WO2019027112A1 - 전지재료에서 발생되는 산소의 정량분석 장치 - Google Patents

전지재료에서 발생되는 산소의 정량분석 장치 Download PDF

Info

Publication number
WO2019027112A1
WO2019027112A1 PCT/KR2018/001066 KR2018001066W WO2019027112A1 WO 2019027112 A1 WO2019027112 A1 WO 2019027112A1 KR 2018001066 W KR2018001066 W KR 2018001066W WO 2019027112 A1 WO2019027112 A1 WO 2019027112A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pyrolyzer
sampling loop
switching valve
port
Prior art date
Application number
PCT/KR2018/001066
Other languages
English (en)
French (fr)
Inventor
홍성원
이경미
최낙희
안정애
김진일
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880007554.0A priority Critical patent/CN110234992A/zh
Priority to US16/479,049 priority patent/US11906492B2/en
Priority to JP2019532787A priority patent/JP6874937B2/ja
Publication of WO2019027112A1 publication Critical patent/WO2019027112A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0021Sample conditioning involving the use of a carrier gas for transport to the sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/125Preparation by evaporation pyrolising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus for quantitatively analyzing a gas, particularly oxygen, generated from a battery material.
  • gas components such as hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, ethane, ethylene, and propane are generated during operation.
  • Information on the composition and content of the gas thus generated can be used as a key evaluation index in battery development as a technology for evaluating the thermal structural degradation of the battery. Therefore, such information is useful for development of a battery material, optimization of a battery manufacturing process, and identification of a cause of a battery failure.
  • EGA-MS Evolved Gas Analysis Mass Spectroscopy
  • EGA-MS Evolved Gas Analysis Mass Spectroscopy
  • oxygen can be analyzed only by injecting standard gas.
  • Journal of Power Sources 195 (2010) 5049-5051; Journal of Power Sources 195 (2011) 2260-2263) discloses a method for qualitatively analyzing hydrogen, water, and carbon dioxide generated in a cathode material using a TPD-MS method However, it does not disclose a technique for quantitatively analyzing a gas using the EGA method.
  • Korean Patent Laid-Open Publication No. 10-2017-0041100 describes a gas sample injection device including a switching valve and a gas sampling loop for quantitative analysis of gas generated in a battery, The resulting gas is analyzed by gas chromatography (GC).
  • GC gas chromatography
  • Korean Patent Laid-Open Publication No. 10-2012-0010884 discloses a method for quantitatively analyzing acrylonitrile using pyrolysis GC of an acrylonitrile-butadiene rubber composition.
  • neither of these two publications discloses a technique for quantitatively analyzing a gas using the EGA method.
  • the present inventors have studied a device for quantitatively analyzing gas generated from a battery material by using the EGA method and found that a port valve and a sampling loop (sampling) are provided in the middle of a line where a carrier gas is supplied to a pyrolyzer, it is possible to quantitatively analyze the gas generated at a specific temperature when heat is applied to the battery material in the pyrolyzer by making it possible to always inject a certain amount of standard gas into the pyrolyzer by attaching a loop .
  • An object of the present invention is to provide a device for quantitatively analyzing a gas, particularly oxygen, generated at a specific temperature when heat is applied by a thermal decomposer in a battery material using the EGA method.
  • sampling loop is coupled to the switching valve and the switching valve is coupled to the pyrolyzer via a line supplying carrier gas to the pyrolyzer
  • the standard gas is delivered to the pyrolyzer in a predetermined amount by the switching valve and the sampling loop so that quantitative analysis of the gas generated in the pyrolyzer can be performed.
  • a device for quantitatively analyzing gas generated at a specific temperature when heat is applied is provided.
  • the standard gas is collected in the sampling loop and can be injected into the pyrolyzer together with the standard gas captured in the sampling loop as the carrier gas flows as the switching valve is switched.
  • the pyrolyzer may be an Evaporated Gas Analyzer (EGA), a commercial instrument of Frontier Lab, or a CDS company (www.cdsanalytical.com) or JAI (http://www.jai.co.jp) /english/index.html) may be used.
  • EVA Evaporated Gas Analyzer
  • CDS CDS company
  • JAI http://www.jai.co.jp
  • the battery material is a lithium-transition metal oxide (Li-metal oxide) LiMeO 2 which is a cathode material, and various materials such as NCM, LCO, LMO, LNO or a combination thereof are possible.
  • Li-metal oxide lithium-transition metal oxide
  • the gas generated at a specific temperature when heat is applied by the pyrolyzer in the battery material may be at least one selected from oxygen, carbon dioxide, carbon monoxide and water vapor.
  • the carrier gas is He, N 2 or Ar.
  • the EGA method which is usually used only for the qualitative analysis of the gas generated from the solid sample, is performed by applying heat to the battery material in the pyrolyzer by connecting the switching valve and the sampling loop to the pyrolyzer to inject the standard gas into the pyrolyzer But also to quantitatively analyze gases generated at specific temperatures.
  • FIG. 1 is a schematic diagram of an EGA-MS device according to the prior art.
  • FIG. 2 is a schematic diagram of a quantitative analysis apparatus according to one embodiment of the present invention.
  • FIGS. 3A to 3C illustrate the states of the switching valve and the sampling loop according to the operation of the quantitative analysis apparatus of FIG.
  • FIG. 4 shows data obtained by measuring oxygen generated from an NCM-based anode according to the prior art.
  • FIG. 5 shows data obtained by measuring the amount of oxygen generated in the NCM-based anode with the quantitative analysis apparatus according to the present invention.
  • Figure 6 shows a calibration curve for the molar ratio of oxygen and the detection area for standard gas (oxygen) according to one embodiment of the present invention.
  • the apparatus for quantitatively analyzing a gas generated in the battery material of the present invention comprises:
  • sampling loop is coupled to the switching valve and the switching valve is coupled to the pyrolyzer via a line supplying carrier gas to the pyrolyzer
  • the standard gas is collected in the sampling loop and can be injected into the pyrolyzer together with the standard gas captured in the sampling loop as the carrier gas flows as the switching valve is switched.
  • the pyrolyzer may be an Evaporated Gas Analyzer (EGA), a commercial instrument of Frontier Lab, or a CDS company (www.cdsanalytical.com) or JAI (http://www.jai.co.jp) /english/index.html) may be used.
  • EVA Evaporated Gas Analyzer
  • CDS CDS company
  • JAI http://www.jai.co.jp
  • the battery material is a lithium-transition metal oxide (Li-metal oxide) LiMeO 2 which is a cathode material, and various materials such as NCM, LCO, LMO, LNO or a combination thereof are possible.
  • Li-metal oxide lithium-transition metal oxide
  • the gas generated at a specific temperature when heat is applied by the pyrolyzer in the battery material may be at least one selected from oxygen, carbon dioxide, carbon monoxide and water vapor.
  • the carrier gas is He, N 2 or Ar.
  • FIG. 2 is a view schematically showing a quantitative analysis apparatus 1 according to one embodiment of the present invention.
  • a quantitative analysis apparatus 1 according to an embodiment of the present invention includes a pyrolyzer 10, a switching valve 100 coupled to a front end of a line 20 for supplying a carrier gas to a pyrolyzer, A sampling loop 110, and a vacuum pump 60 for vacuum depressurizing the sampling loop.
  • the pyrolyzer 10 may be an evolved gas analyzer (EGA) as an embodiment, a commercially available device of Frontier Lab, or a device manufactured by CDS (www.cdsanalytical.com) or JAI (http://www.jai.co. jp / english / index.html) can also be used.
  • EVA evolved gas analyzer
  • CDS www.cdsanalytical.com
  • JAI http://www.jai.co. jp / english / index.html
  • a standard gas control valve system is constructed for quantitative analysis of gas.
  • the quantitative analysis apparatus 1 is characterized in that the switching valve 100 and the sampling loop 110 are coupled to the front end of the line 20 for supplying the carrier gas to the pyrolyzer 10, 10), it is possible to quantitatively analyze the gas generated at a specific temperature when heat is applied to the sample.
  • the standard gas is injected into the pyrolyzer 10 by the switching valve 100 and the sampling loop 110 coupled to the front end of the line 20 for supplying the carrier gas to the pyrolyzer 10,
  • a calibration curve relating to the standard gas is prepared in a state in which no sample is placed in the sample tank 10.
  • the carrier gas is injected into the pyrolyzer 10 by the switching valve 100 and the sampling loop 110 coupled to the front end of the line 20 supplying the carrier gas to the pyrolyzer 10, 10), the amount of gas generated in the sample can be calculated by pyrolysis of the sample to generate gas, and then using the calibration curve for the standard gas prepared above.
  • the standard gas can be supplied to the pyrolyzer 10 by a predetermined amount by the switching valve 100 and the sampling loop 110, the amount of oxygen generated in the gas generated from the sample in the pyrolyzer 10 It can be quantified.
  • the switching valve 100 regulates the standard gas to be trapped in the sampling loop 110 and controls the gas to be injected into the pyrolyzer 10 by a predetermined amount.
  • the switching valve 100 is not particularly limited as long as it is a valve used in the related art. However, a six-port valve, a 9-port valve or a 10-port valve can be used as an embodiment.
  • a number corresponding to each port of the six-port valve 100 as an embodiment is named for convenience, and a port number is designated in a clockwise direction around the port 1.
  • a port 1 is connected to a carrier gas supply line 30, a port 2 and a port 5 are connected to a sampling loop 110, a port 3 is connected to a standard gas supply line 40,
  • a vacuum pump 60 is connected via a pump line 50 and a line 20 is connected to the port 6 for supplying gas to the pyrolyzer.
  • Port valve 100 as one embodiment, the present invention is not limited to this, and a plurality of switching valves may be used according to various environments in which the present invention is implemented, It is possible to design various components according to the environment in which the present invention is implemented with respect to which port among the various ports of the switching valve 100 is connected.
  • the material and the volume of the sampling loop 110 are not limited.
  • the material of the sampling loop 110 may be selected from the group consisting of metal materials such as stainless steel, copper steel, carbon steel, aluminum steel, and alloy steel, A material having high strength such as a polymer resin such as a polyester resin or a polyester resin can be used.
  • the volume of the sampling loop 110 should be appropriately adjusted since it affects the accuracy of the analysis and generally less than 1,000 ⁇ L (1 mL), for example, 50 ⁇ L, 250 ⁇ L, 500 ⁇ L may be used. Lower the pressure of the standard gas when the sampling loop is large, and increase the pressure of the standard gas when the loop is small.
  • the content of the standard gas filled in the sampling loop can be variously changed in consideration of the content of the gas generated in the battery material.
  • the vacuum pump 60 is connected to the switching valve 100 and can vacuum-depress the sampling loop 110.
  • the vacuum pump 60 is generally constructed using a rotary pump (degree of vacuum: about 10 -2 mbar, 20 L / min), but is not limited thereto and may be modified or changed according to various environments to which the present invention is applied. It is possible.
  • the quantitative analysis apparatus 1 can also control the switching of the switching valve 100 and the opening and closing of the valve 40a and the valve 50a in such a manner as shown in Figures 3A to 3C And may further include an actuator (not shown) or a control device (not shown).
  • the valve may be a solenoid valve or a diaphragm valve.
  • the present invention provides a method for quantitatively analyzing gas generated in a sample in a pyrolyzer 10 by coupling the switching valve 100 and the sampling loop 110 according to the present invention to a pyrolyzer 10, Is a novel concept which is not applied to the pyrolysis analysis method of the present invention.
  • FIG. 3A is a diagram showing a state in which the sampling loop 110 is vacuum-reduced first.
  • the valve 40a provided in the standard gas supply line 40 connected to the port 3 of the switching valve 100 is closed and the vacuum pump line connecting the port 4 of the switching valve 100 and the vacuum pump 60
  • the valve 50a provided in the vacuum pump 50 is opened so that the vacuum pump line 50 connected to the port 4, which is a portion indicated in red in FIG. 3A by the vacuum pump 60,
  • the connection portion of the port 4 and the port 5, and the sampling loop 110 connected to the port 2 and the port 5 are in the vacuum decompression state. Since the port 1 and the port 6 of the switching valve 100 are connected to each other, the carrier gas is supplied to the catalytic gas supply line 30, the port 1, the port 6 and the line 20 in the order of the pyrolyzer 10 ).
  • FIG. 3B shows a state in which the standard gas is filled in the vacuum decompressed sampling loop 110, which is a state following the state shown in FIG. 3A.
  • the valve 40a provided in the standard gas supply line 40 connected to the port 3 is opened and the valve 40 provided in the vacuum pump line 50 connecting between the port 4 of the switching valve 100 and the vacuum pump 60
  • the portion between the valve 50a and the port 4 is filled with the standard gas supplied through the standard gas supply line 40 connected to the port 3.
  • the carrier gas is supplied to the carrier gas supply line 30, the port 1, the port 6, And is constantly supplied to the pyrolyzer 10.
  • 3C is a state after the state shown in FIG. 3B, in which the switching valve 100 is switched so that the standard gas in the sampling loop 110 is pushed through the carrier gas and supplied to the pyrolyzer 10 Respectively.
  • the switching valve 100 is switched, the connection state between the ports is switched from the state shown in Fig. 3B to the state shown in Fig. 3C. Accordingly, the carrier gas supplied to the port 1 does not directly move to the port 6, but the port 1, the port 2, the sampling loop 110, the port 5, the port 6 And is supplied to the pyrolyzer 10 through the line 20 together with the standard gas that has been filled in the sampling loop 110 in the state of FIG.
  • the calibration curve for the standard gas can be calculated by repeating the same procedure by filling the sampling loop with a standard gas having a different oxygen concentration.
  • An example of a calibration curve relating to the detection area and the molar ratio of oxygen with respect to the standard gas (oxygen) is shown in Fig.
  • the switching valve 100 is switched to evacuate the sampling loop 110 again as shown in FIG. 3A, and then the switching valve 100 is switched so that the green
  • the carrier gas moves in the order of port 1, port 2, vacuum decompressed sampling loop 110, port 5, and port 6, and is supplied to the pyrolyzer 10 through the line 20, (For example, oxygen gas) of the gas generated by thermally decomposing the battery material in the pyrolyzer 10 is detected.
  • the area of the detected gas can be quantitatively analyzed using the calibration curve of the standard gas.
  • EGA technology was used to qualitatively analyze gas generated from a solid sample using an EGA-MS device (see FIG. 1), and to compare the gas content relative to a reference sample.
  • this method can not quantitatively analyze the gas generated in the battery material.
  • the content of oxygen generated in the battery material was analyzed as follows using a quantitative analysis apparatus (see FIG. 2) according to one embodiment of the present invention.
  • MFC mass flow controller
  • m / z 32, which is the molecular ion value of oxygen, was extracted from the mass spectrometry and the area thereof was calculated. This procedure was repeated for different concentrations of standard gases to obtain calibration curves according to area values and concentrations.
  • NCM NCM was charged into a lithium ion battery and decomposed in a glove box in an Ar (argon) environment.
  • the anode was washed with DMC and then dried under reduced pressure to completely remove the DMC.
  • FIG. 5 is a graph showing the amount of generated oxygen according to the temperature in the pyrolyzer
  • FIG. 6 is a result of quantitative analysis of the amount of generated oxygen by using a calibration curve using a standard gas.
  • the oxygen generated in the anode can be quantitatively analyzed by combining the switching valve and the sampling loop in the pyrolyzer through the present embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 전지재료, 특히 양극재료에서 발생되는 가스, 특히 산소의 정량분석 장치에 관한 것으로, 열분해기에 스위칭 밸브와 샘플링 루프를 추가 설치함으로써, 고체 시료에서 발생되는 가스의 정성분석에만 사용되었던 EGA법을 전지재료에서 열분해기에 의해 열을 가할 시 특정 온도에서 발생되는 가스의 정량분석에도 이용할 수 있게 되었다.

Description

전지재료에서 발생되는 산소의 정량분석 장치
본 출원은 2017년 7월 31일자로 출원된 한국 특허 출원 제10-2017-0096955호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지재료로부터 발생되는 가스, 특히 산소를 정량분석하는 장치에 관한 것이다.
리튬이온전지는 작동 시에 수소, 산소, 질소, 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 프로판 등의 가스 성분이 발생된다. 이렇게 발생된 가스의 조성 및 함량에 대한 정보는 전지의 열적 구조적 퇴화를 평가할 수 있는 기술로서 전지 개발에 있어 핵심적 평가지표로서 작용할 수 있다. 따라서, 이러한 정보는 전지재료의 개발, 전지 제조공정의 최적화, 전지 불량원인의 파악 등에 있어 유용하게 이용된다.
전지 내부에서 발생되는 가스를 정량분석하기 위해서는 발생된 가스를 포집하고 포집된 가스를 분석해야 한다. 일반적으로, 고체 시료를 정량분석하거나 고체 시료에서 발생되는 가스를 정성분석하는 데에는 EGA-MS(evolved gas analysis mass spectroscopy)법을 사용한다. 그런데, 전지재료에서 발생되는 가스는 기존의 열분해분석(EGA)법을 이용한 정량분석이 불가능하며, 특히 산소는 표준가스의 주입을 통해서만 분석이 가능하다. 문헌(참조: Journal of Power Sources 195 (2010) 5049-5051; Journal of Power Sources 195 (2011) 2260-2263)은 TPD-MS법을 이용하여 양극재료에서 발생되는 수소, 물 및 이산화탄소를 정성분석하는 방법을 기재하고 있으나, EGA법을 이용한 가스의 정량분석 기술에 대해서는 개시하고 있지 않다.
대한민국 공개특허공보 제10-2017-0041100호는 전지에서 발생하는 가스의 정량분석을 위한, 개폐 밸브(스위칭 밸브) 및 가스 샘플링 루프를 포함하는 가스시료 주입장치를 기재하고 있는데, 이 장치는 전지에서 발생하는 가스를 가스 크로마토그래피(GC)로 분리하여 분석하는 것이다. 추가로, 대한민국 공개특허공보 제10-2012-0010884호는 아크릴로니트릴-부타디엔 고무 조성물의 열분해 GC를 이용한 아크릴로니트릴의 정량분석 방법을 기재하고 있다. 그러나, 이들 두 공개특허공보 역시 EGA법을 이용한 가스의 정량분석 기술에 대해서는 개시하고 있지 않다.
본 발명자들은 EGA법을 활용하여 전지재료에서 발생되는 가스를 정량분석하기 위한 장치를 연구한 결과, 열분해기로 캐리어 가스(carrier gas)가 공급되는 라인 중간에 스위칭 밸브(port valve)와 샘플링 루프(sampling loop)를 달아서 항상 일정한 양의 표준 가스가 열분해기로 주입될 수 있도록 함으로써, 열분해기 내의 전지재료에 열을 가할 시 특정 온도에서 발생되는 가스를 정량분석하는 것이 가능하다는 것을 밝혀 내고 본원 발명을 완성하게 되었다.
본 발명은 EGA법을 이용하여 전지재료에서 열분해기에 의해 열을 가할 시 특정 온도에서 발생되는 가스, 특히 산소를 정량분석하는 장치를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은
열분해기;
상기 열분해기로 캐리어 가스를 공급하는 라인;
표준 가스를 포집하기 위한 샘플링 루프;
상기 샘플링 루프에 포집된 표준 가스를 상기 캐리어 가스와 함께 상기 열분해기로 주입하기 위한 스위칭 밸브; 및
상기 샘플링 루프를 진공 감압하기 위한 진공 펌프를 포함하고,
상기 샘플링 루프는 상기 스위칭 밸브에 결합되고, 상기 스위칭 밸브는 상기 열분해기로 캐리어 가스를 공급하는 라인을 통해 상기 열분해기에 결합되고,
상기 열분해기 내에서의 시료에서 발생하는 가스의 정량 분석이 가능하도록, 상기 스위칭 밸브 및 상기 샘플링 루프에 의하여 상기 표준 가스가 일정한 양으로 상기 열분해기로 전달되는 것을 특징으로 하는, 열분해기 내의 전지재료에 열을 가할 시 특정 온도에서 발생되는 가스를 정량분석하는 장치를 제공한다.
한 실시양태에 따르면, 상기 샘플링 루프에 표준 가스가 포집되고, 스위칭 밸브가 스위칭됨에 따라 캐리어 가스가 흐르면서, 상기 샘플링 루프에 포집된 표준 가스와 함께 상기 열분해기로 주입될 수 있다.
한 실시양태에 따르면, 상기 열분해기는 EGA(Evoloved Gas Analyzer)일 수 있고, Frontier Lab사의 상용기기, 또는 CDS사(www.cdsanalytical.com)나 JAI사 (http://www.jai.co.jp/english/index.html)의 열분해기도 사용할 수 있다.
한 실시양태에 따르면, 상기 전지재료는 양극 재료인 리튬 전이금속 산화물 (Li-metal Oxide compounds_LiMeO2)로서, 예를 들어, NCM, LCO, LMO, LNO 또는 이들의 조합 등 다양한 재료가 가능하다.
한 실시양태에 따르면, 상기 전지재료에서 열분해기에 의해 열을 가할 시 특정 온도에서 발생되는 가스는 산소, 이산화탄소, 일산화탄소 및 수증기로부터 선택되는 하나 이상일 수 있다.
한 실시양태에 따르면, 상기 캐리어 가스는 He, N2 또는 Ar이다.
본 발명에서는 열분해기에 스위칭 밸브와 샘플링 루프를 결합시켜 표준 가스가 일정량으로 열분해기로 주입되도록 함으로써, 통상 고체 시료에서 발생되는 가스의 정성분석에만 사용되었던 EGA법을 열분해기 내의 전지재료에 열을 가할 시 특정 온도에서 발생되는 가스를 정량분석하는 데에도 이용할 수 있게 되었다.
도 1은 종래 기술에 따른 EGA-MS 장치의 개략도이다.
도 2는 본 발명의 한 실시양태에 따른 정량분석 장치의 개략도이다.
도 3a 내지 도 3c은 도 2에 따른 정량분석 장치의 작동에 따른 스위칭 밸브와 샘플링 루프의 상태를 도시한 것이다.
도 4는 종래 기술에 따라 NCM계 양극에서 발생되는 산소를 측정한 데이터를 나타낸 것이다.
도 5는 NCM계 양극에서 발생한 산소량을 본 발명에 따른 정량분석 장치로 측정한 데이터를 나타낸 것이다.
도 6은 본 발명의 한 실시양태에 따른 표준 가스(산소)에 관한 검출 면적과 산소의 몰 비율에 관한 검량곡선(calibration curve)을 나타낸 것이다.
이하, 본 발명의 정량분석 장치에 대해 상세하게 설명한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시양태를 가질 수 있는 바, 특정 실시양태들을 예시하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.
앞서 설명한 바와 같이 종래 기술로는 EGA법으로는 전지재료에서 발생되는 가스의 정량분석을 수행할 수 없었다. 이에, 본 발명에서는 열분해기에 스위칭 밸브와 샘플링 루프를 설치하여 표준 가스를 일정량으로 열분해기로 주입함으로써, 전지재료에서 열분해기에 의해 열을 가할 시 특정 온도에서 발생되는 가스의 정량분석이 가능하다는 것을 확인하였다.
구체적으로 본 발명의 전지재료에서 발생되는 가스의 정량분석 장치는,
열분해기;
상기 열분해기로 캐리어 가스를 공급하는 라인;
표준 가스를 포집하기 위한 샘플링 루프;
상기 샘플링 루프에 포집된 표준 가스를 상기 캐리어 가스와 함께 상기 열분해기로 주입하기 위한 스위칭 밸브; 및
상기 샘플링 루프를 진공 감압하기 위한 진공 펌프를 포함하고,
상기 샘플링 루프는 상기 스위칭 밸브에 결합되고, 상기 스위칭 밸브는 상기 열분해기로 캐리어 가스를 공급하는 라인을 통해 상기 열분해기에 결합되고,
상기 열분해기 내에서의 시료에서 발생하는 가스의 정량 분석이 가능하도록, 상기 스위칭 밸브 및 상기 샘플링 루프에 의하여 상기 표준 가스가 일정한 양으로 상기 열분해기로 전달되는 것을 특징으로 하는, 전지재료에서 열분해기에 의해 열을 가할 시 특정 온도에서 발생되는 가스를 정량분석하는 장치를 제공한다.
한 실시양태에 따르면, 상기 샘플링 루프에 표준 가스가 포집되고, 스위칭 밸브가 스위칭됨에 따라 캐리어 가스가 흐르면서, 상기 샘플링 루프에 포집된 표준 가스와 함께 상기 열분해기로 주입될 수 있다.
한 실시양태에 따르면, 상기 열분해기는 EGA(Evoloved Gas Analyzer)일 수 있고, Frontier Lab사의 상용기기, 또는 CDS사(www.cdsanalytical.com)나 JAI사 (http://www.jai.co.jp/english/index.html)의 열분해기도 사용할 수 있다.
한 실시양태에 따르면, 상기 전지재료는 양극 재료인 리튬 전이금속 산화물 (Li-metal Oxide compounds_LiMeO2)로서, 예를 들어, NCM, LCO, LMO, LNO 또는 이들의 조합 등 다양한 재료가 가능하다.
한 실시양태에 따르면, 상기 전지재료에서 열분해기에 의해 열을 가할 시 특정 온도에서 발생되는 가스는 산소, 이산화탄소, 일산화탄소 및 수증기로부터 선택되는 하나 이상일 수 있다.
한 실시양태에 따르면, 상기 캐리어 가스는 He, N2 또는 Ar이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시양태에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시양태에 한정되지 않는다.
도 2는 본 발명의 한 실시양태에 따른 정량분석 장치(1)를 개략적으로 도시한 도면이다. 본 발명의 한 실시양태에 따른 정량분석 장치(1)는 열분해기(10), 열분해기로 캐리어 가스를 공급하는 라인(20)의 전단에 결합된 스위칭 밸브(100), 스위칭 밸브(100)에 결합된 샘플링 루프(110), 및 샘플링 루프를 진공 감압하기 위한 진공 펌프(60)를 포함한다.
열분해기(10)는 한 실시양태로서 EGA(Evoloved Gas Analyzer)일 수 있고, Frontier Lab사의 상용기기, 또는 CDS사(www.cdsanalytical.com)나 JAI사 (http://www.jai.co.jp/english/index.html)의 열분해 기기도 사용할 수 있다. 또한, 본 발명에 따르면, MS(Mass Spectrometry) 기기나 GC(Gas Chromatography) 기기 없이도, EGA 기기에 샘플링 루프(110) 및 스위칭 밸브(100)를 결합하는 방식으로 구현할 수도 있고, 추가적으로 EGA에 MS 기기나 GC 기기, 또는 IR(FT-IR, NIR)과 각종 가스 센서(O2 센서, CO2 센서 등), 레이저 분석기(산소 분석용) 등을 함께 적용할 수 있다(O2 센서 적용에 대해서는 http://www.hitouch.co.kr/product/detail02?seq=321&code=020301 참조).
한편, 종래 기술에 따르면 열분해기로 표준 가스를 정량적으로 주입하기 어려워 시료를 열분해할 때 시료에서 발생하는 가스는 정성적으로만 분석할 수 있었다. 기본적으로 시료를 열분해하게 되면 이로부터 발생하는 가스는 작은 기체 분자 단위로 쪼개지는데, 이러한 기체를 열분해기로 정량적으로 넣을 수가 없었기 때문이다. 이에, 본 발명에서는 가스의 정량분석을 위해 표준 가스 제어용 밸브 시스템을 구축한 것이다.
이에, 본 발명에 따른 정량분석 장치(1)는, 열분해기(10)로 캐리어 가스를 공급하는 라인(20)의 전단에 스위칭 밸브(100) 및 샘플링 루프(110)를 결합하여, 열분해기(10) 내의 시료에 열을 가할 시 특정 온도에서 발생되는 가스를 정량적으로도 분석할 수 있도록 하였다.
우선, 열분해기(10)로 캐리어 가스를 공급하는 라인(20)의 전단에 결합된 스위칭 밸브(100) 및 샘플링 루프(110)에 의하여 열분해기(10)에 표준 가스가 주입되도록 하면서, 열분해기(10)에는 시료를 두지 않은 상태에서 표준 가스에 관한 검량곡선(calibration curve)을 먼저 작성한다. 예를 들어, 후술할 도 6은, 한 실시양태로서 표준 가스(산소)에 관한 검출 면적과 산소의 몰 비율에 관한 검량곡선을 도시한 것이다.
그 다음, 열분해기(10)로 캐리어 가스를 공급하는 라인(20)의 전단에 결합된 스위칭 밸브(100) 및 샘플링 루프(110)에 의해 열분해기(10)로 캐리어 가스를 주입하면서 열분해기(10)에서는 시료를 열분해하여 가스를 발생시킨 후 위에서 작성된 표준 가스에 관한 검량곡선을 이용하여 시료에서 발생하는 가스의 양을 산출해 낼 수 있다.
정리하면, 스위칭 밸브(100)와 샘플링 루프(110)에 의해 표준 가스를 일정한 양으로 열분해기(10)로 공급할 수 있으므로, 결과적으로 열분해기(10) 내의 시료에서 발생하는 가스 중 산소의 발생량을 정량할 수 있는 것이다.
스위칭 밸브(100)는 표준 가스가 샘플링 루프(110) 내에 포집되도록 조절하는 한편, 상기 가스가 열분해기(10)로 일정량 주입될 수 있도록 조절하는 역할을 한다. 스위칭 밸브(100)로서는, 당업계에서 사용하는 밸브라면 특별한 제한은 없으나, 일 실시양태로서 6-포트 밸브(six-port valve), 9-포트 밸브 또는 10-포트 밸브를 사용할 수 있다.
도 2를 참조하면, 일 실시양태로서의 6-포트 밸브(100)의 각 포트에 해당하는 번호는 편의상 명명되었고, 포트 1을 중심으로 시계방향으로 포트 번호를 명명하였다. 포트 1에는 캐리어 가스 공급 라인(30)이 연결되어 있고, 포트 2와 포트 5에는 샘플링 루프(110)가 연결되어 있고, 포트 3에는 표준 가스 공급 라인(40)이 연결되어 있고, 포트 4에는 진공 펌프 라인(50)을 통하여 진공 펌프(60)가 연결되어 있고, 포트 6에는 열분해기로 가스를 공급하는 라인(20)이 연결되어 있다. 도 2에서는 일 실시양태로서 하나의 6-포트 밸브(100)로 조절하는 예를 도시하였지만, 본 발명은 이에 한정되지 않고, 본 발명이 구현되는 다양한 환경에 따라 복수 개의 스위칭 밸브가 사용될 수 있으며, 각 구성요소들이 스위칭 밸브(100)의 여러 포트들 중 어떠한 포트에 연결되는지에 관하여서도 본 발명이 구현되는 환경에 맞게 설계할 수 있는 등 다양한 변형, 변경이 가능하다.
샘플링 루프(110)의 재질 및 부피는 제한이 없으나, 진공 감압시 형태 및 부피의 변형이 없는 스테인레스강, 구리강, 탄소강, 알루미늄강, 합금강 등의 금속 재질이나 폴리에테르 에테르 케톤(PEEK), 폴리이미드 등의 폴리머 수지 등의 강도가 높은 재질을 사용할 수 있다. 샘플링 루프(110)의 부피는 분석의 정확도에 영향을 미치기 때문에 적절히 조절되어야 하며, 일반적으로 1,000μL(1mL) 이하, 예를 들어, 50μL, 250μL, 500μL를 사용할 수 있다. 샘플링 루프가 커지면 표준 가스의 압력을 낮추고, 루프가 작으면 표준 가스의 압력을 높힌다. 샘플링 루프에 채우는 표준 가스의 함량은 전지재료에서 발생하는 가스의 함량을 고려하여 다양하게 변경할 수 있다.
진공 펌프(60)는 스위칭 밸브(100)에 연결되어 있고 샘플링 루프(110)를 진공 감압할 수 있다. 진공 펌프(60)는 일반적으로 회전 펌프(rotary pump)를 사용(진공도: 약 10-2mbar, 20L/min)하나, 이에 한정되지는 않으며, 본 발명이 적용되는 다양한 환경에 따라 변형, 변경이 가능하다.
또한, 본 발명에 따른 정량분석 장치(1)는, 도 3a 내지 도 3c에 도시된 바와 같은 방식으로의 스위칭 밸브(100)의 스위칭 및 밸브(40a)와 밸브(50a)의 개폐를 제어할 수 있는 작동기(도시하지 않음)나 제어 장치(도시하지 않음)를 더 포함할 수도 있다. 상기 밸브는 전자 밸브(solenoid valve) 또는 다이아프램 밸브(diaphram valve)를 사용할 수 있다.
한편, 이러한 본 발명에 따른 스위칭 밸브(100) 및 샘플링 루프(110)를 열분해기(10)에 결합하여 열분해기(10) 내의 시료에서 발생하는 가스를 정량적으로 분석할 수 있도록 한 발명은, 종래의 열분해분석법에서는 적용되지 않았던 신규한 발명으로서 새로운 개념의 분석 장치이다.
도 3a 내지 도 3c에서는, 도 2에 따른 정량분석 장치(1)의 작동에 따른 스위칭 밸브(100)와 샘플링 루프(110)의 상태에 대하여 구체적으로 설명한다. 편의상, 도 3a 내지 도 3c에서, 도 2와 중복되는 일부 구성요소 및 참조 번호는 생략한다.
도 3a는, 먼저 샘플링 루프(110)를 진공 감압하는 상태를 도시하는 도면이다. 스위칭 밸브(100)의 포트 3에 연결된 표준 가스 공급 라인(40)에 구비된 밸브(40a)는 폐쇄되고, 스위칭 밸브(100)의 포트 4와 진공 펌프(60) 사이를 연결하는 진공 펌프 라인(50)에 구비된 밸브(50a)는 개방됨으로써, 진공 펌프(60)에 의해, 도 3a에서 붉은색으로 표시된 부분인, 포트 4와 연결된 진공 펌프 라인(50), 포트 2와 포트 3의 연결부, 포트 4와 포트 5의 연결부, 및 포트 2와 포트 5에 연결된 샘플링 루프(110)는 진공 감압 상태가 된다. 한편, 스위칭 밸브(100)의 포트 1과 포트 6은 서로 연결되어 있는 상태이므로, 캐리어 가스는, 캐리어 가스 공급 라인(30), 포트 1, 포트 6, 라인(20)의 순서로 열분해기(10)로 일정하게 공급된다.
도 3b는, 도 3a에 도시된 상태에 이어 진행되는 상태로서, 진공 감압된 샘플링 루프(110) 내에 표준 가스를 채우는 상태를 도시한다. 포트 3에 연결된 표준 가스 공급 라인(40)에 구비된 밸브(40a)는 개방되고, 스위칭 밸브(100)의 포트 4와 진공 펌프(60) 사이를 연결하는 진공 펌프 라인(50)에 구비된 밸브(50a)는 폐쇄됨으로써, 도 3b에서 파란색으로 표시된 부분인, 포트 2와 포트 3의 연결부, 포트 4와 포트 5의 연결부, 포트 2와 포트 5에 연결된 샘플링 루프(110), 및 진공 펌프 라인(50) 중 밸브(50a)와 포트 4 사이의 부분은, 포트 3에 연결된 표준 가스 공급 라인(40)을 통해 공급되는 표준 가스로 채워지게 된다. 한편, 이때에도, 스위칭 밸브(100)의 포트 1과 포트 6은 서로 연결되어 있는 상태이므로, 캐리어 가스는, 캐리어 가스 공급 라인(30), 포트 1, 포트 6, 라인(20)의 순서로, 열분해기(10)로 일정하게 공급된다.
도 3c는, 도 3b에 도시된 상태에 이어 진행되는 상태로서, 스위칭 밸브(100)가 스위칭되어, 샘플링 루프(110) 내의 표준 가스가 캐리어 가스를 통해 밀려서 열분해기(10)로 공급되는 상태를 도시한다. 스위칭 밸브(100)가 스위칭됨으로써 각 포트 간의 연결 상태가, 도 3b에 도시한 상태에서 도 3c에 도시한 상태로 스위칭된다. 그에 따라, 포트 1로 공급되는 캐리어 가스가 포트 6으로 직접적으로 이동하는 것이 아니라, 도 3c에 초록색으로 표시된 부분과 같이, 포트 1, 포트 2, 샘플링 루프(110), 포트 5, 포트 6의 순서로 이동하면서, 도 3b 상태에서 샘플링 루프(110) 내에 채워져 있던 표준 가스와 함께, 라인(20)을 통해 열분해기(10)로 공급되게 된다. 산소 농도가 서로 다른 표준 가스를 샘플링 루프에 채워 동일 과정을 반복하여 표준 가스에 관한 검량곡선을 산출할 수 있다. 표준 가스(산소)에 관한 검출 면적과 산소의 몰 비율에 관한 검량곡선의 한 예를 도 6에 도시하였다.
표준 가스에 관한 검량곡선을 산출한 다음 스위칭 밸브(100)를 스위칭하여 도 3a에 도시된 바와 같이 샘플링 루프(110)를 다시 진공 감압하고, 그 다음 스위칭 밸브(100)를 스위칭하여 도 3c에 초록색으로 표시된 부분과 같이, 포트 1, 포트 2, 진공 감압된 샘플링 루프(110), 포트 5, 포트 6의 순서로 캐리어 가스가 이동하여 라인(20)을 통해 열분해기(10)로 공급되고, 이때에, 열분해기(10)에 있는 전지 재료를 열분해하여 발생하는 가스 중 정량하고자 하는 가스(예를 들어, 산소 가스)의 면적을 검출한다. 검출된 가스의 면적을 표준 가스의 검량곡선을 이용하여 정량 분석할 수 있다.
실시예
1. 종래 기술
종래 EGA 기술은 EGA-MS 장치(도 1 참조)를 이용하여 고체 시료에서 발생되는 가스를 정성적으로 분석하여 기준시료(Reference) 대비 발생되는 가스의 함량을 상대적으로 비교하는 것이었다. 그런데, 이 방법으로는 전지재료에서 발생되는 가스를 정량분석할 수 없었다.
2. 본 발명의 정량분석 장치를 이용한 전지재료에서 발생되는 가스의 정량분석
본 실시예에서는 본 발명의 한 실시양태에 따른 정량분석 장치(도 2 참조)를 이용하여 전지재료에서 발생되는 산소의 함량을 아래와 같이 분석하였다.
MFC(mass flow controller)를 이용하여 캐리어 가스를 1mL/min으로 흘려 주었다. 회전 펌프(Edward사)를 이용하여 샘플링 루프를 1×10-2torr 이하의 충분한 진공 상태로 만들고, 표준 가스 99.9mol(%)를 약 50torr로 채웠다. 이때 표준 가스의 농도는 99.9mol(%)×50torr/760torr = 6.572mol(%)가 된다. 샘플링 루프에 채워진 6.527mol(%)의 산소는 캐리어 가스와 함께 열분해기로 주입하여 분석기로 그 함량을 정확히 분석하였다. 이때, 분석기(mass spectrometry)에서 산소의 분자 이온값인 m/z=32를 추출하여 그 면적을 계산하였다. 서로 다른 표준 가스의 농도별로 이러한 과정을 반복하여 면적값과 농도에 따른 검량곡선을 얻었다.
NCM을 양극 재료로 한 리튬이온전지를 충전하여 Ar(아르곤) 환경의 글로브박스에서 분해한 후 양극을 DMC로 세척한 후 감압건조시켜 DMC를 완전히 제거하였다.
건조된 양극을 정확히 5 내지 10mg 취해 열분해기에 주입한 후 열분해하여 발생한 산소의 함량을 분석하였다. 이때, 분석기(MS)에서 산소의 분자 이온값인 m/z=32를 추출하여 그 면적을 구하였다. 구한 면적값을 표준 가스에 대해 작성한 검량곡선에 적용하여 정확한 산소의 함량을 정량하였다.
열분해기에서의 온도에 따른 산소 발생량을 표시한 그래프를 도 5에 나타냈고, 산소 발생량을 표준 가스를 이용하여 검량곡선을 통해 정량분석한 결과를 도 6에 나타냈다.
본 실시예를 통해 열분해기에 스위칭 밸브와 샘플링 루프를 결합함으로써, 양극에서 발생한 산소를 정량분석할 수 있다는 것을 확인할 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 도면 및 실시예를 통해 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (8)

  1. 열분해기;
    상기 열분해기로 캐리어 가스를 공급하는 라인;
    표준 가스를 포집하기 위한 샘플링 루프;
    상기 샘플링 루프에 포집된 표준 가스를 상기 캐리어 가스와 함께 상기 열분해기로 주입하기 위한 스위칭 밸브; 및
    상기 샘플링 루프를 진공 감압하기 위한 진공 펌프를 포함하고,
    상기 샘플링 루프는 상기 스위칭 밸브에 결합되고, 상기 스위칭 밸브는 상기 열분해기로 캐리어 가스를 공급하는 라인을 통해 상기 열분해기에 결합된, 가스시료의 정량분석 장치.
  2. 제1항에 있어서, 진공 감압된 상기 샘플링 루프 내에 표준 가스가 포집되고, 상기 스위칭 밸브가 스위칭됨에 따라, 상기 캐리어 가스가 상기 샘플링 루프를 통해 흐르면서 상기 샘플링 루프에 포집된 상기 표준 가스와 함께 상기 열분해기로 캐리어 가스를 공급하는 라인을 통해 상기 열분해기로 주입되는, 가스시료의 정량분석 장치.
  3. 제1항에 있어서, 상기 진공 펌프에 의해 상기 샘플링 루프가 진공 감압된 이후에, 상기 스위칭 밸브가 스위칭됨에 따라, 캐리어 가스가 상기 진공 감압된 샘플링 루프를 경유하여 상기 열분해기로 주입되는 한편, 열분해기에서의 시료에서 발생하는 가스의 양이 검출되는, 가스시료의 정량분석 장치.
  4. 제1항에 있어서, 상기 열분해기가 EGA(Evoloved gas analysis)인, 가스시료의 정량분석 장치.
  5. 제1항에 있어서, 상기 가스시료가 전지재료에서 열분해기에 의해 열을 가할 시 발생되는 가스인, 가스시료의 정량분석 장치.
  6. 제5항에 있어서, 상기 전지재료가 리튬 전이금속 산화물(Li-metal Oxide compounds_LiMeO2) 양극 재료인, 가스시료의 정량분석 장치.
  7. 제5항에 있어서, 상기 전지재료에서 열분해기에 의해 열을 가할 시 발생되는 가스가 산소, 이산화탄소, 일산화탄소 및 수증기로부터 선택되는 하나 이상인, 가스시료의 정량분석 장치.
  8. 제1항에 있어서, 상기 캐리어 가스가 He, N2 또는 Ar인, 가스시료의 정량분석 장치.
PCT/KR2018/001066 2017-07-31 2018-01-24 전지재료에서 발생되는 산소의 정량분석 장치 WO2019027112A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880007554.0A CN110234992A (zh) 2017-07-31 2018-01-24 用于定量分析电池材料中产生的氧气的装置
US16/479,049 US11906492B2 (en) 2017-07-31 2018-01-24 Apparatus for quantitatively analyzing oxygen generated in battery material
JP2019532787A JP6874937B2 (ja) 2017-07-31 2018-01-24 電池材料から発生する酸素の定量分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0096955 2017-07-31
KR1020170096955A KR102175816B1 (ko) 2017-07-31 2017-07-31 전지재료에서 발생되는 산소의 정량분석 장치

Publications (1)

Publication Number Publication Date
WO2019027112A1 true WO2019027112A1 (ko) 2019-02-07

Family

ID=65233938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001066 WO2019027112A1 (ko) 2017-07-31 2018-01-24 전지재료에서 발생되는 산소의 정량분석 장치

Country Status (5)

Country Link
US (1) US11906492B2 (ko)
JP (1) JP6874937B2 (ko)
KR (1) KR102175816B1 (ko)
CN (1) CN110234992A (ko)
WO (1) WO2019027112A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213406B (zh) * 2019-11-21 2023-06-16 蜂巢能源科技有限公司 用于测量电芯内气体量的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308107A (ja) * 1993-02-24 1994-11-04 Seiko Instr Inc 熱分析装置
JP2007108021A (ja) * 2005-10-13 2007-04-26 National Institute Of Advanced Industrial & Technology ガス自動サンプリング装置
KR101490210B1 (ko) * 2013-10-30 2015-02-05 한국에너지기술연구원 탄화수소의 열분해 반응 생성물의 분석을 위한 시료주입 장치 및 시료 주입방법
JP2017009539A (ja) * 2015-06-25 2017-01-12 株式会社住化分析センター ガス分析装置およびガス分析方法
KR20170041100A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 가스 크로마토그래피 분석을 위한 가스시료 주입장치 및 이의 방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339646Y2 (ko) * 1981-03-30 1988-10-18
WO1991008466A1 (en) * 1987-07-08 1991-06-13 Thermedics Inc. Selective detection of vapors
US5268302A (en) * 1990-05-29 1993-12-07 Thermedics Inc. Selective, high speed detection of vapors with analysis of multiple GC-separated portions
JP3290893B2 (ja) 1996-03-19 2002-06-10 フロンティア・ラボ株式会社 気相成分分析装置
GB9803684D0 (en) 1998-02-24 1998-04-15 Genevac Ltd Method and apparatus for controlling temperature during evaporation of samples
US6902937B2 (en) 2001-07-13 2005-06-07 Air Liquide America, L.P. Method for the determination of low-concentration anions in the presence of an excess of another anion
US7530257B2 (en) 2002-09-27 2009-05-12 Honeywell International Inc. Phased micro analyzer VIII
US20050085740A1 (en) 2003-04-01 2005-04-21 Davis Cristina E. Non-invasive breath analysis using field asymmetric ion mobility spectrometry
CN1296694C (zh) 2005-01-20 2007-01-24 上海交通大学 用液位法和采样法实时测量压缩机油中制冷剂质量的方法
FR2881145B1 (fr) 2005-01-24 2007-11-23 Snecma Propulsion Solide Sa Procede d'infiltration chimique en phase gazeuse pour la densification de substrats poreux par du carbone pyrolytique
JP2006226746A (ja) 2005-02-16 2006-08-31 Toppan Printing Co Ltd ガスクロマトグラフィー用加熱処理装置
TWI330136B (en) * 2005-11-28 2010-09-11 Lg Chemical Ltd Organic/inorganic composite porous membrane and electrochemical device using the same
JP5604105B2 (ja) 2006-09-20 2014-10-08 エルジー・ケム・リミテッド 非水電解液添加剤及びこれを用いた二次電池
CN101144795B (zh) 2007-10-29 2010-06-02 钢铁研究总院 脉冲熔融-飞行时间质谱元素分析仪
CA2703993A1 (en) 2007-11-02 2009-05-07 Can Ozbal Sample injection system
NZ606047A (en) 2008-04-30 2015-03-27 Xyleco Inc Processing biomass
JP5087564B2 (ja) * 2009-02-03 2012-12-05 フロンティア・ラボ株式会社 気相成分分析装置
CN101798689A (zh) 2010-03-18 2010-08-11 黎明化工研究院 连续电解法制备三氟化氮工艺及设备
KR101113645B1 (ko) 2010-07-27 2012-02-14 현대자동차주식회사 아크릴로니트릴-부타디엔 고무 조성물의 아크릴로니트릴 및 첨가제의 정량분석 방법
CN102304374B (zh) 2011-08-04 2013-06-26 太原理工大学 一种煤干馏气无泄露回收装置及其回收方法
US20130151167A1 (en) * 2011-12-08 2013-06-13 Marathon Petroleum Company Lp Method To Determine The DRA In A Hydrocarbon Fuel
KR20130083652A (ko) 2012-01-13 2013-07-23 삼성전자주식회사 기판 간 연결부를 가지는 회로 기판, 그 생산 방법 및 이용 방법
US9658146B2 (en) * 2013-02-25 2017-05-23 The Boeing Company Analysis of rechargeable batteries
CN105295965B (zh) 2014-05-28 2019-03-15 神华集团有限责任公司 一种制备半焦的方法和装置
CN104830356B (zh) 2014-12-03 2017-11-17 农业部规划设计研究院 一种内外组合加热式生物质热解炭化装置
CN105300785B (zh) 2015-10-23 2018-12-25 北京捷思达仪分析仪器研发中心 热解吸仪及气相色谱仪样品解吸方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308107A (ja) * 1993-02-24 1994-11-04 Seiko Instr Inc 熱分析装置
JP2007108021A (ja) * 2005-10-13 2007-04-26 National Institute Of Advanced Industrial & Technology ガス自動サンプリング装置
KR101490210B1 (ko) * 2013-10-30 2015-02-05 한국에너지기술연구원 탄화수소의 열분해 반응 생성물의 분석을 위한 시료주입 장치 및 시료 주입방법
JP2017009539A (ja) * 2015-06-25 2017-01-12 株式会社住化分析センター ガス分析装置およびガス分析方法
KR20170041100A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 가스 크로마토그래피 분석을 위한 가스시료 주입장치 및 이의 방법

Also Published As

Publication number Publication date
KR20190013035A (ko) 2019-02-11
US20190369072A1 (en) 2019-12-05
CN110234992A (zh) 2019-09-13
JP2020514699A (ja) 2020-05-21
JP6874937B2 (ja) 2021-05-19
US11906492B2 (en) 2024-02-20
KR102175816B1 (ko) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2017061803A1 (ko) 가스 크로마토그래피 분석을 위한 가스시료 주입장치 및 이의 방법
WO2017061804A1 (ko) 가스 크로마토그래피를 이용한 가스시료 고속 분석장치 및 이의 방법
EP2008076B1 (en) Apparatus for performing dissolved gas analysis
US7847242B2 (en) Pulse heating-time of flight mass spectrometric gas elements analyzer
CN102072934B (zh) 一种电力系统六氟化硫气体品质的检测方法
CN108414633A (zh) 一种微量氮同位素的测定仪器及其应用
KR100364214B1 (ko) 가스중의 미량불순물 분석장치
WO2019027112A1 (ko) 전지재료에서 발생되는 산소의 정량분석 장치
CN111638289A (zh) 一种双点采样非甲烷总烃在线监测设备及检测方法
EP2284516B1 (en) Sampler for elemental analyzers
CN211955717U (zh) 一种在线监测装置
KR20030022849A (ko) 이온 이동도 분광법에 의한 산소내 일산화탄소 및탄화수소의 전체 농도를 측정하는 방법
KR20020040524A (ko) 가스 분석장치
CN111796018A (zh) 基于多通道技术的走航监测系统及工作方法
US3647385A (en) Solid sampler, apparatus and method
CN109696375B (zh) 采用热重-质谱联用仪测定元素含量的方法
CN1225654C (zh) 通过电离迁移率分光术测定氩、氢、氮和氦中的水浓度的方法
KR100809131B1 (ko) 이온 이동 분광분석에 의해 질소 내의 메탄 및 수소의농도를 측정하는 방법
CN209132078U (zh) 加热热塑性塑料样品的装置
WO2019160326A1 (ko) 기체 시료의 분석 방법, 이의 분석 장치 및 이의 농축 장치
CN114609283B (zh) 一种全氟异丁腈中分解产物的测定系统及方法
WO2023080444A1 (ko) 가스 분석 장치
CN209496015U (zh) 一种gis气体检测装置
CN118150718A (zh) 一种非甲烷总烃浓度检测装置及检测方法
CN117782877A (zh) 针对锂电池隔膜中聚苯乙烯含量的检测方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840782

Country of ref document: EP

Kind code of ref document: A1