WO2016024394A1 - 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 - Google Patents
非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 Download PDFInfo
- Publication number
- WO2016024394A1 WO2016024394A1 PCT/JP2015/003974 JP2015003974W WO2016024394A1 WO 2016024394 A1 WO2016024394 A1 WO 2016024394A1 JP 2015003974 W JP2015003974 W JP 2015003974W WO 2016024394 A1 WO2016024394 A1 WO 2016024394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- binder
- storage element
- electrode plate
- intermediate layer
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 91
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 90
- 239000011230 binding agent Substances 0.000 claims abstract description 94
- 239000000203 mixture Substances 0.000 claims abstract description 83
- 239000002033 PVDF binder Substances 0.000 claims description 36
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 36
- 239000006258 conductive agent Substances 0.000 claims description 31
- 239000007774 positive electrode material Substances 0.000 claims description 18
- 230000005611 electricity Effects 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 14
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229920001577 copolymer Polymers 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- -1 polypropylene Polymers 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910013716 LiNi Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N - Dihydro-5-methyl-2(3H)-furanone Natural products CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 1
- MHWAJHABMBTNHS-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2,2-tetrafluoroethene Chemical group FC(F)=C.FC(F)=C(F)F MHWAJHABMBTNHS-UHFFFAOYSA-N 0.000 description 1
- OQMIRQSWHKCKNJ-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2,3,3,3-hexafluoroprop-1-ene Chemical group FC(F)=C.FC(F)=C(F)C(F)(F)F OQMIRQSWHKCKNJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JHUUPUMBZGWODW-UHFFFAOYSA-N 3,6-dihydro-1,2-dioxine Chemical compound C1OOCC=C1 JHUUPUMBZGWODW-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920008712 Copo Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- OHOIHSTWKIMQNC-UHFFFAOYSA-N [Li].[P]=O Chemical compound [Li].[P]=O OHOIHSTWKIMQNC-UHFFFAOYSA-N 0.000 description 1
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000008053 sultones Chemical class 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- VOVUARRWDCVURC-UHFFFAOYSA-N thiirane Chemical compound C1CS1 VOVUARRWDCVURC-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a positive electrode plate for a non-aqueous electrolyte storage element.
- the present invention also relates to a non-aqueous electrolyte storage element including the positive electrode plate for a water electrolyte storage element.
- Nonaqueous electrolyte storage elements such as nonaqueous electrolyte secondary batteries and lithium ion capacitors are often used as power supplies or auxiliary power supplies.
- nonaqueous electrolyte secondary batteries are widely used as power sources for electronic devices, automobiles, and the like because they can cope with size reduction, weight reduction, thickness reduction, energy density, and the like.
- Non-aqueous electrolyte storage elements are required to have high safety in addition to excellent performance such as charge / discharge characteristics and energy density.
- a situation in which the temperature inside the power storage element rises beyond the normal use temperature range is also assumed. Therefore, safety measures against the temperature rise of the nonaqueous electrolyte storage element are particularly important.
- Patent Document 1 discloses that an electrode active material and a collector are collected when the temperature inside the battery rises by including thermal expansion microcapsules in the electrode mixture layer or along the interface between the electrode mixture layer and the current collector. It has been reported that a non-conducting state can be formed between electric bodies to prevent thermal runaway of battery reaction. Further, in Patent Document 2, by providing a conductive agent and a conductive layer containing polyvinylidene fluoride containing ⁇ product and ⁇ product in a predetermined ratio between the current collector and the electrode mixture, It has been reported that the internal resistance increases and the current between the current collector and the electrode mixture is interrupted to prevent overheating when the temperature increases.
- an object of the present invention is to provide a technique for further improving the safety by increasing the resistance change rate of the positive electrode plate for a nonaqueous electrolyte storage element at a high temperature exceeding the normal use temperature range.
- the present inventor has intensively studied to solve the above problems, and in the positive electrode plate for a nonaqueous electrolyte storage element, an intermediate containing a conductive agent and a binder between the positive electrode current collector and the positive electrode mixture layer.
- an intermediate containing a conductive agent and a binder between the positive electrode current collector and the positive electrode mixture layer By using a layer having a mass average molecular weight larger than that of the binder in the positive electrode mixture layer as the binder in the intermediate layer, the resistance change rate in the high temperature region can be increased, and the inside of the nonaqueous electrolyte storage element It has been found that high safety against temperature rise can be provided.
- one aspect of the positive electrode plate for a non-aqueous electrolyte storage element of the present invention includes a positive electrode current collector, a positive electrode mixture layer containing a positive electrode active material and a binder, and the positive electrode current collector and the positive electrode mixture layer. And an intermediate layer containing a conductive agent and a binder, and the binder has a mass average molecular weight greater than that of the binder in the positive electrode mixture layer.
- a preferred embodiment of the positive electrode plate for a nonaqueous electrolyte storage element of the present invention contains polyvinylidene fluoride as a binder in at least the intermediate layer, preferably both the positive electrode mixture layer and the intermediate layer.
- the mass average molecular weight of the binder in the intermediate layer is 1.6 relative to the mass average molecular weight of the binder in the positive electrode mixture layer. It is more than double.
- the binder in the intermediate layer has a mass average molecular weight of 460,000 or more.
- nonaqueous electrolyte storage element of the present invention is characterized by comprising the positive electrode plate for a nonaqueous electrolyte storage element.
- electricity storage device of the present invention is characterized by comprising the nonaqueous electrolyte electricity storage device.
- the positive electrode plate of the present invention is a positive electrode plate used as a positive electrode of a nonaqueous electrolyte storage element.
- a cross-sectional view of one embodiment of the positive electrode plate of the present invention is shown in FIG.
- the positive electrode plate of the present invention has a structure having a positive electrode current collector 11, an intermediate layer 12 in contact with the positive electrode current collector, and a positive electrode mixture layer 13.
- the intermediate layer contains a conductive agent and a binder
- the positive electrode mixture layer contains a positive electrode active material and a binder
- the mass average molecular weight of the binder in the intermediate layer is the positive electrode composite. It is characterized by being larger than the mass average molecular weight of the binder in the agent layer.
- Positive electrode current collector Although it does not restrict
- the intermediate layer is disposed between the positive electrode current collector and the positive electrode mixture layer.
- the intermediate layer contains a conductive agent and a binder.
- the conductive agent used for the intermediate layer is not particularly limited as long as it is a conductive material.
- carbon materials such as acetylene black, carbon black, ketjen black, carbon whisker, and carbon fiber: metal ( (Aluminum, silver, gold, etc.) metal materials such as powder and metal fibers; conductive ceramic materials and the like.
- metal (Aluminum, silver, gold, etc.) metal materials such as powder and metal fibers
- conductive ceramic materials and the like conductive ceramic materials and the like.
- These electrically conductive agents may be used individually by 1 type, and may be used in combination of 2 or more type.
- the content of the conductive agent is not particularly limited.
- the conductive agent is 30% by mass or more, preferably 30 to 90% by mass, more preferably 30 to 70% by mass, based on the total amount of the intermediate layer. Can be mentioned.
- the content of the conductive agent is 30% by mass or more, it becomes possible to lower the temperature at which the resistance of the positive electrode plate starts increasing, and safety can be further enhanced.
- the resistance change rate of the positive electrode plate can be increased.
- the bulk density of the conductive agent is not particularly limited, but is preferably 1.0 g / cm 3 or less. If the bulk density of the conductive agent is 1.0 g / cm 3 or less, the conductive agent will come into contact with more binder, effectively suppressing the outflow of the binder of the intermediate layer to the positive electrode mixture layer. And the resistance change rate of the positive electrode plate can be increased more effectively. More preferably, it is 0.6 g / cm 3 or less, and further preferably 0.06 g / cm 3 or less. Moreover, it is preferable that the bulk density of a electrically conductive agent is 0.01 g / cm ⁇ 3 > or more from a viewpoint of ensuring the workability of an electrode. The bulk density is a value measured based on the method described in JIS K 1469.
- the specific surface area of the conductive agent is not particularly limited, but is preferably 5.0 m 2 / g or more. More preferably, it is 30 m ⁇ 2 > / g or more, More preferably, it is 60 m ⁇ 2 > / g or more.
- the contact surface between the conductive agent and the binder can be increased, the outflow of the binder of the intermediate layer to the positive electrode mixture layer can be effectively suppressed, and the resistance change rate of the positive electrode plate can be further increased. It becomes possible to increase effectively.
- the specific surface area of a electrically conductive agent is 1000 m ⁇ 2 > / g or less from a viewpoint of ensuring the workability of an electrode.
- the specific surface area is a BET specific surface area measured by a nitrogen adsorption method using a multipoint method (relative vapor pressure is 0.05 to 0.2).
- the kind of binder used for the intermediate layer is as described later.
- the content of the binder is not particularly limited.
- the binder is 70% by mass or less, preferably 10 to 70% by mass, more preferably 30 to 70% by mass, based on the total amount of the intermediate layer. .
- the resistance value during normal operation can be kept low, and the resistance change rate in the high temperature range can be further effectively increased.
- the intermediate layer may contain additives such as a thickener and a filler as necessary. Further, the intermediate layer may contain a positive electrode active material contained in the positive electrode mixture layer as long as the effects of the present invention are not impaired.
- thickener examples include polysaccharides such as carboxymethylcellulose (CMC) and methylcellulose. These thickeners may be used individually by 1 type, and may be used in combination of 2 or more type.
- CMC carboxymethylcellulose
- methylcellulose examples include polysaccharides such as carboxymethylcellulose (CMC) and methylcellulose. These thickeners may be used individually by 1 type, and may be used in combination of 2 or more type.
- filler examples include olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, and carbon. These fillers may be used individually by 1 type, and may be used in combination of 2 or more type.
- the thickness of the intermediate layer is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less. By satisfying such a range, the resistance value can be kept low at the temperature during normal operation, so that the rate of change in resistance in the high temperature region can be increased more effectively. Further, the lower limit value of the thickness of the intermediate layer is not particularly limited, and examples thereof include 0.1 ⁇ m or more.
- the intermediate layer is prepared by kneading the constituent components into a mixture and mixing it with an organic solvent such as N-methylpyrrolidone or toluene or water, and then coating the obtained paste on the positive electrode current collector. And it can form by adjusting a density and thickness by drying, a roll press, etc. Known methods and conditions such as coating and drying may be employed.
- the positive electrode mixture layer is provided on the intermediate layer and contains a positive electrode active material and a binder.
- the positive electrode active material used for the positive electrode mixture layer is appropriately set according to the type of the non-aqueous electrolyte storage element using the positive electrode plate of the present invention.
- the positive electrode active material may be any material that can reversibly occlude and release lithium ions, sodium ions, and the like, and may be an inorganic compound. Moreover, an organic compound may be sufficient.
- the inorganic compound used as the positive electrode active material for the nonaqueous electrolyte lithium secondary battery include a lithium nickel composite oxide (eg, Li x NiO 2 ) and a lithium cobalt composite oxide (eg, Li x CoO).
- lithium nickel cobalt composite oxide eg, LiNi 1-y Co y O 2
- lithium nickel cobalt manganese composite oxide eg, LiNi x Co y Mn 1-xy O 2 , Li ⁇ [Ni x Co y Mn 1-xy ] 1- ⁇ O 2 etc.
- spinel-type lithium manganese composite oxide Li x Mn 2 O 4 etc.
- lithium phosphorus oxide having an olivine structure eg Li x FePO 4 , Li x Fe 1-y Mn y PO 4 , Li x CoPO 4, etc.
- the organic compound used as the positive electrode active material for the nonaqueous electrolyte secondary battery include conductive polymer materials such as polyaniline and polypyrrole, disulfide polymer materials, and carbon fluoride.
- conductive polymer materials such as polyaniline and polypyrrole
- disulfide polymer materials such as polyaniline and polypyrrole
- carbon fluoride such as polyfluoride
- a lithium nickel cobalt manganese composite oxide represented by the general formula LiNi x Co y Mn 1-xy O 2 (0.3 ⁇ x ⁇ 0.8) is preferable.
- the positive electrode active material is not particularly limited as long as it can be used as a positive electrode active material of an electric double layer capacitor.
- carbon materials such as activated carbon can be used.
- the positive electrode active material may be used alone or in combination of two or more.
- the content of the positive electrode active material in the positive electrode mixture layer is not particularly limited.
- the positive electrode active material is 50 to 98.9% by mass, preferably 70 to 97.5% by mass, based on the total amount of the positive electrode mixture layer. More preferred is 85 to 97% by mass.
- the type of binder used for the positive electrode mixture layer is as described later.
- the binder content in the positive electrode mixture layer is not particularly limited.
- the binder is 1 to 25% by mass, preferably 2 to 15% by mass, and more preferably 2 to 7% by mass with respect to the total amount of the positive electrode mixture layer. 5 mass% is mentioned.
- the positive electrode mixture layer may contain a conductive agent as necessary.
- a conductive agent as necessary.
- electrically conductive agent used for a positive mix layer it is the same as that of what is mix
- acetylene black is preferable from the viewpoints of electron conductivity and coatability.
- the conductive agent is contained in the positive electrode mixture layer, the content thereof is not particularly limited.
- the conductive agent is 0.1 to 25% by mass, preferably 0.5 to 0.5%, based on the total amount of the positive electrode mixture layer. 15% by mass, more preferably 1 to 7.5% by mass.
- the positive electrode mixture layer may further contain additives such as a thickener and a filler as necessary. About the kind of these additives, it is the same as that of what is mix
- the mass per unit area of the positive electrode mixture layer is not particularly limited, and examples thereof include 0.5 to 2.5 g / 100 cm 2 , preferably 1.5 to 2.5 g / 100 cm 2 . By satisfying such a mass per unit area, it is possible to provide a non-aqueous electrolyte storage element that is excellent in workability of the positive electrode plate and has a good balance of energy density, charge / discharge rate characteristics, and the like.
- the positive electrode mixture layer was prepared by mixing the constituent components with an organic solvent such as N-methylpyrrolidone and toluene or water, and then applying the obtained paste onto the intermediate layer, followed by drying, rolling It can be formed by adjusting the density and thickness of the negative electrode mixture layer with a press or the like. Known methods and conditions such as coating and drying may be employed.
- the binder used in the positive electrode mixture layer may be any material that can be used as a binder.
- the binder used in the positive electrode mixture layer may be any material that can be used as a binder.
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- SBR styrene-butadiene rubber
- fluororubber examples thereof include a copolymer of polyvinylidene fluoride such as a copolymer, styrene-butadiene rubber (SBR), polyacrylonitrile, and fluororubber.
- SBR styrene-butadiene rubber
- fluororubber polyacrylonitrile
- the type of binder used in the intermediate layer of the present invention is not particularly limited.
- a polyvinylidene fluoride copolymer such as polyvinylidene fluoride (PVDF) or a vinylidene fluoride-hexafluoropropylene copolymer may be used.
- fluorine-containing resins such as polytetrafluoroethylene (PTFE).
- PTFE polytetrafluoroethylene
- binders may be used individually by 1 type, and may be used in combination of 2 or more type.
- the types of binders used in the intermediate layer and the positive electrode mixture layer may be the same or different, but from the viewpoint of more effectively increasing the resistance change rate in the high temperature range, It is preferable that polyvinylidene fluoride is included, and it is more preferable that both the intermediate layer and the positive electrode mixture layer include polyvinylidene fluoride.
- the binder contained in the intermediate layer has a mass average molecular weight larger than that of the binder contained in the positive electrode mixture layer.
- a binder having a mass average molecular weight larger than that of the binder contained in the positive electrode mixture layer as the binder contained in the intermediate layer, it is possible to increase the resistance change rate in the high temperature region.
- the action mechanism of the effect of the present invention is not intended to be limited, but is presumed as follows.
- the solvent used in the paste for forming the positive electrode mixture layer used during production
- the paste for forming the positive electrode mixture layer is applied on the intermediate layer, defects in the intermediate layer (mixture between the intermediate layer and the positive electrode mixture layer, forming the positive electrode mixture layer) Elution of the binder in the intermediate layer into the paste). Therefore, it is considered that when the nonaqueous electrolyte storage element becomes a high temperature state due to some abnormality such as overcharge, an increase in resistance of the electrode is likely to occur in the intermediate layer.
- the mass average molecular weight of the binder contained in the intermediate layer is preferably relative to the mass average molecular weight of the binder contained in the positive electrode mixture layer. 1.6 times or more, more preferably 1.6 to 5.0 times.
- the mass average molecular weight of the binder contained in the intermediate layer is 1.9 times or more, preferably 1.9 to 5.0 times, more preferably 2 times the mass average molecular weight of the binder contained in the positive electrode mixture layer. If it is .2 to 4.0 times, it is possible to decrease the temperature at which the internal resistance rises while increasing the resistance change rate in the high temperature range.
- the mass average molecular weight of the binder contained in the intermediate layer is not particularly limited as long as it is larger than the binder contained in the positive electrode mixture layer, but from the viewpoint of more effectively increasing the resistance change rate in the high temperature range, Preferably it is 460,000 or more, more preferably 460,000 to 1,000,000. In particular, if the mass average molecular weight of the binder contained in the intermediate layer is 540,000 or more, preferably 540,000 to 1,000,000, more preferably 630,000 to 1,000,000, the resistance change rate in the high temperature region can be increased while the internal ratio is increased. It is also possible to reduce the resistance rise start temperature.
- the mass average molecular weight of the binder contained in the positive electrode mixture layer is not particularly limited as long as it is smaller than that of the binder contained in the intermediate layer. From the viewpoint of more effectively realizing the temperature reduction, it is preferably 630,000 or less, more preferably 280,000 to 540,000, and still more preferably 280,000 to 460,000.
- the mass average molecular weight of the binder is a value obtained using polystyrene as a molecular weight standard substance by a GPC (gel permeation chromatography) method in accordance with JISK7252-2.
- the mass average molecular weight of a binder is a mass average molecular weight of the whole binder contained in each layer.
- the temperature at which the internal resistance starts rising can be greatly reduced along with the function as a binder.
- the action mechanism which reduces the raise start temperature of internal resistance with the copolymer of polyvinylidene fluoride it is estimated as follows. When a different kind of monomer is introduced into the polyvinylidene fluoride, the crystallinity is lowered as compared with the polyvinylidene fluoride, and an amorphous portion is generated.
- This amorphous part is easily stabilized with the solvent of the non-aqueous electrolyte, and more easily incorporates the solvent than polyvinylidene fluoride having high crystallinity even at the same environmental temperature. For this reason, it is considered that the temperature at which the resistance increase starts decreases when the intermediate layer contains a copolymer of polyvinylidene fluoride.
- the type of monomer other than vinylidene fluoride contained in the polyvinylidene fluoride copolymer is not particularly limited, but examples thereof include fluorine-containing monomers such as hexafluoropropylene (HFP) and tetrafluoroethylene (TFE). Can be mentioned.
- monomers other than vinylidene fluoride may be included singly or in combination of two or more.
- polyvinylidene fluoride copolymer examples include a vinylidene fluoride-hexafluoropropylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, and a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer.
- Etc. examples of these polyvinylidene fluoride copolymers, from the viewpoint of more effectively lowering the resistance start temperature, vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride-tetrafluoroethylene are preferable.
- -Hexafluoropropylene copolymer more preferably vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer.
- a functional group may be introduced into the polyvinylidene fluoride copolymer, if necessary.
- the functional group that can be introduced into the polyvinylidene fluoride copolymer is not particularly limited, and examples thereof include a carboxyl group, a carbonyl group, a sulfonic acid group, a nitro group, an acetyl group, a hydroxy group, and an amino group.
- One of these functional groups may be introduced alone, or two or more thereof may be introduced.
- the porosity of the positive electrode plate is not particularly limited, and examples thereof include 15 to 45%, preferably 20 to 35%. By satisfying such a porosity, it is possible to provide a nonaqueous electrolyte storage element that is excellent in liquid injection property of the nonaqueous electrolyte storage element and has a good balance of energy density, charge / discharge rate characteristics, and the like.
- the porosity of the positive electrode plate is measured with a mercury porosimeter after the positive electrode plate is taken out in a discharged state.
- the porosity of the positive electrode plate can be adjusted by controlling the coating weight and thickness of the intermediate layer and the positive electrode mixture layer.
- Non-aqueous electrolyte storage element includes the positive electrode plate.
- the positive electrode plate by using the positive electrode plate, it is possible to increase the rate of resistance change in a high temperature region and to provide high safety.
- nonaqueous electrolyte storage element of the present invention examples include a nonaqueous electrolyte secondary battery and a lithium ion capacitor.
- the non-aqueous electrolyte electricity storage element of the present invention functions as a non-aqueous electrolyte electricity storage element, and includes a negative electrode plate, a non-aqueous electrolyte, and a separator disposed between the positive electrode plate and the negative electrode plate.
- a negative electrode plate As long as it has.
- a separator disposed between the positive electrode plate and the negative electrode plate.
- the negative electrode plate should just have the negative mix layer formed on the negative electrode collector.
- a negative electrode collector used for a negative electrode For example, metal materials, such as copper, nickel, stainless steel, nickel plating steel, chromium plating steel, are mentioned. Among these, copper is preferable from the viewpoint of ease of processing and cost.
- the negative electrode mixture layer contains a negative electrode active material.
- the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions, sodium ions, and the like.
- the negative electrode active material used in the non-aqueous electrolyte secondary battery includes amorphous carbon such as non-graphitizable carbon (hard carbon) and graphitizable carbon (soft carbon); graphite; Al, Alloys of metals such as Si, Pb, Sn, Zn, Cd and lithium; silicon oxide; tungsten oxide; molybdenum oxide; iron sulfide; titanium sulfide; Moreover, specifically, activated carbon is mentioned as a negative electrode active material used for a lithium ion capacitor. These negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
- the negative electrode mixture layer may contain additives such as a conductive agent, a binder, a thickener, and a filler, if necessary.
- additives such as a conductive agent, a binder, a thickener, and a filler, if necessary.
- a conductive agent such as a conductive agent, a binder, a thickener, and a filler.
- the negative electrode plate was prepared by mixing the constituents of the negative electrode mixture layer with an organic solvent such as N-methylpyrrolidone or toluene or water, and preparing the paste, and coating the obtained paste on the negative electrode current collector. And it can form by adjusting the density and thickness of a negative mix layer by drying, a roll press, etc. Known methods and conditions such as coating and drying may be employed.
- Nonaqueous electrolyte The non-aqueous solvent used in the non-aqueous electrolyte is not particularly limited, but for example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate; ⁇ -butyrolactone, ⁇ -valerolactone Cyclic esters such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1, Ethers such as 4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfur Examples include holan, sulfide
- the supporting salt used for the non-aqueous electrolyte is not particularly limited, and lithium salts that are stable in a wide potential region generally used for non-aqueous electrolyte secondary batteries can be used.
- the supporting salt include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiB (C 2 O 4) 2, LiC (C 2 F 5 SO 2) 3 and the like.
- These supporting salts may be used alone or in combination of two or more.
- the content of the supporting salt in the nonaqueous electrolyte is not particularly limited, and may be appropriately set according to the type of the supporting salt to be used, the type of the nonaqueous solvent, and the like.
- 0.1 to 5.0 mol / L Preferably, 0.8 to 2.0 mol / L is mentioned.
- the separator is not particularly limited as long as it has insulating properties, and a microporous film or a nonwoven fabric is used.
- the material constituting the separator include polyolefin resins such as polyethylene and polypropylene, polyimide resins, and celluloses. These materials may be used individually by 1 type, and may be used in combination of 2 or more type.
- nonaqueous electrolyte storage element other components include a terminal, an insulating plate, a case, etc., but in the nonaqueous electrolyte storage element of the present invention, these components are used as they are. It can be used.
- FIG. 2 is a schematic view of a rectangular nonaqueous electrolyte storage element 1 which is an embodiment of the nonaqueous electrolyte storage element of the present invention. In the figure, the inside of the container is seen through.
- the electrode group 2 is formed by winding the positive electrode for a nonaqueous electrolyte electricity storage device of the present invention and the negative electrode containing a negative electrode active material through a separator.
- the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′
- the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
- the configuration of the non-aqueous electrolyte storage element of the present invention is not particularly limited, and examples thereof include cylindrical, square (rectangular), and flat storage elements.
- the nonaqueous electrolyte storage element of the present invention is manufactured by sandwiching a separator between a positive electrode plate and a negative electrode plate and impregnating them with a nonaqueous electrolyte.
- a power storage device includes the nonaqueous electrolyte power storage element.
- the power storage device is a device that uses the non-aqueous electrolyte power storage element to supply electric power to a power source that operates with electric energy, or is supplied with electric power from the power source.
- an electronic control unit or the like may be provided as needed to control the non-aqueous electrolyte storage element.
- the power storage device of the present invention may include one non-aqueous electrolyte storage element or a plurality of the non-aqueous electrolyte storage elements.
- FIG. 3 shows an embodiment of the power storage device of the present invention.
- the power storage device 30 includes a plurality of power storage units 20.
- Each power storage unit 20 includes a plurality of non-aqueous electrolyte power storage elements 1.
- the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
- EV electric vehicle
- HEV hybrid vehicle
- PHEV plug-in hybrid vehicle
- the mass average molecular weight of PVDF shown below is a value measured by the GPC method according to JISK7252-2.
- the conductive agent (acetylene black) used below has a bulk density of 0.04 g / ml measured based on the method described in JIS K 1469, and is a nitrogen adsorption method (relative vapor) using a multipoint method.
- the BET specific surface area measured by the pressure is from 0.05 to 0.2) is 68 m 2 / g.
- a paste for an intermediate layer containing a conductive agent (acetylene black), a binder, and a non-aqueous solvent (N-methylpyrrolidone; NMP) was produced.
- PVDF adjusted to the mass average molecular weight shown in Table 1 by mixing appropriate amounts of two types of PVDF having a mass average molecular weight of 280,000 and 630,000 was used as a binder.
- PVDF having a mass average molecular weight of 630,000 was used as a binder.
- vinylidene fluoride-hexafluoropropylene copolymer P (VDF-HFP) having a mass average molecular weight of 1 million was used as a binder.
- Comparative Example 1 PVDF having a mass average molecular weight of 280,000 was used as a binder.
- the mass ratio of conductive agent: binder was 30:70 in Examples 1 to 4 and Comparative Example 1, 10:90 in Reference Example 1, and 20:80 in Reference Example 2.
- a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer (P (VDF-TEF-HFP)) having a mass average molecular weight of about 500,000 was used as a binder. The ratio was 30:70.
- the paste for the intermediate layer was prepared through a kneading step using a multi-blender mill by adjusting the amount of NMP to adjust the solid content concentration to 14% by mass.
- the intermediate layer paste is applied to one side of a current collector (aluminum foil) having a thickness of 20 ⁇ m, and NMP is evaporated and dried in a constant temperature bath at 100 ° C. Produced.
- a positive electrode active material lithium nickel manganese cobalt composite oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 )
- a conductive agent acetylene black
- a binder PVDF
- NMP non-aqueous solvent
- the paste for the positive electrode mixture was prepared through a kneading step using a multi-blender mill by adjusting the amount of NMP to adjust the solid content to 30% by mass.
- the paste for the positive electrode mixture was applied on the intermediate layer, and NMP was evaporated in a constant temperature bath at 100 ° C. and dried. Next, roll pressing was performed to cut out a circular shape having a diameter of 1.4 cm to produce a positive electrode plate.
- the thickness of the intermediate layer of the positive electrode plate was 5 ⁇ m, the coating mass of the positive electrode mixture layer was 2.0 g / 100 cm 2 , and the porosity was 30%.
- the positive electrode plate was vacuum dried (temperature 100 ° C., 14 hours) and then used for resistance measurement described later.
- Measurement of electrode resistance Method for Producing Resistance Measurement Cell Tomcell (manufactured by Nippon Tomcell Co., Ltd.) was used for measuring the resistance of the electrode.
- This tom cell is composed of a lower lid, an electrode plate, a separator, an electrode plate, a disk, a leaf spring, and an upper lid.
- a separator was placed between two positive electrode plates previously immersed in a non-aqueous electrolyte.
- the active material application surfaces of the positive electrode plates were made to face each other.
- a stainless steel disk and a leaf spring were placed, and finally a stainless steel upper lid was placed, and then tightened and fixed with a nut.
- the tightening pressure at this time was 0.5 Nm.
- the nonaqueous electrolyte and separator used are as follows.
- Nonaqueous electrolyte In a mixed solvent in which ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) are mixed at a volume ratio of 30:35:35, lithium hexafluorophosphate (LiPF) which is a fluorine-containing electrolyte salt is used. 6 ) was dissolved at a concentration of 1.0 mol / l to prepare a non-aqueous electrolyte. The amount of water in the non-aqueous electrolyte was less than 50 ppm.
- Separator As the separator, a 30 ⁇ m thick polyethylene microporous film having an air permeability of about 600 seconds / 100 cc and processed into a circle having a diameter of 1.6 cm was used.
- Electrode Resistance Measurement Method A measuring cell was placed in a thermostatic bath, and an AC resistance of 1 kHz (amplitude 5 mV) was measured while raising the temperature of the thermostatic bath at 3 ° C./min. As the cell temperature, the temperature obtained by a temperature measuring terminal installed on the upper surface of the cell was recorded. The AC resistance measurement was performed using a device combining a 1287 type potentio / galvanostat made by Solartron and a 1260 type frequency response analyzer.
- the resistance rise start temperature and the resistance change rate were obtained from the measured resistance value.
- the resistance rise start temperature was determined as the temperature at which a resistance value of 150% was reached when the lowest resistance value (resistance value at 80 ° C. or lower) was 100%. Further, the rate of change in resistance was obtained as a relative ratio of the resistance values when reaching 120 ° C. when the lowest resistance value (resistance value at 80 ° C. or less) was 100%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明の正極板は、非水電解質蓄電素子の正極として使用される正極板である。本発明の正極板の一態様の断面図を図1に示す。図1に示すように、本発明の正極板は、正極集電体11と、正極集電体に接触する中間層12と、正極合剤層13とを有する構造を備える。また、本発明の正極板は、前記中間層が導電剤及びバインダーを含み、前記正極合剤層が正極活物質及びバインダーを含み、且つ前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量よりも大きいことを特徴とする。以下、本発明の正極板について詳述する。
本発明の正極板に使用される正極集電体としては、特に制限されないが、例えば、アルミニウム及びその金属を含む合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料等が挙げられる。これらの中でも、アルミニウムが好ましい。
本発明の正極板において、中間層は、正極集電体と正極合剤層の間に配置される。当該中間層は、導電剤及びバインダーを含有する。
本発明の正極板において、正極合剤層は、前記中間層上に設けられ、正極活物質及びバインダーを含有する。
中でも、正極活物質としてリチウムニッケルコバルトマンガン複合酸化物を用いることで、放電容量が大きく、高率放電特性に優れた非水電解質蓄電素子とすることができるので好ましい。特に、一般式LiNixCoyMn1-x-yO2(0.3<x≦0.8)で表されるリチウムニッケルコバルトマンガン複合酸化物が好ましい。
正極合剤層に使用されるバインダーの種類については、結着剤として使用できるものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体の様なポリフッ化ビニリデンの共重合体、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル、フッ素ゴム等が挙げられる。これらのバインダーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
正極板の多孔度については、特に制限されないが、例えば15~45%、好ましくは20~35%が挙げられる。このような多孔度を充足することにより、非水電解質蓄電素子の注液性に優れ、エネルギー密度、充放電レート特性等のバランスの良い非水電解質蓄電素子を提供することが可能になる。正極板の多孔度は、放電状態で正極板を取り出して水銀ポロシメーターにより測定される。正極板の多孔度は、中間層及び正極合剤層の塗布重量と厚さを制御することで調整できる。
本発明の非水電解質蓄電素子は、前記正極板を備えることを特徴とする。このように、非水電解質蓄電素子において、前記正極板を使用することにより、高温域の抵抗変化率を増大させることができ、高い安全性を備えさせることが可能になる。
負極板は、負極集電体上に負極合剤層が形成されていればよい。
非水電解質に使用される非水溶媒としては、特に制限されないが、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド、スルホラン、スルトン又はその誘導体等が挙げられる。これらの非水溶媒は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
セパレータは、絶縁性を備えるものであることを限度として特に制限されず、微多孔性膜や不織布等が使用される。セパレータを構成する材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂や、ポリイミド系樹脂、セルロース類が挙げられる。これらの材料は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、非水電解質蓄電素子において、その他の構成要素としては、端子、絶縁板、ケース等があるが、本発明の非水電解質蓄電素子において、これらの構成要素は従来用いられているものをそのまま用いても差し支えない。
図2に、本発明の非水電解質蓄電素子の一実施形態である矩形状の非水電解質蓄電素子1の概略図を示す。なお、同図は、容器内部を透視した図としている。図2に示す非水電解液蓄電素子1は、電極群2が外装体3に収納されている。電極群2は、本発明の非水電解質蓄電素子用正極と、負極活物質を含有する負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
本発明の非水電解質蓄電素子は、正極板と負極版の間にセパレータを挟み、これらに非水電解質を含浸させることによって製造される。
本発明の蓄電装置は、前記非水電解質蓄電素子を備えることを特徴とする。本発明において、蓄電装置とは、前記非水電解質蓄電素子を用いて、電気エネルギーで作動する動力源に電力を供給したり、当該動力源から電力を供給されたりする装置であり、前記非水電解質蓄電素子の他に、必要に応じて、前記非水電解質蓄電素を制御するために、電子制御ユニット等を備えていてもよい。
導電剤(アセチレンブラック)と、バインダーと、非水系溶媒(N-メチルピロリドン;NMP)を含む中間層用のペーストを作製した。実施例1及び2では、質量平均分子量28万と63万の2種のPVDFを適量混合することにより、表1に示す質量平均分子量に調整したPVDFをバインダーとして使用した。実施例3では、質量平均分子量63万のPVDFをバインダーとして使用した。実施例4では、質量平均分子量100万のフッ化ビニリデン-ヘキサフルオロプロピレン共重合体P(VDF-HFP)をバインダーとして使用した。比較例1では、質量平均分子量28万のPVDFをバインダーとして使用した。なお、中間層用のペーストにおいて、導電剤:バインダーの質量比率について、実施例1~4及び比較例1では30:70、参考例1では10:90、参考例2では20:80とした。また、参考例3では、質量平均分子量約50万のフッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(P(VDF-TEF-HFP))をバインダーとして使用し、導電剤:バインダーの質量比率を30:70とした。中間層層用のペーストは、NMPの量を調整することにより、固形分濃度を14質量%に調整し、マルチブレンダーミルを用いた混練工程を経て作製した。この中間層用のペーストを厚さ20μmの集電体(アルミ箔)の片面に塗布し、100℃の恒温槽中でNMPを蒸発させて乾燥することで、中間層を備えた集電体を作製した。
抵抗測定用セルの作製方法
電極の抵抗測定には、トムセル(有限会社日本トムセル社製)を用いた。このトムセルは、下蓋、電極板、セパレータ、電極板、円盤、板ばね、及び上蓋で構成されている。ステンレス製の下蓋の上に存在するパッキンの内側に、予め非水電解質に浸漬させた二枚の正極電極板により一枚のセパレータを挟み込むようにして載せた。この時、各正極電極板の活物質塗布面が向き合うようにした。その後、ステンレス製の円盤と板ばねをのせ,最後にステンレス製の上蓋を載せた後にナットにより締め付けて固定した。このときの締め付け圧は0.5Nmとした。
[非水電解質]
エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)を体積比30:35:35の割合で混合した混合溶媒に、含フッ素系電解質塩である六フッ化リン酸リチウム(LiPF6)を1.0mol/lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
セパレータには、透気度が約600秒/100ccである厚さ30μmのポリエチレン微多孔膜を直径1.6cmの円形に加工したものを用いた。
測定用セルを恒温槽中に入れ、恒温槽を3℃/minで昇温させながら、1kHz(振幅5mV)の交流抵抗を測定した。セル温度は、セルの上面に設置した温度測定用端子により得られた温度を記録した。交流抵抗測定は、ソーラトロン社製の1287型ポテンショ/ガルバノスタットと1260型周波数応答アナライザを組み合わせた装置を使用した。
得られた結果を表1に示す。この結果から、中間層に含まれるバインダーが、正極合剤層に含まれるバインダーよりも、質量平均分子量が大きい場合(実施例1~4)に、高温に達した際の抵抗が大きくなり、抵抗変化率が高くなることが確認された。また、中間層に含まれるバインダーの質量平均分子量が54万以上、或いは中間層に含まれるバインダーが正極合剤層に含まれるバインダーよりも質量平均分子量が1.9倍以上の場合(実施例2~4)には、抵抗開始温度の低下が認められることも明らかとなった。
2 電極群
3 外装体
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
11 正極集電体
12 中間層
13 正極合剤層
20 蓄電ユニット
30 蓄電装置
Claims (12)
- 正極集電体と、正極活物質及びバインダーを含む正極合剤層と、前記正極集電体と前記正極合剤層との間に位置し導電剤及びバインダーを含む中間層とを備え、
前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量よりも大きいことを特徴とする、非水電解質蓄電素子用正極板。 - 前記中間層のバインダーがポリフッ化ビニリデンを含む、請求項1又は2に記載の非水電解質蓄電素子用正極板。
- 前記中間層のバインダーがポリフッ化ビニリデンの共重合体を含む、請求項1に記載の非水電解質蓄電素子用正極板。
- 前記正極合剤層中のバインダーが、ポリフッ化ビニリデンを含む、請求項1~3のいずれかに記載の非水電解質蓄電素子用正極板。
- 前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量に対して1.6倍以上である、請求項1~4のいずれかに記載の非水電解質蓄電素子用正極板。
- 前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量に対して1.9倍以上である、請求項1~4のいずれかに記載の非水電解質蓄電素子用正極板。
- 前記中間層中のバインダーの質量平均分子量が46万以上である、請求項1~6のいずれかに記載の非水電解質蓄電素子用正極板。
- 前記中間層中の前記導電材の嵩密度が、1.0g/cm3 以下である、請求項1~7のいずれかに記載の非水電解質蓄電素子用正極板。
- 前記正極合剤層の質量が、0.5~2.5g/100cm2である、請求項1~8のいずれかに記載の非水電解質蓄電素子用正極板。
- 前記正極合剤層の多孔度が、15~45%である、請求項1~9のいずれかに記載の非水電解質蓄電素子用正極板。
- 請求項1~10のいずれかに記載の非水電解質蓄電素子用正極板を備える、非水電解質蓄電素子。
- 請求項11に記載の非水電解質蓄電素子を備える、蓄電装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580042892.4A CN106716683B (zh) | 2014-08-11 | 2015-08-06 | 非水电解质蓄电元件用正极板及非水电解质蓄电元件 |
US15/501,690 US20170229711A1 (en) | 2014-08-11 | 2015-08-06 | Positive electrode plate for nonaqueous electrolyte energy storage device, and nonaqueous electrolyte energy storage device |
DE112015003717.9T DE112015003717T5 (de) | 2014-08-11 | 2015-08-06 | Positive Elektrodenplatte für Energiespeichergerät mit nichtwässrigem Elektrolyt, und Energiespeichergerät mit nichtwässrigem Elektrolyt |
JP2016542502A JP6743699B2 (ja) | 2014-08-11 | 2015-08-06 | 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014163886 | 2014-08-11 | ||
JP2014163885 | 2014-08-11 | ||
JP2014-163886 | 2014-08-11 | ||
JP2014-163885 | 2014-08-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016024394A1 true WO2016024394A1 (ja) | 2016-02-18 |
Family
ID=55304031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/003974 WO2016024394A1 (ja) | 2014-08-11 | 2015-08-06 | 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170229711A1 (ja) |
JP (1) | JP6743699B2 (ja) |
CN (1) | CN106716683B (ja) |
DE (1) | DE112015003717T5 (ja) |
WO (1) | WO2016024394A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018152277A (ja) * | 2017-03-14 | 2018-09-27 | トヨタ自動車株式会社 | リチウムイオン二次電池用正極 |
WO2019022063A1 (ja) * | 2017-07-25 | 2019-01-31 | 株式会社Gsユアサ | 電極、蓄電素子、及び電極の製造方法 |
JP2019145306A (ja) * | 2018-02-20 | 2019-08-29 | トヨタ自動車株式会社 | 非水電解質二次電池 |
JP2020009652A (ja) * | 2018-07-10 | 2020-01-16 | Jsr株式会社 | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
WO2020012942A1 (ja) * | 2018-07-10 | 2020-01-16 | Jsr株式会社 | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
JP2020009651A (ja) * | 2018-07-10 | 2020-01-16 | Jsr株式会社 | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
WO2021106591A1 (ja) * | 2019-11-29 | 2021-06-03 | 三洋電機株式会社 | 非水電解質二次電池用電極板及び非水電解質二次電池 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6443421B2 (ja) * | 2016-10-12 | 2018-12-26 | トヨタ自動車株式会社 | 電極の製造方法 |
CN110828826A (zh) * | 2018-08-08 | 2020-02-21 | 宁德时代新能源科技股份有限公司 | 一种电极极片及二次电池 |
CN111293274A (zh) * | 2018-12-10 | 2020-06-16 | 广州汽车集团股份有限公司 | 一种负极极片及其制备方法、锂离子电池 |
CN111900328A (zh) * | 2020-06-22 | 2020-11-06 | 珠海冠宇电池股份有限公司 | 一种正极片及含有该正极片的锂离子电池 |
CN112820854B (zh) * | 2020-12-30 | 2022-10-14 | 珠海冠宇电池股份有限公司 | 一种电极片及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003257433A (ja) * | 2002-02-28 | 2003-09-12 | Mitsubishi Materials Corp | 非水電解液二次電池及び結着剤 |
JP2009277783A (ja) * | 2008-05-13 | 2009-11-26 | Japan Gore Tex Inc | 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ |
JP2013030411A (ja) * | 2011-07-29 | 2013-02-07 | Furukawa Sky Kk | 集電体、電極構造体、非水電解質電池及び蓄電部品 |
JP2013232323A (ja) * | 2012-04-27 | 2013-11-14 | Sanyo Electric Co Ltd | 非水電解質二次電池用の負極、その製造方法、及び非水電解質二次電池 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1214480C (zh) * | 1997-12-22 | 2005-08-10 | 三菱电机株式会社 | 锂离子二次电池及其制造方法 |
WO2002084764A1 (fr) * | 2001-04-10 | 2002-10-24 | Mitsubishi Materials Corporation | Batterie secondaire polymere ion lithium, son electrode et procede pour synthetiser un compose polymere dans un liant utilise dans une couche d'adhesion de celle-ci |
US7179565B2 (en) * | 2001-12-06 | 2007-02-20 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary cell |
JP5167703B2 (ja) * | 2007-06-20 | 2013-03-21 | 日産自動車株式会社 | 電池用電極 |
JP2014120399A (ja) * | 2012-12-18 | 2014-06-30 | Toshiba Corp | 電極、電池および電池パック |
JP6037171B2 (ja) * | 2013-06-24 | 2016-11-30 | トヨタ自動車株式会社 | 非水電解質二次電池とその製造方法 |
JP2015103332A (ja) * | 2013-11-22 | 2015-06-04 | トヨタ自動車株式会社 | 非水電解液二次電池 |
JP6252841B2 (ja) * | 2013-11-25 | 2017-12-27 | 株式会社Gsユアサ | 蓄電素子 |
US10804543B2 (en) * | 2015-04-06 | 2020-10-13 | The Research Foundation For The State University Of New York | Ultrathin, ternary alloy PtRuFe nanowires, and methods of making same |
-
2015
- 2015-08-06 DE DE112015003717.9T patent/DE112015003717T5/de not_active Withdrawn
- 2015-08-06 CN CN201580042892.4A patent/CN106716683B/zh active Active
- 2015-08-06 JP JP2016542502A patent/JP6743699B2/ja active Active
- 2015-08-06 US US15/501,690 patent/US20170229711A1/en not_active Abandoned
- 2015-08-06 WO PCT/JP2015/003974 patent/WO2016024394A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003257433A (ja) * | 2002-02-28 | 2003-09-12 | Mitsubishi Materials Corp | 非水電解液二次電池及び結着剤 |
JP2009277783A (ja) * | 2008-05-13 | 2009-11-26 | Japan Gore Tex Inc | 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ |
JP2013030411A (ja) * | 2011-07-29 | 2013-02-07 | Furukawa Sky Kk | 集電体、電極構造体、非水電解質電池及び蓄電部品 |
JP2013232323A (ja) * | 2012-04-27 | 2013-11-14 | Sanyo Electric Co Ltd | 非水電解質二次電池用の負極、その製造方法、及び非水電解質二次電池 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018152277A (ja) * | 2017-03-14 | 2018-09-27 | トヨタ自動車株式会社 | リチウムイオン二次電池用正極 |
WO2019022063A1 (ja) * | 2017-07-25 | 2019-01-31 | 株式会社Gsユアサ | 電極、蓄電素子、及び電極の製造方法 |
EP3660955A4 (en) * | 2017-07-25 | 2020-07-22 | GS Yuasa International Ltd. | ELECTRODE, ENERGY STORAGE ELEMENT AND ELECTRODE MANUFACTURING PROCESS |
JPWO2019022063A1 (ja) * | 2017-07-25 | 2020-07-27 | 株式会社Gsユアサ | 電極、蓄電素子、及び電極の製造方法 |
JP2019145306A (ja) * | 2018-02-20 | 2019-08-29 | トヨタ自動車株式会社 | 非水電解質二次電池 |
JP2020009652A (ja) * | 2018-07-10 | 2020-01-16 | Jsr株式会社 | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
WO2020012942A1 (ja) * | 2018-07-10 | 2020-01-16 | Jsr株式会社 | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
JP2020009651A (ja) * | 2018-07-10 | 2020-01-16 | Jsr株式会社 | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
JP7043998B2 (ja) | 2018-07-10 | 2022-03-30 | Jsr株式会社 | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
JP7086760B2 (ja) | 2018-07-10 | 2022-06-20 | 株式会社Eneosマテリアル | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
WO2021106591A1 (ja) * | 2019-11-29 | 2021-06-03 | 三洋電機株式会社 | 非水電解質二次電池用電極板及び非水電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016024394A1 (ja) | 2017-05-25 |
CN106716683B (zh) | 2020-10-02 |
CN106716683A (zh) | 2017-05-24 |
JP6743699B2 (ja) | 2020-08-19 |
US20170229711A1 (en) | 2017-08-10 |
DE112015003717T5 (de) | 2017-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6743699B2 (ja) | 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 | |
KR102201335B1 (ko) | 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자 | |
WO2017038041A1 (ja) | 非水電解質二次電池 | |
CN111357141B (zh) | 电化学元件用导电材料糊、电化学元件正极用浆料组合物及其制造方法、电化学元件用正极以及电化学元件 | |
WO2013031226A1 (ja) | 非水電解質二次電池 | |
WO2018155207A1 (ja) | 二次電池およびその製造方法 | |
JP2015115168A (ja) | リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池 | |
JP6565899B2 (ja) | 非水電解質二次電池 | |
JP5928591B2 (ja) | リチウムイオン二次電池 | |
EP3264502A1 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2015034080A1 (ja) | セパレータ及びそれを用いた蓄電デバイス | |
CN111095615A (zh) | 锂二次电池用负极、其制造方法以及包含其的锂二次电池 | |
KR20200089182A (ko) | 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지 | |
JP6622819B2 (ja) | 出力特性が向上したリチウム二次電池 | |
JP2021099939A (ja) | 非水電解質二次電池用負極及び非水電解質二次電池 | |
EP3451422B1 (en) | Positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6119641B2 (ja) | 円筒形非水電解液二次電池 | |
KR101905061B1 (ko) | 리튬 이온 이차 전지 | |
JP2016143505A (ja) | 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 | |
WO2019022063A1 (ja) | 電極、蓄電素子、及び電極の製造方法 | |
JP6613952B2 (ja) | 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池 | |
US20200220171A1 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2018078029A (ja) | 負極及び非水電解質蓄電素子 | |
JP2012065474A (ja) | 電気自動車の制御装置 | |
JP6870515B2 (ja) | リチウムイオンキャパシタ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15832640 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016542502 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015003717 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15832640 Country of ref document: EP Kind code of ref document: A1 |