WO2016024394A1 - 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 - Google Patents

非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 Download PDF

Info

Publication number
WO2016024394A1
WO2016024394A1 PCT/JP2015/003974 JP2015003974W WO2016024394A1 WO 2016024394 A1 WO2016024394 A1 WO 2016024394A1 JP 2015003974 W JP2015003974 W JP 2015003974W WO 2016024394 A1 WO2016024394 A1 WO 2016024394A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
binder
storage element
electrode plate
intermediate layer
Prior art date
Application number
PCT/JP2015/003974
Other languages
English (en)
French (fr)
Inventor
勇人 山川
英史 長谷川
洋平 柴田
信也 上松
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201580042892.4A priority Critical patent/CN106716683B/zh
Priority to US15/501,690 priority patent/US20170229711A1/en
Priority to DE112015003717.9T priority patent/DE112015003717T5/de
Priority to JP2016542502A priority patent/JP6743699B2/ja
Publication of WO2016024394A1 publication Critical patent/WO2016024394A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode plate for a non-aqueous electrolyte storage element.
  • the present invention also relates to a non-aqueous electrolyte storage element including the positive electrode plate for a water electrolyte storage element.
  • Nonaqueous electrolyte storage elements such as nonaqueous electrolyte secondary batteries and lithium ion capacitors are often used as power supplies or auxiliary power supplies.
  • nonaqueous electrolyte secondary batteries are widely used as power sources for electronic devices, automobiles, and the like because they can cope with size reduction, weight reduction, thickness reduction, energy density, and the like.
  • Non-aqueous electrolyte storage elements are required to have high safety in addition to excellent performance such as charge / discharge characteristics and energy density.
  • a situation in which the temperature inside the power storage element rises beyond the normal use temperature range is also assumed. Therefore, safety measures against the temperature rise of the nonaqueous electrolyte storage element are particularly important.
  • Patent Document 1 discloses that an electrode active material and a collector are collected when the temperature inside the battery rises by including thermal expansion microcapsules in the electrode mixture layer or along the interface between the electrode mixture layer and the current collector. It has been reported that a non-conducting state can be formed between electric bodies to prevent thermal runaway of battery reaction. Further, in Patent Document 2, by providing a conductive agent and a conductive layer containing polyvinylidene fluoride containing ⁇ product and ⁇ product in a predetermined ratio between the current collector and the electrode mixture, It has been reported that the internal resistance increases and the current between the current collector and the electrode mixture is interrupted to prevent overheating when the temperature increases.
  • an object of the present invention is to provide a technique for further improving the safety by increasing the resistance change rate of the positive electrode plate for a nonaqueous electrolyte storage element at a high temperature exceeding the normal use temperature range.
  • the present inventor has intensively studied to solve the above problems, and in the positive electrode plate for a nonaqueous electrolyte storage element, an intermediate containing a conductive agent and a binder between the positive electrode current collector and the positive electrode mixture layer.
  • an intermediate containing a conductive agent and a binder between the positive electrode current collector and the positive electrode mixture layer By using a layer having a mass average molecular weight larger than that of the binder in the positive electrode mixture layer as the binder in the intermediate layer, the resistance change rate in the high temperature region can be increased, and the inside of the nonaqueous electrolyte storage element It has been found that high safety against temperature rise can be provided.
  • one aspect of the positive electrode plate for a non-aqueous electrolyte storage element of the present invention includes a positive electrode current collector, a positive electrode mixture layer containing a positive electrode active material and a binder, and the positive electrode current collector and the positive electrode mixture layer. And an intermediate layer containing a conductive agent and a binder, and the binder has a mass average molecular weight greater than that of the binder in the positive electrode mixture layer.
  • a preferred embodiment of the positive electrode plate for a nonaqueous electrolyte storage element of the present invention contains polyvinylidene fluoride as a binder in at least the intermediate layer, preferably both the positive electrode mixture layer and the intermediate layer.
  • the mass average molecular weight of the binder in the intermediate layer is 1.6 relative to the mass average molecular weight of the binder in the positive electrode mixture layer. It is more than double.
  • the binder in the intermediate layer has a mass average molecular weight of 460,000 or more.
  • nonaqueous electrolyte storage element of the present invention is characterized by comprising the positive electrode plate for a nonaqueous electrolyte storage element.
  • electricity storage device of the present invention is characterized by comprising the nonaqueous electrolyte electricity storage device.
  • the positive electrode plate of the present invention is a positive electrode plate used as a positive electrode of a nonaqueous electrolyte storage element.
  • a cross-sectional view of one embodiment of the positive electrode plate of the present invention is shown in FIG.
  • the positive electrode plate of the present invention has a structure having a positive electrode current collector 11, an intermediate layer 12 in contact with the positive electrode current collector, and a positive electrode mixture layer 13.
  • the intermediate layer contains a conductive agent and a binder
  • the positive electrode mixture layer contains a positive electrode active material and a binder
  • the mass average molecular weight of the binder in the intermediate layer is the positive electrode composite. It is characterized by being larger than the mass average molecular weight of the binder in the agent layer.
  • Positive electrode current collector Although it does not restrict
  • the intermediate layer is disposed between the positive electrode current collector and the positive electrode mixture layer.
  • the intermediate layer contains a conductive agent and a binder.
  • the conductive agent used for the intermediate layer is not particularly limited as long as it is a conductive material.
  • carbon materials such as acetylene black, carbon black, ketjen black, carbon whisker, and carbon fiber: metal ( (Aluminum, silver, gold, etc.) metal materials such as powder and metal fibers; conductive ceramic materials and the like.
  • metal (Aluminum, silver, gold, etc.) metal materials such as powder and metal fibers
  • conductive ceramic materials and the like conductive ceramic materials and the like.
  • These electrically conductive agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the conductive agent is not particularly limited.
  • the conductive agent is 30% by mass or more, preferably 30 to 90% by mass, more preferably 30 to 70% by mass, based on the total amount of the intermediate layer. Can be mentioned.
  • the content of the conductive agent is 30% by mass or more, it becomes possible to lower the temperature at which the resistance of the positive electrode plate starts increasing, and safety can be further enhanced.
  • the resistance change rate of the positive electrode plate can be increased.
  • the bulk density of the conductive agent is not particularly limited, but is preferably 1.0 g / cm 3 or less. If the bulk density of the conductive agent is 1.0 g / cm 3 or less, the conductive agent will come into contact with more binder, effectively suppressing the outflow of the binder of the intermediate layer to the positive electrode mixture layer. And the resistance change rate of the positive electrode plate can be increased more effectively. More preferably, it is 0.6 g / cm 3 or less, and further preferably 0.06 g / cm 3 or less. Moreover, it is preferable that the bulk density of a electrically conductive agent is 0.01 g / cm ⁇ 3 > or more from a viewpoint of ensuring the workability of an electrode. The bulk density is a value measured based on the method described in JIS K 1469.
  • the specific surface area of the conductive agent is not particularly limited, but is preferably 5.0 m 2 / g or more. More preferably, it is 30 m ⁇ 2 > / g or more, More preferably, it is 60 m ⁇ 2 > / g or more.
  • the contact surface between the conductive agent and the binder can be increased, the outflow of the binder of the intermediate layer to the positive electrode mixture layer can be effectively suppressed, and the resistance change rate of the positive electrode plate can be further increased. It becomes possible to increase effectively.
  • the specific surface area of a electrically conductive agent is 1000 m ⁇ 2 > / g or less from a viewpoint of ensuring the workability of an electrode.
  • the specific surface area is a BET specific surface area measured by a nitrogen adsorption method using a multipoint method (relative vapor pressure is 0.05 to 0.2).
  • the kind of binder used for the intermediate layer is as described later.
  • the content of the binder is not particularly limited.
  • the binder is 70% by mass or less, preferably 10 to 70% by mass, more preferably 30 to 70% by mass, based on the total amount of the intermediate layer. .
  • the resistance value during normal operation can be kept low, and the resistance change rate in the high temperature range can be further effectively increased.
  • the intermediate layer may contain additives such as a thickener and a filler as necessary. Further, the intermediate layer may contain a positive electrode active material contained in the positive electrode mixture layer as long as the effects of the present invention are not impaired.
  • thickener examples include polysaccharides such as carboxymethylcellulose (CMC) and methylcellulose. These thickeners may be used individually by 1 type, and may be used in combination of 2 or more type.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharides such as carboxymethylcellulose (CMC) and methylcellulose. These thickeners may be used individually by 1 type, and may be used in combination of 2 or more type.
  • filler examples include olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, and carbon. These fillers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the thickness of the intermediate layer is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less. By satisfying such a range, the resistance value can be kept low at the temperature during normal operation, so that the rate of change in resistance in the high temperature region can be increased more effectively. Further, the lower limit value of the thickness of the intermediate layer is not particularly limited, and examples thereof include 0.1 ⁇ m or more.
  • the intermediate layer is prepared by kneading the constituent components into a mixture and mixing it with an organic solvent such as N-methylpyrrolidone or toluene or water, and then coating the obtained paste on the positive electrode current collector. And it can form by adjusting a density and thickness by drying, a roll press, etc. Known methods and conditions such as coating and drying may be employed.
  • the positive electrode mixture layer is provided on the intermediate layer and contains a positive electrode active material and a binder.
  • the positive electrode active material used for the positive electrode mixture layer is appropriately set according to the type of the non-aqueous electrolyte storage element using the positive electrode plate of the present invention.
  • the positive electrode active material may be any material that can reversibly occlude and release lithium ions, sodium ions, and the like, and may be an inorganic compound. Moreover, an organic compound may be sufficient.
  • the inorganic compound used as the positive electrode active material for the nonaqueous electrolyte lithium secondary battery include a lithium nickel composite oxide (eg, Li x NiO 2 ) and a lithium cobalt composite oxide (eg, Li x CoO).
  • lithium nickel cobalt composite oxide eg, LiNi 1-y Co y O 2
  • lithium nickel cobalt manganese composite oxide eg, LiNi x Co y Mn 1-xy O 2 , Li ⁇ [Ni x Co y Mn 1-xy ] 1- ⁇ O 2 etc.
  • spinel-type lithium manganese composite oxide Li x Mn 2 O 4 etc.
  • lithium phosphorus oxide having an olivine structure eg Li x FePO 4 , Li x Fe 1-y Mn y PO 4 , Li x CoPO 4, etc.
  • the organic compound used as the positive electrode active material for the nonaqueous electrolyte secondary battery include conductive polymer materials such as polyaniline and polypyrrole, disulfide polymer materials, and carbon fluoride.
  • conductive polymer materials such as polyaniline and polypyrrole
  • disulfide polymer materials such as polyaniline and polypyrrole
  • carbon fluoride such as polyfluoride
  • a lithium nickel cobalt manganese composite oxide represented by the general formula LiNi x Co y Mn 1-xy O 2 (0.3 ⁇ x ⁇ 0.8) is preferable.
  • the positive electrode active material is not particularly limited as long as it can be used as a positive electrode active material of an electric double layer capacitor.
  • carbon materials such as activated carbon can be used.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the content of the positive electrode active material in the positive electrode mixture layer is not particularly limited.
  • the positive electrode active material is 50 to 98.9% by mass, preferably 70 to 97.5% by mass, based on the total amount of the positive electrode mixture layer. More preferred is 85 to 97% by mass.
  • the type of binder used for the positive electrode mixture layer is as described later.
  • the binder content in the positive electrode mixture layer is not particularly limited.
  • the binder is 1 to 25% by mass, preferably 2 to 15% by mass, and more preferably 2 to 7% by mass with respect to the total amount of the positive electrode mixture layer. 5 mass% is mentioned.
  • the positive electrode mixture layer may contain a conductive agent as necessary.
  • a conductive agent as necessary.
  • electrically conductive agent used for a positive mix layer it is the same as that of what is mix
  • acetylene black is preferable from the viewpoints of electron conductivity and coatability.
  • the conductive agent is contained in the positive electrode mixture layer, the content thereof is not particularly limited.
  • the conductive agent is 0.1 to 25% by mass, preferably 0.5 to 0.5%, based on the total amount of the positive electrode mixture layer. 15% by mass, more preferably 1 to 7.5% by mass.
  • the positive electrode mixture layer may further contain additives such as a thickener and a filler as necessary. About the kind of these additives, it is the same as that of what is mix
  • the mass per unit area of the positive electrode mixture layer is not particularly limited, and examples thereof include 0.5 to 2.5 g / 100 cm 2 , preferably 1.5 to 2.5 g / 100 cm 2 . By satisfying such a mass per unit area, it is possible to provide a non-aqueous electrolyte storage element that is excellent in workability of the positive electrode plate and has a good balance of energy density, charge / discharge rate characteristics, and the like.
  • the positive electrode mixture layer was prepared by mixing the constituent components with an organic solvent such as N-methylpyrrolidone and toluene or water, and then applying the obtained paste onto the intermediate layer, followed by drying, rolling It can be formed by adjusting the density and thickness of the negative electrode mixture layer with a press or the like. Known methods and conditions such as coating and drying may be employed.
  • the binder used in the positive electrode mixture layer may be any material that can be used as a binder.
  • the binder used in the positive electrode mixture layer may be any material that can be used as a binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • fluororubber examples thereof include a copolymer of polyvinylidene fluoride such as a copolymer, styrene-butadiene rubber (SBR), polyacrylonitrile, and fluororubber.
  • SBR styrene-butadiene rubber
  • fluororubber polyacrylonitrile
  • the type of binder used in the intermediate layer of the present invention is not particularly limited.
  • a polyvinylidene fluoride copolymer such as polyvinylidene fluoride (PVDF) or a vinylidene fluoride-hexafluoropropylene copolymer may be used.
  • fluorine-containing resins such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • binders may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the types of binders used in the intermediate layer and the positive electrode mixture layer may be the same or different, but from the viewpoint of more effectively increasing the resistance change rate in the high temperature range, It is preferable that polyvinylidene fluoride is included, and it is more preferable that both the intermediate layer and the positive electrode mixture layer include polyvinylidene fluoride.
  • the binder contained in the intermediate layer has a mass average molecular weight larger than that of the binder contained in the positive electrode mixture layer.
  • a binder having a mass average molecular weight larger than that of the binder contained in the positive electrode mixture layer as the binder contained in the intermediate layer, it is possible to increase the resistance change rate in the high temperature region.
  • the action mechanism of the effect of the present invention is not intended to be limited, but is presumed as follows.
  • the solvent used in the paste for forming the positive electrode mixture layer used during production
  • the paste for forming the positive electrode mixture layer is applied on the intermediate layer, defects in the intermediate layer (mixture between the intermediate layer and the positive electrode mixture layer, forming the positive electrode mixture layer) Elution of the binder in the intermediate layer into the paste). Therefore, it is considered that when the nonaqueous electrolyte storage element becomes a high temperature state due to some abnormality such as overcharge, an increase in resistance of the electrode is likely to occur in the intermediate layer.
  • the mass average molecular weight of the binder contained in the intermediate layer is preferably relative to the mass average molecular weight of the binder contained in the positive electrode mixture layer. 1.6 times or more, more preferably 1.6 to 5.0 times.
  • the mass average molecular weight of the binder contained in the intermediate layer is 1.9 times or more, preferably 1.9 to 5.0 times, more preferably 2 times the mass average molecular weight of the binder contained in the positive electrode mixture layer. If it is .2 to 4.0 times, it is possible to decrease the temperature at which the internal resistance rises while increasing the resistance change rate in the high temperature range.
  • the mass average molecular weight of the binder contained in the intermediate layer is not particularly limited as long as it is larger than the binder contained in the positive electrode mixture layer, but from the viewpoint of more effectively increasing the resistance change rate in the high temperature range, Preferably it is 460,000 or more, more preferably 460,000 to 1,000,000. In particular, if the mass average molecular weight of the binder contained in the intermediate layer is 540,000 or more, preferably 540,000 to 1,000,000, more preferably 630,000 to 1,000,000, the resistance change rate in the high temperature region can be increased while the internal ratio is increased. It is also possible to reduce the resistance rise start temperature.
  • the mass average molecular weight of the binder contained in the positive electrode mixture layer is not particularly limited as long as it is smaller than that of the binder contained in the intermediate layer. From the viewpoint of more effectively realizing the temperature reduction, it is preferably 630,000 or less, more preferably 280,000 to 540,000, and still more preferably 280,000 to 460,000.
  • the mass average molecular weight of the binder is a value obtained using polystyrene as a molecular weight standard substance by a GPC (gel permeation chromatography) method in accordance with JISK7252-2.
  • the mass average molecular weight of a binder is a mass average molecular weight of the whole binder contained in each layer.
  • the temperature at which the internal resistance starts rising can be greatly reduced along with the function as a binder.
  • the action mechanism which reduces the raise start temperature of internal resistance with the copolymer of polyvinylidene fluoride it is estimated as follows. When a different kind of monomer is introduced into the polyvinylidene fluoride, the crystallinity is lowered as compared with the polyvinylidene fluoride, and an amorphous portion is generated.
  • This amorphous part is easily stabilized with the solvent of the non-aqueous electrolyte, and more easily incorporates the solvent than polyvinylidene fluoride having high crystallinity even at the same environmental temperature. For this reason, it is considered that the temperature at which the resistance increase starts decreases when the intermediate layer contains a copolymer of polyvinylidene fluoride.
  • the type of monomer other than vinylidene fluoride contained in the polyvinylidene fluoride copolymer is not particularly limited, but examples thereof include fluorine-containing monomers such as hexafluoropropylene (HFP) and tetrafluoroethylene (TFE). Can be mentioned.
  • monomers other than vinylidene fluoride may be included singly or in combination of two or more.
  • polyvinylidene fluoride copolymer examples include a vinylidene fluoride-hexafluoropropylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, and a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer.
  • Etc. examples of these polyvinylidene fluoride copolymers, from the viewpoint of more effectively lowering the resistance start temperature, vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride-tetrafluoroethylene are preferable.
  • -Hexafluoropropylene copolymer more preferably vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer.
  • a functional group may be introduced into the polyvinylidene fluoride copolymer, if necessary.
  • the functional group that can be introduced into the polyvinylidene fluoride copolymer is not particularly limited, and examples thereof include a carboxyl group, a carbonyl group, a sulfonic acid group, a nitro group, an acetyl group, a hydroxy group, and an amino group.
  • One of these functional groups may be introduced alone, or two or more thereof may be introduced.
  • the porosity of the positive electrode plate is not particularly limited, and examples thereof include 15 to 45%, preferably 20 to 35%. By satisfying such a porosity, it is possible to provide a nonaqueous electrolyte storage element that is excellent in liquid injection property of the nonaqueous electrolyte storage element and has a good balance of energy density, charge / discharge rate characteristics, and the like.
  • the porosity of the positive electrode plate is measured with a mercury porosimeter after the positive electrode plate is taken out in a discharged state.
  • the porosity of the positive electrode plate can be adjusted by controlling the coating weight and thickness of the intermediate layer and the positive electrode mixture layer.
  • Non-aqueous electrolyte storage element includes the positive electrode plate.
  • the positive electrode plate by using the positive electrode plate, it is possible to increase the rate of resistance change in a high temperature region and to provide high safety.
  • nonaqueous electrolyte storage element of the present invention examples include a nonaqueous electrolyte secondary battery and a lithium ion capacitor.
  • the non-aqueous electrolyte electricity storage element of the present invention functions as a non-aqueous electrolyte electricity storage element, and includes a negative electrode plate, a non-aqueous electrolyte, and a separator disposed between the positive electrode plate and the negative electrode plate.
  • a negative electrode plate As long as it has.
  • a separator disposed between the positive electrode plate and the negative electrode plate.
  • the negative electrode plate should just have the negative mix layer formed on the negative electrode collector.
  • a negative electrode collector used for a negative electrode For example, metal materials, such as copper, nickel, stainless steel, nickel plating steel, chromium plating steel, are mentioned. Among these, copper is preferable from the viewpoint of ease of processing and cost.
  • the negative electrode mixture layer contains a negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions, sodium ions, and the like.
  • the negative electrode active material used in the non-aqueous electrolyte secondary battery includes amorphous carbon such as non-graphitizable carbon (hard carbon) and graphitizable carbon (soft carbon); graphite; Al, Alloys of metals such as Si, Pb, Sn, Zn, Cd and lithium; silicon oxide; tungsten oxide; molybdenum oxide; iron sulfide; titanium sulfide; Moreover, specifically, activated carbon is mentioned as a negative electrode active material used for a lithium ion capacitor. These negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode mixture layer may contain additives such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • additives such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • a conductive agent such as a conductive agent, a binder, a thickener, and a filler.
  • the negative electrode plate was prepared by mixing the constituents of the negative electrode mixture layer with an organic solvent such as N-methylpyrrolidone or toluene or water, and preparing the paste, and coating the obtained paste on the negative electrode current collector. And it can form by adjusting the density and thickness of a negative mix layer by drying, a roll press, etc. Known methods and conditions such as coating and drying may be employed.
  • Nonaqueous electrolyte The non-aqueous solvent used in the non-aqueous electrolyte is not particularly limited, but for example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate; ⁇ -butyrolactone, ⁇ -valerolactone Cyclic esters such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1, Ethers such as 4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfur Examples include holan, sulfide
  • the supporting salt used for the non-aqueous electrolyte is not particularly limited, and lithium salts that are stable in a wide potential region generally used for non-aqueous electrolyte secondary batteries can be used.
  • the supporting salt include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiB (C 2 O 4) 2, LiC (C 2 F 5 SO 2) 3 and the like.
  • These supporting salts may be used alone or in combination of two or more.
  • the content of the supporting salt in the nonaqueous electrolyte is not particularly limited, and may be appropriately set according to the type of the supporting salt to be used, the type of the nonaqueous solvent, and the like.
  • 0.1 to 5.0 mol / L Preferably, 0.8 to 2.0 mol / L is mentioned.
  • the separator is not particularly limited as long as it has insulating properties, and a microporous film or a nonwoven fabric is used.
  • the material constituting the separator include polyolefin resins such as polyethylene and polypropylene, polyimide resins, and celluloses. These materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • nonaqueous electrolyte storage element other components include a terminal, an insulating plate, a case, etc., but in the nonaqueous electrolyte storage element of the present invention, these components are used as they are. It can be used.
  • FIG. 2 is a schematic view of a rectangular nonaqueous electrolyte storage element 1 which is an embodiment of the nonaqueous electrolyte storage element of the present invention. In the figure, the inside of the container is seen through.
  • the electrode group 2 is formed by winding the positive electrode for a nonaqueous electrolyte electricity storage device of the present invention and the negative electrode containing a negative electrode active material through a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
  • the configuration of the non-aqueous electrolyte storage element of the present invention is not particularly limited, and examples thereof include cylindrical, square (rectangular), and flat storage elements.
  • the nonaqueous electrolyte storage element of the present invention is manufactured by sandwiching a separator between a positive electrode plate and a negative electrode plate and impregnating them with a nonaqueous electrolyte.
  • a power storage device includes the nonaqueous electrolyte power storage element.
  • the power storage device is a device that uses the non-aqueous electrolyte power storage element to supply electric power to a power source that operates with electric energy, or is supplied with electric power from the power source.
  • an electronic control unit or the like may be provided as needed to control the non-aqueous electrolyte storage element.
  • the power storage device of the present invention may include one non-aqueous electrolyte storage element or a plurality of the non-aqueous electrolyte storage elements.
  • FIG. 3 shows an embodiment of the power storage device of the present invention.
  • the power storage device 30 includes a plurality of power storage units 20.
  • Each power storage unit 20 includes a plurality of non-aqueous electrolyte power storage elements 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • the mass average molecular weight of PVDF shown below is a value measured by the GPC method according to JISK7252-2.
  • the conductive agent (acetylene black) used below has a bulk density of 0.04 g / ml measured based on the method described in JIS K 1469, and is a nitrogen adsorption method (relative vapor) using a multipoint method.
  • the BET specific surface area measured by the pressure is from 0.05 to 0.2) is 68 m 2 / g.
  • a paste for an intermediate layer containing a conductive agent (acetylene black), a binder, and a non-aqueous solvent (N-methylpyrrolidone; NMP) was produced.
  • PVDF adjusted to the mass average molecular weight shown in Table 1 by mixing appropriate amounts of two types of PVDF having a mass average molecular weight of 280,000 and 630,000 was used as a binder.
  • PVDF having a mass average molecular weight of 630,000 was used as a binder.
  • vinylidene fluoride-hexafluoropropylene copolymer P (VDF-HFP) having a mass average molecular weight of 1 million was used as a binder.
  • Comparative Example 1 PVDF having a mass average molecular weight of 280,000 was used as a binder.
  • the mass ratio of conductive agent: binder was 30:70 in Examples 1 to 4 and Comparative Example 1, 10:90 in Reference Example 1, and 20:80 in Reference Example 2.
  • a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer (P (VDF-TEF-HFP)) having a mass average molecular weight of about 500,000 was used as a binder. The ratio was 30:70.
  • the paste for the intermediate layer was prepared through a kneading step using a multi-blender mill by adjusting the amount of NMP to adjust the solid content concentration to 14% by mass.
  • the intermediate layer paste is applied to one side of a current collector (aluminum foil) having a thickness of 20 ⁇ m, and NMP is evaporated and dried in a constant temperature bath at 100 ° C. Produced.
  • a positive electrode active material lithium nickel manganese cobalt composite oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 )
  • a conductive agent acetylene black
  • a binder PVDF
  • NMP non-aqueous solvent
  • the paste for the positive electrode mixture was prepared through a kneading step using a multi-blender mill by adjusting the amount of NMP to adjust the solid content to 30% by mass.
  • the paste for the positive electrode mixture was applied on the intermediate layer, and NMP was evaporated in a constant temperature bath at 100 ° C. and dried. Next, roll pressing was performed to cut out a circular shape having a diameter of 1.4 cm to produce a positive electrode plate.
  • the thickness of the intermediate layer of the positive electrode plate was 5 ⁇ m, the coating mass of the positive electrode mixture layer was 2.0 g / 100 cm 2 , and the porosity was 30%.
  • the positive electrode plate was vacuum dried (temperature 100 ° C., 14 hours) and then used for resistance measurement described later.
  • Measurement of electrode resistance Method for Producing Resistance Measurement Cell Tomcell (manufactured by Nippon Tomcell Co., Ltd.) was used for measuring the resistance of the electrode.
  • This tom cell is composed of a lower lid, an electrode plate, a separator, an electrode plate, a disk, a leaf spring, and an upper lid.
  • a separator was placed between two positive electrode plates previously immersed in a non-aqueous electrolyte.
  • the active material application surfaces of the positive electrode plates were made to face each other.
  • a stainless steel disk and a leaf spring were placed, and finally a stainless steel upper lid was placed, and then tightened and fixed with a nut.
  • the tightening pressure at this time was 0.5 Nm.
  • the nonaqueous electrolyte and separator used are as follows.
  • Nonaqueous electrolyte In a mixed solvent in which ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) are mixed at a volume ratio of 30:35:35, lithium hexafluorophosphate (LiPF) which is a fluorine-containing electrolyte salt is used. 6 ) was dissolved at a concentration of 1.0 mol / l to prepare a non-aqueous electrolyte. The amount of water in the non-aqueous electrolyte was less than 50 ppm.
  • Separator As the separator, a 30 ⁇ m thick polyethylene microporous film having an air permeability of about 600 seconds / 100 cc and processed into a circle having a diameter of 1.6 cm was used.
  • Electrode Resistance Measurement Method A measuring cell was placed in a thermostatic bath, and an AC resistance of 1 kHz (amplitude 5 mV) was measured while raising the temperature of the thermostatic bath at 3 ° C./min. As the cell temperature, the temperature obtained by a temperature measuring terminal installed on the upper surface of the cell was recorded. The AC resistance measurement was performed using a device combining a 1287 type potentio / galvanostat made by Solartron and a 1260 type frequency response analyzer.
  • the resistance rise start temperature and the resistance change rate were obtained from the measured resistance value.
  • the resistance rise start temperature was determined as the temperature at which a resistance value of 150% was reached when the lowest resistance value (resistance value at 80 ° C. or lower) was 100%. Further, the rate of change in resistance was obtained as a relative ratio of the resistance values when reaching 120 ° C. when the lowest resistance value (resistance value at 80 ° C. or less) was 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の目的は、内部温度の上昇によって内部抵抗を上昇させる非水電解質蓄電素子において、高温域の抵抗変化率を増大させて、安全性をより一層向上させる技術を提供することである。本発明は、非水電解質蓄電素子用の正極板において、正極集電体と正極合剤層との間に、導電剤及びバインダーを含む中間層を設け、当該中間層中のバインダーとして、正極合剤層中のバインダーよりも質量平均分子量が大きいものを使用することによって、高温域の抵抗変化率を増大できる。

Description

非水電解質蓄電素子用正極板、及び非水電解質蓄電素子
 本発明は、非水電解質蓄電素子用正極板に関する。また、本発明は、当該水電解質蓄電素子用正極板を備える非水電解質蓄電素子に関する。
 非水電解質二次電池やリチウムイオンキャパシタ等の非水電解質蓄電素子は、電源又は補助電源として多用されている。特に、非水電解質二次電池は、小型化、軽量化、薄型化、エネルギーの高密度化等に対応できるため、電子機器、自動車等の電源として広く利用されている。
 非水電解質蓄電素子には、充放電特性、エネルギー密度等の性能が優れていることに加えて、高い安全性を備えていることが要求される。特に、非水電解質蓄電素子は、故障、誤操作、不正使用等によって過充電されると蓄電素子内部の温度が通常使用温度域を超えて上昇するような事態も想定される。そのため、非水電解質蓄電素子の温度上昇に対する安全対策がとりわけ重要になっている。
 従来、非水電解質蓄電素子の温度上昇に対する安全対策について、種々検討されている。例えば、特許文献1には、電極合剤層中又は電極合剤層と集電体の界面に沿って熱膨張マイクロカプセルを含有させることによって、電池内部の温度が上昇すると、電極活物質と集電体の間で非導通状態を形成し、電池反応の熱暴走を防止できることが報告されている。また、特許文献2には、集電体と電極合剤との間に、導電剤と、α品とβ品を所定の比率で含むポリフッ化ビニリデンを含む導電層とを設けることによって、電池内部の温度が上昇した場合に内部抵抗が上昇して集電体と電極合剤との間の電流を遮断し、過熱を防止できることが報告されている。
特開2001-332245号公報 特開2012-104422号公報
 近年、非水電解質蓄電素子の安全性に対する要望の高まりから、より一層優れた安全性を備えさせる技術の開発が望まれている。特許文献1及び2のように、非水電解質蓄電素子の内部温度の上昇時に内部抵抗を上昇させる場合、通常使用温度域の抵抗値に対する高温域の抵抗値の変化率(高温域の抵抗上昇率)が大きくなり、更には内部抵抗の上昇開始温度が低くなるように設計できれば、より一層高い安全性が確保される。しかしながら、特許文献1及び2では、高温域の抵抗変化率の増大、及び内部抵抗の上昇開始温度の低下を図る手法については検討されていない。また、特許文献2では、ポリフッ化ビニリデンのα/β比を所定の範囲に調整することを要するために、導電層の熱処理が必要であり、極板作製の条件に制約が生じる。
 そこで、本発明は、通常使用温度領域を超える高温において、非水電解質蓄電素子用正極板の抵抗変化率を増大させて、安全性をより一層向上させる技術を提供することを目的とする。
 本発明者は、前記課題を解決すべく鋭意検討を行ったところ、非水電解質蓄電素子用の正極板において、正極集電体と正極合剤層との間に、導電剤及びバインダーを含む中間層を設け、当該中間層中のバインダーとして、正極合剤層中のバインダーよりも質量平均分子量が大きいものを使用することによって、高温域の抵抗変化率を増大でき、非水電解質蓄電素子内部の温度上昇に対して高い安全性を備えさせ得ることを見出した。また、前記中間層中のバインダーとして、質量平均分子量が54万以上のものを使用、或いは前記正極合剤層中のバインダーよりも質量平均分子量が1.9倍以上大きいものを使用することにより、内部抵抗の上昇開始温度を低下させることも可能になることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本発明の非水電解質蓄電素子用正極板の一態様は、正極集電体と、正極活物質及びバインダーを含む正極合剤層と、前記正極集電体と前記正極合剤層との間に位置し導電剤及びバインダーを含む中間層とを備え、前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量よりも大きいことを特徴とする。このような構成を備えさせることによって、高温域の抵抗変化率を増大させて、安全性を高めることが可能になる。
 また、本発明の非水電解質蓄電素子用正極板の好適な一態様は、少なくとも前記中間層、好ましくは前記正極合剤層と中間層の双方におけるバインダーとして、ポリフッ化ビニリデンを含有する。また、本発明の非水電解質蓄電素子用正極板の好適な一態様は、前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量に対して1.6倍以上である。更に、本発明の非水電解質蓄電素子用正極板の好適な一態様は、前記中間層中のバインダーの質量平均分子量が46万以上である。このような構成を備えることによって、より一層効果的に高温域の抵抗変化率を増大させることができる。
 また、本発明の非水電解質蓄電素子の一態様は、前記非水電解質蓄電素子用正極板を備えることを特徴とする。更に、本発明の蓄電素子の一態様は、前記非水電解質蓄電素子を備えることを特徴とする。このような構成を備えることによって、内部温度の上昇に対する安全性が高められた非水電解質蓄電素子及び蓄電装置を提供することが可能になる。
 本発明によれば、通常使用温度領域を超える高温において、非水電解質蓄電素子用正極板の抵抗変化率を増大させることができる。
本発明の正極板の一態様の断面構造を示す図である。 本発明の非水電解質蓄電素子の一態様である矩形状の非水電解質蓄電素子の概略図を示す図である。 本発明の蓄電装置の一態様の概略図を示す図である。
1.非水電解質蓄電素子用正極板
 本発明の正極板は、非水電解質蓄電素子の正極として使用される正極板である。本発明の正極板の一態様の断面図を図1に示す。図1に示すように、本発明の正極板は、正極集電体11と、正極集電体に接触する中間層12と、正極合剤層13とを有する構造を備える。また、本発明の正極板は、前記中間層が導電剤及びバインダーを含み、前記正極合剤層が正極活物質及びバインダーを含み、且つ前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量よりも大きいことを特徴とする。以下、本発明の正極板について詳述する。
[正極集電体]
 本発明の正極板に使用される正極集電体としては、特に制限されないが、例えば、アルミニウム及びその金属を含む合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料等が挙げられる。これらの中でも、アルミニウムが好ましい。
[中間層]
 本発明の正極板において、中間層は、正極集電体と正極合剤層の間に配置される。当該中間層は、導電剤及びバインダーを含有する。
 中間層に使用される導電剤としては、導電性材料であることを限度として、特に制限されないが、例えば、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維等の炭素材料:金属(アルミニウム、銀、金等)粉、金属繊維等の金属材料;導電性セラミックス材料等が挙げられる。これらの導電剤の中でも、塗工性、導電性等の観点から、好ましくは炭素材料、更に好ましくはアセチレンブラックが挙げられる。これらの導電剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 中間層において、導電剤の含有量としては、特に制限されないが、例えば、中間層の総量当たり、導電剤が30質量%以上、好ましくは30~90質量%、更に好ましくは30~70質量%が挙げられる。導電剤の含有量を30質量%以上にすることによって、正極板の抵抗の上昇開始温度を低下させることが可能になり、安全性をより一層高めることができる。また、このような導電剤の含有量を充足することによって、正極合剤層用のペーストの塗布時に、正極合剤層への中間層のバインダーの流出を抑制することができるので、より一層効果的に正極板の抵抗変化率を増大させることも可能になる。
 また、導電剤の嵩密度については、特に制限されないが、1.0g/cm以下であることが好ましい。導電剤の嵩密度が1.0g/cm以下であれば、導電剤がより多くのバインダーと接触することになり、正極合剤層への中間層のバインダーの流出を効果的に抑制することができ、正極板の抵抗変化率をより一層効果的に増大させることができる。より好ましくは0.6g/cm以下、さらに好ましくは0.06g/cm以下である。また、導電剤の嵩密度は、電極の加工性を確保するという観点から、0.01g/cm以上であることが好ましい。なお、前記嵩密度は、JIS K 1469に記載の方法に基づいて測定される値である。
 また、導電剤の比表面積については、特に制限されないが、5.0m/g以上であることが好ましい。より好ましくは30m/g以上、さらに好ましくは60m/g以上である。このような比表面積を充足することにより、導電剤とバインダーの接触面を増大させ、正極合剤層への中間層のバインダーの流出を効果的に抑制でき、正極板の抵抗変化率をより一層効果的に増大させることが可能になる。また、導電剤の比表面積は、電極の加工性を確保するという観点から、1000m/g以下であることが好ましい。より好ましくは200m/g以下、さらに好ましくは100m/g以下である。なお、前記比表面積は、多点法を用いた窒素吸着法(相対蒸気圧は0.05~0.2)により測定されるBET比表面積である。
 中間層に使用されるバインダーの種類については後述する通りである。
 中間層において、バインダーの含有量としては、特に制限されないが、例えば、中間層の総量当たり、バインダーが70質量%以下、好ましくは10~70質量%、更に好ましくは30~70質量%が挙げられる。このような範囲を充足することによって、通常の作動時の抵抗値を低く抑えられるので、高温域の抵抗変化率をより一層効果的に増大させることが可能になる。
 中間層には、導電剤及びバインダーの他に、必要に応じて、増粘剤、フィラー等の添加剤が含有されてもよい。また、中間層には、本発明の効果を阻害しない範囲において、正極合剤層中に含まれる正極活物質が含まれていてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類等が挙げられる。これらの増粘剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 フィラーとしては、例えば、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が挙げられる。これらのフィラーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 中間層の厚みについては、例えば、10μm以下、好ましくは5μm以下、更に好ましくは3μm以下が挙げられる。このような範囲を充足することによって、通常作動時の温度では抵抗値を低く抑えられるので、高温域の抵抗変化率をより一層効果的に増大させることが可能になる。また、中間層の厚みの下限値については、特に制限されないが、例えば、0.1μm以上が挙げられる。
 中間層は、構成成分を混練し合剤とし、N-メチルピロリドン、トルエン等の有機溶媒又は水に混合してペーストを調製した後、得られたペーストを前記正極集電体の上に塗工し、乾燥、ロールプレス等で密度及び厚みを調整することによって形成することができる。塗布、乾燥等の方法や条件については周知のものを採用すればよい。
[正極合剤層]
 本発明の正極板において、正極合剤層は、前記中間層上に設けられ、正極活物質及びバインダーを含有する。
 正極合剤層に使用される正極活物質については、本発明の正極板を使用する非水電解質蓄電素子の種類に応じて適宜設定される。
 例えば、本発明の正極板を非水電解質蓄電素子に使用する場合、正極活物質は、リチウムイオンやナトリウムイオン等を可逆的に吸蔵及び放出できるものであればよく、無機化合物であっても、また有機化合物であってもよい。非水電解質リチウム二次電池用の正極活物質として使用される無機化合物としては、具体的には、リチウムニッケル複合酸化物(例えばLiNiO等)、リチウムコバルト複合酸化物(例えばLiCoO等)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCo等)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNiCoMn1-x-y、Liα[NiCoMn1-x-y]1-α等)、スピネル型リチウムマンガン複合酸化物(LiMn等)、オリビン構造を有するリチウムリン酸化物(例えばLiFePO、LiFe1-yMnPO、LiCoPO等)等が挙げられる。また、非水電解質二次電池用の正極活物質として使用される有機化合物としては、具体的には、ポリアニリン、ポリピロール等の導電性ポリマー材料、ジスルフィド系ポリマー材料、フッ化カーボン等が挙げられる。
 中でも、正極活物質としてリチウムニッケルコバルトマンガン複合酸化物を用いることで、放電容量が大きく、高率放電特性に優れた非水電解質蓄電素子とすることができるので好ましい。特に、一般式LiNiCoMn1-x-y(0.3<x≦0.8)で表されるリチウムニッケルコバルトマンガン複合酸化物が好ましい。
 また、例えば、本発明の正極板をリチウムイオンキャパシタに使用する場合、正極活物質は、電気二重層キャパシタの正極活物質として使用できることを限度として、特に制限されないが、例えば、上記の無機化合物や有機化合物の他に活性炭等の炭素材料が挙げられる。
 本発明の正極板において、正極活物質は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 正極合剤層における正極活物質の含有量としては、特に制限されないが、例えば、正極合剤層の総量当たり、正極活物質が50~98.9質量%、好ましくは70~97.5質量%、更に好ましくは85~97質量%が挙げられる。
 正極合剤層に使用されるバインダーの種類については後述する通りである。
 正極合剤層におけるバインダーの含有量としては、特に制限されないが、例えば、正極合剤層の総量当たり、バインダーが1~25質量%、好ましくは2~15質量%、更に好ましくは2~7.5質量%が挙げられる。
 正極合剤層には、正極活物質及びバインダーの他に、必要に応じて、導電剤が含有されてもよい。正極合剤層に使用される導電剤の種類については、前記中間層に配合されるものと同様である。これらの中でも、電子伝導性及び塗工性の観点から、好ましくはアセチレンブラックが挙げられる。
 正極合剤層に導電剤を含有させる場合、その含有量については、特に制限されないが、例えば、正極合剤層の総量当たり、導電剤が0.1~25質量%、好ましくは0.5~15質量%、更に好ましくは1~7.5質量%が挙げられる。
 正極合剤層には、必要に応じて、更に、増粘剤、フィラー等の添加剤が含有されてもよい。これらの添加剤の種類については、前記中間層に配合されるものと同様である。
 正極合剤層の単位面積当たりの質量については、特に制限されないが、例えば0.5~2.5g/100cm、好ましくは1.5~2.5g/100cmが挙げられる。このような単位面積当たりの質量を充足することによって、正極板の加工性に優れ、エネルギー密度、充放電レート特性等のバランスの良い非水電解質蓄電素子を提供することが可能になる。
 正極合剤層は、構成成分を、N-メチルピロリドン、トルエン等の有機溶媒又は水に混合してペーストを調製した後、得られたペーストを前記中間層の上に塗工し、乾燥、ロールプレス等で負極合剤層の密度及び厚みを調整することによって形成することができる。塗布、乾燥等の方法や条件については周知のものを採用すればよい。
[中間層及び正極合剤層に含まれるバインダー]
 正極合剤層に使用されるバインダーの種類については、結着剤として使用できるものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体の様なポリフッ化ビニリデンの共重合体、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル、フッ素ゴム等が挙げられる。これらのバインダーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 また、本発明の中間層に使用されるバインダーの種類についても、特に制限されないが、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体の様なポリフッ化ビニリデンの共重合体、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂が挙げられる。これらの中でも、ポリフッ化ビニリデン、ポリフッ化ビニリデン含有共重合体が好ましい。これらのバインダーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 中間層及び正極合剤層に使用されるバインダーの種類は、それぞれ同一であっても、異なっていてもよいが、高温域の抵抗変化率を一層効果的に増大させるという観点から、中間層にはポリフッ化ビニリデンが含まれていることが好ましく、中間層及び正極合剤層の双方にポリフッ化ビニリデンが含まれていることが更に好ましい。
 本発明の正極板では、中間層に含まれるバインダーは、正極合剤層に含まれるバインダーよりも、質量平均分子量が大きいものを使用する。このように、中間層に含まれるバインダーとして、正極合剤層に含まれるバインダーよりも質量平均分子量が大きいものを採用することにより、高温域の抵抗変化率を増大させることが可能になる。このような本発明の効果の作用メカニズムについては、限定的な解釈を望むものではないが、次のように推測される。中間層に含まれるバインダーの方が、正極合剤層に含まれるバインダーよりも平均分子量が大きいため、製造時に使用する正極合剤層形成用のペーストに使用する溶媒(N-メチルピロリドン、水等)への溶解性が低くなり、正極合剤層形成用のペーストを中間層上に塗布しても、中間層の欠陥(中間層と正極合剤層との混じり合い、正極合剤層形成用のペーストへの中間層中のバインダーの溶出等)が生じ難い。そのため、過充電等の何らかの異常により非水電解質蓄電素子が高温状態となった場合に、中間層において電極の抵抗上昇が発現し易くなると考えられる。
 高温域の抵抗変化率の増大をより一層効果的に実現するという観点から、中間層に含まれるバインダーの質量平均分子量が、正極合剤層に含まれるバインダーの質量平均分子量に対して、好ましくは1.6倍以上、更に好ましくは1.6~5.0倍が挙げられる。とりわけ、中間層に含まれるバインダーの質量平均分子量が、正極合剤層に含まれるバインダーの質量平均分子量に対して1.9倍以上、好ましくは1.9~5.0倍、更に好ましくは2.2~4.0倍であれば、高温域の抵抗変化率を増大させつつ、内部抵抗の上昇開始温度を低下させることも可能になる。
 中間層に含まれるバインダーの質量平均分子量は、正極合剤層に含まれるバインダーよりも大きいことを限度として特に制限されないが、高温域の抵抗変化率をより一層効果的に増大させるという観点から、好ましくは46万以上、更に好ましくは46万~100万が挙げられる。とりわけ、中間層に含まれるバインダーの質量平均分子量が、54万以上、好ましくは54万~100万、更に好ましくは63万~100万であれば、高温域の抵抗変化率を増大させつつ、内部抵抗の上昇開始温度を低下させることも可能になる。
 また、正極合剤層に含まれるバインダーの質量平均分子量は、中間層に含まれるバインダーよりも小さいことを限度として特に制限されないが、高温域の抵抗変化率の増大、更には内部抵抗の上昇開始温度の低下をより一層効果的に実現するという観点から、好ましくは63万以下、より好ましくは28万~54万、更に好ましくは28万~46万が挙げられる。
 本明細書において、バインダーの質量平均分子量は、JISK7252-2に準拠してGPC(ゲルパーミエーションクロマトグラフィー)法によって、分子量標準物質としてポリスチレンを使用して求められる値である。また、中間層及び/又は正極合剤層において2種以上のバインダーを組み合わせて使用している場合には、バインダーの質量平均分子量は、各層に含まれるバインダー全体の質量平均分子量である。
 また、中間層に使用されるバインダーとして、ポリフッ化ビニリデンの共重合体を用いた場合は、バインダーとしての機能と共に、内部抵抗の上昇開始温度を大きく低下させることができるため好ましい。このようにポリフッ化ビニリデンの共重合体によって内部抵抗の上昇開始温度を低下させる作用メカニズムについては、限定的な解釈を望むものではないが、次のように推測される。ポリフッ化ビニリデンに異種のモノマーが導入されると、ポリフッ化ビニリデンに比べて結晶性が低下し、非晶質な部分が生成する。この非晶質な部分は、非水電解質の溶媒と安定化し易く、同じ環境温度でも結晶性の高いポリフッ化ビニリデンよりも溶媒を取り込みやすくなる。このため、中間層にポリフッ化ビニリデンの共重合体を含有させることにより、抵抗上昇開始温度が低下すると考えられる。
 ポリフッ化ビニリデンの共重合体に含まれるフッ化ビニリデン以外の単量体の種類については、特に制限されないが、例えば、ヘキサフルオロプロピレン(HFP)、テトラフルオロエチレン(TFE)等のフッ素含有モノマー等が挙げられる。ポリフッ化ビニリデンの共重合体において、フッ化ビニリデン以外の単量体は、1種単独で含まれていてもよく、また2種以上が組み合わされて含まれていてもよい。
 ポリフッ化ビニリデンの共重合体として、具体的には、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体等が挙げられる。これらのポリフッ化ビニリデンの共重合体の中でも、抵抗上昇開始温度をより一層効果的に低下させるという観点から、好ましくは、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、及びフッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、更に好ましくはフッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体が挙げられる。
 また、ポリフッ化ビニリデンの共重合体には、必要に応じて、官能基が導入されていてもよい。ポリフッ化ビニリデンの共重合体に導入可能な官能基としては、特に制限されないが、例えば、カルボキシル基、カルボニル基、スルホン酸基、ニトロ基、アセチル基、ヒドロキシ基、アミノ基等が挙げられる。これらの官能基は、1種が単独で導入されていてもよく、また2種以上が導入されていてもよい。
[正極板の多孔度]
 正極板の多孔度については、特に制限されないが、例えば15~45%、好ましくは20~35%が挙げられる。このような多孔度を充足することにより、非水電解質蓄電素子の注液性に優れ、エネルギー密度、充放電レート特性等のバランスの良い非水電解質蓄電素子を提供することが可能になる。正極板の多孔度は、放電状態で正極板を取り出して水銀ポロシメーターにより測定される。正極板の多孔度は、中間層及び正極合剤層の塗布重量と厚さを制御することで調整できる。
2.非水電解質蓄電素子
 本発明の非水電解質蓄電素子は、前記正極板を備えることを特徴とする。このように、非水電解質蓄電素子において、前記正極板を使用することにより、高温域の抵抗変化率を増大させることができ、高い安全性を備えさせることが可能になる。
 本発明の非水電解質蓄電素子の具体的態様として、非水電解質二次電池、及びリチウムイオンキャパシタが挙げられる。
 本発明の非水電解質蓄電素子は、前記正極板以外に、非水電解質蓄電素子として機能するために、負極板と、非水電解質と、正極板と負極板との間に配置されるセパレータとを備えていればよい。以下、本発明の非水電解質蓄電素子を構成する部材について詳細に説明する。
[負極板]
 負極板は、負極集電体上に負極合剤層が形成されていればよい。
 負板極に使用される負極集電体としては、特に制限されないが、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、クロムメッキ鋼等の金属材料が挙げられる。これらの中でも、加工し易さとコストの点から、銅が好ましい。
 負極合剤層には、負極活物質が含まれる。負極活物質としては、リチウムイオンやナトリウムイオン等を可逆的に吸蔵及び放出できることを限度として、特に制限されない。非水電解質二次電池に使用される負極活物質として、具体的には、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の非晶質炭素;黒鉛;Al、Si、Pb、Sn、Zn、Cd等の金属とリチウムとの合金;酸化ケイ素;酸化タングステン;酸化モリブデン;硫化鉄;硫化チタン;チタン酸リチウム等が挙げられる。また、リチウムイオンキャパシタに使用される負極活物質として、具体的には、活性炭が挙げられる。これらの負極活物質は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 また、負極合剤層には、前記負極活物質の他に、必要に応じて、導電剤、バインダー、増粘剤、フィラー等の添加剤が含まれていてもよい。これらの添加剤の種類については、正極合剤層に配合されるものと同様である。
 負極板は、負極合剤層の構成成分を、N-メチルピロリドン、トルエン等の有機溶媒又は水に混合してペーストを調製した後、得られたペーストを前記負極集電体の上に塗工し、乾燥、ロールプレス等で負極合剤層の密度及び厚みを調整することによって形成することができる。塗布、乾燥等の方法や条件については周知のものを採用すればよい。
[非水電解質]
 非水電解質に使用される非水溶媒としては、特に制限されないが、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド、スルホラン、スルトン又はその誘導体等が挙げられる。これらの非水溶媒は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 また、非水電解質に使用される支持塩としては、特に制限されるものではなく、一般に非水電解質二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。当該支持塩として、例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiB(C、LiC(CSO等が挙げられる。これらの支持塩は1種単独で用いてもよく、2種以上を混合して用いてもよい。非水電解質における支持塩の含有量については、特に制限されず、使用する支持塩の種類や非水溶媒種類等に応じて適宜設定すればよいが、例えば、0.1~5.0mol/L、好ましくは0.8~2.0mol/Lが挙げられる。
[セパレータ]
 セパレータは、絶縁性を備えるものであることを限度として特に制限されず、微多孔性膜や不織布等が使用される。セパレータを構成する材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂や、ポリイミド系樹脂、セルロース類が挙げられる。これらの材料は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
[他の構成部材]
 また、非水電解質蓄電素子において、その他の構成要素としては、端子、絶縁板、ケース等があるが、本発明の非水電解質蓄電素子において、これらの構成要素は従来用いられているものをそのまま用いても差し支えない。
[非水電解質蓄電素子の構造]
 図2に、本発明の非水電解質蓄電素子の一実施形態である矩形状の非水電解質蓄電素子1の概略図を示す。なお、同図は、容器内部を透視した図としている。図2に示す非水電解液蓄電素子1は、電極群2が外装体3に収納されている。電極群2は、本発明の非水電解質蓄電素子用正極と、負極活物質を含有する負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
 本発明の非水電解液蓄電素子の構成については特に限定されるものではなく、円筒型、角型(矩形状)、扁平型等の蓄電素子が一例として挙げられる。
[製造方法]
 本発明の非水電解質蓄電素子は、正極板と負極版の間にセパレータを挟み、これらに非水電解質を含浸させることによって製造される。
3.蓄電装置
 本発明の蓄電装置は、前記非水電解質蓄電素子を備えることを特徴とする。本発明において、蓄電装置とは、前記非水電解質蓄電素子を用いて、電気エネルギーで作動する動力源に電力を供給したり、当該動力源から電力を供給されたりする装置であり、前記非水電解質蓄電素子の他に、必要に応じて、前記非水電解質蓄電素を制御するために、電子制御ユニット等を備えていてもよい。
 本発明の蓄電装置は、前記非水電解質蓄電素を1個備えていてもよく、また前記非水電解質蓄電素を複数個備えていてもよい。
 本発明の蓄電装置の一実施形態を図3に示す。図3において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解液蓄電素子1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 以下、実施例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定して解釈されるものではない。なお、以下に示すPVDFの質量平均分子量は、JISK7252-2に準拠してGPC法によって測定した値である。また、以下で使用した導電剤(アセチレンブラック)は、JIS K 1469に記載の方法に基づいて測定される嵩密度が0.04g/mlであり、多点法を用いた窒素吸着法(相対蒸気圧は0.05~0.2)により測定されるBET比表面積が68m/gである。
1.リチウム二次電池用正極板の製造
 導電剤(アセチレンブラック)と、バインダーと、非水系溶媒(N-メチルピロリドン;NMP)を含む中間層用のペーストを作製した。実施例1及び2では、質量平均分子量28万と63万の2種のPVDFを適量混合することにより、表1に示す質量平均分子量に調整したPVDFをバインダーとして使用した。実施例3では、質量平均分子量63万のPVDFをバインダーとして使用した。実施例4では、質量平均分子量100万のフッ化ビニリデン-ヘキサフルオロプロピレン共重合体P(VDF-HFP)をバインダーとして使用した。比較例1では、質量平均分子量28万のPVDFをバインダーとして使用した。なお、中間層用のペーストにおいて、導電剤:バインダーの質量比率について、実施例1~4及び比較例1では30:70、参考例1では10:90、参考例2では20:80とした。また、参考例3では、質量平均分子量約50万のフッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(P(VDF-TEF-HFP))をバインダーとして使用し、導電剤:バインダーの質量比率を30:70とした。中間層層用のペーストは、NMPの量を調整することにより、固形分濃度を14質量%に調整し、マルチブレンダーミルを用いた混練工程を経て作製した。この中間層用のペーストを厚さ20μmの集電体(アルミ箔)の片面に塗布し、100℃の恒温槽中でNMPを蒸発させて乾燥することで、中間層を備えた集電体を作製した。
 次に、正極活物質(リチウムニッケルマンガンコバルト複合酸化物(LiNi1/3Mn1/3Co1/3))、導電剤(アセチレンブラック)、バインダー(PVDF)及び非水系溶媒(NMP)を含む正極合剤用のペーストを作製した。ここで、正極合剤用のペーストに用いたPVDFは平均分子量28万である。なお、正極合剤用のペーストにおいて、活物質、バインダー及び導電剤の質量比率は94:3:3(固形分換算)とした。正極合剤用のペーストは、NMPの量を調整することにより、固形分を30質量%に調整し、マルチブレンダーミルを用いた混練工程を経て作製した。この正極合剤用のペーストを前記中間層の上に塗布し、100℃の恒温槽中でNMPを蒸発させて乾燥した。次に、ロールプレスを行い、直径1.4cmの円形状に切り出すことで正極電極板を作製した。正極電極板の中間層の厚みは5μm、正極合剤層の塗布質量は2.0g/100cm、多孔度は30%であった。なお、正極電極板は真空乾燥(温度100℃、14時間)した後、後述の抵抗測定に使用した。
2.電極抵抗の測定
抵抗測定用セルの作製方法
 電極の抵抗測定には、トムセル(有限会社日本トムセル社製)を用いた。このトムセルは、下蓋、電極板、セパレータ、電極板、円盤、板ばね、及び上蓋で構成されている。ステンレス製の下蓋の上に存在するパッキンの内側に、予め非水電解質に浸漬させた二枚の正極電極板により一枚のセパレータを挟み込むようにして載せた。この時、各正極電極板の活物質塗布面が向き合うようにした。その後、ステンレス製の円盤と板ばねをのせ,最後にステンレス製の上蓋を載せた後にナットにより締め付けて固定した。このときの締め付け圧は0.5Nmとした。
 使用した非水電解質及びセパレータは、以下の通りである。
[非水電解質]
 エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)を体積比30:35:35の割合で混合した混合溶媒に、含フッ素系電解質塩である六フッ化リン酸リチウム(LiPF)を1.0mol/lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
[セパレータ]
 セパレータには、透気度が約600秒/100ccである厚さ30μmのポリエチレン微多孔膜を直径1.6cmの円形に加工したものを用いた。
電極抵抗の測定方法
 測定用セルを恒温槽中に入れ、恒温槽を3℃/minで昇温させながら、1kHz(振幅5mV)の交流抵抗を測定した。セル温度は、セルの上面に設置した温度測定用端子により得られた温度を記録した。交流抵抗測定は、ソーラトロン社製の1287型ポテンショ/ガルバノスタットと1260型周波数応答アナライザを組み合わせた装置を使用した。
 測定した抵抗値から、抵抗上昇開始温度及び抵抗変化率を求めた。抵抗上昇開始温度は、最も低い値を示す抵抗値(80℃以下での抵抗値)を100%とした場合に、150%の抵抗値に到達する温度として求めた。また、抵抗変化率は、最も低い値を示す抵抗値(80℃以下での抵抗値)を100%とした場合に、120℃に到達した際の抵抗値の相対比として求めた。
3.測定結果
 得られた結果を表1に示す。この結果から、中間層に含まれるバインダーが、正極合剤層に含まれるバインダーよりも、質量平均分子量が大きい場合(実施例1~4)に、高温に達した際の抵抗が大きくなり、抵抗変化率が高くなることが確認された。また、中間層に含まれるバインダーの質量平均分子量が54万以上、或いは中間層に含まれるバインダーが正極合剤層に含まれるバインダーよりも質量平均分子量が1.9倍以上の場合(実施例2~4)には、抵抗開始温度の低下が認められることも明らかとなった。
 また、参考例3の抵抗上昇開始温度を測定したところ74℃であった。実施例4及び参考例3の結果から、中間層にPVDFの共重合体が含まれている場合、抵抗開始温度の低下幅が大きくなることが認められた。特に、中間層にP(VDF-TEF-HFP)が含まれている場合には、抵抗開始温度の低下幅が格段に大きく、発熱に対する安全性が格段に優れていた。
Figure JPOXMLDOC01-appb-T000001
1 非水電解液蓄電素子
2 電極群
3 外装体
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
11 正極集電体
12 中間層
13 正極合剤層
20 蓄電ユニット
30 蓄電装置

 

Claims (12)

  1.  正極集電体と、正極活物質及びバインダーを含む正極合剤層と、前記正極集電体と前記正極合剤層との間に位置し導電剤及びバインダーを含む中間層とを備え、
     前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量よりも大きいことを特徴とする、非水電解質蓄電素子用正極板。
  2.  前記中間層のバインダーがポリフッ化ビニリデンを含む、請求項1又は2に記載の非水電解質蓄電素子用正極板。
  3.  前記中間層のバインダーがポリフッ化ビニリデンの共重合体を含む、請求項1に記載の非水電解質蓄電素子用正極板。
  4.  前記正極合剤層中のバインダーが、ポリフッ化ビニリデンを含む、請求項1~3のいずれかに記載の非水電解質蓄電素子用正極板。
  5.  前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量に対して1.6倍以上である、請求項1~4のいずれかに記載の非水電解質蓄電素子用正極板。
  6.  前記中間層中のバインダーの質量平均分子量が、前記正極合剤層中のバインダーの質量平均分子量に対して1.9倍以上である、請求項1~4のいずれかに記載の非水電解質蓄電素子用正極板。
  7.  前記中間層中のバインダーの質量平均分子量が46万以上である、請求項1~6のいずれかに記載の非水電解質蓄電素子用正極板。
  8.  前記中間層中の前記導電材の嵩密度が、1.0g/cm 以下である、請求項1~7のいずれかに記載の非水電解質蓄電素子用正極板。
  9.  前記正極合剤層の質量が、0.5~2.5g/100cmである、請求項1~8のいずれかに記載の非水電解質蓄電素子用正極板。
  10.  前記正極合剤層の多孔度が、15~45%である、請求項1~9のいずれかに記載の非水電解質蓄電素子用正極板。
  11.  請求項1~10のいずれかに記載の非水電解質蓄電素子用正極板を備える、非水電解質蓄電素子。
  12.  請求項11に記載の非水電解質蓄電素子を備える、蓄電装置。
     

     
PCT/JP2015/003974 2014-08-11 2015-08-06 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子 WO2016024394A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580042892.4A CN106716683B (zh) 2014-08-11 2015-08-06 非水电解质蓄电元件用正极板及非水电解质蓄电元件
US15/501,690 US20170229711A1 (en) 2014-08-11 2015-08-06 Positive electrode plate for nonaqueous electrolyte energy storage device, and nonaqueous electrolyte energy storage device
DE112015003717.9T DE112015003717T5 (de) 2014-08-11 2015-08-06 Positive Elektrodenplatte für Energiespeichergerät mit nichtwässrigem Elektrolyt, und Energiespeichergerät mit nichtwässrigem Elektrolyt
JP2016542502A JP6743699B2 (ja) 2014-08-11 2015-08-06 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014163886 2014-08-11
JP2014163885 2014-08-11
JP2014-163886 2014-08-11
JP2014-163885 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016024394A1 true WO2016024394A1 (ja) 2016-02-18

Family

ID=55304031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003974 WO2016024394A1 (ja) 2014-08-11 2015-08-06 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子

Country Status (5)

Country Link
US (1) US20170229711A1 (ja)
JP (1) JP6743699B2 (ja)
CN (1) CN106716683B (ja)
DE (1) DE112015003717T5 (ja)
WO (1) WO2016024394A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152277A (ja) * 2017-03-14 2018-09-27 トヨタ自動車株式会社 リチウムイオン二次電池用正極
WO2019022063A1 (ja) * 2017-07-25 2019-01-31 株式会社Gsユアサ 電極、蓄電素子、及び電極の製造方法
JP2019145306A (ja) * 2018-02-20 2019-08-29 トヨタ自動車株式会社 非水電解質二次電池
JP2020009652A (ja) * 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2020012942A1 (ja) * 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2020009651A (ja) * 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2021106591A1 (ja) * 2019-11-29 2021-06-03 三洋電機株式会社 非水電解質二次電池用電極板及び非水電解質二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443421B2 (ja) * 2016-10-12 2018-12-26 トヨタ自動車株式会社 電極の製造方法
CN110828826A (zh) * 2018-08-08 2020-02-21 宁德时代新能源科技股份有限公司 一种电极极片及二次电池
CN111293274A (zh) * 2018-12-10 2020-06-16 广州汽车集团股份有限公司 一种负极极片及其制备方法、锂离子电池
CN111900328A (zh) * 2020-06-22 2020-11-06 珠海冠宇电池股份有限公司 一种正极片及含有该正极片的锂离子电池
CN112820854B (zh) * 2020-12-30 2022-10-14 珠海冠宇电池股份有限公司 一种电极片及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257433A (ja) * 2002-02-28 2003-09-12 Mitsubishi Materials Corp 非水電解液二次電池及び結着剤
JP2009277783A (ja) * 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2013030411A (ja) * 2011-07-29 2013-02-07 Furukawa Sky Kk 集電体、電極構造体、非水電解質電池及び蓄電部品
JP2013232323A (ja) * 2012-04-27 2013-11-14 Sanyo Electric Co Ltd 非水電解質二次電池用の負極、その製造方法、及び非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214480C (zh) * 1997-12-22 2005-08-10 三菱电机株式会社 锂离子二次电池及其制造方法
WO2002084764A1 (fr) * 2001-04-10 2002-10-24 Mitsubishi Materials Corporation Batterie secondaire polymere ion lithium, son electrode et procede pour synthetiser un compose polymere dans un liant utilise dans une couche d'adhesion de celle-ci
US7179565B2 (en) * 2001-12-06 2007-02-20 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
JP5167703B2 (ja) * 2007-06-20 2013-03-21 日産自動車株式会社 電池用電極
JP2014120399A (ja) * 2012-12-18 2014-06-30 Toshiba Corp 電極、電池および電池パック
JP6037171B2 (ja) * 2013-06-24 2016-11-30 トヨタ自動車株式会社 非水電解質二次電池とその製造方法
JP2015103332A (ja) * 2013-11-22 2015-06-04 トヨタ自動車株式会社 非水電解液二次電池
JP6252841B2 (ja) * 2013-11-25 2017-12-27 株式会社Gsユアサ 蓄電素子
US10804543B2 (en) * 2015-04-06 2020-10-13 The Research Foundation For The State University Of New York Ultrathin, ternary alloy PtRuFe nanowires, and methods of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257433A (ja) * 2002-02-28 2003-09-12 Mitsubishi Materials Corp 非水電解液二次電池及び結着剤
JP2009277783A (ja) * 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2013030411A (ja) * 2011-07-29 2013-02-07 Furukawa Sky Kk 集電体、電極構造体、非水電解質電池及び蓄電部品
JP2013232323A (ja) * 2012-04-27 2013-11-14 Sanyo Electric Co Ltd 非水電解質二次電池用の負極、その製造方法、及び非水電解質二次電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152277A (ja) * 2017-03-14 2018-09-27 トヨタ自動車株式会社 リチウムイオン二次電池用正極
WO2019022063A1 (ja) * 2017-07-25 2019-01-31 株式会社Gsユアサ 電極、蓄電素子、及び電極の製造方法
EP3660955A4 (en) * 2017-07-25 2020-07-22 GS Yuasa International Ltd. ELECTRODE, ENERGY STORAGE ELEMENT AND ELECTRODE MANUFACTURING PROCESS
JPWO2019022063A1 (ja) * 2017-07-25 2020-07-27 株式会社Gsユアサ 電極、蓄電素子、及び電極の製造方法
JP2019145306A (ja) * 2018-02-20 2019-08-29 トヨタ自動車株式会社 非水電解質二次電池
JP2020009652A (ja) * 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2020012942A1 (ja) * 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2020009651A (ja) * 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7043998B2 (ja) 2018-07-10 2022-03-30 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7086760B2 (ja) 2018-07-10 2022-06-20 株式会社Eneosマテリアル 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2021106591A1 (ja) * 2019-11-29 2021-06-03 三洋電機株式会社 非水電解質二次電池用電極板及び非水電解質二次電池

Also Published As

Publication number Publication date
JPWO2016024394A1 (ja) 2017-05-25
CN106716683B (zh) 2020-10-02
CN106716683A (zh) 2017-05-24
JP6743699B2 (ja) 2020-08-19
US20170229711A1 (en) 2017-08-10
DE112015003717T5 (de) 2017-05-04

Similar Documents

Publication Publication Date Title
JP6743699B2 (ja) 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子
KR102201335B1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2017038041A1 (ja) 非水電解質二次電池
CN111357141B (zh) 电化学元件用导电材料糊、电化学元件正极用浆料组合物及其制造方法、电化学元件用正极以及电化学元件
WO2013031226A1 (ja) 非水電解質二次電池
WO2018155207A1 (ja) 二次電池およびその製造方法
JP2015115168A (ja) リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池
JP6565899B2 (ja) 非水電解質二次電池
JP5928591B2 (ja) リチウムイオン二次電池
EP3264502A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2015034080A1 (ja) セパレータ及びそれを用いた蓄電デバイス
CN111095615A (zh) 锂二次电池用负极、其制造方法以及包含其的锂二次电池
KR20200089182A (ko) 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지
JP6622819B2 (ja) 出力特性が向上したリチウム二次電池
JP2021099939A (ja) 非水電解質二次電池用負極及び非水電解質二次電池
EP3451422B1 (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6119641B2 (ja) 円筒形非水電解液二次電池
KR101905061B1 (ko) 리튬 이온 이차 전지
JP2016143505A (ja) 非水電解質蓄電素子用正極板、及び非水電解質蓄電素子
WO2019022063A1 (ja) 電極、蓄電素子、及び電極の製造方法
JP6613952B2 (ja) 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池
US20200220171A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018078029A (ja) 負極及び非水電解質蓄電素子
JP2012065474A (ja) 電気自動車の制御装置
JP6870515B2 (ja) リチウムイオンキャパシタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542502

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003717

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832640

Country of ref document: EP

Kind code of ref document: A1