WO2019026429A1 - 固体撮像素子、撮像装置、および、固体撮像素子の制御方法 - Google Patents

固体撮像素子、撮像装置、および、固体撮像素子の制御方法 Download PDF

Info

Publication number
WO2019026429A1
WO2019026429A1 PCT/JP2018/022322 JP2018022322W WO2019026429A1 WO 2019026429 A1 WO2019026429 A1 WO 2019026429A1 JP 2018022322 W JP2018022322 W JP 2018022322W WO 2019026429 A1 WO2019026429 A1 WO 2019026429A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
signal
pixels
signal line
unit
Prior art date
Application number
PCT/JP2018/022322
Other languages
English (en)
French (fr)
Inventor
幸雄 田川
佐藤 守
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/633,407 priority Critical patent/US11252367B2/en
Publication of WO2019026429A1 publication Critical patent/WO2019026429A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present technology relates to a solid-state imaging device, an imaging device, and a control method of the solid-state imaging device. More specifically, the present invention relates to a solid-state imaging device that outputs a pixel signal via a vertical signal line, an imaging device, and a control method of these.
  • a differential amplification type solid-state imaging device that amplifies (that is, differentially amplifies) the difference between pixel signals of a pair of pixels in the differential mode (for example, non- Patent Document 1).
  • the circuit configuration in the pixel can be changed in the non-differential mode to output the pixel signal without differential amplification.
  • the read speed is faster while the sensitivity is reduced compared to the differential mode.
  • a vertical signal line VRD for supplying reset power in the differential mode and a vertical signal line VSL for outputting a pixel signal in the differential mode and the non-differential mode are provided for each column. Wired one by one.
  • the present technology has been created in view of such a situation, and in a solid-state imaging device that performs differential amplification in differential mode and does not perform differential amplification in non-differential mode, a pixel in non-differential mode The purpose is to increase the signal readout speed.
  • the present technology has been made to solve the problems described above, and the first aspect thereof is connected to a first pixel connected to a first signal line and a second signal line
  • the second pixel, the third pixel, the fourth pixel, and the control for connecting the first pixel to the reset power supply through the third signal line in the differential mode, and the second pixel
  • the control to connect to the reset power supply through the four signal lines is sequentially performed, and the control to connect the third pixel to the third signal line in the non-differential mode and the fourth pixel to the fourth Connection control unit for performing control to connect to the signal lines of the first and second signal lines, and a signal obtained by amplifying the difference between the pixel signals of the first and second pixels in the differential mode.
  • the first, second, third and third Fourth each of the first pixel signal of the pixel, the second, third and fourth solid state image pickup device comprising a driving unit via a signal line to the output, and a control method thereof.
  • a signal obtained by amplifying the difference between pixel signals in the differential mode is output, and the pixel signal of each of the first, second, third, and fourth pixels is output in the non-differential mode. Bring.
  • connection control unit further performs control of connecting the first and second pixels to a predetermined current source via the fifth and sixth signal lines in the differential mode.
  • Control to connect to a power supply may be further performed.
  • the current is supplied through the fifth and sixth signal lines in the differential mode, and the power is supplied through the fifth and sixth signal lines in the non-differential mode.
  • each of the first and second pixels includes a charge storage portion that stores a charge, and a pair of reset transistors that initialize the amount of the stored charge
  • the connection control unit performs control of connecting one of the pair of transistors of the first pixel to the reset power supply via the third signal line in the differential mode and the pair of the second pixel.
  • One of the transistors is sequentially controlled to connect to the reset power supply through the fourth signal line, and in the non-differential mode, the other of the pair of transistors of the first and third pixels is
  • the control connected to the power supply via the fifth signal line and the other of the pair of transistors of the second and fourth pixels are connected to the power supply via the sixth signal line Control and may be carried out to be. This brings about the effect that different reset transistors are driven in the differential mode and the non-differential mode.
  • the first, second, third and fourth signal lines are wired along a direction perpendicular to a predetermined direction, and the first and second pixels are connected to the predetermined direction.
  • the first and third pixels may be arranged in the direction, the first and third pixels may be arranged in the vertical direction, and the third and fourth pixels may be arranged in the predetermined direction.
  • the first, second, third and fourth signal lines are wired along a direction perpendicular to the predetermined direction, and the first, second, third and fourth The pixels of may be arranged in the predetermined direction. This brings about the effect
  • the first, second, third and fourth signal lines are wired along a direction perpendicular to the predetermined direction, and the first, second, third and fourth The pixels of may be arranged in the vertical direction. This brings about the effect
  • each of the first, second, third, and fourth pixels includes a charge storage portion that stores charges, and a plurality of pixels that photoelectrically convert incident light to generate the charges.
  • a photoelectric conversion element may be provided, and a transfer unit for transferring the charge from each of the plurality of photoelectric conversion elements to the charge storage unit. This brings about the effect
  • each of the first, second, third, and fourth pixels photoelectrically converts the collected incident light by photoelectrically converting the collected incident light into a micro lens.
  • a wiring layer disposed between the photoelectric conversion layer and the microlens, and the first, second, third, and fourth signal lines are provided in the wiring layer. It may be wired. This brings about the effect
  • each of the first, second, third, and fourth pixels includes a microlens for condensing incident light, a wiring layer, and the microlens and the wiring layer. And a photoelectric conversion layer disposed between the photoelectric conversion layers to photoelectrically convert the collected incident light to generate charges, and the first, second, third, and fourth signal lines are connected to the wiring layer. It may be wired. This brings about the effect
  • the first, second, third, and fourth pixels and the connection control unit are disposed in a first semiconductor chip, and the drive unit is configured to include the first semiconductor chip. It may be disposed on a second semiconductor chip stacked on the This brings about the effect
  • the first, second, third, and fourth pixels are disposed in a first semiconductor chip, and the connection control unit and the drive unit are disposed in the first semiconductor chip. It may be disposed on the stacked second semiconductor chip. This brings about the effect
  • an analog-to-digital converter that executes sampling processing for converting the pixel signal into a digital signal each time the pixel signal is output is added a plurality of times, and each of the digital signals is added.
  • an adder circuit for outputting the signal. This brings about the effect that the result of performing sampling processing and adding a plurality of times is output.
  • a first pixel connected to a first signal line, a second pixel connected to a second signal line, a third pixel, and a fourth A pixel, control to connect the first pixel to the reset power supply through the third signal line in the differential mode, and control to connect the second pixel to the reset power supply through the fourth signal line
  • a connection control unit that performs control of sequentially connecting the third pixel to the third signal line and control of connecting the fourth pixel to the fourth signal line in the non-differential mode;
  • a signal obtained by amplifying the difference between the pixel signals of the first and second pixels in the differential mode is output through one of the first and second signal lines, and the signal in the non-differential mode is output.
  • the first, second, third and fourth pixel signals are Third and fourth driving section via a signal line to the output of an imaging apparatus including an image processing unit for executing predetermined processing on the image data generated from the pixel signal.
  • the readout speed of pixel signals in the non-differential mode can be increased. It can produce excellent effects.
  • the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
  • FIG. 1 is a block diagram illustrating an exemplary configuration of an imaging device according to a first embodiment of the present technology.
  • 1 is a block diagram showing an example of configuration of a solid-state imaging device according to a first embodiment of the present technology. It is a block diagram showing an example of 1 composition of a column read-out circuit in a 1st embodiment of this art. It is a circuit diagram showing an example of 1 composition of a unit read-out circuit in a 1st embodiment of this art. It is a block diagram showing an example of 1 composition of a pixel array part in a 1st embodiment of this art. It is a circuit diagram showing an example of 1 composition of a basic unit in a 1st embodiment of this art.
  • First embodiment (example of switching connection destination of vertical signal line) 2.
  • Second embodiment (example of switching the connection destination of the vertical signal line for pixels of 4 rows ⁇ 1 column) 3.
  • Third embodiment (example of switching the connection destination of the vertical signal line for pixels of 1 row x 4 columns) 4.
  • Fourth embodiment (example of switching connection destination of vertical signal line in four-pixel sharing type) 5.
  • Fifth embodiment (example of switching connection destination of vertical signal line in 8-pixel sharing type) 6.
  • Sixth embodiment (example of switching connection destination of vertical signal line in backside illumination type) 7.
  • Seventh embodiment (example of switching connection destination of vertical signal line in stacked type) 8.
  • Eighth embodiment (example of switching connection destinations of vertical signal lines and performing multi-sampling) 9.
  • FIG. 1 is a block diagram showing an exemplary configuration of an imaging device 100 according to a first embodiment of the present technology.
  • the imaging apparatus 100 is an apparatus for capturing image data, and includes an optical unit 110, a solid-state imaging device 200, and a digital signal processor 120.
  • the imaging apparatus 100 further includes a display unit 130, an operation unit 140, a bus 150, a power supply unit 160, a storage unit 170, and a frame memory 180.
  • a digital camera such as a digital still camera, a smartphone, a personal computer, an in-vehicle camera, etc. having an imaging function are assumed.
  • the optical unit 110 condenses light from a subject and guides the light to the solid-state imaging device 200.
  • the solid-state imaging device 200 generates image data in synchronization with the vertical synchronization signal VSYNC.
  • the vertical synchronization signal VSYNC is a periodic signal of a predetermined frequency (for example, 30 hertz) indicating the timing of imaging.
  • the solid-state imaging device 200 supplies the generated image data to the digital signal processor 120 via the signal line 209.
  • the digital signal processor 120 executes predetermined signal processing such as demosaicing processing and noise reduction processing on the image data from the solid-state imaging device 200.
  • the digital signal processor 120 outputs the processed image data to the frame memory 180 or the like via the bus 150.
  • the digital signal processor 120 generates a mode signal MODE indicating a differential mode or a non-differential mode and a vertical synchronization signal VSYNC, and supplies this to the solid-state imaging device 200.
  • the differential mode is a mode in which the solid-state imaging device 200 generates a signal obtained by amplifying (differential amplifying) the difference between the pixel signals of the pair of pixels.
  • the non-differential mode is a source follower mode in which a source follower circuit is formed to output pixel signals without differential amplification.
  • the conversion efficiency can be greatly increased by increasing the gain for the image signal, but the operating point is narrow and it is difficult to expand the dynamic range. For this reason, differential mode is suitable for imaging in the dark, and non-differential (source follower) mode is suitable for imaging in the light. Therefore, for example, the digital signal processor 120 measures the light amount of ambient light and indicates the differential mode when the photometric amount is smaller than a predetermined threshold, and indicates the non-differential mode when the photometric amount is equal to or larger than the threshold. .
  • the display unit 130 displays image data.
  • a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed.
  • the operation unit 140 generates an operation signal in accordance with the user's operation.
  • the bus 150 is a common route for the optical unit 110, the solid-state imaging device 200, the digital signal processor 120, the display unit 130, the operation unit 140, the power supply unit 160, the storage unit 170, and the frame memory 180 to exchange data with one another. .
  • the power supply unit 160 supplies power to the solid-state imaging device 200, the digital signal processor 120, the display unit 130, and the like.
  • the storage unit 170 stores various data such as image data.
  • the frame memory 180 holds image data.
  • FIG. 2 is a block diagram showing a configuration example of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • the solid-state imaging device 200 includes a vertical drive unit 210, a pixel array unit 220, a system control unit 291, a column readout circuit 300, a column signal processing unit 270, a horizontal drive unit 292, a data storage unit 293, and an image processing unit 294. These circuits are arranged on one semiconductor chip.
  • the system control unit 291 controls the vertical drive unit 210, the column readout circuit 300, the column signal processing unit 270, and the horizontal drive unit 292.
  • the system control unit 291 includes a timing generator and the like.
  • the system control unit 291 generates timing signals indicating operation timings of the vertical drive unit 210, the column signal processing unit 270, and the horizontal drive unit 292 in synchronization with the vertical synchronization signal VSYNC, and supplies the timing signals to the corresponding circuits. Further, the system control unit 291 generates a control signal for controlling the switch in the column readout circuit 300 according to the mode signal MODE, and supplies the control signal to the column readout circuit 300.
  • a plurality of pixels are arranged in a two-dimensional grid.
  • a set of pixels arranged in a predetermined direction horizontal direction or the like
  • a set of pixels arranged in a direction perpendicular to the row will be referred to as “column”.
  • the number of rows in the pixel array unit 220 is M (M is an integer), and the number of columns is N (N is an integer).
  • all the pixels in the pixel array unit 220 are effective pixels that perform photoelectric conversion.
  • dummy pixels not subjected to photoelectric conversion or light-shielded pixels that block incident light may be further disposed in the pixel array unit 220.
  • the vertical drive unit 210 selects and drives rows in order.
  • the vertical drive unit 210 is configured of a shift register, an address decoder, and the like.
  • the vertical driving unit 210 sequentially selects one row at a time, and drives an odd column and an even column in the row in order each time a row is selected.
  • the non-differential mode the vertical driving unit 210 sequentially selects every two rows and simultaneously drives all the pixels in the selected two rows. Therefore, in the non-differential mode, one image data is generated by N / 2 read operations, and in the differential mode, one image data is generated by 2 ⁇ N read operations. That is, the reading speed in the non-differential mode is four times that in the differential mode.
  • a control method of driving in units of rows is called a rolling shutter method.
  • the vertical drive unit 210 is an example of the drive unit described in the claims.
  • the vertical drive unit 210 uses the rolling shutter method, it is also possible to use the global shutter method which drives all pixels simultaneously.
  • the column readout circuit 300 switches connection destinations of the vertical signal lines wired to the pixel array unit 220 according to the control of the system control unit 291.
  • the column signal processing unit 270 performs, for each column, signal processing such as AD (Analog to Digital) conversion processing on a pixel signal from the column.
  • the column signal processing unit 270 sequentially outputs each of the pixel data after signal processing to the image processing unit 294 according to the control of the horizontal drive unit 292.
  • the horizontal drive unit 292 controls the column signal processing unit 270 to sequentially output pixel data.
  • the horizontal drive unit 292 is configured of a shift register and an address decoder.
  • the image processing unit 294 executes various types of image processing such as pixel addition processing on image data consisting of M ⁇ N pixel data.
  • the image processing unit 294 causes the data storage unit 293 to temporarily hold image data as needed in image processing. Further, the image processing unit 294 supplies the processed image data to the digital signal processor 120.
  • the image processing unit 294 may be disposed outside the solid-state imaging device 200 (in the digital signal processor 120, etc.). Also, the image processing unit 294 may be configured to generate the mode signal MODE instead of the digital signal processor 120.
  • FIG. 3 is a block diagram showing a configuration example of the column readout circuit 300 according to the first embodiment of the present technology.
  • the column readout circuit 300 includes unit readout circuits 310 every two columns. When the number of columns is N, N / 2 unit readout circuits 310 are arranged.
  • Each of the unit readout circuits 310 is connected to the pixel array unit 220 via six vertical signal lines. Further, the unit readout circuit 310 is connected to the column signal processing unit 270 via four signal lines.
  • FIG. 4 is a circuit diagram showing a configuration example of the unit readout circuit 310 in the first embodiment of the present technology.
  • the unit readout circuit 310 includes n-type transistors 311 and 312, switches 313 to 337, and current sources 341 to 344.
  • vertical signal lines VSL 2j-1 and VPX 2j-1 and VRD 2j-1 along the column direction. are wired.
  • vertical signal lines VSL 2j , VPX 2j and VRD 2j are wired.
  • the vertical signal lines VSL 2j-1 and VSL 2j are used to output signals from the pixels to the column signal processing unit 270.
  • the vertical signal lines VPX 2j-1 and VPX 2j are used to connect pixels to the current sources 341 to 344.
  • the vertical signal lines VRD 2 j-1 and VRD 2 j are used to supply reset power to the pixels or to output signals from the pixels to the column signal processing unit 270.
  • the vertical signal line VSL 2 j is an example of the first signal line described in the claims, and the vertical signal line VSL 2 j-1 is an example of the second signal line described in the claims. is there.
  • the vertical signal line VRD 2 j is an example of a third signal line described in the claims, and the vertical signal line VRD 2 j-1 is an example of the fourth signal line described in the claims.
  • the vertical signal line VPX 2j is an example of a fifth signal line described in the claims, and the vertical signal line VPX 2j-1 is an example of the sixth signal line described in the claims. is there.
  • the sources of the n-type transistors 311 and 312 are connected to the power supply of the power supply voltage VDD.
  • MOS Metal Oxide Semiconductor
  • the switch 313 opens and closes a path between the gate and the drain of the n-type transistor 311 in accordance with a control signal SW20 from the system control unit 291.
  • the switch 314 opens and closes a path between the gate and the drain of the n-type transistor 312 in accordance with a control signal SW10 from the system control unit 291.
  • the switch 316 opens / closes the path between the drain of the n-type transistor 311 and the vertical signal line VSL 2j-1 in accordance with the control signal SW31 from the system control unit 291.
  • the switch 317 opens / closes the path between the drain of the n-type transistor 311 and the vertical signal line VRD 2j-1 in accordance with the control signal SW41 from the system control unit 291.
  • the switch 318 opens / closes the path between the drain of the n-type transistor 312 and the vertical signal line VRD 2 j in accordance with the control signal SW 31 from the system control unit 291.
  • the switch 319 opens / closes the path between the drain of the n-type transistor 312 and the vertical signal line VSL 2 j in accordance with the control signal SW 21 from the system control unit 291.
  • the switch 315 opens and closes a path between the column signal processing unit 270 and the vertical signal VSL 2j-1 in accordance with a control signal SW2 from the system control unit 291.
  • the voltage Vout2 is output via the switch 315.
  • the switch 320 opens / closes the path between the column signal processing unit 270 and the vertical signal VSL 2 j in accordance with the control signal SW 1 from the system control unit 291.
  • the voltage V out1 is output via the switch 320.
  • the switch 321 opens and closes a path between the column signal processing unit 270 and the vertical signal VRD 2j-1 in accordance with a control signal SW4 from the system control unit 291.
  • the voltage Vout4 is output via the switch 321.
  • the switch 323 opens / closes the path between the column signal processing unit 270 and the vertical signal VRD 2 j in accordance with the control signal SW 3 from the system control unit 291.
  • the voltage Vout3 is output via the switch 323.
  • Switch 322 opens / closes the path between the power supply of power supply voltage VDD and vertical signals VPX 2j-1 and VPX 2j in accordance with control signal SW00 from system control unit 291.
  • the switch 324 opens / closes the path between the vertical signal VPX 2j-1 and the current source 341 in accordance with the control signal SW22 from the system control unit 291.
  • the switch 325 opens and closes the path between the vertical signal VPX 2 j and the current source 342 in accordance with the control signal SW 12 from the system control unit 291.
  • the switch 326 opens / closes the path between the vertical signal VSL 2j-1 and the current source 341 in accordance with the control signal SW23 from the system control unit 291.
  • the switch 327 opens and closes a path between the vertical signal VSL 2 j and the current source 342 in accordance with a control signal SW 13 from the system control unit 291.
  • the switch 328 opens / closes the path between the vertical signal VPX 2j-1 and the current source 343 in accordance with the control signal SW42 from the system control unit 291.
  • the switch 329 opens and closes a path between the vertical signal VPX 2 j and the current source 344 in accordance with a control signal SW 32 from the system control unit 291.
  • the switch 330 opens / closes the path between the vertical signal VRD 2j-1 and the current source 343 in accordance with the control signal SW43 from the system control unit 291.
  • the switch 331 opens and closes a path between the vertical signal VRD 2 j and the current source 344 in accordance with a control signal SW 33 from the system control unit 291.
  • the switch 332 opens / closes a path between the vertical signal VSL 2j-1 and the reset power supply of the reset voltage Vrst in accordance with the control signal SW34 from the system control unit 291.
  • the switch 333 opens and closes a path between the vertical signal VSL 2 j and the reset power supply of the reset voltage Vrst in accordance with a control signal SW 44 from the system control unit 291.
  • the reset voltage Vrst a value lower than the power supply voltage VDD is set as the reset voltage Vrst.
  • the power supply voltage VDD is 3.3 volts (V)
  • the reset voltage Vrst is 2.2 volts (V).
  • the switch 334 opens / closes the path between the vertical signal VSL 2j-1 and the vertical signal line VRD 2j-1 in accordance with the control signal SW25 from the system control unit 291.
  • the switch 335 opens / closes the path between the vertical signal VRD 2j-1 and the reset power supply of the reset voltage Vrst in accordance with the control signal SW14 from the system control unit 291.
  • the switch 336 opens and closes a path between the vertical signal VRD 2 j and the reset power supply of the reset voltage Vrst in accordance with the control signal SW 24 from the system control unit 291.
  • the switch 337 opens / closes the path between the vertical signal VSL 2 j and the vertical signal line VRD 2 j in accordance with a control signal SW 15 from the system control unit 291.
  • FIG. 5 is a block diagram showing a configuration example of the pixel array unit 220 according to the first embodiment of the present technology.
  • a plurality of basic units 225 are arranged.
  • 2 rows ⁇ 2 columns of pixels are arranged.
  • the pixels 230 are arranged in 2i-1 rows and 2j-1 columns, and the pixels 240 are arranged in 2i-1 rows and 2j columns.
  • the pixels 250 are arranged in 2i rows and 2j-1 columns, and the pixels 260 are arranged in 2i rows and 2j columns.
  • i is an integer of 1 to M / 2.
  • the direction of the row is taken as the X direction, the direction of the columns as the Y direction, and the direction perpendicular to the X direction and the Y direction as the Z direction.
  • the pixel 240 is an example of a first pixel described in the claims, and the pixel 230 is an example of a second pixel described in the claims.
  • the pixel 260 is an example of a third pixel described in the claims, and the pixel 250 is an example of the fourth pixel described in the claims.
  • FIG. 6 is a circuit diagram showing one configuration example of the basic unit 225 in the first embodiment of the present technology.
  • the pixel 230 includes a photodiode 231, a transfer transistor 232, a charge storage unit 233, reset transistors 234 and 235, an amplification transistor 236, and a selection transistor 237.
  • the pixel 240 includes a photodiode 241, a transfer transistor 242, a charge storage unit 243, reset transistors 244 and 245, an amplification transistor 246, and a selection transistor 247.
  • the pixel 250 includes a photodiode 251, a transfer transistor 252, a charge storage unit 253, reset transistors 254 and 255, an amplification transistor 256, and a selection transistor 257.
  • the pixel 260 includes a photodiode 261, a transfer transistor 262, a charge storage unit 263, reset transistors 264 and 265, an amplification transistor 266, and a selection transistor 267.
  • the photodiodes 231, 241, 251 and 261 photoelectrically convert incident light to generate charge. Note that each of the photodiodes 231, 241, 251, and 261 is an example of the photoelectric conversion unit described in the claims.
  • the transfer transistor 232 transfers charge from the photodiode 231 to the charge storage unit 233 in accordance with the transfer signal TRG2 2i-1 from the vertical drive unit 210.
  • the transfer transistor 242 transfers charge from the photodiode 241 to the charge storage unit 243 in accordance with the transfer signal TRG1 2i-1 from the vertical drive unit 210.
  • the transfer transistor 262 transfers charges from the photodiode 261 to the charge storage unit 263 in accordance with the transfer signal TRG12 i from the vertical drive unit 210.
  • the charge storage units 233, 243, 253, and 263 store the transferred charge and generate a voltage according to the amount of the stored charge.
  • FD Floating Diffusion
  • the reset transistor 234 initializes the charge amount of the charge storage unit 233 in accordance with a reset signal RSTD 2i-1 from the vertical drive unit 210.
  • the reset transistor 244 initializes the charge amount of the charge storage unit 243 in accordance with a reset signal RSTD 2i-1 from the vertical drive unit 210.
  • the reset transistor 254 initializes the charge amount of the charge storage unit 253 in accordance with a reset signal RSTD 2i from the vertical drive unit 210.
  • the reset transistor 264 initializes the charge amount of the charge storage unit 263 in accordance with a reset signal RSTD 2i from the vertical drive unit 210.
  • the reset transistor 235 initializes the charge amount of the charge storage unit 233 in accordance with a reset signal RSTS 2i-1 from the vertical drive unit 210.
  • the reset transistor 245 initializes the charge amount of the charge storage unit 243 in accordance with a reset signal RSTS 2i-1 from the vertical drive unit 210.
  • the reset transistor 255 initializes the charge amount of the charge storage unit 253 in accordance with the reset signal RSTS 2i from the vertical drive unit 210.
  • the reset transistor 265 initializes the charge amount of the charge storage unit 263 in accordance with a reset signal RSTS 2i from the vertical drive unit 210.
  • the amplification transistors 236, 246, 256 and 266 are for amplifying the signal of the voltage generated by the charge storage unit.
  • the selection transistor 237 outputs the signal amplified by the amplification transistor 236 in accordance with the selection signal SEL 2i-1 from the vertical drive unit 210.
  • the selection transistor 247 outputs the signal amplified by the amplification transistor 246 in accordance with the selection signal SEL 2i-1 from the vertical drive unit 210.
  • the selection transistor 257 outputs a signal amplified by the amplification transistor 256 in accordance with the selection signal SEL 2 i from the vertical drive unit 210.
  • the selection transistor 267 outputs the signal amplified by the amplification transistor 266 in accordance with the selection signal SEL 2 i from the vertical drive unit 210.
  • the source of the reset transistor 234 is connected to the vertical signal line VRD 2j-1, and the source of the reset transistor 235 is connected to the vertical signal line VPX 2j-1 . Therefore, when the high level reset signal RSTD 2i-1 is supplied to the reset transistor 234, the charge storage unit 233 is clamped to the voltage applied via the vertical signal line VRD 2j-1 , and the signal line The charge is drained through. In addition, when the high level reset signal RSTS 2i-1 is supplied to the reset transistor 235, the charge storage unit 233 is clamped to the voltage applied through the vertical signal line VPX 2j-1, and the signal storage Charge is discharged. Further, when the reset signals RSTS 2i-1 and RSTD 2i-1 are at the low level, the charge storage unit 233 is electrically disconnected from the vertical signal line, and the potential thereof is in a floating state.
  • the source of the amplification transistor 236 is connected to the vertical signal line VPX 2j-1, and the drain of the selection transistor 237 is connected to the vertical signal line VSL 2j-1 .
  • the source of the reset transistor 244 is connected to the vertical signal line VRD 2 j, and the source of the reset transistor 245 is connected to the vertical signal line VPX 2 j .
  • the source of the amplification transistor 246 is connected to the vertical signal line VPX 2 j, and the drain of the selection transistor 247 is connected to the vertical signal line VSL 2 j .
  • the source of the reset transistor 254 is connected to the vertical signal line VSL 2j-1 and the source of the reset transistor 255 is connected to the vertical signal line VPX 2j-1 .
  • the source of the amplification transistor 256 is connected to the vertical signal line VPX 2j-1, and the drain of the selection transistor 257 is connected to the vertical signal line VRD 2j-1 .
  • the source of the reset transistor 264 is connected to the vertical signal line VSL 2 j, and the source of the reset transistor 265 is connected to the vertical signal line VPX 2 j .
  • the source of the amplification transistor 266 is connected to the vertical signal line VPX 2 j, and the drain of the selection transistor 267 is connected to the vertical signal line VRD 2 j .
  • FIG. 7 is a plan view showing a configuration example of the column signal processing unit 270 according to the first embodiment of the present technology.
  • the column signal processing unit 270 includes two ADCs for each column. If the number of columns is N, 2 ⁇ N ADCs are provided.
  • ADCs 273 and 276 are arranged, and in column 2j, ADCs 277 and 278 are arranged. Also, an analog signal of the voltage V out1 from the column readout circuit 300 is input to the ADC 273, and an analog signal of the voltage V out2 from the column readout circuit 300 is input to the ADC 276.
  • the ADC277 is input analog signal voltage V out3 from the column readout circuit 300, also, the ADC278, an analog signal of the voltage V out4 from the column readout circuit 300 is input.
  • the ADC 273 converts the input analog signal into a digital signal.
  • the ADC 273 includes a comparator 274 and a counter 275.
  • the configuration of the ADCs 276, 277 and 278 is similar to that of the ADC 273.
  • Each of the ADCs 273, 276, 277, and 278 is an example of the analog-to-digital converter described in the claims.
  • the comparator 274 compares the input analog signal with the reference signal REF. For example, a sawtooth lamp signal is used as the reference signal REF.
  • the comparator 274 supplies a comparison result signal indicating the comparison result to the counter 275.
  • the counter 275 counts the count value within a period in which the comparison result signal is at a predetermined level.
  • the counter 275 supplies a digital signal indicating the count value to the output unit 280 as pixel data.
  • the output unit 280 sequentially outputs each of the pixel data to the image processing unit 294 under the control of the horizontal drive unit 292.
  • FIG. 8 is a timing chart showing an example of the operation of the solid-state imaging device 200 in the differential mode in the first embodiment of the present technology.
  • Rows are sequentially selected within the cycle of the vertical synchronization signal VSYNC. For example, the 2i-1 row is selected in the period from the timing T10 to the timing T30, and the 2i row is selected in the period from the timing T30 to the timing T50.
  • the even numbered column in the 2i-1 row is selected, and in the period from timing T20 to the timing T30, the odd numbered column in the 2i-1 row is selected.
  • the even column of 2i row is selected, and in the period from the timing T40 to the timing T50, the odd column of 2i row is selected.
  • the vertical drive unit 210 supplies the selection signal SEL 2i-1 over the period from the timing T10 to the timing T30, and supplies the selection signal SEL 2i over the period from the timing T30 to the timing T50.
  • the vertical driving unit 210 sequentially supplies the reset signal RSTD 2i-1 and the transfer signal TRG1 2i-1 during selection of the even-numbered column of the 2i-1 row. Further, during selection of the odd-numbered column in the same row, the system control unit 291 sequentially supplies the reset signal RSTD 2i-1 and the transfer signal TRG2 2i-1 .
  • the system control unit 291 sequentially supplies the reset signal RSTD 2i and the transfer signal TRG1 2i during selection of the even-numbered columns in the 2i-th row. Further, during selection of the odd-numbered column of the same row, the system control unit 291 sequentially supplies the reset signal RSTD 2i and the transfer signal TRG2 2i .
  • An analog signal output by these reset signals is referred to as a "reset level”. Also, an analog signal output by the transfer signal is referred to as a "signal level”.
  • the output unit 280 in the column signal processing unit 270 outputs, as pixel data, the difference between the digital signal obtained by converting the reset level and the digital signal obtained by converting the signal level.
  • CDS Correlated double sampling
  • system control unit 291 supplies control signals SW11, SW21, SW12, and SW22 to column readout circuit 300 during selection of row 2i-1, and control signals SW31, SW41, SW32, and SW42 during selection of row 2i. Supply.
  • system control unit 291 supplies control signals SW20, SW14 and SW15 during selection of even columns in the 2i-1 row, and supplies control signals SW10, SW24 and SW25 during selection of odd columns in the row.
  • system control unit 291 supplies control signals SW20, SW34 and SW15 during selection of even columns of 2i row, and supplies control signals SW10, SW44 and SW25 during selection of odd columns of that row.
  • signals obtained by differentially amplifying pixel signals are sequentially read out from even-numbered columns and odd-numbered columns of 2i ⁇ 1 rows.
  • signals obtained by differentially amplifying pixel signals are sequentially read out from even and odd columns of 2i rows.
  • the switches corresponding to each of the plurality of control signals supplied at the same timing can be shared into one to reduce the number of switches. For example, since the control signals SW11, SW21, SW12, and SW22 are supplied at the same timing, four switches corresponding to these can be replaced with one.
  • FIG. 9 is a timing chart illustrating an example of the operation of the solid-state imaging device in the non-differential mode according to the first embodiment of the present technology.
  • the cycle of the vertical synchronization signal VSYNC two rows are sequentially selected. For example, rows 2i-1 and 2i are simultaneously selected in a period from timing T60 to timing T70.
  • the vertical drive unit 210 supplies selection signals SEL 2i-1 and SEL 2i over the period from timing T60 to timing T70.
  • system control unit 291 simultaneously supplies reset signals RSTS 2i-1 and RSTS 2i during selection of row 2i-1, and thereafter transfers transfer signals TRG1 2i-1 , TRG2 2i-1 , TRG1 2i and TRG2 2i . Supply at the same time.
  • system control unit 291 supplies control signals SW 00, SW 13, SW 23, SW 33 and SW 43 to the column readout circuit 300 during selection of the 2i ⁇ 1 row and 2 i row.
  • pixel signals are simultaneously read out from the 2i-1 and 2i rows. Since two rows are read simultaneously as described above, the reading speed can be faster than when reading one row at a time.
  • FIG. 10 is a diagram showing an example of each state of the basic unit 225 and the unit readout circuit 310 when performing the first differential readout in the first embodiment of the present technology.
  • the pixel 240 is first selected as a readout pixel, and the adjacent pixel 230 is selected as a reference pixel.
  • the readout pixel is a pixel to be read out of the pixel signal.
  • the reference pixel is a pixel that outputs a reference signal to be compared with the signal from the readout pixel when differential amplification is performed.
  • Unit readout circuit 310 connects vertical signal lines VSL 2j ⁇ 1 , VSL 2j and VRD 2j to a current mirror circuit formed of n-type transistors 311 and 312.
  • the unit readout circuit 310 also connects the vertical signal lines VPX 2j-1 and VPX 2j to the current sources 341 and 342, and connects the vertical signal line VRD 2j-1 to the reset power supply.
  • the unit readout circuit 310 is an example of a connection control unit described in the claims.
  • the vertical driving unit 210 supplies various driving signals to the 2i-1 row except for the reset signal RSTS 2i-1 .
  • the reset transistors 235 and 245 do not operate because the reset signal RSTS 2i-1 is not supplied.
  • the readout pixel and the reference pixel operate as a differential amplifier circuit, and output a signal of voltage Vout1 obtained by amplifying the difference between the respective pixel signals.
  • FIG. 11 is a simplified diagram of the basic unit 225 and the unit readout circuit 310 at the time of performing the first differential readout in the first embodiment of the present technology.
  • selection transistors 237 and 247 function as a differential pair, and output a signal of voltage Vout1 obtained by differentially amplifying the input signals of those transistors.
  • the vertical driving unit 210 drives the reset transistor 235 in the differential mode, it is reset by the power supply voltage VDD higher than the reset voltage Vrst, and the signal amplitude can not be increased. Therefore, the reset transistor 244 connected to the reset power supply is provided separately from the reset transistor 235, and the vertical driving unit 210 is driven in the differential mode.
  • FIG. 12 is a diagram for describing connection destinations of signal lines when performing the first differential reading in the first embodiment of the present technology.
  • the unit readout circuit 310 connects the reference pixel (pixel 230) to the reset power supply via the vertical signal line VRD 2j-1 .
  • the unit readout circuit 310 connects the reference pixel and the readout pixel (pixel 240) to the current sources 341 and 342 via the vertical signal lines VPX 2j-1 and VPX 2j .
  • the unit readout circuit 310 connects the reference pixel and the readout pixel to the current mirror circuit via the vertical signal lines VSL 2j-1 , VSL 2j and VRD 2j .
  • the vertical driving unit 210 drives the reference pixels and the readout pixels, and outputs signals obtained by differentially amplifying the pixel signals through the vertical signal line VSL 2 j .
  • FIG. 13 is a diagram illustrating an example of each state of the basic unit 225 and the unit readout circuit 310 when performing the second differential readout in the first embodiment of the present technology.
  • the pixel 230 is selected as a readout pixel
  • the adjacent pixel 240 is selected as a reference pixel.
  • the unit readout circuit 310 connects the vertical signal lines VSL 2j ⁇ 1 , VSL 2j and VRD 2j ⁇ 1 to the current mirror circuit.
  • the unit readout circuit 310 also connects the vertical signal lines VPX 2j-1 and VPX 2j to the current sources 341 and 342, and connects the vertical signal line VRD 2j to the reset power supply.
  • the unit readout circuit 310 performs control of connecting the pixel 230 to the reset power supply via the vertical signal VRD 2j-1 , and resets the pixel 240 via the vertical signal VRD 2j.
  • the control to connect to the power supply is sequentially performed.
  • vertical signal lines VDR 2j-1 and VRD 2j are used to supply reset power in the differential mode.
  • FIG. 14 is a diagram showing an example of each state of the basic unit 225 and the unit readout circuit 310 when performing the third differential readout in the first embodiment of the present technology.
  • the pixel 260 is selected as a readout pixel
  • the adjacent pixel 250 is selected as a reference pixel.
  • the unit readout circuit 310 connects the vertical signal lines VSL 2j ⁇ 1 , VSL 2j and VRD 2j to the current mirror circuit.
  • the unit readout circuit 310 also connects the vertical signal lines VPX 2j-1 and VPX 2j to the current sources 343 and 344 and connects the vertical signal line VRD 2j-1 to the reset power supply.
  • FIG. 15 is a diagram illustrating an example of each state of the basic unit 225 and the unit readout circuit 310 when performing the fourth differential readout in the first embodiment of the present technology.
  • the pixel 250 is selected as a readout pixel
  • the adjacent pixel 260 is selected as a reference pixel.
  • the unit readout circuit 310 connects the vertical signal lines VSL 2j ⁇ 1 , VSL 2j and VRD 2j ⁇ 1 to the current mirror circuit.
  • the unit readout circuit 310 also connects the vertical signal lines VPX 2j-1 and VPX 2j to the current sources 343 and 344 and connects the vertical signal line VRD 2j to the reset power supply.
  • FIG. 16 is a diagram illustrating an example of each state of the basic unit 225 and the unit readout circuit 310 when performing reading in the non-differential mode according to the first embodiment of the present technology.
  • the unit readout circuit 310 connects the vertical signal lines VSL 2j ⁇ 1 , VRD 2j ⁇ 1 , VSL 2j and VRD 2j to the current sources 341, 343, 342 and 344, respectively.
  • the unit readout circuit 310 also connects the vertical signal lines VPX 2j-1 and VPX 2j to the power supply.
  • the vertical driving unit 210 supplies various driving signals to the 2i-1 row except for the reset signals RSTD 2i-1 and RSTD 2i . Since the reset signals RSTD 2i-1 and RSTD 2i are not supplied, the reset transistors 234, 244, 254 and 265 do not operate. By such control, pixel signals are simultaneously output from two selected rows.
  • FIG. 17 is a simplified diagram of the basic unit 225 and the unit readout circuit 310 when performing readout in the non-differential mode according to the first embodiment of the present technology. As illustrated in the figure, a source follower circuit is formed in each pixel.
  • FIG. 18 is a diagram for describing connection destinations of signal lines when reading in the non-differential mode according to the first embodiment of the present technology.
  • unit readout circuit 310 connects each of pixels 230 and 240 to current sources 342 and 341 via vertical signal lines VSL 2j-1 and VSL 2j .
  • the unit readout circuit 310 also connects the pixels 250 and 260 to the current sources 344 and 343 via the vertical signal lines VRD 2j-1 and VRD 2j .
  • the unit readout circuit 310 also connects the pixels 230, 240, 250 and 260 to the power supply via the vertical signal lines VPX 2j-1 and VPX 2j .
  • the vertical signal lines VSL 2j-1 and VSL 2j used for connection to the current mirror circuit can be used to output the pixel signals of the pixels 230 and 240.
  • the vertical signal lines VRD 2j-1 and VRD 2j used to supply the reset power supply in the differential mode are not used in the pixels 230 and 240 in the non-differential mode. If these vertical signal lines are left unconnected to the pixels, the solid-state imaging device can read pixel signals only for each row.
  • these surplus vertical signal lines VRD 2j-1 and VRD 2j are used to output pixel signals of the pixels 250 and 260.
  • the vertical signal lines can be effectively utilized. Two lines can be read simultaneously.
  • FIG. 19 is an example of a cross-sectional view of the pixel array unit 220 according to the first embodiment of the present technology.
  • the ground-side vertical wiring layer 224 is provided below the microlens with the direction toward the light receiving surface in the Z-axis upward, and the horizontal wiring layer 223 is provided below the microlens.
  • the power supply side vertical wiring layer 222 is provided below the horizontal wiring layer 223, and the photoelectric conversion layer 221 is provided below it.
  • the solid-state imaging device 200 in which the wiring layer such as the power supply side vertical wiring layer 222 is disposed between the microlens and the photoelectric conversion layer 221, light is transmitted to the surface with the surface on the wiring layer side as the surface of the substrate. It is irradiated.
  • Such a solid-state imaging device is called a surface illumination type solid-state imaging device.
  • FIG. 20 is a plan view showing one configuration example of the photoelectric conversion layer 221 in the first embodiment of the present technology.
  • the photodiode 231 and the FD 233 are disposed in the pixel 230, and the transfer transistor 232 is disposed between the photodiode 231 and the FD 233.
  • reset transistors 234 and 235 are arranged along the X direction.
  • the amplification transistor 236 and the selection transistor 237 are arranged along the Y direction.
  • the layout of each of the pixels 240, 250 and 260 is similar to that of the pixel 230.
  • FIG. 21 is a plan view showing an example of the wiring layout of the power supply side vertical wiring layer 222 according to the first embodiment of the present technology.
  • vertical signal lines VRD 2j-1 and VSL 2j-1 are wired along the Y direction (column direction).
  • vertical signal lines VRD 2j and VSL 2j are wired along the Y direction.
  • FIG. 22 is a plan view showing an example of a wiring layout of the horizontal wiring layer 223 in the first embodiment of the present technology.
  • horizontal signal lines 223-1, 223-2, 223-3, 223-4, and 223-5 are wired along the X direction (row direction).
  • the horizontal signal line 223-1 transmits the reset signal RSTS 2i or RSTS 2i-1 .
  • the horizontal signal line 223-2 transmits a reset signal RSTD 2i or RSTD 2i-1 .
  • the horizontal signal line 223-3 transmits the transfer signal TRG1 2i or TRG1 2i-1 .
  • the horizontal signal line 223-4 transmits the transfer signal TRG2 2i or TRG 2i-1 .
  • the horizontal signal line 223-5 transmits the selection signal SEL 2i or SEL 2i-1 .
  • FIG. 23 is a plan view showing an example of a wiring layout of the ground-side vertical wiring layer 224 according to the first embodiment of the present technology.
  • the vertical signal line VPX 2j-1 and the ground line VSS 2j-1 are wired along the Y direction. Also in the pixels 240 and 260, the vertical signal line VPX 2j and the ground line VSS 2j are wired along the Y direction.
  • FIG. 24 is a flowchart illustrating an example of the operation of the solid-state imaging device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for capturing image data is executed.
  • the solid-state imaging device 200 determines whether the current mode is a differential mode (step S901). In the case of the differential mode (step S901: Yes), the solid-state imaging device 200 selects one line (step S902). Then, the solid-state imaging device 200 drives even-numbered columns in the selected line (step S903), and then drives odd-numbered columns (step S904). Then, the solid-state imaging device 200 determines whether all the lines have been selected (step S905). When all the lines have been selected (step S 905: Yes), the solid-state imaging device 200 repeats step S 901 and subsequent steps. When all the lines have not been selected (step S905: No), the solid-state imaging device 200 repeatedly executes step S902 and subsequent steps.
  • step S901: No the solid-state imaging device 200 selects two lines (step S906) and simultaneously drives them (step S907). Then, the solid-state imaging device 200 determines whether all the lines have been selected (step S 908). When all the lines have been selected (step S 908: Yes), the solid-state imaging device 200 repeats step S 901 and subsequent steps. When all the lines have not been selected (step S908: No), the solid-state imaging device 200 repeatedly executes step S906 and subsequent steps.
  • the unit readout circuit 310 connects the vertical signal lines VRD 2j-1 and VRD 2j to the pixels 250 and 260 in the non-differential mode, so the pixels 250 and 260 can be Pixel signals can be read out simultaneously from the two included rows. As a result, the reading speed can be made faster than when reading pixel signals row by row.
  • Second embodiment> In the first embodiment described above, four pixels in the basic unit 225 are arranged in two rows and two columns, but in the two rows and two columns, only two rows are read out in the non-differential mode. I can not The solid-state imaging device 200 of the second embodiment differs from that of the first embodiment in that three or more rows are read out simultaneously.
  • FIG. 25 is a plan view showing a configuration example of the pixel array unit 220 according to the second embodiment of the present technology.
  • the pixel array unit 220 of the second embodiment is different from that of the first embodiment in that four pixels in the basic unit 225 are arranged in four rows and one column.
  • the pixels 230 are arranged in the 2i-1 row, and the pixels 240 are arranged in the 2i row. Also, the pixels 250 are arranged in the 2i + 1 row, and the pixels 260 are arranged in the 2i + 2 row. Also, the unit readout circuit 310 is arranged for each column.
  • FIG. 26 is a circuit diagram showing one configuration example of the pixels 230 and 240 farther from the column readout circuit 300 in the second embodiment of the present technology.
  • FIG. 27 is a circuit diagram showing a configuration example of the pixels 250 and 260 closer to the column readout circuit 300 in the second embodiment of the present technology.
  • vertical signal lines VSL 2j ⁇ 1 , VSL 2j , VPX 2j ⁇ 1 , VPX 2j , VRD 2j ⁇ 1, and VRD 2j are wired for each column. Also, the vertical drive unit 210 simultaneously drives four rows in the non-differential mode.
  • FIG. 28 is a plan view illustrating a configuration example of the pixel array unit 220 according to the third embodiment of the present technology.
  • the pixel array unit 220 of the third embodiment is different from that of the first embodiment in that four pixels in the basic unit 225 are arranged in one row ⁇ four columns.
  • the pixels 230 are arranged in the 2j-1 column, and the pixels 240 are arranged in the 2j column. Also, the pixels 250 are arranged in the 2j + 1 column, and the pixels 260 are arranged in the 2j + 2 column. Also, the unit readout circuit 310 is arranged every four columns.
  • FIG. 29 is a circuit diagram showing a configuration example of the pixels 230 and 240 closer to the vertical drive unit 210 in the third embodiment of the present technology. As illustrated in the figure, vertical signal lines VSL 2j ⁇ 1 , VPX 2j ⁇ 1 and VRD 2j ⁇ 1 are wired to the pixels 230.
  • FIG. 30 is a circuit diagram showing one configuration example of the pixels 250 and 260 which are farther from the vertical drive unit 210 in the second embodiment of the present technology. As illustrated in the figure, vertical signal lines VSL 2j + 1 , VPX 2j + 1 and VRD 2j + 1 are wired in the pixel 250.
  • the solid-state imaging device in the non-differential mode, a comparative example in which the connection destinations of the vertical signal lines VRD 2j-1 and VRD 2j are not switched but is arranged in 1 row ⁇ 4 columns is assumed.
  • the solid-state imaging device in the non-differential mode, can not read the entire row at one time, and for each row, it is necessary to read half of N columns in the row and then read the rest.
  • the column readout circuit 300 can read out row by row in the non-differential mode. Therefore, the reading speed can be faster than that of the comparative example.
  • the unit readout circuit 310 may be arranged every four columns, so the circuit scale of the column readout circuit 300 can be reduced as compared with the configuration arranged every two columns. it can.
  • the unit readout circuit 310 is disposed every four columns in the column readout circuit 300, the columns are compared to the case where the unit readout circuits 310 are disposed every two columns.
  • the circuit scale of the readout circuit 300 can be reduced.
  • Fourth embodiment> In the first embodiment described above, five transistors are arranged for each pixel, but with this configuration, miniaturization may be difficult. In order to facilitate miniaturization, it is desirable to reduce the number of transistors per pixel.
  • the solid-state imaging device 200 according to the fourth embodiment is different from the first embodiment in that the number of transistors per pixel is reduced.
  • FIG. 31 is a plan view showing a configuration example of the pixel array unit 220 according to the fourth embodiment of the present technology.
  • the pixel array unit 220 of the fourth embodiment is different from the first embodiment in that the FD sharing blocks 226, 227, 228 and 229 are arranged in the basic unit 225.
  • the pixels 360, 230, 363 and 366 are arranged in 2 rows ⁇ 2 columns. These pixels share the charge storage unit 233 (FD).
  • the FD sharing block 227 four pixels including the pixel 240 are arranged in two rows and two columns. These pixels share the charge storage portion 243.
  • FD sharing block 2208 In the FD sharing block 228, four pixels including the pixel 250 are arranged in two rows and two columns. These pixels share the charge storage unit 253. In the FD sharing block 229, four pixels including the pixel 260 are arranged in two rows and two columns. These pixels share the charge storage unit 263.
  • FIG. 32 is a circuit diagram showing a configuration example of the FD sharing block 226 according to the fourth embodiment of the present technology.
  • the transfer transistor 361 and the photodiode 362 are disposed in the pixel 360.
  • a transfer transistor 364 and a photodiode 365 are disposed.
  • the transfer transistor 367 and the photodiode 368 are disposed in the pixel 366.
  • the configuration of the FD sharing blocks 227, 228 and 229 is similar to that of the FD sharing block 226.
  • the transfer transistor 361 transfers the charge from the photodiode 362 to the charge storage unit 233 according to the control of the vertical drive unit 210, and the transfer transistor 364 transfers the charge from the photodiode 365 to the charge storage unit 233. Further, the transfer transistor 367 transfers the charge from the photodiode 368 to the charge storage portion 233.
  • the circuit composed of the transfer transistors 361, 232, 364 and 367 is an example of the transfer unit described in the claims.
  • the charge storage unit 233 (FD), the reset transistors 234 and 235, the amplification transistor 236, and the selection transistor 237 are shared by four pixels. Therefore, the number of transistors per pixel can be reduced as compared with the first embodiment in which these elements are arranged for each pixel.
  • FIG. 33 is a plan view showing an arrangement example of elements in the FD sharing block 226 according to the fourth embodiment of the present technology.
  • the photodiodes 362, 231, 365 and 368 are arranged in two rows and two columns.
  • the reset transistors 234 and 235, the amplification transistor 236, and the selection transistor 237 are arranged along the Y direction.
  • the charge storage portion 233 and the transistors are shared by four pixels, the number of transistors per pixel can be reduced as compared with a configuration in which the charge storage portions 233 and the transistors are not shared.
  • the four pixels share the charge storage portion (FD).
  • FD charge storage portion
  • the solid-state imaging device 200 according to the fifth embodiment is different from the fourth embodiment in that the number of pixels sharing the FD is increased.
  • FIG. 34 is a plan view showing a configuration example of the pixel array unit 220 according to the fifth embodiment of the present technology.
  • the pixel array unit 220 of the fifth embodiment is different from that of the fourth embodiment in that eight pixels are arranged in each of the FD sharing blocks 226, 227, 228, and 229.
  • the pixels 360, 240, 363, 366, 370, 376, 373 and 379 are arranged in four rows and two columns. These eight pixels share the charge storage unit 243 (FD). Similarly for the FD sharing blocks 226, 228 and 229, eight pixels in the block share the FD.
  • FIG. 35 is a circuit diagram showing a configuration example of the FD sharing block 227 according to the fifth embodiment of the present technology.
  • the configuration of the pixels 360, 363 and 366 of the fifth embodiment is similar to that of the fourth embodiment.
  • the transfer transistor 371 and the photodiode 372 are disposed.
  • the transfer transistor 374 and the photodiode 375 are disposed in the pixel 373.
  • a transfer transistor 377 and a photodiode 378 are arranged in the pixel 379.
  • a transfer transistor 380 and a photodiode 381 are disposed in the pixel 379.
  • the transfer transistor 371 transfers charges from the photodiode 372 to the charge storage unit 243 according to the control of the vertical drive unit 210, and the transfer transistor 374 transfers charges from the photodiode 375 to the charge storage unit 243. Further, the transfer transistor 377 transfers the charge from the photodiode 378 to the charge storage portion 243. The transfer transistor 380 transfers charge from the photodiode 381 to the charge storage unit 243.
  • FIG. 36 is a plan view showing an arrangement example of elements in the FD sharing block 227 according to the fifth embodiment of the present technology.
  • the photodiodes 362, 241, 365, 368, 372, 375, 378 and 381 are arranged in 4 rows ⁇ 2 columns.
  • the reset transistors 244 and 245, the amplification transistor 246, and the selection transistor 247 are arranged along the Y direction.
  • the number of transistors per pixel is further compared with a configuration in which four pixels share them. It can be reduced.
  • FIG. 37 is an example of a cross-sectional view of a solid-state imaging device 200 according to the sixth embodiment of the present technology.
  • the photoelectric conversion layer 221 is disposed below the microlenses, and the power supply side vertical wiring layer 222 is provided below the microlenses.
  • a horizontal wiring layer 223 is provided below the power supply side vertical wiring layer 222.
  • the ground side vertical wiring layer 224 is provided below the horizontal wiring layer 223.
  • the solid-state imaging device 200 in which the photoelectric conversion layer 221 is disposed between the microlens and the wiring layer such as the power supply side vertical wiring layer 222, light is irradiated to the back surface opposite to the front surface.
  • a solid-state imaging device is called a back-illuminated solid-state imaging device.
  • this back side illumination type light is not blocked by a part of the wiring layer, so the sensitivity is higher than that of the front side illumination type.
  • the back irradiation type structure in which the photoelectric conversion layer 221 is disposed between the microlens and the wiring layer such as the power supply side vertical wiring layer 222 is provided.
  • the sensitivity can be improved as compared with the irradiation type.
  • each of the circuits in the solid-state imaging device 200 is provided on a single semiconductor chip.
  • the vertical driving unit 210 and the like need to be arranged on the chip.
  • the area of the semiconductor chip is constant, the area of the pixel array unit 220 is narrowed by the circuits other than the pixel array unit 220.
  • each of the circuits in the solid-state imaging device 200 may be distributed and disposed in a plurality of stacked semiconductor chips.
  • the solid-state imaging device 200 according to the seventh embodiment is different from that according to the first embodiment in that circuits are disposed in a distributed manner on a plurality of stacked semiconductor chips.
  • FIG. 38 is a block diagram showing a configuration example of a solid-state imaging device 200 according to the seventh embodiment of the present technology.
  • the solid-state imaging device 200 according to the seventh embodiment includes a pixel chip 201 and a circuit chip 202 which are stacked.
  • the pixel chip 201 is a semiconductor chip in which a pixel is arranged.
  • an upper column signal processing unit 271, an upper column readout circuit 301, a pixel array unit 220, a lower column readout circuit 302, and a lower column signal processing unit 272 are disposed.
  • unit readout circuits 310 corresponding to half of the M columns are disposed, and in the lower column readout circuit 302, unit readout circuits 310 corresponding to the remaining columns are disposed.
  • An ADC corresponding to the upper column readout circuit 301 is disposed in the upper column signal processing unit 271
  • an ADC corresponding to the lower column readout circuit 302 is disposed in the lower column signal processing unit 272.
  • the circuit chip 202 is a semiconductor chip in which circuits such as the vertical drive unit 210, the system control unit 291, the horizontal drive unit 292, the data storage unit 293, and the image processing unit 294 are arranged.
  • the pixel chip 201 is an example of the first semiconductor chip described in the claims
  • the circuit chip 202 is an example of the second semiconductor chip described in the claims.
  • each of the circuits in the solid-state imaging device 200 is distributed and disposed in a plurality of stacked semiconductor chips, the circuits are disposed in a single semiconductor chip and In comparison, the area of the pixel array unit 220 can be increased.
  • circuits other than the pixel array unit 220 such as the upper column signal processing unit 271 are disposed together with the pixel array unit 220.
  • the area of the pixel chip 201 is constant, the area of the pixel array unit 220 is narrowed by the circuits other than the pixel array unit 220.
  • circuits other than the pixel array unit 220 may be disposed in the circuit chip 202.
  • the solid-state imaging device 200 in the modification of the seventh embodiment is different from that of the seventh embodiment in that circuits other than the pixel array unit 220 are disposed in the circuit chip 202.
  • FIG. 39 is a diagram illustrating a configuration example of a pixel chip 201 in a modification of the seventh embodiment of the present technology.
  • the pixel chip 201 according to the modification of the seventh embodiment is different from the first embodiment in that only the pixel array unit 220 is disposed.
  • FIG. 40 is a diagram showing a configuration example of a circuit chip 202 according to a modification of the seventh embodiment of the present technology.
  • An upper column signal processing unit 271, an upper column readout circuit 301, a pixel peripheral circuit 295, a lower column readout circuit 302 and a lower column signal processing unit 272 are provided in the circuit chip 202 according to the modification of the seventh embodiment. Be placed.
  • the pixel peripheral circuit 295 includes a vertical drive unit 210, a system control unit 291, a horizontal drive unit 292, a data storage unit 293, an image processing unit 294, and the like.
  • circuits other than the pixel array unit 220 are disposed in the circuit chip 202, so the area of the pixel array unit 220 is wider than in the case where they are disposed in the pixel chip 201. can do.
  • the solid-state imaging device 200 performs conversion (i.e., sampling) to a digital signal only once for each of the reset level and the signal level. It is difficult to further reduce For example, noise can be further reduced by performing sampling multiple times for each of the reset level and the signal level and adding the results.
  • the solid-state imaging device 200 according to the eighth embodiment is different from the first embodiment in that sampling is performed a plurality of times for each of the reset level and the signal level.
  • FIG. 41 is a circuit diagram showing a configuration example of a unit readout circuit 310 according to the eighth embodiment of the present technology.
  • the unit readout circuit 310 in the eighth embodiment is different from the first embodiment in that switches 345 to 352 are further provided.
  • the switch 345 opens and closes a path between the signal line COM and the ADC 278 in accordance with a control signal SW51 from the system control unit 291.
  • the switch 346 opens and closes the path between the signal line COM and the ADC 276 in accordance with a control signal SW 52 from the system control unit 291.
  • the switch 347 opens and closes a path between the signal line COM and the ADC 273 in accordance with a control signal SW 53 from the system control unit 291.
  • the switch 348 opens and closes a path between the signal line COM and the ADC 277 in accordance with a control signal SW54 from the system control unit 291.
  • the switch 349 opens / closes the path between the vertical signal line VRD 2j-1 and the signal line COM in accordance with the control signal SW55 from the system control unit 291.
  • the switch 350 opens and closes the path between the vertical signal line VRD 2 j and the signal line COM in accordance with a control signal SW 56 from the system control unit 291.
  • the switch 351 opens and closes the path between the vertical signal line VSL 2j-1 and the signal line COM in accordance with a control signal SW57 from the system control unit 291.
  • Switch 352 opens / closes the path between vertical signal line VSL 2 j and signal line COM in accordance with control signal SW 58 from system control unit 291.
  • the system control unit 291 controls each of the switches in the non-differential mode to simultaneously supply the reset level of a certain pixel to the ADCs 273, 275, 276 and 277. Similarly for the D phase level, it is simultaneously supplied to four ADCs. For example, when supplying a pixel signal (a reset level or a signal level) of the pixel 240, the control signals SW51, SW52, SW54 and SW58 are supplied. On the other hand, in the differential mode, as in the first embodiment, only one of the ADCs 273, 275, 276 and 277 is used for each pixel.
  • FIG. 42 is a circuit diagram showing a configuration example of a column signal processing unit 270 in the eighth embodiment of the present technology.
  • the column signal processing unit 270 includes latch circuits 281 to 284 and an addition circuit 285 instead of the output unit 280.
  • the ADC 273 is inputted with REF 1.
  • the reference signal REF2 is input to the ADC 276, and the reference signal REF3 is input to the ADC 277.
  • the reference signal REF4 is input to the ADC 278.
  • the latch circuit 281 holds the digital signal from the ADC 273.
  • the latch circuit 282 holds the digital signal from the ADC 276.
  • the latch circuit 283 holds the digital signal from the ADC 277.
  • the latch circuit 284 holds the digital signal from the ADC 278.
  • the latch circuits 281 to 284 supply the held signal to the addition circuit 285.
  • the addition circuit 285 adds the digital signals from the latch circuits 281 to 284 and outputs the data after addition to the image processing unit 294 as pixel data.
  • noise of pixel data can be further reduced because sampling is performed a plurality of times for each pixel and these results are added.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on any type of mobile object such as a car, an electric car, a hybrid electric car, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, a robot May be
  • FIG. 43 is a block diagram showing a schematic configuration example of a vehicle control system which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 12000 includes a plurality of electronic control units connected via communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an external information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated as a functional configuration of the integrated control unit 12050.
  • the driveline control unit 12010 controls the operation of devices related to the driveline of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering angle of the vehicle. adjusting steering mechanism, and functions as a control device of the braking device or the like to generate a braking force of the vehicle.
  • Body system control unit 12020 controls the operation of the camera settings device to the vehicle body in accordance with various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device of various lamps such as a headlamp, a back lamp, a brake lamp, a blinker or a fog lamp.
  • the body system control unit 12020 the signal of the radio wave or various switches is transmitted from wireless controller to replace the key can be entered.
  • Body system control unit 12020 receives an input of these radio or signal, the door lock device for a vehicle, the power window device, controls the lamp.
  • Outside vehicle information detection unit 12030 detects information outside the vehicle equipped with vehicle control system 12000.
  • an imaging unit 12031 is connected to the external information detection unit 12030.
  • the out-of-vehicle information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle, and receives the captured image.
  • the external information detection unit 12030 may perform object detection processing or distance detection processing of a person, a vehicle, an obstacle, a sign, characters on a road surface, or the like based on the received image.
  • Imaging unit 12031 receives light, an optical sensor for outputting an electric signal corresponding to the received light amount of the light.
  • the imaging unit 12031 can output an electric signal as an image or can output it as distance measurement information.
  • the light image pickup unit 12031 is received may be a visible light, it may be invisible light such as infrared rays.
  • Vehicle information detection unit 12040 detects the vehicle information.
  • a driver state detection unit 12041 that detects a state of a driver is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera for imaging the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver does not go to sleep.
  • the microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information inside and outside the vehicle acquired by the outside information detecting unit 12030 or the in-vehicle information detecting unit 12040, and a drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 is collision avoidance or cushioning of the vehicle, follow-up running based on inter-vehicle distance, vehicle speed maintained running, functions realized in the vehicle collision warning, or ADAS including lane departure warning of the vehicle (Advanced Driver Assistance System) It is possible to perform coordinated control aiming at
  • the microcomputer 12051 the driving force generating device on the basis of the information around the vehicle acquired by the outside information detection unit 12030 or vehicle information detection unit 12040, by controlling the steering mechanism or braking device, the driver automatic operation such that autonomously traveling without depending on the operation can be carried out cooperative control for the purpose of.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the external information detection unit 12030.
  • the microcomputer 12051 controls the headlamps in response to the preceding vehicle or the position where the oncoming vehicle is detected outside the vehicle information detection unit 12030, the cooperative control for the purpose of achieving the anti-glare such as switching the high beam to the low beam It can be carried out.
  • Audio and image output unit 12052 transmits, to the passenger or outside of the vehicle, at least one of the output signal of the voice and image to be output device to inform a visually or aurally information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • Display unit 12062 may include at least one of the on-board display and head-up display.
  • FIG. 44 is a diagram illustrating an example of the installation position of the imaging unit 12031.
  • imaging units 12101, 12102, 12103, 12104, and 12105 are provided as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as the front nose of the vehicle 12100, a side mirror, a rear bumper, a back door, and an upper portion of a windshield of a vehicle interior.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle cabin mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 included in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the imaging unit 12105 provided on the top of the windshield in the passenger compartment is mainly used to detect a leading vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 44 shows an example of the imaging range of the imaging units 12101 to 12104.
  • Imaging range 12111 indicates an imaging range of the imaging unit 12101 provided in the front nose
  • imaging range 12112,12113 are each an imaging range of the imaging unit 12102,12103 provided on the side mirror
  • an imaging range 12114 is The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown.
  • a bird's eye view of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging unit 12101 through 12104 may have a function of obtaining distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging devices, or an imaging device having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from to no imaging unit 12101 12104, and the distance to the three-dimensional object in to no imaging range 12111 in 12114, the temporal change of the distance (relative speed with respect to the vehicle 12100) In particular, it is possible to extract a three-dimensional object traveling at a predetermined speed (for example, 0 km / h or more) in substantially the same direction as the vehicle 12100 as a leading vehicle, in particular by finding the it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Automatic operation or the like for autonomously traveling without depending on the way of the driver operation can perform cooperative control for the purpose.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data relating to three-dimensional objects into two-dimensional vehicles such as two-wheeled vehicles, ordinary vehicles, large vehicles, classification and extracted, can be used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles visible to the driver of the vehicle 12100 and obstacles difficult to see.
  • the microcomputer 12051 determines a collision risk which indicates the risk of collision with the obstacle, when a situation that might collide with the collision risk set value or more, through an audio speaker 12061, a display portion 12062 By outputting a warning to the driver or performing forcible deceleration or avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging unit 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • Such pedestrian recognition is, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as an infrared camera, and pattern matching processing on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not
  • the procedure is to determine Microcomputer 12051 is, determines that the pedestrian in the captured image of the imaging unit 12101 to 12104 is present, recognizing the pedestrian, the sound image output unit 12052 is rectangular outline for enhancement to the recognized pedestrian to superimpose, controls the display unit 12062.
  • the audio image output unit 12052 is, an icon or the like indicating a pedestrian may control the display unit 12062 to display the desired position.
  • the example of the vehicle control system to which the technology according to the present disclosure can be applied has been described above.
  • the technology according to the present disclosure may be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the imaging device 100 in FIG. 1 can be applied to the imaging unit 12031.
  • the technology according to the present disclosure it is possible to increase the reading speed and improve the frame rate.
  • the present technology can also be configured as follows. (1) a first pixel connected to a first signal line, A second pixel connected to the second signal line, The third pixel, The fourth pixel, In the differential mode, control for connecting the first pixel to the reset power supply via the third signal line and control for connecting the second pixel to the reset power supply via the fourth signal line are sequentially performed A connection control unit that performs control of connecting the third pixel to the third signal line and control of connecting the fourth pixel to the fourth signal line in the non-differential mode; A signal obtained by amplifying a difference between respective pixel signals of the first and second pixels in the differential mode is output through one of the first and second signal lines, and in the non-differential mode, A solid-state imaging device comprising: a driving unit for outputting pixel signals of the first, second, third and fourth pixels via the first, second, third and fourth signal lines.
  • connection control unit further performs control of connecting the first and second pixels to a predetermined current source via the fifth and sixth signal lines in the differential mode, and the non-differential Control to connect the first and third pixels to the power supply via the fifth signal line in a control mode, and control to connect the second and fourth pixels to the power supply via the sixth signal line
  • the solid-state imaging device further comprising (3)
  • Each of the first and second pixels is A charge storage unit for storing charge; A pair of reset transistors that initialize the amount of the accumulated charge; Equipped with The connection control unit is configured to connect one of the pair of transistors of the first pixel to the reset power supply via the third signal line in the differential mode and the pair of the second pixel.
  • the control of sequentially connecting one of the transistors to the reset power supply via the fourth signal line is sequentially performed, and in the non-differential mode, the other of the pair of transistors of the first and third pixels is selected.
  • a control for connecting to the power supply via a fifth signal line and a control for connecting the other of the pair of transistors of the second and fourth pixels to the power supply via the sixth signal line The solid-state imaging device according to the above (2).
  • the first, second, third and fourth signal lines are wired along a direction perpendicular to a predetermined direction, The first and second pixels are arranged in the predetermined direction, The first and third pixels are arranged in the vertical direction, The solid-state imaging device according to any one of (1) to (3), wherein the third and fourth pixels are arranged in the predetermined direction.
  • the first, second, third and fourth signal lines are wired along a direction perpendicular to a predetermined direction, The solid-state imaging device according to any one of (1) to (3), wherein the first, second, third and fourth pixels are arranged in the predetermined direction.
  • the first, second, third and fourth signal lines are wired along a direction perpendicular to a predetermined direction,
  • the solid-state imaging device according to any one of (1) to (3), wherein the first, second, third and fourth pixels are arranged in the vertical direction.
  • Each of the first, second, third and fourth pixels is A charge storage unit for storing charge;
  • a plurality of photoelectric conversion elements that photoelectrically convert incident light to generate the charge;
  • Each of the first, second, third and fourth pixels is A microlens for collecting incident light, A photoelectric conversion layer that photoelectrically converts the collected incident light to generate charges; And a wiring layer disposed between the photoelectric conversion layer and the microlens, The solid-state imaging device according to any one of (1) to (7), wherein the first, second, third and fourth signal lines are wired in the wiring layer.
  • Each of the first, second, third and fourth pixels is A microlens for collecting incident light, Wiring layer, A photoelectric conversion layer disposed between the microlens and the wiring layer to photoelectrically convert the collected incident light to generate an electric charge; Equipped with The solid-state imaging device according to any one of (1) to (7), wherein the first, second, third and fourth signal lines are wired in the wiring layer. (10) The first, second, third and fourth pixels and the connection control unit are disposed in a first semiconductor chip, The solid-state imaging device according to any one of (1) to (9), wherein the drive unit is disposed on a second semiconductor chip stacked on the first semiconductor chip.
  • the first, second, third and fourth pixels are arranged in a first semiconductor chip, The solid-state imaging device according to any one of (1) to (9), wherein the connection control unit and the drive unit are disposed on a second semiconductor chip stacked on the first semiconductor chip. (12) An analog-to-digital converter that executes sampling processing for converting the pixel signal into a digital signal plural times each time the pixel signal is output; The solid-state imaging device according to any one of (1) to (11), further including an addition circuit that adds and outputs each of the digital signals.
  • imaging device 110 optical unit 120 digital signal processor 130 display unit 140 operation unit 150 bus 160 power supply unit 170 recording unit 180 frame memory 200 solid-state imaging device 201 pixel chip 202 circuit chip 210 vertical drive unit 220 pixel array unit 221 photoelectric conversion layer 222 Power supply side vertical wiring layer 223 Horizontal wiring layer 224 Ground side vertical wiring layer 225 Basic unit 226 to 229 FD shared block 230, 240, 250, 260, 360, 363, 366, 370, 373, 376, 379 pixels 231, 241, 251, 261, 362, 365, 368, 372, 375, 378.

Abstract

差動モードで差動増幅を行い、非差動モードで差動増幅を行わない固体撮像素子において、非差動モードでの画素信号の読出し速度を速くする。 接続制御部は、差動モードにおいて第1の信号線に接続された第1の画素を第3の信号線を介してリセット電源に接続する制御と第2の信号線に接続された第2の画素を第4の信号線を介してリセット電源に接続する制御とを順に行い、非差動モードにおいて第3の画素を前記第3の信号線に接続する制御と第4の画素を第4の信号線に接続する制御とを行う。また、駆動部は、差動モードにおいて前記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を第1および第2の信号線の一方を介して出力させ、非差動モードにおいて第1、第2、第3および第4の画素のそれぞれの画素信号を前記第1、第2、第3および第4の信号線を介して出力させる。

Description

固体撮像素子、撮像装置、および、固体撮像素子の制御方法
 本技術は、固体撮像素子、撮像装置、および、固体撮像素子の制御方法に関する。詳しくは、垂直信号線を介して画素信号を出力する固体撮像素子、撮像装置、および、これらにおける制御方法に関する。
 従来より、撮像装置などにおいて、光を光電変換して画像データを撮像する固体撮像素子が用いられている。例えば、感度を高くする目的で、差動モードにおいて一対の画素のそれぞれの画素信号の差分を増幅(すなわち、差動増幅)する差動増幅型の固体撮像素子が提案されている(例えば、非特許文献1参照。)。この固体撮像素子では、非差動モードにおいて画素内の回路構成を変更して、画素信号を差動増幅せずに出力することもできる。この非差動モードでは、差動モードと比較して、感度が低下する一方で読出し速度が速くなる。また、固体撮像素子には列ごとに、差動モードにおいてリセット電源を供給するための垂直信号線VRDと、差動モードおよび非差動モードにおいて画素信号を出力するための垂直信号線VSLとが1本ずつ配線される。
Jaehyuk Choi, et al., An Energy/Illumination-Adaptive CMOS ImageSensor With Reconfigurable Modes of Operations, IEEE JOURNAL OF SOLID-STATE CIRCUITS 2015.
 しかしながら、上述の従来技術では、非差動モードの読出し速度をさらに速くすることが困難である。垂直信号線VRDおよびVSLのうち、出力に用いる垂直信号線VSLの配線数を列ごとに2本とすれば、2行を同時に読み出して読出し速度を2倍にすることができるが、配線数が増大すると微細化が困難となるため、好ましくない。このように、差動モードと非差動モードとを切り替えることのできる固体撮像素子において、非差動モードにおける読出し速度を速くすることが困難であるという問題がある。
 本技術はこのような状況に鑑みて生み出されたものであり、差動モードで差動増幅を行い、非差動モードで差動増幅を行わない固体撮像素子において、非差動モードでの画素信号の読出し速度を速くすることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、第1の信号線に接続された第1の画素と、第2の信号線に接続された第2の画素と、第3の画素と、第4の画素と、差動モードにおいて上記第1の画素を第3の信号線を介してリセット電源に接続する制御と上記第2の画素を第4の信号線を介して上記リセット電源に接続する制御とを順に行い、非差動モードにおいて上記第3の画素を上記第3の信号線に接続する制御と上記第4の画素を上記第4の信号線に接続する制御とを行う接続制御部と、上記差動モードにおいて上記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を上記第1および第2の信号線の一方を介して出力させ、上記非差動モードにおいて上記第1、第2、第3および第4の画素のそれぞれの画素信号を上記第1、第2、第3および第4の信号線を介して出力させる駆動部とを具備する固体撮像素子、および、その制御方法である。これにより、差動モードにおいて画素信号の差分を増幅した信号が出力され、非差動モードにおいて、第1、第2、第3および第4の画素のそれぞれの画素信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記接続制御部は、上記差動モードにおいて上記第1および第2の画素を第5および第6の信号線を介して所定の電流源に接続する制御をさらに行い、上記非差動モードにおいて上記第1および第3の画素を上記第5の信号線を介して電源に接続する制御と上記第2および第4の画素を上記第6の信号線を介して電源に接続する制御とをさらに行ってもよい。これにより、差動モードにおいて第5および第6の信号線を介して電流が供給され、非差動モードにおいて第5および第6の信号線を介して電源が供給されるという作用をもたらす。
 また、この第1の側面において、上記第1および第2の画素のそれぞれは、電荷を蓄積する電荷蓄積部と、上記蓄積された電荷の量を初期化する一対のリセットトランジスタと、を備え、上記接続制御部は、上記差動モードにおいて上記第1の画素の上記一対のトランジスタの一方を上記第3の信号線を介して上記リセット電源に接続する制御と上記第2の画素の上記一対のトランジスタの一方を上記第4の信号線を介して上記リセット電源に接続する制御とを順に行い、上記非差動モードにおいて上記第1および第3の画素のそれぞれの上記一対のトランジスタの他方を上記第5の信号線を介して上記電源に接続する制御と上記第2および第4の画素のそれぞれの上記一対のトランジスタの他方を上記第6の信号線を介して上記電源に接続する制御とを行ってもよい。これにより、差動モードと非差動モードとで異なるリセットトランジスタが駆動するという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、上記第1および第2の画素は、上記所定方向に配列され、上記第1および第3の画素は、上記垂直な方向に配列され、上記第3および第4の画素は、上記所定方向に配列されてもよい。これにより、2行×2列の画素から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、上記第1、第2、第3および第4の画素は、上記所定方向に配列されてもよい。これにより、1行×4列の画素から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、上記第1、第2、第3および第4の画素は、上記垂直な方向に配列されてもよい。これにより、4行×1列の画素から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の画素のそれぞれは、電荷を蓄積する電荷蓄積部と、入射光を光電変換して上記電荷を生成する複数の光電変換素子と、上記複数の光電変換素子のそれぞれから上記電荷蓄積部へ上記電荷を転送する転送部とを備えてもよい。これにより、電荷蓄積部を共有する複数の画素から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の画素のそれぞれは、入射光を集光するマイクロレンズと、上記集光された入射光を光電変換して電荷を生成する光電変換層と、上記光電変換層と上記マイクロレンズとの間に配置された配線層とを備え、上記第1、第2、第3および第4の信号線は、上記配線層に配線されてもよい。これにより、表面照射型の固体撮像素子から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の画素のそれぞれは、入射光を集光するマイクロレンズと、配線層と、上記マイクロレンズと上記配線層との間に配置されて上記集光された入射光を光電変換して電荷を生成する光電変換層と、を備え、上記第1、第2、第3および第4の信号線は、上記配線層に配線されてもよい。これにより、裏面照射型の固体撮像素子から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の画素と上記接続制御部とは第1の半導体チップに配置され、上記駆動部は、上記第1の半導体チップに積層された第2の半導体チップに配置されてもよい。これにより、積層型の固体撮像素子から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記第1、第2、第3および第4の画素は第1の半導体チップに配置され、上記接続制御部および上記駆動部は、上記第1の半導体チップに積層された第2の半導体チップに配置されてもよい。これにより、第1の半導体チップに画素のみを配置した積層型の固体撮像素子から信号が出力されるという作用をもたらす。
 また、この第1の側面において、上記画素信号が出力されるたびに上記画素信号をデジタル信号に変換するサンプリング処理を複数回に亘って実行するアナログデジタル変換部と、上記デジタル信号のそれぞれを加算して出力する加算回路とをさらに具備してもよい。これにより、複数回に亘ってサンプリング処理を実行して加算した結果が出力されるという作用をもたらす。
 また、本技術の第2の側面は、第1の信号線に接続された第1の画素と、第2の信号線に接続された第2の画素と、第3の画素と、第4の画素と、差動モードにおいて上記第1の画素を第3の信号線を介してリセット電源に接続する制御と上記第2の画素を第4の信号線を介して上記リセット電源に接続する制御とを順に行い、非差動モードにおいて上記第3の画素を上記第3の信号線に接続する制御と上記第4の画素を上記第4の信号線に接続する制御とを行う接続制御部と、上記差動モードにおいて上記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を上記第1および第2の信号線の一方を介して出力させ、上記非差動モードにおいて上記第1、第2、第3および第4の画素のそれぞれの画素信号を上記第1、第2、第3および第4の信号線を介して出力させる駆動部と、上記画素信号から生成された画像データに対して所定の処理を実行する画像処理部とを具備する撮像装置である。これにより、差動モードにおいて画素信号の差分を増幅した信号からなる画像データが処理され、非差動モードにおいて、第1、第2、第3および第4の画素のそれぞれの画素信号からなる画像データが処理されるという作用をもたらす。
 本技術によれば、差動モードで差動増幅を行い、非差動モードで差動増幅を行わない固体撮像素子において、非差動モードでの画素信号の読出し速度を速くすることができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。 本技術の第1の実施の形態における固体撮像素子の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるカラム読出し回路の一構成例を示すブロック図である。 本技術の第1の実施の形態における単位読出し回路の一構成例を示す回路図である。 本技術の第1の実施の形態における画素アレイ部の一構成例を示すブロック図である。 本技術の第1の実施の形態における基本ユニットの一構成例を示す回路図である。 本技術の第1の実施の形態におけるカラム信号処理部の一構成例を示す平面図である。 本技術の第1の実施の形態における差動モードの際の固体撮像素子の動作の一例を示すタイミングチャートである。 本技術の第1の実施の形態における非差動モードの際の固体撮像素子の動作の一例を示すタイミングチャートである。 本技術の第1の実施の形態における1回目の差動読出しを行う際の基本ユニットおよび単位読出し回路のそれぞれの状態の一例を示す図である。 本技術の第1の実施の形態における1回目の差動読出しを行う際の基本ユニットおよび単位読出し回路を簡易化した図である。 本技術の第1の実施の形態における1回目の差動読出しを行う際の信号線の接続先を説明するための図である。 本技術の第1の実施の形態における2回目の差動読出しを行う際の基本ユニットおよび単位読出し回路のそれぞれの状態の一例を示す図である。 本技術の第1の実施の形態における3回目の差動読出しを行う際の基本ユニットおよび単位読出し回路のそれぞれの状態の一例を示す図である。 本技術の第1の実施の形態における4回目の差動読出しを行う際の基本ユニットおよび単位読出し回路のそれぞれの状態の一例を示す図である。 本技術の第1の実施の形態における非差動モードで読出しを行う際の基本ユニットおよび単位読出し回路のそれぞれの状態の一例を示す図である。 本技術の第1の実施の形態における非差動モードで読出しを行う際の基本ユニットおよび単位読出し回路を簡易化した図である。 本技術の第1の実施の形態における非差動モードで読出しを行う際の信号線の接続先を説明するための図である。 本技術の第1の実施の形態における画素アレイ部の断面図の一例である。 本技術の第1の実施の形態における光電変換層の一構成例を示す平面図である。 本技術の第1の実施の形態における電源側垂直配線層の配線レイアウトの一例を示す平面図である。 本技術の第1の実施の形態における水平配線層の配線レイアウトの一例を示す平面図である。 本技術の第1の実施の形態における接地側垂直配線層の配線レイアウトの一例を示す平面図である。 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すフローチャートである。 本技術の第2の実施の形態における画素アレイ部の一構成例を示す平面図である。 本技術の第2の実施の形態におけるカラム読出し回路から遠い方の画素の一構成例を示す回路図である。 本技術の第2の実施の形態におけるカラム読出し回路に近い方の画素の一構成例を示す回路図である。 本技術の第3の実施の形態における画素アレイ部の一構成例を示す平面図である。 本技術の第3の実施の形態における垂直駆動部に近い方の画素の一構成例を示す回路図である。 本技術の第3の実施の形態における垂直駆動部から遠い方の画素の一構成例を示す回路図である。 本技術の第4の実施の形態における画素アレイ部の一構成例を示す平面図である。 本技術の第4の実施の形態におけるFD(Floating Diffusion)共有ブロックの一構成例を示す回路図である。 本技術の第4の実施の形態におけるFD共有ブロック内の素子の配置例を示す平面図である。 本技術の第5の実施の形態における画素アレイ部の一構成例を示す平面図である。 本技術の第5の実施の形態におけるFD共有ブロックの一構成例を示す回路図である。 本技術の第5の実施の形態におけるFD共有ブロック内の素子の配置例を示す平面図である。 本技術の第6の実施の形態における固体撮像素子の断面図の一例である。 本技術の第7の実施の形態における固体撮像素子の一構成例を示すブロック図である。 本技術の第7の実施の形態の変形例における画素チップの一構成例を示す図である。 本技術の第7の実施の形態の変形例における回路チップの一構成例を示すブロック図である。 本技術の第8の実施の形態における単位読出し回路の一構成例を示す回路図である。 本技術の第8の実施の形態におけるカラム信号処理部の一構成例を示す回路図である。 車両制御システムの概略的な構成例を示すブロック図である。 撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(垂直信号線の接続先を切り替える例)
 2.第2の実施の形態(4行×1列の画素について垂直信号線の接続先を切り替える例)
 3.第3の実施の形態(1行×4列の画素について垂直信号線の接続先を切り替える例)
 4.第4の実施の形態(4画素共有型において垂直信号線の接続先を切り替える例)
 5.第5の実施の形態(8画素共有型において垂直信号線の接続先を切り替える例)
 6.第6の実施の形態(裏面照射型において垂直信号線の接続先を切り替える例)
 7.第7の実施の形態(積層型において垂直信号線の接続先を切り替える例)
 8.第8の実施の形態(垂直信号線の接続先を切り替え、マルチサンプリングを行う例)
 9.移動体への応用例
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200およびデジタルシグナルプロセッサ120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、電源部160、記憶部170およびフレームメモリ180を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータ、車載カメラ等が想定される。
 光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、垂直同期信号VSYNCに同期して画像データを生成するものである。ここで、垂直同期信号VSYNCは、撮像のタイミングを示す所定周波数(例えば、30ヘルツ)の周期信号である。固体撮像素子200は、生成した画像データをデジタルシグナルプロセッサ120に信号線209を介して供給する。
 デジタルシグナルプロセッサ120は、固体撮像素子200からの画像データに対し、デモザイク処理やノイズ低減処理などの所定の信号処理を実行するものである。このデジタルシグナルプロセッサ120は、処理後の画像データをバス150を介してフレームメモリ180などに出力する。また、デジタルシグナルプロセッサ120は、差動モードおよび非差動モードのいずれかを指示するモード信号MODEと垂直同期信号VSYNCとを生成して固体撮像素子200に供給する。
 ここで、差動モードは、一対の画素のそれぞれの画素信号の差分を増幅(差動増幅)した信号を固体撮像素子200が生成するモードである。一方、非差動モードは、ソースフォロワ回路を形成して画素信号を差動増幅せずに出力するソースフォロワモードである。差動モードでは、画像信号に対するゲインを大きくして変換効率を大幅に大きくすることができるが、動作点が狭く、ダイナミックレンジの拡大が困難である。このため、差動モードは暗所での撮像に適しており、非差動(ソースフォロワ)モードは明所での撮像に適している。そこで、デジタルシグナルプロセッサ120は、例えば、環境光の光量を測光して測光量が所定の閾値より小さい場合に差動モードを指示し、測光量が閾値以上の場合に非差動モードを指示する。
 表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。
 バス150は、光学部110、固体撮像素子200、デジタルシグナルプロセッサ120、表示部130、操作部140、電源部160、記憶部170およびフレームメモリ180が互いにデータをやりとりするための共通の経路である。
 電源部160は、固体撮像素子200、デジタルシグナルプロセッサ120や表示部130などに電源を供給するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。フレームメモリ180は、画像データを保持するものである。
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、垂直駆動部210、画素アレイ部220、システム制御部291、カラム読出し回路300、カラム信号処理部270、水平駆動部292、データ格納部293および画像処理部294を備える。これらの回路は、1つの半導体チップ上に配置される。
 システム制御部291は、垂直駆動部210、カラム読出し回路300およびカラム信号処理部270および水平駆動部292を制御するものである。このシステム制御部291は、タイミングジェネレータなどにより構成される。システム制御部291は、垂直同期信号VSYNCに同期して垂直駆動部210、カラム信号処理部270および水平駆動部292のそれぞれの動作タイミングを指示するタイミング信号を生成し、対応する回路に供給する。また、システム制御部291は、モード信号MODEに従って、カラム読出し回路300内のスイッチを制御する制御信号を生成してカラム読出し回路300に供給する。
 画素アレイ部220内には、二次元格子状に複数の画素が配列される。以下、所定方向(水平方向など)に配列された画素の集合を「行」または「ライン」と称し、行に垂直な方向に配列された画素の集合を「列」と称する。また、画素アレイ部220内の行数をM(Mは整数)とし、列数をN(Nは整数)とする。
 ここで、画素アレイ部220内の画素の全ては、光電変換を行う有効画素であるものとする。なお、有効画素に加えて、光電変換を行わないダミー画素や、入射光を遮断した遮光画素を画素アレイ部220内にさらに配置することもできる。
 垂直駆動部210は、行を順に選択して駆動するものである。この垂直駆動部210は、シフトレジスタやアドレスデコーダなどにより構成される。差動モードにおいて垂直駆動部210は、1行ずつ順に選択し、行を選択するたびに、その行内の奇数列と偶数列とを順に駆動する。一方、非差動モードにおいて垂直駆動部210は、2行ずつ順に選択し、選択した2行内の全画素を同時に駆動する。このため、非差動モードでは、N/2回の読出しにより1枚の画像データが生成され、差動モードでは、2×N回の読出しにより1枚の画像データが生成される。すなわち、非差動モードの読出し速度は、差動モードの4倍となる。このように、行単位で駆動する制御方式は、ローリングシャッター方式と呼ばれる。なお、垂直駆動部210は、特許請求の範囲に記載の駆動部の一例である。また、垂直駆動部210は、ローリングシャッター方式を用いているが、全画素を同時に駆動するグローバルシャッター方式を用いることもできる。
 カラム読出し回路300は、画素アレイ部220に配線された垂直信号線のそれぞれの接続先をシステム制御部291の制御に従って切り替えるものである。
 カラム信号処理部270は、列ごとに、その列からの画素信号に対して、AD(Analog to Digital)変換処理などの信号処理を実行するものである。このカラム信号処理部270は、信号処理後の画素データのそれぞれを水平駆動部292の制御に従って順に画像処理部294に出力する。
 水平駆動部292は、カラム信号処理部270を制御して画素データを順に出力させるものである。この水平駆動部292は、シフトレジスタやアドレスデコーダにより構成される。
 画像処理部294は、M×N個の画素データからなる画像データに対して、画素加算処理などの各種の画像処理を実行するものである。この画像処理部294は、画像処理において必要に応じてデータ格納部293に画像データを一時的に保持させる。また、画像処理部294は、処理後の画像データをデジタルシグナルプロセッサ120に供給する。
 なお、画像処理部294を固体撮像素子200の外部(デジタルシグナルプロセッサ120内など)に配置する構成であってもよい。また、デジタルシグナルプロセッサ120の代わりに画像処理部294が、モード信号MODEを生成する構成であってもよい。
 [カラム読出し回路の構成例]
 図3は、本技術の第1の実施の形態におけるカラム読出し回路300の一構成例を示すブロック図である。このカラム読出し回路300は、2列ごとに単位読み出し回路310を備える。列数がNの場合、N/2個の単位読出し回路310が配置される。
 単位読出し回路310のそれぞれは、6本の垂直信号線を介して画素アレイ部220に接続される。また、単位読出し回路310は、4本の信号線を介してカラム信号処理部270に接続される。
 図4は、本技術の第1の実施の形態における単位読出し回路310の一構成例を示す回路図である。この単位読出し回路310は、n型トランジスタ311および312と、スイッチ313乃至337と、電流源341乃至344とを備える。
 ここで、画素アレイ部220において、2j-1(jは1乃至N/2の整数)列目には、列方向に沿って垂直信号線VSL2j-1、VPX2j-1およびVRD2j-1が配線される。また、2j列目には、垂直信号線VSL2j、VPX2jおよびVRD2jが配線される。垂直信号線VSL2j-1およびVSL2jは、画素からの信号をカラム信号処理部270へ出力するために用いられる。また、垂直信号線VPX2j-1およびVPX2jは、電流源341乃至344に画素を接続するために用いられる。垂直信号線VRD2j-1およびVRD2jは、画素へのリセット電源の供給、または、画素からカラム信号処理部270への信号出力に用いられる。
 なお、垂直信号線VSL2jは、特許請求の範囲に記載の第1の信号線の一例であり、垂直信号線VSL2j-1は、特許請求の範囲に記載の第2の信号線の一例である。垂直信号線VRD2jは、特許請求の範囲に記載の第3の信号線の一例であり、垂直信号線VRD2j-1は、特許請求の範囲に記載の第4の信号線の一例である。また、垂直信号線VPX2jは、特許請求の範囲に記載の第5の信号線の一例であり、垂直信号線VPX2j-1は、特許請求の範囲に記載の第6の信号線の一例である。
 n型トランジスタ311および312のソースは、電源電圧VDDの電源に接続される。これらのn型トランジスタ311および312として、例えば、MOS(Metal Oxide Semiconductor)トランジスタが用いられる。
 スイッチ313は、システム制御部291からの制御信号SW20に従って、n型トランジスタ311のゲートとドレインとの間の経路を開閉するものである。スイッチ314は、システム制御部291からの制御信号SW10に従って、n型トランジスタ312のゲートとドレインとの間の経路を開閉するものである。これらのスイッチ313および314の一方を閉状態に制御することにより、n型トランジスタ311および312からなるカレントミラー回路が形成される。
 スイッチ316は、システム制御部291からの制御信号SW31に従って、n型トランジスタ311のドレインと、垂直信号線VSL2j-1との間の経路を開閉するものである。スイッチ317は、システム制御部291からの制御信号SW41に従って、n型トランジスタ311のドレインと、垂直信号線VRD2j-1との間の経路を開閉するものである。
 スイッチ318は、システム制御部291からの制御信号SW31に従って、n型トランジスタ312のドレインと、垂直信号線VRD2jとの間の経路を開閉するものである。スイッチ319は、システム制御部291からの制御信号SW21に従って、n型トランジスタ312のドレインと、垂直信号線VSL2jとの間の経路を開閉するものである。
 スイッチ315は、システム制御部291からの制御信号SW2に従って、カラム信号処理部270と垂直信号VSL2j-1との間の経路を開閉するものである。このスイッチ315を介して電圧Vout2が出力される。
 スイッチ320は、システム制御部291からの制御信号SW1に従って、カラム信号処理部270と垂直信号VSL2jとの間の経路を開閉するものである。このスイッチ320を介して電圧Vout1が出力される。
 スイッチ321は、システム制御部291からの制御信号SW4に従って、カラム信号処理部270と垂直信号VRD2j-1との間の経路を開閉するものである。このスイッチ321を介して電圧Vout4が出力される。
 スイッチ323は、システム制御部291からの制御信号SW3に従って、カラム信号処理部270と垂直信号VRD2jとの間の経路を開閉するものである。このスイッチ323を介して電圧Vout3が出力される。
 スイッチ322は、システム制御部291からの制御信号SW00に従って、電源電圧VDDの電源と垂直信号VPX2j-1およびVPX2jの間の経路を開閉するものである。
 スイッチ324は、システム制御部291からの制御信号SW22に従って、垂直信号VPX2j-1と電流源341との間の経路を開閉するものである。スイッチ325は、システム制御部291からの制御信号SW12に従って、垂直信号VPX2jと電流源342との間の経路を開閉するものである。
 スイッチ326は、システム制御部291からの制御信号SW23に従って、垂直信号VSL2j-1と電流源341との間の経路を開閉するものである。スイッチ327は、システム制御部291からの制御信号SW13に従って、垂直信号VSL2jと電流源342との間の経路を開閉するものである。
 スイッチ328は、システム制御部291からの制御信号SW42に従って、垂直信号VPX2j-1と電流源343との間の経路を開閉するものである。スイッチ329は、システム制御部291からの制御信号SW32に従って、垂直信号VPX2jと電流源344との間の経路を開閉するものである。
 スイッチ330は、システム制御部291からの制御信号SW43に従って、垂直信号VRD2j-1と電流源343との間の経路を開閉するものである。スイッチ331は、システム制御部291からの制御信号SW33に従って、垂直信号VRD2jと電流源344との間の経路を開閉するものである。
 スイッチ332は、システム制御部291からの制御信号SW34に従って、垂直信号VSL2j-1とリセット電圧Vrstのリセット電源との間の経路を開閉するものである。スイッチ333は、システム制御部291からの制御信号SW44に従って、垂直信号VSL2jとリセット電圧Vrstのリセット電源との間の経路を開閉するものである。
 ここで、リセット電圧Vrstには、電源電圧VDDよりも低い値が設定される。例えば、電源電圧VDDは3.3ボルト(V)であり、リセット電圧Vrstは、2.2ボルト(V)である。
 スイッチ334は、システム制御部291からの制御信号SW25に従って、垂直信号VSL2j-1と垂直信号線VRD2j-1との間の経路を開閉するものである。スイッチ335は、システム制御部291からの制御信号SW14に従って、垂直信号VRD2j-1とリセット電圧Vrstのリセット電源との間の経路を開閉するものである。
 スイッチ336は、システム制御部291からの制御信号SW24に従って、垂直信号VRD2jとリセット電圧Vrstのリセット電源との間の経路を開閉するものである。スイッチ337は、システム制御部291からの制御信号SW15に従って、垂直信号VSL2jと垂直信号線VRD2jとの間の経路を開閉するものである。
 [画素アレイ部の構成例]
 図5は、本技術の第1の実施の形態における画素アレイ部220の一構成例を示すブロック図である。この画素アレイ部220は、複数の基本ユニット225が配置される。この基本ユニット225のそれぞれには、2行×2列の画素が配列される。例えば、2i-1行、2j-1列に画素230が配置され、2i-1行、2j列に画素240が配置される。また、2i行、2j-1列に画素250が配置され、2i行、2j列に画素260が配置される。ここで、iは、1乃至M/2の整数である。
 また、以下、行の方向をX方向とし、列の方向をY方向とし、X方向およびY方向に垂直な方向をZ方向とする。
 なお、画素240は、特許請求の範囲に記載の第1の画素の一例であり、画素230は、特許請求の範囲に記載の第2の画素の一例である。画素260は、特許請求の範囲に記載の第3の画素の一例であり、画素250は、特許請求の範囲に記載の第4の画素の一例である。
 [基本ユニットの構成例]
 図6は、本技術の第1の実施の形態における基本ユニット225の一構成例を示す回路図である。この基本ユニット225において画素230は、フォトダイオード231と、転送トランジスタ232と、電荷蓄積部233と、リセットトランジスタ234および235と、増幅トランジスタ236と、選択トランジスタ237とを備える。
 また、画素240は、フォトダイオード241と、転送トランジスタ242と、電荷蓄積部243と、リセットトランジスタ244および245と、増幅トランジスタ246と、選択トランジスタ247とを備える。
 画素250は、フォトダイオード251と、転送トランジスタ252と、電荷蓄積部253と、リセットトランジスタ254および255と、増幅トランジスタ256と、選択トランジスタ257とを備える。画素260は、フォトダイオード261と、転送トランジスタ262と、電荷蓄積部263と、リセットトランジスタ264および265と、増幅トランジスタ266と、選択トランジスタ267とを備える。
 フォトダイオード231、241、251および261は、入射光を光電変換して電荷を生成するものである。なお、フォトダイオード231、241、251および261のそれぞれは、特許請求の範囲に記載の光電変換部の一例である。
 転送トランジスタ232は、垂直駆動部210からの転送信号TRG22i-1に従って、フォトダイオード231から電荷蓄積部233へ電荷を転送するものである。転送トランジスタ242は、垂直駆動部210からの転送信号TRG12i-1に従って、フォトダイオード241から電荷蓄積部243へ電荷を転送するものである。
 また、転送トランジスタ252は、垂直駆動部210からの転送信号TRG22iに従って、フォトダイオード251から電荷蓄積部253へ電荷を転送するものである。転送トランジスタ262は、垂直駆動部210からの転送信号TRG12iに従って、フォトダイオード261から電荷蓄積部263へ電荷を転送するものである。
 電荷蓄積部233、243、253および263は、転送された電荷を蓄積して、蓄積した電荷の量に応じた電圧を生成するものである。電荷蓄積部233、243、253および263として、例えば、FD(Floating Diffusion)が用いられる。
 リセットトランジスタ234は、垂直駆動部210からのリセット信号RSTD2i-1に従って、電荷蓄積部233の電荷量を初期化するものである。リセットトランジスタ244は、垂直駆動部210からのリセット信号RSTD2i-1に従って、電荷蓄積部243の電荷量を初期化するものである。
 また、リセットトランジスタ254は、垂直駆動部210からのリセット信号RSTD2iに従って、電荷蓄積部253の電荷量を初期化するものである。リセットトランジスタ264は、垂直駆動部210からのリセット信号RSTD2iに従って、電荷蓄積部263の電荷量を初期化するものである。
 これらのリセットトランジスタ234、244、254および264は、差動モードにおいて駆動される。駆動タイミングについては後述する。
 リセットトランジスタ235は、垂直駆動部210からのリセット信号RSTS2i-1に従って、電荷蓄積部233の電荷量を初期化するものである。リセットトランジスタ245は、垂直駆動部210からのリセット信号RSTS2i-1に従って、電荷蓄積部243の電荷量を初期化するものである。
 また、リセットトランジスタ255は、垂直駆動部210からのリセット信号RSTS2iに従って、電荷蓄積部253の電荷量を初期化するものである。リセットトランジスタ265は、垂直駆動部210からのリセット信号RSTS2iに従って、電荷蓄積部263の電荷量を初期化するものである。
 これらのリセットトランジスタ235、245、255および265は、非差動モードにおいて駆動される。駆動タイミングについては後述する。
 増幅トランジスタ236、246、256および266は、電荷蓄積部により生成された電圧の信号を増幅するものである。
 選択トランジスタ237は、垂直駆動部210からの選択信号SEL2i-1に従って、増幅トランジスタ236により増幅された信号を出力するものである。選択トランジスタ247は、垂直駆動部210からの選択信号SEL2i-1に従って、増幅トランジスタ246により増幅された信号を出力するものである。
 また、選択トランジスタ257は、垂直駆動部210からの選択信号SEL2iに従って、増幅トランジスタ256により増幅された信号を出力するものである。選択トランジスタ267は、垂直駆動部210からの選択信号SEL2iに従って、増幅トランジスタ266により増幅された信号を出力するものである。
 また、リセットトランジスタ234のソースは、垂直信号線VRD2j-1に接続され、リセットトランジスタ235のソースは、垂直信号線VPX2j-1に接続される。このため、リセットトランジスタ234にハイレベルのリセット信号RSTD2i-1が供給されると、電荷蓄積部233は、垂直信号線VRD2j-1を介して印加される電圧にクランプされ、その信号線を介して電荷が排出される。また、リセットトランジスタ235にハイレベルのリセット信号RSTS2i-1が供給されると、電荷蓄積部233は、垂直信号線VPX2j-1を介して印加される電圧にクランプされ、その信号線を介して電荷が排出される。また、リセット信号RSTS2i-1およびRSTD2i-1がローレベルである場合には、電荷蓄積部233は、垂直信号線と電気的に遮断されて、その電位は浮遊状態となる。
 増幅トランジスタ236のソースは、垂直信号線VPX2j-1に接続され、選択トランジスタ237のドレインは、垂直信号線VSL2j-1に接続される。
 リセットトランジスタ244のソースは、垂直信号線VRD2jに接続され、リセットトランジスタ245のソースは、垂直信号線VPX2jに接続される。増幅トランジスタ246のソースは、垂直信号線VPX2jに接続され、選択トランジスタ247のドレインは、垂直信号線VSL2jに接続される。
 リセットトランジスタ254のソースは、垂直信号線VSL2j-1に接続され、リセットトランジスタ255のソースは、垂直信号線VPX2j-1に接続される。増幅トランジスタ256のソースは、垂直信号線VPX2j-1に接続され、選択トランジスタ257のドレインは、垂直信号線VRD2j-1に接続される。
 リセットトランジスタ264のソースは、垂直信号線VSL2jに接続され、リセットトランジスタ265のソースは、垂直信号線VPX2jに接続される。増幅トランジスタ266のソースは、垂直信号線VPX2jに接続され、選択トランジスタ267のドレインは、垂直信号線VRD2jに接続される。
 [カラム信号処理部の構成例]
 図7は、本技術の第1の実施の形態におけるカラム信号処理部270の一構成例を示す平面図である。このカラム信号処理部270は、列ごとに2個のADCを備える。列数がN列の場合、2×N個のADCが設けられる。
 2j-1列目には、ADC273および276が配置され、2j列目にはADC277および278が配置される。また、ADC273には、カラム読出し回路300からの電圧Vout1のアナログ信号が入力され、また、ADC276には、カラム読出し回路300からの電圧Vout2のアナログ信号が入力される。ADC277には、カラム読出し回路300からの電圧Vout3のアナログ信号が入力され、また、ADC278には、カラム読出し回路300からの電圧Vout4のアナログ信号が入力される。
 ADC273は、入力されたアナログ信号をデジタル信号に変換するものである。このADC273は、比較器274およびカウンタ275を備える。ADC276、277および278の構成は、ADC273と同様である。なお、ADC273、276、277および278のそれぞれは、特許請求の範囲に記載のアナログデジタル変換部の一例である。
 比較器274は、入力されたアナログ信号と、参照信号REFとを比較するものである。参照信号REFとして、例えば、のこぎり刃状のランプ信号が用いられる。この比較器274は、比較結果を示す比較結果信号をカウンタ275に供給する。
 カウンタ275は、比較結果信号が所定レベルである期間内において計数値を計数するものである。このカウンタ275は、計数値を示すデジタル信号を画素データとして出力部280に供給する。
 出力部280は、水平駆動部292の制御に従って、画素データのそれぞれを画像処理部294へ順に出力するものである。
 図8は、本技術の第1の実施の形態における差動モードの際の固体撮像素子200の動作の一例を示すタイミングチャートである。
 垂直同期信号VSYNCの周期内において、行が順に選択される。例えば、タイミングT10からタイミングT30までの期間において2i-1行が選択され、タイミングT30からタイミングT50までの期間において2i行が選択される。
 また、タイミングT10からタイミングT20までの期間において、2i-1行の偶数列が選択され、タイミングT20からタイミングT30までの期間において、2i-1行の奇数列が選択される。タイミングT30からタイミングT40までの期間において、2i行の偶数列が選択され、タイミングT40からタイミングT50までの期間において、2i行の奇数列が選択される。
 垂直駆動部210は、タイミングT10からタイミングT30までの期間に亘って選択信号SEL2i-1を供給し、タイミングT30からタイミングT50までの期間に亘って選択信号SEL2iを供給する。
 また、垂直駆動部210は、2i-1行の偶数列の選択中にリセット信号RSTD2i―1と転送信号TRG12i-1とを順に供給する。また、同じ行の奇数列の選択中にシステム制御部291は、リセット信号RSTD2i-1と転送信号TRG22i-1とを順に供給する。
 システム制御部291は、2i行の偶数列の選択中にリセット信号RSTD2iと転送信号TRG12iとを順に供給する。また、同じ行の奇数列の選択中にシステム制御部291は、リセット信号RSTD2iと転送信号TRG22iとを順に供給する。
 これらのリセット信号により出力されるアナログ信号を「リセットレベル」と称する。また、転送信号により出力されるアナログ信号を「信号レベル」と称する。カラム信号処理部270内の出力部280は、リセットレベルを変換したデジタル信号と信号レベルを変換したデジタル信号との差分を画素データとして出力する。このように、複数回のサンプリングを行って、それらの差分を求める処理は、CDS(Correlated double sampling)処理と呼ばれる。このCDS処理により、リセットノイズや、トランジスタの閾値ばらつきに起因する画素固有の固定パターンノイズを除去することができる。
 また、システム制御部291は、2i-1行の選択中に、制御信号SW11、SW21、SW12、SW22をカラム読出し回路300へ供給し、2i行の選択中に制御信号SW31、SW41、SW32およびSW42を供給する。
 また、システム制御部291は、2i-1行の偶数列の選択中に制御信号SW20、SW14およびSW15を供給し、その行の奇数列の選択中に制御信号SW10、SW24およびSW25を供給する。
 また、システム制御部291は、2i行の偶数列の選択中に制御信号SW20、SW34およびSW15を供給し、その行の奇数列の選択中に制御信号SW10、SW44およびSW25を供給する。
 上述の制御により、2i-1行の偶数列および奇数列から、画素信号を差動増幅した信号が順に読み出される。次いで2i行の偶数列および奇数列から、画素信号を差動増幅した信号が順に読み出される。
 なお、上述のタイミングチャートにおいて、同じタイミングで供給される複数の制御信号のそれぞれに対応するスイッチは、1つに共通化してスイッチの個数を削減することもできる。例えば、制御信号SW11、SW21、SW12、SW22は、同じタイミングで供給されるため、これらに対応する4つのスイッチを1つに置き換えることができる。
 図9は、本技術の第1の実施の形態における非差動モードの際の固体撮像素子の動作の一例を示すタイミングチャートである。垂直同期信号VSYNCの周期内において、行が2行ずつ順に選択される。例えば、タイミングT60からタイミングT70までの期間において2i-1行および2i行が同時に選択される。
 垂直駆動部210は、タイミングT60からタイミングT70までの期間に亘って選択信号SEL2i-1およびSEL2iを供給する。
 また、システム制御部291は、2i-1行の選択中にリセット信号RSTS2i-1およびRSTS2iを同時に供給し、その後に転送信号TRG12i-1、TRG22i-1、TRG12iおよびTRG22iを同時に供給する。
 また、システム制御部291は、2i-1行および2i行の選択中に、制御信号SW00、SW13、SW23、SW33およびSW43をカラム読出し回路300へ供給する。
 上述の制御により、2i-1行および2i行から、画素信号が同時に読み出される。このように2行を同時に読み出すため、1行ずつ読み出す場合よりも読出し速度を速くすることができる。
 図10は、本技術の第1の実施の形態における1回目の差動読出しを行う際の基本ユニット225および単位読出し回路310のそれぞれの状態の一例を示す図である。基本ユニット225において最初に画素240が読出し画素として選択され、隣接する画素230が参照画素として選択される。ここで、読出し画素は、画素信号を読み出す対象の画素である。参照画素は、差動増幅する際に、読出し画素からの信号と比較するための参照信号を出力する画素である。
 単位読出し回路310は、垂直信号線VSL2j-1、VSL2jおよびVRD2jを、n型トランジスタ311および312からなるカレントミラー回路に接続する。また、単位読出し回路310は、垂直信号線VPX2j-1およびVPX2jを、電流源341および342に接続し、垂直信号線VRD2j-1をリセット電源に接続する。なお、単位読出し回路310は、特許請求の範囲に記載の接続制御部の一例である。
 また、垂直駆動部210は、リセット信号RSTS2i-1を除く、各種の駆動信号を2i-1行に供給する。リセット信号RSTS2i-1が供給されないため、リセットトランジスタ235および245は、動作しない。
 このような制御により、読出し画素および参照画素は差動増幅回路として動作し、それぞれの画素信号の差分を増幅した、電圧Vout1の信号を出力する。
 図11は、本技術の第1の実施の形態における1回目の差動読出しを行う際の基本ユニット225および単位読出し回路310を簡易化した図である。同図に例示するように選択トランジスタ237および247は、差動対として機能し、それらのトランジスタの入力信号を差動増幅した、電圧Vout1の信号が出力される。
 ここで、仮に、差動モードにおいて垂直駆動部210がリセットトランジスタ235を駆動すると、リセット電圧Vrstよりも高い電源電圧VDDによりリセットされて、信号の振幅を大きくすることができなくなる。このため、リセット電源に接続されたリセットトランジスタ244をリセットトランジスタ235と別途に設けておき、垂直駆動部210が差動モードにおいて駆動している。
 図12は、本技術の第1の実施の形態における1回目の差動読出しを行う際の信号線の接続先を説明するための図である。同図に例示するように、単位読出し回路310は、垂直信号線VRD2j-1を介して参照画素(画素230)をリセット電源に接続する。また、単位読出し回路310は、参照画素および読出し画素(画素240)を垂直信号線VPX2j-1およびVPX2jを介して電流源341および342に接続する。また、単位読出し回路310は、参照画素および読出し画素を垂直信号線VSL2j-1、VSL2jおよびVRD2jを介してカレントミラー回路に接続する。
 また、垂直駆動部210は、参照画素および読出し画素を駆動して、画素信号を差動増幅した信号を垂直信号線VSL2jを介して出力させる。
 図13は、本技術の第1の実施の形態における2回目の差動読出しを行う際の基本ユニット225および単位読出し回路310のそれぞれの状態の一例を示す図である。同図に例示するように基本ユニット225において画素230が読出し画素として選択され、隣接する画素240が参照画素として選択される。
 単位読出し回路310は、垂直信号線VSL2j-1、VSL2jおよびVRD2j-1をカレントミラー回路に接続する。また、単位読出し回路310は、垂直信号線VPX2j-1およびVPX2jを、電流源341および342に接続し、垂直信号線VRD2jをリセット電源に接続する。
 図10乃至13を参照して説明したように、単位読出し回路310は、画素230を垂直信号VRD2j-1を介してリセット電源に接続する制御と、画素240を垂直信号VRD2jを介してリセット電源に接続する制御とを順に行う。このように、垂直信号線VDR2j-1およびVRD2jは、差動モードにおいてはリセット電源を供給するために用いられる。
 図14は、本技術の第1の実施の形態における3回目の差動読出しを行う際の基本ユニット225および単位読出し回路310のそれぞれの状態の一例を示す図である。同図に例示するように基本ユニット225において画素260が読出し画素として選択され、隣接する画素250が参照画素として選択される。
 単位読出し回路310は、垂直信号線VSL2j-1、VSL2jおよびVRD2jをカレントミラー回路に接続する。また、単位読出し回路310は、垂直信号線VPX2j-1およびVPX2jを、電流源343および344に接続し、垂直信号線VRD2j-1をリセット電源に接続する。
 図15は、本技術の第1の実施の形態における4回目の差動読出しを行う際の基本ユニット225および単位読出し回路310のそれぞれの状態の一例を示す図である。同図に例示するように基本ユニット225において画素250が読出し画素として選択され、隣接する画素260が参照画素として選択される。
 単位読出し回路310は、垂直信号線VSL2j-1、VSL2jおよびVRD2j-1をカレントミラー回路に接続する。また、単位読出し回路310は、垂直信号線VPX2j-1およびVPX2jを、電流源343および344に接続し、垂直信号線VRD2jをリセット電源に接続する。
 図16は、本技術の第1の実施の形態における非差動モードで読出しを行う際の基本ユニット225および単位読出し回路310のそれぞれの状態の一例を示す図である。単位読出し回路310は、垂直信号線VSL2j-1、VRD2j-1、VSL2jおよびVRD2jのそれぞれを電流源341、343、342および344に接続する。また、単位読出し回路310は、垂直信号線VPX2j-1およびVPX2jを電源に接続する。
 また、垂直駆動部210は、リセット信号RSTD2i-1およびRSTD2iを除く、各種の駆動信号を2i-1行に供給する。リセット信号RSTD2i-1およびRSTD2iが供給されないため、リセットトランジスタ234、244、254および265は、動作しない。このような制御により、選択された2行から画素信号が同時に出力される。
 図17は、本技術の第1の実施の形態における非差動モードで読出しを行う際の基本ユニット225および単位読出し回路310を簡易化した図である。同図に例示するように、それぞれの画素においてソースフォロワ回路が形成される。
 図18は、本技術の第1の実施の形態における非差動モードで読出しを行う際の信号線の接続先を説明するための図である。同図に例示するように、単位読出し回路310は、垂直信号線VSL2j-1およびVSL2jを介して画素230および240のそれぞれを電流源342および341に接続する。また、単位読出し回路310は、垂直信号線VRD2j-1およびVRD2jを介して画素250および260のそれぞれを電流源344および343に接続する。また、単位読出し回路310は、垂直信号線VPX2j-1およびVPX2jを介して、画素230、240、250および260を電源に接続する。
 非差動モードにおいては、差動モードと異なり、カレントミラー回路に画素230および240を接続する必要はない。このため、カレントミラー回路への接続に用いていた垂直信号線VSL2j-1およびVSL2jを、画素230および240のそれぞれの画素信号を出力するために用いることができる。
 また、非差動モードにおいては、差動モードと異なり、リセット電源を供給する必要はない。このため、差動モードではリセット電源の供給に用いていた垂直信号線VRD2j-1およびVRD2jは、非差動モードでは画素230および240において用いられず余ってしまう。仮に、これらの垂直信号線を画素に接続しないままにすると、固体撮像素子は、1行ずつしか画素信号を読み出すことができなくなる。
 そこで、固体撮像素子200では、これらの余った垂直信号線VRD2j-1およびVRD2jを、画素250および260のそれぞれの画素信号を出力するために用いている。このように、非差動モードにおいて上側の2画素が用いない2本の垂直信号線を下側の2画素の画素信号の出力のために用いることにより、垂直信号線を有効に活用して、2行を同時に読み出すことができる。
 図19は、本技術の第1の実施の形態における画素アレイ部220の断面図の一例である。画素アレイ部220は、Z軸において受光面への方向を上方として、マイクロレンズの下方に接地側垂直配線層224が設けられ、その下方に水平配線層223が設けられる。また、水平配線層223の下方に電源側垂直配線層222が設けられ、その下方に光電変換層221が設けられる。このように、マイクロレンズと光電変換層221との間に電源側垂直配線層222等の配線層が配置された固体撮像素子200では、配線層側の面を基板の表面として、表面に光が照射される。このような固体撮像素子は、表面照射型の固体撮像素子と呼ばれる。
 図20は、本技術の第1の実施の形態における光電変換層221の一構成例を示す平面図である。光電変換層221において画素230内にフォトダイオード231およびFD233が配置され、フォトダイオード231とFD233との間に転送トランジスタ232が配置される。また、FD233の両側において、X方向に沿ってリセットトランジスタ234および235が配列される。増幅トランジスタ236および選択トランジスタ237は、Y方向に沿って配列される。画素240、250および260のそれぞれのレイアウトは画素230と同様である。
 図21は、本技術の第1の実施の形態における電源側垂直配線層222の配線レイアウトの一例を示す平面図である。画素230および画素250において、Y方向(列方向)に沿って、垂直信号線VRD2j-1およびVSL2j-1が配線される。また、画素240および画素260において、Y方向に沿って、垂直信号線VRD2jおよびVSL2jが配線される。
 図22は、本技術の第1の実施の形態における水平配線層223の配線レイアウトの一例を示す平面図である。画素230および画素240において、X方向(行方向)に沿って、水平信号線223-1、223-2、223-3、223-4および223-5が配線される。画素250および260においても同様に5本の水平信号線が配線される。水平信号線223-1は、リセット信号RSTS2iまたはRSTS2i-1を伝送する。水平信号線223-2は、リセット信号RSTD2iまたはRSTD2i-1を伝送する。水平信号線223-3は、転送信号TRG12iまたはTRG12i-1を伝送する。水平信号線223-4は、転送信号TRG22iまたはTRG22i-1を伝送する。水平信号線223-5は、選択信号SEL2iまたはSEL2i-1を伝送する。
 図23は、本技術の第1の実施の形態における接地側垂直配線層224の配線レイアウトの一例を示す平面図である。画素230および250において、Y方向に沿って垂直信号線VPX2j-1と接地線VSS2j-1とが配線される。画素240および260においても、Y方向に沿って垂直信号線VPX2jと接地線VSS2jとが配線される。
 [固体撮像素子の動作例]
 図24は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すフローチャートである。この動作は、例えば、画像データを撮像するための所定のアプリケーションが実行されたときに開始される。
 固体撮像素子200は、現在のモードが差動モードであるか否かを判断する(ステップS901)。差動モードである場合に(ステップS901:Yes)、固体撮像素子200は、1つのラインを選択する(ステップS902)。そして、固体撮像素子200は、選択したライン内の偶数列を駆動し(ステップS903)、次に奇数列を駆動する(ステップS904)。そして、固体撮像素子200は、全ラインを選択したか否かを判断する(ステップS905)。全ラインを選択した場合に(ステップS905:Yes)、固体撮像素子200は、ステップS901以降を繰り返す。全ラインを選択していない場合には(ステップS905:No)、固体撮像素子200は、ステップS902以降を繰り返し実行する。
 一方、非差動モードである場合に(ステップS901:No)、固体撮像素子200は、2ラインを選択し(ステップS906)、同時に駆動する(ステップS907)。そして、固体撮像素子200は、全ラインを選択したか否かを判断する(ステップS908)。全ラインを選択した場合に(ステップS908:Yes)、固体撮像素子200は、ステップS901以降を繰り返す。全ラインを選択していない場合には(ステップS908:No)、固体撮像素子200は、ステップS906以降を繰り返し実行する。
 このように、本技術の第1の実施の形態では、単位読出し回路310が非差動モードにおいて垂直信号線VRD2j-1およびVRD2jを画素250および260に接続するため、画素250および260を含む2行から同時に画素信号を読み出すことができる。これにより、1行ずつ画素信号を読み出す場合よりも読出し速度を速くすることができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、基本ユニット225内の4画素を2行×2列に配列していたが、2行×2列の配列では、非差動モードにおいて2行ずつしか読み出すことができない。この第2の実施の形態の固体撮像素子200は、3行以上を同時に読出す点において第1の実施の形態と異なる。
 図25は、本技術の第2の実施の形態における画素アレイ部220の一構成例を示す平面図である。この第2の実施の形態の画素アレイ部220は、基本ユニット225内の4画素を4行×1列に配列した点において第1の実施の形態と異なる。
 例えば、2i-1行に画素230が配置され、2i行に画素240が配置される。また、2i+1行に画素250が配置され、2i+2行に画素260が配置される。また、単位読出し回路310は、列ごとに配置される。
 図26は、本技術の第2の実施の形態におけるカラム読出し回路300から遠い方の画素230および240の一構成例を示す回路図である。図27は、本技術の第2の実施の形態におけるカラム読出し回路300に近い方の画素250および260の一構成例を示す回路図である。
 図26および27に例示するように、列ごとに垂直信号線VSL2j-1、VSL2j、VPX2j-1、VPX2j、VRD2j-1およびVRD2jが配線される。また、垂直駆動部210は、非差動モードにおいて、4行を同時に駆動する。
 このように、本技術の第2の実施の形態では、基本ユニット225内に4画素を4行×1列に配列したため、4行を同時に読み出すことができる。これにより、2行を同時に読み出す場合と比較して読出し速度をさらに向上させることができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態では、基本ユニット225内の4画素を2行×2列に配列していたが、2行×2列の配列では、カラム読出し回路300において2列ごとに単位読出し回路310を配置する必要がある。このため、列数の増加に伴うカラム読出し回路300の回路規模の増大量が大きい。この第3の実施の形態の固体撮像素子200は、カラム読出し回路300の回路規模を削減した点において第1の実施の形態と異なる。
 図28は、本技術の第3の実施の形態における画素アレイ部220の一構成例を示す平面図である。この第3の実施の形態の画素アレイ部220は、基本ユニット225内の4画素を1行×4列に配列した点において第1の実施の形態と異なる。
 例えば、2j-1列に画素230が配置され、2j列に画素240が配置される。また、2j+1列に画素250が配置され、2j+2列に画素260が配置される。また、単位読出し回路310は、4列ごとに配置される。
 図29は、本技術の第3の実施の形態における垂直駆動部210に近い方の画素230および240の一構成例を示す回路図である。同図に例示するように、画素230に垂直信号線VSL2j-1、VPX2j-1およびVRD2j-1が配線される。
 図30は、本技術の第2の実施の形態における垂直駆動部210から遠い方の画素250および260の一構成例を示す回路図である。同図に例示するように、画素250に垂直信号線VSL2j+1、VPX2j+1およびVRD2j+1が配線される。
 ここで、非差動モードにおいて垂直信号線VRD2j-1およびVRD2jの接続先を切り替えず、1行×4列に配列する比較例を想定する。この比較例では、非差動モードにおいて固体撮像素子は、行全体を一度に読み出すことができず、行ごとに、その行内のN列のうち半分を読み出してから、残りを読み出す必要がある。しかし、固体撮像素子200では、カラム読出し回路300が非差動モードにおいて垂直信号線VRD2j-1およびVRD2jの接続先を切り替えているため、非差動モードにおいて1行ずつ読み出すことができる。このため、比較例よりも読出し速度を速くすることができる。さらに、1行×4列の配列では、単位読出し回路310を4列ごとに配置すればよいため、2列ごとに配置する構成と比較して、カラム読出し回路300の回路規模を削減することができる。
 このように、本技術の第3の実施の形態では、カラム読出し回路300において4列ごとに単位読出し回路310を配置するため、2列ごとに単位読出し回路310を配置する場合と比較してカラム読出し回路300の回路規模を削減することができる。
 <4.第4の実施の形態>
 上述の第1の実施の形態では、画素毎に、トランジスタを5つ配置していたが、この構成では微細化が困難になるおそれがある。微細化を容易にするには、画素当たりのトランジスタ数を削減することが望ましい。この第4の実施の形態の固体撮像素子200は、画素当たりのトランジスタ数を削減した点において第1の実施の形態と異なる。
 図31は、本技術の第4の実施の形態における画素アレイ部220の一構成例を示す平面図である。この第4の実施の形態の画素アレイ部220は、基本ユニット225内にFD共有ブロック226、227、228および229が配置される点において第1の実施の形態と異なる。
 FD共有ブロック226には、画素360、230、363および366が2行×2列に配列される。これらの画素は、電荷蓄積部233(FD)を共有する。FD共有ブロック227には、画素240を含む4画素が2行×2列に配列される。これらの画素は、電荷蓄積部243を共有する。
 FD共有ブロック228には、画素250を含む4画素が2行×2列に配列される。これらの画素は、電荷蓄積部253を共有する。FD共有ブロック229には、画素260を含む4画素が2行×2列に配列される。これらの画素は、電荷蓄積部263を共有する。
 図32は、本技術の第4の実施の形態におけるFD共有ブロック226の一構成例を示す回路図である。画素360には、転送トランジスタ361およびフォトダイオード362が配置される。また、画素363には、転送トランジスタ364およびフォトダイオード365が配置される。画素366には、転送トランジスタ367およびフォトダイオード368が配置される。FD共有ブロック227、228および229の構成は、FD共有ブロック226と同様である。
 転送トランジスタ361は、垂直駆動部210の制御に従ってフォトダイオード362から電荷蓄積部233に電荷を転送し、転送トランジスタ364は、フォトダイオード365から電荷蓄積部233に電荷を転送する。また、転送トランジスタ367は、フォトダイオード368から電荷蓄積部233に電荷を転送する。なお、転送トランジスタ361、232、364および367からなる回路は、特許請求の範囲に記載の転送部の一例である。
 上述の構成により、電荷蓄積部233(FD)と、リセットトランジスタ234および235と、増幅トランジスタ236と、選択トランジスタ237とは、4画素により共有される。このため、画素毎に、これらの素子を配置する第1の実施の形態と比較して、画素当たりのトランジスタ数を削減することができる。
 図33は、本技術の第4の実施の形態におけるFD共有ブロック226内の素子の配置例を示す平面図である。フォトダイオード362、231、365および368は、2行×2列に配列される。また、リセットトランジスタ234および235と、増幅トランジスタ236と、選択トランジスタ237とは、Y方向に沿って配列される。
 このように、本技術の第4の実施の形態では、電荷蓄積部233やトランジスタを4画素が共有するため、それらを共有しない構成と比較して画素当たりのトランジスタ数を削減することができる。
 <5.第5の実施の形態>
 上述の第4の実施の形態では、4画素が電荷蓄積部(FD)を共有していたが、この構成ではさらに微細化することが困難になるおそれがある。さらに微細化するには、FDを共有する画素数を5つ以上に増大することが望ましい。この第5の実施の形態の固体撮像素子200は、FDを共有する画素数を増大した点において第4の実施の形態と異なる。
 図34は、本技術の第5の実施の形態における画素アレイ部220の一構成例を示す平面図である。この第5の実施の形態の画素アレイ部220は、FD共有ブロック226、227、228および229のそれぞれに8画素が配置される点において第4の実施の形態と異なる。
 例えば、FD共有ブロック227には、画素360、240、363、366、370、376、373および379が4行×2列に配列される。これらの8画素は、電荷蓄積部243(FD)を共有する。FD共有ブロック226、228および229についても同様に、ブロック内の8画素はFDを共有する。
 図35は、本技術の第5の実施の形態におけるFD共有ブロック227の一構成例を示す回路図である。この第5の実施の形態の画素360、363および366の構成は、第4の実施の形態と同様である。
 画素370には、転送トランジスタ371およびフォトダイオード372が配置される。画素373には、転送トランジスタ374およびフォトダイオード375が配置される。また、画素376には、転送トランジスタ377およびフォトダイオード378が配置される。画素379には、転送トランジスタ380およびフォトダイオード381が配置される。
 転送トランジスタ371は、垂直駆動部210の制御に従ってフォトダイオード372から電荷蓄積部243に電荷を転送し、転送トランジスタ374は、フォトダイオード375から電荷蓄積部243に電荷を転送する。また、転送トランジスタ377は、フォトダイオード378から電荷蓄積部243に電荷を転送する。転送トランジスタ380は、フォトダイオード381から電荷蓄積部243に電荷を転送する。
 図36は、本技術の第5の実施の形態におけるFD共有ブロック227内の素子の配置例を示す平面図である。フォトダイオード362、241、365、368、372、375、378および381は、4行×2列に配列される。また、リセットトランジスタ244および245と、増幅トランジスタ246と、選択トランジスタ247とは、Y方向に沿って配列される。
 このように、本技術の第5の実施の形態では、電荷蓄積部(FD)やトランジスタを8画素が共有するため、それらを4画素が共有する構成と比較して画素当たりのトランジスタ数をさらに削減することができる。
 <6.第6の実施の形態>
 上述の第1の実施の形態では、配線層側の面を表面として表面に光を照射する表面照射型の構成を用いていた。しかしながら、この表面照射型では、配線層が光の一部を遮ってしまい、感度が低下してしまう。この第6の実施の形態の固体撮像素子200は、感度を向上させた点において第1の実施の形態と異なる。
 図37は、本技術の第6の実施の形態における固体撮像素子200の断面図の一例である。マイクロレンズの下方に光電変換層221が配置され、その下方に電源側垂直配線層222が設けられる。その電源側垂直配線層222の下方に水平配線層223が設けられる。また、水平配線層223の下方に接地側垂直配線層224が設けられる。
 上述のように、マイクロレンズと電源側垂直配線層222等の配線層との間に光電変換層221を配置する固体撮像素子200では、表面に対向する裏面に光が照射される。このような固体撮像素子は、裏面照射型の固体撮像素子と呼ばれる。この裏面照射型では、配線層の一部により光が遮られることが無いため、表面照射型と比較して感度が高い。
 このように、本技術の第6の実施の形態によれば、マイクロレンズと電源側垂直配線層222等の配線層との間に光電変換層221を配置する裏面照射型の構造としたため、表面照射型と比較して感度を向上させることができる。
 <7.第7の実施の形態>
 上述の第1の実施の形態では、固体撮像素子200内の回路のそれぞれを単一の半導体チップ上に設けていた。しかし、単一の半導体チップ上に設ける場合、そのチップに画素アレイ部220に加えて、垂直駆動部210等も配置する必要がある。このため、半導体チップの面積を一定とすると、画素アレイ部220以外の回路の分、画素アレイ部220の面積が狭くなってしまう。画素アレイ部220の面積を広くするには、例えば、固体撮像素子200内の回路のそれぞれを、積層した複数の半導体チップに分散して配置すればよい。この第7の実施の形態の固体撮像素子200は、積層された複数の半導体チップに回路を分散して配置した点において第1の実施の形態と異なる。
 図38は、本技術の第7の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この第7の実施の形態の固体撮像素子200は、積層された画素チップ201および回路チップ202を備える。
 画素チップ201は、画素が配置される半導体チップである。この画素チップ201には、上側カラム信号処理部271、上側カラム読出し回路301、画素アレイ部220、下側カラム読出し回路302および下側カラム信号処理部272が配置される。
 上側カラム読出し回路301には、M列のうち半数に対応する単位読出し回路310が配置され、下側カラム読出し回路302には、残りの列に対応する単位読出し回路310が配置される。上側カラム信号処理部271には、上側カラム読出し回路301に対応するADCが配置され、下側カラム信号処理部272には、下側カラム読出し回路302に対応するADCが配置される。
 回路チップ202は、垂直駆動部210、システム制御部291、水平駆動部292、データ格納部293および画像処理部294などの回路が配置される半導体チップである。
 なお、画素チップ201は、特許請求の範囲に記載の第1の半導体チップの一例であり、回路チップ202は、特許請求の範囲に記載の第2の半導体チップの一例である。
 このように、本技術の第7の実施の形態では、固体撮像素子200内の回路のそれぞれを、積層された複数の半導体チップに分散して配置したため、単一の半導体チップに配置する場合と比較して画素アレイ部220の面積を広くすることができる。
 [変形例]
 上述の第7の実施の形態では、画素チップ201において、上側カラム信号処理部271等の画素アレイ部220以外の回路も画素アレイ部220とともに配置していた。この構成では、画素チップ201の面積を一定とすると、画素アレイ部220以外の回路の分、画素アレイ部220の面積が狭くなってしまう。画素アレイ部220の面積を広くするには、例えば、画素アレイ部220以外の回路を回路チップ202に配置すればよい。この第7の実施の形態の変形例における固体撮像素子200は、画素アレイ部220以外の回路を回路チップ202に配置した点において第7の実施の形態と異なる。
 図39は、本技術の第7の実施の形態の変形例における画素チップ201の一構成例を示す図である。この第7の実施の形態の変形例の画素チップ201は、画素アレイ部220のみが配置される点において第1の実施の形態と異なる。
 図40は、本技術の第7の実施の形態の変形例における回路チップ202の一構成例を示す図である。この第7の実施の形態の変形例の回路チップ202には、上側カラム信号処理部271、上側カラム読出し回路301、画素周辺回路295、下側カラム読出し回路302および下側カラム信号処理部272が配置される。
 画素周辺回路295は、垂直駆動部210、システム制御部291、水平駆動部292、データ格納部293および画像処理部294などを含む。
 このように、本技術の第7の実施の形態では、画素アレイ部220以外の回路を回路チップ202に配置したため、それらを画素チップ201に配置する場合よりも、画素アレイ部220の面積を広くすることができる。
 <8.第8の実施の形態>
 上述の第1の実施の形態では、固体撮像素子200は、リセットレベルおよび信号レベルのそれぞれに対して、デジタル信号への変換(すなわち、サンプリング)を1回のみ行っていたが、画素データのノイズをさらに低減することが困難である。例えば、リセットレベルおよ信号レベルのそれぞれに対して複数回のサンプリングを行い、その結果を加算すれば、ノイズをさらに低減することができる。この第8の実施の形態における固体撮像素子200は、リセットレベルおよび信号レベルのそれぞれに対して複数回のサンプリングを行う点において第1の実施の形態と異なる。
 図41は、本技術の第8の実施の形態における単位読出し回路310の一構成例を示す回路図である。この第8の実施の形態における単位読出し回路310は、スイッチ345乃至352をさらに備える点において第1の実施の形態と異なる。
 スイッチ345は、システム制御部291からの制御信号SW51に従って、信号線COMとADC278との間の経路を開閉するものである。スイッチ346は、システム制御部291からの制御信号SW52に従って、信号線COMとADC276との間の経路を開閉するものである。
 また、スイッチ347は、システム制御部291からの制御信号SW53に従って、信号線COMとADC273との間の経路を開閉するものである。スイッチ348は、システム制御部291からの制御信号SW54に従って、信号線COMとADC277との間の経路を開閉するものである。
 スイッチ349は、システム制御部291からの制御信号SW55に従って、垂直信号線VRD2j-1と信号線COMとの間の経路を開閉するものである。スイッチ350は、システム制御部291からの制御信号SW56に従って、垂直信号線VRD2jと信号線COMとの間の経路を開閉するものである。
 スイッチ351は、システム制御部291からの制御信号SW57に従って、垂直信号線VSL2j-1と信号線COMとの間の経路を開閉するものである。スイッチ352は、システム制御部291からの制御信号SW58に従って、垂直信号線VSL2jと信号線COMとの間の経路を開閉するものである。
 システム制御部291は、非差動モードにおいてスイッチのそれぞれを制御して、ある画素のリセットレベルをADC273、275、276および277に同時に供給する。D相レベルについても同様に、4つのADCに同時に供給される。例えば、画素240の画素信号(リセットレベルや信号レベル)を供給する際には、制御信号SW51、SW52、SW54およびSW58が供給される。一方、差動モードにおいては第1の実施の形態と同様に、画素ごとにADC273、275、276および277のうち1つのみが用いられる。
 図42は、本技術の第8の実施の形態におけるカラム信号処理部270の一構成例を示す回路図である。このカラム信号処理部270は、出力部280の代わりに、ラッチ回路281乃至284と、加算回路285とを備える。
 また、ADC273には、互いに位相の異なる参照信号REF1、REF2、REF3およびREF4のうちREF1が入力される。ADC276には、参照信号REF2が入力され、ADC277には参照信号REF3が入力される。ADC278には参照信号REF4が入力される。
 ラッチ回路281は、ADC273からのデジタル信号を保持するものである。ラッチ回路282は、ADC276からのデジタル信号を保持するものである。ラッチ回路283は、ADC277からのデジタル信号を保持するものである。ラッチ回路284は、ADC278からのデジタル信号を保持するものである。これらのラッチ回路281乃至284は、保持した信号を加算回路285に供給する。
 加算回路285は、ラッチ回路281乃至284のそれぞれからのデジタル信号を加算し、加算後のデータを画素データとして画像処理部294に出力するものである。
 このように、本技術の第8の実施の形態によれば、画素ごとに、複数回のサンプリングを行って、それらの結果を加算するため、画素データのノイズをさらに低減することができる。
 <9.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図43は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図43に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図43の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図44は、撮像部12031の設置位置の例を示す図である。
 図44では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図44には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、図1の撮像装置100を、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、読出し速度を速くして、フレームレートを向上させることが可能になる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)第1の信号線に接続された第1の画素と、
 第2の信号線に接続された第2の画素と、
 第3の画素と、
 第4の画素と、
 差動モードにおいて前記第1の画素を第3の信号線を介してリセット電源に接続する制御と前記第2の画素を第4の信号線を介して前記リセット電源に接続する制御とを順に行い、非差動モードにおいて前記第3の画素を前記第3の信号線に接続する制御と前記第4の画素を前記第4の信号線に接続する制御とを行う接続制御部と、
 前記差動モードにおいて前記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を前記第1および第2の信号線の一方を介して出力させ、前記非差動モードにおいて前記第1、第2、第3および第4の画素のそれぞれの画素信号を前記第1、第2、第3および第4の信号線を介して出力させる駆動部と
を具備する固体撮像素子。
(2)前記接続制御部は、前記差動モードにおいて前記第1および第2の画素を第5および第6の信号線を介して所定の電流源に接続する制御をさらに行い、前記非差動モードにおいて前記第1および第3の画素を前記第5の信号線を介して電源に接続する制御と前記第2および第4の画素を前記第6の信号線を介して電源に接続する制御とをさらに行う
請求項1記載の固体撮像素子。
(3)前記第1および第2の画素のそれぞれは、
 電荷を蓄積する電荷蓄積部と、
 前記蓄積された電荷の量を初期化する一対のリセットトランジスタと、
を備え、
 前記接続制御部は、前記差動モードにおいて前記第1の画素の前記一対のトランジスタの一方を前記第3の信号線を介して前記リセット電源に接続する制御と前記第2の画素の前記一対のトランジスタの一方を前記第4の信号線を介して前記リセット電源に接続する制御とを順に行い、前記非差動モードにおいて前記第1および第3の画素のそれぞれの前記一対のトランジスタの他方を前記第5の信号線を介して前記電源に接続する制御と前記第2および第4の画素のそれぞれの前記一対のトランジスタの他方を前記第6の信号線を介して前記電源に接続する制御とを行う
前記(2)記載の固体撮像素子。
(4)前記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、
 前記第1および第2の画素は、前記所定方向に配列され、
 前記第1および第3の画素は、前記垂直な方向に配列され、
 前記第3および第4の画素は、前記所定方向に配列される
前記(1)から(3)のいずれかに記載の固体撮像素子。
(5)前記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、
 前記第1、第2、第3および第4の画素は、前記所定方向に配列される
前記(1)から(3)のいずれかに記載の固体撮像素子。
(6)前記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、
 前記第1、第2、第3および第4の画素は、前記垂直な方向に配列される
前記(1)から(3)のいずれかに記載の固体撮像素子。
(7)前記第1、第2、第3および第4の画素のそれぞれは、
 電荷を蓄積する電荷蓄積部と、
 入射光を光電変換して前記電荷を生成する複数の光電変換素子と、
 前記複数の光電変換素子のそれぞれから前記電荷蓄積部へ前記電荷を転送する転送部と
を備える
前記(1)から(6)のいずれかに記載の固体撮像素子。
(8)前記第1、第2、第3および第4の画素のそれぞれは、
 入射光を集光するマイクロレンズと、
 前記集光された入射光を光電変換して電荷を生成する光電変換層と、
 前記光電変換層と前記マイクロレンズとの間に配置された配線層と
を備え、
 前記第1、第2、第3および第4の信号線は、前記配線層に配線される
前記(1)から(7)のいずれかに記載の固体撮像素子。
(9)前記第1、第2、第3および第4の画素のそれぞれは、
 入射光を集光するマイクロレンズと、
 配線層と、
 前記マイクロレンズと前記配線層との間に配置されて前記集光された入射光を光電変換して電荷を生成する光電変換層と、
を備え、
 前記第1、第2、第3および第4の信号線は、前記配線層に配線される
前記(1)から(7)のいずれかに記載の固体撮像素子。
(10)前記第1、第2、第3および第4の画素と前記接続制御部とは第1の半導体チップに配置され、
 前記駆動部は、前記第1の半導体チップに積層された第2の半導体チップに配置される
前記(1)から(9)のいずれかに記載の固体撮像素子。
(11)前記第1、第2、第3および第4の画素は第1の半導体チップに配置され、
 前記接続制御部および前記駆動部は、前記第1の半導体チップに積層された第2の半導体チップに配置される
前記(1)から(9)のいずれかに記載の固体撮像素子。
(12)前記画素信号が出力されるたびに前記画素信号をデジタル信号に変換するサンプリング処理を複数回に亘って実行するアナログデジタル変換部と、
 前記デジタル信号のそれぞれを加算して出力する加算回路と
をさらに具備する前記(1)から(11)のいずれかに記載の固体撮像素子。
(13)第1の信号線に接続された第1の画素と、
 第2の信号線に接続された第2の画素と、
 第3の画素と、
 第4の画素と、
 差動モードにおいて前記第1の画素を第3の信号線を介してリセット電源に接続する制御と前記第2の画素を第4の信号線を介して前記リセット電源に接続する制御とを順に行い、非差動モードにおいて前記第3の画素を前記第3の信号線に接続する制御と前記第4の画素を前記第4の信号線に接続する制御とを行う接続制御部と、
 前記差動モードにおいて前記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を前記第1および第2の信号線の一方を介して出力させ、前記非差動モードにおいて前記第1、第2、第3および第4の画素のそれぞれの画素信号を前記第1、第2、第3および第4の信号線を介して出力させる駆動部と、
 前記画素信号から生成された画像データに対して所定の処理を実行する画像処理部と
を具備する撮像装置。
(14)差動モードにおいて第1の信号線に接続された第1の画素を第3の信号線を介してリセット電源に接続する制御と第2の信号線に接続された第2の画素を第4の信号線を介して前記リセット電源に接続する制御とを順に行い、非差動モードにおいて第3の画素を前記第3の信号線に接続する制御と前記第4の画素を前記第4の信号線に接続する制御とを行う接続制御手順と、
 前記差動モードにおいて前記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を前記第1および第2の信号線の一方を介して出力させ、前記非差動モードにおいて前記第1、第2、第3および第4の画素のそれぞれの画素信号を前記第1、第2、第3および第4の信号線を介して出力させる駆動手順と
を具備する固体撮像素子の制御方法。
 100 撮像装置
 110 光学部
 120 デジタルシグナルプロセッサ
 130 表示部
 140 操作部
 150 バス
 160 電源部
 170 記録部
 180 フレームメモリ
 200 固体撮像素子
 201 画素チップ
 202 回路チップ
 210 垂直駆動部
 220 画素アレイ部
 221 光電変換層
 222 電源側垂直配線層
 223 水平配線層
 224 接地側垂直配線層
 225 基本ユニット
 226~229 FD共有ブロック
 230、240、250、260、360、363、366、370、373、376、379 画素
 231、241、251、261、362、365、368、372、375、378.381 フォトダイオード
 232、242、252、262、361、364、367、371、374、377、380 転送トランジスタ
 233、243、253、263 電荷蓄積部
 234、235、244、245、254、255、264、265 リセットトランジスタ
 236、246、256、266 増幅トランジスタ
 237、247、257、267 選択トランジスタ
 270 カラム信号処理部
 271 上側カラム信号処理部
 272 下側カラム信号処理部
 273、276、277、278 ADC
 274 比較器
 275 カウンタ
 280 出力部
 281~284 ラッチ回路
 285 加算回路
 291 システム制御部
 292 水平駆動部
 293 データ格納部
 294 画像処理部
 295 画素周辺回路
 300 カラム読出し回路
 301 上側カラム読出し回路
 302 下側カラム読出し回路
 310 単位読出し回路
 311、312 n型トランジスタ
 313~337、345~352 スイッチ
 341~344 電流源
 12031 撮像部

Claims (14)

  1.  第1の信号線に接続された第1の画素と、
     第2の信号線に接続された第2の画素と、
     第3の画素と、
     第4の画素と、
     差動モードにおいて前記第1の画素を第3の信号線を介してリセット電源に接続する制御と前記第2の画素を第4の信号線を介して前記リセット電源に接続する制御とを順に行い、非差動モードにおいて前記第3の画素を前記第3の信号線に接続する制御と前記第4の画素を前記第4の信号線に接続する制御とを行う接続制御部と、
     前記差動モードにおいて前記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を前記第1および第2の信号線の一方を介して出力させ、前記非差動モードにおいて前記第1、第2、第3および第4の画素のそれぞれの画素信号を前記第1、第2、第3および第4の信号線を介して出力させる駆動部と
    を具備する固体撮像素子。
  2.  前記接続制御部は、前記差動モードにおいて前記第1および第2の画素を第5および第6の信号線を介して所定の電流源に接続する制御をさらに行い、前記非差動モードにおいて前記第1および第3の画素を前記第5の信号線を介して電源に接続する制御と前記第2および第4の画素を前記第6の信号線を介して電源に接続する制御とをさらに行う
    請求項1記載の固体撮像素子。
  3.  前記第1および第2の画素のそれぞれは、
     電荷を蓄積する電荷蓄積部と、
     前記蓄積された電荷の量を初期化する一対のリセットトランジスタと、
    を備え、
     前記接続制御部は、前記差動モードにおいて前記第1の画素の前記一対のトランジスタの一方を前記第3の信号線を介して前記リセット電源に接続する制御と前記第2の画素の前記一対のトランジスタの一方を前記第4の信号線を介して前記リセット電源に接続する制御とを順に行い、前記非差動モードにおいて前記第1および第3の画素のそれぞれの前記一対のトランジスタの他方を前記第5の信号線を介して前記電源に接続する制御と前記第2および第4の画素のそれぞれの前記一対のトランジスタの他方を前記第6の信号線を介して前記電源に接続する制御とを行う
    請求項2記載の固体撮像素子。
  4.  前記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、
     前記第1および第2の画素は、前記所定方向に配列され、
     前記第1および第3の画素は、前記垂直な方向に配列され、
     前記第3および第4の画素は、前記所定方向に配列される
    請求項1記載の固体撮像素子。
  5.  前記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、
     前記第1、第2、第3および第4の画素は、前記所定方向に配列される
    請求項1記載の固体撮像素子。
  6.  前記第1、第2、第3および第4の信号線は、所定方向に垂直な方向に沿って配線され、
     前記第1、第2、第3および第4の画素は、前記垂直な方向に配列される
    請求項1記載の固体撮像素子。
  7.  前記第1、第2、第3および第4の画素のそれぞれは、
     電荷を蓄積する電荷蓄積部と、
     入射光を光電変換して前記電荷を生成する複数の光電変換素子と、
     前記複数の光電変換素子のそれぞれから前記電荷蓄積部へ前記電荷を転送する転送部と
    を備える
    請求項1記載の固体撮像素子。
  8.  前記第1、第2、第3および第4の画素のそれぞれは、
     入射光を集光するマイクロレンズと、
     前記集光された入射光を光電変換して電荷を生成する光電変換層と、
     前記光電変換層と前記マイクロレンズとの間に配置された配線層と
    を備え、
     前記第1、第2、第3および第4の信号線は、前記配線層に配線される
    請求項1記載の固体撮像素子。
  9.  前記第1、第2、第3および第4の画素のそれぞれは、
     入射光を集光するマイクロレンズと、
     配線層と、
     前記マイクロレンズと前記配線層との間に配置されて前記集光された入射光を光電変換して電荷を生成する光電変換層と、
    を備え、
     前記第1、第2、第3および第4の信号線は、前記配線層に配線される
    請求項1記載の固体撮像素子。
  10.  前記第1、第2、第3および第4の画素と前記接続制御部とは第1の半導体チップに配置され、
     前記駆動部は、前記第1の半導体チップに積層された第2の半導体チップに配置される
    請求項1記載の固体撮像素子。
  11.  前記第1、第2、第3および第4の画素は第1の半導体チップに配置され、
     前記接続制御部および前記駆動部は、前記第1の半導体チップに積層された第2の半導体チップに配置される
    請求項1記載の固体撮像素子。
  12.  前記画素信号が出力されるたびに前記画素信号をデジタル信号に変換するサンプリング処理を複数回に亘って実行するアナログデジタル変換部と、
     前記デジタル信号のそれぞれを加算して出力する加算回路と
    をさらに具備する請求項1記載の固体撮像素子。
  13.  第1の信号線に接続された第1の画素と、
     第2の信号線に接続された第2の画素と、
     第3の画素と、
     第4の画素と、
     差動モードにおいて前記第1の画素を第3の信号線を介してリセット電源に接続する制御と前記第2の画素を第4の信号線を介して前記リセット電源に接続する制御とを順に行い、非差動モードにおいて前記第3の画素を前記第3の信号線に接続する制御と前記第4の画素を前記第4の信号線に接続する制御とを行う接続制御部と、
     前記差動モードにおいて前記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を前記第1および第2の信号線の一方を介して出力させ、前記非差動モードにおいて前記第1、第2、第3および第4の画素のそれぞれの画素信号を前記第1、第2、第3および第4の信号線を介して出力させる駆動部と、
     前記画素信号から生成された画像データに対して所定の処理を実行する画像処理部と
    を具備する撮像装置。
  14.  差動モードにおいて第1の信号線に接続された第1の画素を第3の信号線を介してリセット電源に接続する制御と第2の信号線に接続された第2の画素を第4の信号線を介して前記リセット電源に接続する制御とを順に行い、非差動モードにおいて第3の画素を前記第3の信号線に接続する制御と前記第4の画素を前記第4の信号線に接続する制御とを行う接続制御手順と、
     前記差動モードにおいて前記第1および第2の画素のそれぞれの画素信号の差分を増幅した信号を前記第1および第2の信号線の一方を介して出力させ、前記非差動モードにおいて前記第1、第2、第3および第4の画素のそれぞれの画素信号を前記第1、第2、第3および第4の信号線を介して出力させる駆動手順と
    を具備する固体撮像素子の制御方法。
PCT/JP2018/022322 2017-08-01 2018-06-12 固体撮像素子、撮像装置、および、固体撮像素子の制御方法 WO2019026429A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/633,407 US11252367B2 (en) 2017-08-01 2018-06-12 Solid-stage image sensor, imaging device, and method of controlling solid-state image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148821 2017-08-01
JP2017148821 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019026429A1 true WO2019026429A1 (ja) 2019-02-07

Family

ID=65233746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022322 WO2019026429A1 (ja) 2017-08-01 2018-06-12 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Country Status (2)

Country Link
US (1) US11252367B2 (ja)
WO (1) WO2019026429A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183809A1 (ja) * 2019-03-13 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、電子機器、および、固体撮像装置の制御方法
WO2021157263A1 (ja) * 2020-02-07 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2024042863A1 (ja) * 2022-08-25 2024-02-29 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543350B1 (ko) * 2018-08-16 2023-06-15 삼성전자주식회사 이미지 센서
JP2020191505A (ja) * 2019-05-20 2020-11-26 キヤノン株式会社 撮像装置および撮像装置の制御方法
JP2022119380A (ja) * 2021-02-04 2022-08-17 キヤノン株式会社 光電変換装置、光電変換システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259218A (ja) * 2002-02-28 2003-09-12 Fujitsu Ltd 感度を上げることができるcmosイメージセンサ
JP2008271280A (ja) * 2007-04-23 2008-11-06 Sony Corp 固体撮像装置、固体撮像装置の駆動方法、固体撮像装置の信号処理方法および撮像装置
JP2015053625A (ja) * 2013-09-09 2015-03-19 キヤノン株式会社 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7074072B2 (ja) * 2017-01-31 2022-05-24 株式会社ニコン 撮像素子および電子カメラ
JP7023685B2 (ja) * 2017-11-30 2022-02-22 キヤノン株式会社 撮像装置、撮像システム、移動体
JP2021093623A (ja) * 2019-12-10 2021-06-17 キヤノン株式会社 光電変換装置および撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259218A (ja) * 2002-02-28 2003-09-12 Fujitsu Ltd 感度を上げることができるcmosイメージセンサ
JP2008271280A (ja) * 2007-04-23 2008-11-06 Sony Corp 固体撮像装置、固体撮像装置の駆動方法、固体撮像装置の信号処理方法および撮像装置
JP2015053625A (ja) * 2013-09-09 2015-03-19 キヤノン株式会社 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183809A1 (ja) * 2019-03-13 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、電子機器、および、固体撮像装置の制御方法
WO2021157263A1 (ja) * 2020-02-07 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2024042863A1 (ja) * 2022-08-25 2024-02-29 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
US11252367B2 (en) 2022-02-15
US20200382735A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7047166B2 (ja) 固体撮像装置
JP7284714B2 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2019026429A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US11523079B2 (en) Solid-state imaging element and imaging device
JP2020072317A (ja) センサ及び制御方法
WO2021112151A1 (en) Solid-state imaging device and imaging device with combined dynamic vision sensor and imaging functions
JP7391041B2 (ja) 固体撮像装置及び電子機器
JP7316262B2 (ja) 固体撮像装置
JP2020156070A (ja) 固体撮像装置、電子機器、および、固体撮像装置の制御方法
WO2019193801A1 (ja) 固体撮像素子、電子機器および固体撮像素子の制御方法
WO2020137198A1 (ja) 固体撮像素子および撮像装置
US11451725B2 (en) Solid-state imaging element, imaging apparatus, and method for controlling solid-state imaging element
WO2020183809A1 (ja) 固体撮像装置、電子機器、および、固体撮像装置の制御方法
EP4300944A1 (en) Solid-state imaging element and imaging device
WO2019039311A1 (ja) 固体撮像素子、撮像装置、および、電子機器
WO2021157147A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2023032252A1 (ja) 固体撮像素子
WO2023021780A1 (ja) 撮像装置、電子機器及び情報処理方法
WO2022064835A1 (ja) 固体撮像素子、および、撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP