WO2019024613A1 - 支护用波纹板组件 - Google Patents

支护用波纹板组件 Download PDF

Info

Publication number
WO2019024613A1
WO2019024613A1 PCT/CN2018/091088 CN2018091088W WO2019024613A1 WO 2019024613 A1 WO2019024613 A1 WO 2019024613A1 CN 2018091088 W CN2018091088 W CN 2018091088W WO 2019024613 A1 WO2019024613 A1 WO 2019024613A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated plate
corrugated
support
plate assembly
units
Prior art date
Application number
PCT/CN2018/091088
Other languages
English (en)
French (fr)
Inventor
马伟斌
叶阳升
韩自力
张千里
付兵先
郭小雄
邹文浩
李尧
安哲立
王志伟
杜晓燕
牛亚彬
马超锋
赵鹏
张文达
Original Assignee
中国铁道科学研究院铁道建筑研究所
中国铁道科学研究院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铁道科学研究院铁道建筑研究所, 中国铁道科学研究院集团有限公司 filed Critical 中国铁道科学研究院铁道建筑研究所
Publication of WO2019024613A1 publication Critical patent/WO2019024613A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F5/00Draining the sub-base, i.e. subgrade or ground-work, e.g. embankment of roads or of the ballastway of railways or draining-off road surface or ballastway drainage by trenches, culverts, or conduits or other specially adapted means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/15Plate linings; Laggings, i.e. linings designed for holding back formation material or for transmitting the load to main supporting members

Definitions

  • the invention relates to road construction technology, in particular to a support corrugated plate assembly.
  • the tunnel culvert project With the acceleration of traffic construction, the tunnel culvert project has also developed rapidly. Whether for railway tunnels, road tunnels or related culverts, the safety requirements are extremely high. Therefore, the support structure of the tunnel or culvert must meet the requirements of safety, reliability and durability.
  • tunnels or culverts are often supported by a concrete composite lining method.
  • its initial support mainly bears all the loads during the construction phase and the main loads during the operational phase.
  • the secondary support is mainly used as a safety reserve, and bears the additional load caused by the load or soft rock creep and environmental conditions that may be degraded by the initial support and acting on the secondary lining.
  • the present invention proposes a corrugated plate assembly for support.
  • a corrugated plate assembly for a support for a tunnel is formed by connecting a plurality of corrugated plate units to each other in a lateral direction and a longitudinal direction, wherein a first connecting plate is provided at a longitudinal edge of each of the corrugated plate units for The corrugated plate units are connected to each other in the longitudinal direction.
  • the first web extends in a lateral direction and has a greater height than the corrugated board unit.
  • the two corrugated plate units adjacent in the lateral direction are joined by overlapping the lateral edges, the overlapping regions occupying at least three quarters of the peaks of the corrugated plate unit.
  • a second web is provided at each of the lateral edges of each of the corrugated plate units for connecting the corrugated plate units to each other in the longitudinal direction.
  • the second connecting plate extends in a longitudinal direction and is connected to a lateral end edge of the corrugated plate unit at a central portion, wherein the height of the second connecting plate is set to be larger than that of the corrugated plate unit height.
  • a waterproof mat is disposed between the first webs of adjacent corrugated board units and/or between the second webs.
  • the connecting regions between two adjacent corrugated board units are offset from one another.
  • the corrugated plate unit at the lateral end of the support corrugated plate assembly is secured to the foundation pits on both sides of the tunnel by bolt fasteners, the bolt fastener including the L connected to the corrugated plate unit Angle iron, and L-shaped anchor bolts embedded in the foundation.
  • a waterproof layer is disposed on an inner surface of the support corrugated board assembly.
  • an insulating layer is disposed on an outer surface of the support corrugated board assembly.
  • a waterproof layer containing an insulating material is disposed on an inner surface of the supporting corrugated plate assembly.
  • reinforcing bars are placed on the outer surface of the supporting corrugated plate assembly and a reinforcing mesh is suspended.
  • the corrugated plate assembly for support according to the present invention has the advantages of simple structure, high strength, and good durability.
  • Figure 1 shows a schematic view of the use of a corrugated plate assembly for a support in a tunnel according to the present invention
  • Figure 2 is a schematic cross-sectional view showing the application of the supporting corrugated plate assembly to the concrete lining layer according to the present invention
  • Figure 3 is a schematic view showing the connection and expansion of a plurality of corrugated plate units adjacent in the longitudinal direction and the lateral direction of the tunnel;
  • Figure 4 shows the overlapping state between two adjacent corrugated board units
  • Figure 5 shows a corrugated board unit in accordance with one embodiment of the present invention
  • FIG. 6 shows a corrugated board unit in accordance with another embodiment of the present invention.
  • Figure 7 shows a state in which a plurality of corrugated plate units are connected in the lateral direction
  • Figure 8 shows a state in which a plurality of corrugated plate units are connected in the longitudinal direction
  • Figure 9 is a magnified view showing the mounted state of the corrugated plate assembly for a support according to the present invention.
  • Figure 10 shows, in an enlarged view, another mounting state of the supporting corrugated plate assembly according to the present invention.
  • Figure 11 shows, in an enlarged view, another mounting state of the supporting corrugated plate assembly according to the present invention.
  • Figure 12 shows an anchor bolt for mounting a corrugated plate assembly within a subgrade foundation
  • FIG. 1 shows a schematic view of the application of a corrugated plate assembly for a support according to the invention in a tunnel.
  • a support corrugated plate assembly 100 is provided on the inner wall of the tunnel 1.
  • the support corrugated plate assembly 100 is generally comprised of a plurality of corrugated plate units in the transverse direction of the tunnel (direction X in Figure 1, or the width of the tunnel, also referred to as the hoop) and the longitudinal direction of the tunnel (in Figure 1
  • the direction Y, or the length direction of the tunnel is spliced, which will be described in detail below.
  • the support corrugated plate assembly 100 is integrally formed in a shape substantially matching the inner wall of the tunnel 1, and its both ends are respectively attached to the bases on both sides of the tunnel by anchor bolt fasteners (which will be described later in detail in conjunction with FIG. 6). Pit or foundation for new work for this.
  • the support corrugated board assembly 100 is disposed on the inner wall of the tunnel 1.
  • the inner wall of the tunnel 1 is usually provided with a concrete lining layer 10.
  • the waterproof layer 20 is first placed on the concrete lining layer 10.
  • the waterproof layer 20 can be, for example, a polyurethane layer, and preferably has a thickness in the range of 2-10 mm.
  • the waterproof layer 20 can also be, for example, a cement slurry, a special grout or a concrete. Thereafter, the support corrugated plate assembly 100 is placed on the waterproof layer 20.
  • an additional insulating layer may be added to the surface of the supporting corrugated plate assembly 100 facing away from the waterproof layer 20. (not shown), which is preferably 5-15 cm thick.
  • the insulating layer can be made, for example, of polyurethane, foam board or other insulating material.
  • the waterproof layer 20 may also be doped with an insulating material such that the waterproof layer 20 also has a heat retaining function. In this way, a separate insulation layer can be omitted.
  • waterproof layer and the heat insulating layer may be separately provided or integrated with the corrugated plate assembly.
  • the tunnel is usually relatively long (i.e., the Y direction in Fig. 1), and the dimensions in the height direction (i.e., the Z direction in Fig. 1) and the width direction (i.e., the X direction in Fig. 1) are also large. Therefore, for convenience, the support corrugated board assembly 100 is generally formed by splicing a plurality of corrugated board units 110.
  • Figure 3 shows the case where six corrugated board units 110 are spliced together. That is, the three corrugated plate units 110 are joined together in the width direction of the tunnel (i.e., the X direction in Fig. 1) to constitute a set of corrugated plate units.
  • the set of corrugated plate units spans the width direction of the tunnel, and the two ends are respectively mounted into the foundation pits on both sides of the tunnel. That is to say, a set of corrugated plate units substantially covers the cross-sectional profile of the tunnel.
  • the two sets of corrugated plate units are connected together along the length direction of the tunnel (i.e., the Y direction in Fig. 1), extending from one end of the tunnel to the other end.
  • the support corrugated plate assembly 100 capable of covering the entire inner wall of the tunnel is formed.
  • connection region 115a of two adjacent ones of the plurality of corrugated plate units is offset from the connection region 115b of the adjacent two corrugated plate units 110 of the other set of corrugated plate units.
  • connection regions 115a of the adjacent two corrugated plate units 110 in each of the plurality of pattern units are connected with respect to the adjacent two corrugated plate units 110 in the upper group of the pattern units.
  • the area 115a is staggered toward one side, that is, both are biased to the left or both are to the right. Shown in Figure 3 is the case where both are shifted to the right.
  • connection regions 115a of the adjacent two corrugated plate units 110 in each of the plurality of pattern units are respectively opposed to the adjacent two corrugated plate units 110 in the upper group of the pattern units.
  • the connection regions 115a are each shifted toward both sides, that is, the connection region 115a in the left half is biased to the left, and the connection region 115 in the right half is biased to the right.
  • the adjacent corrugated board units 110 are connected by lap joints. As shown in FIG. 4, preferably, at least three quarters of the corrugated plate elements are overlapped between adjacent corrugated plate units 110.
  • the overlapping area between adjacent corrugated board units 110 is fixed by bolts 117.
  • a waterproof pad 118 is provided in the overlapping area between adjacent corrugated board units 110.
  • the waterproof pad 118 is, for example, a rubber member and is compression-disposed between the two corrugated plate units by bolts 117.
  • FIG. 5 shows the construction of another corrugated board unit in accordance with the present invention.
  • the corrugated plate unit 210 has substantially the same shape as the corrugated plate unit 110. The difference is that a second connecting plate 211 is provided at both lateral ends of the corrugated plate unit 210.
  • the lateral end portion of the corrugated plate unit refers to the end portion thereof in the direction of the undulation of the corrugations, that is, the X direction in FIG.
  • the second web 211 is constructed as a flanged flat plate, but may be provided with a certain elasticity to facilitate the connection of adjacent corrugated board units.
  • the lateral edge of the corrugated plate unit 210 is connected to the central region of the second connecting plate 211.
  • the height of the second connecting plate 211 is preferably set to be larger than the height of the corrugated board unit.
  • a plurality of connecting holes are provided on the second connecting plate 211, which preferably extend in the longitudinal direction of the corrugated board unit 210.
  • the longitudinal end of the corrugated plate unit refers to its end in a direction perpendicular to the undulation of the corrugations.
  • the adjacent two corrugated board units 210 when the adjacent two corrugated board units 210 are abutted by their second connecting plates 211, the adjacent two corrugated board units 210 can be fixed by using a well-known connecting tool such as a bolt and a nut through the connecting holes. Together.
  • a plurality of corrugated plate units 210 are connected end to end to each other through a connecting plate to form a complete set of corrugated plate units (e.g., three in FIG. 3).
  • Fig. 7 shows a corrugated board unit connected to each other in the lateral direction by means of a second connecting plate.
  • the second web 211 is configured to be at an angle relative to the centerline of the corrugated board unit 210.
  • the angle formed by the second web 211 relative to the central contour of the corrugated board unit 210 is selected according to the position in the cross-sectional profile of the tunnel so as to achieve good between adjacent corrugated board units 210. connection.
  • FIG. 6 shows the construction of another corrugated board unit in accordance with the present invention.
  • the corrugated plate unit 310 has substantially the same shape as the corrugated plate unit 210. The difference is that the corrugated plate unit 310 is provided with a first connecting plate 321 at both longitudinal ends thereof except that the second connecting plate 311 is provided at both lateral ends thereof.
  • the first web 321 is also constructed as a flanged flat plate, but may be provided with a certain elasticity to facilitate the connection of adjacent corrugated board units.
  • the height of the first web 321 is preferably selected to be greater than the height of the corrugated board unit 310 such that the panel unit 310 is entirely within the first web 321 .
  • Connection holes are provided on the first connecting plate 321 .
  • a plurality of corrugated plate units 310 are connected to each other front and rear through the first connecting plate to constitute a row of corrugated plate units extending over the entire length of the tunnel.
  • Fig. 8 shows a corrugated board unit connected to each other in the longitudinal direction by means of a first connecting plate.
  • the first connecting plate and the second connecting plate can be separately manufactured and then fixed to the corrugated plate unit by, for example, welding.
  • the first web and the second web may also be integrally formed with the corrugated board unit, for example by pressing.
  • a waterproof pad as shown in FIG. 4 may be disposed between the first connecting plates of the adjacent two corrugated board units and/or between the second connecting plates. , thereby further enhancing the leakage prevention effect.
  • the corrugated plate unit is provided only with a first web in the longitudinal direction and no second web in the lateral direction.
  • a set of corrugated plate units in the lateral direction or the ring direction are connected to each other by means of a lap joint as shown in Fig. 4, and a row of corrugated plate units in the longitudinal direction are connected to each other by the first connecting plate.
  • the ribs may be applied on the outside of the corrugated board assembly (i.e., on the side close to the tunnel).
  • 9 to 11 respectively show the mounted state of the corrugated board assembly in the form of an enlarged view.
  • the adjacent two corrugated board units 110 are overlapped.
  • a bolt 117 for fastening the adjacent two corrugated plate units 110 extends into the concrete lining layer 10 to form a planting rib.
  • some steel mesh can be hung as a keel.
  • FIG. 10 As shown in Fig. 10, two adjacent corrugated board units 410 are connected by a connecting plate. At this time, the ribs are respectively performed at the crests and troughs of the corrugated plate unit. Reinforcing bars 127 extend into the concrete lining layer 10. A waterproof layer 420 and a heat insulating layer 430 are respectively disposed on both sides of the corrugated plate unit 410.
  • Figure 11 also shows the mounted state of the corrugated board assembly.
  • the planting scheme adopted in Fig. 11 is the same as that in Fig. 10. The difference is that, in FIG. 11, the waterproof layer 520 containing the heat insulating material is provided only on the inner side of the corrugated plate unit 510 (ie, away from the tunnel).
  • Figure 12 shows a bolt fastener 180 for securing the endmost corrugated plate unit in the lateral direction to the foundation pit or to a new foundation for this.
  • the bolt fastener 180 includes an L-shaped angle iron 183 with one side connected to the end of the corrugated plate unit by bolts 183.
  • An L-shaped anchor bolt 185 embedded in the foundation is mounted on the other side of the L-shaped angle iron 183. Thereby, the corrugated plate unit can be securely mounted in position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

公开了一种用于隧道的支护用波纹板组件(100),其由若干个波纹板单元(110)沿横向和纵向方向彼此相连而成。各波纹板单元的纵向边缘处均设置有第一连接板(321),用于使各波纹板单元沿纵向彼此相连。

Description

支护用波纹板组件 技术领域
本发明涉及道路施工技术,具体涉及一种支护用波纹板组件。
背景技术
随着交通建设速度的加快,隧道涵洞工程也得到了快速发展。不论对于铁路隧道、公路隧道还是相关的涵洞,其安全性要求极高。因此,隧道或涵洞的支护结构必须满足安全可靠和耐久性的要求。
在现有技术中,常常采用混凝土复合衬砌方法对隧道或涵洞进行支护。通常来说,其初期支护主要承担施工阶段的全部荷载和运营阶段的主要荷载。二次支护主要作为安全储备,承担初期支护可能劣化而作用于二次衬砌上的荷载或软岩蠕变、环境条件变化等引起的附加荷载。
然而,混凝土支护往往具有施工复杂,施工周期长等问题。同时,对于高寒地区,混凝土支护往往存在有冻胀问题,导致混凝土会掉落,从而带来安全性问题。
发明内容
针对现有技术中所存在的上述技术问题的部分或者全部,本发明提出了一种支护用波纹板组件。
根据本发明,用于隧道的支护用波纹板组件由若干个波纹板单元 沿横向和纵向方向彼此相连而成,其中,各波纹板单元的纵向边缘处均设置有第一连接板,用于使各波纹板单元沿纵向彼此相连。
在一个实施例中,所述第一连接板沿着横向延伸,并且具有比所述波纹板单元更大的高度。
在一个实施例中,横向上相邻的两个波纹板单元通过横向边缘的彼此搭接而相连,搭接区域至少占所述波纹板单元的四分之三个波峰。
在一个实施例中,各波纹板单元的横向边缘处均设置有第二连接板,用于使各波纹板单元沿纵向彼此相连。
在一个实施例中,所述第二连接板沿着纵向延伸,并且在中部区域与波纹板单元的横向末端边缘连接,其中,所述第二连接板的高度设置成大于所述波纹板单元的高度。
在一个实施例中,相邻两个波纹板单元的第一连接板之间和/或第二连接板之间设置有防水垫。
在一个实施例中,其特征在于,相邻两个波纹板单元之间的连接区域彼此错开。
在一个实施例中,所述支护用波纹板组件中的横向末端的波纹板单元通过螺栓紧固件固定到隧道两侧的基坑内,所述螺栓紧固件包括与波纹板单元相连的L形角铁,以及埋入到基础内的L形地脚螺栓。
在一个实施例中,在所述支护用波纹板组件的内表面上设置有防水层。
在一个实施例中,在所述支护用波纹板组件的外表面上设置有保温层。
在一个实施例中,在所述支护用波纹板组件的内表面上设置有含有保温材料的防水层。
在一个实施例中,在所述支护用波纹板组件的外表面上植有钢筋并挂设钢筋网。
根据本发明的支护用波纹板组件,具有结构简单、强度高、耐久性好等优点。
附图说明
下面将结合附图来对本发明的优选实施例进行详细地描述,在图中:
图1显示了根据本发明的支护用波纹板组件在隧道中的应用的示意图;
图2显示了根据本发明的支护用波纹板组件施加到混凝土衬砌层上的断面示意图;
图3显示了沿隧道纵向方向和横向方向上的相邻的若干个波纹板单元的连接展开示意图;
图4显示了相邻两个波纹板单元之间的搭接状态;
图5显示了根据本发明的一个实施例的一个波纹板单元;
图6显示了根据本发明的另一个实施例的一个波纹板单元;
图7显示了多个波纹板单元沿横向连接的状态;
图8显示了多个波纹板单元沿纵向连接的状态;
图9以放大图的形式显示了根据本发明的支护用波纹板组件的 安装状态;
图10以放大图的形式显示了根据本发明的支护用波纹板组件的另一种安装状态;
图11以放大图的形式显示了根据本发明的支护用波纹板组件的另外一种安装状态;
图12显示了用于将波纹板组件安装在路基基础内的地脚螺栓;
在附图中,相同的部件使用相同的附图标记,附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明做进一步说明。需要说明的是,尽管下面的实施例通过在隧道中安装本发明的支护用波纹板组件为例进行介绍,然而本领域的技术人员可以理解,根据本发明的支护用波纹板组件也可应用于涵洞或其它类似的工程应用中,这同样属于本发明的保护范围。
图1显示了在隧道中应用根据本发明的支护用波纹板组件的示意图。如图1所示,在隧道1的内壁上设置了支护用波纹板组件100。支护用波纹板组件100通常由多个波纹板单元沿隧道的横向(图1中的方向X,或者说是隧道的宽度方向,也可称为环向)和隧道的纵向(图1中的方向Y,或者说是隧道的长度方向)拼接而成,这将在下文中详细地介绍。支护用波纹板组件100整体上形成为与隧道1的内壁大致匹配的形状,其两端分别通过地脚螺栓紧固件(将在下文中结 合图6来详细介绍)安装到隧道两侧的基坑或针对此而新作的基础内。
根据本发明,支护用波纹板组件100布置在隧道1的内壁上。一般来说,隧道1的内壁上通常设置有混凝土衬砌层10。在安装支护用波纹板组件100时,首先在混凝土衬砌层10上布置防水层20。该防水层20例如可为聚氨酯层,且优选地具有2-10mm范围内的厚度。另外,该防水层20例如也可为水泥浆、特种灌浆料或者混凝土。之后,再在防水层20上布置支护用波纹板组件100。
考虑到在高寒地区经常发生冻胀病害,因此针对这一情况,根据本发明的一个优选的实施例,可以在支护用波纹板组件100的背离防水层20的表面上再增设一层保温层(未示出),其优选地为5-15cm厚。保温层例如可由聚氨酯、泡沫板其其它保温材料制成。在另外一个未示出的实施例中,也可以在防水层20内掺杂了保温材料,使得防水层20同时兼具保温功能。这样,就可以省略掉单独的保温层。
需要说明的是,上述防水层和保温层可以单独设置,也可以与波纹板组件形成一体。
隧道通常比较长(即图1中的Y方向),并且在高度方向(即图1中的Z方向)和宽度方向(即图1中的X方向)上的尺寸也很大。因此,为方便起见,支护用波纹板组件100通常是通过若干个波纹板单元110拼接而成。仅作为示例,图3显示了六个波纹板单元110拼接在一起的情况。也就是说,三个波纹板单元110沿隧道的宽度方向(即图1中的X方向)连接在一起,构成一组波纹板单元。这一组波纹板单元跨过隧道的宽度方向,两个端部分别安装到隧道两侧的基坑 内。也就是说,一组波纹板单元大致包覆了隧道的截面轮廓。同时,两组波纹板单元沿隧道的长度方向(即图1中的Y方向)连接在一起,从隧道的一端延伸到另一端。这样,就形成了能够覆盖整个隧道内壁的支护用波纹板组件100。当然,在实践中应根据实际情况来确定具体需要多少波纹板单元110拼接在一起。
在一个优选的实施例中,一组波纹板单元中的相邻两个波纹板单元110的连接区域115a与另一组波纹板单元中的相邻两个波纹板单元110的连接区域115b错开。例如,在沿长度方向Y上,每一组纹板单元中的相邻两个波纹板单元110的连接区域115a均相对于上一组纹板单元中的相邻两个波纹板单元110的连接区域115a朝向一侧错开,即均偏向左侧或均偏向右侧。图3中显示的是均向右侧偏离的情况。备选地,在沿长度方向Y上,每一组纹板单元中的相邻两个波纹板单元110的连接区域115a分别相对于上一组纹板单元中的相邻两个波纹板单元110的连接区域115a各自朝向两侧错开,即处于左半部分的连接区域115a偏向左侧,而处于右半部分的连接区域115偏向右侧。由此,支护用波纹板组件100的受力状况得到了优化,提高了其承承载能力,从而能够更有效地起到支护作用。
为了保证连接的牢固性,相邻的波纹板单元110之间采用搭接来进行连接。如图4所示,优选地,相邻的波纹板单元110之间至少搭接四分之三个波纹板单元的波峰。相邻的波纹板单元110之间的搭接区域通过螺栓117来固定。为了防止漏水,根据一个优选的实施例,在相邻的波纹板单元110之间的搭接区域设置了防水垫118。该防水 垫118例如为橡胶件,并通过螺栓117被压缩式地设置在两个波纹板单元之间。
图5显示了根据本发明的另外一种波纹板单元的构造。如图5所示,波纹板单元210具有与波纹板单元110大致相同的形状。不同的是,在波纹板单元210的两个横向端部均设置有第二连接板211。在本文中,波纹板单元的横向端部指的是其沿着波纹起伏的方向上的端部,即图1中的X方向。第二连接板211构造成法兰式平板,但可以带有一定的弹性以便于相邻波纹板单元的连接。波纹板单元210的横向边缘连接到第二连接板211的中部区域。即,相对于波纹板单元210的横向边缘来说,第二连接板211的一部分处于其上方而另一部分处于其下方。另外,第二连接板211的高度优选设置成大于波纹板单元的高度。通过这种设置,可以优化波纹板单元210在连接处的应力,提高连接强度和承载能力。在第二连接板211上均设有若干连接孔,它们优选地沿着波纹板单元210的纵向延伸。在本文中,波纹板单元的纵向端部指的是其沿着垂直于波纹起伏的方向上的端部。这样,当相邻的两个波纹板单元210通过其第二连接板211邻接在一起时,可使用螺栓和螺母等熟知的连接工具穿过连接孔来将相邻的两个波纹板单元210固定在一起。若干个波纹板单元210彼此首尾相接地通过连接板相连,从而构成了完整的一组波纹板单元(例如图3中的三个一组)。图7示出了利用第二连接板沿横向彼此相连的波纹板单元。
在一个优选的实施例中,第二连接板211构造成相对于波纹板单元210的中心轮廓线成一定的角度。优选地,第二连接板211相对于 波纹板单元210的中心轮廓线所形成的角度根据其所处于隧道横断面轮廓中的位置来选择,以便于能实现相邻波纹板单元210之间的良好连接。
图6显示了根据本发明的另外一种波纹板单元的构造。如图6所示,波纹板单元310具有与波纹板单元210大致相同的形状。不同的是,波纹板单元310除了在其两个横向端部均设置有第二连接板311之外,在其两个纵向端部处也均设置有第一连接板321。
类似地,第一连接板321也构造成法兰式平板,但可以带有一定的弹性以便于相邻波纹板单元的连接。第一连接板321的高度优选地选择成大于波纹板单元310的高度,使得纹板单元310整体上处于第一连接板321之内。在第一连接板321上均设有连接孔。这样,当纵向上相邻的两组波纹板单元中的两个对应的波纹板单元310通过第一连接板321邻接在一起时,可使用螺栓和螺母等熟知的连接工具穿过连接孔来将这两个相邻的波纹板单元310固定在一起。若干个波纹板单元310彼此前后相接地通过第一连接板相连,从而构成了延伸过整个隧道长度的一列波纹板单元。图8示出了利用第一连接板沿纵向彼此相连的波纹板单元。
根据本发明,第一连接板和第二连接板可以单独地制造,然后通过例如焊接而固定到波纹板单元上。第一连接板和第二连接板也可以例如通过压制而与波纹板单元整体式形成。
在图5和图6所示的实施例中,实际上是通过连接板代替了波纹板单元的拼接。这样,可以避免波纹板单元之间的拼接区域处的部件 重叠,同时仍保证足够的强度。
容易理解,在图5和图6所示的实施例中,可以在相邻两个波纹板单元的第一连接板之间和/或第二连接板之间设置如图4所示的防水垫,由此进一步加强防漏效果。
在一个未示出的特别优选的实施例中,波纹板单元仅设有纵向上的第一连接板,而并未设置横向上的第二连接板。在这种情况下,横向上或环向上的一组波纹板单元利用如图4所示的搭接手段彼此连接,而在纵向上的一列波纹板单元利用第一连接板彼此连接。这种设置方式已被证明尤其能够优化应力,提高连接强度和承载能力。
为了增强波纹板组件的安装稳定性,可以在波纹板组件的外侧(即靠近隧道的一侧)进行植筋。图9到11以放大图的形式分别显示了波纹板组件的安装状态。如图9所示,相邻两个波纹板单元110进行搭接。用于紧固相邻两个波纹板单元110的螺栓117延伸到混凝土衬砌层10内,形成植筋。作为备选或附加,还可以挂设一些钢筋网作为龙骨。
如图10所示,相邻两个波纹板单元410通过连接板相连。此时,在波纹板单元的波峰和波谷处分别进行植筋。钢筋127延伸到混凝土衬砌层10内。在波纹板单元410的两侧分别设置有防水层420和保温层430。
图11同样显示了波纹板组件的安装状态。图11采用的植筋方案与图10中的相同。不同之处在于,在图11中,仅在波纹板单元510的内侧(即背离隧道的方向)设置了含有保温材料的防水层520。
图12显示了用于将横向方向上的最末端的波纹板单元固定到基坑或针对此而新作的基础内的螺栓紧固件180。如图所示,螺栓紧固件180包括L形角铁183,其一边通过螺栓183与波纹板单元的末端相连。埋入到地基内的L形地脚螺栓185安装在L形角铁183的另一边上。由此,波纹板单元能够牢固地安装就位。
最后应说明的是,以上所述仅为本发明的优选实施方案而已,并不构成对本发明的任何限制。尽管参照前述实施方案对本发明进行了详细的说明,但是对于本领域的技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 用于隧道的支护用波纹板组件,由若干个波纹板单元沿横向和纵向方向彼此相连而成,其中,各波纹板单元的纵向边缘处均设置有第一连接板,用于使各波纹板单元沿纵向彼此相连。
  2. 根据权利要求1所述的支护用波纹板组件,其特征在于,所述第一连接板沿着横向延伸,并且具有比所述波纹板单元更大的高度。
  3. 根据权利要求2所述的支护用波纹板组件,其特征在于,横向上相邻的两个波纹板单元通过横向边缘的彼此搭接而相连,搭接区域至少占所述波纹板单元的四分之三个波峰。
  4. 根据权利要求2所述的支护用波纹板组件,其特征在于,各波纹板单元的横向边缘处均设置有第二连接板,用于使各波纹板单元沿纵向彼此相连。
  5. 根据权利要求3所述的支护用波纹板组件,其特征在于,所述第二连接板沿着纵向延伸,并且在中部区域与波纹板单元的横向末端边缘连接,其中,所述第二连接板的高度设置成大于所述波纹板单元的高度。
  6. 根据权利要求4或5所述的支护用波纹板组件,其特征在于,相邻两个波纹板单元的第一连接板之间和/或第二连接板之间设置有防水垫。
  7. 根据权利要求1到5中任一项所述的支护用波纹板组件,其特征在于,相邻两个波纹板单元之间的连接区域彼此错开。
  8. 根据权利要求1到5中任一项所述的支护用波纹板组件,其特征在于,所述支护用波纹板组件中的横向末端的波纹板单元通过螺栓紧固件固定到隧道两侧的基础内,所述螺栓紧固件包括与波纹板单元相连的L形角铁,以及埋入到基础内的L形地脚螺栓。
  9. 根据权利要求1到5中任一项所述的支护用波纹板组件,其特征在于,在所述支护用波纹板组件的内表面上设置有防水层。
  10. 根据权利要求9所述的支护用波纹板组件,其特征在于,在所述支护用波纹板组件的外表面上设置有保温层。
  11. 根据权利要求1到5中任一项所述的支护用波纹板组件,其特征在于,在所述支护用波纹板组件的内表面上设置有含有保温材料的防水层。
  12. 根据权利要求9所述的支护用波纹板组件,其特征在于,在所述支护用波纹板组件的外表面上植有钢筋并挂设钢筋网。
PCT/CN2018/091088 2017-08-03 2018-06-13 支护用波纹板组件 WO2019024613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720961829.7 2017-08-03
CN201720961829.7U CN206987838U (zh) 2017-08-03 2017-08-03 支护用波纹板组件

Publications (1)

Publication Number Publication Date
WO2019024613A1 true WO2019024613A1 (zh) 2019-02-07

Family

ID=61418129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091088 WO2019024613A1 (zh) 2017-08-03 2018-06-13 支护用波纹板组件

Country Status (2)

Country Link
CN (1) CN206987838U (zh)
WO (1) WO2019024613A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206987838U (zh) * 2017-08-03 2018-02-09 中国铁道科学研究院铁道建筑研究所 支护用波纹板组件
CN107435547B (zh) * 2017-08-03 2021-01-22 中国铁道科学研究院铁道建筑研究所 支护用波纹板组件和隧道支护方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385423A (en) * 1990-04-09 1995-01-31 Toko Tekko Kabushiki Kaisha Joint for corrugated structural members
CN1221467A (zh) * 1996-06-12 1999-06-30 迈克尔·W·威尔逊 金属板拱形结构用的复合金属板包围混凝土的加强件
CN202298488U (zh) * 2011-09-27 2012-07-04 衡水益通金属制品有限责任公司 一种桥涵、隧道内支撑结构
CN205024716U (zh) * 2015-06-16 2016-02-10 曹宁宁 一种具有连接结构的金属波纹板
CN205223876U (zh) * 2015-12-15 2016-05-11 衡水奇佳工程材料有限公司 一种加强型桥涵、隧道内的支撑结构
JP2016094772A (ja) * 2014-11-14 2016-05-26 新日鉄住金マテリアルズ株式会社 トンネルの剥落防止工法
WO2017099304A1 (ko) * 2015-12-09 2017-06-15 평산에스아이 주식회사 대형 파형강판 보강구조물 및 이를 이용한 터널
CN107435547A (zh) * 2017-08-03 2017-12-05 中国铁道科学研究院铁道建筑研究所 支护用波纹板组件和隧道支护方法
CN206987838U (zh) * 2017-08-03 2018-02-09 中国铁道科学研究院铁道建筑研究所 支护用波纹板组件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385423A (en) * 1990-04-09 1995-01-31 Toko Tekko Kabushiki Kaisha Joint for corrugated structural members
CN1221467A (zh) * 1996-06-12 1999-06-30 迈克尔·W·威尔逊 金属板拱形结构用的复合金属板包围混凝土的加强件
CN202298488U (zh) * 2011-09-27 2012-07-04 衡水益通金属制品有限责任公司 一种桥涵、隧道内支撑结构
JP2016094772A (ja) * 2014-11-14 2016-05-26 新日鉄住金マテリアルズ株式会社 トンネルの剥落防止工法
CN205024716U (zh) * 2015-06-16 2016-02-10 曹宁宁 一种具有连接结构的金属波纹板
WO2017099304A1 (ko) * 2015-12-09 2017-06-15 평산에스아이 주식회사 대형 파형강판 보강구조물 및 이를 이용한 터널
CN205223876U (zh) * 2015-12-15 2016-05-11 衡水奇佳工程材料有限公司 一种加强型桥涵、隧道内的支撑结构
CN107435547A (zh) * 2017-08-03 2017-12-05 中国铁道科学研究院铁道建筑研究所 支护用波纹板组件和隧道支护方法
CN206987838U (zh) * 2017-08-03 2018-02-09 中国铁道科学研究院铁道建筑研究所 支护用波纹板组件

Also Published As

Publication number Publication date
CN206987838U (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN107435547B (zh) 支护用波纹板组件和隧道支护方法
JP4675915B2 (ja) 橋梁ジョイント部の連続化構造
US20100031593A1 (en) Sloping roof system and insulating board for sloping roof systems
US4015302A (en) Expansion joints
CN104018644B (zh) 一种能移动、能回收轻质地面
WO2019024613A1 (zh) 支护用波纹板组件
CN109930480A (zh) 暗锚悬臂梁式梳齿型桥梁伸缩装置
KR20180133355A (ko) 신축이음장치의 시공방법
KR20180017816A (ko) 신축이음장치의 시공방법
CN212027820U (zh) 一种断裂带隧道变形缝处组合止水带防水结构
KR101213680B1 (ko) 파형강판을 이용한 조립식 터널구조체
KR20070008824A (ko) 배수관을 갖는 교량용 신축이음장치 및 그의 시공 방법
JP4143793B2 (ja) トンネル構造体の覆工構造
US20030074852A1 (en) Building-structure seal
CN213951930U (zh) 一种桥梁伸缩缝装置
KR200152482Y1 (ko) 철근콘크리트 슬래브의 데크패널
JP3950747B2 (ja) 橋桁
KR100508773B1 (ko) 시트파일을 이용한 가교 상판 및 그것의 시공방법
CN220909712U (zh) 蠕变型断层隧道结构
KR102616235B1 (ko) 저신율 그리드를 이용한 판형 보강부재
JP4966617B2 (ja) ユニット建物の再築方法
KR102529660B1 (ko) 복개용 가시설 구조물 및 이의 공법
CN219450432U (zh) 一种适用于桥上钢人行道的管线井结构
JP2019073937A (ja) 橋梁補強構造体の施工方法
KR200398418Y1 (ko) 배수관을 갖는 교량용 신축이음장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840509

Country of ref document: EP

Kind code of ref document: A1