WO2019033834A1 - 一种电磁屏蔽涂层材料及其制备方法 - Google Patents

一种电磁屏蔽涂层材料及其制备方法 Download PDF

Info

Publication number
WO2019033834A1
WO2019033834A1 PCT/CN2018/090293 CN2018090293W WO2019033834A1 WO 2019033834 A1 WO2019033834 A1 WO 2019033834A1 CN 2018090293 W CN2018090293 W CN 2018090293W WO 2019033834 A1 WO2019033834 A1 WO 2019033834A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
coating material
electromagnetic shielding
tin
liquid metal
Prior art date
Application number
PCT/CN2018/090293
Other languages
English (en)
French (fr)
Inventor
董仕晋
白安洋
汪鸿章
于洋
刘静
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Publication of WO2019033834A1 publication Critical patent/WO2019033834A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/02Metal coatings
    • D21H19/06Metal coatings applied as liquid or powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the invention belongs to the technical field of electronic materials, and in particular relates to an electromagnetic shielding coating material and a preparation method thereof.
  • Electromagnetic radiation has become another major public hazard following noise pollution, air pollution, water pollution, and solid waste pollution, and this hazard often causes greater losses because it cannot be directly observed by sight and hearing. Electromagnetic radiation not only causes mutual interference between radiation sources, but also pollutes the space for human survival. Scientific research has confirmed that electromagnetic radiation reaches a certain level of intensity, which affects human nervous, reproductive, immune and cardiovascular systems, thereby inducing various diseases.
  • the electromagnetic radiation shielding coating material is uniformly dispersed in the polymer binder in the presence of a solvent by a special process, and solidifies and forms as the solvent evaporates.
  • electromagnetic shielding coating can be applied to the surface of any structure to form a uniform and dense film. It has the characteristics of convenient construction, quickness, practicability and high cost performance. It is the most widely used electromagnetic shielding material.
  • Conventional electromagnetic shielding coating materials mainly include silver, carbon, nickel and other products according to the type of conductive particles, and various technical or economic problems respectively limit their widespread use. For example, carbon-based conductive coatings have poor shielding effects, nickel-based conductive coatings have low stability, and silver-based conductive coatings are expensive.
  • electromagnetic shielding coatings outside the frequency range of more than 1.5 GHz is significantly reduced, and it is difficult to meet applications at 10 GHz, 18 GHz or higher.
  • traditional electromagnetic shielding coatings contain a large amount of organic solvents.
  • the technical object of the invention is as follows: 1. Resolving the limited frequency range of the conventional electromagnetic shielding coating, and having the limitation of better use effect only under 100 MHz and below 1.5 GHz, and improving the price of the existing electromagnetic shielding coating material. The defect of low performance stability; 2. Solving the problem that the traditional electromagnetic shielding coating material contains a large amount of solvent, is not environmentally friendly, has low construction safety, and has fire and explosion hazards. To achieve effective wetting and adhesion on the surface of plastics, rubber, ceramics and paper, an environmentally friendly liquid metal electromagnetic shielding coating material is proposed.
  • Another object of the present invention is to provide a method of preparing the electromagnetic shielding coating material.
  • An electromagnetic shielding coating material comprising, by weight percentage, 40% to 70% liquid metal, 10% to 40% conductive filler, 5% to 15% magnetic field shielding filler, 0.5% to 2% coupling agent, 1% ⁇ 10% binder, 0.5% to 2% toughening material, 0.5% to 2% dispersion wetting agent;
  • the liquid metal is a low melting point metal or alloy having a melting point below 300 degrees Celsius, or a low melting point metal nanoparticle A conductive nanofluid formed by mixing with a fluid dispersant.
  • the liquid metal is a simple substance of one of gallium, indium, tin, zinc, antimony, lead, cadmium, mercury, sodium, potassium, magnesium, aluminum, iron, cobalt, manganese, titanium, vanadium or a plurality of a formed alloy containing 0 to 30% of a non-metallic component, the non-metallic component being one or more of boron, carbon, and silicon.
  • the liquid metal is mercury, gallium, indium, tin elemental, gallium indium alloy, gallium indium tin alloy, gallium tin alloy, gallium zinc alloy, gallium indium zinc alloy, gallium tin zinc alloy, gallium indium tin zinc alloy , gallium tin cadmium alloy, gallium zinc cadmium alloy, bismuth indium alloy, bismuth tin alloy, bismuth indium tin alloy, bismuth indium zinc alloy, bismuth zinc alloy, bismuth indium tin zinc alloy, tin lead alloy, tin copper alloy, tin zinc One or more of a copper alloy, a tin-silver-copper alloy, and a tantalum-lead-tin alloy.
  • the present invention preferably uses a binary or ternary alloy to achieve improved workability and cost reduction, and a binary or ternary alloy also facilitates adjustment of the melting point.
  • liquid metal is an alloy formed by two metals of gallium, indium, tin, antimony, lead, and zinc, and each metal mass accounts for 15 to 40% of the mass of the electromagnetic shielding coating material.
  • the conductive filler is one or more of gold powder, platinum powder, silver powder, copper powder, nickel powder, conductive carbon black, conductive graphite, nickel-coated graphite powder, silver-coated copper powder, and silver-coated nickel powder.
  • the conductive filler has a particle diameter of 1 nm to 100 ⁇ m, preferably 10 nm to 50 ⁇ m;
  • the magnetic field shielding filler is one or more of iron powder, nickel powder, permalloy, ferrite, and the magnetic field shielding filler has a particle diameter of 1 nm to 100 ⁇ m;
  • the coupling agent is one or more of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent.
  • the dispersing wetting agent can be a commercially available polymer dispersing wetting agent.
  • the binder is one or more of a pure acrylic emulsion, a styrene-acrylic emulsion, a fluorocarbon emulsion, a polyurethane emulsion, a silicone emulsion, a polydichloroethylene emulsion, and an ethylene-vinyl acetate copolymer emulsion.
  • the toughening material is one or more of graphene, carbon nanotubes, carbon fiber, silver fiber, copper fiber, silver-coated copper fiber, and polysilsesquioxane.
  • the preparation method of the environment-friendly liquid metal electromagnetic shielding coating material of the invention comprises the steps of:
  • Step 1 reducing the liquid metal raw material under a hydrogen gas and/or a carbon monoxide atmosphere, and then weighing the raw materials in proportion, and performing melting in a vacuum melting furnace or an atmosphere furnace;
  • Step 2 heating the liquid metal to above the melting point under inert gas protection conditions, stirring and dispersing;
  • Step 3 sequentially adding a binder, a coupling agent and a dispersing wetting agent to the liquid metal under inert gas protection conditions, and sufficiently dispersing after the addition;
  • Step 4 slowly add conductive filler and magnetic field shielding filler to the prepared mixture under inert gas protection conditions, stir for 1 to 2 hours after the addition, and then transfer the mixture to a planetary ball mill with inert gas protection.
  • the zirconia particles were used as a grinding medium and ground for 2 to 4 hours.
  • step 2 using an overhead disperser to stir at 500-1000 r/min for 30-60 min;
  • step 3 it is dispersed for 20 to 30 minutes under the condition of 1500-2000r/min rotation speed
  • step 4 the mixture is stirred at 1500 to 2000 r/min for 1 to 2.
  • the application of the environmentally-friendly high-performance liquid metal electromagnetic shielding coating material coated on plastic, rubber, ceramic, concrete, brick, glass, textile, leather, paper, and the coating method is direct spraying, Brushing, rolling or dip coating;
  • the plastics include polyethylene, polypropylene, polystyrene, polyester, polyacrylate, polycarbonate, polyetheretherketone, polyaryletherketone, ethylene-vinyl acetate copolymer, polyoxymethylene, ABS, polychlorinated Ethylene, polydichloroethylene, polyphenylene ether, polyimide, phenol resin, epoxy resin, etc. are not limited thereto.
  • the rubber includes natural rubber, styrene butadiene rubber, butadiene rubber, isoprene rubber, neoprene rubber, nitrile rubber, and the like, but is not limited thereto.
  • the ceramics include, but are not limited to, oxide ceramics, nitride ceramics, carbide ceramics, and sulfide ceramics.
  • the textiles include cotton, silk, spandex, polypropylene, polyester, polyvinyl chloride, etc., but are not limited thereto.
  • liquid metal as a conductive auxiliary binder and auxiliary fluidity aid was proposed and realized for the first time. Under the synergistic action of a small amount of coupling agent and binder, the highly conductive liquid metal was used instead of non-conductive.
  • the solvent and the binder uniformly and stably disperse the conductive filler and the magnetic field shielding filler to form a multi-component composite electromagnetic shielding coating material system with high compatibility and high dispersion stability.
  • the electromagnetic shielding coating material developed by the technical scheme of the invention has a shielding effect of more than 90 dB in the range of 1.5 to 10 GHz and 10 to 18 GHz. In the range of 18 to 40 GHz, it has a shielding effect of 70 dB or more.
  • the invention does not contain any toxic and harmful substances, does not produce any volatile organic substances, has a fast film forming speed, is safe and environmentally friendly, has convenient construction and low cost, and can be widely applied to military, electronic, aerospace, construction and the like. field.
  • Liquid metal is a material that is difficult to wet, such as Ga 33 In on PET (polyethylene terephthalate) with a contact angle of 150 degrees (measured with a contact angle tester).
  • a dispersing wetting agent polymer type, German BYK-2150, the same below
  • the contact angle of the mixed liquid on the polypropylene plastic was still about 150 degrees.
  • a mixture of 30 g of silver powder conductive filler and 60 g of Ga 33 In liquid metal has a contact angle of about 100 degrees on PET (polyethylene terephthalate).
  • a mixture of 30 g of silver powder conductive filler, 5 g of dispersing wetting agent and 60 g of Ga 33 In liquid metal had a contact angle of about 70 degrees. After the mixture was dispersed and ground, the contact angle was slightly lowered to about 67 degrees, and the obtained slurry stability was remarkably improved.
  • the inventors determined the basic system of the combination of liquid metal, conductive filler, and dispersing wetting agent, and added other auxiliary components to constitute the materials in the subsequent examples.
  • Step 1 The liquid metal raw materials (elemental gallium and elemental indium) are respectively reduced in a hydrogen atmosphere by a reduction furnace to remove oxides on the surface of the raw material.
  • the raw materials after the reduction treatment were weighed and sampled, and placed in a vacuum melting furnace for melting.
  • the smelted alloy liquid is poured into an ingot in a vacuum furnace.
  • Step 2 Weigh the above-mentioned liquid metal alloy, and heat the liquid metal element or alloy to a temperature above the melting point (70 ° C) under inert gas protection conditions, and stir for 50 min at 800 r/min using an overhead disperser.
  • Step 3 Under the inert gas protection condition, the weighed binder, the coupling agent and the dispersing wetting agent are sequentially added to the above liquid metal alloy, and after the addition, the dispersion is performed at 1800 r/min for 25 min.
  • Step 4 slowly add the various conductive fillers and magnetic field shielding fillers that have been weighed to the prepared mixture under inert gas protection conditions. After the addition, stir at a speed of 1800 r/min for 1.5 h to transfer the mixture. In a planetary ball mill with inert gas protection, the zirconia particles were used as a grinding medium and ground for 3 h.
  • Step 5 Under the inert gas protection condition, the ground electromagnetic shielding coating material is filtered and then poured into the container by an automatic filling machine.
  • the conductive filler is made of copper powder having an average particle diameter of 300 nm
  • the magnetic field shielding material is made of nickel powder having an average particle diameter of 500 nm.
  • the other ingredients and preparation were the same as in Example 1.
  • Step 1 The elemental liquid metal raw materials (tin powder and tantalum powder) are respectively reduced in a carbon monoxide gas atmosphere by a reduction furnace to remove oxides on the surface of the raw material.
  • the raw materials after the reduction treatment were weighed and sampled, and placed in a vacuum melting furnace for melting. The smelted alloy liquid is filled into the container for use.
  • Step 2 Weigh the above-mentioned liquid metal alloy, and then heat the liquid metal to the melting point (130 ° C) under inert gas protection conditions, and stir for 50 min at 800 r/min using an overhead disperser.
  • the liquid metal was heated to 240 ° C in the second step of the preparation.
  • the other operations are the same as in the first embodiment.
  • Comparative Example 1 is a commercially available solvent-based conductive silver-coated copper electromagnetic shielding coating
  • Comparative Example 2 is a commercially available aqueous conductive carbon electromagnetic shielding coating.
  • Embodiment 3 is in the range of 1.5 to 10 GHz. It has 80dB shielding performance, shielding performance above 70dB in the range of 10 ⁇ 18GHz, shielding effect above 50dB in the range of 18 ⁇ 40GHz;
  • Example 9 has 65dB shielding performance in the range of 100KHz-30MHz, in 1.5 ⁇ 10GHz With 95dB shielding performance, it has a shielding performance of 101dB or more in the range of 10 to 18GHz, and the shielding effect of 89dB or more in the range of 18 to 40GHz is much higher than that of the commercially available product.
  • the electromagnetic shielding coating material described in the examples has a reasonable formulation composition and is processed by an effective processing process, and can be uniformly spread on the substrate, and the wettability is superior to that of Comparative Examples 3 and 4.
  • the electromagnetic shielding coating material in the embodiment of the present invention has a volatile organic content much lower than that of the comparative example, indicating that the electromagnetic shielding coating material of the present invention has better environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Paints Or Removers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明提出一种电磁屏蔽涂层材料,包括 40%~70%液态金属、10%~40%导电填料、5%~15%磁场屏蔽填料、0.5%~2%偶联剂、1%~10%粘结剂、0.5%~2%增韧材料,0.5%~2%分散润湿剂;液态金属为熔点在 300℃以下的低熔点金属、或是低熔点金属纳米颗粒与流体分散剂混合形成的导电纳米流体。本发明首次提出并实现了液态金属作为导电型辅助粘结剂和辅助流动性助剂的概念,用液态金属替代不导电的溶剂和粘结剂,形成电磁屏蔽涂层材料体系。此外,本发明不含任何有毒有害物质,不产生任何挥发性有机物,成膜速度快,具有安全环保、施工方便、成本低廉的特点,可广泛运用于军事、电子、航空航天、建筑等多个领域。

Description

一种电磁屏蔽涂层材料及其制备方法
交叉引用
本申请引用于2017年08月17日提交的专利名称为“一种电磁屏蔽涂层材料及其制备方法”的第2017107078867号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明属于电子材料技术领域,具体涉及一种电磁屏蔽涂层材料及其制备方法。
背景技术
随着现代电子工业、无线通信和数字化技术的快速发展,各类电子电气设备已经从原来主要集中于军事和特殊工业领域,逐渐演变发展成广泛的应用于与人们日常生活息息相关的各个领域,如广播电视、通信导航、电力设施、科研、医疗的高频设备以及各种家用电器,这些设备和产品都会不同程度地产生电磁辐射。电磁辐射己成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害,而且这一危害由于无法用视觉和听觉等直接观察,往往会造成更大的损失。电磁辐射不仅造成辐射源之间的相互干扰,而且还污染人类生存的空间,科学研究证实电磁辐射达到一定的强度就会影响人的神经、生殖、免疫及心血管系统,从而诱发各种疾病。
电磁辐射屏蔽涂层材料是通过特殊的工艺将导电颗粒在溶剂存在的情况下均匀的分散在高分子粘结剂中,随着溶剂挥发而固化成型。电磁屏蔽涂料作为一种流体材料,可以涂覆于任意结构的基材表面,形成均匀致密的薄膜,具有施工方便、快捷、实用性强及性价比高等特点,是目前应用最广泛的电磁屏蔽材料。传统的电磁屏蔽涂层材料按照导电颗粒类型划分主要包括银系、碳系、镍系等产品,分别存在各种技术或经济性问题限制了其广泛使用。例如碳系导电涂料屏蔽效果较差,镍系导电涂料稳定性较低、银系导电涂料售价过高。此外,电磁屏蔽涂料在超过1.5GHz的频率范围以外的屏蔽效果下降显著,很难满足在10GHz、18GHz乃至更高频率 下的应用。更为重要的是,传统电磁屏蔽涂料中多含有大量的有机溶剂,在生产、储存、运输、施工过程中,存在着对人、动物造成直接毒害的问题,甚至会造成因易燃性有机物在受限空间内累积造成爆炸、火灾等风险。电磁屏蔽涂层材料中过度使用的分散剂、润湿剂由于良好的水溶性,还会对土壤造成损害,进而通过农作物威胁到人类。
因此,获得一种兼具良好导电性和电磁屏蔽特性,且不含溶剂的电磁屏蔽涂层材料就显得尤为重要。综合上述分析,特提出本发明。
发明内容
本发明的技术目的为:1、解决传统电磁屏蔽涂料使用频率范围受限,仅能在100MHz以上,1.5GHz以下具有较好使用效果的局限性,且改善现有电磁屏蔽涂层材料价格较高、性能稳定性低的缺陷;2、解决传统电磁屏蔽涂层材料含有大量溶剂、不环保、施工安全性低、存在火灾和爆炸隐患的问题。实现在塑料、橡胶、陶瓷、纸张表面的有效润湿和附着,提出一种环保型液态金属电磁屏蔽涂层材料。
本发明的另一个目的是提出所述电磁屏蔽涂层材料的制备方法。
本发明的目的通过以下技术方案来实现:
一种电磁屏蔽涂层材料,按重量百分比计,包括40%~70%液态金属、10%~40%导电填料、5%~15%磁场屏蔽填料、0.5%~2%偶联剂、1%~10%粘结剂、0.5%~2%增韧材料,0.5%~2%分散润湿剂;所述液态金属为熔点在300摄氏度以下的低熔点金属或合金、或是低熔点金属纳米颗粒与流体分散剂混合形成的导电纳米流体。
其中,所述液态金属为镓、铟、锡、锌、铋、铅、镉、汞、钠、钾、镁、铝、铁、钴、锰、钛、钒中的一种的单质或由多种形成的合金,所述合金中含有0~30%的非金属成分,所述非金属成分为硼、碳、硅中的一种或多种,
优选地,所述的液态金属为汞、镓、铟、锡单质、镓铟合金、镓铟锡合金、镓锡合金、镓锌合金、镓铟锌合金、镓锡锌合金、镓铟锡锌合金、镓锡镉合金、镓锌镉合金、铋铟合金、铋锡合金、铋铟锡合金、铋铟锌合金、铋锡锌合金、铋铟锡锌合金、锡铅合金、锡铜合金、锡锌铜合金、锡银铜合金、铋铅锡合金中的一种或几种。
本发明优选用二元或三元合金,以实现施工性的提高和成本的降低,另外二元或三元的合金也利于调整熔点。
进一步地,所述液态金属为镓、铟、锡、铋、铅、锌中的两种金属形成的合金,每种金属质量占所述电磁屏蔽涂层材料质量的15~40%。
其中,所述的导电填料为金粉、铂粉、银粉、铜粉、镍粉、导电炭黑、导电石墨、镍包石墨粉、银包铜粉、银包镍粉中的一种或几种。
所述的导电填料的粒径在1nm~100μm,优选为10nm~50μm;
其中,所述的磁场屏蔽填料为铁粉、镍粉、坡莫合金、铁氧体中的一种或几种,所述的磁场屏蔽填料的粒径在1nm~100μm;
所述偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂中的一种或几种。所述的分散润湿剂可采用市售的高分子分散润湿剂。
其中,所述的粘结剂为纯丙乳液、苯丙乳液、氟碳乳液、聚氨酯乳液、有机硅乳液、聚二氯乙烯乳液、乙烯-醋酸乙烯共聚乳液中的一种或几种。
其中,所述的增韧材料为石墨烯、碳纳米管、碳纤维、银纤维、铜纤维、银包铜纤维、聚倍半硅氧烷中的一种或几种。
本发明所述环保型液态金属电磁屏蔽涂层材料的制备方法,包括步骤:
步骤1:将液态金属原料在氢气和/或一氧化碳气氛下还原,然后按比例称取原料,在真空熔炼炉或气氛炉内进行熔炼;
步骤2:在惰性气体保护条件下,将液态金属加热至熔点以上,搅拌分散;
步骤3:在惰性气体保护条件下,向液态金属中顺序加入粘结剂、偶联剂和分散润湿剂,添加完毕后充分分散;
步骤4:在惰性气体保护条件下,向上述制备好的混合液中缓慢加入导电填料和磁场屏蔽填料,添加完毕后搅拌1~2h,然后将混合物转移到带有惰性气体保护的行星球磨机中,以氧化锆颗粒为研磨介质,研磨2~4h。
进一步地,
步骤2中,利用顶置式分散机在500~1000r/min转速条件下搅拌30~60min;
步骤3中,在1500~2000r/min转速条件下分散20~30min;
步骤4中,在1500~2000r/min转速下搅拌1~2。
所述环保高性能液态金属电磁屏蔽涂层材料的应用,该涂层材料涂布在塑料、橡胶、陶瓷、混凝土、砖块、玻璃、纺织品、皮革、纸张上,涂布的方式为直接喷涂、刷涂、滚涂或浸涂;
所述的塑料包括聚乙烯、聚丙烯、聚苯乙烯、聚酯、聚丙烯酸酯、聚碳酸酯、聚醚醚酮、聚芳醚酮、乙烯-醋酸乙烯共聚物、聚甲醛、ABS、聚氯乙烯、聚二氯乙烯、聚苯醚、聚酰亚胺、酚醛树脂、环氧树脂等但不限于此。
所述的橡胶包括天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、氯丁橡胶、丁腈橡胶等但不限于此。
所述的陶瓷包括氧化物陶瓷、氮化物陶瓷、碳化物陶瓷和硫化物陶瓷等但不限于此。
所述的纺织品包括棉、丝绸、氨纶、丙纶、涤纶、氯纶等但不限于此。
本发明的有益效果在于:
1、首次提出并实现了液态金属作为导电型辅助粘结剂和辅助流动性助剂的概念,在少量偶联剂和粘结剂的协同作用下,利用高导电性的液态金属替代不导电的溶剂和粘结剂,将导电填料、磁场屏蔽填料均匀稳定的分散,形成具有高相容性和高分散稳定性的多元复合电磁屏蔽涂层材料体系。
2、解决传统电磁屏蔽涂料仅能在1.5GHz以下具有较好使用效果的局限性,本发明技术方案开发的电磁屏蔽涂层材料在1.5~10GHz和10~18GHz范围内具有90dB以上的屏蔽效果,在18~40GHz范围内,具有70dB以上的屏蔽效果。
3、解决了传统液态金属润湿性和附着力的缺陷,能够在塑料、陶瓷、橡胶、混凝土、玻璃、纺织品等各种基材有效成膜,具有良好附着力。
4、解决了传统电磁屏蔽涂层材料价格高、性能不稳定、含有大量溶剂不环保、施工安全性低、存在火灾和爆炸隐患的问题。具有成膜速度快,安全环保、施工方便、成本低廉的特点,可广泛运用于军事、电子、航空航天、建筑等多个领域。
此外,本发明不含任何有毒有害物质,不产生任何挥发性有机物,成膜速度快,具有安全环保、施工方便、成本低廉的特点,可广泛运用于军事、电子、航空航天、建筑等多个领域。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
试验例
液态金属是很难润湿的材料,例如Ga 33In在PET(聚对苯二甲酸乙二醇酯),上接触角为150度(用接触角测试仪测量)。
在Ga 33In液态金属60g中加入5g分散润湿剂(高分子型,德国BYK-2150,下同),混合后的液体在聚丙烯塑料上接触角仍为150度左右。
银粉导电填料30g与Ga 33In液态金属60g的混合物,在PET(聚对苯二甲酸乙二醇酯),上接触角约为100度。
银粉导电填料30g、分散润湿剂5g与Ga 33In液态金属60g的混合物,接触角约70度。将混合物分散研磨后,接触角还稍有降低,约为67度,得到的浆料稳定性则显著提高。
通过本试验例及替换其他成分的一系列试验,发明人确定了液态金属、导电填料、分散润湿剂组合的基础体系,并加入其他辅助成分,构成后续示例中的材料。
实施例1
环保型高性能液态金属电磁屏蔽涂层材料的配方组成如下表所示:
Figure PCTCN2018090293-appb-000001
本实施例涂层材料的制备过程为:
步骤1:将液态金属原料(单质镓和单质铟)分别在氢气环境下利用 还原炉进行还原处理,去除原料表面的氧化物。按比例取样称量还原处理后的原料,一起放入真空熔炼炉内进行熔炼。熔炼好的合金液体在真空炉内浇注成锭。
步骤2:称量所需的上述液态金属合金,在惰性气体保护条件下,将液态金属单质或合金加热至熔点以上(70℃),利用顶置式分散机在800r/min转速条件下搅拌50min。
步骤3:在惰性气体保护条件下,向上述液态金属合金中按次序加入已经称量好的粘结剂、偶联剂和分散润湿剂,添加完毕后在1800r/min转速条件下分散25min。
步骤4:在惰性气体保护条件下,向上述制备好的混合液中缓慢加入已经称量好的各种导电填料和磁场屏蔽填料,添加完毕后在1800r/min转速下搅拌1.5h,将混合物转移到带有惰性气体保护的行星球磨机中,以氧化锆颗粒为研磨介质,研磨3h。
步骤5:在惰性气体保护条件下,将研磨后的电磁屏蔽涂层材料过滤后利用自动灌装机灌注于容器中。
实施例2
本实施例中,导电填料采用平均粒径300nm的铜粉,磁场屏蔽材料采用平均粒径500nm的镍粉。其他成分及制备同实施例1。
实施例3
环保型高性能液态金属电磁屏蔽涂层材料的配方组成如下表所示:
Figure PCTCN2018090293-appb-000002
本实施例涂层材料的制备过程中,
步骤1:将单质的液态金属原料(锡粉和铋粉)分别在一氧化碳气体环境下利用还原炉进行还原处理,去除原料表面的氧化物。按比例取样称量还原处理后的原料,放入真空熔炼炉内进行熔炼。熔炼好的合金液体灌装到容器中备用。
步骤2:称量所需的上述液态金属合金,在惰性气体保护条件下,将液态金属加热至熔点上(130℃),利用顶置式分散机在800r/min转速条件下搅拌50min。
其他操作同实施例1。
实施例4
环保型高性能液态金属电磁屏蔽涂层材料的配方组成如下表所示(填料粒径同实施例1):
Figure PCTCN2018090293-appb-000003
制备的步骤2中将液态金属加热至240℃。其他操作同实施例1。
实施例5
环保型高性能液态金属电磁屏蔽涂层材料的配方组成如下表所示(填料粒径同实施例1):
Figure PCTCN2018090293-appb-000004
Figure PCTCN2018090293-appb-000005
实施例6
环保型高性能液态金属电磁屏蔽涂层材料的配方组成如下表所示:
Figure PCTCN2018090293-appb-000006
实施例7
环保型高性能液态金属电磁屏蔽涂层材料的配方组成如下表所示:
Figure PCTCN2018090293-appb-000007
实施例8
Figure PCTCN2018090293-appb-000008
实施例9
Figure PCTCN2018090293-appb-000009
实施例10
Figure PCTCN2018090293-appb-000010
Figure PCTCN2018090293-appb-000011
对比试验
对比例1为市售溶剂型导电银包铜电磁屏蔽涂料,对比例2为市售水性导电碳电磁屏蔽涂料。
对比例3
Figure PCTCN2018090293-appb-000012
对比例4
Figure PCTCN2018090293-appb-000013
将上述实施例和对比例分别在聚酯薄膜上涂刷,制备平均厚度为50微米的样板,根据GB/T25471-2010测试涂料的电磁屏蔽效果。
表1 性能测试结果
Figure PCTCN2018090293-appb-000014
Figure PCTCN2018090293-appb-000015
从上表的对比数据可以看到,本发明实施例中描述的环保型高性能液态金属电磁屏蔽涂层材料均具有较高的电磁屏蔽效率和良好的润湿性,实施例3在1.5~10GHz具有80dB屏蔽效能,在10~18GHz范围内具有70dB以上的屏蔽效能,在18~40GHz范围内,具有50dB以上的屏蔽效果;实施例9在100KHz-30MHz范围内有65dB屏蔽效能,在1.5~10GHz具有95dB屏蔽效能,在10~18GHz范围内具有101dB以上的屏蔽效能,在18~40GHz范围内,具有89dB以上的屏蔽效果远高于市售产品的指标。实施例中描述的电磁屏蔽涂层材料具有合理的配方组成并经过有效的加工工艺处理,能够在基材上均匀铺展,润湿性优于对比例3、4。此外,本发明实施例中的电磁屏蔽涂层材料可挥发性有机物含量远低于对比例,表明本发明电磁屏蔽涂层材料具有更好的环保性。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应当涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种电磁屏蔽涂层材料,其特征在于,按重量百分比计,包括40%~70%液态金属、10%~40%导电填料、5%~15%磁场屏蔽填料、0.5%~2%偶联剂、1%~10%粘结剂、0.5%~2%增韧材料,0.5%~2%分散润湿剂;所述液态金属为熔点在300摄氏度以下的低熔点金属、或是低熔点金属纳米颗粒与流体分散剂混合形成的导电纳米流体。
  2. 根据权利要求1所述的电磁屏蔽涂层材料,其特征在于,所述液态金属为镓、铟、锡、锌、铋、铅、镉、汞、钠、钾、镁、铝、铁、钴、锰、钛、钒中的一种的单质或由多种形成的合金,所述合金中含有0~30%的非金属成分,所述非金属成分为硼、碳、硅中的一种或多种;
    优选地,所述的液态金属为汞、镓、铟、锡单质、镓铟合金、镓铟锡合金、镓锡合金、镓锌合金、镓铟锌合金、镓锡锌合金、镓铟锡锌合金、镓锡镉合金、镓锌镉合金、铋铟合金、铋锡合金、铋铟锡合金、铋铟锌合金、铋锡锌合金、铋铟锡锌合金、锡铅合金、锡铜合金、锡锌铜合金、锡银铜合金、铋铅锡合金中的一种或几种。
  3. 根据权利要求2所述的电磁屏蔽涂层材料,其特征在于,所述液态金属为镓、铟、锡、铋、铅、锌中的两种金属形成的合金,每种金属质量占所述电磁屏蔽涂层材料质量的15~40%。
  4. 根据权利要求2所述的电磁屏蔽涂层材料,其特征在于,所述的导电填料为金粉、铂粉、银粉、铜粉、镍粉、导电炭黑、导电石墨、镍包石墨粉、银包铜粉、银包镍粉中的一种或几种。
    所述的导电填料的粒径在1nm~100μm,优选为10nm~50μm。
  5. 根据权利要求1所述的电磁屏蔽涂层材料,其特征在于,所述的磁场屏蔽填料为铁粉、镍粉、坡莫合金、铁氧体中的一种或几种,所述的磁场屏蔽填料的粒径在1nm~100μm;
    所述偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂中的一种或几种。
  6. 根据权利要求1所述的电磁屏蔽涂层材料,其特征在于,所述的粘结剂为纯丙乳液、苯丙乳液、氟碳乳液、聚氨酯乳液、有机硅乳液、聚二氯乙烯乳液、乙烯-醋酸乙烯共聚乳液中的一种或几种。
  7. 根据权利要求1所述的电磁屏蔽涂层材料,其特征在于,所述的增韧材料为石墨烯、碳纳米管、碳纤维、银纤维、铜纤维、银包铜纤维、聚倍半硅氧烷中的一种或几种。
  8. 权利要求1~7任一所述电磁屏蔽涂层材料的制备方法,其特征在于,包括步骤:
    步骤1:将液态金属原料在氢气和/或一氧化碳气氛下还原,然后按比例称取原料,在真空熔炼炉或气氛炉内进行熔炼;
    步骤2:在惰性气体保护条件下,将液态金属加热至熔点以上,搅拌分散;
    步骤3:在惰性气体保护条件下,向液态金属中顺序加入粘结剂、偶联剂和分散润湿剂,添加完毕后充分分散;
    步骤4:在惰性气体保护条件下,向上述制备好的混合液中缓慢加入导电填料和磁场屏蔽填料,添加完毕后搅拌1~2h,然后将混合物转移到带有惰性气体保护的行星球磨机中,以氧化锆颗粒为研磨介质,研磨2~4h。
  9. 根据权利要求8所述的制备方法,其特征在于,
    步骤2中,利用顶置式分散机在500~1000r/min转速条件下搅拌30~60min;
    步骤3中,在1500~2000r/min转速条件下分散20~30min;
    步骤4中,在1500~2000r/min转速下搅拌1~2h。
  10. 权利要求1~7任一项所述电磁屏蔽涂层材料的应用,其特征在于,该涂层材料涂布在塑料、橡胶、陶瓷、混凝土、砖块、玻璃、纸张、纺织品、皮革上,涂布的方式为直接喷涂、刷涂、滚涂或浸涂。
PCT/CN2018/090293 2017-08-17 2018-06-07 一种电磁屏蔽涂层材料及其制备方法 WO2019033834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710707886.7 2017-08-17
CN201710707886.7A CN107573745B (zh) 2017-08-17 2017-08-17 一种电磁屏蔽涂层材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019033834A1 true WO2019033834A1 (zh) 2019-02-21

Family

ID=61034602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090293 WO2019033834A1 (zh) 2017-08-17 2018-06-07 一种电磁屏蔽涂层材料及其制备方法

Country Status (2)

Country Link
CN (1) CN107573745B (zh)
WO (1) WO2019033834A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185914A (zh) * 2021-04-28 2021-07-30 西北工业大学 一种纳米化液态金属自修复防污涂层及其制备方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573745B (zh) * 2017-08-17 2018-09-11 北京梦之墨科技有限公司 一种电磁屏蔽涂层材料及其制备方法
CN108801514A (zh) * 2018-03-27 2018-11-13 中国科学院宁波材料技术与工程研究所 一种弹性应力分布传感阵列及其制备方法
CN108384422B (zh) * 2018-03-28 2020-06-02 中车青岛四方机车车辆股份有限公司 一种轨道车辆用低频电磁屏蔽涂料及其制备方法
CN108457079B (zh) * 2018-04-27 2021-04-02 中国科学院理化技术研究所 一种液态金属/碳纤维复合材料及其制备方法和应用
CN108893030A (zh) * 2018-06-01 2018-11-27 广东石成科技有限公司 一种钴液态金属环氧树脂及其制备方法
CN108715668A (zh) * 2018-06-01 2018-10-30 广东石成科技有限公司 一种铁钴混合液态金属环氧树脂及其制备方法
CN108707313A (zh) * 2018-06-01 2018-10-26 广东石成科技有限公司 一种镍钴混合液态金属环氧树脂及其制备方法
CN108715669A (zh) * 2018-06-01 2018-10-30 广东石成科技有限公司 一种铁钴镍混合液态金属环氧树脂及其制备方法
CN108707314A (zh) * 2018-06-01 2018-10-26 广东石成科技有限公司 一种镍液态金属环氧树脂及其制备方法
CN108690329A (zh) * 2018-06-01 2018-10-23 广东石成科技有限公司 一种铁镍混合液态金属环氧树脂及其制备方法
CN108951282A (zh) * 2018-06-12 2018-12-07 中国电子科技集团公司第三十三研究所 一种石墨烯/碳纳米管复合电磁屏蔽纸及其制备方法
CN108986949A (zh) * 2018-06-15 2018-12-11 北京梦之墨科技有限公司 一种导电复合材料及其制备方法
CN108878518B (zh) * 2018-06-29 2020-07-07 北京梦之墨科技有限公司 一种电极材料及电极制作方法
CN109054710A (zh) * 2018-07-05 2018-12-21 广东石成科技有限公司 一种石墨烯复合材料和其制备方法及其作为导磁胶的应用
CN108951196B (zh) * 2018-07-20 2019-08-16 北京梦之墨科技有限公司 一种屏蔽织物及其制备方法
CN110769663B (zh) * 2018-07-27 2021-07-20 中国科学院理化技术研究所 可回收的电磁屏蔽用液态金属浆料及其制备方法和应用
CN108751749A (zh) * 2018-08-03 2018-11-06 北京梦之墨科技有限公司 一种导电玻璃纤维及其制备方法
CN108990403B (zh) * 2018-08-13 2024-02-23 北京梦之墨科技有限公司 一种电磁屏蔽结构
CN109068556A (zh) * 2018-09-18 2018-12-21 北京梦之墨科技有限公司 一种电磁屏蔽袋
CN109068555A (zh) * 2018-09-18 2018-12-21 北京梦之墨科技有限公司 一种电磁屏蔽箱
CN109217637A (zh) * 2018-09-21 2019-01-15 东莞方凡智能科技有限公司 具备电磁屏蔽性能的轻质变频器
CN109627829A (zh) * 2018-11-15 2019-04-16 云南科威液态金属谷研发有限公司 一种液态金属导电涂料及其制备方法和应用
CN109675771B (zh) * 2018-11-21 2022-04-22 中国科学院理化技术研究所 一种液态金属涂层的处理方法及其应用
CN109548394B (zh) * 2018-11-27 2020-06-12 湖南国盛石墨科技有限公司 一种柔性pu石墨烯电磁屏蔽材料及其制备方法
CN109608676B (zh) * 2018-12-03 2022-03-22 湖南国盛石墨科技有限公司 柔性pc石墨烯涂覆电磁屏蔽膜材料及其制备方法
CN111462934B (zh) * 2019-01-18 2021-06-01 北京梦之墨科技有限公司 导电浆料及其制备方法、可穿戴电子电路及其diy套件
KR20210106424A (ko) * 2019-01-18 2021-08-30 헨켈 아이피 앤드 홀딩 게엠베하 신장성 전기 전도성 잉크 조성물
CN109912866A (zh) * 2019-03-04 2019-06-21 唐山烯鹏石墨烯科技有限公司 丁苯粒子/石墨烯/铝复合材料及其制备方法
CN109874288B (zh) * 2019-04-12 2020-09-15 佘琪春 吸波屏蔽材料、电子设备、生活电器及防辐射服
CN110358380A (zh) * 2019-04-24 2019-10-22 深圳市朗奥洁净科技股份有限公司 水性涂料
CN110965004B (zh) * 2019-09-04 2022-05-24 扬州斯帕克实业有限公司 一种耐高温腐蚀Mg-Pb-Al-B核屏蔽材料的制备方法
CN110605400B (zh) * 2019-09-25 2022-05-31 苏州大学 一种液态金属纳米液滴大规模制备方法
CN110885623A (zh) * 2019-12-14 2020-03-17 中国电子科技集团公司第三十三研究所 一种墙用电磁屏蔽环保涂料及其制备方法
CN113025088A (zh) * 2021-03-09 2021-06-25 昆明理工大学 一种液态金属屏蔽辐射涂层材料及其制备方法
CN115340851B (zh) * 2021-05-12 2024-05-28 上海交通大学 一种基于表面化学改性剂的低熔点金属复合热界面材料及其制备
CN114031360A (zh) * 2021-09-28 2022-02-11 瓦克米乐(东莞)建材有限公司 一种红外线反射杀菌彩色装饰砼及其制备方法和铺装工艺
CN114539839A (zh) * 2022-01-21 2022-05-27 宁国市茂发装饰材料有限公司 一种抗菌超薄防火水性涂料及制备方法
CN115304998A (zh) * 2022-08-09 2022-11-08 国网江西省电力有限公司电力科学研究院 一种兼具电磁屏蔽功能的风机叶片防覆冰涂料及其制备方法
CN115193671A (zh) * 2022-08-09 2022-10-18 云南省基础测绘技术中心 一种实现大型无人机航摄仪屏蔽电磁干扰的方法
CN115838511A (zh) * 2023-02-23 2023-03-24 四川大学 一种高压电缆半导电屏蔽料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1412254A (zh) * 2001-10-17 2003-04-23 四川大学 低频电磁波磁屏蔽复合涂料及其制备方法
CN101262957A (zh) * 2005-08-24 2008-09-10 A.M.兰普股份有限公司 生产具有导电涂层的制品的方法
CN101441914A (zh) * 2008-09-17 2009-05-27 安泰科技股份有限公司 一种非晶软磁合金涂层及其制备方法
CN101747619A (zh) * 2008-12-10 2010-06-23 第一毛织株式会社 Emi/rfi屏蔽树脂复合材料及使用其制得的模制品
CN101818004A (zh) * 2010-04-30 2010-09-01 中国人民解放军第三军医大学 一种电磁屏蔽功能涂料及其制备方法
CN204231864U (zh) * 2014-11-25 2015-03-25 北京依米康科技发展有限公司 一种电磁屏蔽膜
US20150231726A1 (en) * 2014-02-19 2015-08-20 Nisshin Steel Co., Ltd. METHOD FOR PRODUCING ARC-WELDED Zn-Al-Mg ALLOY COATED STEEL PLATE STRUCTURAL MEMBER
CN107573745A (zh) * 2017-08-17 2018-01-12 北京梦之墨科技有限公司 一种电磁屏蔽涂层材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291136A (ja) * 2005-04-14 2006-10-26 Yasuhiro Shimada 光触媒消臭及び除菌機能付き熱線・紫外線遮蔽膜形成用塗布液及びこれを用いた膜、基材
CN103333574B (zh) * 2013-06-25 2016-03-09 丹阳市佳美化工有限公司 防屏蔽导电涂料
JP2018100987A (ja) * 2015-04-23 2018-06-28 コニカミノルタ株式会社 遮熱フィルム用塗布液、遮熱フィルム用塗布液の製造方法及び赤外線遮蔽体
CN105505054A (zh) * 2015-12-07 2016-04-20 宁波墨西科技有限公司 一种电磁屏蔽涂层的制备方法
CN106554717B (zh) * 2016-11-08 2018-07-10 南京信息工程大学 一种金属表面涂覆用吸波涂料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1412254A (zh) * 2001-10-17 2003-04-23 四川大学 低频电磁波磁屏蔽复合涂料及其制备方法
CN101262957A (zh) * 2005-08-24 2008-09-10 A.M.兰普股份有限公司 生产具有导电涂层的制品的方法
CN101441914A (zh) * 2008-09-17 2009-05-27 安泰科技股份有限公司 一种非晶软磁合金涂层及其制备方法
CN101747619A (zh) * 2008-12-10 2010-06-23 第一毛织株式会社 Emi/rfi屏蔽树脂复合材料及使用其制得的模制品
CN101818004A (zh) * 2010-04-30 2010-09-01 中国人民解放军第三军医大学 一种电磁屏蔽功能涂料及其制备方法
US20150231726A1 (en) * 2014-02-19 2015-08-20 Nisshin Steel Co., Ltd. METHOD FOR PRODUCING ARC-WELDED Zn-Al-Mg ALLOY COATED STEEL PLATE STRUCTURAL MEMBER
CN204231864U (zh) * 2014-11-25 2015-03-25 北京依米康科技发展有限公司 一种电磁屏蔽膜
CN107573745A (zh) * 2017-08-17 2018-01-12 北京梦之墨科技有限公司 一种电磁屏蔽涂层材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185914A (zh) * 2021-04-28 2021-07-30 西北工业大学 一种纳米化液态金属自修复防污涂层及其制备方法
CN113185914B (zh) * 2021-04-28 2021-12-28 西北工业大学 一种纳米化液态金属自修复防污涂层及其制备方法

Also Published As

Publication number Publication date
CN107573745B (zh) 2018-09-11
CN107573745A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
WO2019033834A1 (zh) 一种电磁屏蔽涂层材料及其制备方法
CN107578838B (zh) 一种低成本可回收的导电浆料及其制备方法
CN109627829A (zh) 一种液态金属导电涂料及其制备方法和应用
WO2021131716A1 (ja) 固体電解質組成物、固体電解質組成物の製造方法、および固体電解質部材の製造方法
Wen et al. Synthesis of polypyrrole nanoparticles and their applications in electrically conductive adhesives for improving conductivity
MX2008002344A (es) Materiales conductores.
TW201042665A (en) Electroconductive paste composition and the method of producing the same
CN104449022B (zh) 一种超低碳管含量碳系导电涂料及其制备方法
WO2014054618A1 (ja) 銀ハイブリッド銅粉とその製造法、該銀ハイブリッド銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路
Männl et al. Nanoparticle composites for printed electronics
CN110769528A (zh) 石墨烯水性发热膜导电浆料
CN104893428A (zh) 一种纳米银导电油墨及其制备方法
CN104200875A (zh) 一种低银含量石墨烯复合导电银浆及其制备方法
CN107922801A (zh) 导电粘合剂
CN110769663B (zh) 可回收的电磁屏蔽用液态金属浆料及其制备方法和应用
CN106830691B (zh) 一种石墨烯掺杂型电子浆料用玻璃粉及其制备方法
JP5070808B2 (ja) 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池
CN104988475A (zh) 一种铜镍合金纳米线柔性电极及其制备方法
JPWO2017033374A1 (ja) 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法
JP2017084587A (ja) 酸化銀泥漿、導電性ペースト及びその製造方法
CN108135119A (zh) 一种基于多孔石墨烯-合金硅的电磁屏蔽材料及其制备方法以及涂料
CN108822610A (zh) 一种石墨烯碳纳米管制成的电磁屏蔽发热浆料及其制备方法
CN104599742B (zh) 一种薄膜太阳能电池用导电浆料
Chiang et al. The effect of an anhydride curing agent, an accelerant, and non‐ionic surfactants on the electrical resistivity of graphene/epoxy composites
CN107922800A (zh) 经涂覆的铜颗粒及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18845505

Country of ref document: EP

Kind code of ref document: A1