WO2019022063A1 - 電極、蓄電素子、及び電極の製造方法 - Google Patents

電極、蓄電素子、及び電極の製造方法 Download PDF

Info

Publication number
WO2019022063A1
WO2019022063A1 PCT/JP2018/027651 JP2018027651W WO2019022063A1 WO 2019022063 A1 WO2019022063 A1 WO 2019022063A1 JP 2018027651 W JP2018027651 W JP 2018027651W WO 2019022063 A1 WO2019022063 A1 WO 2019022063A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
electrode
intermediate layer
mass
resistance
Prior art date
Application number
PCT/JP2018/027651
Other languages
English (en)
French (fr)
Inventor
勇人 山川
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201880048970.5A priority Critical patent/CN111164801A/zh
Priority to US16/632,999 priority patent/US20200220176A1/en
Priority to EP18837519.0A priority patent/EP3660955A4/en
Priority to JP2019532628A priority patent/JPWO2019022063A1/ja
Publication of WO2019022063A1 publication Critical patent/WO2019022063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode, a storage element, and a method of manufacturing an electrode.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc., due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally has a pair of electrodes consisting of a sheet-like positive electrode and a negative electrode, and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. Configured to charge and discharge.
  • capacitors such as a lithium ion capacitor and an electric double layer capacitor, are also prevailing widely as electrical storage elements other than a nonaqueous electrolyte secondary battery.
  • the electrode usually has a structure in which an active material layer is laminated on the surface of a conductive substrate.
  • an intermediate layer is provided between the base and the active material layer in order to increase the electric resistance (hereinafter, also simply referred to as "resistance") when the temperature of the storage element rises and to make it difficult for current to flow.
  • Electrodes have also been developed. By thus increasing the resistance of the electrode at the time of temperature rise, the current can be reduced and further temperature rise can be suppressed. In addition, this temperature rise does not occur in the normal use form, but may occur in the case where it is used in a form other than the normally expected use form such as unauthorized use.
  • An electrode having the above-mentioned intermediate layer and active material layer is generally produced by sequentially laminating the intermediate layer and the active material layer by coating.
  • elution of the binder in the intermediate layer may occur.
  • the elution amount of the binder in the intermediate layer is large, the variation in the resistance of the obtained electrode and the function of increasing the resistance when the temperature rises are also affected. If the content of the binder in the intermediate layer is reduced, the elution amount decreases, but the resistance increasing function at the temperature rise becomes insufficient.
  • the present invention has been made based on the above circumstances, and an object thereof is an electrode having a sufficient resistance increasing function at the time of temperature rise and in which the variation in resistance is suppressed, and a storage element including this electrode And a method of manufacturing the electrode.
  • One aspect of the present invention made to solve the above problems is a conductive substrate, an intermediate layer laminated on the surface of the substrate and containing a conductive substance and a first binder, and the intermediate layer It has an active material layer laminated on the surface and contains a second binder, and the first binder and the second binder are aqueous binders, or the first binder and the second binder are It is a non-aqueous solvent type binder, and the above-mentioned middle class is an electrode further including an insulating filler.
  • Another embodiment of the present invention is a storage element provided with the above electrode.
  • Another aspect of the present invention is laminating an intermediate layer containing a conductive substance and a first binder on the surface of a conductive substrate, and containing a second binder on the surface of the intermediate layer. And laminating the active material layer, wherein the first binder and the second binder are water-based binders, or the first binder and the second binder are non-aqueous solvent-based binders,
  • middle layer is a manufacturing method of the electrode which further contains an insulating filler.
  • an electrode having a sufficient resistance increasing function at the time of temperature rise and in which the variation in resistance is suppressed a storage element including the electrode, and a method of manufacturing the electrode.
  • FIG. 1 is a schematic cross-sectional view of an electrode according to an embodiment of the present invention.
  • FIG. 2 is an external perspective view showing an embodiment of a storage element according to the present invention.
  • FIG. 3 is a schematic view showing a power storage device configured by collecting a plurality of power storage elements according to the present invention.
  • An electrode according to an embodiment of the present invention is a conductive substrate, an intermediate layer laminated on the surface of the substrate, an intermediate layer containing a conductive material and a first binder, and a surface of the intermediate layer, It has an active material layer containing a second binder, and the first binder and the second binder are aqueous binders, or the first binder and the second binder are non-aqueous solvent-based binders And the intermediate layer is an electrode further including an insulating filler.
  • the electrode has a sufficient resistance increasing function at the time of temperature rise, and the variation in resistance is suppressed. That is, the electrode can exhibit a good shutdown function when the temperature rises. Although the reason why the present invention produces such an effect is not clear, the following reason is presumed.
  • the first binder contained in the intermediate layer and the second binder contained in the active material layer are the same system (aqueous or non-aqueous solvent type), when applying the paste for forming the active material layer, Elution of the first binder contained in the intermediate layer is likely to occur in this paste.
  • the first binder contained in the intermediate layer is a water-based binder
  • a paste containing water as a dispersion medium is applied to the surface of the intermediate layer
  • elution of the first binder occurs in water in the paste.
  • the first binder contained in the intermediate layer is a non-aqueous solvent based binder
  • the non-aqueous solvent in the paste Elution of one binder occurs.
  • the content of the first binder in the intermediate layer is reduced, the elution amount decreases, but a sufficient resistance increasing function at the time of temperature rise is not exhibited.
  • the resistance increasing function at the time of temperature rise is considered to be due to the fact that the first binder is expanded by heating and thereby the contact point between the conductive substances is reduced. Therefore, by adding an insulating filler to the intermediate layer in addition to the conductive material and the first binder, the elution amount of the first binder can be increased while maintaining a sufficient resistance increasing function when the temperature rises. It is possible to suppress the variation in resistance.
  • the elution amount of the first binder can be suppressed by containing the insulating filler.
  • the conductive material it is speculated that the first binder may be filled in the voids formed by the insulating filler, and the first binder may be present in a state in which it is difficult to elute.
  • the presence of the insulating filler contributes to the reduction of the contact points between the conductive materials together with the volume expansion of the first binder, so it is presumed that a good resistance increasing function is exhibited.
  • the "aqueous binder” refers to a binder that is soluble in water.
  • the water-based binder uses water as a solvent or dispersion medium.
  • the "non-aqueous solvent-based binder” refers to a binder soluble in solvents other than water.
  • non-aqueous solvent type binders use solvents (liquids) other than water as a solvent or dispersion medium.
  • a non-aqueous solvent based binder such as a fluorine resin and a water based binder such as carboxymethyl cellulose (CMC) are used in combination
  • CMC carboxymethyl cellulose Classified as aqueous binder.
  • the first binder is preferably a polymer having a structural unit derived from vinylidene fluoride.
  • the volume of the said insulating filler is 20% or more and 95% or less with respect to the sum total volume of the said electroconductive substance and an insulating filler. In this way, the volume ratio between the conductive material and the insulating filler is optimized, and while maintaining sufficient conductivity in the normal state, the function of increasing the resistance at the time of temperature rise is further enhanced, and the variation in resistance is realized. Can be further suppressed.
  • middle layer is 5 mass% or more and 60 mass% or less.
  • middle layer is 15 to 80 mass%.
  • middle layer is 10 mass% or more and 50 mass% or less.
  • the content of the conductive substance is 30% by mass to 40% by mass
  • the content of the insulating filler is 20% by mass to 30% by mass
  • the content of the first binder is And 30% by mass or more and 50% by mass or less.
  • the electrode is preferably a positive electrode.
  • the effect of the present invention is more prominently exhibited, such as a function of increasing resistance at the time of temperature rise more sufficiently.
  • a storage element according to an embodiment of the present invention is a storage element provided with the electrode.
  • the electrode of the storage element has a sufficient resistance increasing function at the time of temperature rise, and the variation in resistance is suppressed. Therefore, the storage element exhibits a good shutdown function at the time of temperature rise, and has high homogeneity.
  • an intermediate layer containing a conductive substance and a first binder is laminated on the surface of a conductive substrate, and on the surface of the intermediate layer, Comprising laminating an active material layer containing the binder of 2, the first binder and the second binder being a water-based binder, or the first binder and the second binder being a non-aqueous solvent
  • the above-mentioned middle class is a manufacturing method of an electrode further including an insulating filler.
  • the manufacturing method it is possible to manufacture an electrode having a sufficient resistance increasing function at the time of temperature rise and in which the variation in resistance is suppressed.
  • the electrode 10 of FIG. 1 has a base 11, an intermediate layer 12 and an active material layer 13.
  • the substrate 11 has conductivity.
  • “having conductivity” means that the volume resistivity measured in accordance with JIS-H-0505 (1975) is 10 7 ⁇ ⁇ cm or less.
  • the base material 11 has a sheet-like shape.
  • the said electrode 10 is a positive electrode
  • metals such as aluminum, titanium, a tantalum, or those alloys are used as a material of the base material 11 (positive electrode base material).
  • aluminum and aluminum alloys are preferable in terms of the balance of potential resistance, conductivity height and cost. That is, an aluminum foil is preferable as the positive electrode substrate.
  • aluminum or an aluminum alloy A1085P, A3003P, etc. defined in JIS-H-4000 (2014) can be exemplified.
  • metals such as copper, nickel, stainless steel, nickel plating steel, or those alloys are used as a material of the base material 11 (negative electrode base material), Copper or a copper alloy is used. preferable. That is, copper foil is preferable as the negative electrode substrate.
  • a rolled copper foil, an electrolytic copper foil, etc. are illustrated.
  • the average thickness of the substrate 11 can be, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • the "average thickness” refers to the average value of the thickness measured using a digital micrometer M-30 manufactured by Sony at any ten points. The same applies to the case where the “average thickness” is referred to below for other members and the like.
  • the intermediate layer 12 is laminated on the surface of the base 11 leaving an end. That is, the end of the surface of the substrate 11 is exposed.
  • the intermediate layer may be laminated on both sides (front and back) of the substrate.
  • the middle layer 12 contains a conductive substance, an insulating filler and a first binder.
  • the intermediate layer 12 contains the insulating filler, the elution of the first binder is reduced, and as a result, the variation in resistance is suppressed.
  • a known conductive agent is used as the conductive material.
  • the conductive substance include carbon materials, metals, conductive ceramics and the like, and carbon materials are preferable.
  • the carbon material include carbon black such as natural or man-made graphite, furnace black, acetylene black and ketjen black. Among these, acetylene black is preferable.
  • the shape of the conductive material is usually particulate. By being in the form of particles, when the first binder and the like expand when the temperature rises, the conductive material particles are easily separated and an increase in resistance can be effectively generated.
  • the median diameter (D50) of the conductive material can be, for example, 1 nm or more and 20 ⁇ m or less. By using a conductive substance of such a size, resistance can be largely increased at the time of temperature rise, while securing sufficient flow linearity at normal times.
  • the "median diameter” means a value (D50) which makes 50% of the volume-based integrated distribution calculated according to JIS-Z-8819-2 (2001).
  • the median diameter (D50) can be a measured value by the following method. Measurement is carried out using a laser diffraction type particle size distribution measuring apparatus ("SALD-2200" manufactured by Shimadzu Corporation) as a measuring apparatus, and WingSALD-2200 as measuring control software.
  • a scattering type measurement mode is adopted, and a wet cell in which a dispersion in which particles of a measurement target are dispersed in a dispersion solvent circulates is irradiated with laser light to obtain a scattered light distribution from the measurement sample. Then, the scattered light distribution is approximated by a logarithmic normal distribution, and a particle diameter corresponding to a cumulative degree of 50% (D50) is taken as a median diameter.
  • the median diameter based on the above measurement is approximately the number average particle diameter obtained by extracting and measuring 100 particles from a scanning electron microscope (SEM) image of the intermediate layer while avoiding extremely large particles and extremely small particles. It has been confirmed that they match.
  • SEM scanning electron microscope
  • the lower limit of the content of the conductive material in the intermediate layer 12 is preferably 5% by mass, more preferably 8% by mass, still more preferably 15% by mass, and still more preferably 30% by mass.
  • the insulating filler may be either an inorganic filler or an organic filler, but an inorganic filler is preferred. By using an inorganic filler, heat resistance can be enhanced.
  • inorganic oxides such as silica, alumina, titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide, inorganic nitrides such as silicon nitride, titanium nitride and boron nitride, and the like, Silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, boehmite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos, aluminosilicate, Calcium silicate, magnesium silicate, diatomaceous earth, silica sand, glass and the like can be mentioned.
  • inorganic oxides are preferable, and alumina is more preferable.
  • organic substance forming the organic filler examples include polyolefins such as polyethylene and polypropylene, polyester, acrylic resin, polyene vinylidene, polycarbonate, polyamide, phenol resin, melamine resin, urea resin and the like, and the second binder Those which are insoluble in dispersible or soluble solvents are preferred.
  • the lower limit of the median diameter (D50) of the insulating filler is preferably 0.001 ⁇ m, more preferably 0.005 ⁇ m, and still more preferably 0.01 ⁇ m.
  • the upper limit of the median diameter is preferably 5 ⁇ m, more preferably 1 ⁇ m, still more preferably 0.5 ⁇ m, still more preferably 0.1 ⁇ m, and particularly preferably 0.03 ⁇ m.
  • the bulk density of the said insulating filler 0.01 g / cm ⁇ 3 > is preferable and 0.03 g / cm ⁇ 3 > is more preferable.
  • 1 g / cm 3 is preferable, 0.5 g / cm 3 is more preferable, 0.2 g / cm 3 is more preferable, and 0.1 g / cm 3 is still more preferable.
  • the insulating filler in middle class 12 As a minimum of content of the insulating filler in middle class 12, 15 mass% is preferred and 20 mass% is more preferred. By making content of an insulating filler more than the said minimum, elution of a 1st binder can be suppressed more and dispersion
  • the lower limit of the volume of the insulating filler relative to the total volume of the conductive material and the insulating filler is preferably 20%, more preferably 30%, and still more preferably 35%.
  • the upper limit of the volume of the insulating filler relative to the total volume of the conductive substance and the insulating filler is preferably 95%, more preferably 90%, still more preferably 85%, still more preferably 50%. % Is particularly preferred.
  • the first binder a binder that can fix insulating particles and is electrochemically stable in the use range is usually used.
  • the first binder may be a water-based binder or a non-aqueous solvent-based binder.
  • the aqueous binder is not particularly limited as long as it is a polymer soluble or dispersible in water.
  • the water-soluble polymer include polymers containing a structural unit having a polar group such as a carboxy group or a hydroxyl group.
  • polymers dispersible in water include rubbers and elastomers.
  • the polymer dispersible in water also includes a polymer dispersible in water by an emulsifying agent.
  • Specific water-based binders include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyacrylic acid, polymethacrylic acid, styrene butadiene rubber (SBR), ethylene-propylene-diene rubber (EPDM), a mixture of a fluororubber, a polysaccharide polymer, a fluororesin such as polyvinylidene fluoride (PVDF) and a thickener containing an aqueous paste such as carboxymethylcellulose (CMC), and the like can be mentioned.
  • SBR styrene butadiene rubber
  • EPDM ethylene-propylene-diene rubber
  • a fluororubber a polysaccharide polymer
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • the non-aqueous solvent-based binder is not particularly limited as long as it is a polymer soluble or dispersible in the non-aqueous solvent.
  • the non-aqueous solvent include aprotic polar solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DMA) dimethylsulfoxide (DMSO).
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMA dimethylacetamide
  • Specific examples of the non-aqueous solvent-based binder include fluorine resin, polyolefin (polyethylene, polypropylene, etc.), polyimide and the like.
  • a fluorine resin is preferable from the viewpoint of heat resistance and the like.
  • the fluorine resin is a resin containing a fluorine atom, and is usually a resin having a structural unit containing a fluorine atom.
  • Examples of the fluorine resin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and perfluoroalkoxy fluorine resin (PFA).
  • a polymer (PVDF) having a structural unit (—CH 2 CF 2 —) derived from vinylidene fluoride is more preferable from the viewpoint of heat resistance and the like.
  • the polymer having a structural unit derived from vinylidene fluoride may be a homopolymer of vinylidene fluoride or may be a copolymer of vinylidene fluoride and another monomer.
  • the lower limit of the content ratio of the structural unit derived from vinylidene fluoride to the total structural units of the polymer having a structural unit derived from vinylidene fluoride is preferably 50 mol%, and may be 70 mol%, 90 mol% It may be 99 mol%.
  • the resistance increase function at the time of temperature rise can be heightened more.
  • 50 mass% is preferable as an upper limit of this content.
  • the content of the conductive substance is 30% by mass to 40% by mass
  • the content of the insulating filler is 20% by mass to 30% by mass
  • the content of the first binder is And 30% by mass or more and 50% by mass or less.
  • the intermediate layer 12 may contain components other than the conductive material, the insulating filler and the first binder.
  • a thickener, a dispersing agent etc. can be mentioned, for example.
  • the upper limit of the content of the conductive material, the insulating filler, and the other components other than the first binder in the intermediate layer 12 is preferably 20% by mass, more preferably 10% by mass, and still more preferably 5% by mass. 1% by weight is particularly preferred. By setting the content of the other components to the above upper limit or less, the effects of the present invention are more sufficiently exhibited.
  • the lower limit of the average thickness of the intermediate layer 12 is, for example, preferably 0.1 ⁇ m, more preferably 1 ⁇ m, and still more preferably 3 ⁇ m.
  • the upper limit of the average thickness is, for example, preferably 20 ⁇ m, and more preferably 10 ⁇ m.
  • the lower limit of the mass per unit area of the intermediate layer 12 for example, preferably 0.1 g / m 2, more preferably 1g / m 2, 3g / m 2 is more preferred.
  • the upper limit of the mass per unit area for example, preferably from 20g / m 2, 10g / m 2 is more preferable.
  • the active material layer 13 is laminated on the surface of the intermediate layer 12.
  • the active material layer 13 may be laminated so as to completely cover the intermediate layer 12 or may be laminated so that a part of the intermediate layer 12 is exposed.
  • the active material layer 13 contains an active material and a second binder.
  • the active material layer 13 may contain, as necessary, optional components such as a conductive material, a thickener, and an insulating filler.
  • Li x MO y (M is at least one transition metal represents a) a composite oxide represented by (alpha-NaFeO 2 layered Co x 2 , Li x NiO 2 , Li x MnO 3 , Li x Ni ⁇ Co (1- ⁇ ) O 2 , Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2 , Li 1 + w Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ -w) O 2 etc., Li x Mn 2 O 4 having a spinel type crystal structure, Li x Ni ⁇ Mn (2- ⁇ ) O 4 etc), Li w Me x (AO y) z ( Me represents at least one transition metal, a is for example P, Si, B, represents the V or the like) polyanionic compound represented by (LiFePO 4, LiMnPO 4, LiNiPO 4, LiCoPO , Li 3 V 2 (PO 4 ) 3, Li 2
  • Examples of the active material (negative electrode active material) in the case where the electrode 10 is a negative electrode include metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide and Sn oxide; Acid compounds; carbon materials such as graphite (graphite), non-graphitic carbon (graphitizable carbon or non-graphitizable carbon), etc. may be mentioned.
  • the second binder contained in the active material layer 13 can be the same as the first binder contained in the intermediate layer 12 described above. However, when the first binder is a water-based binder, the second binder is also a water-based binder. When the first binder is a non-aqueous solvent binder, the second binder is also a non-aqueous solvent binder. Note that the resin type of the first binder and the resin type of the second binder do not have to completely match. That is, for example, when the first binder is PVDF, which is a non-aqueous solvent-based binder, the second binder may be PVDF, or may be a non-aqueous solvent-based binder other than PVDF.
  • both the first binder and the second binder be non-aqueous solvent type binders, more preferably both be fluorine resins, and both be polymers having structural units derived from vinylidene fluoride. preferable.
  • a resin is used, the heat resistance and the like of the electrode 10 are enhanced.
  • the same kind of resin is used in the first binder and the second binder, a phenomenon in which the first binder is eluted in the intermediate layer 12 is likely to occur when the active material layer 13 is formed by coating. Therefore, when the same binder is used for the first binder and the second binder, the advantages of the present invention can be more effectively enjoyed.
  • the lower limit of the average thickness of the active material layer 13 is, for example, 5 ⁇ m, and preferably 20 ⁇ m.
  • the upper limit thereof is, for example, 300 ⁇ m, preferably 200 ⁇ m.
  • the said electrode 10 can be employ
  • adopted as a positive electrode the function of the especially favorable resistance increase can be expressed.
  • the said electrode 10 is also employable in both a positive electrode and a negative electrode.
  • the manufacturing method of the said electrode 10 is not specifically limited, For example, it can carry out by the following method. That is, the method of manufacturing the electrode Laminating the intermediate layer 12 on the surface of the substrate 11 (step A), and laminating the active material layer 13 on the surface of the intermediate layer 12 (step B) Equipped with
  • the intermediate layer 12 contains a conductive substance, an insulating filler and a first binder.
  • the active material layer 13 also contains an active material and a second binder.
  • the first binder and the second binder are water-based binders, or the first binder and the second binder are non-aqueous solvent-based binders.
  • the lamination of the intermediate layer in the step A can be performed by coating the intermediate layer forming paste.
  • the intermediate layer forming paste contains a conductive material, an insulating filler, a first binder, and a dispersion medium.
  • the first binder is an aqueous binder
  • the dispersion medium is water.
  • an organic solvent may be further contained as long as the solubility and the like of the first binder are not affected.
  • the first binder is a non-aqueous solvent-based binder
  • the dispersion medium is an organic solvent.
  • water may be further contained as long as the solubility and the like of the first binder are not affected.
  • organic solvent examples include aprotic polar solvents such as NMP, DMF, DMA and DMSO, protic polar solvents such as alcohol, and nonpolar solvents such as hexane and toluene.
  • aprotic polar solvents are preferred, and NMP is more preferred.
  • the application of the intermediate layer forming paste can be carried out by a known method. Usually, after coating, the coating is dried to evaporate the dispersion medium. Thus, the intermediate layer 12 can be obtained.
  • the lamination of the active material layer in step B can be performed by coating of the active material layer-forming paste.
  • the active material layer forming paste contains an active material, a second binder and a dispersion medium.
  • the dispersion medium in the active material layer-forming paste is the same as the dispersion medium in the intermediate layer-forming paste.
  • both the first binder and the second binder are water-based binders
  • the dispersion medium of the intermediate layer forming paste and the dispersion medium of the active material layer forming paste are both water.
  • both the first binder and the second binder are non-aqueous solvent-based binders
  • both the dispersion medium of the intermediate layer forming paste and the dispersion medium of the active material layer forming paste are organic solvents.
  • the dispersion medium of the intermediate layer formation paste and the dispersion medium of the active material layer formation paste may be organic solvents of the same type, for example, both may be NMP.
  • the application of the active material layer-forming paste can be carried out by a known method. Usually, after coating, the coating is dried to evaporate the dispersion medium. Thereby, the active material layer 13 can be obtained. The coating may be pressed in the thickness direction. Thereby, the adhesion of the active material layer can be enhanced.
  • the pressing can be performed using a known device such as, for example, a roll press.
  • An electricity storage element has a positive electrode, a negative electrode and an electrolyte.
  • a non-aqueous electrolyte secondary battery will be described as an example of the storage element.
  • the positive electrode and the negative electrode usually form an electrode body alternately stacked or wound via a separator.
  • the electrode body is housed in a case, and the case is filled with a non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed at least between the positive electrode and the negative electrode.
  • the well-known aluminum case normally used as a case of a secondary battery, resin case, etc. can be used.
  • the electrode 10 of FIG. 1 described above is employed for at least one of the positive electrode and the negative electrode provided in the storage element. Both the positive and negative electrodes may be the electrode 10 of FIG.
  • known electrodes can be adopted.
  • known electrodes include: (1) an electrode in which an active material layer is laminated on the surface of a conductive substrate without an intermediate layer, (2) an electrode having an intermediate layer not containing an insulating filler, (3 ) An electrode in which an active material layer containing a non-aqueous solvent binder is laminated on the surface of an intermediate layer containing an aqueous binder, (4) an active material layer containing an aqueous binder on the surface of an intermediate layer containing a non-aqueous solvent binder And the like.
  • a woven fabric, a nonwoven fabric, a porous resin film etc. are used, for example.
  • a porous resin film is preferable from the viewpoint of strength
  • a nonwoven fabric is preferable from the viewpoint of liquid retention of the non-aqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength
  • polyimide and aramid are preferable from the viewpoint of resistance to oxidative degradation.
  • these resins may be composited.
  • An inorganic layer may be provided between the separator and the electrode (usually, the positive electrode).
  • This inorganic layer is a porous layer also called a heat-resistant layer or the like.
  • the separator in which the inorganic layer was formed in one side of a porous resin film can also be used.
  • the inorganic layer is usually composed of inorganic particles and a binder, and may contain other components.
  • Non-aqueous electrolyte As said non-aqueous electrolyte, the well-known non-aqueous electrolyte generally used to a general non-aqueous electrolyte secondary battery can be used.
  • the non-aqueous electrolyte comprises a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvent As said non-aqueous solvent, the well-known non-aqueous solvent generally used as a non-aqueous solvent of general non-aqueous electrolyte for secondary batteries can be used.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, esters, ethers, amides, sulfones, lactones and nitriles. Among these, it is preferable to use at least cyclic carbonate or linear carbonate, and it is more preferable to use cyclic carbonate and linear carbonate in combination.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), difluoroethylene Carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like can be mentioned.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate and the like.
  • Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like, but lithium salt is preferable.
  • Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiPF 2 (C 2 O 4 ) 2 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN ( SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, LiC (SO 2 C 2 F 5 )
  • a lithium salt having a fluorinated hydrocarbon group such as 3 may be mentioned.
  • non-aqueous electrolyte a normal temperature molten salt, an ionic liquid, a polymer solid electrolyte, or the like can be used.
  • the storage element can be manufactured by a known method.
  • the method of manufacturing the storage element includes alternately stacking a positive electrode, a step of manufacturing a negative electrode, a step of preparing a non-aqueous electrolyte, and stacking or winding the positive electrode and the negative electrode through a separator.
  • the method includes a step of forming an electrode body, a step of housing a positive electrode and a negative electrode (electrode body) in a battery container, and a step of injecting the non-aqueous electrolyte (electrolyte solution) into the battery container. After injection, the storage port can be obtained by sealing the injection port. At least one of the positive electrode and the negative electrode can be produced by the method described above as "the method for producing an electrode”.
  • the present invention is not limited to the above embodiment, and can be implemented in various modifications and improvements in addition to the above embodiment.
  • the storage element is mainly described as a non-aqueous electrolyte secondary battery, but it may be another storage element.
  • capacitors electric double layer capacitors, lithium ion capacitors
  • storage elements using an aqueous solution as an electrolyte, and the like can be given.
  • FIG. 2 is a schematic view of a rectangular storage element 20 (nonaqueous electrolyte secondary battery) which is an embodiment of the storage element according to the present invention.
  • the same figure is a view seen through the inside of the container.
  • the electrode body 21 is housed in a battery case 22 (case).
  • the electrode body 21 is formed by winding a positive electrode and a negative electrode via a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 23 through the positive electrode lead 23 ′
  • the negative electrode is electrically connected to the negative electrode terminal 24 through the negative electrode lead 24 ′.
  • the electrode 10 of FIG. 1 described above is employed as at least one of the positive electrode and the negative electrode.
  • a non-aqueous electrolyte is injected into the battery case 22.
  • the configuration of the storage element according to the present invention is not particularly limited, and a cylindrical battery, a rectangular battery (rectangular battery), a flat battery and the like can be mentioned as an example.
  • the present invention can also be realized as a power storage device provided with a plurality of the above power storage elements.
  • a power storage device is shown in FIG. In FIG. 3, power storage device 30 includes a plurality of power storage units 25. Each storage unit 25 includes a plurality of storage elements 20.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • Example 1 Acetylene black (AB) as a conductive substance, alumina as an insulating filler, and PVDF as a first binder are mixed at a mass ratio of 31.3: 20.8: 47.9.
  • the intermediate layer forming paste was prepared.
  • NMP was used as a dispersion medium.
  • the bulk density of alumina used was 0.05 g / cm 3 and the median diameter was 0.013 ⁇ m.
  • the volume ratio of the mixed AB to alumina was 60:40.
  • Positive electrode active material lithium nickel manganese cobalt complex oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 )
  • conductive agent acetylene black
  • binder PVDF
  • the intermediate layer-forming paste was applied onto the surface of an aluminum foil as a substrate, and dried to form an intermediate layer.
  • the active material layer-forming paste was applied to the surface of the intermediate layer and dried to form an active material layer.
  • the electrode of Example 1 was obtained.
  • middle layer formation was 4.5 g / m ⁇ 2 >, and the average thickness of the obtained intermediate
  • Examples 2 to 6, Comparative Examples 1 to 2 Composition of middle layer forming paste (mass ratio of AB, alumina and PVDF), bulk density and median diameter of alumina used, coating amount of middle layer forming paste (mass per unit area of middle layer), and middle layer
  • the electrodes of Examples 2 to 6 and Comparative Examples 1 to 2 were obtained in the same manner as in Example 1 except that the average thickness of Table 1 also shows the volume ratio of mixed AB and alumina, and the content of PVDF per unit volume of the intermediate layer.
  • Tomel manufactured by Nippon Tomcel Co., Ltd.
  • the tom cell is composed of a lower lid, an electrode plate, a separator, an electrode plate, a disk, a plate spring and an upper lid.
  • the separators previously immersed in the non-aqueous electrolyte were sandwiched between the two positive electrodes, and these were placed inside the packing present on the stainless steel lower lid.
  • the active material layers of the respective positive electrodes were made to face each other.
  • a stainless steel disk and a plate spring were placed, and finally, a stainless steel upper lid was placed thereon, and then it was tightened and fixed with a nut.
  • the clamping pressure at this time was 0.5 Nm.
  • Non-aqueous electrolytes and separators used are as follows.
  • (Non-aqueous electrolyte) In a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) mixed at a volume ratio of 30:35:35, lithium hexafluorophosphate (LiPF 6 ) is 1.0 mol / mol.
  • the solution was dissolved at a concentration of 1 to prepare a non-aqueous electrolyte.
  • the amount of water in the non-aqueous electrolyte was less than 50 ppm.
  • a 30 ⁇ m-thick polyethylene microporous membrane with an air permeability of about 600 seconds / 100 cc and processed into a circular shape having a diameter of 1.6 cm was used.
  • the measurement cell was placed in a thermostat, and while raising the temperature of the thermostat at 3 ° C./min, the AC resistance at 1 kHz (amplitude 5 mV) was measured. Cell temperature recorded the temperature obtained by the terminal for temperature measurement installed in the upper surface of the cell.
  • the alternating current resistance measurement used the apparatus which combined Model 1287 potentio / galvanostat made from Solartron, and type 1260 frequency response analyzer. Based on the measured resistance value at 120 ° C.
  • the present invention can be applied to an electronic device such as a personal computer and a communication terminal, a storage element used as a power source for a car and the like, an electrode for a storage element provided in the storage element, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明の一態様は、導電性の基材、上記基材の表面に積層され、導電性物質と第1のバインダーとを含む中間層、及び上記中間層の表面に積層され、第2のバインダーを含む活物質層を有し、上記第1のバインダー及び上記第2のバインダーが水系バインダーであるか、又は、上記第1のバインダー及び上記第2のバインダーが非水溶剤系バインダーであり、上記中間層が、絶縁性フィラーをさらに含む電極である。

Description

電極、蓄電素子、及び電極の製造方法
 本発明は、電極、蓄電素子、及び電極の製造方法に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、シート状の正極及び負極からなる一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 上記電極は、通常、導電性の基材の表面に活物質層が積層された構造を有する。また、蓄電素子の温度上昇時に電気抵抗(以下、単に「抵抗」ということもある。)を高くして電流を流れにくくするために、基材と活物質層との間に中間層を設けた電極も開発されている。このように温度上昇時に電極の抵抗が増加することにより、電流を低減し、更なる温度上昇などを抑制することができる。なお、この温度上昇は、通常の使用形態においては生じるものではなく、不正使用等、通常予見される使用形態以外の形態で使用される場合などに生じる可能性があるものである。
 このようなシャットダウン機能に係る技術としては、中間層として、導電材とポリフッ化ビニリデンとを含む層を有する電極を備える非水二次電池が提案されている(特許文献1参照)。
特開2015-038876号公報
 上記のような中間層及び活物質層を有する電極は、一般的に、中間層及び活物質層を塗工により順次積層することにより作製される。しかし、中間層の表面に塗工により活物質層を形成する際に、中間層のバインダーの溶出が生じることがある。中間層のバインダーの溶出量が多いと、得られる電極の抵抗のばらつきや、温度上昇時の抵抗増加機能にも影響を与える。中間層におけるバインダーの含有量を少なくすると溶出量は減少するが、温度上昇時の抵抗増加機能が不十分になる。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、温度上昇時の十分な抵抗増加機能を備え、かつ抵抗のばらつきが抑制された電極、この電極を備える蓄電素子、及びこの電極の製造方法を提供することである。
 上記課題を解決するためになされた本発明の一態様は、導電性の基材、上記基材の表面に積層され、導電性物質と第1のバインダーとを含む中間層、及び上記中間層の表面に積層され、第2のバインダーを含む活物質層を有し、上記第1のバインダー及び上記第2のバインダーが水系バインダーであるか、又は、上記第1のバインダー及び上記第2のバインダーが非水溶剤系バインダーであり、上記中間層が、絶縁性フィラーをさらに含む電極である。
 本発明の他の一態様は、上記電極を備える蓄電素子である。
 本発明の他の一態様は、導電性の基材の表面に、導電性物質と第1のバインダーとを含む中間層を積層すること、及び上記中間層の表面に、第2のバインダーを含む活物質層を積層することを備え、上記第1のバインダー及び上記第2のバインダーが水系バインダーであるか、又は、上記第1のバインダー及び上記第2のバインダーが非水溶剤系バインダーであり、上記中間層が、絶縁性フィラーをさらに含む電極の製造方法である。
 本発明によれば、温度上昇時の十分な抵抗増加機能を備え、かつ抵抗のばらつきが抑制された電極、この電極を備える蓄電素子、及びこの電極の製造方法を提供することができる。
図1は、本発明の一実施形態に係る電極の模式的断面図である。 図2は、本発明に係る蓄電素子の一実施形態を示す外観斜視図である。 図3は、本発明に係る蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。
 本発明の一実施形態に係る電極は、導電性の基材、上記基材の表面に積層され、導電性物質と第1のバインダーとを含む中間層、及び上記中間層の表面に積層され、第2のバインダーを含む活物質層を有し、上記第1のバインダー及び上記第2のバインダーが水系バインダーであるか、又は、上記第1のバインダー及び上記第2のバインダーが非水溶剤系バインダーであり、上記中間層が、絶縁性フィラーをさらに含む電極である。
 当該電極は、温度上昇時の十分な抵抗増加機能を備え、かつ抵抗のばらつきが抑制されている。すなわち、当該電極は、温度上昇時に良好なシャットダウン機能を発現することができる。本発明がこのような効果を奏する理由は定かではないが、以下の理由が推測される。中間層に含まれる第1のバインダーと活物質層に含まれる第2のバインダーとが同系(水系又は非水溶剤系)である場合、活物質層を形成するためのペーストを塗布する際に、このペースト中への、中間層に含まれる第1のバインダーの溶出が生じやすい。例えば、中間層に含まれる第1のバインダーが水系バインダーである場合、この中間層の表面に水を分散媒とするペーストを塗布すると、このペースト中の水に第1のバインダーの溶出が生じる。同様に、中間層に含まれる第1のバインダーが非水溶剤系バインダーである場合、この中間層の表面に非水溶剤を分散媒とするペーストを塗布すると、このペースト中の非水溶剤に第1のバインダーの溶出が生じる。一方、中間層における第1のバインダーの含有量を少なくすると溶出量は少なくなるが、温度上昇時における十分な抵抗増加機能が発揮されない。なお、温度上昇時の抵抗増加機能は、加熱により第1のバインダーが膨張し、これによって導電性物質同士の接点が減少することなどによるとされている。そこで、中間層に、導電性物質と第1のバインダーとに加え、さらに絶縁性フィラーを含有させることにより、温度上昇時の十分な抵抗増加機能を維持しつつ、第1のバインダーの溶出量を抑え、抵抗のばらつきが抑制できる。絶縁性フィラーを含有させることにより第1のバインダーの溶出量が抑えられる理由としては、絶縁性フィラーを含有させることで相対的に第1のバインダーの含有量が減ることに加え、導電性物質や絶縁性フィラーが形成する空隙内に第1のバインダーが充填し、第1のバインダーが溶出しがたい状態で存在できることなどが推測される。また、温度上昇時には第1のバインダーの体積膨張と共に、絶縁性フィラーの存在が導電性物質同士の接点を減らすことに寄与するため、良好な抵抗増加機能が発揮されていると推測される。
 ここで、「水系バインダー」とは、水に可溶なバインダーをいう。通常、水系バインダーは、水を溶媒又は分散媒として用いられる。「非水溶剤系バインダー」とは、水以外の溶媒に可溶なバインダーをいう。通常、非水溶剤系バインダーは、水以外の溶剤(液体)を溶媒又は分散媒として用いられる。ただし、非水溶剤系バインダーであるフッ素樹脂などと、水系バインダーであるカルボキシメチルセルロース(CMC)などを併用するような場合は、一般には、CMCを水に溶解させて増粘剤として使用するため、水系バインダーと分類する。
 上記第1のバインダーが、フッ化ビニリデンに由来する構造単位を有する重合体であることが好ましい。第1のバインダーとしてこのような重合体を用いることで、温度上昇時の抵抗増加機能をより高め、かつ抵抗のばらつきをより抑制することができる。
 上記導電性物質及び絶縁性フィラーの合計体積に対する上記絶縁性フィラーの体積が、20%以上95%以下であることが好ましい。このようにすることで、導電性物質と絶縁性フィラーとの体積比率が好適化され、通常時の十分な導電性を確保しつつ、温度上昇時の抵抗増加機能をより高め、かつ抵抗のばらつきをより抑制することができる。
 上記中間層における上記導電性物質の含有量が、5質量%以上60質量%以下であることが好ましい。導電性物質の含有量を上記範囲とすることで、通常時の十分な導電性を確保しつつ、温度上昇時の抵抗増加機能を高めることができる。
 上記中間層における上記絶縁性フィラーの含有量が、15質量%以上80質量%以下であることが好ましい。絶縁性フィラーの含有量を上記範囲とすることで、通常時の十分な導電性を確保しつつ、温度上昇時の抵抗増加機能をより高め、かつ抵抗のばらつきをより抑制することができる。
 上記中間層における上記第1のバインダーの含有量が、10質量%以上50質量%以下であることが好ましい。第1のバインダーの含有量を上記範囲とすることで、通常時の十分な導電性を確保しつつ、温度上昇時の抵抗増加機能をより高め、かつ抵抗のばらつきをより抑制することができる。
 上記中間層において、上記導電性物質の含有量が、30質量%以上40質量%以下、上記絶縁性フィラーの含有量が、20質量%以上30質量%以下、上記第1のバインダーの含有量が、30質量%以上50質量%以下であることが好ましい。このようにすることで、中間層における3成分の比率が好適化され、通常時の十分な導電性を確保しつつ、温度上昇時の抵抗増加機能をより高め、かつ抵抗のばらつきをより抑制することができる。
 当該電極は正極であることが好ましい。当該電極が正極である場合、温度上昇時の抵抗増加機能がより十分に生じるなど、本発明の効果がより顕著に奏される。
 本発明の一実施形態に係る蓄電素子は、当該電極を備える蓄電素子である。当該蓄電素子が備える電極は、温度上昇時の十分な抵抗増加機能を備え、かつ抵抗のばらつきが抑制されている。従って、当該蓄電素子は、温度上昇時に良好なシャットダウン機能が発現され、また、均質性が高い。
 本発明の一実施形態に係る電極の製造方法は、導電性の基材の表面に、導電性物質と第1のバインダーとを含む中間層を積層すること、及び上記中間層の表面に、第2のバインダーを含む活物質層を積層することを備え、上記第1のバインダー及び上記第2のバインダーが水系バインダーであるか、又は、上記第1のバインダー及び上記第2のバインダーが非水溶剤系バインダーであり、上記中間層が、絶縁性フィラーをさらに含む電極の製造方法である。
 当該製造方法によれば、温度上昇時の十分な抵抗増加機能を備え、かつ抵抗のばらつきが抑制された電極を製造することができる。
 以下、本発明の一実施形態に係る電極及びその製造方法、並びに蓄電素子について詳説する。
<電極>
 図1の電極10は、基材11、中間層12及び活物質層13を有する。
 基材11は導電性を有する。なお、「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味する。また、基材11は、シート状の形状を有する。
 当該電極10が正極である場合、基材11(正極基材)の材質としては、アルミニウム、チタン、タンタル等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。一方、当該電極10が負極である場合、基材11(負極基材)の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
 基材11の平均厚さとしては、例えば5μm以上30μm以下とできる。なお、「平均厚さ」とは、任意の十点においてSony製のデジタルマイクロメータM-30をもちいて測定した厚さの平均値をいう。以下において他の部材等に対して「平均厚さ」という場合にも同様に定義される。
 中間層12は、基材11の表面に、端部を残して積層されている。すなわち、基材11の表面の端部は露出している。なお、中間層は基材の両面(表面及び裏面)に積層されていてもよい。
 中間層12は、導電性物質、絶縁性フィラー及び第1のバインダーを含む。当該電極10においては、中間層12が絶縁性フィラーを含むことにより、第1のバインダーの溶出が低減され、その結果、抵抗のばらつきが抑制されている。
 上記導電性物質としては、公知の導電剤が用いられる。導電性物質としては、炭素材料、金属、導電性セラミックス等を挙げることができ、炭素材料であることが好ましい。炭素材料としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラックを挙げることができる。これらの中でもアセチレンブラックが好ましい。
 上記導電性物質の形状は、通常、粒子状である。粒子状であることで、温度上昇時に第1のバインダー等が膨張する際、導電性物質粒子間が引き離されやすく、抵抗増加が効果的に生じることができる。
 上記導電性物質のメジアン径(D50)としては、例えば1nm以上20μm以下とすることができる。このようなサイズの導電性物質を用いることで、通常時には十分な動線性を確保しつつ、温度上昇時には抵抗が大きく増加することができる。なお、「メジアン径」とは、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値(D50)と意味する。メジアン径(D50)は、具体的には以下の方法による測定値とすることができる。測定装置としてレーザー回折式粒度分布測定装置(島津製作所社の「SALD-2200」)、測定制御ソフトとしてWingSALD-2200を用いて測定する。散乱式の測定モードを採用し、測定対象試料の粒子が分散溶媒中に分散する分散液が循環する湿式セルにレーザー光を照射し、測定試料から散乱光分布を得る。そして、散乱光分布を対数正規分布により近似し、累積度50%(D50)にあたる粒子径をメジアン径とする。なお、上記測定に基づくメジアン径は、中間層の走査電子顕微鏡(SEM)画像から、極端に大きい粒子及び極端に小さい粒子を避けて100個の粒子を抽出して測定する数平均粒子径とほぼ一致することが確認されている。
 中間層12における導電性物質の含有量の下限としては、5質量%が好ましく、8質量%がより好ましく、15質量%がさらに好ましく、30質量%がよりさらに好ましい。導電性物質の含有量を上記下限以上とすることで、通常時における十分な導電性を確保することができ、かつ温度上昇時の抵抗増加機能を高めることができる。一方、この含有量の上限としては、60質量%が好ましく、50質量%がより好ましく、40質量%がさらに好ましい。導電性物質の含有量を上記上限以下とすることで、温度上昇時の抵抗増加機能を高めることができる。
 上記絶縁性フィラーは、無機フィラー及び有機フィラーのいずれであってもよいが、無機フィラーが好ましい。無機フィラーを用いることで、耐熱性を高めることなどができる。
 無機フィラーを形成する無機物としては、シリカ、アルミナ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の無機酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の無機窒化物、その他、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ベーマイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、アルミノシリケート、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂、ガラス等を挙げることができる。これらの中でも、無機酸化物が好ましく、アルミナがより好ましい。
 有機フィラーを形成する有機物としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、アクリル樹脂、ポリエン化ビニリデン、ポリカーボネート、ポリアミド、フェノール樹脂、メラミン樹脂、ユリア樹脂等を挙げることができ、上記第2のバインダーを分散又は溶解可能な溶媒に対して溶けないものが好ましい。
 上記絶縁性フィラーのメジアン径(D50)の下限としては、0.001μmが好ましく、0.005μmがより好ましく、0.01μmがさらに好ましい。一方、このメジアン径の上限としては、5μmが好ましく、1μmがより好ましく、0.5μmがさらに好ましく、0.1μmがよりさらに好ましく、0.03μmが特に好ましい。このような粒径の絶縁性フィラーを用いることで、温度上昇時の抵抗増加機能をより高めることなどができる。
 上記絶縁性フィラーの嵩密度の下限としては、0.01g/cmが好ましく、0.03g/cmがより好ましい。一方、この嵩密度の上限としては、1g/cmが好ましく、0.5g/cmがより好ましく、0.2g/cmがさらに好ましく、0.1g/cmがよりさらに好ましい。このような嵩密度を有する絶縁性フィラーを用いることで、温度上昇時の抵抗増加機能をより高めることなどができる。また、嵩密度が低い絶縁性フィラーは、多孔性が高い。そのため、比較的嵩密度が低い絶縁性フィラーを用いることで、孔内に第1のバインダーが充填されやすくなることなどにより、第1のバインダーの溶出がより低減される。
 中間層12における絶縁性フィラーの含有量の下限としては、15質量%が好ましく、20質量%がより好ましい。絶縁性フィラーの含有量を上記下限以上とすることで、第1のバインダーの溶出をより抑制し、抵抗のばらつきをより抑制することができる。一方、この含有量の上限としては、80質量%が好ましく、50質量%がより好ましく、30質量%がさらに好ましい。絶縁性フィラーの含有量を上記上限以下とすることで、通常時の十分な導電性を確保し、かつ温度上昇時の抵抗増加機能をより高めることができる。
 上記導電性物質及び絶縁性フィラーの合計体積に対する上記絶縁性フィラーの体積の下限としては、20%が好ましく、30%がより好ましく、35%がさらに好ましい。導電性物質と絶縁性フィラーとの合計に対する絶縁性フィラーの体積比率を上記下限以上とすることで、抵抗のばらつきをより抑制することができる。一方、上記導電性物質及び絶縁性フィラーの合計体積に対する上記絶縁性フィラーの体積の上限としては、95%が好ましく、90%がより好ましく、85%がさらに好ましく、70%がよりさらに好ましく、50%が特に好ましい。導電性物質と絶縁性フィラーとの合計に対する絶縁性フィラーの体積比率を上記上限以下とすることで、通常時の十分な導電性を確保しつつ、温度上昇時の抵抗増加機能をより高めることができる。
 上記第1のバインダーとしては、上記バインダーは、絶縁性粒子を固定でき、かつ使用範囲で電気化学的に安定であるものが、通常用いられる。上記第1のバインダーは、水系バインダーであってもよく、非水溶剤系バインダーであってもよい。
 水系バインダーとしては、水に可溶又は分散可能な重合体である限り特に限定されない。水に可溶な重合体としては、カルボキシ基、水酸基等の極性基を有する構造単位を含む重合体を挙げることができる。水に分散可能な重合体としては、ゴムやエラストマーを挙げることができる。なお、水に分散可能な重合体には、乳化剤により水に分散可能となる重合体も含まれる。具体的な水系バインダーとしては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)、エチレン-プロピレン-ジエンゴム(EPDM)、フッ素ゴム、多糖類高分子、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂とカルボキシメチルセルロース(CMC)等の水系ペーストを含む増粘剤との混合物等を挙げることができる。
 非水溶剤系バインダーとしては、非水溶剤に可溶又は分散可能な重合体である限り特に限定されない。なお、この非水溶剤としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒が挙げられる。具体的な非水溶剤系バインダーとしては、フッ素樹脂、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリイミド等を挙げることができる。
 上記非水溶剤系バインダーとしては、耐熱性等の観点から、フッ素樹脂が好ましい。上記フッ素樹脂は、フッ素原子を含む樹脂をいい、通常、フッ素原子を含む構造単位を有する樹脂である。上記フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)等を挙げることができる。
 フッ素樹脂としては、フッ化ビニリデンに由来する構造単位(-CHCF-)を有する重合体(PVDF)が、耐熱性等の観点からより好ましい。フッ化ビニリデンに由来する構造単位を有する重合体は、フッ化ビニリデンの単重合体であってもよいし、フッ化ビニリデンと他のモノマーとの共重合体であってもよい。フッ化ビニリデンに由来する構造単位を有する重合体の全構造単位に占めるフッ化ビニリデンに由来する構造単位の含有割合の下限は、50モル%が好ましく、70モル%であってよく、90モル%であってもよく、99モル%であってもよい。
 中間層12における第1のバインダーの含有量の下限としては、10質量%が好ましく、20質量%がより好ましく、30質量%がさらに好ましい。第1のバインダーの含有量を上記下限以上とすることで、温度上昇時の抵抗増加機能をより高めることができる。一方、この含有量の上限としては、50質量%が好ましい。第1のバインダーの含有量を上記上限以下とすることで、通常時の十分な導電性を確保し、かつ抵抗のばらつきをより抑制することができる。
 中間層12において、上記導電性物質の含有量が、30質量%以上40質量%以下、上記絶縁性フィラーの含有量が、20質量%以上30質量%以下、上記第1のバインダーの含有量が、30質量%以上50質量%以下であることが好ましい。このようにすることで、中間層12における3成分の比率が好適化され、通常時の十分な導電性を確保しつつ、温度上昇時の抵抗増加機能をより高め、かつ抵抗のばらつきをより抑制することができる。
 中間層12は、導電性物質、絶縁性フィラー及び第1のバインダー以外の他の成分を含有していてもよい。このような他の成分としては、例えば増粘剤、分散剤等を挙げることができる。但し、中間層12における導電性物質、絶縁性フィラー及び第1のバインダー以外の他の成分の含有量の上限は、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましく、1質量%が特に好ましい。他の成分の含有量を上記上限以下とすることで、本発明の効果がより十分に奏される。
 中間層12の平均厚さの下限としては、例えば0.1μmが好ましく、1μmがより好ましく、3μmがさらに好ましい。中間層12の平均厚さを上記下限以上とすることで、温度上昇時の抵抗増加機能を高めることができる。一方、この平均厚さの上限としては、例えば20μmが好ましく、10μmがより好ましい。中間層12の平均厚さを上記上限以下とすることで、通常時の十分な導電性を確保することなどができる。
 中間層12の単位面積あたりの質量の下限としては、例えば0.1g/mが好ましく、1g/mがより好ましく、3g/mがさらに好ましい。中間層12の単位面積あたりの質量を上記下限以上とすることで、温度上昇時の抵抗増加機能を高めることができる。一方、この単位面積あたりの質量の上限としては、例えば20g/mが好ましく、10g/mがより好ましい。中間層12の単位面積あたりの質量を上記上限以下とすることで、通常時の十分な導電性を確保することなどができる。
 活物質層13は、中間層12の表面に積層されている。活物質層13は、中間層12を完全に覆うように積層されていてもよいし、中間層12の一部が露出するように積層されていてもよい。活物質層13は、活物質及び第2のバインダーを含む。活物質層13は、必要に応じて、導電性物質、増粘剤、絶縁性フィラー等の任意成分を含んでいてもよい。
 当該電極10が正極である場合の上記活物質(正極活物質)としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα―NaFeO型結晶構造を有するLiCoO,LiNiO,LiMnO,LiNiαCo(1-α),LiNiαMnβCo(1-α-β),Li1+wNiαMnβCo(1-α-β-w)等、スピネル型結晶構造を有するLiMn,LiNiαMn(2-α)等)、LiMe(AO(Meは少なくとも一種の遷移金属を表し、Aは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO,LiMnPO,LiNiPO,LiCoPO,Li(PO,LiMnSiO,LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。電極合材層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 当該電極10が負極である場合の上記活物質(負極活物質)としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。
 活物質層13に含まれる第2のバインダーは、上述した中間層12に含まれる第1のバインダーと同様のものを挙げることができる。但し、第1のバインダーが水系バインダーである場合、第2のバインダーも水系バインダーである。また、第1のバインダーが非水溶剤系バインダーである場合、第2のバインダーも非水溶剤系バインダーである。なお、第1のバインダーの樹脂種と第2のバインダーの樹脂種とが完全に一致しなくてもよい。すなわち、例えば第1のバインダーが非水溶剤系バインダーであるPVDFである場合、第2のバインダーはPVDFであってもよく、PVDF以外の非水溶剤系バインダーであってもよい。
 第1のバインダー及び第2のバインダーは共に非水溶剤系バインダーであることが好ましく、共にフッ素樹脂であることがより好ましく、共にフッ化ビニリデンに由来する構造単位を有する重合体であることがさらに好ましい。このような樹脂を用いる場合、電極10の耐熱性等が高まる。一方、第1のバインダー及び第2のバインダーにおいて同種の樹脂を用いると、活物質層13を塗工により形成する際、中間層12中に第1のバインダーが溶出するという現象が生じやすくなる。従って、第1のバインダーと第2のバインダーとで同種のバインダーを用いる場合、本発明の利点がより効果的に享受できる。
 活物質層13の平均厚さの下限としては、例えば5μmであり、20μmが好ましい。一方、この上限としては、例えば300μmであり、200μmが好ましい。
 当該電極10は、正極及び負極のいずれにも採用することができるが、正極として用いることが好ましい。当該電極10を正極に採用した場合、特に良好な抵抗増加の機能を発現させることなどができる。なお、正極及び負極の双方において、当該電極10を採用することもできる。
<電極の製造方法>
 当該電極10の製造方法は特に限定されないが、例えば以下の方法により行うことができる。すなわち、当該電極の製造方法は、
 基材11の表面に中間層12を積層すること(工程A)、及び
 中間層12の表面に活物質層13を積層すること(工程B)
を備える。
 なお、上述のように、中間層12は、導電性物質、絶縁性フィラー及び第1のバインダーを含む。また、活物質層13は、活物質及び第2のバインダーを含む。さらに、第1のバインダー及び第2のバインダーが水系バインダーであるか、又は、第1のバインダー及び第2のバインダーが非水溶剤系バインダーである。
 工程Aにおける中間層の積層は、中間層形成用ペーストの塗工によって行うことができる。この中間層形成用ペーストは、導電性物質、絶縁性フィラー、第1のバインダー及び分散媒を含む。第1のバインダーが水系バインダーである場合、この分散媒は水である。但し、このとき、第1のバインダーの溶解性等に影響を与えない範囲で、有機溶剤がさらに含有されていてもよい。一方、第1のバインダーが非水溶剤系バインダーである場合、この分散媒は有機溶剤である。同様にこのとき、第1のバインダーの溶解性等に影響を与えない範囲で、水がさらに含有されていてもよい。上記有機溶剤としては、NMP、DMF、DMA、DMSO等の非プロトン性極性溶媒、アルコール等のプロトン性極性溶媒、ヘキサン、トルエン等の無極性溶媒などを挙げることができる。これらの中でも、非プロトン性極性溶媒が好ましく、NMPがより好ましい。
 中間層形成用ペーストの塗工は、公知の方法により行うことができる。通常、塗工後、塗膜を乾燥させて、分散媒を揮発させる。これにより、中間層12を得ることができる。
 工程Bにおける活物質層の積層は、活物質層形成用ペーストの塗工によって行うことができる。この活物質層形成用ペーストは、活物質、第2のバインダー及び分散媒を含む。活物質層形成用ペーストにおける分散媒は、中間層形成用ペーストにおける分散媒と同様である。第1のバインダー及び第2のバインダーが共に水系バインダーである場合、中間層形成用ペーストの分散媒及び活物質層形成用ペーストの分散媒は共に水である。第1のバインダー及び第2のバインダーが共に非水溶剤系バインダーである場合、中間層形成用ペーストの分散媒及び活物質層形成用ペーストの分散媒は共に有機溶剤である。中間層形成用ペーストの分散媒及び活物質層形成用ペーストの分散媒は、同種の有機溶剤であってよく、例えば共にNMPであってよい。
 活物質層形成用ペーストの塗工は、公知の方法により行うことができる。通常、塗工後、塗膜を乾燥させて、分散媒を揮発させる。これにより、活物質層13を得ることができる。なお、塗膜を厚さ方向にプレスしてもよい。これにより、活物質層の密着性を高めることなどができる。上記プレスは、例えばロールプレス等、公知の装置を用いて行うことができる。
<蓄電素子>
 本発明の一実施形態に係る蓄電素子は、正極、負極及び電解質を有する。以下、蓄電素子の一例として、非水電解質二次電池について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体はケースに収納され、このケース内に非水電解質が充填される。上記非水電解質は、少なくとも正極と負極との間に介在する。また、上記ケースとしては、二次電池のケースとして通常用いられる公知のアルミニウムケース、樹脂ケース等を用いることができる。
(正極及び負極)
 当該蓄電素子に備わる正極及び負極の少なくとも一方は、上述した図1の電極10が採用される。正極及び負極の双方が、図1の電極10であってもよい。
 正極及び負極のうちの一方において、図1の電極10を採用しない場合、公知の電極を採用することができる。公知の電極としては、(1)例えば導電性の基材の表面に、中間層を介さず活物質層が積層された電極、(2)絶縁性フィラーを含まない中間層を有する電極、(3)水系バインダーを含む中間層の表面に、非水溶剤系バインダーを含む活物質層が積層された電極、(4)非水溶剤系バインダーを含む中間層の表面に、水系バインダーを含む活物質層が積層された電極等を挙げることができる。
(セパレータ)
 上記セパレータの材質としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。上記セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。
 なお、セパレータと電極(通常、正極)との間に、無機層が配設されていても良い。この無機層は、耐熱層等とも呼ばれる多孔質の層である。また、多孔質樹脂フィルムの一方の面に無機層が形成されたセパレータを用いることもできる。上記無機層は、通常、無機粒子及びバインダーとで構成され、その他の成分が含有されていてもよい。
(非水電解質)
 上記非水電解質としては、一般的な非水電解質二次電池に通常用いられる公知の非水電解質が使用できる。上記非水電解質は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 上記非水溶媒としては、一般的な二次電池用非水電解質の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。上記非水溶媒としては、環状カーボネート、鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートを少なくとも用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。
 上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等を挙げることができる。
 上記鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができる。
 電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、リチウム塩が好ましい。上記リチウム塩としては、LiPF、LiPO、LiBF、LiPF(C、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のフッ化炭化水素基を有するリチウム塩などを挙げることができる。
 上記非水電解質には、その他の添加剤が添加されていてもよい。また、上記非水電解質として、常温溶融塩、イオン液体、ポリマー固体電解質などを用いることもできる。
(蓄電素子の製造方法)
 当該蓄電素子は、公知の方法で製造することができる。例えば、当該蓄電素子の製造方法は、正極を作製する工程、負極を作製する工程、非水電解質を調製する工程、正極及び負極をセパレータを介して積層又は巻回することにより交互に重畳された電極体を形成する工程、正極及び負極(電極体)を電池容器に収容する工程、並びに上記電池容器に上記非水電解質(電解液)を注入する工程を備える。注入後、注入口を封止することにより当該蓄電素子を得ることができる。正極及び負極の少なくとも一方は、「電極の製造方法」として上述した方法により作成することができる。
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。上記実施の形態においては、蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の蓄電素子であってもよい。その他の蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)や、水溶液を電解質として用いる蓄電素子等が挙げられる。
 図2に、本発明に係る蓄電素子の一実施形態である矩形状の蓄電素子20(非水電解質二次電池)の概略図を示す。なお、同図は、容器内部を透視した図としている。図2に示す蓄電素子20は、電極体21が電池容器22(ケース)に収納されている。電極体21は、正極と負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード23’を介して正極端子23と電気的に接続され、負極は、負極リード24’を介して負極端子24と電気的に接続されている。この正極及び負極の少なくとも一方として、上述した図1の電極10が採用される。また、電池容器22には、非水電解質が注入されている。
 本発明に係る蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の蓄電素子を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図3に示す。図3において、蓄電装置30は、複数の蓄電ユニット25を備えている。それぞれの蓄電ユニット25は、複数の蓄電素子20を備えている。上記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 導電性物質としてのアセチレンブラック(AB)と、絶縁性フィラーとしてのアルミナと、第1のバインダーとしてのPVDFとを、質量比で31.3:20.8:47.9の割合にて混合し、中間層形成用ペーストを調製した。なお、分散媒としては、NMPを用いた。また、用いたアルミナの嵩密度は0.05g/cm、メジアン径は0.013μmであった。混合したABとアルミナとの体積比は60:40であった。
 正極活物質(リチウムニッケルマンガンコバルト複合酸化物(LiNi1/3Mn1/3Co1/3))、導電剤(アセチレンブラック)及びバインダー(PVDF)を質量比で94:3:3の割合にて混合し、活物質層形成用ペーストを調製した。なお、分散媒としてはNMPを用いた。
 基材としてのアルミニウム箔の表面に、上記中間層形成用ペーストを塗工し、乾燥させることにより中間層を形成した。この中間層の表面に、上記活物質層形成用ペーストを塗工し、乾燥させることにより活物質層を形成した。これにより、実施例1の電極を得た。なお、中間層形成用ペーストの塗工量(中間層の単位面積あたりの質量)は4.5g/m、得られた中間層の平均厚さは4.5μmであった。また、質量比及び塗工量から求められる中間層の単位体積あたりのPVDFの含有量は0.48g/cmであった。
[実施例2~6、比較例1~2]
 中間層形成用ペーストの組成(AB、アルミナ及びPVDFの質量比)、用いたアルミナの嵩密度及びメジアン径、中間層形成用ペーストの塗工量(中間層の単位面積あたりの質量)並びに中間層の平均厚さとしたこと以外は実施例1と同様にして、実施例2~6及び比較例1~2の電極を得た。なお、表1には、混合したABとアルミナとの体積比、及び中間層の単位体積あたりのPVDFの含有量も示す。
[層間抵抗の測定]
 得られた各電極について、厚さ方向に一対の金属治具で挟み、金属治具間の抵抗を測定した。この値を層間抵抗値として表2に示す。
[温度変化による抵抗増加率の測定]
(抵抗測定用セルの作製)
 電極の抵抗測定に、トムセル(有限会社日本トムセル社製)を用いた。このトムセルは、下蓋、電極板、セパレータ、電極板、円盤、板ばね及び上蓋で構成されている。予め非水電解質に浸漬させたセパレータを二枚の正極で挟み、これらをステンレス製の下蓋の上に存在するパッキンの内側に載せた。このとき、各正極の活物質層が向き合うようにした。その後、ステンレス製の円盤と板ばねをのせ、最後にステンレス製の上蓋を載せた後にナットにより締め付けて固定した。このときの締め付け圧は0.5Nmとした。
 使用した非水電解質及びセパレータは、以下の通りである。
(非水電解質)
 エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)を体積比30:35:35の割合で混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を1.0mol/lの濃度で溶解させ、非水電解質を作製した。非水電解質中の水分量は50ppm未満とした。
(セパレータ)
 セパレータには、透気度が約600秒/100ccである厚さ30μmのポリエチレン微多孔膜を直径1.6cmの円形に加工したものを用いた。
(電極抵抗の測定)
 測定用セルを恒温槽中に入れ、恒温槽を3℃/minで昇温させながら、1kHz(振幅5mV)の交流抵抗を測定した。セル温度は、セルの上面に設置した温度測定用端子により得られた温度を記録した。交流抵抗測定は、ソーラトロン社製の1287型ポテンショ/ガルバノスタットと1260型周波数応答アナライザを組み合わせた装置を使用した。測定した120℃時の抵抗値及び測定温度範囲内で最も低い抵抗値(最下点)に基づき、下記式により抵抗増加率(%)を求めた。表2に120℃における抵抗値と抵抗増加率とを示す。
 抵抗増加率(%)={(120℃時の抵抗値(mΩ)-最下点(mΩ))/最下点(mΩ)}×100
[電極表面抵抗値の標準偏差]
 各電極の活物質層表面において、2端子法により10カ所で表面抵抗を測定した。これらの10点の表面抵抗値の標準偏差を求めた。この値を表2に示す。
[中間層の溶出量の確認]
 得られた各電極(正極板)の断面SEMからバインダー溶出量の程度を確認した。正極板の断面(観察面)の表出は、正極板をガラス板に挟み込み、クロスセクションポリッシャを用いて行った。断面SEM観察時の測定倍率は500~2000倍の範囲で調整した。中間層におけるバインダー溶出量は、得られた断面SEM像の中間層の厚さのばらつきの程度から判断した。判断結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、中間層に絶縁性フィラーを含有した実施例1~6においては、抵抗増加率が高く、また、表面抵抗値の標準偏差も小さい。一方、中間層に絶縁性フィラーが含有されておらず、導電性物質の含有量が比較的多く、バインダーの含有量が比較的少ない比較例1においては、表面抵抗値の標準偏差は小さいものの、抵抗増加率が低い。また、中間層に絶縁性フィラーが含有されておらず、導電性物質の含有量が比較的少なく、バインダーの含有量が比較的多い比較例2においては、抵抗増加率は高いものの、表面抵抗値の標準偏差が大きくなる。比較例2においては、中間層の溶出量が多いことが、表面抵抗値のばらつきの大きさを引き起こしていると考えられる。
 このように、中間層において導電性物質とバインダーとのみを含む場合は、温度上昇時の十分な抵抗増加機能と、抵抗のばらつきの抑制とを両立させることができない。これに対し、中間層に導電性物質とバインダーとに加えてさらに絶縁性フィラーを含有させることで、温度上昇時の十分な抵抗増加機能と、抵抗のばらつきの抑制とを両立させることができることがわかる。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源として使用される蓄電素子、及びこれに備わる蓄電素子用電極等に適用できる。
10 電極
11 基材
12 中間層
13 活物質層
20 蓄電素子
21 電極体
22 ケース
23 正極端子
23’正極リード
24 負極端子
24’負極リード
25 蓄電ユニット
30 蓄電装置

Claims (10)

  1.  導電性の基材、
     上記基材の表面に積層され、導電性物質と第1のバインダーとを含む中間層、及び
     上記中間層の表面に積層され、第2のバインダーを含む活物質層を有し、
     上記第1のバインダー及び上記第2のバインダーが水系バインダーであるか、又は、上記第1のバインダー及び上記第2のバインダーが非水溶剤系バインダーであり、
     上記中間層が、絶縁性フィラーをさらに含む電極。
  2.  上記第1のバインダーが、フッ化ビニリデンに由来する構造単位を有する重合体である請求項1の電極。
  3.  上記導電性物質及び絶縁性フィラーの合計体積に対する上記絶縁性フィラーの体積が、20%以上95%以下である請求項1又は請求項2の電極。
  4.  上記中間層における上記導電性物質の含有量が、5質量%以上60質量%以下である請求項1、請求項2又は請求項3の電極。
  5.  上記中間層における上記絶縁性フィラーの含有量が、15質量%以上80質量%以下である請求項1から請求項4のいずれか1項の電極。
  6.  上記中間層における上記第1のバインダーの含有量が、10質量%以上50質量%以下である請求項1から請求項5のいずれか1項の電極。
  7.  上記中間層において、
     上記導電性物質の含有量が、30質量%以上40質量%以下、
     上記絶縁性フィラーの含有量が、20質量%以上30質量%以下、
     上記第1のバインダーの含有量が、30質量%以上50質量%以下である請求項1から請求項6のいずれか1項の電極。
  8.  正極である請求項1から請求項7のいずれか1項の電極。
  9.  請求項1から請求項8のいずれか1項の電極を備える蓄電素子。
  10.  導電性の基材の表面に、導電性物質と第1のバインダーとを含む中間層を積層すること、及び
     上記中間層の表面に、第2のバインダーを含む活物質層を積層すること
    を備え、
     上記第1のバインダー及び上記第2のバインダーが水系バインダーであるか、又は、上記第1のバインダー及び上記第2のバインダーが非水溶剤系バインダーであり、
     上記中間層が、絶縁性フィラーをさらに含む電極の製造方法。
PCT/JP2018/027651 2017-07-25 2018-07-24 電極、蓄電素子、及び電極の製造方法 WO2019022063A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880048970.5A CN111164801A (zh) 2017-07-25 2018-07-24 电极、蓄电元件和电极的制造方法
US16/632,999 US20200220176A1 (en) 2017-07-25 2018-07-24 Electrode, energy storage device, and method for manufacturing electrode
EP18837519.0A EP3660955A4 (en) 2017-07-25 2018-07-24 ELECTRODE, ENERGY STORAGE ELEMENT AND ELECTRODE MANUFACTURING PROCESS
JP2019532628A JPWO2019022063A1 (ja) 2017-07-25 2018-07-24 電極、蓄電素子、及び電極の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017143392 2017-07-25
JP2017-143392 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019022063A1 true WO2019022063A1 (ja) 2019-01-31

Family

ID=65040654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027651 WO2019022063A1 (ja) 2017-07-25 2018-07-24 電極、蓄電素子、及び電極の製造方法

Country Status (5)

Country Link
US (1) US20200220176A1 (ja)
EP (1) EP3660955A4 (ja)
JP (1) JPWO2019022063A1 (ja)
CN (1) CN111164801A (ja)
WO (1) WO2019022063A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196372A1 (ja) * 2019-03-25 2020-10-01 Apb株式会社 リチウムイオン電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435861B (zh) * 2020-10-16 2022-01-11 惠州亿纬锂能股份有限公司 一种混合电容器的正极及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062105A (ja) * 2011-09-13 2013-04-04 Hitachi Ltd リチウムイオン二次電池
WO2013073012A1 (ja) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 非水電解質二次電池
JP2015038876A (ja) 2007-11-30 2015-02-26 協立化学産業株式会社 導電性組成物
WO2016024394A1 (ja) * 2014-08-11 2016-02-18 株式会社Gsユアサ 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648869B2 (ja) * 2010-10-21 2015-01-07 トヨタ自動車株式会社 電池用電極およびその利用
US20150303484A1 (en) * 2012-11-19 2015-10-22 Furukawa Electric Co., Ltd. Current collector, electrode, secondary battery, and capacitor
JP6542031B2 (ja) * 2014-09-29 2019-07-10 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038876A (ja) 2007-11-30 2015-02-26 協立化学産業株式会社 導電性組成物
JP2013062105A (ja) * 2011-09-13 2013-04-04 Hitachi Ltd リチウムイオン二次電池
WO2013073012A1 (ja) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 非水電解質二次電池
WO2016024394A1 (ja) * 2014-08-11 2016-02-18 株式会社Gsユアサ 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660955A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196372A1 (ja) * 2019-03-25 2020-10-01 Apb株式会社 リチウムイオン電池
JP2020161232A (ja) * 2019-03-25 2020-10-01 三洋化成工業株式会社 リチウムイオン電池
JP7281934B2 (ja) 2019-03-25 2023-05-26 三洋化成工業株式会社 リチウムイオン電池

Also Published As

Publication number Publication date
JPWO2019022063A1 (ja) 2020-07-27
US20200220176A1 (en) 2020-07-09
EP3660955A1 (en) 2020-06-03
EP3660955A4 (en) 2020-07-22
CN111164801A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
US20200127290A1 (en) Non-Aqueous Electrolyte Secondary Battery
JP6743699B2 (ja) 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子
JP5818078B2 (ja) 非水電解質二次電池の製造方法
JP6354991B2 (ja) 非水電解液二次電池
JP2018137133A (ja) 非水電解質蓄電素子用の負極、非水電解質蓄電素子及び非水電解質蓄電素子用の負極の製造方法
JP6137554B2 (ja) 非水電解質二次電池および該電池用のセパレータ
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
WO2019022063A1 (ja) 電極、蓄電素子、及び電極の製造方法
JP6008188B2 (ja) 非水電解液二次電池
US11489149B2 (en) Electrode, energy storage device, and method for manufacturing electrode
WO2018174061A1 (ja) 非水電解質蓄電素子
WO2018155314A1 (ja) 非水電解質蓄電素子及びその製造方法
JP6848363B2 (ja) 負極及び非水電解質蓄電素子
US20220190321A1 (en) Energy storage device
JP2019029311A (ja) 負極及び非水電解質蓄電素子
JP2018032477A (ja) 非水電解質蓄電素子及びその製造方法
JP6618386B2 (ja) リチウムイオン二次電池
JP6846570B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2013161762A (ja) 非水電解液二次電池
JP6992578B2 (ja) リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池
WO2018180829A1 (ja) 蓄電素子
JP6790877B2 (ja) 非水電解質蓄電素子及びその製造方法
JP6733443B2 (ja) 複合電極材料、負極、及び非水電解質二次電池
WO2018056280A1 (ja) 非水電解質蓄電素子用負極、及び非水電解質蓄電素子
JP2012146491A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018837519

Country of ref document: EP

Effective date: 20200225