WO2013094832A1 - 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치 - Google Patents

도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치 Download PDF

Info

Publication number
WO2013094832A1
WO2013094832A1 PCT/KR2012/005040 KR2012005040W WO2013094832A1 WO 2013094832 A1 WO2013094832 A1 WO 2013094832A1 KR 2012005040 W KR2012005040 W KR 2012005040W WO 2013094832 A1 WO2013094832 A1 WO 2013094832A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
composition
monomer
weight
conductive
Prior art date
Application number
PCT/KR2012/005040
Other languages
English (en)
French (fr)
Inventor
신동명
강경구
구영권
김도영
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201280066811.0A priority Critical patent/CN104115235B/zh
Publication of WO2013094832A1 publication Critical patent/WO2013094832A1/ko
Priority to US14/310,035 priority patent/US9685253B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a composition for a conductive film, a conductive film formed therefrom, and an optical display device including the same. More specifically, the present invention provides a composition for a conductive film that can ensure excellent transparency, sheet resistance, bending characteristics and the like even in a single layer, and can be implemented in an economical and simple manufacturing process, the conductive film composition, the conductive formed therefrom The present invention relates to a film and an optical display device including the same.
  • the conductive film is used in various fields such as a touch screen panel and a flexible display included in the display device, and research on this has been actively conducted in recent years.
  • the conductive film should have good basic properties such as transparency and sheet resistance, and in recent years, as the use area has been extended to the flexible display, bending characteristics are also required.
  • ITO film As the conductive film, a film in which an indium tin oxide (ITO) film is laminated on both sides of a base film including a polyethylene terephthalate (PET) film has been used. ITO film is deposited on the base film by dry deposition method, it is economical and excellent in transparency. However, there is a problem that the resistance may increase due to the characteristics of the ITO itself and the bending characteristics are not good.
  • ITO indium tin oxide
  • PET polyethylene terephthalate
  • a technology of manufacturing a conductive film by coating a conductive polymer, carbon nanotubes, metal nanoparticles, etc. on a base film by a wet thin film coating method instead of an ITO film has been developed.
  • this method also has a low transmittance, which is not suitable for transparent conductive film applications and may be less reliable.
  • dispersibility in the film may be low to increase resistance.
  • a conductive film prepared by coating a solution containing silver nanowires on a base film by a wet thin film coating method has been developed.
  • the silver nanowires and the solution dissolved in water are wet-coated on the base film, thereby laminating the silver nanowires on the base film.
  • this method also has a low adhesion and solvent resistance with the base film to compensate for this, the conductive film should be prepared in a double layer structure to add an overcoat layer prepared by curing the urethane acrylate and the initiator mixture on the silver nanowire layer.
  • This method can compensate for problems such as transparency and conductivity, but may have problems such as high material cost and fairness.
  • An object of the present invention is to provide a composition for a conductive film that can implement a conductive film excellent in transparency, sheet resistance, bending characteristics.
  • Another object of the present invention is to provide a composition for a conductive film capable of realizing a conductive film that can ensure transparency, sheet resistance, bending characteristics, etc. even in a single layer and can be manufactured in an economical and simple manufacturing process.
  • Still another object of the present invention is to provide a conductive laminate comprising a conductive film made of the composition for conductive films.
  • Still another object of the present invention is to provide an optical display device including the conductive film or the conductive laminate.
  • composition for a conductive film which is one aspect of this invention contains (A) metal nanowire (nanowire), (B) polyfunctional monomer, and (C) initiator, and forms one coating layer in the single side
  • a conductive laminate includes a base film; And a single layer conductive film coated on one or both surfaces of the base film and formed of a conductive film composition.
  • An optical display device may include a conductive film formed of a conductive film composition or a conductive laminate including the same.
  • the present invention provides a composition for a conductive film capable of realizing a conductive film that can ensure transparency, sheet resistance, bending characteristics, etc. even in a single layer and can be manufactured in an economical and simple manufacturing process, comprising a conductive film made of the composition
  • a conductive laminate and an optical display device including the same.
  • composition for conductive films which is one aspect of this invention can contain (A) metal nanowire (nanowire), (B) polyfunctional monomer, and (C) initiator.
  • the composition for conductive films of the present invention can form a conductive laminate by forming a single-layer conductive film on one side or both sides of the base film.
  • the metal nanowires may form a conductive network in the conductive film after curing.
  • the conductive network of metal nanowires can impart conductivity to the film and can provide flexibility.
  • the metal nanowires have better dispersibility than metal nanoparticles due to the nanowire shape.
  • the metal nanowires may provide an effect that can significantly lower the sheet resistance of the conductive film due to the difference in particle shape versus nanowire shape.
  • Metal nanowires have the form of extreme fine lines with specific cross sections.
  • the ratio (L / d, aspect ratio) of the nanowire length L to the diameter d of the metal nanowire cross section may be about 10 to 1,000. Within this range, a high conductive network can be realized even at low nanowire densities, and the sheet resistance after curing can be lowered.
  • the aspect ratio may be greater than about 500 to 1000, more preferably about 501 to 700.
  • the metal nanowires may have a diameter d of about 100 nm or less in cross section. In the above range, it is possible to implement a conductive film having high conductivity and low sheet resistance by securing high L / d. Preferably, it may be about 30nm ⁇ 100nm, more preferably may be 20 ⁇ 40nm.
  • the metal nanowires may have a length L of about 20 ⁇ m or more. In the above range, it is possible to implement a conductive film having high conductivity and low sheet resistance by securing high L / d. Preferably, the thickness may be about 20 ⁇ m to 50 ⁇ m.
  • the metal nanowires can include nanowires made of any metal.
  • it may be silver, copper, gold nanowires or mixtures thereof.
  • silver nanowires or a mixture containing the same may be used.
  • the metal nanowires may be included in at least about 50%, preferably at least about 60% by weight in (A) + (B). In the above range, it is possible to ensure sufficient conductivity after curing, to form a conductive network. Preferably from about 60 to 90% by weight, more preferably from about 60 to 80% by weight. In the above range, when mixed with the following polyfunctional monomer can be prepared a coating composition that is easy to disperse without phase separation phenomenon.
  • Metal nanowires may be prepared by conventional methods, or may use commercially available products.
  • a polyol and poly (vinyl pyrrolidone) it can be synthesized through a reduction reaction of a metal salt (eg, silver nitrate, AgNO 3 ).
  • a metal salt eg, silver nitrate, AgNO 3
  • a commercially available product of Cambrios eg Clearohm Ink.
  • the polyfunctional monomer can form a matrix after the curing is impregnated with a conductive network of metal nanowires.
  • the matrix forms the outer shape of the conductive film, maintains the conductive network shape to ensure conductivity, and prevents the conductive network from being corroded by external impact or moisture when mounted to the optical display device. To do this, the matrix must be able to maintain a physically rigid appearance to maintain the conductive network of the metal nanowires.
  • the matrix should have optical transparency when considering the use of the conductive film.
  • the matrix may have transparency in the visible region, for example about 400 nm to 700 nm.
  • the matrix has transparency with a haze as measured by a haze meter of 3% or less and a total light transmittance of about 90% or more.
  • the matrix may have a haze of about 1-2.6% and a total light transmittance of about 90-95%.
  • the matrix should have good flexural properties with a photocured coating layer.
  • the thickness of the matrix may be about 50 nm to 500 nm, preferably about 90 nm to 150 nm. Within this range, the shape of the conductive network is well maintained and can be used as a conductive film.
  • the polyfunctional monomer may be used without limitation so long as it is a monomer capable of realizing the conditions of the matrix after curing.
  • a polyfunctional monomer the polyfunctional monomer which has three or more (meth) acrylate groups, or a mixture thereof can be used.
  • the polyfunctional monomer can improve the transparency of the matrix and lower the sheet resistance when cured after mixing with the metal nanowires.
  • the matrix made of the polymer or oligomer containing the urethane acrylate was not good transparency, the sheet resistance was relatively high.
  • a polyfunctional monomer a trifunctional or more than trifunctional, tetrafunctional or more, 5- or more functional, 6 or more functional, 7 or more functional monomer, or a mixture thereof can be used.
  • trifunctional or more than trifunctional more preferably trifunctional to 6 functional polyfunctional monomers or mixtures thereof can be used.
  • the polyfunctional monomer may have a weight average molecular weight of about 200 ⁇ 600g / mol. In the above range, it is possible to implement a matrix excellent in transparency, bending characteristics, it is possible to obtain a coating property, the wettability with the base film. Preferably, it may be about 296-579 g / mol.
  • the polyfunctional monomer may be a polyfunctional monomer having the same number of (meth) acrylate groups or a mixture of polyfunctional monomers having different numbers of (meth) acrylate groups.
  • a mixture of polyfunctional monomers having different numbers of (meth) acrylate groups can be used.
  • polyfunctional monomer a mixture of a 5- or 7-functional monomer (B1) and a tri- or 4-functional monomer (B2) can be used.
  • B1: B2 in the mixture may be included in a weight ratio of about 1: 1 to about 1: 3.
  • a mixture of a 5-functional to 6-functional monomer (B1) and a tri- to 4-functional monomer (B2) may be used as the polyfunctional monomer.
  • B1: B2 in the mixture may be included in a weight ratio of about 1: 1 to about 1: 3.
  • the polyfunctional monomer (B1) may be included in about 5 to 25% by weight, preferably about 5 to 15% by weight of (A) + (B), and the polyfunctional monomer (B2) is (A) + (B) About 5 to 35% by weight, preferably about 10 to 30% by weight. In the above range, conductivity and optical characteristics can be secured.
  • the polyfunctional monomer may not include urethane groups (or bonds).
  • the polyfunctional monomer is not particularly limited, but a hydroxy group-derived polyfunctional (meth) acrylate, a fluorine-modified polyfunctional (meth) acrylate compound or a mixture thereof may be used, but is not necessarily limited thereto.
  • the hydroxy group-derived polyfunctional (meth) acrylate of the alcohol is dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane
  • These can be used individually or in mixture of 2 or more types.
  • the fluorine-modified polyfunctional (meth) acrylate compound is formed by reacting a polyfunctional (meth) acrylate with a compound containing a perfluoro polyether. More specifically, a perfluoro polyether compound having various functional groups such as a perfluoro polyether polyol having a hydroxy group, a perfluoro polyether dibasic acid having a carboxylic acid group, a perfluoro polyether epoxy compound having an epoxy group, and the like, Three formed by reacting a polyfunctional (meth) acrylate compound including a modified (meth) acrylate compound having a carboxylic acid group, a (meth) acrylate compound having an epoxy group, a (meth) acrylate compound having an isocyanate group, and the like.
  • the monomer having 16 functional groups corresponds to this. These can be used individually or in mixture of 2 or more types.
  • the polyfunctional monomer may be included in about 10 to 60% by weight of (A) + (B). In the above range, it is possible to ensure sufficient conductivity after curing, to form a conductive network. Preferably from about 10 to 40% by weight, more preferably from about 20 to 40% by weight.
  • the initiator can be used without limitation as long as it can absorb an absorption wavelength of about 150 nm to 500 nm and exhibit a photoreaction.
  • the initiator may use a phosphine oxide family. Specifically, bis-acryl-phosphine oxide (BAPO), 2,4,6-trimethylbenzoylphosphine oxide (TPO) or mixtures thereof can be used.
  • BAPO bis-acryl-phosphine oxide
  • TPO 2,4,6-trimethylbenzoylphosphine oxide
  • the initiator may be included in about 0.01 to 2 parts by weight based on 100 parts by weight of (A) + (B).
  • the polyfunctional monomer can be sufficiently cured to sufficiently impregnate the metal nanowires, and the polyfunctional monomer can be sufficiently cured without a residual amount of initiator.
  • it may be included in about 0.01 to 1 part by weight.
  • the conductive film composition may further include a monofunctional monomer (D) for matrix formation.
  • the monofunctional monomer can add the effect of viscosity improvement and wettability improvement at the time of forming a conductive film.
  • a monofunctional monomer is a monomer which has one (meth) acrylate group,
  • the (meth) acrylic acid ester which has a C1-C5 alkyl group the (meth) acrylic acid ester which has a C1-C5 alkyl group, and a hydroxyl group, carbon number (Meth) acrylic acid ester having an aryl group of 6 to 10, (meth) acrylic acid ester having an alicyclic group having 5 to 10 carbon atoms, or a mixture thereof.
  • the monofunctional monomer may be included in an amount of about 1 to 35 parts by weight based on 100 parts by weight of the polyfunctional monomer. In the above range, it is possible to obtain the effect of improving the wettability, coating properties, it may be good adhesion to the base film. Preferably about 15-35 parts by weight, more preferably about 30-35 parts by weight.
  • the ratio of the content of the polyfunctional monomer to the content of the monofunctional monomer in the conductive film composition may be greater than one.
  • the ratio may be about 2: 1 to 20: 1, more preferably about 2: 1 to 5: 1, most preferably about 2: 1 to 4: 1. have.
  • the composition for a conductive film comprises (A) about 60 to 90 weight percent of metal nanowires, (B) about 10 to 40 weight percent of polyfunctional monomers, and (C) initiator (A) + (B) 100 It may include about 0.01 to 2 parts by weight with respect to parts by weight.
  • the composition for a conductive film includes (A) about 50 to 75 weight percent of metal nanowires, (B) about 20 to 35 weight percent of polyfunctional monomer, (D) about 5 to 15 weight percent of monofunctional monomer, and (C) initiator may be included in about 0.01 to 2 parts by weight based on 100 parts by weight of (A) + (B) + (D).
  • the conductive film composition may further include a solvent for ease of film formation and easy coating of the base film.
  • the solvent may include a main solvent and a co-solvent due to the different physical properties of the metal nanowire and the polyfunctional monomer.
  • Water, acetone, etc. may be used as a main solvent, and alcohols, such as methanol, may be used for miscibility of water and acetone.
  • a conductive laminate includes a base film; It may include a conductive film coated on at least one side of the base film and formed of a composition for the conductive film.
  • the base film can be used without limitation as long as it can provide flexibility.
  • the base film may be polyester, polyolefin, cyclic olefin polymer, polysulfone, polyimide, silicone, polystyrene, polyacryl, including polyethylene terephthalate (PET), polyester naphthalate, polycarbonate, or the like. It may be a polyvinyl chloride film, but is not limited thereto.
  • Functional films may be further laminated on one or both surfaces of the base film.
  • the functional film may be a hard coating layer, a corrosion preventing layer, or the like, but is not limited thereto.
  • the base film may have a thickness of about 10 ⁇ m to 100 ⁇ m. In the above range, it can be used as a touch panel film after the conductive film is formed.
  • the conductive film may be made of a cured product of the composition for a conductive film described above.
  • the conductive film may be formed on the base film by a conventional method.
  • at least one surface of the base film is coated with a composition for a conductive film. After drying and baking, it is prepared by UV curing at about 300 ⁇ 700mJ / cm2.
  • the conductive film may be formed on at least one side of the base film, but is preferably formed on one side of the base film.
  • the conductive film may be formed as a single layer coating layer on the base film.
  • the conductive film may have a thickness of about 10 ⁇ m to 200 ⁇ m. In the above range, it can be used as a touch panel film after the conductive film is formed.
  • the conductive film may have a sheet resistance of about 600 ( ⁇ s / square) or less measured by four probes. In the above range, it can be used as a film for a touch panel, it can be applied to a transparent conductive film. Preferably, the sheet resistance may be about 120 to 400 ( ⁇ s / square).
  • the conductive film may have transparency in the visible region, for example, about 400 nm to 700 nm.
  • the conductive film has transparency having a haze of 3% or less and a total light transmittance of about 90% or more as measured by a haze meter.
  • the conductive film may have a haze of about 1 to 2.6% and a total light transmittance of about 90 to 95%.
  • An optical display device which is another aspect of the present invention may include the conductive film or the conductive laminate.
  • the optical display device includes an overall optical display device including a touch screen panel, an organic light emitting diode (OLED) display, a liquid crystal display, and the like.
  • OLED organic light emitting diode
  • (B) polyfunctional monomer As (B) polyfunctional monomer, (B1) dipentaerythritol hexaacrylate (DPHA) which is a 6 functional monomer, (B2) trimethylolpropane triacrylate (TMPTA) which is a trifunctional monomer,
  • DPHA dipentaerythritol hexaacrylate
  • TMPTA trimethylolpropane triacrylate
  • C (C1) bis-acryl-phosphine oxide (BAPO, Darocur 819 W, CIBA) as initiator (C2) 2,4,6-trimethylbenzoylphosphine oxide (TPO, CIBA)
  • a conductive film composition was prepared in the content (unit: parts by weight, based on solids) described in Table 1 below.
  • Solution A was prepared by adding metal nanowires to 33 parts by weight of ultrapure distilled water.
  • Solution B was prepared by adding DPHA, TMPTA, HEMA and an initiator to 5 parts by weight of acetone. The obtained solution A, solution B, and 9 parts by weight of methanol were stirred to prepare a conductive film composition.
  • the conductive film composition was coated on a base film (a cyclic olefin polymer (COP) film hard coated on both sides, a thickness of 66 ⁇ m, Zeon) using a wire bar coating. It was dried in an 80 ° C. oven for 1 minute and then baked in a 120 ° C. oven for 1 minute. UV curing was performed in a 500 mJ / cm 2 nitrogen atmosphere to prepare a conductive laminate in which a conductive film having a thickness of 150 nm was laminated in a single layer on one surface of the base film.
  • COP cyclic olefin polymer
  • a conductive film composition was prepared in the same manner as in Example 1, except that urethane acrylate was used in the amounts shown in Table 1 instead of DPHA and TMPTA.
  • a conductive laminate having a 150 nm thick conductive film laminated on one surface of the base film as a single layer was prepared.
  • Solution A 33 parts by weight of metal nanowires were added to 100 parts by weight of ultrapure distilled water, and a solution A was prepared by stirring.
  • Solution B was prepared by adding a urethane acrylate and an initiator to 5 parts by weight of acetone.
  • Solution A was coated on a base film (a cyclic olefin polymer (COP) film hard coated on both sides, thickness: 66 ⁇ m, Zeon) using a wire bar coating. Dry for 1 minute in an 80 ° C. oven and bake for 1 minute in a 120 ° C. oven. On top of this solution B was coated using a wire bar and dried in an 80 ° C. oven for 1 minute and then baked in a 120 ° C. oven for 1 minute.
  • COP cyclic olefin polymer
  • UV curing was performed in a 500 mJ / cm 2 nitrogen atmosphere to prepare a conductive laminate in which a 150 nm thick metal nanowire layer and a bilayer conductive film composed of a cured layer of urethane acrylate and an initiator were laminated on one surface of the base film. .
  • the following physical property is evaluated about the manufactured electrically conductive laminated body.
  • the base film is removed from the conductive laminate.
  • the haze and total light transmittance of the conductive film were obtained using an NDH 2000 instrument (Nippon Denshoku) with a Haze meter at 400 nm to 700 nm.
  • the total light transmittance is calculated as the sum of the diffuse transmitted light (DF) and the parallel transmitted light (PT). The higher the total light transmittance, the better the transparency.
  • the haze value is calculated as diffuse transmitted light (DF) / parallel transmitted light (PT).
  • the composition for a conductive film of the present invention can implement a conductive film with high transparency and low sheet resistance.
  • the composition for a conductive film of the present invention can implement transparency, sheet resistance and the like to a similar degree in a single layer compared to a conventional conductive film made of a double layer.

Abstract

본 발명은 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치에 관한 것이다. 보다 구체적으로, 본 발명은 단일층으로도 투명성, 면저항, 굴곡특성 등을 확보할 수 있고, 경제적이며 간단한 제조 공정으로 제조할 수 있는 도전성 필름의 구현이 가능한 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치에 관한 것이다.

Description

도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치
본 발명은 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치에 관한 것이다. 보다 구체적으로, 본 발명은 단일층으로도 우수한 투명성, 면저항, 굴곡 특성 등을 확보할 수 있고, 경제적이며 간단한 제조 공정으로 제조할 수 있는 도전성 필름의 구현이 가능한 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치에 관한 것이다.
도전성 필름은 디스플레이 장치에 포함되는 터치스크린패널, 플렉스블 디스플레이 등 다방면에 사용되고 있어, 최근 이에 대한 연구가 활발하게 진행되고 있다. 도전성 필름은 투명성, 면저항 등의 기본적인 물성이 좋아야 하고, 최근 플렉스블 디스플레이에까지 사용 영역이 확대되면서 굴곡 특성도 요구되고 있다.
도전성 필름으로서 폴리에틸렌테레프탈레이트(PET) 필름을 포함하는 기재필름 양면에 인듐 틴 산화물(ITO) 필름이 적층된 필름을 사용하여 왔다. ITO 필름은 기재필름에 건식 증착 방식으로 증착되어 경제적이며 투명성이 뛰어나다. 하지만, ITO 자체의 특성으로 인하여 저항이 증가할 수 있고 굴곡 특성이 좋지 않다는 문제점이 있다.
이를 해결하기 위하여, ITO 필름 대신에 전도성 고분자, 탄소나노튜브, 금속 나노입자 등을 습식 박막 코팅 방식으로 기재필름에 코팅하여 도전성 필름을 제조하는 기술이 개발되고 있다. 그러나, 이 방법 역시 투과율이 낮아 투명 도전성 필름 용도로는 적합하지 않고 신뢰성이 떨어질 수 있으며, 금속 나노입자의 경우에는 필름 내에서 분산성이 낮아 저항을 증가시킬 수 있다.
최근에는, 은 나노와이어를 포함하는 용액을 습식 박막 코팅 방식으로 기재필름에 코팅하여 제조된 도전성 필름을 개발하였다. 이 방법은 은 나노와이어와 물에 용해시킨 용액을 기재필름에 습식 코팅함으로써, 기재필름에 은 나노와이어를 적층하는 것이다. 그러나, 이 방법 역시 기재필름과의 부착력 및 내용제성이 낮아 이를 보완하기 위하여 은 나노와이어 층 위에 우레탄 아크릴레이트와 개시제 혼합물을 경화시켜 제조된 overcoat 층을 부가하는 이중층 구조로 도전성 필름을 제조해야 한다. 이 방법은 투명성, 도전성 등의 문제점을 보완할 수 있지만, 높은 재료비, 공정성 등의 문제가 있을 수 있다.
본 발명의 목적은 투명성, 면저항, 굴곡특성이 우수한 도전성 필름을 구현할 수 있는 도전성 필름용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 단일층으로도 투명성, 면저항, 굴곡특성 등을 확보할 수 있고 경제적이며 간단한 제조 공정으로 제조할 수 있는 도전성 필름의 구현이 가능한 도전성 필름용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 도전성 필름용 조성물로 제조된 도전성 필름을 포함하는 도전성 적층체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 도전성 필름 또는 도전성 적층체를 포함하는 광학 표시 장치를 제공하는 것이다.
본 발명의 일 관점인 도전성 필름용 조성물은 (A)금속 나노와이어(nanowire), (B)다관능 모노머, 및 (C)개시제를 포함하고, 기재필름의 단면 또는 양면에 1층의 코팅층을 형성할 수 있다.
본 발명의 다른 관점인 도전성 적층체는 기재필름; 및 기재필름의 단면 또는 양면에 코팅되어 있고 도전성 필름 조성물로 형성된 단일층의 도전성 필름을 포함할 수 있다.
본 발명의 또 다른 관점인 광학 표시 장치는 도전성 필름 조성물로 형성된 도전성 필름 또는 이를 포함하는 도전성 적층체를 포함할 수 있다.
본 발명은 단일층으로도 투명성, 면저항, 굴곡특성 등을 확보할 수 있어 경제적이며 간단한 제조 공정으로 제조할 수 있는 도전성 필름의 구현이 가능한 도전성 필름용 조성물, 상기 조성물로 제조된 도전성 필름을 포함하는 도전성 적층체 및 이를 포함하는 광학 표시 장치를 제공하였다.
본 발명의 일 관점인 도전성 필름용 조성물은 (A)금속 나노와이어(nanowire), (B)다관능 모노머 및 (C)개시제를 포함할 수 있다. 본 발명의 도전성 필름용 조성물은 기재필름의 단면 또는 양면에 단일층의 도전성 필름을 형성하여 도전성 적층체를 형성할 수 있다.
(A)금속 나노와이어
금속 나노와이어는 경화 후 도전성 필름 내에서 전도성 네트워크를 형성할 수 있다. 금속 나노와이어의 전도성 네트워크는 필름에 도전성을 부여할 수 있고, 유연성(flexibility)을 제공할 수 있다.
또한, 금속 나노와이어는 나노와이어 형상으로 인하여 금속 나노입자에 비해 분산성이 좋다. 또한, 금속 나노와이어는 입자 형상 대 나노와이어 형상의 차이점으로 인하여, 도전성 필름의 면저항을 현저하게 낮출 수 있는 효과를 제공할 수 있다.
금속 나노와이어는 특정 단면을 갖는 극 미세선의 형태를 갖는다.
금속 나노와이어 단면의 직경(d)에 대한 나노와이어 길이(L)의 비(L/d, aspect ratio)는 약 10 ~ 1,000이 될 수 있다. 상기 범위에서, 낮은 나노와이어 밀도에서도 높은 전도성 네트워크를 구현할 수 있고, 경화 후 면저항이 낮아질 수 있다. 바람직하게는 aspect ratio는 약 500 초과 내지 1000, 더 바람직하게는 약 501 ~ 700이 될 수 있다.
금속 나노와이어는 단면의 직경(d)이 약 100nm 이하가 될 수 있다. 상기 범위에서, 높은 L/d를 확보하여 전도성이 높고 면저항이 낮은 도전성 필름을 구현할 수 있다. 바람직하게는, 약 30nm ~ 100nm가 될 수 있으며, 더 바람직 하게는 20 ~ 40nm 가 될 수 있다.
금속 나노와이어는 길이(L)가 약 20㎛ 이상이 될 수 있다. 상기 범위에서, 높은 L/d를 확보하여 전도성이 높고 면저항이 낮은 도전성 필름을 구현할 수 있다. 바람직하게는 약 20㎛ ~ 50㎛가 될 수 있다.
금속 나노와이어는 임의의 금속으로 제조된 나노와이어를 포함할 수 있다. 예를 들면, 은, 구리, 금 나노와이어 또는 이들의 혼합물이 될 수 있다. 바람직하게는 은 나노와이어 또는 이를 포함하는 혼합물을 사용할 수 있다.
금속 나노와이어는 (A) + (B) 중 약 50중량% 이상, 바람직하게는 약 60중량% 이상으로 포함될 수 있다. 상기 범위에서, 경화 후 충분한 전도성을 확보할 수 있고, 전도성 네트워크를 형성할 수 있다. 바람직하게는, 약 60 ~ 90중량%, 더 바람직하게는 약 60 ~ 80중량%로 포함될 수 있다. 상기 범위에서, 하기 다관능 모노머와 혼합할 경우 상 분리 현상 없이 분산이 용이한 코팅 조성물을 제조할 수 있다.
금속 나노와이어는 통상의 방법으로 제조하거나, 상업적으로 시판되는 제품을 사용할 수 있다. 예를 들면, 폴리올과 폴리(비닐 피롤리돈) 존재 하에서 금속 염(예를 들면, 질산은, AgNO3)의 환원 반응을 통해 합성할 수 있다. 또는, 상업적으로 시판되는 Cambrios사의 제품(예: Clearohm Ink.)을 사용할 수도 있다.
(B)다관능 모노머
다관능 모노머는 경화 후 금속 나노와이어의 전도성 네트워크가 함침되는 매트릭스(matrix)를 형성할 수 있다. 매트릭스는 도전성 필름의 외부 형태를 형성하고, 전도성 네트워크 형태를 유지시켜 도전성을 확보하게 하며, 전도성 네트워크가 광학 표시 장치에 장착되었을 때 외부 충격 또는 수분에 의해 부식되는 것을 방지한다. 이를 위해 매트릭스는 금속 나노와이어의 전도성 네트워크를 유지할 수 있도록 물리적으로 단단한 외형을 유지할 수 있어야 한다.
또한, 매트릭스는 도전성 필름의 사용 용도를 고려할 때 광학적으로 투명성을 가져야 한다. 예를 들면, 매트릭스는 가시광선 영역 예를 들면 약 400nm ~ 700nm에서 투명성을 가질 수 있다. 매트릭스는 헤이즈 미터로 측정된 헤이즈가 3% 이하이고, 전광선 투과율이 약 90% 이상인 투명성을 갖는다. 바람직하게는, 매트릭스는 헤이즈가 약 1 ~ 2.6%이고, 전광선 투과율이 약 90 ~ 95%가 될 수 있다.
또한, 매트릭스는 광경화된 코팅층으로 굴곡 특성이 좋아야 한다.
매트릭스의 두께는 약 50nm ~ 500nm, 바람직하게는 약 90nm ~ 150nm가 될 수 있다. 상기 범위에서, 전도성 네트워크의 형태 유지가 잘 되고 도전성 필름으로 사용할 수 있게 한다.
다관능 모노머는 경화된 후 상기 매트릭스의 조건을 구현할 수 있는 모노머라면 제한없이 사용될 수 있다. 예를 들면, 다관능 모노머로는 3개 이상의 (메타)아크릴레이트기를 갖는 다관능 모노머 또는 이들의 혼합물을 사용할 수 있다.
다관능 모노머는 금속 나노와이어와 혼합한 후 경화시켰을 때 매트릭스의 투명성을 개선하고, 면저항을 낮출 수 있다. 반면에, 기존의 우레탄 아크릴레이트를 포함하는 폴리머 또는 올리고머로 제조된 매트릭스는 투명성이 좋지 못하였고, 면저항이 상대적으로 높았다.
다관능 모노머는 3관능 이상, 4관능 이상, 5관능 이상, 6관능 이상, 7관능 이상의 모노머 또는 이들의 혼합물을 사용할 수 있다. 바람직하게는 3관능 이상, 더 바람직하게는 3관능 내지 6관능의 다관능 모노머 또는 이들의 혼합물을 사용할 수 있다.
다관능 모노머는 중량평균분자량이 약 200 ~ 600g/mol이 될 수 있다. 상기 범위에서, 투명성, 굴곡특성이 우수한 매트릭스를 구현할 수 있고, 기재 필름과의 코팅성, 젖음성을 얻을 수 있다. 바람직하게는, 약 296 ~ 579g/mol이 될 수 있다.
다관능 모노머는 동일 개수의 (메타)아크릴레이트기를 갖는 다관능 모노머를 사용하거나 또는 서로 다른 개수의 (메타)아크릴레이트기를 갖는 다관능 모노머의 혼합물을 사용할 수도 있다. 바람직하게는, 서로 다른 개수의 (메타)아크릴레이트기를 갖는 다관능 모노머의 혼합물을 사용할 수 있다.
다관능 모노머는 5관능 내지 7관능의 모노머(B1)와 3관능 내지 4관능의 모노머(B2)의 혼합물을 사용할 수 있다. 상기 혼합물에서 B1:B2는 약 1:1 내지 약 1:3의 중량비로 포함될 수 있다.
바람직하게는, 다관능 모노머는 5관능 내지 6관능 모노머(B1)와 3관능 내지 4관능 모노머(B2)의 혼합물을 사용할 수 있다. 상기 혼합물에서 B1:B2는 약 1:1 내지 약 1:3의 중량비로 포함될 수 있다.
다관능 모노머 (B1)은 (A) + (B) 중 약 5 ~ 25중량%, 바람직하게는 약 5 ~ 15중량%로 포함될 수 있고, 다관능 모노머 (B2)는 (A) + (B) 중 약 5 ~ 35중량%, 바람직하게는 약 10 ~ 30중량%로 포함될 수 있다. 상기 범위에서, 도전성 및 광 특성이 확보될 수 있다.
다관능 모노머는 우레탄 기(또는 결합)를 포함하지 않을 수 있다.
다관능 모노머는 특별히 제한되지 않지만, 알코올의 히드록시기 유래 다관능 (메타)아크릴레이트, 불소 변성 다관능 (메타)아크릴레이트 화합물 또는 이들의 혼합물이 사용될 수 있으며, 반드시 이에 제한되는 것은 아니다.
구체예에서 알코올의 히드록시기 유래 다관능 (메타)아크릴레이트는 디펜타에리트리톨 헥사(메타)아크릴레이트, 트리메틸올프로판 트리(메타)아크릴레이트, 펜타에리트리톨 테트라(메타)아크릴레이트, 디트리메틸올프로판 테트라(메타)아크릴레이트, 펜타에리트리톨 트리(메타)아크릴레이트, 및 트리(2-히드록시에틸)이소시아누에이트 트리(메타)아크릴레이트를 포함하는 알코올의 히드록시기 유래 다관능 (메타)아크릴레이트 등이 있다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
불소 변성 다관능 (메타)아크릴레이트 화합물은 퍼플루오로 폴리에테르를 함유하는 화합물에 다관능 (메타)아크릴레이트가 반응하여 형성된 것이다. 보다 자세하게는, 히드록시기를 가지는 퍼플루오로 폴리에테르 폴리올, 카르복시산기를 가지는 퍼플루오로 폴리에테르 이염기산 및 에폭시그룹을 가지는 퍼플루오로 폴리에테르 에폭시 화합물 등과 같이 다양한 작용기를 가지는 퍼플루오로 폴리에테르 화합물과, 카르복시산기를 가지는 변성 (메타)아크릴레이트 화합물, 에폭시그룹을 가지는 (메타)아크릴레이트 화합물 및 이소시아네이트기를 가지는 (메타)아크릴레이트 화합물 등을 포함하는 다관능 (메타)아크릴레이트 화합물을 반응시킴으로써 형성된 3개 ~ 16개의 관능기를 가지는 모노머가 이에 해당한다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
다관능 모노머는 (A) + (B) 중 약 10 ~ 60중량%로 포함될 수 있다. 상기 범위에서, 경화 후 충분한 전도성을 확보할 수 있고, 전도성 네트워크를 형성할 수 있다. 바람직하게는 약 10 ~ 40중량%, 더 바람직하게는 약 20 ~ 40중량%로 포함될 수 있다.
(C)개시제
개시제는 흡수 파장 약 150nm ~ 500nm을 흡수하여 광 반응을 나타낼 수 있는 것이라면 제한없이 사용할 수 있다. 예를 들면, 개시제는 포스핀 옥시드(phosphine oxide) 계열을 사용할 수 있다. 구체적으로, 비스-아크릴-포스핀 옥시드(BAPO), 2,4,6-트리메틸벤조일포스핀옥시드(TPO) 또는 이들의 혼합물을 사용할 수 있다.
개시제는 (A) + (B) 100중량부에 대하여 약 0.01 ~ 2중량부로 포함될 수 있다. 상기 범위에서, 다관능 모노머를 충분히 경화시켜 금속 나노와이어를 충분히 함침시킬 수 있고, 잔량의 개시제 없이 다관능 모노머를 충분히 경화시킬 수 있다. 바람직하게는 약 0.01 ~ 1중량부로 포함될 수 있다.
도전성 필름 조성물은 매트릭스 형성을 위해 단관능 모노머(D)를 더 포함할 수 있다. 단관능 모노머는 도전성 필름 형성시 점도 향상, 젖음성 향상의 작용을 부가할 수 있다.
단관능 모노머는 (메타)아크릴레이트기를 1개 갖는 모노머로서, 예를 들면 탄소수 1 ~ 5의 알킬기를 갖는 (메타)아크릴산 에스테르, 탄소수 1 ~ 5의 알킬기 및 히드록시기를 갖는 (메타)아크릴산 에스테르, 탄소수 6 ~ 10의 아릴기를 갖는 (메타)아크릴산 에스테르, 탄소수 5 ~ 10의 지환족기를 갖는 (메타)아크릴산 에스테르 또는 이들의 혼합물이 될 수 있다. 구체적으로는, 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 프로필 (메타)아크릴레이트, 시클로헥실 (메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 페닐 (메타)아크릴레이트, 벤질 (메타)아크릴레이트 또는 이들의 혼합물이 될 수 있지만, 이에 제한되지 않는다.
단관능 모노머는 다관능 모노머 100중량부에 대하여, 약 1 ~ 35중량부로 포함될 수 있다. 상기 범위에서, 젖음성, 코팅성이 향상되는 효과를 얻을 수 있고, 기재필름에 대한 부착력이 좋을 수 있다. 바람직하게는 약 15-35중량부, 더 바람직하게는 약 30-35중량부로 포함될 수 있다.
도전성 필름 조성물에서 단관능 모노머의 함량에 대한 다관능 모노머의 함량의 비는 1 초과일 수 있다. 바람직하게는 비는 다관능 모노머 : 단관능 모노머는 약 2:1 ~ 20:1, 더 바람직하게는 약 2:1 내지 5:1, 가장 바람직하게는 약 2:1 내지 4:1이 될 수 있다.
일 실시예에서, 도전성 필름용 조성물은 (A)금속 나노와이어 약 60 ~ 90중량%, (B)다관능 모노머 약 10 ~ 40중량%, 및 (C)개시제를 (A) + (B) 100중량부에 대하여 약 0.01 ~ 2중량부로 포함할 수 있다.
다른 실시예에서, 도전성 필름용 조성물은 (A)금속 나노와이어 약 50 ~ 75중량%, (B)다관능 모노머 약 20 ~ 35중량%, (D)단관능 모노머 약 5 ~ 15중량%, 및 (C)개시제를 (A) + (B) + (D) 100중량부에 대하여 약 0.01 ~ 2중량부로 포함할 수 있다.
도전성 필름용 조성물은 필름 형성의 용이성, 기재필름의 코팅 용이성을 위해 용제를 더 포함할 수 있다.
용제는 금속 나노와이어와 다관능 모노머의 서로 다른 물성으로 인해, 주 용제(main solvent)와 보조 용제(co-solvent)를 포함할 수 있다. 주 용제로는 물, 아세톤 등을 사용할 수 있고, 보조 용제로는 물과 아세톤의 혼화성을 위하여 메탄올 등의 알코올 종류를 사용할 수 있다.
본 발명의 다른 관점인 도전성 적층체는 기재필름; 상기 기재필름의 적어도 일면에 코팅되어 있고 상기 도전성 필름용 조성물로 형성된 도전성 필름을 포함할 수 있다.
기재필름은 유연성을 제공할 수 있는 것이라면 제한없이 사용할 수 있다. 예를 들면, 기재필름은 폴리에틸렌테레프탈레이트(PET), 폴리에스테르 나프탈레이트, 폴리카보네이트 등을 포함하는 폴리에스테르, 폴리올레핀, 시클릭올레핀폴리머, 폴리술폰, 폴리이미드, 실리콘(silicone), 폴리스티렌, 폴리아크릴, 폴리비닐클로라이드 필름이 될 수 있지만, 이에 제한되지 않는다.
기재필름의 단면 또는 양면에는 기능성 필름이 더 적층될 수 있다. 기능성 필름으로는 하드코팅층, 부식방지층 등이 될 수 있지만, 이에 제한되지 않는다.
기재필름은 두께 약 10㎛ ~ 100㎛가 될 수 있다. 상기 범위에서, 도전성 필름 형성 후 터치패널용 필름으로 사용할 수 있다.
도전성 필름은 상술한 도전성 필름용 조성물의 경화물로 이루어질 수 있다.
도전성 필름은 통상의 방법으로 기재필름 위에 형성될 수 있다. 예를 들면, 기재필름의 적어도 일면에 도전성 필름용 조성물을 코팅한다. 건조 및 베이킹시킨 후 약 300 ~ 700mJ/cm2에서 UV 경화시켜 제조한다.
도전성 필름은 기재필름의 적어도 일면에 형성될 수 있지만, 바람직하게는 기재필름의 일면에 형성된다.
도전성 필름은 기재필름에 단일층의 코팅층으로 형성될 수 있다.
도전성 필름은 두께 약 10㎛ ~ 200㎛가 될 수 있다. 상기 범위에서, 도전성 필름 형성 후 터치패널용 필름으로 사용할 수 있다.
도전성 필름은 4-프로브로 측정된 면저항이 약 600(Ω/□) 이하가 될 수 있다. 상기 범위에서, 터치패널용 필름으로 사용할 수 있고, 투명한 도전 필름으로 적용될 수 있다. 바람직하게는, 면 저항이 약 120 ~ 400(Ω/□)이 될 수 있다.
도전성 필름은 가시광선 영역 예를 들면 약 400nm ~ 700nm에서 투명성을 가질 수 있다. 도전성 필름은 헤이즈 미터로 측정된 헤이즈가 3% 이하이고, 전광선 투과율이 약 90% 이상인 투명성을 갖는다. 바람직하게는, 도전성 필름은 헤이즈가 약 1 ~ 2.6%이고, 전광선 투과율이 약 90 ~ 95%가 될 수 있다.
본 발명의 또 다른 관점인 광학 표시 장치는 상기 도전성 필름 또는 도전성 적층체를 포함할 수 있다. 상기 광학 표시 장치는 터치스크린패널, 유기발광소자(OLED) 표시장치, 액정표시장치 등을 포함하는 전반적인 광학 표시 장치를 포함한다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
하기 실시예와 비교예에서 사용된 성분의 구체적인 사양은 다음과 같다.
(A)금속 나노와이어로, 은 나노와이어(Clearohm Ink., Cambrios사, aspect ratio: 500 초과)
(B)다관능 모노머로, (B1)6관능 모노머인 디펜타에리쓰리톨 헥사아크릴레이트(DPHA), (B2)3관능 모노머인 트리메틸올프로판 트리아크릴레이트(TMPTA),
(C)개시제로 (C1)비스-아크릴-포스핀 옥시드(BAPO, Darocur 819W, CIBA), (C2)2,4,6-트리메틸벤조일포스핀옥시드(TPO, CIBA)
(D)단관능 모노머인 2-하이드록시에틸 메타아크릴레이트
(E)우레탄 아크릴레이트를 사용하였다.
실시예 1-3
하기 표 1에 기재된 함량(단위:중량부, 고형분 기준)으로 도전성 필름 조성물을 제조하였다. 금속 나노와이어를 초순수 증류수 33중량부에 넣고 교반하여 용액 A를 제조하였다. 아세톤 5중량부에 DPHA, TMPTA, HEMA 및 개시제를 넣고 용해시켜 용액 B를 제조하였다. 얻은 용액 A, 용액 B 및 메탄올 9중량부를 교반하여 도전성 필름 조성물을 제조하였다.
기재 필름(양면이 하드코팅된 시클릭올레핀폴리머(COP) 필름, 두께:66㎛, Zeon사)에 상기 도전성 필름 조성물을 와이어 바 코팅을 이용하여 코팅하였다. 80℃ 오븐에서 1분 동안 건조시킨 후 120℃ 오븐에서 1분 동안 베이킹하였다. 500mJ/cm2 질소 분위기에서 UV 경화시켜, 기재필름 일면에 두께 150nm의 도전성 필름이 단일층으로 적층된 도전성 적층체를 제조하였다.
비교예 1
상기 실시예 1에서 DPHA 및 TMPTA 대신에 우레탄 아크릴레이트를 표 1에 기재된 함량으로 사용한 것을 제외하고는 동일한 방법을 실시하여 도전성 필름 조성물을 제조하였다. 상기 실시예 1과 같이 동일한 방법으로 기재필름 일면에 두께 150nm의 도전성 필름이 단일층으로 적층된 도전성 적층체를 제조하였다.
비교예 2
금속 나노와이어 33중량부를 초순수 증류수 100중량부에 넣고 교반하여 용액 A를 제조하였다. 아세톤 5중량부에 우레탄 아크릴레이트 및 개시제를 넣고 용해시켜 용액 B를 제조하였다. 기재 필름(양면이 하드코팅된 시클릭올레핀폴리머(COP) 필름, 두께:66㎛, Zeon사)에 용액 A를 와이어 바 코팅을 이용하여 코팅하였다. 80℃ 오븐에서 1분 동안 건조시킨 후 120℃ 오븐에서 1분 동안 베이킹한다. 이 위에 용액 B를 와이어 바를 이용하여 코팅하고 80℃ 오븐에서 1분 동안 건조시킨 후 120℃ 오븐에서 1분 동안 베이킹하였다. 이후에 500mJ/cm2 질소 분위기에서 UV 경화시켜, 기재필름 일면에 두께 150nm의 금속 나노와이어 층과, 우레탄 아크릴레이트와 개시제의 경화된 층으로 구성되는 이중층의 도전성 필름이 적층된 도전성 적층체를 제조하였다.
실험예
상기 제조한 도전성 적층체에 대해 하기 물성을 평가한다.
(1)헤이즈와 전광선 투과율:도전성 적층체에서 기재필름을 제거한다. 도전성 필름에 대해 400nm ~ 700nm에서 Haze meter로 NDH 2000 장비 (Nippon Denshoku사)를 이용하여 헤이즈와 전광선 투과율을 구한다.
전광선 투과율은 확산 투과광(DF)과 평행 투과광(PT)의 합으로 계산한다. 전광선 투과율이 높을수록 투명성이 우수한 것으로 평가된다. 헤이즈값은 확산 투과광(DF)/평행 투과광(PT)으로 계산한다.
(2)면저항:도전성 필름 표면에 면저항 측정기 MCP-T610 (Mitsubish Chemical Analytech社)의 4-프로브를 접촉하고 10초 후에 면저항을 측정한다.
(3)Cross-cut:도전성 필름 표면에 커터칼로 10mm×10mm 안에 100개의 cell을 만들고 3M社 scotch magic tape를 가로/세로/대각선 방향으로 3회 붙였다 떼어서 광학현미경을 통해 코팅층이 벗겨지는 여부를 판단한다. 코팅층이 벗겨지지 않는 경우를 ○, 코팅층이 벗겨지는 경우를 ×로 평가한다.
표 1
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2
(A) 80 60 60 80 100
(B) (B1) 10 10 30 - -
(B2) 10 30 - - -
(C) (C1) 0.25 0.25 0.25 0.25 0.25
(C2) 0.25 0.25 0.25 0.25 0.25
(D) - - 10 - -
(E) - - - 20 100
헤이즈(%) 1.42 1.63 2.52 4.57 1.44
전광선 투과율(%) 90.48 90.28 90.98 90.04 90.97
면저항(Ω/□) 120 400 200 고저항으로측정불가 120
Cross-cut ×
상기 표 1에서 나타난 바와 같이, 본 발명의 도전성 필름용 조성물은 투명성이 높고 면저항이 낮은 도전성 필름을 구현할 수 있다. 또한, 본 발명의 도전성 필름용 조성물은 이중층으로 된 기존의 도전성 필름 대비 단일층에서도 투명성, 면저항 등을 유사한 정도로 구현할 수 있다.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (17)

  1. (A)금속 나노와이어(nanowire), (B)다관능 모노머, 및 (C)개시제를 포함하고, 기재필름의 단면 또는 양면에 1층의 코팅층으로 도전성 필름을 형성하는, 도전성 필름 조성물.
  2. 제1항에 있어서, 상기 금속 나노와이어는 은 나노와이어인 것을 특징으로 하는 도전성 필름 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 금속 나노와이어의 단면 직경(d)에 대한 나노와이어 길이(L)의 비(L/d, aspect ratio)는 약 10 ~ 1,000인 것을 특징으로 하는 도전성 필름 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 금속 나노와이어는 상기 (A) + (B) 중 약 50중량% 이상 포함되는 것을 특징으로 하는 도전성 필름 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 다관능 모노머는 경화 후 광학적으로 투명한 매트릭스(matrix)를 형성하는 것을 특징으로 하는 도전성 필름 조성물.
  6. 제5항에 있어서, 상기 매트릭스는 약 400nm ~ 700nm에서 헤이즈가 약 3% 이하이고, 전광선 투과율이 약 90% 이상인 것을 특징으로 하는 도전성 필름 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 다관능 모노머는 약 3개 이상의 (메타)아크릴레이트기를 갖는 다관능 모노머인 것을 특징으로 하는 도전성 필름 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 다관능 모노머는 서로 다른 개수의 (메타)아크릴레이트기를 갖는 다관능 모노머의 혼합물을 포함하는 것을 특징으로 도전성 필름 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 다관능 모노머는 5관능 내지 6관능의 모노머(B1): 3관능 내지 4관능의 모노머(B2)를 (B1):(B2)=약 1:1 내지 1:3의 중량비로 포함하는 혼합물인 것을 특징으로 하는 도전성 필름 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 조성물은 상기 다관능 모노머로 5관능 내지 6관능의 모노머(B1)를 상기 (A) + (B) 중 약 5 ~ 25중량%로 포함하고, 3관능 내지 4관능의 모노머(B2)를 상기 (A) + (B) 중 약 5 ~ 35중량%로 포함하는 것을 특징으로 하는 도전성 필름 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 다관능 모노머는 상기 (A) + (B) 중 약 10 ~ 60중량%로 포함되는 것을 특징으로 하는 도전성 필름 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 다관능 모노머는 중량평균분자량이 약 200g/mol ~ 600g/mol인 것을 특징으로 하는 도전성 필름 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 조성물은 단관능 모노머를 더 포함하는 것을 특징으로 하는 도전성 필름 조성물.
  14. 제13항에 있어서, 상기 단관능 모노머는 상기 다관능 모노머 100중량부에 대하여 약 1 ~ 35중량부로 포함되는 것을 특징으로 하는 도전성 필름 조성물.
  15. 기재필름; 상기 기재필름의 적어도 일면에 코팅되어 있고 제1항 내지 제14항 중 어느 한 항의 도전성 필름용 조성물로 형성된 단일층의 도전성 필름을 포함하는 도전성 적층체.
  16. 제15항에 있어서, 상기 도전성 필름은 면저항이 약 600Ω/□ 이하인 것을 특징으로 하는 도전성 적층체.
  17. 제1항 내지 제14항 중 어느 한 항의 조성물로 형성된 도전성 필름을 포함하는 광학 표시 장치.
PCT/KR2012/005040 2011-12-21 2012-06-26 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치 WO2013094832A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280066811.0A CN104115235B (zh) 2011-12-21 2012-06-26 导电膜组合物、使用它制造的导电膜和包含该导电膜组合物的光学显示设备
US14/310,035 US9685253B2 (en) 2011-12-21 2014-06-20 Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110139596 2011-12-21
KR10-2011-0139596 2011-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/310,035 Continuation US9685253B2 (en) 2011-12-21 2014-06-20 Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same

Publications (1)

Publication Number Publication Date
WO2013094832A1 true WO2013094832A1 (ko) 2013-06-27

Family

ID=48668690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005040 WO2013094832A1 (ko) 2011-12-21 2012-06-26 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치

Country Status (5)

Country Link
US (1) US9685253B2 (ko)
KR (1) KR101566058B1 (ko)
CN (1) CN104115235B (ko)
TW (1) TWI550642B (ko)
WO (1) WO2013094832A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150015314A (ko) 2013-07-31 2015-02-10 제일모직주식회사 투명 도전체 및 이를 포함하는 광학표시장치
KR101696978B1 (ko) * 2013-10-24 2017-01-17 삼성에스디아이 주식회사 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치
US9674947B2 (en) * 2013-12-04 2017-06-06 Samsung Sdi Co., Ltd. Transparent conductor, method for preparing the same, and optical display including the same
KR101535208B1 (ko) * 2013-12-31 2015-07-09 주식회사 효성 금속 나노 와이어 구조를 갖는 투명 도전성 필름
KR102183097B1 (ko) * 2014-03-10 2020-11-25 엘지전자 주식회사 전도성 필름 및 이를 포함하는 터치 패널
JP6710685B2 (ja) * 2014-08-15 2020-06-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 導電性透明層の製造のための銀ナノワイヤーおよびスチレン/(メタ)アクリル酸コポリマーを含む組成物
KR101900538B1 (ko) * 2015-03-31 2018-09-20 삼성에스디아이 주식회사 투명도전체, 이의 제조방법 및 이를 포함하는 광학표시장치
JP6559005B2 (ja) * 2015-07-31 2019-08-14 富士フイルム株式会社 熱線反射材料及び窓
US10564780B2 (en) 2015-08-21 2020-02-18 3M Innovative Properties Company Transparent conductors including metal traces and methods of making same
KR102543985B1 (ko) * 2015-10-27 2023-06-14 삼성전자주식회사 전도막 및 이를 포함하는 전자 소자
KR20170120461A (ko) * 2016-04-21 2017-10-31 삼성에스디아이 주식회사 디스플레이 장치
KR102412042B1 (ko) * 2016-06-29 2022-06-21 니폰 제온 가부시키가이샤 도전성 필름
WO2018062517A1 (ja) 2016-09-30 2018-04-05 大日本印刷株式会社 導電性フィルム、タッチパネル、および画像表示装置
CN111081746A (zh) * 2019-12-25 2020-04-28 武汉华星光电半导体显示技术有限公司 Oled显示面板及制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022226A2 (en) * 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2009129732A (ja) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc 金属ナノワイヤを用いた透明導電膜の製造方法及びそれを用いて製造された透明導電膜
JP2011029099A (ja) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd 透明導電膜付き基材
JP2011070821A (ja) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd 透明異方導電性フィルム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063744A1 (ja) * 2007-11-16 2009-05-22 Konica Minolta Holdings, Inc. 金属ナノワイヤの製造方法、金属ナノワイヤ及び透明導電体
CN102460600B (zh) * 2009-05-05 2016-06-01 凯博瑞奥斯技术公司 包含金属纳米结构的可靠且持久的导电膜
JP5459759B2 (ja) 2009-06-11 2014-04-02 チュン−シャン インスティテュート オブ サイエンス アンド テクノロジー,アーマメンツ ビューロー,ミニストリー オブ ナショナル ディフェンス ポリマーを有する銀ナノワイヤーの化合物およびポリマーを有する金属ナノ構造の化合物。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022226A2 (en) * 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2009129732A (ja) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc 金属ナノワイヤを用いた透明導電膜の製造方法及びそれを用いて製造された透明導電膜
JP2011029099A (ja) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd 透明導電膜付き基材
JP2011070821A (ja) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd 透明異方導電性フィルム

Also Published As

Publication number Publication date
TWI550642B (zh) 2016-09-21
KR101566058B1 (ko) 2015-11-05
CN104115235A (zh) 2014-10-22
US9685253B2 (en) 2017-06-20
KR20130072133A (ko) 2013-07-01
TW201333979A (zh) 2013-08-16
CN104115235B (zh) 2017-11-24
US20140302326A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
WO2013094832A1 (ko) 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치
WO2012036453A2 (ko) 반사방지층이 코팅된 투명도전성 시트 및 이의 제조 방법
TWI550637B (zh) 透明導體、用於透明導電膜的組合物和光學顯示裝置
WO2010123265A2 (ko) 탄소나노튜브 도전막 및 그 제조 방법
US10668702B2 (en) Conductive films and electronic devices including the same
WO2013036038A2 (en) Transparent conductive film, method of manufacturing the same, and touch panel having the same
KR102581899B1 (ko) 투명 전극 및 이를 포함하는 소자
WO2013100557A1 (ko) 플라스틱 기판
WO2010098636A2 (ko) 내마모성 및 내오염성이 우수한 코팅 조성물 및 코팅 필름
CN103903682B (zh) 透明导体和包括它的装置
WO2012036527A2 (ko) 시인성이 우수한 투명 전도성 필름 및 그 제조 방법
US20150156866A1 (en) Transparent conductor, method for preparing the same, and optical display including the same
KR20140085292A (ko) 투명 도전체 및 이를 포함하는 장치
WO2016108329A1 (ko) 플렉서블 전도성 패브릭 기판 및 그의 제조방법
CN104854197A (zh) 用于透明导电膜的抗腐蚀剂
WO2012128528A2 (ko) 전도성 고분자 전극층을 구비한 투명전극 필름
WO2014017795A1 (ko) 복합시트, 이의 제조 방법, 이를 포함하는 플렉시블 기판 및 이를 포함하는 디스플레이 장치
WO2014061976A1 (ko) 시인성이 개선된 투명 도전성 필름 및 이의 제조방법
WO2015102335A1 (ko) 표면처리를 통한 금속 나노와이어 기반 투명 전도성 막의 패터닝 방법
CN111161906A (zh) 一种低电阻透明导电膜及其制备方法
KR20150024184A (ko) 투명 도전체 및 이를 포함하는 광학표시 장치
TWI794106B (zh) 觸控模組及觸控顯示模組
WO2016186394A1 (ko) 전도성 적층체 및 이를 포함하는 투명 전극
WO2019177319A1 (ko) 매립형 투명 전극 기판 및 이의 제조방법
WO2010151013A2 (ko) 탄소나노튜브 도전막 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859423

Country of ref document: EP

Kind code of ref document: A1