WO2019022552A1 - 고분자 오버코트층을 포함하는 투명 전극 및 이의 제조 방법 - Google Patents

고분자 오버코트층을 포함하는 투명 전극 및 이의 제조 방법 Download PDF

Info

Publication number
WO2019022552A1
WO2019022552A1 PCT/KR2018/008517 KR2018008517W WO2019022552A1 WO 2019022552 A1 WO2019022552 A1 WO 2019022552A1 KR 2018008517 W KR2018008517 W KR 2018008517W WO 2019022552 A1 WO2019022552 A1 WO 2019022552A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
substrate
overcoat layer
polymer
coating
Prior art date
Application number
PCT/KR2018/008517
Other languages
English (en)
French (fr)
Inventor
장재영
노성훈
양한솔
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2019022552A1 publication Critical patent/WO2019022552A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • C08F18/10Vinyl esters of monocarboxylic acids containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • C08K5/08Quinones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent electrode comprising a photocurable hydrophobic polymeric overcoat layer and a method for producing the same. More specifically, the present invention relates to a transparent electrode comprising a photocurable hydrophobic polymeric overcoat layer, The present invention also relates to a transparent electrode having improved environmental stability by minimizing the adsorption of moisture and oxygen in the air.
  • Nanomaterials such as silver nanowires, CNTs, and graphenes are widely used as materials for transparent electrodes because they have conductivity and constant transparency at the same time.
  • a thin film made of a conductive material such as silver nanowires is formed on a substrate to form a conductive film of the transparent electrode. Accordingly, mechanical damage caused by external force and a conductive film from external environment such as moisture or air, There is a need to protect.
  • an overcoat is formed on the conductive film.
  • materials mainly used for the overcoat can be divided into inorganic and organic materials.
  • an overcoat based on inorganic oxide fine particles has been widely used.
  • the inorganic overcoat has a limitation in applying to a flexible or foldable transparent electrode because the mechanical flexibility of the material itself is lower than that of the organic material.
  • the organic overcoat is mainly used as a polymer material, and a carboxyl group-containing cellulose polymer, a fluoropolymer, a perfluoropolymer, an (organic) siloxane polymer, an acrylic resin or a combination thereof is used.
  • a heat treatment mainly for polymer curing and has a limitation in that it is difficult to complete curing at a low temperature of 120 degrees centigrade or less. Therefore, there is a drawback that the curing is not performed well and the solvent resistance is lowered. In such a case, exposure to the dissolution agent causes a problem of melting of the coating layer, so its utilization is limited.
  • a high-temperature curing process is introduced for sufficient curing, the plastic substrate used for the transparent electrode is melted, which makes the process difficult.
  • Korean Patent Laid-Open Publication No. 10-2015-0072519 discloses a method of forming a self-assembling film on a substrate first and then coating an overcoat ink containing the nanowire on the self-assembled film.
  • the specific kind of the polymer for protecting the electrode included therein is not specified, and the material applicable to the flexible transparent electrode is not mentioned. Accordingly, development of an overcoat material for a transparent electrode which can be photo-cured at room temperature and which has excellent protective film properties is required.
  • the present invention provides a transparent electrode in which a polymer overcoat layer is formed to effectively protect electrodes from moisture or oxygen in the air without requiring a high temperature process that can further modify the curing agent or the substrate, .
  • a transparent electrode in which a polymeric overcoat layer for protecting a conductive nanoparticle layer on a transparent substrate is formed, and the polymeric overcoat layer is made of a polyacrylate-based photocurable hydrophobic polymer. to provide.
  • the present invention also provides a method for preparing a photoconductor, comprising the steps of: i) applying a polyacrylate photocurable hydrophobic polymer solution onto a conductive nanoparticle layer on a transparent substrate; And ii) drying the substrate coated with the photocurable hydrophobic polymer solution; And iii) photo-curing the dried substrate.
  • a transparent electrode having a photocurable hydrophobic polymeric overcoat layer such as PVCN can be cured only by a simple ultraviolet ray irradiation, a manufacturing efficiency is high since addition of a curing agent or a high temperature process for deforming a substrate is not necessary, The adsorption of moisture and oxygen in the air can be minimized and the environmental stability is excellent.
  • the polymer material due to the nature of the polymer material, it has excellent mechanical flexibility and is therefore well suited for application to flexible or foldable transparent electrodes.
  • FIG. 1 is a schematic view of a transparent electrode in which a PVCN overcoat layer is formed according to an embodiment of the present invention.
  • FIG. 2 is a graph showing FT-IR results of UV exposure time of PVCN used in the present invention.
  • FIG 3 is a photograph showing a silver nanowire-based flexible transparent electrode formed with a PVCN overcoat layer manufactured according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a curing process when an overcoat layer is formed using PMMA, which is a non-curable polymer, and TCSH, a thermosetting curing agent, according to Comparative Example 2 of the present invention.
  • the transparent electrode according to the present invention is a transparent electrode having a polymeric overcoat layer for protecting a conductive nanoparticle layer on a transparent substrate, and the polymeric overcoat layer is formed of a polyacrylate-based photo-curable hydrophobic polymer.
  • Examples of the substrate that can be used in the present invention include glass or transparent resin substrates such as polyimide, polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), polycarbonate, and polypropylene.
  • PET polyethylene terephthalate
  • PDMS polydimethylsiloxane
  • PET Phthalate
  • PET is preferable because it is excellent in transparency, excellent in molding processability, excellent in insulation property, and excellent in water resistance.
  • metal nanowires having conductivity and transparency, graphene, and carbon nanotubes.
  • metal nanowires are manufactured using gold (Au), silver (Ag), copper (Cu), nickel (Ni), iron (Fe), cobalt (Co), zinc
  • Au gold
  • silver Au
  • Cu copper
  • Ni nickel
  • Fe iron
  • Co cobalt
  • zinc A substrate including a silver nanowire is preferred because it has superior flexibility and breakability than ITO used in conventional transparent electrodes.
  • a photocurable hydrophobic polymer is used as a material of the overcoat layer, which is a feature of the present invention.
  • the material of the overcoat layer is poly (vinyl cinnamate) (polyvinyl cinnamate), poly (naphthyl vinyl acrylate) acrylate and the like are preferably used.
  • poly (vinyl cinnamate) is a polymer material
  • poly (vinyl cinnamate) is excellent in mechanical flexibility compared to conventional inorganic overcoat materials, and thus can be applied to flexible transparent electrodes. Suitable.
  • poly (vinyl cinnamate) is used as an overcoat layer of a transparent electrode, a transparent electrode having excellent solvent resistance and adhesion, good coating property, and easy thickness control can be produced.
  • the poly (vinyl cinnamate) has a property that the polymer itself is photocured through the 2 + 2 photo-induced cyclization addition reaction as shown in the following chemical structural formula, and therefore, it is necessary to add an additional curing agent And there is no need for high-temperature heat treatment.
  • poly (vinyl cinnamate) is used as an overcoat material for a transparent electrode, it is possible to solve the problem that a conventional thermosetting polymeric overcoat or the like can not be sufficiently cured at a low temperature.
  • poly (vinyl cinnamate) does not include a hydroxyl group (-OH) or an amine group (-NH 2 ), and it shows hydrophobicity. Therefore, it can be predicted that the chemical structure of PVCN can minimize the adsorption of moisture and oxygen in the air and thereby have an improved protective film characteristic.
  • the thickness of the overcoat can be appropriately selected depending on the desired refractive index and material.
  • the thickness of the overcoat is suitably not less than 50 nm, preferably in the range of 50 nm to 150 nm, but is not limited thereto. However, if it is out of this range, it affects the refractive index. If it is too thin, it can not protect the conductive layer. If it is too thick, the transparent electrode loses conductivity of the surface.
  • the method of manufacturing a transparent electrode according to the present invention comprises the steps of: a) applying a photocurable hydrophobic polymer solution on a conductive nanoparticle layer on a transparent substrate; And b) drying the substrate coated with the photocurable hydrophobic polymer solution; And c) photocuring the dried substrate.
  • the step of coating the polymer solution on the substrate may be performed by a method generally used in coating of polymer resin compositions such as spin coating, bar coating, ink jet coating, spray coating, roll coating and dip coating, Coating method is exemplified, but it is not particularly limited.
  • the transparent substrate coated with the photo-curable hydrophobic polymer solution is dried at a temperature of 120 to 140 ⁇ to evaporate the solvent in the polymer solution.
  • the step of photo-curing the substrate coated with the polymer solution can be performed by irradiating UV with an ultraviolet ray irradiation apparatus generally used.
  • a thin conductive film (conductive film) is formed on a substrate using a conductive material such as silver nanowire, and mechanical damage and external environment (e.g., moisture or air)
  • a conductive material such as silver nanowire
  • mechanical damage and external environment e.g., moisture or air
  • An over-coat functioning to protect the conductive film from chemicals or the like is formed.
  • the overcoat layer according to the present invention can be used as a protective film for various electrons, photoelectrons and optical elements in addition to a transparent electrode.
  • a transparent electrode for example, in addition to silver nanowire-based flexible transparent electrodes, CNTs and graphene-based flexible transparent electrodes, flexible optical films, and window films are expected to be applicable as protective films.
  • the flexible transparent electrode having an overcoat layer for protecting the silver nanowire formed on the PET substrate implemented according to the present invention can be applied to tablets, smart watches, mobile phones, etc., and has flexibility and low resistance, The market is expected to expand.
  • the nanowire-based transparent electrode may be applied to a flat panel display, a touch screen sensor, an E-paper display, a thin film solar cell EMI shielding, and the like.
  • silver nanowire film is the most advantage that it is more flexible and does not break than ITO, which is widely used as a transparent electrode. Due to these characteristics, silver nanowire-based transparent electrodes can have high flexural stability and are being studied for in-folding (C / G type) and out-folding (S type) foldable implementations. The technology is expected to be applied to next generation electronic products such as foldable rollable displays, organic dye solar cells, and flexible OLEDs. Currently, silver nano wire-based transparent electrodes are rapidly applied in the mid- to large-sized display market, and it is expected to be applied to touch screen panels (TSPs) optimized for surface displays in the future as the "haze" .
  • TSPs touch screen panels
  • PVCN N, N-dimethylformamide
  • DMF N, N-dimethylformamide
  • 1-butanol 1-butanol
  • the prepared solution was spin-coated on a substrate (10 cm * 10 cm) coated with silver nanowires to form an overcoat layer. After coating, the solvent was dried in an oven at 130 ° C for 3 minutes and then sufficiently cooled at room temperature.
  • the PVCN overcoated transparent electrode was then exposed to 254 nm UV to cure the PVCN.
  • the finished sample was stored in a thermo-hygrostat under a temperature / humidity of 85 ° C / 85% and the reliability was analyzed by measuring the resistance with time.
  • 3 is a photograph of a silver nano wire-based flexible transparent electrode manufactured through an embodiment of the present invention.
  • an overcoat film having improved solvent resistance and adhesion could be obtained, and a film having good coating properties and easy thickness control could be produced.
  • optimal curing conditions of photocurable polymer were obtained by adjusting the wavelength of UV and the exposure time.
  • PS polystyrene
  • a comparative group of photocured PVCN overcoat PS (polystyrene), which is a non-curable polymer represented by the following formula (2), was introduced into the overcoat layer of silver nanowire transparent electrode.
  • PS was also prepared by dissolving 2% by weight of the polymer in a 1: 1 volume solvent of DMF and 1-butanol. The procedure of the experiment except photocuring was the same as the above example.
  • COC cyclic olefin copolymer
  • the COC overcoat was also prepared by dissolving 2% by weight of the polymer in a 1: 1 volume solvent of DMF and 1-butanol to prepare a solution.
  • Experimental procedures except photocuring were carried out in the same manner as in the above example.
  • PMMA polymethyl methacrylate
  • TCSH trifluoro silyl
  • the PMMA / TCSH overcoat was also prepared by dissolving 2% by weight of polymer in a 1: 1 volume ratio solvent of DMF and 1-butanol to prepare a solution. Experimental procedures except photocuring were carried out in the same manner as in the above example.
  • TCSH thermally cures with each other at 130 ° C to physically cure PMMA. More specifically, as shown in the schematic diagram of FIG. 4, a chlorosilane compound (TCSH) having two functional groups reacts by itself to form a siloxane network to physically cure PMMA.
  • Table 1 below shows the time-dependent resistance change of the transparent electrode to which the photo-cured PVCN overcoat according to Example 1 is applied.
  • [Table 2] shows the time-dependent resistance change of the transparent electrode to which the PS overcoat prepared according to Comparative Example 1 was applied
  • Table 3 shows the change in the time of the transparent electrode to which the COC overcoat prepared according to Comparative Example 2 was applied
  • Table 4 shows the resistance change of the transparent electrode to which the PMMA / TCSH overcoat of Comparative Example 3 was applied.
  • the transparent electrode to which the photocured PVCN overcoat is applied according to the embodiment of the present invention is about 6 times as compared to the transparent electrode to which the PS overcoat of Comparative Example 1 is applied, and the COC overcoat of Comparative Example 2 It is confirmed that it shows environmental stability which is four times higher than the sample. Also, it can be seen that according to Comparative Example 3, a sample having a photo-cured PVCN overcoat has a stable environmental stability four times or more than a transparent electrode having a thermosetting PMMA overcoat.
  • PVCN overcoat applied transparent electrode characteristics Elapsed time (days) 0 3 4 10 Line resistance 1 ( ⁇ ) 19.5 22.3 25.1 27.1 Line resistance 2 ( ⁇ ) 17.7 20.7 23.3 25.8 Line resistance 3 ( ⁇ ) 21.2 23.5 26.2 29.6 Average 19.5 22.2 24.9 27.5 Average rate of change 14% 28% 41%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명은 투명 기판 상의 전도성 나노 입자층을 보호하는 고분자 오버코트층이 형성된 투명 전극 및 그 제조 방법에 관한 것으로서, 상기 고분자 오버코트층은 폴리아크릴레이트계 광경화성 소수성 고분자로 이루어진 것을 특징으로 하며, 경화제의 첨가나 기판을 변형시키는 고온 공정이 필요 없고, 간단한 광경화 방법으로 투명 전극의 보호막을 형성할 수 있어, 제조 효율이 높으며, 극성 작용기를 포함하고 있지 않으므로 공기 중의 수분과 산소의 흡착을 최소화할 수 있어 환경안정성이 매우 우수하다. 또한 사용된 고분자 재료의 특성상 기계적 유연성이 우수하기 때문에 플랙서블 투명 전극으로 적용하기에 적합하다.

Description

고분자 오버코트층을 포함하는 투명 전극 및 이의 제조 방법
본 발명은 광경화성 소수성 고분자 오버코트층을 포함하는 투명 전극 및 이의 제조 방법에 관한 것으로서, 보다 구체적으로 전도성 나노 입자를 포함하는 기판 상에 추가적인 경화제의 첨가 없이 광경화가 가능한 소수성 고분자를 이용하여 오버코트층을 형성함으로써 공기 중의 수분과 산소 흡착이 최소화되어 환경안정성이 향상된 투명 전극 및 그 제조 방법에 관한 것이다.
은 나노와이어, CNT 및 그래핀 등의 나노 물질은 전도성과 일정한 투명도를 동시에 가지기 때문에 투명 전극의 소재로 널리 활용되고 있다. 예를 들어, 기판 위에 은 나노와이어 등의 전도성 물질로 이루어진 얇은 막을 형성하여 투명 전극의 도전막을 구성하게 되는데, 이에 따라 외력에 의한 기계적 손상 및 수분 또는 공기와 같은 외부 환경과 화학 물질 등으로부터 도전막을 보호해야 할 필요성이 있다.
이와 같이 도전막을 보호하기 위해, 그 위에 오버코트를 형성하게 되는데, 통상적으로 오버코트에 주로 사용되는 물질은 무기계와 유기계로 나눌 수 있으며, 현재까지는 무기 산화물 미립자에 기반 한 오버코트가 널리 활용되고 있다. 하지만 무기계 오버코트는 물질자체의 기계적 유연성이 유기계에 비해 떨어지므로 플랙서블하거나 폴더블한 투명 전극에 적용하는데 제한이 있다.
한편 유기계 오버코트는 주로 고분자 재료가 널리 사용되며, 카르복실기 함유 셀룰로오스 폴리머, 플루오로 폴리머, 퍼플루오로 폴리머, (유기)실록산 폴리머, 아크릴 수지 또는 이들의 조합 등이 사용된다. 그러나 이러한 유기계 오버코트는 폴리머 경화에 주로 열처리가 필요하며, 섭씨 120도씨 이하의 저온에서 완전한 경화가 어렵다는 한계가 있다. 따라서 경화가 잘 이루어지지 않아 내용제성(solvent resistance)이 떨어지는 단점이 있는데, 이런 경우 용해제에 노출되면 코팅층이 녹는 문제점이 발생되기 때문에 그 활용이 제한된다. 또한 충분한 경화를 위해 고온의 경화 공정을 도입한다면 투명 전극에 사용되는 플라스틱 기재가 녹게 되어 공정상 어려움이 있다.
또한 기존 광경화성 고분자 오버코트 소재는 추가적인 경화제를 첨가해야 하거나, 극성 작용기 간의 반응에 기반하기 때문에 고분자가 극성을 띠게 된다. 이런 극성 작용기들은 공기 중의 수분과 산소의 흡착을 유도하여 보호막 특성이 떨어진다는 문제점을 내포하고 있다.
한편 대한민국 공개특허 제10-2015-0072519호에는 기판 상에 자기조립 막을 우선적으로 형성한 다음 그 위에 나노와이어를 포함하는 오버코트용 잉크를 코팅하는 방법이 개시되어 있으나, 본 발명과 같이 전도성 나노 입자를 포함하는 전극의 보호를 위한 고분자의 구체적인 종류가 명시되어 있지 않으며, 플랙서블 투명 전극에 적용 가능한 재료는 언급되지 않았다. 따라서 상온에서 광경화가 가능하고 보호막 특성이 우수한 투명 전극용 오버코트 재료의 개발이 요구되고 있다.
본 발명이 이루고자 하는 기술적 과제는 추가적이 경화제나 기판을 변형시킬 수 있는 고온 공정이 필요하지 않으면서, 공기 중의 수분이나 산소로부터 전극을 효과적으로 보호할 수 있는 고분자 오버코트층이 형성된 투명 전극 및 그 제조 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 투명 기판 상의 전도성 나노 입자층을 보호하는 고분자 오버코트층이 형성된 투명 전극으로서, 상기 고분자 오버코트층은 폴리아크릴레이트계 광경화성 소수성 고분자로 이루어진 것을 특징으로 하는 투명 전극을 제공한다.
또한 본 발명은 i) 투명 기판 상의 전도성 나노 입자층 위에 폴리아크릴레이트계 광경화성 소수성 고분자 용액을 도포하는 단계; 및 ii) 상기 광경화성 소수성 고분자 용액이 도포된 기판을 건조시키는 단계; 및 iii) 상기 건조된 기판을 광경화시키는 단계를 포함하는 투명 전극의 제조 방법을 제공한다.
본 발명에 따라 PVCN 등의 광경화성 소수성 고분자 오버코트층이 형성된 투명 전극은 간단한 자외선 조사만으로 경화가 가능하기 때문에 추가적인 경화제의 첨가나 기판을 변형시키는 고온 공정이 필요 없기 때문에 제조 효율이 높으며, 극성 작용기를 포함하고 있지 않으므로 공기 중의 수분과 산소의 흡착을 최소화할 수 있어 환경안정성이 매우 우수하다. 또한 고분자 재료의 특성상 기계적 유연성이 우수하며, 따라서 플랙서블 또는 폴더블한 투명 전극에 적용하기에 매우 적합하다.
도 1은 본 발명의 실시예에 따른 PVCN 오버코트층이 형성된 투명 전극의 모식도이다.
도 2는 본 발명에 사용된 PVCN의 UV 노광 시간에 따른 FT-IR 결과를 보여주는 그래프이다.
도 3은 본 발명의 실시예에 따라 제조된 PVCN 오버코트층이 형성된 은 나노와이어 기반의 플랙서블 투명 전극을 보여주는 사진이다.
도 4는 본 발명의 비교예 2에 따른 비경화성 고분자인 PMMA와 열경화성 경화제인 TCSH를 이용하여 오버코트층을 형성하는 경우, 경화과정을 보여주는 모식도이다.
실시예와 도면을 참조하여 본 발명을 보다 상세히 설명하면 다음과 같다.
본 발명에 따른 투명 전극은 투명 기판 상의 전도성 나노 입자층을 보호하는 고분자 오버코트층이 형성된 투명 전극으로서, 상기 고분자 오버코트층은 폴리아크릴레이트계 광경화성 소수성 고분자로 이루어진 것을 특징으로 한다.
먼저 본 발명에 사용가능한 기판으로는 유리(glass) 또는 폴리이미드, 폴리에틸렌테레프탈레이트(PET), 폴리디메틸실록산(PDMS), 폴리카보네이트, 폴리프로필렌 등의 투명 수지 기판을 들 수 있으며, 이중에서 폴리에틸렌테레프탈레이트(PET)가 투명성이 우수, 성형가공성이 우수, 절연성이 우수, 내수성이 우수하다는 점에서 바람직하다.
또한 본 발명에 따른 전도성 나노 입자층의 형성에 사용가능한 재료로는 전도성과 투명성을 동시에 갖고 있는 금속 나노와이어, 그래핀, 탄소나노튜브로 이루어진 군으로부터 1종 이상 선택하여 사용하는 것이 바람직하다. 이 중에서 금속 나노와이어로는 금(Au), 은(Ag), 구리(Cu), 니켈(Ni), 철(Fe), 코발트(Co), 아연(Zn) 등을 이용하여 제조된 것으로서, 특히 은 나노와이어를 포함하는 기판은 종래 투명 전극에 사용되던 ITO 보다 유연성이 뛰어나고 잘 깨지지 않는 특성을 가지고 있기 때문에 선호되고 있다.
한편 본 발명의 특징이 되는 오버코트층의 소재로는 광경화성 소수성 고분자를 사용하게 되는데, 폴리(비닐시나메이트) (PVCN: poly(vinly cinnamte), 폴리(나프틸 비닐 아크릴레이트) (poly(naphthyl vinly acrylate) 등의 폴리아크릴레이트 계열의 고분자를 사용하는 것이 바람직하다.
이중에서 폴리(비닐시나메이트)는 고분자 재료이므로 기존 무기계 오버코트 소재에 비해 기계적 유연성이 우수하며, 따라서 플랙서블 하거나 나아가 폴더블한 투명 전극에 적용이 가능하다는 점에서 오버코트층의 소재로 사용하기에 매우 적합하다. 또한, 폴리(비닐시나메이트)를 투명 전극의 오버코트층으로 사용하면 내용제성과 접착성이 우수하고, 코팅성이 좋으며, 두께 조절이 용이한 투명 전극을 제조할 수 있다.
보다 구체적으로 폴리(비닐시나메이트)는 하기 화학 구조식에서 확인할 수 있는 바와 같이, 2+2 광-유도 고리화 첨가반응을 통해 고분자 자체적으로 광경화되는 특성을 가지고 있기 때문에, 추가적인 경화제를 첨가할 필요가 없으며, 고온의 열처리가 필요하지 않다는 장점이 있다. 이와 같이, 폴리(비닐시나메이트)를 투명 전극의 오버코트 소재로 사용하면 종래 열경화성 고분자 오버코트 등이 저온에서 경화가 충분히 이루어지지 못하는 문제점을 해결 할 수 있다.
[화학식 1]
Figure PCTKR2018008517-appb-I000001
한편 도 2는 폴리(비닐시나메이트)(PVCN)의 UV 노광 시간에 따른 FT-IR 결과를 보여준다. 도 2에서 확인할 수 있는 바와 같이, UV에 30분 및 2시간 노출된 PVCN의 FT-IR 결과를 보면, 지방족 이중결합의 (1637 cm-1) 피크가 완전히 사라졌고, C=O, 지방족 C=C, 방향족 C=C의 pi-pi 공액이 깨지면서, 이로 인해 C=O의 뻗침 진동이 1713cm-1에서 1736cm-1 으로 이동하였음을 알 수 있다. 이러한 분광학적 결과들을 통해 PVCN이 열처리 없이 UV 노광만으로 충분히 경화가 된다는 사실을 알 수 있다.
또한 폴리(비닐시나메이트)의 상기 화학식을 보면, 수산화기 (-OH) 또는 아민기 (-NH2)를 포함하지 않으며, 소수성을 띠고 있음을 알 수 있다. 따라서 PVCN의 이러한 화학구조로 인해 공기 중의 수분 및 산소의 흡착을 최소화 할 수 있고 이를 통해 향상된 보호막 특성을 가질 수 있음을 예측할 수 있다.
한편 오버코트의 두께는 원하는 굴절률 및 재료에 따라 적절히 선택할 수 있다. 일반적으로 오버코트의 두께는 50 nm 이상이 적절하며, 50 nm 내지 150 nm 의 범위가 바람직하지만, 이에 제한되는 것은 아니다. 그러나 이 범위를 벗어날 경우 굴절률의 영향을 주며 너무 얇으면 도전층을 보호할 수 없고 너무 두꺼울 경우 투명전극이 표면의 전도성을 잃게 된다.
한편 본 발명에 따른 투명 전극의 제조 방법은 a) 투명 기판 상의 전도성 나노 입자층 위에 광경화성 소수성 고분자 용액을 도포하는 단계; 및 b) 상기 광경화성 소수성 고분자 용액이 도포된 기판을 건조시키는 단계; 및 c) 상기 건조된 기판을 광경화시키는 단계를 포함한다.
먼저 고분자 용액을 기판 상에 도포하는 단계는 스핀 코팅, 바 코팅, 잉크젯 코팅, 스프레이 코팅, 롤 코팅, 딥 코팅 등 고분자 수지 조성물의 코팅 분야에서 일반적으로 사용되는 방법으로 수행될 수 있으며, 이 중에서 스핀 코팅법을 대표적으로 들 수 있으나, 특별히 제한되지는 않는다.
다음으로, 광경화성 소수성 고분자 용액이 도포된 투명 기판을 120 내지 140 ℃의 온도 범위에서 건조시켜 고분자 용액 중의 용매를 증발시킨다.
마지막으로 상기 고분자 용액이 도포된 기판을 광경화시키는 단계는 일반적으로 사용되는 자외선 조사기를 이용하여 UV를 조사함으로써 수행될 수 있다.
이와 같이, 본 발명에 따르면 은 나노와이어 등의 전도성 물질을 이용하여 기판에 얇은 전도성막(도전막)을 형성하고, 이 도전막 위에 외력에 의한 기계적 손상 및 외부 환경 (예컨대, 수분 또는 공기) 또는 화학물질 등으로부터 도전막을 보호하는 역할을 하는 오버코트(over-coat)가 형성된다.
한편 본 발명에 따른 오버코트층은 투명 전극 이외에도 다양한 전자, 광전자 및 광학소자의 보호막으로 사용할 수 있다. 예를 들어, 은 나노와이어 기반의 플랙서블 투명 전극 이외에 CNT 및 그래핀 기반 플랙서블 투명 전극, 플랙서블 광학필름 및 윈도우 필름 등의 보호막으로도 적용 가능할 것으로 예상되며, 향후 궁극적으로는 플랙서블한 태양전지, 휴대용통신기기, 웨어러블(wearable) 전자기기 등 다양한 분야에 널리 활용될 수 있을 것이다.
또한 본 발명에 따라 구현된 PET 기판 위에 형성된 은 나노와이어를 보호하기 위한 오버코트층이 형성된 플랙서블 투명 전극은 테블릿, 스마트워치, 휴대폰 등에 적용가능하며, 유연성, 저저항성에 경쟁력을 갖춰 향후 다양한 제품으로 시장이 확대될 것으로 예상된다. 더 나아가 은 나노와이어 기반의 투명 전극은 평판디스플레이, 터치스크린 센서, 이페이퍼(E-paper) 디스플레이, 박막형 태양전지 EMI 차폐 등에도 적용될 수 있을 것이다.
특히 은 나노와이어 필름은 기존 투명 전극으로 널리 사용되는 ITO보다 유연성이 뛰어나고 깨지지 않는다는 것이 최대 장점이다. 이 같은 특성에 기인하여 은 나노와이어 기반의 투명 전극은 높은 휨 안정성을 가질 수 있으며, in-folding(C/G 타입), out-folding(S타입) 등의 폴더블 구현이 연구되고 있다. 향후 이 기술은 폴더블ㆍ롤러블 디스플레이, 유기염료 태양전지, 플렉시블 OLED 등의 차세대 전자제품에 적용이 예상된다. 현재 햇빛에 반사돼 뿌옇게 보이는 ‘헤이즈(Haze)’ 현상 등이 해결되면서 중대형 디스플레이 시장에서 은나노와이어 기반 투명 전극이 빠르게 적용되고 있으며, 향후 곡면 디스플레이 등에 최적화된 터치스크린패널(TSP) 등에 적용될 것으로 예상된다.
이하 구체적인 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위해 예시적으로 제시된 것으로서 본 발명의 범위가 이에 한정되는 것으로 해석되어서는 안된다.
<실시예 1>
N,N-디메틸포름아마이드(DMF)와 1-부탄올의 1:1 부피비의 용매에 2 중량%의 PVCN을 넣어 용액을 제조하였다. 제조된 용액을 은 나노와이어가 코팅된 기판 (10cm*10cm)에 스핀 코팅하여 오버코트층을 형성하였다. 코팅을 한 후 130℃ 오븐에서 3분간 용매를 건조한 후 상온에서 충분히 식혀주었다. 이후 PVCN 오버코트가 형성된 투명 전극을 254 nm 파장의 UV에 노출시켜 PVCN을 광경화시켰다. 완성된 샘플을 항온항습기에 온도/습도 85℃/85% 조건에서 샘플을 보관하며 시간에 따른 저항을 측정함으로써 신뢰성을 분석하였다. 도 3은 본 발명에 따른 실시예를 통해 제작된 은나노와이어 기반의 플랙서블 투명 전극을 촬영한 사진이다.
본 실시예를 통해 오버코팅시 PVCN의 사용을 통해 향상된 내용제성 및 접착성의 오버코팅 필름을 얻을 수 있었으며, 코팅성이 좋고 두께 조절이 용이한 필름을 제조할 수 있었다. 또한 UV 파장 및 노광시간 조절을 통한 광경화성 고분자의 최적 경화조건 확보하게 되었다.
<비교예 1>
광경화된 PVCN 오버코트의 비교군으로 하기 [화학식 2]로 표현되는 비경화성 고분자인 PS(polystyrene)를 은 나노와이어 투명 전극의 오버코트층으로 도입하였다. PS 역시 2중량%의 고분자를 DMF와 1-부탄올의 1:1 부피피의 용매에 녹여 용액을 제조하였으며, 광경화를 제외한 실험절차는 상기 실시예와 동일하게 수행하였다.
[화학식 2]
Figure PCTKR2018008517-appb-I000002
<비교예 2>
광경화된 PVCN 오버코트의 또 다른 비교군으로 하기 [화학식 3]으로 표현되는 비경화성 고분자인 COC(cyclic olefin copolymer)를 은 나노와이어 투명 전극의 오버코트층으로 도입하였다. COC 오버코트 역시 2중량%의 고분자를 DMF와 1-부탄올의 1:1 부피피의 용매에 녹여 용액을 제조하였으며, 광경화를 제외한 실험절차는 상기 실시예와 동일하게 수행하였다.
[화학식 3]
Figure PCTKR2018008517-appb-I000003
<비교예 3>
광경화된 PVCN 오버코트의 또 다른 비교군으로 하기 [화학식 4]로 표현되는 비경화성 고분자인 PMMA(polymethyl methacrylate)와 [화학식 5]로 표현되는 저온 열경화성 경화제인 TCSH(1,6-Bis(trichloro silyl)hexane)를 혼합한 용액을 제조하여 은 나노와이어 투명 전극의 오버코트층으로 도입하였다.
[화학식 4] [화학식 5]
Figure PCTKR2018008517-appb-I000004
PMMA/TCSH 오버코트 역시 2 중량%의 고분자를 DMF와 1-부탄올의 1:1 부피비의 용매에 녹여 용액을 제조하였으며, 광경화를 제외한 실험절차는 상기 실시예와 동일하게 수행하였다. TCSH은 130℃ 조건에서 서로 열경화되어 PMMA를 물리적으로 경화를 시켜준다. 이 과정을 보다 구체적으로 살펴보면, 도 4의 모식도에서 보이는 바와 같이, 두 개의 작용기를 가지고 있는 클로로실란(chlorosilane) 화합물(TCSH)이 스스로 반응하여 실록산 네트워크를 형성하여 PMMA를 물리적으로 경화시킨다.
<실험예>
하기 [표 1] 은 실시예 1에 따라 광경화된 PVCN 오버코트를 적용한 투명 전극의 시간에 따른 저항변화를 보여준다. 한편 하기 [표 2]는 비교예 1에 따라 제조된 PS 오버코트를 적용한 투명 전극의 시간에 따른 저항변화를 나타내며, [표 3]은 비교예 2에 따라 제조된 COC 오버코트를 적용한 투명 전극의 시간에 따른 저항변화를 나타내고, [표 4]는 비교예 3의 PMMA/TCSH 오버코트를 적용한 투명 전극의 시간에 따른 저항변화를 나타낸다.
이러한 저항 변화에서 확인할 수 있는 것과 같이, 본 발명의 실시예에 따라 광경화된 PVCN 오버코트를 적용한 투명 전극은 비교예 1의 PS 오버코트를 적용한 투명 전극에 비해 약 6배, 비교예 2의 COC 오버코트 적용 샘플보다 4배 이상 향상된 환경안정성을 보인다는 사실을 확인할 수 있었다. 또한 비교예 3에 따라 열경화된 PMMA 오버코트가 적용된 투명 전극보다 광경화된 PVCN 오버코트가 적용된 샘플이 4배 이상 안정적인 환경안정성을 보인다는 사실도 알 수 있었다.
PVCN 오버코트 적용 투명전극 특성
경과기간(days) 0 3 4 10
선저항 1(Ω) 19.5 22.3 25.1 27.1
선저항 2(Ω) 17.7 20.7 23.3 25.8
선저항 3(Ω) 21.2 23.5 26.2 29.6
평균 19.5 22.2 24.9 27.5
평균변화율 14% 28% 41%
PS 오버코트 적용 은나노와이어 투명전극 특성
경과기간(days) 0 3 4 10
선저항 1(Ω) 18.1 37.2 43.4 61.3
선저항 2(Ω) 15.4 33.8 39.4 55.8
선저항 3(Ω) 15.4 35.6 42.1 60.6
평균 16.30 35.53 41.63 59.23
평균변화율 118% 155% 263%
COC 오버코트 적용 은나노와이어 투명전극 특성
경과기간(days) 0 3 4 10
선저항 1(Ω) 18.9 30.4 34.6 40.7
선저항 2(Ω) 15.9 27.8 32.2 45.7
선저항 3(Ω) 17.8 31.7 36.7 52.7
평균 17.53 29.97 34.50 46.37
평균변화율 71% 97% 164%
PMMA/TCSH 오버코트 적용 투명전극 특성
경과기간(days) 0 1 2 5
선저항 1(Ω) 77.7 121.1 139.0 162.0
선저항 2(Ω) 66.6 116.4 161.0 197.0
선저항 3(Ω) 33.3 58.1 84.4 109.0
평균 59.2 98.5 128.13 156.0
평균변화율 66% 116% 164%

Claims (12)

  1. 투명 기판 상의 전도성 나노 입자층을 보호하는 고분자 오버코트층이 형성된 투명 전극으로서, 상기 고분자 오버코트층은 폴리아크릴레이트계 광경화성 소수성 고분자로 이루어진 것을 특징으로 하는 투명 전극.
  2. 제1항에 있어서,
    상기 광경화성 소수성 고분자는 폴리(비닐시나메이트) 또는 폴리(나프틸 비닐 아크릴레이트) 중에서 선택된 고분자인 것을 특징으로 하는 투명 전극.
  3. 제1항에 있어서,
    상기 전도성 나노 입자는 금속 나노와이어, 그래핀, 탄소나노튜브로 이루어진 군으로부터 1종 이상 선택된 것을 특징으로 하는 투명 전극.
  4. 제3항에 있어서,
    상기 금속 나노와이어는 은 나노와이어인 것을 특징으로 하는 투명 전극.
  5. 제1항에 있어서,
    상기 기판은 유리(glass) 또는 폴리이미드, 폴리에틸렌테레프탈레이트(PET), 폴리디메틸실록산(PDMS), 폴리카보네이트, 폴리프로필렌으로 이루어진 군으로부터 선택된 것을 특징으로 하는 투명 전극.
  6. 제1항에 있어서,
    상기 오버코트층의 두께는 50 nm 내지 150 nm 범위인 것을 특징으로 하는 투명 전극.
  7. i) 투명 기판 상의 전도성 나노 입자층 위에 폴리아크릴레이트계 광경화성 소수성 고분자 용액을 도포하는 단계;
    ii) 상기 광경화성 소수성 고분자 용액이 도포된 기판을 건조시키는 단계; 및
    iii) 상기 건조된 기판을 광경화시키는 단계를 포함하는 투명 전극의 제조 방법.
  8. 제7항에 있어서,
    상기 폴리아크릴레이트계 광경화성 소수성 고분자는 폴리비닐시나메이트 또는 폴리(나프틸 비닐 아크릴레이트) 중에서 선택된 고분자인 것을 특징으로 하는 투명 전극의 제조 방법.
  9. 제7항에 있어서,
    상기 전도성 나노 입자는 금속 나노와이어, 그래핀, 탄소나노튜브로 이루어진 군으로부터 1종 이상 선택된 것을 특징으로 하는 투명 전극의 제조 방법.
  10. 제7항에 있어서,
    상기 기판은 유리(glass) 또는 폴리이미드, 폴리에틸렌테레프탈레이트(PET), 폴리디메틸실록산(PDMS), 폴리카보네이트, 폴리프로필렌으로 이루어진 군으로부터 선택된 것을 특징으로 하는 투명 전극의 제조 방법.
  11. 제7항에 있어서,
    상기 i) 고분자 용액을 도포하는 단계는 스핀 코팅, 바 코팅, 잉크젯 코팅, 스프레이 코팅, 롤 코팅, 딥 코팅 등 중에서 선택된 방법을 이용하여 수행되는 것을 특징으로 하는 투명 전극의 제조 방법.
  12. 제7항에 있어서,
    상기 iii) 광경화 단계는 자외선(UV) 조사 방식으로 수행되는 것을 특징으로 하는 투명 전극의 제조 방법.
PCT/KR2018/008517 2017-07-28 2018-07-27 고분자 오버코트층을 포함하는 투명 전극 및 이의 제조 방법 WO2019022552A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170096448 2017-07-28
KR10-2017-0096448 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019022552A1 true WO2019022552A1 (ko) 2019-01-31

Family

ID=65040308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008517 WO2019022552A1 (ko) 2017-07-28 2018-07-27 고분자 오버코트층을 포함하는 투명 전극 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2019022552A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288687B1 (ko) * 2004-08-27 2013-07-22 다이니폰 인사츠 가부시키가이샤 유기 전계발광 소자용 컬러 필터 기판
KR20140076472A (ko) * 2012-12-12 2014-06-20 제일모직주식회사 투과도 및 투명도가 우수한 투명전극
KR20160010144A (ko) * 2014-07-18 2016-01-27 삼성전자주식회사 전극 구조체 및 이를 사용하는 접촉 감지 센서
KR20170003429A (ko) * 2015-06-30 2017-01-09 삼성에스디아이 주식회사 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치
JP6124099B1 (ja) * 2015-06-26 2017-05-10 東レフィルム加工株式会社 導電積層体、それを用いた成型体、静電容量式タッチセンサーおよび面状発熱体、ならびに成型体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288687B1 (ko) * 2004-08-27 2013-07-22 다이니폰 인사츠 가부시키가이샤 유기 전계발광 소자용 컬러 필터 기판
KR20140076472A (ko) * 2012-12-12 2014-06-20 제일모직주식회사 투과도 및 투명도가 우수한 투명전극
KR20160010144A (ko) * 2014-07-18 2016-01-27 삼성전자주식회사 전극 구조체 및 이를 사용하는 접촉 감지 센서
JP6124099B1 (ja) * 2015-06-26 2017-05-10 東レフィルム加工株式会社 導電積層体、それを用いた成型体、静電容量式タッチセンサーおよび面状発熱体、ならびに成型体の製造方法
KR20170003429A (ko) * 2015-06-30 2017-01-09 삼성에스디아이 주식회사 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치

Similar Documents

Publication Publication Date Title
KR102460116B1 (ko) 투명 코팅 및 투명 전도성 필름을 위한 특성 향상 충진제
WO2010123265A2 (ko) 탄소나노튜브 도전막 및 그 제조 방법
ES2607961T3 (es) Composición de revestimiento conductor y método para fabricar una capa conductora usando la misma
US9960293B2 (en) Method for manufacturing a transparent conductive electrode using carbon nanotube films
TWI446062B (zh) 包含碳奈米管的透明傳導膜及其觸控式面板
KR102543985B1 (ko) 전도막 및 이를 포함하는 전자 소자
KR102581899B1 (ko) 투명 전극 및 이를 포함하는 소자
WO2010098636A2 (ko) 내마모성 및 내오염성이 우수한 코팅 조성물 및 코팅 필름
WO2013094832A1 (ko) 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치
WO2014137111A1 (ko) 투명 전극 및 이의 제조 방법
WO2012036453A2 (ko) 반사방지층이 코팅된 투명도전성 시트 및 이의 제조 방법
WO2013081424A1 (ko) 투명 전극 필름 제조용 기재 필름
WO2013100557A1 (ko) 플라스틱 기판
CN104637570A (zh) 柔性透明导电薄膜及其制备方法
KR101912036B1 (ko) 투명전극 및 그의 제조방법
KR20180001175A (ko) 대전 방지된 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
WO2011162461A1 (ko) 투명 전극 및 이의 제조 방법
WO2012044068A2 (en) Manufacturing method of electrode substrate
TW201606005A (zh) 剛性及撓性基板之導電透明塗層
US20110083886A1 (en) Method of manufacturing electrode substrate
WO2016159609A1 (ko) 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극
WO2019022552A1 (ko) 고분자 오버코트층을 포함하는 투명 전극 및 이의 제조 방법
CN111161906A (zh) 一种低电阻透明导电膜及其制备方法
Dai et al. 31‐2: Invited Paper: Silver Nanowire Transparent Conductive Films for Flexible/Foldable Devices
TWI739847B (zh) 透明導電性膜及觸控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838253

Country of ref document: EP

Kind code of ref document: A1