のスクリュー管に入れ、これを25℃の恒温槽内に一晩静置した後、B型粘度計(東機産業社製 TVB-15)を用い、ロータNo.4、回転数30rpmの条件で、粘度を測定した。
[熱伝導性絶縁フィラー]
 用いた熱伝導性絶縁フィラーは、以下の通りである。
(熱伝導性球状フィラー)
AO509:平均粒子径10μmの球状アルミナ((株)アドマテックス製アドマファインAO-509)、
CB-A20S:平均粒子径20μmの球状アルミナ(昭和電工株式会社製アルナビーズCB-A20S)、
DAW-45:平均粒子径45μmの球状アルミナ(デンカ株式会社製DAW-45)、
A30:平均粒子径30μmの球状アルミナ(昭和電工株式会社製アルナビーズCB-A30S)
(窒化ホウ素フィラー)
PTX60:平均粒子径55~65μmの造粒窒化ホウ素フィラー(モメンティブ株式会社製PTX-60)、
PTX25:平均粒子径25μmの造粒窒化ホウ素フィラー(モメンティブ株式会社PTX-25)、
agg100:平均粒子径65~85μmの造粒窒化ホウ素フィラー(スリーエムジャパン株式会社製、Agglomerates100)、
agg50:平均粒子径15~30μmの造粒窒化ホウ素フィラー(スリーエムジャパン株式会社製、Agglomerates50)。
[合成例1]ポリウレタンポリウレア樹脂(樹脂R1)の溶液の合成
 攪拌機、温度計、還流冷却器、滴下装置、および窒素導入管を備えた反応容器に、テレフタル酸とアジピン酸と3-メチル-1,5-ペンタンジオールとから得られたポリエステルポリオール((株)クラレ製「クラレポリオールP-1011」、Mn=1006)401.9部、ジメチロールブタン酸12.7部、イソホロンジイソシアネート151.0部、およびトルエン40部を仕込み、窒素雰囲気下90℃3時間反応させた。これにトルエン300部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。
 次に、イソホロンジアミン27.8部、ジ-n-ブチルアミン3.2部、2-プロパノール342.0部、およびトルエン396.0部を混合した溶液に、得られたイソシアネート基を有するウレタンプレポリマー溶液815.1部を添加し、70℃3時間反応させた。反応終了後に、トルエン144.0部および2-プロパノール72.0部の混合溶剤を用いて希釈した。以上のようにして、固形分量30質量%、Mw120,000、粘度3,000mPa・sの熱硬化性のポリウレタンポリウレア樹脂(樹脂R1)の溶液を得た。
[合成例2]ポリアミド樹脂(樹脂R2)の溶液の合成
 撹拌機、水分定量受器を付けた還流冷却管、窒素導入管、および温度計を備えた4口フラスコに、炭素数36の多塩基酸化合物としてプリポール1009(クローダジャパン株式会社製)を70.78部、フェノール性水酸基を有する多塩基酸化合物として5-ヒドロキシイソフタル酸(スガイ化学社製、以下「5-HIPA」ともいう)を5.24部、炭素数36のポリアミン化合物としてプリアミン1074(クローダジャパン株式会社製)を82.84部、トルエンを4.74部仕込んだ。これらの混合物を撹拌しながら、水の流出を確認しつつ、温度を220℃まで昇温し、脱水反応を続けた。1時間ごとにサンプリングを行い、Mwが40,000になったことを確認し、充分に冷却した後、シクロヘキサノン40部、トルエン91.34部、およびイソプロピルアルコール96.12部を希釈溶剤として加え、充分に溶解させた。以上のようにして、固形分量40.2質量%、Mw41,038、粘度9,580mPa・sのフェノール性水酸基含有ポリアミド樹脂(樹脂R2)の溶液を得た。
[合成例3]ポリアミド樹脂(樹脂R3)の溶液の合成
 撹拌機、水分定量受器を付けた還流冷却管、窒素導入管、温度計を備えた4口フラスコに、炭素数36の多塩基酸化合物としてプリポール1009(クローダジャパン株式会社製)を70.99部、フェノール性水酸基を有する多塩基酸化合物として5-ヒドロキシイソフタル酸(5-HIPA)を5.24部、炭素数36のポリアミン化合物としてプリアミン1074(クローダジャパン株式会社製)を83.77部、キシレンを4.2部仕込み、撹拌しながら、水の流出を確認しつつ、温度を220℃まで昇温し、脱水反応を続けた。1時間ごとにサンプリングを行い、Mwが45,000になったことを確認し、充分に冷却した後、トルエン112.5部およびイソプロピルアルコール112.5部を希釈溶剤として加え、75℃で充分に溶解させた。以上のようにして、固形分量40.5質量%、Mw45,251、粘度22,750mPa・sのフェノール性水酸基含有ポリアミド樹脂(樹脂R3)の溶液を得た。
[製造例1]熱伝導性絶縁シート(S-1)の製造
 樹脂R1と、アルミナフィラーとしてCB-A20Sと、窒化ホウ素フィラーとしてPTX60とを混合した。配合割合は、樹脂R1を40体積%、CB-A20Sを45体積%、PTX60を15体積%とした。さらに、硬化剤としてエピコート1001の50%トルエン溶液(ジャパンエポキシレジン(株)製)を、固形分換算として樹脂に対して2%となるように添加し、全体の固形分が50%となるようにトルエンで調整した。次いで、得られた塗液を乾燥後の膜厚が50μmとなるように剥離性シート上に塗工し、乾燥させた。このようにして、剥離性シート上に2種の熱伝導性絶縁フィラーと未硬化のバインダー樹脂とを含むシート(A’-1)を得た。これを2セット用意した。
 別途、樹脂R1と、アルミナフィラーとしてDAW-45と、窒化ホウ素フィラーとしてPTX60とを混合した。配合割合は、樹脂R1を40体積%、DAW-45を10体積%、PTX-60を50体積%とした。さらに、硬化剤としてエピコート1001の50%トルエン溶液(ジャパンエポキシレジン(株)製)を、固形分換算として樹脂に対して2%となるように添加し、全体の固形分が50%となるようにトルエンで調整した。次いで、得られた塗液を乾燥後の膜厚が100μmとなるように剥離性シート上に塗工し、乾燥させた。このようにして、剥離性シート上に2種の熱伝導性絶縁フィラーと未硬化のバインダー樹脂とを含むシート(B’-1)を形成した。
 上記で得られた2枚の剥離性シート付きシート(A’-1)と1枚の剥離性シート付きシート(B’-1)とを用い、剥離性シート/シート(A’-1)/シート(B’-1)/シート(A’-1)/剥離性シートの積層構造となるように積層した。この積層体を、一対のロール温度80℃、ラミネート圧1.5MPa、速度0.5m/分の条件でロールラミネートした後、2枚の剥離性シートを剥がして、熱伝導性絶縁接着膜形成用の3層構造の熱伝導性絶縁シート(S-1)を得た。
[製造例2]熱伝導性絶縁シート(S-2)の製造
 樹脂R1を樹脂R2に変更し、硬化剤をTETRAD-X(三菱瓦斯化学株式会社製、5%トルエン溶液)に変更した以外は製造例1のシート(A’-1)と同様にして、剥離性シート上にシート(A’-2)を形成した。
 樹脂R1を樹脂R2に変更し、硬化剤をTETRAD-X(三菱瓦斯化学株式会社製、5%トルエン溶液)に変更した以外は製造例1のシート(B’-1)と同様にして、剥離性シート上にシート(B’-2)を形成した。
 製造例1と同様の方法にて、剥離性シート/シート(A’-2)/シート(B’-2)/シート(A’-2)/剥離性シートの積層体を得、ロールラミネートし、2枚の剥離性シートを剥がして、熱伝導性絶縁接着膜形成用の3層構造の熱伝導性絶縁シート(S-2)を得た。
[製造例3]熱伝導性絶縁シート(S-3)の製造
 樹脂R2の添加量を45体積%とし、アルミナフィラーとして45体積%のAO509を用い、窒化ホウ素フィラーとして10体積%のagg100を用いた以外は製造例2のシート(A’-2)と同様にして、剥離性シート上にシート(A’-3)を形成した。
 樹脂R2の添加量を45体積%とし、アルミナフィラーとしてA30を用い、PTX60の添加量を45体積%とした以外は製造例2のシート(B’-2)と同様にして、剥離性シート上にシート(B’-3)を形成した。
 製造例2と同様の方法にて、剥離性シート/シート(A’-3)/シート(B’-3)/シート(A’-3)/剥離性シートの積層体を得、ロールラミネートし、2枚の剥離性シートを剥がして、熱伝導性絶縁接着膜形成用の3層構造の熱伝導性絶縁シート(S-3)を得た。
[製造例4]熱伝導性絶縁シート(S-4)の製造
 硬化剤の添加量を固形分換算で樹脂に対して10質量%に変更した以外は製造例2のシート(A’-2)と同様にして、剥離性シート上にシート(A’-4)を形成した。
 硬化剤の添加量を固形分換算で樹脂に対して10質量%に変更した以外は製造例2のシート(B’-2)と同様にして、剥離性シート上にシート(B’-4)を形成した。
 製造例2と同様の方法にて、剥離性シート/シート(A’-4)/シート(B’-4)/シート(A’-4)/剥離性シートの積層体を得、ロールラミネートし、2枚の剥離性シートを剥がして、熱伝導性絶縁接着膜形成用の3層構造の熱伝導性絶縁シート(S-2)を得た。
[製造例5]熱伝導性絶縁シート(S-5)の製造
 樹脂R2を樹脂R3に変更し、硬化剤の添加量を固形分換算で樹脂に対して10質量%に変更した以外は製造例2のシート(A’-2)と同様にして、剥離性シート上にシート(A’-5)を形成した。
 樹脂R2を樹脂R3に変更し、硬化剤の添加量を固形分換算で樹脂に対して10質量%に変更した以外は製造例2のシート(B’-2)と同様にして、剥離性シート上にシート(B’-5)を形成した。
 製造例2と同様の方法にて、剥離性シート/シート(A’-5)/シート(B’-5)/シート(A’-5)/剥離性シートの積層体を得、ロールラミネートし、2枚の剥離性シートを剥がして、熱伝導性絶縁接着膜形成用の3層構造の熱伝導性絶縁シート(S-5)を得た。
[製造例6]熱伝導性絶縁シート(S-6)の製造
 樹脂R1とアルミナフィラーとしてAO509とを混合した。配合割合は、樹脂R1を30体積%、アルミナフィラーを70体積%とした。さらに、硬化剤としてエピコート1001の50%トルエン溶液(ジャパンエポキシレジン(株)製)を、固形分換算として樹脂に対して2%となるように添加し、全体の固形分が50%となるようにトルエンで調整した。次いで、得られた塗液を乾燥後の膜厚が100μmとなるように剥離性シート上に塗工し、乾燥させた。このようにして、剥離性シート上に、1種の熱伝導性絶縁フィラーと未硬化のバインダー樹脂とを含む単層構造の熱伝導性絶縁シート(S-6)を形成した。
[製造例7]熱伝導性絶縁シート(S-7)の製造
 樹脂R1の添加量を55体積%、アルミナフィラーの添加量を45体積%に変更した以外は製造例6と同様にして、剥離性シート上に、1種の熱伝導性絶縁フィラーと未硬化のバインダー樹脂とを含む単層構造の熱伝導性絶縁シート(S-7)を形成した。
[製造例8]熱伝導性絶縁シート(S-8)の製造
 樹脂として25体積%の樹脂R2を用い、アルミナフィラーの代わりに75体積%の窒化ホウ素フィラーPTX25を用いた以外は、製造例6と同様にして、剥離性シート上に、1種の熱伝導性絶縁フィラーと未硬化のバインダー樹脂とを含む単層構造の熱伝導性絶縁シート(S-8)を形成した。
[製造例9]熱伝導性絶縁シート(S-9)の製造
 樹脂R2の添加量を45体積%とし、アルミナフィラーとして35体積%のAO509を用い、窒化ホウ素フィラーとして20体積%のagg50を用いた以外は製造例2のシート(A’-2)と同様にして、剥離性シート上にシート(A’-9)を形成した。
 樹脂R2の添加量を50体積%とし、アルミナフィラーを用いず、PTX60の添加量を50体積%とした以外は製造例2のシート(B’-2)と同様にして、剥離性シート上にシート(B’-9)を形成した。
 製造例2と同様の方法にて、剥離性シート/シート(A’-9)/シート(B’-9)/シート(A’-9)/剥離性シートの積層体を得、ロールラミネートし、2枚の剥離性シートを剥がして、熱伝導性絶縁接着膜形成用の3層構造の熱伝導性絶縁シート(S-9)を得た。
[製造例10]熱伝導性絶縁シート(S-11)の製造
 樹脂R1を、エポキシ基含有スチレン樹脂G-1010S(日油株式会社製)/結晶性ビフェニル骨格エポキシ樹脂YX-4000(三菱化学株式会社製)/ビスフェノールA型液状エポキシ樹脂エピコート828US(三菱化学株式会社製)(質量比:35/50/5)の混合樹脂R4に変更し、硬化剤として、ジシアンジアミドと2MZA-PW(四国化成株式会社製)の混合物(質量比:60/40)を、固形分換算で樹脂に対して2質量%使用した以外は製造例6と同様にして、剥離性シート上に、1種の熱伝導性絶縁フィラーと未硬化のバインダー樹脂とを含む単層構造の熱伝導性絶縁シート(S-11)を形成した。
[製造例11]熱伝導性絶縁シート(S-12)の製造
 硬化剤の添加量を固形分換算で樹脂に対して5%に変更した以外は、製造例10と同様にして、剥離性シート上に、1種の熱伝導性絶縁フィラーと未硬化のバインダー樹脂とを含む単層構造の熱伝導性絶縁シート(S-12)を形成した。
[実施例1~11、比較例1、2]
 実施例1~11、比較例1、2の各例においては、表1に示す材質および線膨張係数の放熱ベース基板(幅25mm、長さ100mm、厚み2mm)と、表1に示す熱伝導性絶縁シートと、表1に示す材質および線膨張係数の熱発生部材の熱伝導性絶縁接着膜と接する部材(幅25mm、長さ100mm、厚み2mm)とを重ね、表1に示す加熱加圧条件で熱プレスを行って、複合部材のテストピースを得た。熱伝導性絶縁接着シートの上下の部材に挟まれた部分の大きさは、幅25mm、長さ40mmとした。この「長さ40mm」が初期の最大一軸方向長さである。
 熱伝導性絶縁接着膜の形成に用いた熱伝導性絶縁シートを用い、表1に示す加熱加圧条件で熱プレスを行って、得られた熱伝導性絶縁接着膜単体の破断伸度と線膨張係数の評価結果を表1に示す。その他の主な製造条件を表1に示す。
 得られたテストピースについて、下記方法にてせん断接着力の評価と初期の絶縁破壊電圧(耐電圧)の評価を実施した。
 次いで、エスペック株式会社製冷熱衝撃装置TSE-12-Aを用い、-40℃で15分間保持した後150℃で15分間保持する冷熱サイクルを3000サイクル実施した。この冷熱サイクル試験後に再度、下記方法にて絶縁破壊電圧(耐電圧)の評価を実施した。
[複合部材の評価項目と評価方法]
(せん断接着力)
 せん断接着力は、JIS K 6850に準拠して測定した。
 複合部材のテストピースに対して、島津製作所社製SHIMADZU/Autogragh AGS-Xを用い、25℃にて引張り速度1mm/分の条件でせん断力を測定した。測定は2回行い、平均値をせん断接着力とした。
(初期および冷熱サイクル試験後の絶縁破壊電圧(耐電圧))
 冷熱サイクル試験前(初期)と冷熱サイクル試験後に、以下の方法にて絶縁破壊電圧の測定を行った。
 複合部材のテストピースを25℃-50%RHの環境下で一晩放置した後、絶縁破壊電圧の測定を行った。耐電圧試験機(鶴賀電機株式会社製TM650)を用い、放熱ベース基板と熱発生部材の熱伝導性絶縁接着膜と接する部材とにそれぞれ電極を取り付け、25℃-50%RHの環境下で、100秒間かけて電圧を0kVから10kVまで上昇させ、閾値2mAを超えた時点の電圧を読み取った。4つの試料で測定を行い、平均値を絶縁破壊電圧とした。以下の基準で評価した。
◎:絶縁破壊電圧が6kV以上。
○:絶縁破壊電圧が3kV以上6kV未満。
△:絶縁破壊電圧が0kV超3kV未満。
×:電圧印加直後に絶縁破壊が起こり、測定不可。
[評価結果]
 実施例1~11、比較例1、2の各例において、式(1-B)~(4-B)の左辺の値と評価結果を表2に示す。
 実施例1~11では、バインダー樹脂の種類、バインダー樹脂の分子量、硬化剤の割合、熱伝導性絶縁フィラーの種類および量等の熱伝導性絶縁シートの組成、並びに、熱伝導性絶縁シートの加熱加圧条件を調整することで、式(1-B)~(4-B)の左辺の値をいずれも50以上、好ましくは100以上、より好ましくは150以上、特に好ましくは200以上とすることができた。実施例1~11では、式(1-0)~(4-0)、好ましくは式(1-1)~(4-1)、より好ましくは式(1-2)~(4-2)、特に好ましくは式(1-3)~(4-3)を充足する複合部材のテストピースを製造することができた。
 上記のことから、実施例1~11で得られた複合部材のテストピースは、50℃以上、好ましくは100℃以上、より好ましくは150℃以上、特に好ましくは200℃以上の温度変化ΔTに対して良好な耐久性を有することができると考えられる。実際の評価において、実施例1~11で得られた複合部材のテストピースはいずれも、初期の絶縁破壊電圧が高く良好であり、-40℃と150℃との間で温度を変化させた冷熱サイクル試験を実施した後においても絶縁破壊電圧の低下が小さく、耐久性が良好であった。
 比較例1、2で得られた複合部材のテストピースでは、バインダー樹脂として熱硬化性のエポキシ樹脂を含む熱伝導性絶縁接着シートを用いたため、熱伝導性絶縁接着膜の柔軟性が低く、熱伝導性絶縁接着膜の弾性率が実施例1~11と比較して顕著に大きく、熱伝導性絶縁接着膜の破断伸度が顕著に小さくなった。比較例1、2で得られた複合部材のテストピースは、式(1-B)~(3-B)、または式(1-B)~(4-B)の左辺の値が50未満であった。このことから、比較例1、2で得られた複合部材のテストピースは、100℃以上の温度変化ΔTに対して良好な耐久性を有することができないと考えられる。実際の評価において、比較例1、2で得られた複合部材のテストピースはいずれも、初期の絶縁破壊電圧は比較的良好であったが、-40℃と150℃との間で温度を変化させた冷熱サイクル試験を実施した後には、電圧印加直後に絶縁破壊が起こった。熱伝導性絶縁接着膜は、熱応力を緩和することができず、クラックおよび/または剥がれが生じたと考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明は上記実施形態および実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。
 この出願は、2017年8月14日に出願された日本出願特願2017-156413号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2、3、4、5 複合部材
10 熱発生部材
20 熱伝導性絶縁接着膜
30 放熱ベース基板
50、60 パワー半導体モジュール(熱発生部材)
51、61、65 基板
52、62、64 半田層
53、63 パワー半導体素子(熱発生部)
54、66 封止材

Claims (10)

  1.  熱を発生し得る熱発生部を含む熱発生部材の少なくとも1つの面に、熱伝導性絶縁接着膜を介して放熱ベース基板が接着された複合部材であって、
     下記式(1-0)~(4-0)を充足する(ただし、|CTE(B)-CTE(A)|>0、|CTE(B)-CTE(C)|>0)、複合部材。
    X/(E×|CTE(B)-CTE(A)|)≧50…(1-0)
    X/(E×|CTE(B)-CTE(C)|)≧50…(2-0)
    Y/|CTE(B)-CTE(A)|×L(BA)≧50…(3-0)
    Y/|CTE(B)-CTE(C)|×L(BC)≧50…(4-0)
     上記式中、各符号は以下のパラメータを示す。
    X:熱伝導性絶縁接着膜を介して接着された放熱ベース基板と熱発生部材との間の25℃におけるせん断接着力(MPa)、
    Y:熱伝導性絶縁接着膜の25℃における破断伸度(-)、
    E:熱伝導性絶縁接着膜の25℃における弾性率(MPa)、
    CTE(A):放熱ベース基板の線膨張係数(℃-1)、
    CTE(B):熱伝導性絶縁接着膜の線膨張係数(℃-1)、
    CTE(C):熱発生部材の熱伝導性絶縁接着膜と接する面の材質の線膨張係数(℃-1)、
    L(BA):熱伝導性絶縁接着膜の放熱ベース基板と接する領域の初期の最大一軸方向長さ(m)、
    L(BC):熱伝導性絶縁接着膜の熱発生部材と接する領域の初期の最大一軸方向長さ(m)。
  2.  下記式(1-1)~(4-1)を充足する、請求項1に記載の複合部材。
    X/(E×|CTE(B)-CTE(A)|)≧100…(1-1)
    X/(E×|CTE(B)-CTE(C)|)≧100…(2-1)
    Y/|CTE(B)-CTE(A)|×L(BA)≧100…(3-1)
    Y/|CTE(B)-CTE(C)|×L(BC)≧100…(4-1)
  3.  下記式(1-2)~(4-2)を充足する、請求項1に記載の複合部材。
    X/(E×|CTE(B)-CTE(A)|)≧150…(1-2)
    X/(E×|CTE(B)-CTE(C)|)≧150…(2-2)
    Y/|CTE(B)-CTE(A)|×L(BA)≧150…(3-2)
    Y/|CTE(B)-CTE(C)|×L(BC)≧150…(4-2)
  4.  下記式(1-3)~(4-3)を充足する、請求項1に記載の複合部材。
    X/(E×|CTE(B)-CTE(A)|)≧200…(1-3)
    X/(E×|CTE(B)-CTE(C)|)≧200…(2-3)
    Y/|CTE(B)-CTE(A)|×L(BA)≧200…(3-3)
    Y/|CTE(B)-CTE(C)|×L(BC)≧200…(4-3)
  5.  前記熱伝導性絶縁接着膜が熱伝導性絶縁フィラーとバインダー樹脂とを含む、請求項1~4のいずれか1項に記載の複合部材。
  6.  前記放熱ベース基板の材質が金属であり、前記熱発生部材の前記熱伝導性絶縁接着膜と接する面の材質が金属および/または樹脂である、請求項1~4のいずれか1項に記載の複合部材。
  7.  前記熱伝導性絶縁接着膜は、-40℃以上25℃未満の範囲における弾性率が10GPa以下であり、25℃以上200℃以下の範囲における弾性率が1GPa以下である、請求項1~4のいずれか1項に記載の複合部材。
  8.  前記熱伝導性絶縁接着膜の線膨張係数が10×10-6~120×10-6(℃-1)である、請求項1~4のいずれか1項に記載の複合部材。
  9.  前記熱伝導性絶縁接着膜の25℃における破断伸度が0.02(-)以上である、請求項1~4のいずれか1項に記載の複合部材。
  10.  前記熱発生部材がパワー半導体素子を含む、請求項1~4のいずれか1項に記載の複合部材。
PCT/JP2018/030208 2017-08-14 2018-08-13 複合部材 WO2019035445A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207005996A KR102535298B1 (ko) 2017-08-14 2018-08-13 복합 부재
US16/638,752 US11407201B2 (en) 2017-08-14 2018-08-13 Composite member
EP18845778.2A EP3671827A4 (en) 2017-08-14 2018-08-13 COMPOSITE ELEMENT
CN201880052316.1A CN111052358B (zh) 2017-08-14 2018-08-13 复合构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156413 2017-08-14
JP2017156413 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019035445A1 true WO2019035445A1 (ja) 2019-02-21

Family

ID=64098791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030208 WO2019035445A1 (ja) 2017-08-14 2018-08-13 複合部材

Country Status (7)

Country Link
US (1) US11407201B2 (ja)
EP (1) EP3671827A4 (ja)
JP (2) JP6418348B1 (ja)
KR (1) KR102535298B1 (ja)
CN (1) CN111052358B (ja)
TW (1) TWI759506B (ja)
WO (1) WO2019035445A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721598B (zh) * 2019-10-14 2021-03-11 國立高雄科技大學 複合絕緣材料及其製備方法
JP7363613B2 (ja) 2020-03-13 2023-10-18 三菱マテリアル株式会社 ヒートシンク一体型絶縁回路基板
JP2021163880A (ja) * 2020-03-31 2021-10-11 三菱マテリアル株式会社 銅ベース基板
JP7463909B2 (ja) 2020-08-25 2024-04-09 株式会社デンソー 半導体装置及びその製造方法
JPWO2022176448A1 (ja) * 2021-02-18 2022-08-25
JP2022139874A (ja) 2021-03-12 2022-09-26 三菱マテリアル株式会社 ヒートシンク一体型絶縁回路基板
CN114907135B (zh) * 2022-05-16 2023-04-07 江苏富乐华半导体科技股份有限公司 一种氮化铝覆铜陶瓷基板的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006890A (ja) * 2008-06-25 2010-01-14 Toray Ind Inc 芳香族ポリアミドフィルム及び放熱シート
JP2014120727A (ja) * 2012-12-19 2014-06-30 Mitsubishi Electric Corp 電力用半導体装置
JP2016096263A (ja) * 2014-11-14 2016-05-26 三菱電機株式会社 パワー半導体装置およびその製造方法ならびに絶縁基板部
JP2016111141A (ja) * 2014-12-04 2016-06-20 トヨタ自動車株式会社 半導体装置
JP2016155985A (ja) 2015-02-26 2016-09-01 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、及びそれらを用いた樹脂シート、プリプレグ、積層板、金属基板、配線板、パワー半導体装置
JP2017054967A (ja) * 2015-09-10 2017-03-16 日産自動車株式会社 電力変換装置
JP2017156413A (ja) 2016-02-29 2017-09-07 株式会社巴川製紙所 光ファイバ保持シート

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841615B2 (en) * 2000-10-18 2005-01-11 M Cubed Technologies, Inc. Composite Adhesive
JP3932999B2 (ja) * 2002-07-08 2007-06-20 東レ株式会社 半導体用接着剤付きテープおよび半導体集積回路接続用基板ならびに半導体装置
JP4046120B2 (ja) * 2005-01-27 2008-02-13 三菱電機株式会社 絶縁シートの製造方法およびパワーモジュールの製造方法
WO2015022956A1 (ja) * 2013-08-14 2015-02-19 電気化学工業株式会社 窒化ホウ素-樹脂複合体回路基板、窒化ホウ素-樹脂複合体放熱板一体型回路基板
CN105280567B (zh) * 2014-06-19 2018-12-28 株式会社吉帝伟士 半导体封装件及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006890A (ja) * 2008-06-25 2010-01-14 Toray Ind Inc 芳香族ポリアミドフィルム及び放熱シート
JP2014120727A (ja) * 2012-12-19 2014-06-30 Mitsubishi Electric Corp 電力用半導体装置
JP2016096263A (ja) * 2014-11-14 2016-05-26 三菱電機株式会社 パワー半導体装置およびその製造方法ならびに絶縁基板部
JP2016111141A (ja) * 2014-12-04 2016-06-20 トヨタ自動車株式会社 半導体装置
JP2016155985A (ja) 2015-02-26 2016-09-01 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、及びそれらを用いた樹脂シート、プリプレグ、積層板、金属基板、配線板、パワー半導体装置
JP2017054967A (ja) * 2015-09-10 2017-03-16 日産自動車株式会社 電力変換装置
JP2017156413A (ja) 2016-02-29 2017-09-07 株式会社巴川製紙所 光ファイバ保持シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671827A4

Also Published As

Publication number Publication date
EP3671827A4 (en) 2021-05-19
KR20200040787A (ko) 2020-04-20
EP3671827A1 (en) 2020-06-24
KR102535298B1 (ko) 2023-05-22
TW201910136A (zh) 2019-03-16
US20210129489A1 (en) 2021-05-06
JP2019036716A (ja) 2019-03-07
JP6418348B1 (ja) 2018-11-07
US11407201B2 (en) 2022-08-09
CN111052358A (zh) 2020-04-21
JP2019041111A (ja) 2019-03-14
TWI759506B (zh) 2022-04-01
CN111052358B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6418348B1 (ja) 複合部材
TWI738736B (zh) 熱傳導性絕緣片與其製造方法、及熱傳導性絕緣片製造用中間積層體
JP6402763B2 (ja) 多層樹脂シート、樹脂シート積層体、多層樹脂シート硬化物及びその製造方法、金属箔付き多層樹脂シート、並びに半導体装置
EP1376689B1 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
KR20120135217A (ko) 내열용 접착제
JP7215164B2 (ja) 熱伝導性絶縁接着シート、及び該シートの製造方法
JP7077526B2 (ja) 複合部材
KR102493229B1 (ko) 열 전도성 절연 시트 및 복합 부재
JP7139600B2 (ja) 熱伝導性絶縁接着シート、および該シートの製造方法
JP5114597B1 (ja) 積層体及び切断積層体
JP2005076023A (ja) 低弾性接着剤並びにこの接着剤を用いた積層物、接着剤付き放熱板、接着剤付き金属箔
JP2011094147A (ja) 低弾性接着剤並びにこの接着剤を用いた積層物、接着剤付き放熱板、接着剤付き金属箔
JP7110977B2 (ja) 熱伝導性絶縁シート及び複合部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005996

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018845778

Country of ref document: EP

Effective date: 20200316