WO2019021983A1 - 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 - Google Patents

高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 Download PDF

Info

Publication number
WO2019021983A1
WO2019021983A1 PCT/JP2018/027433 JP2018027433W WO2019021983A1 WO 2019021983 A1 WO2019021983 A1 WO 2019021983A1 JP 2018027433 W JP2018027433 W JP 2018027433W WO 2019021983 A1 WO2019021983 A1 WO 2019021983A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
band
filter
high frequency
node
Prior art date
Application number
PCT/JP2018/027433
Other languages
English (en)
French (fr)
Inventor
浩司 野阪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202311040641.5A priority Critical patent/CN117060880A/zh
Priority to CN201880049640.8A priority patent/CN110999081B/zh
Publication of WO2019021983A1 publication Critical patent/WO2019021983A1/ja
Priority to US16/746,996 priority patent/US11283428B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/66Phase shifters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/19Two-port phase shifters providing a predetermined phase shift, e.g. "all-pass" filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/66Phase shifters
    • H03H9/68Phase shifters using surface acoustic waves

Definitions

  • the present invention relates to a high frequency filter, a multiplexer, a high frequency front end circuit and a communication device.
  • a wireless receiving circuit including a plurality of band pass filters having different pass bands connected in parallel to one another and a switch element connected to a plurality of band pass filters connected in parallel.
  • a switch element connected to a plurality of band pass filters connected in parallel.
  • An object of the present invention is to provide a low loss wide band high frequency filter, multiplexer, high frequency front end circuit and communication device in which ripple (insertion loss deviation) in the passband is reduced.
  • a high frequency filter is a high frequency filter having a first band as a pass band, and is provided on a path connecting a first input / output terminal and a second input / output terminal.
  • a first node provided, and a first circuit connected to a second node provided between the first node on the path and the second input / output terminal, the first node and the second
  • a second circuit connected to a node, wherein the first circuit is a band including a part of the frequency of the first band and passes through a second band having a narrower bandwidth than the first band
  • a second filter is a band including a part of the frequency of the first band and has a narrower bandwidth than the first band, and the second band.
  • a high frequency filter having a first wide band as a pass band by arranging a first filter and a second filter in parallel between a first node and a second node and combining the first filter and the second filter. It is assumed that ripples occur in the first band due to the difference in amplitude, phase and impedance of the two filters.
  • the phase difference and the impedance can be made to correspond to the amplitude difference between the two filters. It becomes possible to adjust. Therefore, it is possible to realize a low loss, wide band high frequency filter in which the first band is a pass band and ripples in the pass band are reduced.
  • the frequency at which the impedance of the second circuit is maximized among the singular points at which the impedance of the second circuit is maximized is the second frequency.
  • the phases of the first phase shifter and the second phase shifter are adjusted so as to be included in the range from the frequency at the lower end of the two bands to the cutoff frequency on the lower side of the pass band of the second filter. May be
  • a frequency at which the first circuit and the second circuit have the same phase in the second band there may be at least one location, and there may be at least one frequency where the first circuit and the second circuit are in phase in the third band.
  • the sum of the phase difference between the first filter and the second filter and the sum of phase shifts of the first phase shifter and the second phase shifter is The phase shift of the first phase shifter and the second phase shifter may be adjusted so as to be 312 ° or more and 362 ° or less.
  • the path is a first path passing through the first node, the first circuit, and the second node, and a second path passing through the first node, the second circuit, and the second node.
  • the first filter includes: a first series arm circuit provided on the first path; and a first parallel arm circuit connected to a node provided on the first path and a ground.
  • a second series arm circuit provided on the second path connecting the first phase shifter and the second phase shifter, and the second filter provided on the second path A second parallel arm circuit connected to the selected node and the ground, the first series arm circuit, the first parallel arm circuit, the second series arm circuit, and the second parallel arm circuit At least one of the plurality of elastic wave resonators, and at least one of the elastic wave resonators And an IDT (InterDigital Transducer) electrode formed on a substrate having piezoelectricity, and a reflector, and the wavelength of the elastic wave determined by the electrode period of the IDT electrode in at least one of the elastic wave resonators In the case of ⁇ , the pitch between the IDT electrode and the reflector may be 0.42 ⁇ or more and less than 0.50 ⁇ .
  • An elastic wave resonator having an IDT electrode and a reflector is constituted by a periodic structure consisting of periodically arranged electrode fingers, and has a frequency band that reflects a surface acoustic wave in a specific frequency range with a high reflection coefficient.
  • This frequency band is generally referred to as a stop band, and is defined by the repetition period of the periodic structure or the like.
  • ripples in which the reflection coefficient locally increases are generated.
  • the pitch (IR pitch) between the IDT electrode and the reflector is 0.5 ⁇ or more, the ripple at the high end of the stop band becomes large, the ripple in the pass band of the filter becomes large, and the insertion loss Becomes larger.
  • the IR pitch is 0.42 ⁇ or more and less than 0.50 ⁇ , it is possible to reduce the ripple at the high end of the stop band. From the above point of view, by setting the IR pitch to be 0.42 ⁇ or more and less than 0.50 ⁇ , the insertion loss in the pass band of the high frequency filter can be reduced.
  • the first circuit further includes a first switch element connected between the first node and the first filter, and a second switch element connected between the second node and the first filter.
  • a switch element may be provided, and switching between conduction and non-conduction of the first switch element and the second switch element may switch between the first band and the third band.
  • variable-frequency high frequency filter capable of switching between the first band and the third band by switching between conduction and non-conduction of the first switch element and the second switch element.
  • the first circuit is further connected between a connection node between the first switch element and the first filter, and the ground, and conduction and non-conduction are exclusively performed with the first switch element.
  • the third switch element to be switched, the connection node between the second switch element and the first filter, and the ground are connected, and conduction and non-conduction are switched exclusively to the second switch element.
  • a fourth switch element is provided.
  • the second circuit is further connected between a fifth switch element connected between the first node and the first phase shifter, and between the second node and the second phase shifter.
  • the first band and the second band may be switched by switching between conduction and non-conduction of the fifth switch element and the sixth switch element.
  • variable-frequency high frequency filter capable of switching between the first band and the second band by switching between conduction and non-conduction of the fifth switch element and the sixth switch element.
  • the second circuit is further connected between a connection node between the fifth switch element and the first phase shifter and the ground, and is conductive and non-conductive exclusively with the fifth switch element. It is connected between a seventh switch element whose conduction is switched, a connection node between the sixth switch element and the second phase shifter, and the ground, and is conductive and non-conductive exclusively with the sixth switch element. And an eighth switch element whose conduction is switched.
  • a third circuit connected to the first node and the second node is provided, and the third circuit is a band including a part of the frequency of a fourth band different from the first band,
  • a third filter that has a narrower bandwidth than the fourth band, is located on a higher frequency side than the center frequency of the second band, and uses a fifth band different from the third band as a pass band;
  • a third phase shifter connected to one terminal of the third filter and a fourth phase shifter connected to the other terminal of the third filter may be provided.
  • the first phase shifter includes one or more inductors arranged in a series arm path connecting the first node and one terminal of the second filter, a node on the series arm path, and a ground
  • a low pass filter circuit having a capacitor connected between the one or more capacitors arranged in the series arm path, and an inductor connected to a node on the series arm path and a ground It may be a high pass filter circuit.
  • the circuit configuration of the first phase shifter can be appropriately selected as either the low pass filter circuit or the high pass filter circuit according to the required attenuation characteristic.
  • the second phase shifter includes at least one inductor disposed in a series arm path connecting the second node and the other terminal of the second filter, and a node and a ground on the series arm path.
  • a low pass filter circuit composed of connected capacitors, or one or more capacitors arranged in the series arm path, and an inductor connected to a node on the series arm path and the ground It may be a high pass filter circuit.
  • the circuit configuration of the second phase shifter can be appropriately selected as either the low pass filter circuit or the high pass filter circuit according to the required attenuation characteristic.
  • the first phase shifter and the second phase shifter may be impedance elements formed of a capacitor or an inductor.
  • the circuit configuration of the high frequency filter can be simplified and miniaturization can be achieved.
  • At least one of the first filter and the second filter is connected to a series arm circuit disposed on the path connecting the first node and the second node, and to a node on the path and a ground.
  • a parallel arm circuit, at least one of the series arm circuit and the parallel arm circuit includes a resonator and a ninth switch element, and switching between conduction and non-conduction of the ninth switch element The resonant frequency and / or the antiresonant frequency of at least one of the series arm circuit and the parallel arm circuit may be switched.
  • At least one of the first filter and the second filter is any of a surface acoustic wave filter, a boundary acoustic wave filter, and an elastic wave filter using a bulk acoustic wave (BAW). It is also good.
  • At least one of the first filter and the second filter may have a longitudinally coupled resonator.
  • the sharpness can be improved and the attenuation can be improved.
  • phase of the first phase shifter may be different from the phase of the second phase shifter.
  • a multiplexer includes a plurality of filters including the high frequency filter according to any one of the above, and the input terminals or the output terminals of the plurality of filters are connected directly or indirectly to a common terminal. It is done.
  • a high frequency front end circuit includes the high frequency filter according to any one of the above or the multiplexer according to the above, and an amplifier circuit directly or indirectly connected to the high frequency filter or the multiplexer. Equipped with
  • a communication apparatus includes: an RF signal processing circuit processing high frequency signals transmitted and received by an antenna element; and transmitting the high frequency signal between the antenna element and the RF signal processing circuit. And the described high frequency front end circuit.
  • FIG. 1A is a circuit block diagram of a high frequency filter according to a first embodiment.
  • FIG. 1B is a diagram showing the concept of increasing the bandwidth of the high frequency filter according to the first embodiment.
  • FIG. 2 is a circuit diagram of the high frequency filter according to the first embodiment.
  • FIG. 3A is a circuit block diagram of a high frequency filter according to Comparative Example 1.
  • FIG. 3B is a circuit block diagram of a high frequency filter according to Comparative Example 2.
  • FIG. 4A is a graph showing the pass characteristic, the amplitude characteristic, the phase characteristic, and the impedance characteristic of the high frequency filter according to Comparative Example 1.
  • FIG. 4B is a graph showing the pass characteristic, the amplitude characteristic, the phase characteristic, and the impedance characteristic of the high frequency filter according to Comparative Example 2.
  • FIG. 5 is a graph showing pass characteristics, amplitude characteristics, phase characteristics, and impedance characteristics of the high frequency filter according to the first embodiment.
  • FIG. 6 is a graph for explaining the factor of broadening the band of the high frequency filter according to the first embodiment.
  • FIG. 7 is a graph showing pass characteristics, phase characteristics, and impedance characteristics when the phase of the phase shifter of the high frequency filter according to the first embodiment is changed.
  • FIG. 8 is a graph showing the relationship between the phase, the insertion loss, and the maximum impedance of the phase shifter of the high frequency filter according to the first embodiment.
  • FIG. 9 is a circuit diagram of a high frequency filter according to Examples 1a, 1b, 1c, 1d and 1e.
  • FIG. 10 is an example of a diagram schematically showing the structure of the parallel arm resonator in the first embodiment.
  • FIG. 11A is a graph comparing the pass characteristic and the reflection characteristic of the high frequency filters according to Example 1a and Example 1e.
  • FIG. 11B is a graph comparing impedance characteristics and reflection characteristics of series arm resonators according to Example 1a and Example 1e.
  • FIG. 12A is a graph comparing the pass characteristics of the high frequency filters according to Example 1 b and Example 1 e.
  • FIG. 12B is a graph comparing impedance characteristics and reflection characteristics of parallel arm resonators according to Example 1 b and Example 1 e.
  • FIG. 13A is a graph comparing the pass characteristics of the high frequency filters according to Example 1c and Example 1e.
  • FIG. 11A is a graph comparing the pass characteristic and the reflection characteristic of the high frequency filters according to Example 1a and Example 1e.
  • FIG. 11B is a graph comparing impedance characteristics and reflection characteristics of series arm
  • FIG. 13B is a graph comparing impedance characteristics and reflection characteristics of parallel arm resonators according to Example 1 c and Example 1 e.
  • FIG. 14 is a graph comparing the pass characteristic and the reflection characteristic of the high frequency filters according to Example 1 d and Example 1 e.
  • FIG. 15A is a graph showing a change in characteristics when the IR pitch is changed at 0.40 ⁇ to 0.50 ⁇ in the resonator of the typical example.
  • FIG. 15B is a graph showing a change in characteristics when the IR pitch is changed at 0.50 ⁇ to 0.60 ⁇ in the resonator of the typical example.
  • FIG. 16 is a circuit block diagram of the high frequency filter according to the second embodiment.
  • FIG. 17A is a circuit configuration diagram of a high frequency filter according to a second embodiment.
  • FIG. 17B is a graph showing a change in pass characteristics due to the switching of the switch of the high frequency filter according to the second embodiment.
  • FIG. 18 is a graph for explaining the factor of increasing the bandwidth of the high frequency filter according to the second embodiment.
  • FIG. 19 is a graph showing the pass characteristic when the switch-off capacity of the high frequency filter according to the second embodiment is changed.
  • FIG. 20 is a circuit block diagram of the high frequency filter according to the third embodiment.
  • FIG. 21 is a graph showing the pass characteristic of the high frequency filter according to the third embodiment.
  • FIG. 22A is a circuit configuration diagram of a high frequency filter according to Modification 1 of Embodiment 2.
  • FIG. 22A is a circuit configuration diagram of a high frequency filter according to Modification 1 of Embodiment 2.
  • FIG. 22B is a circuit configuration diagram of a high frequency filter according to a second modification of the second embodiment.
  • FIG. 23 is a graph comparing the pass characteristics of the high frequency filters according to the first and second modifications of the second embodiment.
  • FIG. 24A is a circuit configuration diagram of a high frequency filter according to a fourth embodiment.
  • FIG. 24B is a graph showing the change of the passage characteristic due to the switch of the high frequency filter according to the fourth embodiment.
  • FIG. 25 is a graph for explaining the factor of increasing the band in the first band of the high frequency filter according to the fourth embodiment.
  • FIG. 26 is a graph for explaining the factor of increasing the band in the 1a band of the high frequency filter according to the fourth embodiment.
  • FIG. 27A is a circuit configuration diagram of a high frequency filter according to a fifth embodiment.
  • FIG. 27B is a graph showing a change in pass characteristics due to switching of a switch of the high frequency filter according to the fifth embodiment.
  • FIG. 28 is a graph for explaining the factor of increasing the bandwidth of the high frequency filter according to the fifth embodiment.
  • FIG. 29A is a circuit configuration diagram of a high frequency filter according to a sixth embodiment.
  • FIG. 29B is a graph showing a change in passage characteristics due to the switch of the high frequency filter according to the sixth embodiment.
  • FIG. 30 is a graph for explaining the factor of increasing the band in the first band of the high frequency filter according to the sixth embodiment.
  • FIG. 31 is a graph for explaining the factor of increasing the band in the 1b band of the high frequency filter according to the sixth embodiment.
  • 32A is a circuit configuration diagram of Modification Example 1 of each filter configuring the high-frequency filter according to Example 6.
  • 32B is a circuit configuration diagram of Modification Example 2 of each of the filters forming the high-frequency filter according to Example 6.
  • FIG. 32C is a circuit configuration diagram of Modification Example 3 of each of the filters forming the high-frequency filter according to Example 6.
  • FIG. 32D is a circuit configuration diagram of Modification Example 4 of each filter configuring the high-frequency filter according to Example 6.
  • FIG. 33A is a circuit configuration diagram of Modified Example 5 of each filter configuring the high frequency filter according to Example 6.
  • FIG. 33B is a circuit configuration diagram of Modified Example 6 of each filter configuring the high frequency filter according to Example 6.
  • FIG. 33C is a circuit configuration diagram of Modified Example 7 of each filter configuring the high frequency filter according to Example 6.
  • FIG. 33D is a circuit configuration diagram of Modified Example 8 of the filters configuring the high frequency filter according to Example 6.
  • FIG. 33E is a circuit configuration diagram of Modification 9 of the filters configuring the high-frequency filter according to the sixth embodiment.
  • FIG. 33F is a circuit configuration diagram of Modified Example 10 of the filters configuring the high-frequency filter according to Example 6.
  • FIG. 33G is a circuit configuration diagram of Modification 11 of the filters configuring the high-frequency filter according to Embodiment 6.
  • FIG. 34 is a block diagram of the communication device and its peripheral circuits according to the sixth embodiment.
  • the resonant frequency in the resonator or circuit is a resonant frequency for forming an attenuation pole in the pass band or near the pass band of the resonator or the filter including the circuit, and the resonator Alternatively, it is the frequency of the “resonance point” which is a singular point at which the impedance of the circuit becomes minimum (ideally, the point at which the impedance is 0).
  • the antiresonance frequency in the resonator or the circuit is an antiresonance frequency for forming an attenuation pole in the pass band or near the pass band of the resonator or the filter including the circuit, unless otherwise specified. It is the frequency of the "anti-resonance point" which is a singular point at which the impedance of the resonator or the circuit concerned is maximal (ideally, the point at which the impedance is infinite).
  • a series arm (resonance) circuit and a parallel arm (resonance) circuit are defined as follows.
  • the parallel arm (resonance) circuit is a circuit disposed between one node on a path connecting the first input / output terminal and the second input / output terminal and the ground.
  • the series arm (resonance) circuit is a circuit disposed between the first input / output terminal or the second input / output terminal and a node on the above path to which the parallel arm (resonance) circuit is connected, or The circuit is disposed between one node on the path to which the parallel arm (resonance) circuit is connected and the other node on the path to which the other parallel arm (resonance) circuit is connected.
  • passband lower end means “the lowest frequency in the passband”.
  • pass band high end means “the highest frequency in the pass band”.
  • low pass band side means “outside of pass band and lower frequency side than pass band”.
  • high pass side of pass band means “outside of pass band and higher frequency side than pass band”.
  • the “low frequency side” may be referred to as the “low frequency side”
  • the “high frequency side” may be referred to as the “high frequency side”.
  • FIG. 1A is a circuit block diagram of the high frequency filter 10 according to the first embodiment.
  • the high frequency filter 10 shown in the figure includes filters 11 and 12, phase shifters 21 and 22, and input / output terminals 110 and 120.
  • the filter 11 is a first filter that constitutes a first circuit.
  • the first circuit includes a node X1 (first node) provided on a path connecting the input / output terminal 110 (first input / output terminal) and the input / output terminal 120 (second input / output terminal), and a node X1 and It is connected to a node X2 (second node) provided between the input and output terminals 120.
  • the filter 12 is a second filter that constitutes a second circuit together with the phase shifters 21 and 22.
  • the second circuit is connected to nodes X1 and X2.
  • the phase shifter 21 is a first phase shifter connected to one terminal of the filter 12.
  • the phase shifter 22 is a second phase shifter connected to the other terminal of the filter 12. That is, the phase shifter 21, the filter 12, and the phase shifter 22 are connected in series between the node X1 and the node X2 in this order.
  • FIG. 1B is a diagram showing the concept of broadening the band of the high-frequency filter 10 according to the first embodiment.
  • the high frequency filter 10 has a first wide band as a pass band.
  • the filter 11 is a band including a part of the frequency of the first band, and a second band having a narrower bandwidth than the first band is a pass band.
  • the filter 12 is a band including a portion of the frequency of the first band, has a narrower bandwidth than the first band, and passes through a third band located higher than the center frequency of the second band. It is a band.
  • the first band is not defined as a band constituted by a plurality of discrete bands, but is defined as one band continuous in frequency.
  • FIG. 2 is a circuit configuration diagram of the high frequency filter 10A according to the first embodiment.
  • the high frequency filter 10A shown in the figure includes filters 11A and 12A, phase shifters 21 and 22, and input / output terminals 110 and 120.
  • High frequency filter 10A is a specific circuit configuration example of high frequency filter 10 according to the first embodiment
  • filter 11A is a specific circuit configuration example of filter 11
  • filter 12A is a specific circuit configuration example of filter 12 .
  • the filter 11A includes series arm resonators s11, s12 and s13 disposed on a first path connecting the node X1 and the node X2, and a parallel arm disposed between each node on the first path and the ground.
  • a resonator p11, p12, p13 and p14, and a parallel arm resonator p13 and an inductor Lp13 connected to the ground are provided.
  • the filter 11A constitutes a ladder type band pass filter.
  • the filter 12A includes series arm resonators s21 and s22 arranged on a second path connecting the node X1 and the node X2, and parallel arm resonators arranged between each node on the second path and the ground. and p21, p22 and p23.
  • the filter 12A constitutes a ladder type band pass filter.
  • Table 1 shows circuit parameters of the high frequency filter 10A according to the first embodiment.
  • the phase shifter 21 is disposed at one end of the second filter, and the phase shifter 22 is disposed at the other end of the second filter. It features an arrangement.
  • the features and problems of the high frequency filter according to the comparative example will be described.
  • FIG. 3A is a circuit block diagram of the high frequency filter 500 according to the first comparative example.
  • FIG. 3B is a circuit block diagram of the high frequency filter 600 according to the second comparative example.
  • the high frequency filter 500 according to Comparative Example 1 shown in FIG. 3A includes the filters 11 and 12 and the input / output terminals 110 and 120.
  • the high frequency filter 500 shown in FIG. 3A differs from the high frequency filter 10 shown in the embodiment only in that the phase shifters 21 and 22 are not arranged.
  • the filters 11 and 12 constituting the high frequency filter 500 have the same configuration as the filters 11 and 12 constituting the high frequency filter 10, and the filter 11 of the high frequency filter 500 has a second band as a pass band.
  • Reference numeral 12 designates the third band as the pass band.
  • the high frequency filter 600 according to the comparative example 2 shown in FIG. 3B includes the filters 11 and 12, the phase shifter 21, and the input and output terminals 110 and 120.
  • the high frequency filter 600 according to Comparative Example 2 shown in FIG. 3B is different from the high frequency filter 10 shown in the embodiment only in that the phase shifter 22 is not disposed.
  • the filters 11 and 12 constituting the high frequency filter 600 have the same configuration as the filters 11 and 12 constituting the high frequency filter 10, and the filter 11 of the high frequency filter 500 has a second band as a pass band.
  • Reference numeral 12 designates the third band as the pass band.
  • the second band is a Band 3 reception pass band (1805-1880 MHz) of LTE (Long Term Evolution), and the third band is a Band 39 pass band of LTE
  • the first band is (Band 3 reception pass band + Band 39 pass band) (1805-1920 MHz).
  • FIG. 4A is a graph showing the pass characteristic, the amplitude characteristic, the phase characteristic, and the impedance characteristic of the high frequency filter 500 according to the first comparative example.
  • the pass characteristics of the high frequency filter 500 are shown in (a) and (f) of FIG. 4A.
  • In (b) and (c) of FIG. 4A an amplitude difference and a phase difference between the first circuit alone between the nodes X1 and X2 and the second circuit alone between the nodes X1 and X2 are shown.
  • impedance characteristics are shown when the first circuit alone and the second circuit alone are viewed from the node X1.
  • FIG. 4A shows impedance characteristics when the first circuit single unit and the second circuit single unit are viewed from the node X2.
  • G shows the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2.
  • phase characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2 are shown.
  • the “impedance” of the circuit refers to the impedance of reflection
  • the “phase” of the circuit represents the phase of passage
  • FIG. 4B is a graph showing the pass characteristic, the amplitude characteristic, the phase characteristic, and the impedance characteristic of the high frequency filter 600 according to the second comparative example.
  • the pass characteristics of the high frequency filter 600 are shown in (a) and (f) of FIG. 4B.
  • In (b) and (c) of FIG. 4B an amplitude difference and a phase difference between the first circuit alone between the nodes X1 and X2 and the second circuit alone between the nodes X1 and X2 are shown.
  • the impedance characteristics are shown when the first circuit alone and the second circuit alone are viewed from the node X1.
  • FIG. 4B (e) shows impedance characteristics when the first circuit alone and the second circuit alone are viewed from the node X2.
  • FIG. 4B (g) shows the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2.
  • (h) of FIG. 4B phase characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2 are shown.
  • FIG. 5 is a graph showing the pass characteristic, the amplitude characteristic, the phase characteristic, and the impedance characteristic of the high frequency filter 10A according to the first embodiment.
  • the pass characteristics of the high frequency filter 10A are shown in (a) and (f) of FIG.
  • FIGS. 5B and 5C respectively show an amplitude difference and a phase difference between the first circuit alone between the nodes X1 and X2 and the second circuit alone between the nodes X1 and X2.
  • FIG. 5D shows impedance characteristics when the first circuit unit and the second circuit unit are viewed from the node X1.
  • FIG. 5E shows impedance characteristics when the first circuit unit and the second circuit unit are viewed from the node X2.
  • FIG. 5 (g) shows the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2.
  • FIG. 5H shows phase characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2.
  • the phase shifters 21 and 22 are connected to both input / output terminals (previous stage and subsequent stage) of the filter 12A, as shown in (a) and (f) of FIG. As shown, in the first band which is the pass band of the high frequency filter 10A, the ripple is reduced to reduce the insertion loss.
  • the high frequency filter 10A according to the first embodiment reduces the in-passband ripple and the in-passband insertion loss as compared to the high frequency filter 500 according to the first comparative example and the high frequency filter 600 according to the second comparative example are described below. explain.
  • FIG. 6 is a graph for explaining the factor of increasing the bandwidth of the high frequency filter 10A according to the first embodiment.
  • (c), (d), (e), (g) and (h) are shown in order to explain the above factors.
  • frequency f 11 which is the maximum of the impedance of the singular point as a maximum is the low frequency end of the second band
  • the phases of the phase shifters 21 and 22 are adjusted so as to be included in the frequency band from the frequency f A to the cut-off frequency f C on the low pass band side of the filter 12A.
  • frequency f 22 which is the maximum of the impedance of the singular point as a maximum is the frequency f A of the low-frequency end of the second band, the filter 12A
  • the phases of the phase shifters 21 and 22 are adjusted so as to be included in the frequency band up to the cutoff frequency f C on the lower side of the pass band.
  • the cut-off frequency on the low pass side of the filter is the lowest pass band among the frequencies on the low side of the low pass band which is increased by a predetermined insertion loss from the insertion loss at the low end of the pass band of the filter. It is a frequency close to the end.
  • the cut-off frequency on the lower side of the passband is defined as the frequency on the lower side of the passband which is increased by 10 dB from the insertion loss at the lower end of the passband.
  • the phase change is large, the phase difference with the filter 11A is large, and the amplitude difference is also large. Therefore, by the phase adjustment of the phase shifters 21 and 22, the impedance of the second circuit is in the frequency range from the frequency f A at the low band end of the second band to the cutoff frequency f C at the low band side of the filter 12A.
  • the impedance of the second circuit is in the frequency range from the frequency f A at the low band end of the second band to the cutoff frequency f C at the low band side of the filter 12A.
  • the amplitude difference and the phase difference between the filter 11A and the second circuit become large also at the frequency of the attenuation pole on the high band side of the pass band (second band) of the filter 11A, but the attenuation pole concerned is the filter 11A. It is comprised by the antiresonance frequency of the series arm circuit to comprise. For this reason, since the impedance of the filter 11A is maximum, even if there is no phase shifter, it does not become a ripple in the pass band (first band) of the high frequency filter 10A.
  • of the series arm resonator, the parallel arm resonator, the series arm circuit and the parallel arm circuit is minimized is the resonance frequency
  • is the maximum is the antiresonance frequency.
  • the phase shifters 21 and 22 are adjusted such that the phase difference between the first circuit and the second circuit is in the same phase in a small frequency band.
  • the high frequency signals of the frequencies included in the first band do not cancel each other after passing through the first circuit and the second circuit.
  • the ripple in the 1st zone can be reduced in the frequency contained in the 1st zone of high frequency filter 10A.
  • the first circuit and the second circuit are the same in the second band.
  • FIG. 7 is a graph showing pass characteristics, phase characteristics, and impedance characteristics when the phases of the phase shifters 21 and 22 of the high frequency filter 10A according to the first embodiment are changed.
  • FIG. 8 is a graph showing the relationship between the phase of the phase shifters 21 and 22 of the high frequency filter 10A according to the first embodiment and the frequency of the insertion loss and the maximum impedance. Note that the frequency of the maximum impedance is a frequency at which the impedance is maximized among the singular points at which the impedance is maximized. More specifically, FIG. 7 shows changes in pass characteristics, phase characteristics and impedance characteristics when the phase of phase shifters 21 and 22 is changed from 0 ° to 150 ° (synonymous with 180 ° to 330 °). Is shown.
  • FIG. 8 shows the change in the insertion loss and the maximum impedance when the phase of the phase shifters 21 and 22 is changed in steps of 5 ° at 0 ° to 175 ° (equivalent to 180 ° to 355 °). There is.
  • phase difference between the first circuit and the second circuit is opposite (a phase of 180
  • the ripples increase, and when the phase difference (0 ° or 360 ° phase difference) is reached, the ripples decrease. Therefore, by eliminating the phase difference between the first circuit and the second circuit in the frequency band where the amplitude difference in the first band, which is the pass band, is small, the ripple in the first band of the high frequency filter 10A is reduced, and the pass band Internal insertion loss can be reduced.
  • the phase difference (A) between the filters 11A and 12A is 152.2 as shown in (h) of FIG. °
  • the phase difference (B) between the first circuit and the second circuit is 349.2 ° according to (h) in FIG.
  • the sum (C) of the phases of the phase shifters 21 and 22 is 197 °. .
  • the ripple of the high frequency filter 10A is 3 dB or less when the phase of each of the phase shifters 21 and 22 is 80 to 105 °.
  • the range of the phase difference (B) between the first circuit and the second circuit is defined. That is, the phase difference (B) of the first circuit and the second circuit is 312.2 ° (152.2 ° + 80 ° ⁇ 2) to 362.2 ° (152.2 ° + 105 ° ⁇ 2 °).
  • the phase shifters 21 and 22 are adjusted.
  • changing the phase of phase shifters 21 and 22 changes the frequency at which impedance
  • the impedance of the second circuit is increased, and the signal does not go to the second circuit in the lower attenuation band of the second circuit.
  • the ripple in the passband is suppressed to reduce the insertion loss in the passband, or the ripple in the passband is suppressed to reduce the insertion loss.
  • the frequency at which the impedance at the maximum of the singular point at which the impedance of the second circuit is maximal is the second band is low. It is desirable that the phases of the phase shifters 21 and 22 be adjusted so as to be included in the frequency band from the frequency of the band edge to the cut-off frequency on the low band side of the pass band of the filter 12A. In particular, in the present embodiment, by adjusting the phase of the phase shifters 21 and 22 on the low pass band side of the filter 12A, the ripple of the high frequency filter 10A can be made within 3 dB.
  • FIG. 9 is a circuit diagram of the high frequency filter 10B according to the embodiments 1a, 1b, 1c, 1d and 1e.
  • the high frequency filter 10B shown in the figure includes filters 11D and 12D, phase shifters 21 and 22, and input / output terminals 110 and 120.
  • the high frequency filter 10B is a specific circuit configuration example of the high frequency filter 10 according to the first embodiment
  • the filter 11D is a specific circuit configuration example of the filter 11
  • the filter 12D is a specific circuit configuration example of the filter 12 .
  • the filter 11D includes series arm resonators s11 and s12 arranged on a first path connecting the node X1 and the node X2, and a node and a ground on a path connecting the series arm resonator s11 and the series arm resonator s12. And a parallel arm resonator p11 disposed between the two.
  • the filter 11D constitutes a ladder type band pass filter.
  • the filter 12D includes a series arm resonator s21 disposed on a second path connecting the node X1 and the node X2, a parallel arm resonator p21 disposed between each node on the second path and the ground, and and p22.
  • the filter 12D constitutes a ladder type band pass filter.
  • each resonator constituting the high frequency filter 10B will be described in more detail focusing on the parallel arm resonator p11.
  • the other resonators have almost the same structure as the parallel arm resonator p11 except that the IR pitch is about 0.5 times the wavelength ⁇ of the elastic wave, and so on. I omit explanation.
  • FIG. 10 is an example of a diagram schematically illustrating the structure of the parallel arm resonator p11 according to the first embodiment, in which (a) is a plan view and (b) is a cross-sectional view of (a).
  • the parallel arm resonator p11 shown in FIG. 10 is for describing a typical structure of each of the resonators constituting the high frequency filter 10B. For this reason, the number, length, etc. of the electrode fingers constituting the IDT (InterDigital Transducer) electrode of each resonator of the high frequency filter 10B are not limited to the number or the length of the electrode fingers of the IDT electrode shown in FIG.
  • IDT InterDigital Transducer
  • the parallel arm resonator p11 includes an electrode film 301 constituting an IDT electrode 321 and a reflector 322, and a piezoelectric substrate 302 on which the electrode film 301 is formed. And a protective layer 303 covering the electrode film 301.
  • these components will be described in detail.
  • the comb-tooth electrode 301a is composed of a plurality of parallel electrode fingers 310a and a bus bar electrode 311a connecting the plurality of electrode fingers 310a.
  • the comb-tooth electrode 301 b is configured of a plurality of parallel electrode fingers 310 b and a bus bar electrode 311 b connecting the plurality of electrode fingers 310 b.
  • the plurality of electrode fingers 310a and 310b are formed along a direction orthogonal to the propagation direction of the elastic wave, and are periodically formed along the propagation direction.
  • the thus configured IDT electrode 321 excites a surface acoustic wave in a specific frequency range defined by the electrode pitch and the like of the plurality of electrode fingers 310 a and 310 b constituting the IDT electrode 321.
  • Each of the comb-tooth electrodes 301a and 301b may be referred to as an IDT electrode alone. However, in the following, for convenience, the description will be made assuming that one IDT electrode 321 is configured by the pair of comb electrodes 301a and 301b.
  • the reflector 322 is disposed in the propagation direction of the elastic wave with respect to the IDT electrode 321. Specifically, the pair of reflectors 322 is disposed so as to sandwich the IDT electrode 321 from both sides in the propagation direction of the elastic wave.
  • the reflector 322 includes a plurality of parallel electrode fingers 410, a bus bar electrode 411 connecting one end of the plurality of electrode fingers 410, and a bus bar electrode 411 connecting the other ends of the plurality of electrode fingers 410. A pair of bus bar electrodes 411 is formed.
  • the plurality of electrode fingers 410 are formed along the direction orthogonal to the propagation direction of the elastic wave, and are periodically formed along the propagation direction. ing.
  • the reflector 322 configured in this way reflects the surface acoustic wave with a high reflection coefficient in a frequency band (stop band) defined by the electrode pitch and the like of the plurality of electrode fingers 410 constituting the reflector 322. That is, when the electrode pitch of the IDT electrode 321 and the electrode pitch of the reflector 322 are equal, the reflector 322 reflects the surface acoustic wave excited by the IDT electrode 321 with a high reflection coefficient.
  • the parallel arm resonator p11 can confine the excited surface acoustic wave inside and make it difficult to leak it to the outside. Therefore, the parallel arm resonator p11 can improve Q of the resonance point and the antiresonance point defined by the electrode pitch, the logarithm, the crossing width, and the like of the IDT electrode 321.
  • the reflector 322 only needs to have the electrode finger 410, and may not have the bus bar electrode 411.
  • the number of the electrode fingers 410 may be one or more, and is not particularly limited. However, if the number of the electrode fingers 410 is too small, the elastic wave leaks more, and the filter characteristics may be degraded. On the other hand, when the number of the electrode fingers 410 is too large, the reflector 322 is increased in size, so the entire high frequency filter 10B may be increased in size. For this reason, the number of electrode fingers 410 can be appropriately determined in consideration of the filter characteristics, the size, and the like required of the high frequency filter 10B.
  • the IDT electrode 321 and the reflector 322 are constituted by an electrode film 301 shown in (b) of FIG.
  • the electrode film 301 has a laminated structure of the adhesion layer 301 g and the main electrode layer 301 h.
  • the IDT electrode 321 and the reflector 322 are formed of the same electrode film 301, but they may be formed of electrode films having different structures, compositions, and the like.
  • the adhesion layer 301g is a layer for improving the adhesion between the piezoelectric substrate 302 and the main electrode layer 301h, and, for example, Ti is used as a material.
  • the film thickness of the adhesion layer 301 g is, for example, 12 nm.
  • the material of the main electrode layer 301h for example, Al containing 1% of Cu is used.
  • the film thickness of the main electrode layer 301 h is, for example, 162 nm.
  • the piezoelectric substrate 302, the electrode film 301 (i.e., IDT electrodes 321 and reflectors 322) substrate which is formed, for example, LiTaO 3 piezoelectric single crystal, LiNbO 3 piezoelectric single crystal, KNbO 3 piezoelectric single crystal, quartz or, It consists of piezoelectric ceramics.
  • the protective layer 303 is formed to cover the comb-tooth electrodes 301a and 301b.
  • the protective layer 303 is a layer for protecting the main electrode layer 301 h from the external environment, adjusting frequency temperature characteristics, enhancing moisture resistance, and the like, and is, for example, a film containing silicon dioxide as a main component. .
  • each resonator which the high frequency filter 10B has is not limited to the structure described in FIG.
  • the electrode film 301 may be a single layer of a metal film instead of the laminated structure of the metal film.
  • the materials forming the adhesion layer 301 g, the main electrode layer 301 h, and the protective layer 303 are not limited to the above-described materials.
  • the electrode film 301 may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, Pd, etc., and is made of a plurality of laminates made of the above metals or alloys. May be
  • the protective layer 303 may not be formed.
  • the wavelength of the elastic wave to be excited is defined by the design parameters of the IDT electrode 321 and the like.
  • design parameters of the IDT electrode 321 that is, design parameters of the comb-tooth electrode 301a and the comb-tooth electrode 301b will be described.
  • the wavelength of the elastic wave is defined by the repetition period ⁇ of the plurality of electrode fingers 310a or 310b constituting the comb-tooth electrodes 301a and 301b shown in FIG.
  • the electrode pitch is a half of the repetition period ⁇
  • the line width of the electrode fingers 310a and 310b constituting the comb electrodes 301a and 301b is W
  • the adjacent electrode fingers 310a and the electrodes are When the space width between the finger 310 b is S, it is defined by (W + S). Further, as shown in (a) of FIG.
  • the cross width L of the IDT electrode 321 is the electrode finger 310a of the comb electrode 301a and the electrode finger 310b of the comb electrode 301b viewed from the propagation direction of the elastic wave.
  • the electrode duty (duty ratio) is a line width occupancy rate of the plurality of electrode fingers 310a and 310b, and is a ratio of the line width to an added value of the line width and the space width of the plurality of electrode fingers 310a and 310b. , W / (W + S).
  • the electrode pitch (electrode period) of the reflector 322 is defined by (W REF + S REF ), where the line width of the electrode finger 410 is W REF and the space width between adjacent electrode fingers 410 is S REF. .
  • the electrode duty (duty ratio) of the reflector 422 is a line width occupancy rate of the plurality of electrode fingers 410 and is a ratio of the line width to the addition value of the line width of the electrode finger 410 and the space width. It is defined by REF / (W REF + S REF ).
  • the film thickness of the reflector 322 is the thickness of the plurality of electrode fingers 410.
  • the electrode pitch and electrode duty of the reflector 322 are equal to the electrode pitch and electrode duty of the IDT electrode 321. Further, the reflector 322 is arranged such that the pair of bus bar electrodes 411 overlap the bus bar electrodes 311 a and 311 b of the IDT electrode 321 when viewed in the propagation direction of the elastic wave.
  • the above configuration is preferable from the viewpoint of suppressing the leak of the elastic wave, but the configuration may be different from the above configuration.
  • the pitch (IR pitch) between the IDT electrode 321 and the reflector 322 is (i) the electrode finger closest to the reflector 322 among the plurality of electrode fingers 310 a or 310 b constituting the IDT electrode 321 and (ii) It is defined as a center-to-center distance with the electrode finger 410 closest to the IDT electrode 321 among the plurality of electrode fingers 410 constituting the reflector 322.
  • This IR pitch can be expressed using a repetition period ⁇ of a plurality of electrode fingers 310a or 310b constituting the comb-tooth electrodes 301a and 301b (ie, a wavelength ⁇ of an elastic wave determined by the electrode pitch of the IDT electrode 321). For example, in the case where the repetition period ⁇ is 0.50 times, it is expressed as 0.50 ⁇ .
  • the high frequency filter 10B includes the filters 11D and 12D.
  • the filter 11D is connected to a first series arm circuit (series arm resonator s11 or s12) provided on a first path connecting the node X1 and the node X2, a node provided on the first path, and the ground.
  • the first parallel arm circuit parallel arm resonator p11.
  • the filter 12D includes a second series arm circuit (series arm resonator s21) provided on a second path connecting the phase shifters 21 and 22, a node provided on the second path, and a ground.
  • a second parallel arm circuit (parallel arm resonator p21 or p22) connected to At least one of the first series arm circuit, the first parallel arm circuit, the second series arm circuit, and the second parallel arm circuit has an elastic wave resonator, and at least one of the elastic wave resonators.
  • the wavelength of the elastic wave determined by the electrode period of the IDT electrode in at least one of the elastic wave resonators is ⁇
  • the pitch between the IDT electrode and the reflector is 0.42 ⁇ or more and less than 0.50 ⁇ . It is desirable to have.
  • the elastic wave resonator having the IDT electrode 321 and the reflector 322 is constituted by a periodic structure consisting of periodically arranged electrode fingers, and reflects the surface acoustic wave of a specific frequency region with a high reflection coefficient.
  • Frequency band. This frequency band is generally referred to as a stop band, and is defined by the repetition period of the periodic structure or the like.
  • the stop band At this time, at the high end of the stop band, ripples in which the reflection coefficient locally increases are generated.
  • the pitch (IR pitch) between the IDT electrode 321 and the reflector 322 is 0.5 ⁇ or more, the ripple at the high end of the stop band becomes large, and the ripple in the pass band of the filter becomes large. Insertion loss increases.
  • the IR pitch is 0.42 ⁇ or more and less than 0.50 ⁇ , it is possible to reduce the ripple at the high end of the stop band. From the above viewpoint, in the filters 11D and 12D constituting the high frequency filter 10B, by setting the IR pitch to be 0.42 ⁇ or more and less than 0.50 ⁇ , the insertion loss in the pass band of the high frequency filter 10B is further reduced. be able to.
  • the high frequency filter 10B according to the embodiments 1a to 1d and the high frequency filter according to the embodiment 1e will be compared.
  • the configuration of the IR pitch is as follows. It is as it is.
  • Embodiment 1e The IR pitch of all the elastic wave resonators (series arm resonators s11, s12, s21 and parallel arm resonators p11, p21, p22) is 0.50 ⁇ .
  • Example 1a The IR pitch of the series arm resonators s11 and s12 is 0.44 ⁇ , and the IR pitch of the other elastic wave resonators is 0.50 ⁇ .
  • Example 1b The IR pitch of the parallel arm resonator p11 is 0.44 ⁇ , and the IR pitch of the other elastic wave resonators is 0.50 ⁇ .
  • Example 1c The IR pitch of the parallel arm resonators p21 and p22 is 0.44 ⁇ , and the IR pitch of the other elastic wave resonators is 0.50 ⁇ .
  • Embodiment 1d The IR pitch of all the elastic wave resonators (series arm resonators s11, s12, s21 and parallel arm resonators p11, p21, p22) is 0.44 ⁇ .
  • FIG. 11A is a graph comparing the pass characteristic and the reflection characteristic of the high frequency filters according to Example 1a and Example 1e.
  • FIG. 11B is a graph comparing impedance characteristics and reflection characteristics of the series arm resonators s11 and s12 alone according to Example 1a and Example 1e.
  • the pass characteristics of the high frequency filters according to Example 1a and Example 1e are shown.
  • the pass characteristic and the reflection characteristic of the single filter 11D according to Example 1a and Example 1e are shown.
  • ripples in which the reflection loss is locally increased occur at the high frequency end of the stop band.
  • the ripple of the reflection loss is reduced at the high end of the stop band (areas A4 and A5 in the figure).
  • the high frequency filter 10B includes the filters 11D and 12D.
  • the filter 11D is connected to a first series arm circuit (series arm resonator s11 or s12) provided on a first path connecting the node X1 and the node X2, a node provided on the first path, and the ground.
  • the first parallel arm circuit (parallel arm resonator p11).
  • the filter 12D is connected to a second series arm circuit (series arm resonator s21) provided on the second path of the phase shifters 21 and 22, a node provided on the second path, and a ground.
  • a parallel arm circuit parallel arm resonator p21 or p22).
  • the first series arm circuit includes an elastic wave resonator, and the elastic wave resonator includes an IDT electrode formed on a substrate having piezoelectricity, and a reflector.
  • the pitch between the IDT electrode of the elastic wave resonator and the reflector is 0.42 ⁇ or more and less than 0.50 ⁇ .
  • the series arm resonators s11 and s12 in the series arm circuit of the filter 11D have a resonant frequency in the pass band of the filter 11D and an antiresonance frequency in the pass band of the filter 12D on the high band side of the pass band of the filter 11D.
  • the stop bands of the series arm resonators s11 and s12 become the pass band of the filter 12D.
  • the IR pitch to 0.42 ⁇ or more and less than 0.50 ⁇ , it is possible to reduce the ripple at the high end of the stop band. Therefore, by making the IR pitch 0.42 ⁇ or more and less than 0.50 ⁇ , the insertion loss in the pass band of the high frequency filter 10B can be further reduced.
  • FIG. 12A is a graph comparing the pass characteristics of the high frequency filters according to Example 1 b and Example 1 e.
  • FIG. 12B is a graph comparing impedance characteristics and reflection characteristics of the parallel arm resonator p11 and the single body according to Example 1b and Example 1e.
  • the pass characteristics of the high frequency filter according to Example 1 b and Example 1 e are shown.
  • the pass characteristics of the filter 11D alone according to Example 1b and Example 1e are shown.
  • the high frequency filter 10B includes the filters 11D and 12D.
  • the filter 11D is connected to a first series arm circuit (series arm resonator s11 or s12) provided on a first path connecting the node X1 and the node X2, a node provided on the first path, and the ground.
  • the first parallel arm circuit (parallel arm resonator p11).
  • the filter 12D is connected to a second series arm circuit (series arm resonator s21) provided on the second path of the phase shifters 21 and 22, a node provided on the second path, and a ground.
  • a parallel arm circuit parallel arm circuit (parallel arm resonator p21 or p22).
  • the first parallel arm circuit includes an elastic wave resonator, and the elastic wave resonator includes an IDT electrode formed on a substrate having piezoelectricity, and a reflector.
  • the pitch between the IDT electrode of the elastic wave resonator and the reflector is 0.42 ⁇ or more and less than 0.50 ⁇ .
  • the parallel arm resonator p11 in the parallel arm circuit of the filter 11D has a resonant frequency on the low frequency side of the passband of the filter 11D and an antiresonant frequency in the passband of the filter 11D.
  • the stop band of the parallel arm resonator p11 is located within the pass band of the filter 11D or on the high frequency side of the pass band of the filter 11D.
  • FIG. 13A is a graph comparing the pass characteristic and the reflection characteristic of the high frequency filters according to Example 1 c and Example 1 e.
  • FIG. 13B is a graph comparing impedance characteristics and reflection characteristics of the parallel arm resonators p21 and p22 according to the example 1c and the example 1e.
  • the pass characteristics of the high frequency filters according to Example 1c and Example 1e are shown.
  • the pass characteristics of the filter 12D alone according to Example 1c and Example 1e are shown.
  • the high frequency filter 10B includes the filters 11D and 12D.
  • the filter 11D is connected to a first series arm circuit (series arm resonator s11 or s12) provided on a first path connecting the node X1 and the node X2, a node provided on the first path, and the ground.
  • the first parallel arm circuit (parallel arm resonator p11).
  • the filter 12D is connected to a second series arm circuit (series arm resonator s21) provided on the second path of the phase shifters 21 and 22, a node provided on the second path, and a ground.
  • a parallel arm circuit parallel arm circuit (parallel arm resonator p21 or p22).
  • the second parallel arm circuit includes an elastic wave resonator, and the elastic wave resonator includes an IDT electrode formed on a substrate having piezoelectricity, and a reflector.
  • the pitch between the IDT electrode of the elastic wave resonator and the reflector is 0.42 ⁇ or more and less than 0.50 ⁇ .
  • the parallel arm resonators p21 and p22 in the parallel arm circuit of the filter 12D have a resonant frequency on the low frequency side of the pass band of the filter 12D and an antiresonant frequency in the pass band of the filter 12D.
  • the stop bands of the parallel arm resonators p21 and p22 are located in the pass band of the filter 12D or on the high frequency side of the pass band of the filter 12D.
  • the IR pitch to 0.42 ⁇ or more and less than 0.50 ⁇ , it is possible to reduce the ripple at the high end of the stop band. Therefore, by making the IR pitch 0.42 ⁇ or more and less than 0.50 ⁇ , the insertion loss in the pass band of the high frequency filter 10B can be further reduced.
  • FIG. 14 is a graph comparing the pass characteristic and the reflection characteristic of the high frequency filters according to Example 1 d and Example 1 e.
  • the pass characteristics of the high frequency filter according to Example 1 d and Example 1 e are shown.
  • the pass characteristic and the reflection characteristic of the single filter 11D according to Example 1 d and Example 1 e are shown.
  • the pass characteristic and the reflection characteristic of the single filter 12D according to Example 1 d and Example 1 e are shown.
  • the high frequency filter 10B includes the filters 11D and 12D.
  • the filter 11D is connected to a first series arm circuit (series arm resonator s11 or s12) provided on a first path connecting the node X1 and the node X2, a node provided on the first path, and the ground.
  • the first parallel arm circuit (parallel arm resonator p11).
  • the filter 12D is connected to a second series arm circuit (series arm resonator s21) provided on the second path of the phase shifters 21 and 22, a node provided on the second path, and a ground.
  • a parallel arm circuit parallel arm circuit (parallel arm resonator p21 or p22).
  • Each of the first series arm circuit, the second series arm circuit, the first parallel arm circuit, and the second parallel arm circuit has an elastic wave resonator, and the elastic wave resonator is formed on a substrate having piezoelectricity. It has the formed IDT electrode and a reflector.
  • the pitch between the IDT electrode of the elastic wave resonator and the reflector is 0.42 ⁇ or more and less than 0.50 ⁇ .
  • the IR pitch of the series arm resonator s21 of the filter 12D does not directly affect the insertion loss of the high frequency filter 10B, but the high frequency filter 10B and a filter having a passband on the higher frequency side than the high frequency filter 10B
  • the multiplexer is configured by a filter in which the generation frequency of the stop band ripple of the high frequency filter 10B and the pass band overlap with each other, the insertion loss of the filter can be reduced.
  • FIG. 15A is a graph showing a change in characteristics when the IR pitch is changed at 0.40 ⁇ to 0.50 ⁇ in the resonator of the typical example.
  • FIG. 15B is a graph showing a change in characteristics when the IR pitch is changed at 0.50 ⁇ to 0.60 ⁇ in the resonator of the typical example.
  • FIG. 15A is a graph showing the absolute value of the impedance
  • (b) is a graph showing the phase characteristic
  • (c-1) is a graph in which the impedance is represented by a Smith chart.
  • (C-2) is a graph showing reflection loss (return loss).
  • FIG. 15A shows the characteristics of the resonator when the IR pitch is changed from 0.40 ⁇ to 0.50 ⁇ in steps of 0.02 ⁇ , as shown in the legend in the figure.
  • FIG. 15B shows the characteristics of the resonator when the IR pitch is changed from 0.50 ⁇ to 0.60 ⁇ in steps of 0.02 ⁇ , as indicated by the legend in the figure.
  • the IR pitch of the resonator by setting the IR pitch of the resonator to 0.42 ⁇ or more and 0.50 ⁇ or less, it is possible to suppress the ripple that may occur on the high frequency side of the resonance frequency of the resonator, so the passage by the ripple It is possible to suppress the deterioration of the insertion loss of the band.
  • FIG. 16 is a circuit block diagram of the high frequency filter 20 according to the second embodiment.
  • the high frequency filter 20 shown in the figure includes filters 11 and 12, phase shifters 21 and 22, switches SW1, SW2, SW5 and SW6, and input / output terminals 110 and 120.
  • the high frequency filter 20 according to the present embodiment is different from the high frequency filter 10 according to the first embodiment in that the first circuit and the second circuit include switch elements.
  • the high frequency filter 20 according to the present embodiment will not be described the same as the high frequency filter 10 according to the first embodiment, and different points will be mainly described.
  • the first circuit further includes a switch SW1 and a switch SW2.
  • the second circuit further includes a switch SW5 and a switch SW6.
  • the switch SW1 is a first switch element connected between the node X1 and the filter 11.
  • the switch SW2 is a second switch element connected between the node X2 and the filter 11.
  • the switch SW5 is a fifth switch element connected between the node X1 and the phase shifter 21.
  • the switch SW6 is a sixth switch element connected between the node X2 and the phase shifter 22.
  • FIG. 17A is a circuit configuration diagram of a high frequency filter 20A according to a second embodiment.
  • the high frequency filter 20A shown in the figure includes filters 11A and 12A, phase shifters 21 and 22, switches SW1, SW2, SW5 and SW6, and input / output terminals 110 and 120.
  • the high frequency filter 20A is a specific circuit configuration example of the high frequency filter 20 according to the second embodiment
  • the filter 11A is a specific circuit configuration example of the filter 11
  • the filter 12A is a specific circuit configuration example of the filter 12 .
  • the high frequency filter 20A according to the present embodiment is located between the first circuit and the nodes X1 and X2, and between the second circuit and the nodes X1 and X2.
  • the configuration is different in that switch elements are disposed.
  • the high frequency filter 20A according to the present embodiment will not be described the same as the high frequency filter 10A according to the first embodiment, and differences will be mainly described.
  • the first circuit further includes a switch SW1 and a switch SW2.
  • the second circuit further includes a switch SW5 and a switch SW6.
  • the switch SW1 is a first switch element connected between the node X1 and the filter 11.
  • the switch SW2 is a second switch element connected between the node X2 and the filter 11.
  • the switch SW5 is a fifth switch element connected between the node X1 and the phase shifter 21.
  • the switch SW6 is a sixth switch element connected between the node X2 and the phase shifter 22.
  • Table 2 shows circuit parameters of the high frequency filter 20A according to the second embodiment.
  • the second band is set to Band 3 reception pass band (1805-1880 MHz) of LTE
  • the third band is set to Band 39 pass band (1880 to 1920 MHz) of LTE.
  • the first band is (Band 3 reception pass band + Band 39 pass band) (1805-1920 MHz).
  • the high frequency filter 20A has two filters of the filter 11A whose band 2 is the Band 3 reception passband and the filter 12A whose band 3 is the band 39 passband, and it is between the filter 12A and the node X1.
  • the phase shifter 21 is disposed, and the phase shifter 22 is disposed between the filter 12A and the node X2.
  • FIG. 17B is a graph showing a change in passage characteristics due to the switching of the switch of the high frequency filter 20A according to the second embodiment.
  • the high frequency filter 20A is a filter that uses the first band (Band 3 reception pass band + Band 39 pass band) as the pass band when all of the switches SW1, SW2, SW5 and SW6 are conductive. It becomes.
  • the filter becomes a pass band of the second band (Band 3 reception pass band).
  • the third band (Band 39 pass band) serves as a pass band.
  • the switches SW1 and SW2 are disposed on the first circuit side, and the switches SW5 and SW6 are disposed on the second circuit side.
  • the switches are connected only to the first circuit side. It may be a configuration or a configuration in which a switch is connected only to the second circuit side.
  • the high frequency filter serves as a filter that switches between the first band and the third band. Further, in the case where the switch is connected only to the second circuit side, the high frequency filter serves as a filter that switches between the first band and the second band.
  • the phase shifters 21 and 22 are connected to both input and output terminals of the filter 12A, thereby In one band, the reduction of the ripple reduces the insertion loss.
  • FIG. 18 is a graph for explaining the factor of increasing the bandwidth of the high frequency filter 20A according to the second embodiment.
  • the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2 are shown in FIG.
  • the impedance characteristics of the first circuit viewed from the node X1 when the switch SW1 is in the conductive state and the second circuit alone from the node X1 when the switch SW5 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • the impedance characteristics of the first circuit viewed from the node X2 when the switch SW2 is in the conductive state and the second circuit alone from the node X2 when the switch SW6 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • unit between node X1-X2 is shown by (d) of the figure.
  • the phase difference between the first circuit and the second circuit is shown in (e)
  • frequency f 11 which is the maximum of the impedance of the singular point as a maximum is the low frequency end of the second band
  • the phases of the phase shifters 21 and 22 are adjusted so as to be included in the frequency band from the frequency f A to the pass band low frequency of the filter 12 A (the cut-off frequency f C on the side).
  • at the maximum viewed from the node X 2 is the cut-off on the lower band side of the filter 12 A from the frequency f A at the lower band end of the second band
  • the phases of the phase shifters 21 and 22 are adjusted so as to be included in the frequency band up to the frequency f C.
  • the phase change is large, the phase difference with the filter 11A is large, and the amplitude difference is also large. Therefore, by the phase adjustment of the phase shifters 21 and 22, in the frequency range from the frequency f A to the cut-off frequency f C , the frequencies f 11 and f 22 that become the largest impedance among the singular points of the impedance maximum of the second circuit.
  • the high frequency signal in the above frequency range can be prevented from flowing into the filter 12A of the second circuit. That is, it is possible to suppress the wraparound of the signal to the second circuit in the frequency band in which the second circuit is attenuated. As a result, the ripple in the first band of the high frequency filter 20A is suppressed, and the insertion loss can be reduced.
  • the high frequency signal of the frequency included in the first band is adjusted by adjusting the phase difference of the first circuit and the second circuit to be in phase in a small frequency band by adjusting the phase of the phase shifters 21 and 22. Are not canceled each other after passing through the first circuit and the second circuit. Thereby, the ripple in the first band can be reduced and the insertion loss can be reduced.
  • the high frequency filter 20A sets the first band as the pass band due to the conduction state of the switches SW1, SW2, SW5, and SW6, it is possible to reduce the insertion loss of the first band.
  • FIG. 19 is a graph showing the pass characteristic when the off capacitance C off of the switch of the high frequency filter 20A according to the second embodiment is changed.
  • the switch element When the switch element is nonconductive, the impedance of the switch element is ideally infinite, but actually, the switch element is nonconductive due to the parasitic capacitance of the semiconductor element (FET or the like) constituting the switch element. It has a capacity component. As the off capacitance C off increases, the impedance of the switch element decreases.
  • the characteristics of the attenuation band in the vicinity of the high pass side of the pass band are degraded. More specifically, when the filter 11 is selected in which the switches SW1 and SW2 are turned on and the switches SW5 and SW6 are turned off and the second band is set to the pass band, the larger the off capacitance C off, the more signal is sent to the second circuit. Get around. For this reason, the attenuation characteristics on the second band high band side deteriorate, and a ripple is generated in the second band to deteriorate the insertion loss.
  • the pass band (third band) and the pass of the second circuit are affected by the influence of the first circuit disposed in the direction of the switches SW1 and SW2 to be turned off as shown in FIG.
  • the characteristics of the attenuation band near the lower band side deteriorate. More specifically, when the filter 12 is selected in which the switches SW1 and SW2 are nonconductive and the switches SW5 and SW6 are conductive and the third band is a pass band, the larger the off capacitance C off, the more signal is transmitted to the first circuit. Get around. As a result, the attenuation characteristics on the lower side of the third band deteriorate, and ripples occur in the third band to deteriorate the insertion loss.
  • the configuration shown in FIG. 20 can be mentioned as a configuration for suppressing the deterioration of the filter characteristics due to the off capacitance C off of the switch element as described above.
  • FIG. 20 is a circuit block diagram of the high frequency filter 30 according to the third embodiment.
  • the high frequency filter 30 shown in the figure includes the filters 11 and 12, the phase shifters 21 and 22, the switches SW 1, SW 2, SW 3, SW 4, SW 5, SW 6, SW 7 and SW 8, and the input and output terminals 110 and 120. And.
  • the high frequency filter 30 differs from the high frequency filter 20 according to the second embodiment in that switches SW3, SW4, SW7 and SW8 are arranged.
  • the high frequency filter 30 according to the present embodiment will not be described the same as the high frequency filter 20 according to the second embodiment, and different points will be mainly described.
  • the first circuit further includes a switch SW3 and a switch SW4.
  • the second circuit further includes a switch SW7 and a switch SW8.
  • the switch SW3 is a third switch element connected to a connection node between the filter 11 and the switch SW1 and to the ground, and switched between conduction and non-conduction exclusively with the switch SW1.
  • the switch SW4 is a fourth switch element connected to the connection node between the filter 11 and the switch SW2 and to the ground, and switched between conduction and non-conduction exclusively with the switch SW2.
  • the switch SW7 is a connection node between the phase shifter 21 and the switch SW5, and is a seventh switch element connected to the ground and switched between conduction and non-conduction exclusively with the switch SW5.
  • the switch SW8 is an eighth switch element connected to the connection node between the phase shifter 22 and the switch SW6 and to the ground, and switched between conduction and non-conduction exclusively with the switch SW6.
  • the high frequency filter 30 has two filters, the filter 11 whose second band is the Band 3 reception passband and the filter 12 whose third band is the Band 39 passband, and the phase shift is made between the filter 12 and the node X1.
  • the phase shifter 22 is disposed between the filter 12 and the node X2.
  • FIG. 21 is a graph showing the pass characteristic of the high frequency filter 30 according to the third embodiment.
  • the switches SW7 and SW8 are turned on, whereby the signal can be prevented from looping around in the second circuit. Therefore, the high frequency filter 30 (located SW7 & SW8) switches SW7 and SW8 are arranged, the same pass characteristic and the ideal SW (no C off). That is, the influence of the second circuit in which the switches SW5 and SW6 are nonconductive is reduced, the ripple in the second band is suppressed to reduce the insertion loss, and the attenuation characteristic in the vicinity of the second band can be improved.
  • the high frequency filter 30 (with SW3 & SW4) in which the switches SW3 and SW4 are arranged has a passing characteristic equivalent to that of the ideal SW (without Coff ). That is, the influence of the first circuit in which the switches SW1 and SW2 are nonconductive is reduced, the ripple in the third band is suppressed to reduce the insertion loss, and the attenuation characteristics in the vicinity of the third band can be improved.
  • phase shifters 21 and 22 are ideal elements, but here, specific configurations of the phase shifters 21 and 22 will be illustrated.
  • FIG. 22A is a circuit configuration diagram of a high frequency filter 20B according to a first modification of the second embodiment.
  • the high frequency filter 20B shown in the figure includes filters 11A and 12A, phase shifters 21B and 22B, switches SW1, SW2, SW5 and SW6, and input / output terminals 110 and 120.
  • the high frequency filter 20B according to the present modification differs from the high frequency filter 20A according to the second embodiment in that a specific circuit configuration of the phase shifter is shown.
  • the high frequency filter 20B according to the present modification will not be described the same as the high frequency filter 20A according to the second embodiment, and different points will be mainly described.
  • the phase shifter 21B includes two inductors Ls21 arranged in a series arm path connecting the node X1 and one terminal of the filter 12A, and a capacitor Cp21 connected to the node on the series arm path and the ground. It is a T-type first phase shifter.
  • the phase shifter 22B includes two inductors Ls22 arranged in a series arm path connecting the node X2 and the other terminal of the filter 12A, and a capacitor Cp22 connected to the node on the series arm path and the ground. It is a T-type second phase shifter.
  • the phase shifter 21 B and the phase shifter 22 B constitute a low pass filter circuit (LPF phase shifter).
  • the inductance values of the two inductors Ls 21 may be different. Further, two inductances Ls 21 may not be disposed, and may be one.
  • FIG. 22B is a circuit configuration diagram of a high frequency filter 20C according to Modification 2 of Embodiment 2.
  • the high frequency filter 20C shown in the figure includes filters 11A and 12A, phase shifters 21C and 22C, switches SW1, SW2, SW5 and SW6, and input / output terminals 110 and 120.
  • the high frequency filter 20C according to the present modification differs from the high frequency filter 20A according to the second embodiment in that a specific circuit configuration of the phase shifter is shown.
  • the high frequency filter 20C according to the present modification will not be described the same as the high frequency filter 20A according to the second embodiment, and different points will be mainly described.
  • the phase shifter 21C includes two capacitors Cs21 arranged in a series arm path connecting the node X1 and one terminal of the filter 12A, and an inductor Lp21 connected to the node on the series arm path and the ground. It is a T-type first phase shifter.
  • the phase shifter 22C includes two capacitors Cs22 arranged in a series arm path connecting the node X2 and the other terminal of the filter 12A, and an inductor Lp22 connected to the node on the series arm path and the ground. It is a T-type second phase shifter.
  • the phase shifters 21C and 22C constitute a high-pass filter circuit (HPF phase shifter).
  • the capacitance values of the two capacitors Cs21 may be different. Further, two capacitors Cs21 may not be disposed, and may be one.
  • the same in-passband characteristics as the high frequency filter 20A according to the second embodiment having the phase shifters 21 and 22 as ideal elements are obtained. That is, the phase shifters 21B and 22B of the second circuit, and the phase shifters 21C and 22C are the attenuation bands on the third band lower side of the second circuit, which is a frequency band where the amplitude difference between the first bands is large.
  • the phase is adjusted so that the frequency at which the impedance is maximized in the second band is located within the range of the lowest attenuation pole frequency in the second circuit to the 10 dB cutoff frequency on the second band lower side. There is.
  • FIG. 23 is a graph comparing the pass characteristics of the high frequency filters according to the first and second modifications of the second embodiment.
  • the circuit configuration of the phase shifter can be appropriately selected according to the required characteristics of the high frequency filter.
  • one of the first phase shifter and the second phase shifter is a low pass filter circuit, and the other is a high pass. It may be a type filter circuit.
  • a ⁇ -type phase shift having one of a capacitor or an inductor in a series arm circuit and the other of a capacitor or an inductor in a parallel arm circuit It may be a container. That is, the first phase shifter and the second phase shifter may be configured by two or more elements (secondary). Also, the first phase shifter and the second phase shifter may be delay lines composed of strip lines or micro strip lines.
  • a high frequency filter in addition to the first circuit and the second circuit, a high frequency filter will be described in which a circuit configured of a third filter and a switch element is connected to the node X1 and the node X2.
  • FIG. 24A is a circuit configuration diagram of a high frequency filter 40A according to a fourth embodiment.
  • the high frequency filter 40A shown in the figure includes filters 11A, 12A and 12Aa, phase shifters 21, 22, 21a and 22a, switches SW1, SW2, SW5, SW6, SW35 and SW36, input / output terminals 110 and 110. And 120.
  • the high frequency filter 40A according to the present embodiment has a second circuit (third circuit) including the filter 12Aa, the switches SW35 and SW36 between the node X1 and the node X2. The point of being added in parallel is different as a configuration.
  • the high frequency filter 40A according to the present embodiment will not be described the same as the high frequency filter 20A according to the second embodiment, and differences will be mainly described.
  • the filter 12Aa is a third filter that constitutes a circuit 2a together with the phase shifters 21a and 22a.
  • the switch SW35 is a switch element connected between the node X1 and the phase shifter 21a.
  • the switch SW36 is a switch element connected between the node X2 and the phase shifter 22a.
  • the 2a circuit composed of the filter 12Aa, the phase shifters 21a and 22a, and the switches SW35 and SW36 is connected to the nodes X1 and X2.
  • the phase shifter 21a is a third phase shifter connected to one terminal of the filter 12Aa.
  • the phase shifter 22a is a fourth phase shifter connected to the other terminal of the filter 12Aa. That is, the switch SW35, the phase shifter 21a, the filter 12Aa, the phase shifter 22a, and the switch SW36 are connected in series between the node X1 and the node X2 in this order.
  • the filter 12Aa includes series arm resonators s31 and s32 disposed on a path connecting the node X1 and the node X2, and parallel arm resonators p31 and p32 disposed between each node on the path and the ground. and p33.
  • the filter 12Aa constitutes a ladder type band pass filter.
  • the filter 12Aa is a band including a part of the frequency of the first band a (the fourth band) different in frequency from the first band, and has a narrower bandwidth than the first band a and the center frequency of the second band
  • a third band (fifth band) which is located on the higher side and has a frequency different from that of the third band, is used as a pass band.
  • Table 3 shows circuit parameters of the high frequency filter 40A according to the fourth embodiment.
  • the second band is the Band 3 reception passband (1805-1880 MHz) of LTE
  • the third band is the Band 39 passband of LTE (1880-1920 MHz)
  • the third a band is 1880-
  • the first band is (Band 3 reception pass band + Band 39 pass band) (1805-1920 MHz)
  • the first a band is 1805-1950 MHz.
  • FIG. 24B is a graph showing a change in pass characteristics due to the switch of the high frequency filter 40A according to the fourth embodiment.
  • the high frequency filter 40A is a variable frequency high frequency filter that can be changed to a filter of a plurality of bandwidths by appropriately switching on and off of the switches SW1, SW2, SW5, SW6, SW35 and SW36. In the present embodiment, five bandwidths can be switched.
  • the high frequency filter 40A becomes a filter that sets the first band as a pass band.
  • the switches SW1, SW2, SW35 and SW36 are made conductive and the switches SW5 and SW6 are made nonconductive, the filter becomes a pass band of the 1a band.
  • the switches SW1 and SW2 are turned on and the switches SW5, SW6, SW35 and SW36 are turned off as shown in (c) of FIG. 24B, the second band is a pass band. Further, as shown in (d) of FIG.
  • the phase shifters 21 and 22 are connected to both input and output terminals of the filter 12A, and the phase shifters 21a and 22a are connected to both input and output terminals of the filter 12Aa.
  • the insertion loss is reduced by reducing the ripple.
  • the high frequency filter 40A according to the fourth embodiment reduces the ripple and the insertion loss in the first band and the 1a band.
  • FIG. 25 is a graph for explaining the cause of wide band in the first band of the high-frequency filter 40A according to the fourth embodiment.
  • switches SW1, SW2, SW5 and SW6 are in a conducting state
  • switches SW35 and SW36 are in a non-conducting state.
  • the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2 are shown in FIG.
  • the impedance characteristics of the first circuit viewed from the node X1 when the switch SW1 is in the conductive state and the second circuit alone from the node X1 when the switch SW5 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • the impedance characteristics of the first circuit viewed from the node X2 when the switch SW5 is in the conductive state and the second circuit alone from the node X2 when the switch SW6 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • unit between node X1-X2 is shown by (d) of the figure.
  • the phase difference between the first circuit and the second circuit is shown in (e) of FIG.
  • frequency f 11 which is the maximum of the impedance of the singular point as a maximum is The phases of the phase shifters 21 and 22 are adjusted so as to be included in the frequency band from the frequency f A at the low band end of the second band to the cutoff frequency f C on the low band side of the pass band of the filter 12A. There is.
  • frequency f 22 which is the maximum of the impedance of the singular point as a maximum is the frequency f A of the low-frequency end of the second band, the filter 12A
  • the phases of the phase shifters 21 and 22 are adjusted so as to be included in the frequency band up to the cutoff frequency f C on the lower side of the pass band.
  • the phase change is large, the phase difference with the filter 11A is large, and the amplitude difference is also large. Therefore, by the phase adjustment of the phase shifters 21 and 22, the impedance maximum of the second circuit is in the frequency range from the frequency f A of the attenuation pole on the low pass side of the filter 12A to the low 10 dB cut off frequency f C on the low frequency side.
  • the high frequency signal of the frequency included in the first band is adjusted by adjusting the phase difference of the first circuit and the second circuit to be in phase in a small frequency band by adjusting the phase of the phase shifters 21 and 22. Are not canceled each other after passing through the first circuit and the second circuit. Thereby, in the frequency included in the first band of the high frequency filter 40A, it is possible to suppress the ripple in the first band and reduce the insertion loss.
  • the first circuit is generated in the second band.
  • the second circuit have the same phase (0 ° or -360 °) in at least one point (broken line circle mark: three points in the same figure), and in the third band, the first circuit and the second circuit There may be at least one frequency (dotted line circle in the same figure: one place) in which the phase is the same phase (0 ° or -360 °).
  • variable-frequency high frequency filter 40A capable of switching the first band, the second band, and the third band.
  • FIG. 26 is a graph for explaining the factor of broadening the band in the 1a band of the high frequency filter 40A according to the fourth embodiment.
  • band 1a is selected as the pass band of high-frequency filter 40A
  • switches SW1, SW2, SW35 and SW36 are in a conducting state
  • switches SW5 and SW6 are in a non-conducting state.
  • unit between node X1-X2 is shown by (a) of the figure.
  • the impedance characteristics are shown in (b) of the figure when the first circuit single-piece when the switch SW1 is in the conductive state from the node X1 and the 2a-th single circuit when the switch SW35 is in the conductive state.
  • the impedance characteristics are shown in (c) of the figure when the first circuit single-piece when the switch SW2 is in a conductive state from the node X2 and the 2a-th single circuit when the switch SW36 is in a conductive state.
  • unit between node X1-X2 is shown by (d) of the figure.
  • the phase difference between the first circuit and the 2a circuit is shown in (e) of FIG.
  • frequency f 11 which is the maximum of the impedance of the singular point as a maximum is
  • the phases of the phase shifters 21a and 22a are adjusted so as to be included in the frequency band from the frequency f A at the low band end of the second band to the cutoff frequency f C at the low band side of the pass band of the filter 12A. There is.
  • frequency f 22 which is the maximum of the impedance of the singular point as a maximum is the frequency f A of the low-frequency end of the second band, the filter 12A
  • the phases of the phase shifters 21a and 22a are adjusted so as to be included in the frequency band up to the cutoff frequency f C on the lower side of the pass band.
  • the phase change is large, the phase difference with the filter 11A becomes large, and the amplitude difference also becomes large. Therefore, the phase adjustment of the phase shifter 21a and 22a, the frequency range from the frequency f A of the attenuation pole of the passband low frequency side of the filter 12Aa to low frequency side 10dB cut-off frequency f C, the impedance maximum of the 2a circuit
  • the phase adjustment of the phase shifter 21a and 22a the frequency range from the frequency f A of the attenuation pole of the passband low frequency side of the filter 12Aa to low frequency side 10dB cut-off frequency f C, the impedance maximum of the 2a circuit
  • a high frequency signal of the frequency included in the 1a band are not canceled after passing through the first circuit and the 2a circuit.
  • the ripple in the 1a band can be suppressed and the insertion loss can be reduced.
  • variable-frequency high frequency filter 40A capable of switching the 1a band, the 2nd band, and the 3rd band.
  • the high frequency filter 40A it is possible to reduce the insertion loss by reducing the ripples in the first band and the 1a band while increasing the variation of switching of the pass band.
  • Embodiment 4 In the present embodiment, a high frequency filter configured of a filter having a longitudinally coupled resonator will be described.
  • FIG. 27A is a circuit configuration diagram of a high frequency filter 50A according to a fifth embodiment.
  • the high frequency filter 50A shown in the figure includes filters 11B and 12A, phase shifters 21D and 22D, switches SW1, SW2, SW5 and SW6, and input / output terminals 110 and 120.
  • the high frequency filter 50A according to the present embodiment differs from the high frequency filter 20A according to the second embodiment in the circuit configurations of the first circuit and the phase shifter.
  • the high frequency filter 50A according to the present embodiment will not be described the same as the high frequency filter 20A according to the second embodiment, and differences will be mainly described.
  • the filter 11B includes series arm resonators s11, s12 and s13 disposed on a first path connecting the node X1 and the node X2, and parallel arms disposed between the respective nodes on the first path and the ground.
  • Resonators p11 and p12 and a longitudinally coupled resonator 15A connected to series arm resonators s12 and s13 are provided.
  • the filter 11B constitutes a band pass filter.
  • the longitudinally coupled resonator 15A is configured of five IDT electrodes and reflectors disposed at both ends in the arrangement direction of the five IDT electrodes.
  • the number of IDT electrodes of the longitudinally coupled resonator may be two or more.
  • the phase shifter 21D is a first phase shifter connected to one terminal of the filter 12A.
  • the phase shifter 22D is a second phase shifter connected to the other terminal of the filter 12A. That is, the phase shifter 21D, the filter 12A, and the phase shifter 22D are connected in series between the node X1 and the node X2 in this order.
  • the phase shifter 21D includes one capacitor Cs21 arranged in a series arm path connecting the node X1 and one terminal of the filter 12A, and one inductor Lp21 connected to the node on the series arm path and the ground. It is configured.
  • the phase shifter 22D includes one capacitor Cs22 arranged in a series arm path connecting the node X2 and the other terminal of the filter 12A, and one inductor Lp22 connected to the node on the series arm path and the ground. It is configured.
  • Table 4 shows circuit parameters of the high frequency filter 50A according to the fifth embodiment.
  • the filter 11B since the filter 11B includes the longitudinally coupled resonator 15A, the filter 11B has filter characteristics that are advantageous for attenuation characteristics. Therefore, high attenuation characteristics are not required for the phase shifters 21D and 22D. From this point of view, each of the phase shifters 21D and 22D can be configured with one capacitor and one inductor.
  • the circuit configuration of the phase shifters 21D and 22D is not limited to the above configuration.
  • a plurality of capacitors and inductors may be disposed, and connection configurations such as T-type and ⁇ -type are also arbitrary.
  • FIG. 27B is a graph showing the change of the passage characteristic due to the switch of the high frequency filter 50A according to the fifth embodiment.
  • the high frequency filter 50A uses the first band (Band 3 reception pass band + Band 39 pass band) as a pass band. It becomes.
  • the filters SW1 and SW2 are made conductive and the switches SW5 and SW6 are not made conductive, the filter becomes a pass band that is the second band (Band 3 reception pass band).
  • the switches SW1 and SW2 are turned off and the switches SW5 and SW6 are turned on, the filter becomes a pass band that is the third band (Band 39 pass band).
  • the switches SW1 and SW2 are disposed on the first circuit side, and the switches SW5 and SW6 are disposed on the second circuit side.
  • the switches are connected only to the first circuit side. It may be a configuration or a configuration in which a switch is connected only to the second circuit side.
  • the high frequency filter serves as a filter that switches between the first band and the third band. Further, in the case where the switch is connected only to the second circuit side, the high frequency filter serves as a filter that switches between the first band and the second band.
  • the phase shifters 21D and 22D are connected to both input and output terminals of the filter 12A, thereby the second high frequency filter 50A In one band, the reduction of the ripple reduces the insertion loss.
  • FIG. 28 is a graph for explaining the factor of increasing the bandwidth of the high frequency filter 50A according to the fifth embodiment.
  • the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2 are shown in FIG.
  • the impedance characteristics of the first circuit viewed from the node X1 when the switch SW1 is in the conductive state and the second circuit alone from the node X1 when the switch SW5 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • the impedance characteristics of the first circuit viewed from the node X2 when the switch SW2 is in the conductive state and the second circuit alone from the node X2 when the switch SW6 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • unit between node X1-X2 is shown by (d) of the figure.
  • the phase difference between the first circuit and the second circuit is shown in (e)
  • frequency f 11 which is the maximum of the impedance of the singular point as a maximum is the low frequency end of the second band
  • the phases of the phase shifters 21D and 22D are adjusted so as to be included in the frequency band from the frequency f A to the cut-off frequency f C on the low pass side of the filter 12A.
  • frequency f 22 which is the maximum of the impedance of the singular point as a maximum is the frequency f A of the low-frequency end of the second band, the filter 12A
  • the phases of the phase shifters 21D and 22D are adjusted so as to be included in the frequency band up to the cutoff frequency f C on the lower side of the pass band.
  • the phase change is large, the phase difference with the filter 11B is large, and the amplitude difference is also large. Therefore, the phase adjustment of the phase shifter 21D and 22D, in the frequency range from the frequency f A of the attenuation pole of the passband low frequency side of the filter 12A to the low-frequency side 10dB cut-off frequency f C, the impedance maximum of the second circuit by matching the frequency f 11 and f 22 with the maximum of the impedance of the singular point, the high-frequency signal of the frequency range can be prevented from flowing into the filter 12A of the second circuit. That is, it is possible to suppress the wraparound of the signal to the second circuit in the frequency band in which the second circuit is attenuated. This makes it possible to suppress the ripple in the first band of the high frequency filter 50A and reduce the insertion loss.
  • the high frequency signal of the frequency included in the first band is adjusted by adjusting the phase difference of the first circuit and the second circuit to be in phase in a small frequency band by adjusting the phase of the phase shifters 21D and 22D. Are not canceled each other after passing through the first circuit and the second circuit. Thereby, at the frequency included in the first band of the high frequency filter 50A, the ripple in the first band can be suppressed and the insertion loss can be reduced.
  • the high frequency filter 50A sets the first band as the pass band due to the conduction state of the switches SW1, SW2, SW5, and SW6, it is possible to reduce the insertion loss of the first band.
  • the first circuit is generated in the second band.
  • the second circuit have the same phase (0 ° or -360 °) in at least one point (two dotted circle marks in the figure), and in the third band, the first circuit and the second circuit There may be at least one frequency (dotted line circle in the same figure: one place) in which the phase is the same phase (0 ° or -360 °).
  • the filter 11B is configured by the longitudinally coupled resonator 15A, the sharpness can be improved and the amount of attenuation can be improved on the low frequency band side of the high frequency filter 50A.
  • a high frequency filter configured of a first filter and a second filter having a parallel arm circuit to which an impedance circuit having a switch element is added will be described.
  • FIG. 29A is a circuit configuration diagram of a high frequency filter 60A according to a sixth embodiment.
  • the high frequency filter 60A shown in the figure includes filters 11C and 12B, phase shifters 21C and 22C, switches SW1, SW2, SW5 and SW6, and input / output terminals 110 and 120.
  • the high frequency filter 60A according to the present embodiment is different from the high frequency filter 20C according to the second modification of the second embodiment in the circuit configuration of the first filter and the second filter.
  • the high frequency filter 60A according to the present embodiment will not be described the same as the high frequency filter 20C according to the second modification of the second embodiment, and differences will be mainly described.
  • the filter 11C includes three series arm circuits (series arm resonators s11, s12 and s13) and parallel arm circuits 101, 102, 103 and 104.
  • the series arm resonators s11 to s13 are provided on a first path connecting the nodes X1 and X2.
  • Each of parallel arm circuits 101 to 104 is a parallel arm circuit connected to each node on the first path connecting nodes X1 and X2 and to the ground.
  • the parallel arm circuit 101 includes a parallel arm resonator p11 and an impedance circuit 111 connected in series to the parallel arm resonator p11.
  • the impedance circuit 111 has a capacitor Cp11 and a switch SW11.
  • the switch SW11 is a ninth switch element connected in parallel to the capacitor Cp11. Since the impedance circuit 111 is configured by a parallel circuit of the capacitor Cp11 and the switch SW11, the resonance frequency of the parallel arm circuit 101 is switched to the high frequency side by switching the switch SW11 from conduction to non-conduction.
  • the parallel arm circuit 102 includes a parallel arm resonator p12 and an impedance circuit 112 connected in series to the parallel arm resonator p12.
  • the impedance circuit 112 includes a capacitor Cp12 and a switch SW12.
  • the switch SW12 is a ninth switch element connected in parallel to the capacitor Cp12. Since the impedance circuit 112 is constituted by a parallel circuit of the capacitor Cp12 and the switch SW12, the resonance frequency of the parallel arm circuit 102 is switched to the high frequency side by switching the switch SW12 from conduction to non-conduction.
  • the parallel arm circuit 104 includes a parallel arm resonator p14 and an impedance circuit 114 connected in series to the parallel arm resonator p14.
  • the impedance circuit 114 has a capacitor Cp14 and a switch SW14.
  • the switch SW14 is a ninth switch element connected in parallel to the capacitor Cp14. Since the impedance circuit 114 is formed of a parallel circuit of the capacitor Cp14 and the switch SW14, the resonance frequency of the parallel arm circuit 104 is switched to the high frequency side by switching the switch SW14 from conduction to non-conduction.
  • the parallel arm circuit 103 has a parallel arm resonator p13 and an impedance circuit 113 connected in series to the parallel arm resonator p13.
  • the impedance circuit 113 includes an inductor Lp13 and a switch SW13.
  • the switch SW13 is a ninth switch element connected in parallel to the inductor Lp13. Since the impedance circuit 113 is constituted by a parallel circuit of the inductor Lp13 and the switch SW13, the resonance frequency of the parallel arm circuit 103 is switched to the low frequency side by switching the switch SW13 from conduction to non-conduction.
  • the filter 11C switches the conduction and non-conduction of the switches SW11, SW12, SW13, and SW14 to lower the passband.
  • the steepness on the band side and the frequency at the low band edge of the pass band are variable.
  • the filter 12B includes two series arm circuits (series arm resonators s21 and s22) and parallel arm circuits 201, 202 and 203.
  • the series arm resonators s21 and s22 are provided on a second path connecting the nodes X1 and X2.
  • Each of the parallel arm circuits 201 to 203 is a parallel arm circuit connected to each node on the second path connecting the nodes X1 and X2 and the ground.
  • the parallel arm circuit 201 includes a parallel arm resonator p21 and an impedance circuit 211 connected in series to the parallel arm resonator p21.
  • the impedance circuit 211 includes a capacitor Cp21 and a switch SW21.
  • the switch SW21 is a ninth switch element connected in parallel to the capacitor Cp21. Since the impedance circuit 211 is configured by a parallel circuit of the capacitor Cp21 and the switch SW21, the resonance frequency of the parallel arm circuit 201 is switched to the high frequency side by switching the switch SW21 from conduction to non-conduction.
  • the parallel arm circuit 202 includes a parallel arm resonator p22 and an impedance circuit 212 connected in series to the parallel arm resonator p22.
  • the impedance circuit 212 includes a capacitor Cp22 and a switch SW22.
  • the switch SW22 is a ninth switch element connected in parallel to the capacitor Cp22. Since the impedance circuit 212 is configured by a parallel circuit of the capacitor Cp22 and the switch SW22, the resonance frequency of the parallel arm circuit 202 is switched to the high frequency side by switching the switch SW22 from conduction to non-conduction.
  • the parallel arm circuit 203 has a parallel arm resonator p23 and an impedance circuit 213 connected in series to the parallel arm resonator p23.
  • the impedance circuit 213 includes a capacitor Cp23 and a switch SW23.
  • the switch SW23 is a ninth switch element connected in parallel to the capacitor Cp23. Since the impedance circuit 213 is formed of a parallel circuit of the capacitor Cp23 and the switch SW23, the resonance frequency of the parallel arm circuit 203 is switched to the high frequency side by switching the switch SW23 from conduction to non-conduction.
  • the sharpness of the low pass band and the frequency of the low end of the pass band are varied by switching between conduction and non-conduction of the switches SW21, SW22, and SW23.
  • Table 5 shows circuit parameters of the high frequency filter 60A according to the sixth embodiment.
  • FIG. 29B is a graph showing the change of the passage characteristic due to the switching of the switch of the high frequency filter 60A according to the sixth embodiment.
  • the high frequency filter 60A is a variable-frequency high frequency filter that can be changed to a filter of a plurality of bandwidths by appropriately switching between conduction and non-conduction of the switches SW1, SW2, SW5, SW6, SW11 to SW14, and SW21 to SW23. It becomes. In the present embodiment, six pass bands can be switched.
  • the third band It becomes a filter which makes Band 39 pass band) a pass band.
  • the switches SW1, SW2, SW5, SW6, SW13, and SW21 to SW23 are made conductive and the switches SW11, SW12, and SW14 are made nonconductive, for the first band.
  • the attenuation pole at the low band side of the pass band and the low band end of the pass band become a filter having the 1 b band shifted to the high frequency side as the pass band.
  • the passband lower band end is a filter that uses the 3b band shifted to the high frequency side as the passband.
  • phase shifters 21C and 22C are connected to both input and output terminals of the filter 12B, whereby ripples are reduced in the first band and the 1b band of the high frequency filter 60A. Insertion loss is reduced.
  • the high frequency filter 60A according to the sixth embodiment reduces the ripple and the insertion loss in the first band and the 1b band.
  • FIG. 30 is a graph for explaining the factor of broadening the band in the first band of the high-frequency filter 60A according to the sixth embodiment.
  • the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2 are shown in FIG.
  • the impedance characteristics of the first circuit viewed from the node X1 when the switch SW1 is in the conductive state and the second circuit alone from the node X1 when the switch SW5 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • the impedance characteristics of the first circuit viewed from the node X2 when the switch SW2 is in the conductive state and the second circuit alone from the node X2 when the switch SW6 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • unit between node X1-X2 is shown by (d) of the figure.
  • frequency f 11 which is the maximum of the impedance of the singular point as a maximum is
  • the phases of the phase shifters 21C and 22C are adjusted so as to be included in the frequency band from the frequency f A at the low band end of the second band to the cutoff frequency f C at the low band side of the pass band of the filter 12B. There is.
  • frequency f 22 which is the maximum of the impedance of the singular point as a maximum is the frequency f A of the low-frequency end of the second band, the filter 12B
  • the phases of the phase shifters 21C and 22C are adjusted so as to be included in the frequency band up to the cutoff frequency f C on the lower side of the pass band.
  • the phase change is large, the phase difference with the filter 11C is large, and the amplitude difference is also large. Therefore, by the phase adjustment of the phase shifters 21C and 22C, in the frequency range from the frequency f A to the cut-off frequency f C , the frequencies f 11 and f 22 that become the largest impedance among the singular points of the impedance maximum of the second circuit.
  • the high frequency filter 60A sets the first band as the pass band due to the conduction state of the switches SW1, SW2, SW5, and SW6, it is possible to reduce the insertion loss of the first band.
  • the high frequency signal of the frequency included in the first band is adjusted by adjusting the phase difference of the first circuit and the second circuit to be in phase in a small frequency band by phase adjustment of the phase shifters 21C and 22C.
  • the ripple in the first band can be suppressed and the insertion loss can be reduced.
  • the first circuit and the second circuit are the same in the second band.
  • variable-frequency high frequency filter 60A capable of switching the first band, the second band, and the third band.
  • FIG. 31 is a graph for explaining the factor of broadening the band in the 1b band of the high frequency filter 60A according to the sixth embodiment.
  • the pass characteristics of the first circuit unit and the second circuit unit between the nodes X1 and X2 are shown in FIG.
  • the impedance characteristics of the first circuit viewed from the node X1 when the switch SW1 is in the conductive state and the second circuit alone from the node X1 when the switch SW5 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • the impedance characteristics of the first circuit viewed from the node X2 when the switch SW2 is in the conductive state and the second circuit alone from the node X2 when the switch SW6 is in the conductive state are illustrated in FIG. Impedance characteristics are shown.
  • unit between node X1-X2 is shown by (d) of the figure.
  • frequency f 11 which is the maximum of the impedance of the singular point as a maximum is
  • the phases of the phase shifters 21C and 22C are adjusted so as to be included in the frequency band from the frequency f A at the low band end of the second band to the cutoff frequency f C at the low band side of the pass band of the filter 12B. There is.
  • frequency f 22 which is the maximum of the impedance of the singular point as a maximum is the frequency f A of the low-frequency end of the second band, the filter 12B
  • the phases of the phase shifters 21C and 22C are adjusted so as to be included in the frequency band up to the cutoff frequency f C on the lower side of the pass band.
  • the phase change is large, the phase difference with the filter 11C is large, and the amplitude difference is also large. Therefore, by the phase adjustment of the phase shifters 21C and 22C, in the frequency range from the frequency f A to the cut-off frequency f C , the frequencies f 11 and f 22 that become the largest impedance among the singular points of the impedance maximum of the second circuit.
  • the high frequency filter 60A sets the band 1b as the pass band due to the conduction state of the switches SW1, SW2, SW5, and SW6, it is possible to reduce the insertion loss of the band 1b.
  • the phase difference of the first circuit and the second circuit so that the amplitude difference between the first circuit and the second circuit becomes the same phase in a small frequency band, the high frequency signal of the frequency included in the 1b band Are not canceled each other after passing through the first circuit and the second circuit. Thereby, it is possible to suppress the ripple in the 1b band and reduce the insertion loss.
  • the first circuit and the second circuit are the same in the 2b band.
  • variable-frequency high frequency filter 60A capable of switching the 1b band, the 2b band, and the 3b band.
  • the high frequency filter 60A it is possible to reduce the insertion loss by reducing the ripples in the first band and the 1b band while increasing the variation of switching of the pass band.
  • series arm resonators and the number of parallel arm circuits are appropriately determined according to the required specification of the filter characteristics. Also, instead of the series arm resonator, circuit elements such as an inductor and a capacitor may be arranged.
  • the high frequency filter 60A as a unit circuit constituted by one series arm resonator and one parallel arm circuit connected to the series arm, which constitute each of the filters 11C and 12B, There are modifications as shown in FIGS. 32A-32D and FIGS. 33A-33G.
  • FIG. 32A is a circuit configuration diagram of Modification Example 1 of each filter constituting the high frequency filter 60A according to the sixth embodiment.
  • the filter 13A shown in the figure is composed of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
  • the impedance circuit has a switch (ninth switch element) and a capacitor connected in parallel to one another. Switching between conduction and non-conduction of the switch switches the resonant frequency of the parallel arm circuit.
  • FIG. 32B is a circuit configuration diagram of Modification Example 2 of each filter constituting the high frequency filter 60A according to the sixth embodiment.
  • the filter 13B shown in the figure is composed of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
  • the impedance circuit has a switch (ninth switch element) and an inductor connected in parallel to each other. Switching between conduction and non-conduction of the switch switches the resonant frequency of the parallel arm circuit.
  • FIG. 32C is a circuit configuration diagram of Modification Example 3 of each filter constituting the high-frequency filter 60A according to Example 6.
  • FIG. The filter 13C shown in the same drawing is configured of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
  • the impedance circuit has a series circuit of a switch (ninth switch element) and an inductor connected in parallel to each other and a capacitor. Switching between conduction and non-conduction of the switch switches the resonant frequency of the parallel arm circuit.
  • FIG. 32D is a circuit configuration diagram of Modification Example 4 of each filter configuring the high-frequency filter 60A according to the sixth embodiment.
  • the filter 13D shown in the figure is constituted by a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
  • the impedance circuit has a series circuit of a switch (ninth switch element) and a capacitor connected in parallel to each other and an inductor. Switching between conduction and non-conduction of the switch switches the resonant frequency of the parallel arm circuit.
  • FIG. 33A is a circuit configuration diagram of Modification Example 5 of each filter configuring the high-frequency filter 60A according to the sixth embodiment.
  • the filter 14A shown in the figure is configured of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit includes a parallel arm resonator p1 and a parallel arm resonator p2 and a switch (ninth switch element) connected in series with each other.
  • the resonance frequency of the parallel arm resonator p1 is lower than the resonance frequency of the parallel arm resonator p2, and the antiresonance frequency of the parallel arm resonator p1 is set lower than the antiresonance frequency of the parallel arm resonator p2. Switching between conduction and non-conduction of the switch switches at least one of the resonant frequency and the antiresonant frequency of the parallel arm circuit.
  • FIG. 33B is a circuit configuration diagram of Modification Example 6 of the filters configuring the high-frequency filter 60A according to the sixth embodiment.
  • the filter 14B shown in the figure is composed of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit includes a parallel arm resonator p1, a parallel arm resonator p2 connected in series with one another, and an impedance circuit.
  • the resonance frequency of the parallel arm resonator p1 is different from the resonance frequency of the parallel arm resonator p2, and the antiresonance frequency of the parallel arm resonator p1 is different from the antiresonance frequency of the parallel arm resonator p2.
  • the impedance circuit has a switch (ninth switch element) and a capacitor connected in parallel to one another.
  • the parallel arm circuit has two resonance frequencies and two antiresonance frequencies, and switching between conduction and non-conduction of the switch allows at least one of the resonance frequencies of the parallel arm circuit and at least one of the antiresonance frequencies to be both. Switch.
  • FIG. 33C is a circuit configuration diagram of Modification Example 7 of each of the filters forming the high-frequency filter 60A according to the sixth embodiment.
  • the filter 14C shown in the same drawing is configured of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit includes a parallel arm resonator p1 and a first impedance circuit connected in series with each other, and a parallel arm resonator p2 and a second impedance circuit connected with each other in series.
  • the resonance frequency of the parallel arm resonator p1 is different from the resonance frequency of the parallel arm resonator p2, and the antiresonance frequency of the parallel arm resonator p1 is different from the antiresonance frequency of the parallel arm resonator p2.
  • the first impedance circuit includes a switch SW1 (ninth switch element) and a capacitor connected in parallel to each other.
  • the second impedance circuit includes a switch SW2 (ninth switch element) and a capacitor connected in parallel to each other.
  • the parallel arm circuit has two resonant frequencies and two antiresonant frequencies, and switching between conduction and non-conduction of each switch causes at least one of the resonant frequencies of the parallel arm circuit and at least one of the antiresonant frequencies to It switches together.
  • FIG. 33D is a circuit configuration diagram of Modified Example 8 of the filters constituting the high frequency filter 60A according to the sixth embodiment.
  • the filter 14D shown in the figure is configured of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
  • the impedance circuit includes a switch SW1 (ninth switch element) and a parallel arm resonator p2 connected in parallel to each other.
  • the resonance frequency of the parallel arm resonator p1 is different from the resonance frequency of the parallel arm resonator p2, and the antiresonance frequency of the parallel arm resonator p1 is different from the antiresonance frequency of the parallel arm resonator p2. Switching between conduction and non-conduction of the switch switches the frequency and number of resonant frequencies and antiresonant frequencies of the parallel arm circuit.
  • FIG. 33E is a circuit configuration diagram of Modification 9 of the filters constituting the high-frequency filter 60A according to the sixth embodiment.
  • the filter 14E shown in the figure is configured of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit has a configuration in which a circuit in which parallel arm resonators p1 and p2 are connected in parallel and an impedance circuit are connected in series.
  • the resonance frequency of the parallel arm resonator p1 is lower than the resonance frequency of the parallel arm resonator p2, and the antiresonance frequency of the parallel arm resonator p1 is set lower than the antiresonance frequency of the parallel arm resonator p2.
  • the impedance circuit has a switch SW1 (ninth switch element) and a capacitor connected in parallel to each other.
  • the parallel arm circuit has two resonant frequencies and two antiresonant frequencies, and switching between conduction and non-conduction of the switch switches the two resonant frequencies of the parallel arm circuit.
  • FIG. 33F is a circuit configuration diagram of Modification Example 10 of the filters configuring the high-frequency filter 60A according to the sixth embodiment.
  • the filter 14F shown in the figure is configured of a series arm circuit 151 and a parallel arm circuit.
  • the parallel arm circuit has a configuration in which a circuit in which parallel arm resonators p1 and p2 are connected in parallel and an impedance circuit are connected in series.
  • the resonance frequency of the parallel arm resonator p1 is lower than the resonance frequency of the parallel arm resonator p2, and the antiresonance frequency of the parallel arm resonator p1 is set lower than the antiresonance frequency of the parallel arm resonator p2.
  • the impedance circuit has a switch SW1 (ninth switch element) and an inductor connected in parallel to each other.
  • the parallel arm circuit has two resonant frequencies and two antiresonant frequencies, and switching between conduction and non-conduction of the switch switches the two resonant frequencies of the parallel arm circuit.
  • FIG. 33G is a circuit configuration diagram of Modification 11 of the filters constituting the high frequency filter 60A according to Embodiment 6.
  • the filter 14 ⁇ / b> G shown in the figure is configured of a series arm circuit and a parallel arm circuit 161.
  • the series arm circuit has a configuration in which a series arm resonator s1 and a series circuit of a capacitor and a switch (ninth switch element) are connected in parallel. Switching between conduction and non-conduction of the switch switches the antiresonant frequency of the series arm circuit.
  • the high frequency filters described in the first to sixth embodiments can also be applied to multiplexers and high frequency front end circuits corresponding to a system having a large number of used bands. Therefore, in the present embodiment, such a multiplexer, a high frequency front end circuit, and a communication apparatus will be described.
  • FIG. 34 is a block diagram of the communication device 9 and its peripheral circuits according to the sixth embodiment.
  • the communication apparatus 9 includes a switch group 210 formed of a plurality of switches, a filter group 220 formed of a plurality of filters, a transmission side switch 231, and reception side switches 251, 252 and 253. , Switches 271 and 272, transmission amplification circuits 241, 242 and 243, reception amplification circuits 261, 262, 263 and 264, RF signal processing circuit (RFIC) 7, and baseband signal processing circuit (BBIC) 8 , And an antenna element 5.
  • RFIC RF signal processing circuit
  • BBIC baseband signal processing circuit
  • Switch group 210 connects antenna element 5 and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is formed of, for example, a plurality of SPST type switches.
  • the number of signal paths connected to the antenna element 5 is not limited to one, and may be plural. That is, the communication device 9 may support carrier aggregation.
  • the filter group 220 is composed of, for example, a plurality of filters (including duplexers) having the next band in the pass band.
  • the band is a transmission band of (i-Tx) Band 3, 4 and 66, a reception band of (i-Rx) Band 3 or Band 3, 39, a transmission band of (ii-Tx) Band 25, (ii- Rx) Band 25 reception band, (iii-Tx) Band 1 or 65 transmission band, (iii-Rx) Band 1, 4, 65, 66 reception band, (iv-Tx) Band 30 transmission band, (iv-Rx) (B) Band 7 transmission band, (v) Band 7 or Band 7 or 38 reception band, (vii) Band 39 transmission / reception band, (viii) Band 34 transmission / reception band, (ix) Band 40 transmission / reception band, x) Band 41 or 38 transmission / reception band.
  • the transmission side switch 231 is a switch circuit having a plurality of selection terminals connected to a plurality of transmission side signal paths on the low band side where the center frequency of the filter group 220 is low and a common terminal connected to the transmission amplification circuit 241.
  • the reception side switch 251 is a switch circuit having a plurality of selection terminals connected to a plurality of reception side signal paths and a common terminal connected to the reception amplification circuit 261.
  • the reception side switch 252 is a switch circuit having a plurality of selection terminals connected to a plurality of reception side signal paths and a common terminal connected to the reception amplification circuit 262.
  • the reception side switch 253 is a switch circuit having a reception side signal path, a plurality of selection terminals connected to the selection terminal of the switch 271, and a common terminal connected to the reception amplification circuit 263.
  • the switch 271 is a switch circuit having a common terminal connected to the transmission / reception path of a predetermined band (here, Band 39), and two selection terminals connected to the selection terminal of the reception side switch 253 and the transmission amplification circuit 242.
  • the switch 272 is a switch circuit having a plurality of selection terminals connected to a plurality of transmission and reception paths, and two selection terminals connected to the transmission amplification circuit 243 and the reception amplification circuit 264.
  • These switches are provided in the subsequent stage (in this case, the subsequent stage in the reception side signal path) of the filter group 220, and the connection state is switched according to the control signal from the control unit (not shown).
  • the transmission amplification circuits 241, 242 and 243 are power amplifiers for power-amplifying high frequency transmission signals in a predetermined frequency band.
  • the reception amplifier circuits 261, 262, 263 and 264 are each a low noise amplifier for power-amplifying a high frequency reception signal of a predetermined frequency band.
  • the RF signal processing circuit (RFIC) 7 is a circuit that processes a high frequency signal transmitted and received by the antenna element 5. Specifically, the RF signal processing circuit (RFIC) 7 performs signal processing of a high frequency signal (here, a high frequency received signal) input from the antenna element 5 via the receiving signal path by down conversion or the like, and the signal The received signal generated by processing is output to the baseband signal processing circuit (BBIC) 8. Further, the RF signal processing circuit (RFIC) 7 performs signal processing on the transmission signal input from the baseband signal processing circuit (BBIC) 8 by up conversion and the like, and generates a high frequency signal (high frequency in this case) generated by the signal processing. The transmission signal is output to the transmission side signal path.
  • a high frequency signal here, a high frequency received signal
  • BBIC baseband signal processing circuit
  • the communication apparatus 9 configured in this manner includes the filter according to any one of the first to fifth embodiments as at least one of the filters having any of the above (i-Tx) to (x) in the pass band. .
  • the reception amplifier circuits 261, 262, 263 and 264 and the control unit constitute a high frequency front end circuit 6.
  • the switch group 210 and the filter group 220 constitute a multiplexer.
  • the filter group 220 may be connected to the common terminal through the switch group 210, and one of the first to fifth embodiments. A plurality of filters may be directly connected to the common terminal.
  • control unit may be included in an RF signal processing circuit (RFIC), or may constitute a switch IC together with each switch controlled by the control unit. Good.
  • RFIC RF signal processing circuit
  • ripple (insertion loss deviation) in the passband is reduced. It is possible to realize a low loss and wide band high frequency front end circuit and communication device.
  • the transmission side switch 231, the reception side switches 251, 252 and 253, and the switch provided in the front stage or the rear stage of the filter group 220 (a plurality of high frequency filters). 271 and 272 (switch circuits).
  • the transmission amplification circuits 241, 242 and 243 corresponding to a plurality of high frequency filters, and the reception amplification circuits 261, 262, 263 and 264 (amplification circuits) can be shared. Therefore, miniaturization and cost reduction of the high frequency front end circuit can be realized.
  • the transmission side switch 231, the reception side switches 251, 252 and 253, and the switches 271 and 272 may be provided.
  • the number of transmission side switches and the number of reception side switches are not limited to the number described above.
  • one transmission side switch and one reception side switch may be provided.
  • the number of selection terminals and the like of the transmission side switch and the reception side switch is not limited to the present embodiment, and may be two.
  • the second band is applied to the Band 3 reception passband (1805-1880 MHz) of LTE
  • the third band is applied to the Band 39 passband (1880 to 1920 MHz) of LTE.
  • the band is applied to the band (1805-1920 MHz) including the Band 3 reception pass band and the Band 39 pass band
  • the present invention is not limited thereto.
  • the second band is applied to the Band 28A reception passband (758 to 788 MHz) of LTE
  • the third band is applied to the Band 20 reception passband (791 to 821 MHz) of LTE
  • the first band is the Band 28A reception passband and Band 20 reception passband.
  • the present invention may be applied to a band (758-821 MHz) including the band.
  • the second band is applied to Band 38 pass band (2570-2620 MHz) of LTE
  • the third band is applied to Band 7 reception pass band (2620-2690 MHz) of LTE
  • the first band is Band 38 pass band and Band 7 reception pass
  • the present invention may be applied to a band (2570-2690 MHz) including the band.
  • each of the series arm resonator and the parallel arm resonator constituting each filter is not limited to one resonator, and may be constituted by a plurality of divided resonators in which one resonator is divided.
  • phase shifters described in the first to sixth embodiments have a function of impedance conversion as well as phase conversion, and may be replaced with “impedance converter”.
  • control unit may be provided outside the RF signal processing circuit (RFIC) 7, and may be provided, for example, in the high frequency front end circuit 6. That is, the high frequency front end circuit 6 is not limited to the above-described configuration, and the high frequency filter according to any one of the first to fifth embodiments, and a control unit for controlling on and off of the switch element of the high frequency filter. You may have
  • an inductor or a capacitor may be connected between each component.
  • the inductor may include a wiring inductor formed by wiring connecting the components.
  • each switch element included in the high frequency filter according to any one of the first to fifth embodiments may be, for example, a field effect transistor (FET) switch or a diode switch formed of GaAs or complementary metal oxide semiconductor (CMOS). . Since such a switch is small, the high frequency filter according to any one of the first to fifth embodiments can be miniaturized.
  • FET field effect transistor
  • CMOS complementary metal oxide semiconductor
  • the series arm resonator and the parallel arm resonator included in the high frequency filter according to any one of the first to fifth embodiments are elastic wave resonators using elastic waves, and use, for example, SAW (Surface Acoustic Wave) Or a resonator using BAW (Bulk Acoustic Wave), or a film bulk acoustic resonator (FBAR).
  • SAW Surface Acoustic Wave
  • BAW Bulk Acoustic Wave
  • FBAR film bulk acoustic resonator
  • the parallel arm resonator is a resonator or a circuit represented by an equivalent circuit model (for example, a BVD model etc.) composed of an inductance component and a capacitance component, and a resonator having a resonant frequency and an antiresonant frequency or It may be a circuit.
  • an equivalent circuit model for example, a BVD model etc.
  • the present invention is widely applicable to communication devices such as mobile phones as wide-band low-loss filters, multiplexers, front end circuits and communication devices.
  • RFIC radio frequency front end circuit
  • BBIC Baseband Signal Processing Circuit
  • Switch group 220 Filter group 231 Transmission side switch 241, 242 243 transmission amplification circuit 251, 252, 253

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Filters And Equalizers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

第1帯域を通過帯域とする高周波フィルタ(10)は、ノード(X1)およびノード(X2)に接続された第1回路と、ノード(X1)およびノード(X2)に接続された第2回路とを備え、第1回路は、第1帯域の一部の周波数を含む帯域であって第1帯域より狭い帯域幅を有する第2帯域を通過帯域とするフィルタ(11)を有し、第2回路は、第1帯域の一部の周波数を含む帯域であって第1帯域より狭い帯域幅を有し、かつ、第2帯域の中心周波数より高周波数側に位置する第3帯域を通過帯域とするフィルタ(12)と、フィルタ(12)の一方の端子に接続された移相器(21)と、フィルタ(12)の他方の端子に接続された移相器(22)とを有する。

Description

高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
 本発明は、高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置に関する。
 広帯域の高周波フィルタとして、互いに並列接続された異なる通過帯域を有する複数の帯域通過フィルタと、並列接続された複数の帯域通過フィルタに接続されたスイッチ素子とを備えた無線受信回路が知られている(例えば、特許文献1参照)。この無線受信回路の構成によれば、スイッチ素子が導通(オン)の場合、通過帯域の周波数の異なる複数の帯域通過フィルタが互いに並列接続された回路となり、通過帯域が広帯域化されたフィルタを実現できるとしている。
特開2008-160629号公報
 しかしながら、特許文献1に開示された構成において、スイッチ素子を導通にして複数の帯域通過フィルタからなる広帯域のフィルタが選択された場合、通過帯域内にリップル(挿入損失偏差)が入るため、通過帯域内の挿入損失が大きくなるという問題がある。
 そこで、本発明は、通過帯域内のリップル(挿入損失偏差)が低減された低損失かつ広帯域の高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波フィルタは、第1帯域を通過帯域とする高周波フィルタであって、第1入出力端子と第2入出力端子とを結ぶ経路上に設けられた第1ノード、ならびに、前記経路上の前記第1ノードおよび前記第2入出力端子の間に設けられた第2ノードに接続された第1回路と、前記第1ノードおよび前記第2ノードに接続された第2回路と、を備え、前記第1回路は、前記第1帯域の一部の周波数を含む帯域であって、前記第1帯域より狭い帯域幅を有する第2帯域を通過帯域とする第1フィルタを有し、前記第2回路は、前記第1帯域の一部の周波数を含む帯域であって、前記第1帯域より狭い帯域幅を有し、かつ、前記第2帯域の中心周波数より高周波数側に位置する第3帯域を通過帯域とする第2フィルタと、前記第2フィルタの一方の端子に接続された第1移相器と、前記第2フィルタの他方の端子に接続された第2移相器と、を有する。
 第1フィルタと第2フィルタとを第1ノードと第2ノードとの間に並列配置して、第1フィルタと第2フィルタとの合成回路により、広帯域の第1帯域を通過帯域とする高周波フィルタを実現する場合、2つのフィルタの振幅差、位相差、およびインピーダンスの差により、第1帯域内にリップルが発生することが想定される。
 これに対して、上記構成によれば、第2フィルタの両端に第1移相器および第2移相器が配置されるので、2つのフィルタの振幅差に対応させて、位相差およびインピーダンスを調整することが可能となる。よって、第1帯域を通過帯域とし、当該通過帯域内のリップルが低減された低損失かつ広帯域の高周波フィルタを実現できる。
 また、前記第1ノードおよび前記第2ノードの少なくとも一方から前記第2回路を単体で見た場合、前記第2回路のインピーダンスが極大となる特異点のうち最大のインピーダンスとなる周波数が、前記第2帯域の低域端の周波数から前記第2フィルタの通過帯域低域側のカットオフ周波数までの範囲に含まれるように、前記第1移相器および第2移相器の位相が調整されていてもよい。
 これにより、第1帯域におけるリップルが低減された低損失かつ広帯域の高周波フィルタを実現できる。
 また、前記第1ノードおよび前記第2ノードの少なくとも一方から前記第2回路を単体で見た場合、前記第2帯域において、前記第1回路と前記第2回路とが同位相になっている周波数が少なくとも1箇所あり、前記第3帯域において、前記第1回路と前記第2回路とが同位相になっている周波数が少なくとも1箇所あってもよい。
 これにより、第1帯域におけるリップルが低減された低損失かつ広帯域の高周波フィルタを実現できる。
 また、前記第3帯域の低域端の周波数において、前記第1フィルタおよび前記第2フィルタの位相差と、前記第1移相器および前記第2移相器の移相和との和が、312°以上かつ362°以下となるように、前記第1移相器および前記第2移相器の移相が調整されていてもよい。
 これにより、第1帯域におけるリップルが低減された低損失かつ広帯域の高周波フィルタを実現できる。
 また、前記経路は、前記第1ノード、前記第1回路、および前記第2ノードを経由する第1経路と、前記第1ノード、前記第2回路、および前記第2ノードを経由する第2経路と、を含み、前記第1フィルタは、前記第1経路上に設けられた第1直列腕回路と、前記第1経路上に設けられたノードとグランドとに接続された第1並列腕回路と、を有し、前記第2フィルタは、前記第1移相器と前記第2移相器とを結ぶ前記第2経路上に設けられた第2直列腕回路と、前記第2経路上に設けられたノードとグランドとに接続された第2並列腕回路と、を有し、前記第1直列腕回路、前記第1並列腕回路、前記第2直列腕回路、および、前記第2並列腕回路のうちの少なくとも1つは、弾性波共振子を有し、前記弾性波共振子の少なくとも1つは、圧電性を有する基板上に形成されたIDT(InterDigital Transducer)電極と、反射器と、を有し、前記弾性波共振子の少なくとも1つにおける前記IDT電極の電極周期で定まる弾性波の波長をλとした場合、前記IDT電極と前記反射器とのピッチは、0.42λ以上かつ0.50λ未満であってもよい。
 IDT電極および反射器を有する弾性波共振子は、周期的に並べられた電極指からなる周期構造によって構成され、特定の周波数領域の弾性表面波を高い反射係数で反射する周波数帯域を有する。この周波数帯域は、一般的にストップバンドと称され、上記周期構造の繰り返し周期等によって規定される。このとき、ストップバンドの高域端では、反射係数が局所的に大きくなるリップルが生じる。さらに、IDT電極と反射器とのピッチ(I-Rピッチ)を0.5λ以上にすると、ストップバンドの高域端でのリップルが大きくなり、フィルタの通過帯域内のリップルが大きくなり、挿入損失が大きくなる。一方、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、ストップバンドの高域端でのリップルを低減できる。上記観点から、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、高周波フィルタの通過帯域内の挿入損失を小さくすることができる。
 また、前記第1回路は、さらに、前記第1ノードと前記第1フィルタとの間に接続された第1スイッチ素子と、前記第2ノードと前記第1フィルタとの間に接続された第2スイッチ素子と、を有し、前記第1スイッチ素子および前記第2スイッチ素子の導通および非導通の切り替えにより、前記第1帯域と前記第3帯域とが切り替わってもよい。
 これにより、第1スイッチ素子および第2スイッチ素子の導通および非導通の切り替えにより、第1帯域と第3帯域を切り替えることができる周波数可変型の高周波フィルタ(チューナブルフィルタ)を実現できる。
 また、前記第1回路は、さらに、前記第1スイッチ素子と前記第1フィルタとの間の接続ノードと、グランドとの間に接続され、前記第1スイッチ素子と排他的に導通および非導通が切り替えられる第3スイッチ素子と、前記第2スイッチ素子と前記第1フィルタとの間の接続ノードと、グランドとの間に接続され、前記第2スイッチ素子と排他的に導通および非導通が切り替えられる第4スイッチ素子と、を有してもよい。
 これにより、第3帯域に切り替えられた場合の通過帯域(第3帯域)内のリップルを低減できるとともに、通過帯域低域側の減衰特性を向上できる。
 また、前記第2回路は、さらに、前記第1ノードと前記第1移相器との間に接続された第5スイッチ素子と、前記第2ノードと前記第2移相器との間に接続された第6スイッチ素子と、を有し、前記第5スイッチ素子および前記第6スイッチ素子の導通および非導通の切り替えにより、前記第1帯域と前記第2帯域とが切り替わってもよい。
 これにより、第5スイッチ素子および第6スイッチ素子の導通および非導通の切り替えにより、第1帯域と第2帯域を切り替えることができる周波数可変型の高周波フィルタ(チューナブルフィルタ)を実現できる。
 また、前記第2回路は、さらに、前記第5スイッチ素子と前記第1移相器との間の接続ノードと、グランドとの間に接続され、前記第5スイッチ素子と排他的に導通および非導通が切り替えられる第7スイッチ素子と、前記第6スイッチ素子と前記第2移相器との間の接続ノードと、グランドとの間に接続され、前記第6スイッチ素子と排他的に導通および非導通が切り替えられる第8スイッチ素子と、を有してもよい。
 これにより、第2帯域に切り替えられた場合の通過帯域(第2帯域)内のリップルを低減できるとともに、通過帯域高域側の減衰特性を向上できる。
 また、さらに、前記第1ノードおよび前記第2ノードに接続された第3回路を備え、前記第3回路は、前記第1帯域と異なる第4帯域の一部の周波数を含む帯域であって、前記第4帯域より狭い帯域幅を有し、かつ、前記第2帯域の中心周波数より高周波数側に位置し、かつ、前記第3帯域と異なる第5帯域を通過帯域とする第3フィルタと、前記第3フィルタの一方の端子に接続された第3移相器と、前記第3フィルタの他方の端子に接続された第4移相器と、を有してもよい。
 これにより、通過帯域の切り替えのバリエーションが増える。
 また、前記第1移相器は、前記第1ノードと前記第2フィルタの一方の端子とを結ぶ直列腕経路に配置された1以上のインダクタ、および、前記直列腕経路上のノードとグランドとの間に接続されたキャパシタを有する低域通過型フィルタ回路、または、前記直列腕経路に配置された1以上のキャパシタ、および、前記直列腕経路上のノードおよびグランドに接続されたインダクタで構成された高域通過型フィルタ回路であってもよい。
 これにより、要求される減衰特性に応じて、第1移相器の回路構成を低域通過型フィルタ回路および高域通過型フィルタ回路のいずれかに適宜選択することが可能となる。
 また、前記第2移相器は、前記第2ノードと前記第2フィルタの他方の端子とを結ぶ直列腕経路に配置された1以上のインダクタ、および、前記直列腕経路上のノードおよびグランドに接続されたキャパシタで構成された低域通過型フィルタ回路、または、前記直列腕経路に配置された1以上のキャパシタ、および、前記直列腕経路上のノードおよびグランドに接続されたインダクタで構成された高域通過型フィルタ回路であってもよい。
 これにより、要求される減衰特性に応じて、第2移相器の回路構成を低域通過型フィルタ回路および高域通過型フィルタ回路のいずれかに適宜選択することが可能となる。
 また、前記第1移相器および前記第2移相器は、キャパシタまたはインダクタからなるインピーダンス素子であってもよい。
 これにより、高周波フィルタの回路構成を簡素化でき、小型化が可能となる。
 また、前記第1フィルタおよび第2フィルタの少なくとも一方は、前記第1ノードと前記第2ノードとを結ぶ前記経路上に配置された直列腕回路と、前記経路上のノードおよびグランドに接続された並列腕回路と、を有し、前記直列腕回路および前記並列腕回路の少なくとも一方は、共振子、および、第9スイッチ素子、を有し、前記第9スイッチ素子の導通および非導通の切り替えにより、前記直列腕回路および前記並列腕回路の少なくとも一方の共振周波数および反共振周波数の少なくとも一方の周波数が切り替わってもよい。
 これにより、通過帯域の切り替えのバリエーションが増える。
 また、前記第1フィルタおよび前記第2フィルタの少なくとも一方は、弾性表面波フィルタ、弾性境界波フィルタ、および、バルク弾性波(BAW:Bulk Acoustic Wave)を用いた弾性波フィルタのいずれかであってもよい。
 これにより、選択度の高い高周波フィルタを実現できる。
 また、前記第1フィルタおよび前記第2フィルタの少なくとも一方は、縦結合型共振器を有してもよい。
 これにより、通過帯域低域側において、急峻性が向上するとともに、減衰量を向上できる。
 また、第1移相器の位相と第2移相器の位相とは異なってもよい。
 また、本発明の一態様に係るマルチプレクサは、上記いずれかに記載の高周波フィルタを含む複数のフィルタを備え、前記複数のフィルタの入力端子または出力端子は、共通端子に直接的または間接的に接続されている。
 これにより、通過帯域内のリップルが低減された低損失かつ広帯域の高周波フィルタ有するマルチプレクサを実現できる。
 また、本発明の一態様に係る高周波フロントエンド回路は、上記いずれかに記載の高周波フィルタまたは上記記載のマルチプレクサと、前記高周波フィルタまたは前記マルチプレクサに直接的または間接的に接続された増幅回路と、を備える。
 これにより、通過帯域内のリップルが低減された低損失かつ広帯域の高周波フィルタ有する高周波フロントエンド回路を実現できる。
 また、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記記載の高周波フロントエンド回路と、を備える。
 これにより、通過帯域内のリップルが低減された低損失かつ広帯域の高周波フィルタ有する通信装置を実現できる。
 本発明によれば、通過帯域内のリップル(挿入損失偏差)が低減された低損失かつ広帯域の高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置を提供することが可能となる。
図1Aは、実施の形態1に係る高周波フィルタの回路ブロック図である。 図1Bは、実施の形態1に係る高周波フィルタの広帯域化の概念を表す図である。 図2は、実施例1に係る高周波フィルタの回路構成図である。 図3Aは、比較例1に係る高周波フィルタの回路ブロック図である。 図3Bは、比較例2に係る高周波フィルタの回路ブロック図である。 図4Aは、比較例1に係る高周波フィルタの通過特性、振幅特性、位相特性およびインピーダンス特性を表すグラフである。 図4Bは、比較例2に係る高周波フィルタの通過特性、振幅特性、位相特性およびインピーダンス特性を表すグラフである。 図5は、実施例1に係る高周波フィルタの通過特性、振幅特性、位相特性およびインピーダンス特性を表すグラフである。 図6は、実施例1に係る高周波フィルタの広帯域化の要因を説明するグラフである。 図7は、実施例1に係る高周波フィルタの移相器の位相を変化させた場合の通過特性、位相特性およびインピーダンス特性を表すグラフである。 図8は、実施例1に係る高周波フィルタの移相器の位相と挿入損失および最大インピーダンスとの関係を表すグラフである。 図9は、実施例1a、1b、1c、1d、1eに係る高周波フィルタの回路構成図である。 図10は、実施の形態1における並列腕共振子の構造を模式的に表す図の一例である。 図11Aは、実施例1aおよび実施例1eに係る高周波フィルタの通過特性および反射特性を比較したグラフである。 図11Bは、実施例1aおよび実施例1eに係る直列腕共振子のインピーダンス特性および反射特性を比較したグラフである。 図12Aは、実施例1bおよび実施例1eに係る高周波フィルタの通過特性を比較したグラフである。 図12Bは、実施例1bおよび実施例1eに係る並列腕共振子のインピーダンス特性および反射特性を比較したグラフである。 図13Aは、実施例1cおよび実施例1eに係る高周波フィルタの通過特性を比較したグラフである。 図13Bは、実施例1cおよび実施例1eに係る並列腕共振子のインピーダンス特性および反射特性を比較したグラフである。 図14は、実施例1dおよび実施例1eに係る高周波フィルタの通過特性および反射特性を比較したグラフである。 図15Aは、典型例の共振子において、I-Rピッチを0.40λ~0.50λで変化させた場合の特性の変化を表すグラフである。 図15Bは、典型例の共振子において、I-Rピッチを0.50λ~0.60λで変化させた場合の特性の変化を表すグラフである。 図16は、実施の形態2に係る高周波フィルタの回路ブロック図である。 図17Aは、実施例2に係る高周波フィルタの回路構成図である。 図17Bは、実施例2に係る高周波フィルタのスイッチの切り替えによる通過特性の変化を表すグラフである。 図18は、実施例2に係る高周波フィルタの広帯域化の要因を説明するグラフである。 図19は、実施例2に係る高周波フィルタのスイッチオフ容量を変化させた場合の通過特性を表すグラフである。 図20は、実施例3に係る高周波フィルタの回路ブロック図である。 図21は、実施例3に係る高周波フィルタの通過特性を表すグラフである。 図22Aは、実施の形態2の変形例1に係る高周波フィルタの回路構成図である。 図22Bは、実施の形態2の変形例2に係る高周波フィルタの回路構成図である。 図23は、実施の形態2の変形例1および2に係る高周波フィルタの通過特性を比較したグラフである。 図24Aは、実施例4に係る高周波フィルタの回路構成図である。 図24Bは、実施例4に係る高周波フィルタのスイッチの切り替えによる通過特性の変化を表すグラフである。 図25は、実施例4に係る高周波フィルタの第1帯域における広帯域化の要因を説明するグラフである。 図26は、実施例4に係る高周波フィルタの第1a帯域における広帯域化の要因を説明するグラフである。 図27Aは、実施例5に係る高周波フィルタの回路構成図である。 図27Bは、実施例5に係る高周波フィルタのスイッチの切り替えによる通過特性の変化を表すグラフである。 図28は、実施例5に係る高周波フィルタの広帯域化の要因を説明するグラフである。 図29Aは、実施例6に係る高周波フィルタの回路構成図である。 図29Bは、実施例6に係る高周波フィルタのスイッチの切り替えによる通過特性の変化を表すグラフである。 図30は、実施例6に係る高周波フィルタの第1帯域における広帯域化の要因を説明するグラフである。 図31は、実施例6に係る高周波フィルタの第1b帯域における広帯域化の要因を説明するグラフである。 図32Aは、実施例6に係る高周波フィルタを構成する各フィルタの変形例1の回路構成図である。 図32Bは、実施例6に係る高周波フィルタを構成する各フィルタの変形例2の回路構成図である。 図32Cは、実施例6に係る高周波フィルタを構成する各フィルタの変形例3の回路構成図である。 図32Dは、実施例6に係る高周波フィルタを構成する各フィルタの変形例4の回路構成図である。 図33Aは、実施例6に係る高周波フィルタを構成する各フィルタの変形例5の回路構成図である。 図33Bは、実施例6に係る高周波フィルタを構成する各フィルタの変形例6の回路構成図である。 図33Cは、実施例6に係る高周波フィルタを構成する各フィルタの変形例7の回路構成図である。 図33Dは、実施例6に係る高周波フィルタを構成する各フィルタの変形例8の回路構成図である。 図33Eは、実施例6に係る高周波フィルタを構成する各フィルタの変形例9の回路構成図である。 図33Fは、実施例6に係る高周波フィルタを構成する各フィルタの変形例10の回路構成図である。 図33Gは、実施例6に係る高周波フィルタを構成する各フィルタの変形例11の回路構成図である。 図34は、実施の形態6に係る通信装置およびその周辺回路の構成図である。
 以下、本発明の実施の形態について、実施例および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、共振子等の回路素子については要求仕様等に応じて定数が適宜調整され得る。このため、回路素子については、同一の符号であっても定数が異なる場合もある。
 また、共振子または回路における共振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための共振周波数であり、当該共振子または当該回路のインピーダンスが極小となる特異点(理想的にはインピーダンスが0となる点)である「共振点」の周波数である。
 また、共振子または回路における反共振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための反共振周波数であり、当該共振子または当該回路のインピーダンスが極大となる特異点(理想的にはインピーダンスが無限大となる点)である「反共振点」の周波数である。
 なお、以下の実施の形態において、直列腕(共振)回路および並列腕(共振)回路は、以下のように定義される。
 並列腕(共振)回路は、第1入出力端子および第2入出力端子を結ぶ経路上の一のノードと、グランドと、の間に配置された回路である。
 直列腕(共振)回路は、第1入出力端子または第2入出力端子と、並列腕(共振)回路が接続される上記経路上のノードと、の間に配置された回路、または、一の並列腕(共振)回路が接続される上記経路上の一のノードと、他の並列腕(共振)回路が接続される上記経路上の他のノードと、の間に配置された回路である。
 また、以下において、「通過帯域低域端」は、「通過帯域内の最も低い周波数」を意味する。また、「通過帯域高域端」は、「通過帯域内の最も高い周波数」を意味する。また、以下において、「通過帯域低域側」は、「通過帯域外かつ通過帯域より低周波数側」を意味する。また「通過帯域高域側」は、「通過帯域外かつ通過帯域より高周波数側」を意味する。また、以下では、「低周波数側」を「低域側」と称し、「高周波数側」を「高域側」と称する場合がある。
 (実施の形態1)
 [1.1 実施の形態1に係る高周波フィルタ10の基本構成]
 図1Aは、実施の形態1に係る高周波フィルタ10の回路ブロック図である。同図に示された高周波フィルタ10は、フィルタ11および12と、移相器21および22と、入出力端子110および120と、を備える。
 フィルタ11は、第1回路を構成する第1フィルタである。第1回路は、入出力端子110(第1入出力端子)と入出力端子120(第2入出力端子)とを結ぶ経路上に設けられたノードX1(第1ノード)、ならびに、ノードX1および入出力端子120の間に設けられたノードX2(第2ノード)に接続されている。
 フィルタ12は、移相器21および22とともに第2回路を構成する第2フィルタである。第2回路は、ノードX1およびX2に接続されている。
 移相器21は、フィルタ12の一方の端子に接続された第1移相器である。また、移相器22は、フィルタ12の他方の端子に接続された第2移相器である。つまり、移相器21、フィルタ12、および移相器22は、この順で、ノードX1とノードX2との間に直列接続されている。
 図1Bは、実施の形態1に係る高周波フィルタ10の広帯域化の概念を表す図である。同図には、フィルタ11および12、ならびに、高周波フィルタ10の通過帯域が概念的に示されている。高周波フィルタ10は、広帯域の第1帯域を通過帯域としている。フィルタ11は、第1帯域の一部の周波数を含む帯域であって、第1帯域より狭い帯域幅を有する第2帯域を通過帯域としている。フィルタ12は、第1帯域の一部の周波数を含む帯域であって、第1帯域より狭い帯域幅を有し、かつ、第2帯域の中心周波数より高域側に位置する第3帯域を通過帯域としている。
 なお、第1帯域とは、複数の離散的な帯域で構成された帯域ではなく、周波数的に連続した1つの帯域であると定義される。
 [1.2 実施例1に係る高周波フィルタ10Aの回路構成]
 図2は、実施例1に係る高周波フィルタ10Aの回路構成図である。同図に示された高周波フィルタ10Aは、フィルタ11Aおよび12Aと、移相器21および22と、入出力端子110および120と、を備える。高周波フィルタ10Aは、実施の形態1に係る高周波フィルタ10の具体的回路構成例であり、フィルタ11Aはフィルタ11の具体的回路構成例であり、フィルタ12Aはフィルタ12の具体的回路構成例である。
 フィルタ11Aは、ノードX1とノードX2とを結ぶ第1経路上に配置された直列腕共振子s11、s12およびs13と、当該第1経路上の各ノードとグランドとの間に配置された並列腕共振子p11、p12、p13およびp14と、並列腕共振子p13およびグランドに接続されたインダクタLp13と、を備える。これにより、フィルタ11Aは、ラダー型の帯域通過型フィルタを構成している。
 フィルタ12Aは、ノードX1とノードX2とを結ぶ第2経路上に配置された直列腕共振子s21およびs22と、当該第2経路上の各ノードとグランドとの間に配置された並列腕共振子p21、p22およびp23と、を備える。これにより、フィルタ12Aは、ラダー型の帯域通過型フィルタを構成している。
 表1に、実施例1に係る高周波フィルタ10Aの回路パラメータを示す。
Figure JPOXMLDOC01-appb-T000001
 実施の形態1に係る高周波フィルタ10および実施例1に係る高周波フィルタ10Aは、第2フィルタの一方端に移相器21が配置され、第2フィルタの他方端に移相器22が配置される構成を特徴としている。以下、本構成の特徴および効果を説明するために、まず、比較例に係る高周波フィルタの特徴および問題点を説明する。
 [1.3 比較例に係る高周波フィルタの回路構成およびフィルタ特性]
 図3Aは、比較例1に係る高周波フィルタ500の回路ブロック図である。また、図3Bは、比較例2に係る高周波フィルタ600の回路ブロック図である。
 図3Aに示された比較例1に係る高周波フィルタ500は、フィルタ11および12と、入出力端子110および120と、を備える。図3Aに示された高周波フィルタ500は、実施の形態に示された高周波フィルタ10と比較して、移相器21および22が配置されていない点のみが構成として異なる。なお、高周波フィルタ500を構成するフィルタ11および12は、高周波フィルタ10を構成するフィルタ11および12と同じ構成であり、高周波フィルタ500のフィルタ11は第2帯域を通過帯域とし、高周波フィルタ500のフィルタ12は第3帯域を通過帯域としている。
 図3Bに示された比較例2に係る高周波フィルタ600は、フィルタ11および12と、移相器21と、入出力端子110および120と、を備える。図3Bに示された比較例2に係る高周波フィルタ600は、実施の形態に示された高周波フィルタ10と比較して、移相器22が配置されていない点のみが構成として異なる。なお、高周波フィルタ600を構成するフィルタ11および12は、高周波フィルタ10を構成するフィルタ11および12と同じ構成であり、高周波フィルタ500のフィルタ11は第2帯域を通過帯域とし、高周波フィルタ500のフィルタ12は第3帯域を通過帯域としている。
 以下、実施例1、比較例1および比較例2に係る高周波フィルタでは、第2帯域をLTE(Long Term Evolution)のBand3受信通過帯域(1805-1880MHz)とし、第3帯域をLTEのBand39通過帯域(1880-1920MHz)とし、第1帯域を(Band3受信通過帯域+Band39通過帯域)(1805-1920MHz)としている。
 図4Aは、比較例1に係る高周波フィルタ500の通過特性、振幅特性、位相特性およびインピーダンス特性を表すグラフである。図4Aの(a)および(f)には、高周波フィルタ500の通過特性が示されている。図4Aの(b)および(c)には、それぞれ、ノードX1-X2間の第1回路単体とノードX1-X2間の第2回路単体との振幅差および位相差が示されている。図4Aの(d)には、ノードX1から第1回路単体および第2回路単体を見たインピーダンス特性が示されている。図4Aの(e)には、ノードX2から第1回路単体および第2回路単体を見たインピーダンス特性が示されている。図4Aの(g)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。図4Aの(h)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。
 なお、本実施の形態および以降の実施の形態において、回路の「インピーダンス」とは、反射のインピーダンスを指し、回路の「位相」とは、通過の位相を表すものとしている。
 まず、図4Aの(a)に示すように、比較例1に係る高周波フィルタ500は、通過帯域である第1帯域内で大きなリップル(挿入損失偏差)が見られ、第1帯域内挿入損失を悪化させている。上記リップルの主原因としては、以下の2つが挙げられる。
 (1)フィルタ12Aの通過帯域低域側の減衰極が現れる周波数(図4Aの(1))において、図4Aの(d)および(e)に示すように、フィルタ11Aのインピーダンスに対してフィルタ12A(第2回路)のインピーダンスが低い。また、上記減衰極が現れる周波数において、図4Aの(b)に示すように、第1回路と第2回路との振幅差が大きい。これらのため、上記減衰極が現れる周波数の高周波信号は、第2回路のフィルタ12Aから(並列腕共振子を経由して)グランドへ流れこむこととなる。これにより、高周波フィルタ500の第1帯域に含まれる、上記減衰極が現れる周波数では、第1帯域内においてリップルを発生させることとなる。
 (2)第1帯域に含まれる2つの周波数(図4Aの(2))において、図4Aの(c)に示すように、フィルタ11A(第1回路)とフィルタ12A(第2回路)との位相差が-180°となる。また、図4Aの(b)に示すように、上記2つの周波数において、フィルタ11A(第1回路)とフィルタ12A(第2回路)との振幅差が略0dBとなる。つまり、第1帯域に含まれる上記2つの周波数において、フィルタ11A(第1回路)とフィルタ12A(第2回路)とが逆位相かつ同振幅となる。このため、第1帯域に含まれる上記2つの周波数の高周波信号は、第1回路および第2回路を経由した後、打ち消し合うこととなる。これにより、高周波フィルタ500の第1帯域に含まれる、上記2つの周波数では、第1帯域内においてリップルを発生させることとなる。
 図4Bは、比較例2に係る高周波フィルタ600の通過特性、振幅特性、位相特性およびインピーダンス特性を表すグラフである。図4Bの(a)および(f)には、高周波フィルタ600の通過特性が示されている。図4Bの(b)および(c)には、それぞれ、ノードX1-X2間の第1回路単体とノードX1-X2間の第2回路単体との振幅差および位相差が示されている。図4Bの(d)には、ノードX1から第1回路単体および第2回路単体を見たインピーダンス特性が示されている。図4Bの(e)には、ノードX2から第1回路単体および第2回路単体を見たインピーダンス特性が示されている。図4Bの(g)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。図4Bの(h)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。
 図4Bの(a)に示すように、比較例2に係る高周波フィルタ600は、通過帯域である第1帯域内で大きなリップル(挿入損失偏差)が見られ、第1帯域内挿入損失を悪化させている。比較例2に係る高周波フィルタ600では、移相器21を配置したため、比較例1に係る高周波フィルタ500に見られたような上記(2)に起因したリップルは低減されているが、下記(1)に起因したリップルが発生している。
 (1)フィルタ12Aの通過帯域低域側の減衰極が現れる周波数(図4Bの(1))において、図4Bの(e)に示すように、フィルタ12A(第2回路)のノードX2から見たインピーダンス|Z22|が低い。また、上記減衰極が現れる周波数において、図4Bの(b)に示すように、第1回路と第2回路との振幅差が大きい。これらのため、上記減衰極が現れる周波数の高周波信号は、第2回路のフィルタ12Aから(並列腕共振子を経由して)グランドへ流れこむこととなる。これにより、高周波フィルタ600の第1帯域に含まれる、上記減衰極が現れる周波数では、第1帯域内においてリップルを発生させることとなる。
 [1.4 実施例1に係る高周波フィルタ10Aのフィルタ特性]
 図5は、実施例1に係る高周波フィルタ10Aの通過特性、振幅特性、位相特性およびインピーダンス特性を表すグラフである。図5の(a)および(f)には、高周波フィルタ10Aの通過特性が示されている。図5の(b)および(c)には、それぞれ、ノードX1-X2間の第1回路単体とノードX1-X2間の第2回路単体との振幅差および位相差が示されている。図5の(d)には、ノードX1から第1回路単体および第2回路単体を見たインピーダンス特性が示されている。図5の(e)には、ノードX2から第1回路単体および第2回路単体を見たインピーダンス特性が示されている。図5の(g)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。図5の(h)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。
 実施例1に係る高周波フィルタ10Aのように、フィルタ12Aの両方の入出力端子(前段および後段)に移相器21および22が接続されることで、図5の(a)および(f)に示すように、高周波フィルタ10Aの通過帯域である第1帯域において、リップルが低減されることで挿入損失が低減する。
 実施例1に係る高周波フィルタ10Aが、比較例1に係る高周波フィルタ500および比較例2に係る高周波フィルタ600と比較して、通過帯域内リップルおよび通過帯域内挿入損失を低減する要因について、以下に説明する。
 図6は、実施例1に係る高周波フィルタ10Aの広帯域化の要因を説明するグラフである。同図には、上記要因を説明するため、図5の(c)、(d)、(e)、(g)、(h)が示されている。
 実施例1に係る高周波フィルタ10Aでは、第2回路単体をノードX1から見たインピーダンス|Z11|が極大となる特異点のうち最大のインピーダンスとなる周波数f11が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21および22の位相が調整されている。また、第2回路単体をノードX2から見たインピーダンス|Z22|が極大となる特異点のうち最大のインピーダンスとなる周波数f22が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21および22の位相が調整されている。
 なお、フィルタの通過帯域低域側のカットオフ周波数とは、当該フィルタの通過帯域低域端の挿入損失から所定の挿入損失だけ増加した通過帯域低域側の周波数のうち、最も通過帯域低域端に近い周波数である。本実施の形態および以降の実施の形態では、通過帯域低域側のカットオフ周波数を、通過帯域低域端の挿入損失から10dB増加した通過帯域低域側の周波数と定義している。
 フィルタ12Aの減衰極の周波数fでは位相変化が大きく、フィルタ11Aとの位相差が大きくなるとともに、振幅差も大きくなる。そのため、移相器21および22の位相調整によって、第2帯域の低域端の周波数fからフィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数範囲に、第2回路のインピーダンス極大の特異点の周波数を合わせることにより、上記周波数範囲の高周波信号が、第2回路のフィルタ12Aに流れこむことを抑制できる。つまり、第2回路が減衰している周波数帯域で第2回路への信号の回り込みを抑制できる。これにより、比較例1および2で見られた、上記(1)の要因を解消でき、高周波フィルタ10Aの第1帯域内のリップルを抑制することが可能となる。
 なお、フィルタ11Aの通過帯域(第2帯域)高域側の減衰極の周波数でも、同様に、フィルタ11Aと第2回路との振幅差および位相差が大きくなるが、当該減衰極はフィルタ11Aを構成する直列腕回路の反共振周波数で構成される。このため、フィルタ11Aのインピーダンスは極大になっているため、移相器が無くても高周波フィルタ10Aの通過帯域(第1帯域)内のリップルとはならない。
 なお、本実施の形態および以降の実施の形態において、直列腕共振子、並列腕共振子、直列腕回路および並列腕回路のインピーダンス|Z|が極小となる周波数が共振周波数であり、インピーダンス|Z|が極大となる周波数が反共振周波数である。
 さらに、比較例1で見られた、上記(2)の要因については、第1回路と第2回路との振幅差が小さい周波数帯で同位相となるように移相器21および22を位相調整することにより、第1帯域に含まれる周波数の高周波信号は、第1回路および第2回路を経由した後で、互いに打ち消し合うことがない。これにより、高周波フィルタ10Aの第1帯域に含まれる周波数において、第1帯域内のリップルを低減できる。
 本実施例では、図6の(c)に示すように、第2回路のノードX1およびX2から第2回路を単体で見た場合、第2帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:3箇所)あり、第3帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:2箇所)あってもよい。
 図7は、実施例1に係る高周波フィルタ10Aの移相器21および22の位相を変化させた場合の通過特性、位相特性およびインピーダンス特性を表すグラフである。また、図8は、実施例1に係る高周波フィルタ10Aの移相器21および22の位相と挿入損失および最大インピーダンスの周波数との関係を表すグラフである。なお、上記最大インピーダンスの周波数とは、インピーダンスが極大となる特異点のうち、最大のインピーダンスとなる周波数のことである。より具体的には、図7は、移相器21および22の位相を、0°~150°(180°~330°と同義)まで変化させた場合の通過特性、位相特性およびインピーダンス特性の変化を示している。また、図8は、移相器21および22の位相を、0°~175°(180°~355°と同義)において5°ステップで変化させた場合の挿入損失および最大インピーダンスの変化を示している。
 まず、当然の結果であるが、移相器21および22の位相を変化させることで、全周波数で第2回路の位相が変化する。そのため、図7の(a)および(b)に示すように、通過帯域である第1帯域の振幅差が小さい周波数帯で、第1回路と第2回路の位相が逆相(180°の位相差)になるとリップルが大きくなり、同相(0°または360°の位相差)になるとリップルが小さくなる。よって、通過帯域である第1帯域の振幅差が小さい周波数帯で、第1回路と第2回路との位相差を無くすことで、高周波フィルタ10Aの第1帯域内のリップルが低減し、通過帯域内挿入損失を低減できる。
 実施例1に係る高周波フィルタ10Aにおいて、フィルタ12Aの通過帯域(第3帯域)低域端の周波数において、フィルタ11Aおよび12Aの位相差(A)は、図4Aの(h)より、152.2°である。一方、第1回路および第2回路の位相差(B)は、図5の(h)より、349.2°である。また、表1より、移相器21および22の位相は、それぞれ、98.9°および98.1°であるので、移相器21および22の位相の和(C)は、197°である。
 ここで、(A)+(C)=(B)の関係が成立している。
 これに対して、図8の(a)より、高周波フィルタ10Aのリップルが3dB以下となるのは、移相器21および22のそれぞれの位相が、80~105°である場合となっている。この移相器21および22の位相範囲を、上記(C)に代入することで、第1回路および第2回路の位相差(B)の範囲が規定される。すなわち、第1回路および第2回路の位相差(B)が、312.2°(152.2°+80°×2)~362.2°(152.2°+105°×2°)となるように、移相器21および22が調整されている。
 一方、移相器21および22の位相を変化させることで、第2回路のノードX1のインピーダンス|Z11|、および、第2回路のノードX2側のインピーダンス|Z22|の最大になる周波数が変化する。そのため、第2回路のインピーダンスが極大となる特異点のうち最大のインピーダンスとなる周波数が、第2帯域の低域端の周波数からフィルタ12Aの通過帯域低域側のカットオフ周波数までの周波数帯から外れると、第2回路のインピーダンスが低くなり、第2回路の低域側減衰帯域で第2回路側に信号が回り込み、高周波フィルタの第1帯域におけるリップルとなり、通過帯域内挿入損失を悪化させる。一方、上記低域側減衰帯域にインピーダンス最大になる周波数があると、第2回路のインピーダンスが高くなり、第2回路の低域側減衰帯域で第2回路側に信号が回り込まないため、高周波フィルタの通過帯域内リップルは抑制されて通過帯域内挿入損失が低減する、もしくは、通過帯域におけるリップルは抑制されて挿入損失が低減する。
 以上により、第2回路の少なくとも一方の入出力端子から第2回路を単体で見た場合、第2回路のインピーダンスが極大となる特異点のうち最大のインピーダンスとなる周波数が、第2帯域の低域端の周波数からフィルタ12Aの通過帯域低域側のカットオフ周波数までの周波数帯に含まれるように、移相器21および22の位相が調整されていることが望ましい。特に、本実施例では、フィルタ12Aの通過帯域低域側の移相器21および22の位相を調整することで、高周波フィルタ10Aのリップルを3dB以内にすることが可能となる。
 [1.5 実施例1a-1eに係る高周波フィルタ10Bの構成]
 図9は、実施例1a、1b、1c、1d、1eに係る高周波フィルタ10Bの回路構成図である。同図に示された高周波フィルタ10Bは、フィルタ11Dおよび12Dと、移相器21および22と、入出力端子110および120と、を備える。高周波フィルタ10Bは、実施の形態1に係る高周波フィルタ10の具体的回路構成例であり、フィルタ11Dはフィルタ11の具体的回路構成例であり、フィルタ12Dはフィルタ12の具体的回路構成例である。
 フィルタ11Dは、ノードX1とノードX2とを結ぶ第1経路上に配置された直列腕共振子s11およびs12と、直列腕共振子s11と直列腕共振子s12とを結ぶ経路上のノードとグランドとの間に配置された並列腕共振子p11と、を備える。これにより、フィルタ11Dは、ラダー型の帯域通過型フィルタを構成している。
 フィルタ12Dは、ノードX1とノードX2とを結ぶ第2経路上に配置された直列腕共振子s21と、当該第2経路上の各ノードとグランドとの間に配置された並列腕共振子p21およびp22と、を備える。これにより、フィルタ12Dは、ラダー型の帯域通過型フィルタを構成している。
 以下、高周波フィルタ10Bを構成する各共振子の構造について、並列腕共振子p11に着目してより詳細に説明する。なお、他の共振子については、I-Rピッチが弾性波の波長λの0.5倍程度で構成されている点等を除き、並列腕共振子p11と概ね同じ構造を有するため、詳細な説明を省略する。
 図10は、実施の形態1における並列腕共振子p11の構造を模式的に表す図の一例であり、(a)は平面図、(b)は(a)の断面図である。なお、図10に示された並列腕共振子p11は、高周波フィルタ10Bを構成する各共振子の典型的な構造を説明するためのものである。このため、高周波フィルタ10Bの各共振子のIDT(InterDigital Transducer)電極を構成する電極指の本数や長さなどは、同図に示すIDT電極の電極指の本数や長さに限定されない。
 同図の(a)及び(b)に示すように、並列腕共振子p11は、IDT電極321及び反射器322を構成する電極膜301と、当該電極膜301が形成された圧電基板302と、当該電極膜301を覆う保護層303と、を備える。以下、これらの構成要素について、詳細に説明する。
 図10の(a)に示すように、圧電基板302の上には、IDT電極321を構成する互いに対向する一対の櫛歯電極301a及び301bが形成されている。櫛歯電極301aは、互いに平行な複数の電極指310aと、複数の電極指310aを接続するバスバー電極311aとで構成されている。また、櫛歯電極301bは、互いに平行な複数の電極指310bと、複数の電極指310bを接続するバスバー電極311bとで構成されている。複数の電極指310a及び310bは、弾性波の伝搬方向と直交する方向に沿って形成され、当該伝搬方向に沿って周期的に形成されている。
 このように構成されたIDT電極321は、当該IDT電極321を構成する複数の電極指310a及び310bの電極ピッチ等によって規定される特定の周波数領域の弾性表面波を励振する。
 なお、櫛歯電極301a及び301bは、それぞれが単体でIDT電極と称される場合もある。ただし、以下では、便宜上、一対の櫛歯電極301a及び301bによって1つのIDT電極321が構成されているものとして説明する。
 反射器322は、IDT電極321に対して弾性波の伝搬方向に配置されている。具体的には、一組の反射器322は、IDT電極321を弾性波の伝搬方向両側から挟みこむように配置されている。反射器322は、互いに平行な複数の電極指410と、複数の電極指410の一方の端部を接続するバスバー電極411及び複数の電極指410の他方の端部を接続するバスバー電極411からなる一組のバスバー電極411とで構成されている。複数の電極指410は、IDT電極321を構成する複数の電極指310a及び310bと同様に、弾性波の伝搬方向と直交する方向に沿って形成され、当該伝搬方向に沿って周期的に形成されている。
 このように構成された反射器322は、当該反射器322を構成する複数の電極指410の電極ピッチ等によって規定される周波数帯域(ストップバンド)において、弾性表面波を高い反射係数で反射する。つまり、IDT電極321の電極ピッチと反射器322の電極ピッチとが等しい場合、反射器322は、IDT電極321によって励振された弾性表面波を高い反射係数で反射する。
 このような反射器322を有することにより、並列腕共振子p11は、励振した弾性表面波を内部に閉じ込めて外部に漏らしにくくすることができる。よって、並列腕共振子p11は、IDT電極321の電極ピッチ、対数及び交叉幅等で規定される共振点および反共振点のQを向上させることができる。
 なお、反射器322は電極指410を有していればよく、バスバー電極411を有していなくてもかまわない。また、電極指410の本数は1以上であればよく、特に限定されない。ただし、電極指410の本数が少なすぎると弾性波の漏れが多くなるため、フィルタ特性が劣化し得る。一方、電極指410の本数が多すぎると反射器322が大型化になるため、高周波フィルタ10B全体が大型化し得る。このため、電極指410の本数は、高周波フィルタ10Bに要求されるフィルタ特性及びサイズ等を考慮して、適宜決定され得る。
 これらIDT電極321及び反射器322は、図10の(b)に示す電極膜301によって構成されている。本実施例では、電極膜301は、図10の(b)に示すように、密着層301gと主電極層301hとの積層構造となっている。なお、本実施例では、IDT電極321と反射器322とが同じ電極膜301で構成されているが、これらは構造または組成等が互いに異なる電極膜で構成されていてもかまわない。
 密着層301gは、圧電基板302と主電極層301hとの密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。密着層301gの膜厚は、例えば、12nmである。
 主電極層301hは、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層301hの膜厚は、例えば162nmである。
 圧電基板302は、電極膜301(すなわち、IDT電極321及び反射器322)が形成された基板であり、例えば、LiTaO圧電単結晶、LiNbO圧電単結晶、KNbO圧電単結晶、水晶、または圧電セラミックスからなる。
 保護層303は、櫛歯電極301a及び301bを覆うように形成されている。保護層303は、主電極層301hを外部環境から保護する、周波数温度特性を調整する、及び、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。
 なお、高周波フィルタ10Bが有する各共振子の構造は、図10に記載された構造に限定されない。例えば、電極膜301は、金属膜の積層構造でなく、金属膜の単層であってもよい。また、密着層301g、主電極層301h及び保護層303を構成する材料は、上述した材料に限定されない。また、電極膜301は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属又は合金から構成されてもよく、上記の金属又は合金から構成される複数の積層体から構成されてもよい。また、保護層303は、形成されていなくてもよい。
 以上のように構成された並列腕共振子p11では、IDT電極321の設計パラメータ等によって、励振される弾性波の波長が規定される。以下、IDT電極321の設計パラメータ、すなわち櫛歯電極301a及び櫛歯電極301bの設計パラメータについて説明する。
 上記弾性波の波長は、図10に示す櫛歯電極301a及び301bを構成する複数の電極指310aまたは310bの繰り返し周期λで規定される。また、電極ピッチ(電極周期)とは、当該繰り返し周期λの1/2であり、櫛歯電極301a及び301bを構成する電極指310a及び310bのライン幅をWとし、隣り合う電極指310aと電極指310bとの間のスペース幅をSとした場合、(W+S)で定義される。また、IDT電極321の交叉幅Lとは、図10の(a)に示すように、櫛歯電極301aの電極指310aと櫛歯電極301bの電極指310bとを弾性波の伝搬方向から見た場合の重複する電極指長さである。また、電極デューティ(デューティ比)は、複数の電極指310a及び310bのライン幅占有率であり、複数の電極指310a及び310bのライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、W/(W+S)で定義される。また、対数とは、櫛歯電極301a及び301bのうち、対をなす電極指310a及び電極指310bの数であり、電極指310a及び電極指310bの総数の概ね半数である。例えば、対数をNとし、電極指310a及び電極指310bの総数をMとすると、M=2N+1を満たす。また、IDT電極321の膜厚とは、複数の電極指310a及び310bの厚みhである。
 次いで、反射器322の設計パラメータについて説明する。
 反射器322の電極ピッチ(電極周期)とは、電極指410のライン幅をWREFとし、隣り合う電極指410間のスペース幅をSREFとした場合、(WREF+SREF)で定義される。また、反射器422の電極デューティ(デューティ比)は、複数の電極指410のライン幅占有率であり、電極指410のライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、WREF/(WREF+SREF)で定義される。また、反射器322の膜厚とは、複数の電極指410の厚みである。
 本実施例では、反射器322の電極ピッチ及び電極デューティは、IDT電極321の電極ピッチ及び電極デューティと同等である。また、反射器322は、弾性波の伝搬方向から見た場合に、一組のバスバー電極411がIDT電極321のバスバー電極311a及び311bに重なるように配置されている。
 なお、反射器322は、弾性波の漏れを抑制する観点から上記構成が好ましいが、上記構成と異なる構成であってもかまわない。
 次に、IDT電極321と反射器322との相対的な配置に関する設計パラメータについて説明する。
 IDT電極321と反射器322との間のピッチ(I-Rピッチ)は、(i)IDT電極321を構成する複数の電極指310aまたは310bのうち最も反射器322側の電極指と(ii)反射器322を構成する複数の電極指410のうち最もIDT電極321側の電極指410との、中心間距離で定義される。このI-Rピッチは、櫛歯電極301a及び301bを構成する複数の電極指310aまたは310bの繰り返し周期λ(すなわちIDT電極321の電極ピッチで定まる弾性波の波長λ)を用いて表すことができ、例えば、当該繰り返し周期λの0.50倍の場合には0.50λと表される。
 本実施例に係る高周波フィルタ10Bは、フィルタ11Dおよび12Dを備える。フィルタ11Dは、ノードX1とノードX2とを結ぶ第1経路上に設けられた第1直列腕回路(直列腕共振子s11またはs12)と、第1経路上に設けられたノードとグランドとに接続された第1並列腕回路(並列腕共振子p11)とを有する。フィルタ12Dは、移相器21と移相器22とを結ぶ第2経路上に設けられた第2直列腕回路(直列腕共振子s21)と、第2経路上に設けられたノードとグランドとに接続された第2並列腕回路(並列腕共振子p21またはp22)とを有する。第1直列腕回路、第1並列腕回路、第2直列腕回路、および、第2並列腕回路のうちの少なくとも1つは、弾性波共振子を有し、当該弾性波共振子の少なくとも1つは、圧電性を有する基板上に形成されたIDT電極と、反射器とを有する。ここで、上記弾性波共振子の少なくとも1つにおけるIDT電極の電極周期で定まる弾性波の波長をλとした場合、IDT電極と反射器とのピッチは、0.42λ以上かつ0.50λ未満であることが望ましい。
 上記のように、IDT電極321および反射器322を有する弾性波共振子は、周期的に並べられた電極指からなる周期構造によって構成され、特定の周波数領域の弾性表面波を高い反射係数で反射する周波数帯域を有する。この周波数帯域は、一般的にストップバンドと称され、上記周期構造の繰り返し周期等によって規定される。このとき、ストップバンドの高域端では、反射係数が局所的に大きくなるリップルが生じる。さらに、IDT電極321と反射器322とのピッチ(I-Rピッチ)を0.5λ以上にすると、ストップバンドの高域端でのリップルが大きくなり、フィルタの通過帯域内のリップルが大きくなり、挿入損失が大きくなる。一方、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、ストップバンドの高域端でのリップルを低減できる。上記観点から、高周波フィルタ10Bを構成するフィルタ11Dおよび12Dにおいて、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、高周波フィルタ10Bの通過帯域内の挿入損失を、より小さくすることができる。
 以下では、実施例1a~1dに係る高周波フィルタ10Bと実施例1eに係る高周波フィルタとを比較する。
 なお、実施例1a~1dに係る高周波フィルタ10B、および、実施例1eに係る高周波フィルタ10Bは、全て、図9に示された回路構成を有しているが、I-Rピッチの構成が以下のとおりとなっている。
 (1)実施例1e:全ての弾性波共振子(直列腕共振子s11、s12、s21および並列腕共振子p11、p21、p22)のI-Rピッチは0.50λである。
 (2)実施例1a:直列腕共振子s11およびs12のI-Rピッチは0.44λであり、それ以外の弾性波共振子のI-Rピッチは0.50λである。
 (3)実施例1b:並列腕共振子p11のI-Rピッチは0.44λであり、それ以外の弾性波共振子のI-Rピッチは0.50λである。
 (4)実施例1c:並列腕共振子p21およびp22のI-Rピッチは0.44λであり、それ以外の弾性波共振子のI-Rピッチは0.50λである。
 (5)実施例1d:全ての弾性波共振子(直列腕共振子s11、s12、s21および並列腕共振子p11、p21、p22)のI-Rピッチは0.44λである。
 [1.6 実施例1a-1eに係る高周波フィルタ10Bのフィルタ特性]
 図11Aは、実施例1aおよび実施例1eに係る高周波フィルタの通過特性および反射特性を比較したグラフである。また、図11Bは、実施例1aおよび実施例1eに係る直列腕共振子s11およびs12単体のインピーダンス特性および反射特性を比較したグラフである。なお、図11Aの左側には、実施例1aおよび実施例1eに係る高周波フィルタの通過特性が示されている。また、図11Aの中央および右側には、実施例1aおよび実施例1eに係るフィルタ11D単体の通過特性および反射特性が示されている。
 まず、図11Bに示すように、実施例1eに係る高周波フィルタの直列腕共振子s11およびs12では、ストップバンドの高域端において、反射損失が局所的に大きくなるリップルが生じる。これに対して、実施例1aに係る高周波フィルタ10Bの直列腕共振子s11およびs12では、ストップバンドの高域端において、反射損失の上記リップルが低減されている(図中の領域A4およびA5)。
 これに伴い、図11Aの右側の拡大グラフに示すように、実施例1eに係るフィルタ11Dでは、ストップバンドの高域端において、反射損失が局所的に大きくなるリップルが生じる。これに対して、実施例1aに係るフィルタ11Dでは、ストップバンドの高域端において、反射損失の上記リップルが低減されている(図中の領域A2およびA3)。
 この結果、図11Aの左側のグラフに示すように、実施例1eに係る高周波フィルタ10Bでは、通過帯域高域端において、挿入損失が局所的に大きくなるリップルが生じる。これに対して、実施例1aに係る高周波フィルタ10Bでは、通過帯域高域端において、挿入損失が低減している(図中の領域A1)。
 すなわち、実施例1aに係る高周波フィルタ10Bは、フィルタ11Dおよび12Dを備える。フィルタ11Dは、ノードX1とノードX2とを結ぶ第1経路上に設けられた第1直列腕回路(直列腕共振子s11またはs12)と、第1経路上に設けられたノードとグランドとに接続された第1並列腕回路(並列腕共振子p11)とを有する。フィルタ12Dは、移相器21および22第2経路上に設けられた第2直列腕回路(直列腕共振子s21)と、第2経路上に設けられたノードとグランドとに接続された第2並列腕回路(並列腕共振子p21またはp22)とを有する。第1直列腕回路は、弾性波共振子を有し、当該弾性波共振子は、圧電性を有する基板上に形成されたIDT電極と、反射器とを有する。ここで、上記弾性波共振子のIDT電極と反射器とのピッチは、0.42λ以上かつ0.50λ未満である。
 フィルタ11Dの直列腕回路における直列腕共振子s11およびs12は、フィルタ11Dの通過帯域内に共振周波数を有し、フィルタ11Dの通過帯域高域側のフィルタ12Dの通過帯域に反共振周波数を有する。そして、直列腕共振子s11およびs12のストップバンドは、フィルタ12Dの通過帯域となる。これに対して、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、ストップバンドの高域端でのリップルを低減できる。このため、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、高周波フィルタ10Bの通過帯域内の挿入損失を、より小さくすることができる。
 図12Aは、実施例1bおよび実施例1eに係る高周波フィルタの通過特性を比較したグラフである。また、図12Bは、実施例1bおよび実施例1eに係る並列腕共振子p11および単体のインピーダンス特性および反射特性を比較したグラフである。なお、図12Aの左側には、実施例1bおよび実施例1eに係る高周波フィルタの通過特性が示されている。また、図12Aの右側には、実施例1bおよび実施例1eに係るフィルタ11D単体の通過特性が示されている。
 まず、図12Bに示すように、実施例1eに係る高周波フィルタ10Bの並列腕共振子p11では、ストップバンドの高域端において、反射損失が局所的に大きくなるリップルが生じる。これに対して、実施例1bに係る高周波フィルタ10Bの並列腕共振子p11では、ストップバンドの高域端において、反射損失の上記リップルが低減されている(図中の領域B3)。
 これに伴い、図12Aの右側のグラフに示すように、実施例1eに係るフィルタ11Dでは、ストップバンドの高域端に相当する通過帯域内において、挿入損失が局所的に大きくなるリップルが生じる。これに対して、実施例1bに係るフィルタ11Dでは、ストップバンドの高域端に相当する通過帯域内おいて、挿入損失の上記リップルが低減されている(図中の領域B2)。
 この結果、図12Aの左側のグラフに示すように、実施例1eに係る高周波フィルタ10Bでは、通過帯域内において、挿入損失が局所的に大きくなるリップルが生じる。これに対して、実施例1bに係る高周波フィルタ10Bでは、通過帯域内において、挿入損失が低減している(図中の領域B1)。
 すなわち、実施例1bに係る高周波フィルタ10Bは、フィルタ11Dおよび12Dを備える。フィルタ11Dは、ノードX1とノードX2とを結ぶ第1経路上に設けられた第1直列腕回路(直列腕共振子s11またはs12)と、第1経路上に設けられたノードとグランドとに接続された第1並列腕回路(並列腕共振子p11)とを有する。フィルタ12Dは、移相器21および22第2経路上に設けられた第2直列腕回路(直列腕共振子s21)と、第2経路上に設けられたノードとグランドとに接続された第2並列腕回路(並列腕共振子p21またはp22)とを有する。第1並列腕回路は、弾性波共振子を有し、当該弾性波共振子は、圧電性を有する基板上に形成されたIDT電極と、反射器とを有する。ここで、上記弾性波共振子のIDT電極と反射器とのピッチは、0.42λ以上かつ0.50λ未満である。
 フィルタ11Dの並列腕回路における並列腕共振子p11は、フィルタ11Dの通過帯域低周波側に共振周波数を有し、フィルタ11Dの通過帯域内に反共振周波数を有する。そして、並列腕共振子p11のストップバンドは、フィルタ11Dの通過帯域内、または、フィルタ11Dの通過帯域高周波数側に位置する。これに対して、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、ストップバンドの高域端でのリップルを低減できる。このため、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、高周波フィルタ10Bの通過帯域内の挿入損失を、より小さくすることができる。
 図13Aは、実施例1cおよび実施例1eに係る高周波フィルタの通過特性および反射特性を比較したグラフである。また、図13Bは、実施例1cおよび実施例1eに係る並列腕共振子p21およびp22単体のインピーダンス特性および反射特性を比較したグラフである。なお、図13Aの左側には、実施例1cおよび実施例1eに係る高周波フィルタの通過特性が示されている。また、図13Aの右側には、実施例1cおよび実施例1eに係るフィルタ12D単体の通過特性が示されている。
 まず、図13Bに示すように、実施例1eに係る高周波フィルタの並列腕共振子p21およびp22では、ストップバンドの高域端において、反射損失が局所的に大きくなるリップルが生じる。これに対して、実施例1cに係る高周波フィルタ10Bの並列腕共振子p21およびp22では、ストップバンドの高域端において、反射損失の上記リップルが低減されている(図中の領域C3およびC4)。
 これに伴い、図13Aの右側のグラフに示すように、実施例1eに係るフィルタ12Dでは、ストップバンドの高域端に相当する通過帯域内において、挿入損失が局所的に大きくなるリップルが生じる。これに対して、実施例1cに係るフィルタ12Dでは、ストップバンドの高域端に相当する通過帯域内において、挿入損失の上記リップルが低減されている(図中の領域C2)。
 この結果、図13Aの左側のグラフに示すように、実施例1eに係る高周波フィルタ10Bでは、通過帯域内において、挿入損失が局所的に大きくなるリップルが生じる。これに対して、実施例1cに係る高周波フィルタ10Bでは、通過帯域内において、挿入損失が低減している(図中の領域C1)。
 すなわち、実施例1cに係る高周波フィルタ10Bは、フィルタ11Dおよび12Dを備える。フィルタ11Dは、ノードX1とノードX2とを結ぶ第1経路上に設けられた第1直列腕回路(直列腕共振子s11またはs12)と、第1経路上に設けられたノードとグランドとに接続された第1並列腕回路(並列腕共振子p11)とを有する。フィルタ12Dは、移相器21および22第2経路上に設けられた第2直列腕回路(直列腕共振子s21)と、第2経路上に設けられたノードとグランドとに接続された第2並列腕回路(並列腕共振子p21またはp22)とを有する。第2並列腕回路は、弾性波共振子を有し、当該弾性波共振子は、圧電性を有する基板上に形成されたIDT電極と、反射器とを有する。ここで、上記弾性波共振子のIDT電極と反射器とのピッチは、0.42λ以上かつ0.50λ未満である。
 フィルタ12Dの並列腕回路における並列腕共振子p21およびp22は、フィルタ12Dの通過帯域低周波側に共振周波数を有し、フィルタ12Dの通過帯域内に反共振周波数を有する。そして、並列腕共振子p21およびp22のストップバンドは、フィルタ12Dの通過帯域内、または、フィルタ12Dの通過帯域高周波側に位置する。これに対して、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、ストップバンドの高域端でのリップルを低減できる。このため、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、高周波フィルタ10Bの通過帯域内の挿入損失を、より小さくすることができる。
 図14は、実施例1dおよび実施例1eに係る高周波フィルタの通過特性および反射特性を比較したグラフである。なお、図14の左側には、実施例1dおよび実施例1eに係る高周波フィルタの通過特性が示されている。また、図14の中央には、実施例1dおよび実施例1eに係るフィルタ11D単体の通過特性および反射特性が示されている。また、図14の右側には、実施例1dおよび実施例1eに係るフィルタ12D単体の通過特性および反射特性が示されている。
 まず、図14の中央のグラフに示すように、実施例1eに係るフィルタ11Dの直列腕共振子および並列腕共振子では、ストップバンドの高域端において、反射損失が局所的に大きくなるリップルが生じる。これに対して、実施例1dに係る高周波フィルタ10Bの直列腕共振子および並列腕共振子では、ストップバンドの高域端において、反射損失の上記リップルが低減されている(図中の領域D5およびD6)。
 また、図14の右側のグラフに示すように、実施例1eに係るフィルタ12Dの直列腕共振子および並列腕共振子では、ストップバンドの高域端において、反射損失が局所的に大きくなるリップルが生じる。これに対して、実施例1dに係る高周波フィルタ10Bの直列腕共振子および並列腕共振子では、ストップバンドの高域端において、反射損失の上記リップルが低減されている(図中の領域D9およびD10)。
 この結果、図14の左側のグラフに示すように、実施例1eに係る高周波フィルタでは、通過帯域内および高域端において、挿入損失が局所的に大きくなるリップルが生じる。これに対して、実施例1dに係る高周波フィルタ10Bでは、通過帯域内および高域端において、挿入損失が低減している(図中の領域D1およびD2)。
 すなわち、実施例1dに係る高周波フィルタ10Bは、フィルタ11Dおよび12Dを備える。フィルタ11Dは、ノードX1とノードX2とを結ぶ第1経路上に設けられた第1直列腕回路(直列腕共振子s11またはs12)と、第1経路上に設けられたノードとグランドとに接続された第1並列腕回路(並列腕共振子p11)とを有する。フィルタ12Dは、移相器21および22第2経路上に設けられた第2直列腕回路(直列腕共振子s21)と、第2経路上に設けられたノードとグランドとに接続された第2並列腕回路(並列腕共振子p21またはp22)とを有する。第1直列腕回路、第2直列腕回路、第1並列腕回路、および第2並列腕回路のそれぞれは、弾性波共振子を有し、当該弾性波共振子は、圧電性を有する基板上に形成されたIDT電極と、反射器とを有する。ここで、上記弾性波共振子のIDT電極と反射器とのピッチは、0.42λ以上かつ0.50λ未満である。高周波フィルタ10Bを構成する全ての弾性波共振子のI-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、ストップバンドの高域端でのリップルを低減できる。このため、I-Rピッチを0.42λ以上かつ0.50λ未満とすることにより、高周波フィルタ10Bの通過帯域内の挿入損失を、より小さくすることができる。
 なお、フィルタ12Dの直列腕共振子s21のI-Rピッチに関しては、高周波フィルタ10Bの挿入損失には直接影響しないが、高周波フィルタ10Bと、当該高周波フィルタ10Bより高周波側の通過帯域を有するフィルタ(高周波フィルタ10Bのストップバンドリップルの発生周波数と通過帯域が重複するフィルタ)とでマルチプレクサを構成する場合、当該フィルタの挿入損失を低減することが可能となる。
 ここで、I-Rピッチと弾性波共振子特性との関係を詳細に説明する。
 図15Aは、典型例の共振子において、I-Rピッチを0.40λ~0.50λで変化させた場合の特性の変化を表すグラフである。また、図15Bは、典型例の共振子において、I-Rピッチを0.50λ~0.60λで変化させた場合の特性の変化を表すグラフである。
 図15Aおよび図15Bの双方において、(a)はインピーダンスの絶対値を表すグラフであり、(b)は位相特性を表すグラフであり、(c-1)はインピーダンスをスミスチャート表記したグラフであり、(c-2)は反射損失(リターンロス)を表すグラフである。具体的には、図15Aには、図中の凡例に示すように、I-Rピッチを0.02λ刻みで0.40λから0.50λまで変化させた場合の共振子の特性が示されている。また、図15Bには、図中の凡例に示すように、I-Rピッチを0.02λ刻みで0.50λから0.60λまで変化させた場合の共振子の特性が示されている。
 図15Bに示すように、I-Rピッチが0.5λから大きくなるほど、ストップバンド高域端(具体的には反共振周波数の高域側)のリップル(同図の(b)、(c-1)及び(c-2)の破線囲み内)が大きくなることが分かる。
 これに対して、図15Aに示すように、I-Rピッチが0.5λから小さくなるほど、ストップバンド高域端(具体的には反共振周波数の高域側)のリップル(同図の(b)、(c-1)及び(c-2)の実線囲み内)が抑制されることが分かる。しかし、一方で、I-Rピッチが小さくなると共振周波数高域側(具体的には共振周波数と反共振周波数との間)に新たなリップル(同図の(b)、(c-1)及び(c-2)の破線囲み内)が発生し、このリップルはI-Rピッチが狭くなるほど大きくなることが分かる。
 つまり、共振子のI-Rピッチを0.42λ以上かつ0.50λ以下とすることにより、共振子の共振周波数の高域側に発生し得るリップルを抑制することができるので、当該リップルによる通過帯域の挿入損失の悪化を抑制することができる。
 また、共振子のI-Rピッチを0.44λ以上かつ0.46λ以下とすることにより、(i)ストップバンド高域端のリップル、及び、(ii)共振周波数の高域側に発生し得るリップルの双方を抑制することができるので、これら双方のリップルによる通過帯域内の挿入損失を抑制することができる。
 (実施の形態2)
 本実施の形態では、実施の形態1に係る高周波フィルタ10に対して、スイッチ素子の導通(オン)および非導通(オフ)の切り替えにより、通過帯域を可変する機能が付加された高周波フィルタについて説明する。
 [2.1 実施の形態2に係る高周波フィルタ20の基本構成]
 図16は、実施の形態2に係る高周波フィルタ20の回路ブロック図である。同図に示された高周波フィルタ20は、フィルタ11および12と、移相器21および22と、スイッチSW1、SW2、SW5およびSW6と、入出力端子110および120と、を備える。本実施の形態に係る高周波フィルタ20は、実施の形態1に係る高周波フィルタ10と比較して、第1回路および第2回路が、スイッチ素子を有している点が構成として異なる。以下、本実施の形態に係る高周波フィルタ20について、実施の形態1に係る高周波フィルタ10と同じ点は説明を省略し、異なる点を中心に説明する。
 第1回路は、さらに、スイッチSW1と、スイッチSW2とを有する。
 第2回路は、さらに、スイッチSW5と、スイッチSW6とを有する。
 スイッチSW1は、ノードX1とフィルタ11との間に接続された第1スイッチ素子である。スイッチSW2は、ノードX2とフィルタ11との間に接続された第2スイッチ素子である。スイッチSW5は、ノードX1と移相器21との間に接続された第5スイッチ素子である。スイッチSW6は、ノードX2と移相器22との間に接続された第6スイッチ素子である。
 [2.2 実施例2に係る高周波フィルタ20Aの回路構成]
 図17Aは、実施例2に係る高周波フィルタ20Aの回路構成図である。同図に示された高周波フィルタ20Aは、フィルタ11Aおよび12Aと、移相器21および22と、スイッチSW1、SW2、SW5およびSW6と、入出力端子110および120と、を備える。高周波フィルタ20Aは、実施の形態2に係る高周波フィルタ20の具体的回路構成例であり、フィルタ11Aはフィルタ11の具体的回路構成例であり、フィルタ12Aはフィルタ12の具体的回路構成例である。本実施例に係る高周波フィルタ20Aは、実施例1に係る高周波フィルタ10Aと比較して、第1回路とノードX1およびX2との間、ならびに、第2回路とノードX1およびX2との間に、スイッチ素子が配置されている点が構成として異なる。以下、本実施例に係る高周波フィルタ20Aについて、実施例1に係る高周波フィルタ10Aと同じ点は説明を省略し、異なる点を中心に説明する。
 第1回路は、さらに、スイッチSW1と、スイッチSW2とを有する。
 第2回路は、さらに、スイッチSW5と、スイッチSW6とを有する。
 スイッチSW1は、ノードX1とフィルタ11との間に接続された第1スイッチ素子である。スイッチSW2は、ノードX2とフィルタ11との間に接続された第2スイッチ素子である。スイッチSW5は、ノードX1と移相器21との間に接続された第5スイッチ素子である。スイッチSW6は、ノードX2と移相器22との間に接続された第6スイッチ素子である。
 表2に、実施例2に係る高周波フィルタ20Aの回路パラメータを示す。
Figure JPOXMLDOC01-appb-T000002
 以下、実施例2および後述する実施例3に係る高周波フィルタでは、第2帯域をLTEのBand3受信通過帯域(1805-1880MHz)とし、第3帯域をLTEのBand39通過帯域(1880-1920MHz)とし、第1帯域を(Band3受信通過帯域+Band39通過帯域)(1805-1920MHz)としている。
 つまり、高周波フィルタ20Aは、第2帯域をBand3受信通過帯域としたフィルタ11A、および、第3帯域をBand39通過帯域としたフィルタ12Aの2つのフィルタを有し、フィルタ12AとノードX1との間に移相器21が配置され、フィルタ12AとノードX2との間に移相器22が配置されている。
 [2.3 実施例2に係る高周波フィルタ20Aのフィルタ特性]
 図17Bは、実施例2に係る高周波フィルタ20Aのスイッチの切り替えによる通過特性の変化を表すグラフである。図17Bの(a)に示すように、高周波フィルタ20Aは、スイッチSW1、SW2、SW5およびSW6の全てを導通とした場合、第1帯域(Band3受信通過帯域+Band39通過帯域)を通過帯域とするフィルタとなる。また、図17Bの(b)に示すように、スイッチSW1およびSW2を導通とし、SW5およびSW6を非導通とした場合、第2帯域(Band3受信通過帯域)を通過帯域とするフィルタとなる。また、図17Bの(c)に示すように、スイッチSW1およびSW2を非導通とし、SW5およびSW6を導通とした場合、第3帯域(Band39通過帯域)を通過帯域とするフィルタとなる。
 なお、本実施例では、第1回路側にスイッチSW1およびSW2が配置され、第2回路側にスイッチSW5およびSW6が配置された回路構成としたが、第1回路側のみにスイッチが接続された構成でもよいし、第2回路側のみにスイッチが接続された構成でもよい。第1回路側のみにスイッチが接続された構成の場合、高周波フィルタは第1帯域と第3帯域とを切り替えるフィルタとなる。また、第2回路側のみにスイッチが接続された構成の場合、高周波フィルタは第1帯域と第2帯域とを切り替えるフィルタとなる。
 実施例2に係る高周波フィルタ20Aにおいても、実施例1に係る高周波フィルタ10Aと同様に、フィルタ12Aの両方の入出力端子に移相器21および22が接続されることで、高周波フィルタ20Aの第1帯域において、リップルが低減されることで挿入損失が低減する。
 実施例2に係る高周波フィルタ20Aが通過帯域内リップルおよび通過帯域内挿入損失を低減する要因について、以下に説明する。
 図18は、実施例2に係る高周波フィルタ20Aの広帯域化の要因を説明するグラフである。同図の(a)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。同図の(b)には、スイッチSW1が導通状態である場合のノードX1から第1回路単体を見たインピーダンス特性およびスイッチSW5が導通状態である場合のノードX1から第2回路単体を見たインピーダンス特性が示されている。同図の(c)には、スイッチSW2が導通状態である場合のノードX2から第1回路単体を見たインピーダンス特性およびスイッチSW6が導通状態である場合のノードX2から第2回路単体を見たインピーダンス特性が示されている。同図の(d)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。同図の(e)には、第1回路と第2回路との位相差が示されている。
 実施例2に係る高周波フィルタ20Aでは、第2回路単体をノードX1から見たインピーダンス|Z11|が極大となる特異点のうち最大のインピーダンスとなる周波数f11が、第2帯域の低域端の周波数fからフィルタ12Aの通過帯域低周波(側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21および22の位相が調整されている。また、第2回路単体をノードX2から見たインピーダンス|Z22|が極大となる特異点のうち最大のインピーダンスとなる周波数f22が、第2帯域の低域端の周波数fからフィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21および22の位相が調整されている。
 フィルタ12Aの減衰極の周波数fでは位相変化が大きく、フィルタ11Aとの位相差が大きくなるとともに、振幅差も大きくなる。そのため、移相器21および22の位相調整によって、周波数fからカットオフ周波数fまでの周波数範囲に、第2回路のインピーダンス極大の特異点のうち最大のインピーダンスとなる周波数f11およびf22を合わせることにより、上記周波数範囲の高周波信号が、第2回路のフィルタ12Aに流れこむことを抑制できる。つまり、第2回路が減衰している周波数帯域で第2回路への信号の回り込みを抑制できる。これにより、高周波フィルタ20Aの第1帯域内のリップルが抑制されて挿入損失を低減することが可能となる。
 さらに、移相器21および22の位相調整により、第1回路と第2回路との振幅差が小さい周波数帯で同位相となるように調整することにより、第1帯域に含まれる周波数の高周波信号は、第1回路および第2回路を経由した後で、互いに打ち消し合うことがない。これにより、第1帯域内のリップルを低減し、挿入損失を低減できる。
 以上のように、高周波フィルタ20Aが、スイッチSW1、SW2、SW5およびSW6の導通状態により第1帯域を通過帯域とする場合、第1帯域の挿入損失を低減することが可能となる。
 本実施例では、図18の(e)に示すように、スイッチSW5およびSW6が導通状態である場合にノードX1およびX2から第2回路を単体で見た場合、第2帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:3箇所)あり、第3帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:1箇所)あってもよい。
 上記構成によれば、第1帯域、第2帯域、および第3帯域を切り替えることができる周波数可変型の高周波フィルタ20Aにおいて、第1帯域内のリップルを抑制し、挿入損失を低減することが可能となる。
 [2.4 実施例3に係る高周波フィルタ30のフィルタ特性]
 図19は、実施例2に係る高周波フィルタ20Aのスイッチのオフ容量Coffを変化させた場合の通過特性を表すグラフである。スイッチ素子が非導通の場合、当該スイッチ素子のインピーダンスは理想的には無限大であるが、実際には、スイッチ素子を構成する半導体素子(FET等)の寄生容量により、非導通のスイッチ素子は容量成分を有する。オフ容量Coffが大きくなるにつれ、スイッチ素子のインピーダンスが低くなる。
 このため、図19の(a)に示すように、オフ状態となるスイッチSW5およびSW6の方に配置されている第2回路の影響を受けて、第1回路の通過帯域(第2帯域)および通過帯域高域側近傍の減衰帯域の特性が劣化する。より具体的には、スイッチSW1およびSW2を導通とし、スイッチSW5およびSW6を非導通として第2帯域を通過帯域とするフィルタ11を選択した場合、オフ容量Coffが大きくなるほど第2回路に信号が回り込む。このため、第2帯域高域側の減衰特性が悪化するとともに、第2帯域内にリップルが発生して挿入損失を悪化させる。
 また、図19の(b)に示すように、オフ状態となるスイッチSW1およびSW2の方に配置されている第1回路の影響を受けて、第2回路の通過帯域(第3帯域)および通過帯域低域側近傍の減衰帯域の特性が劣化する。より具体的には、スイッチSW1およびSW2を非導通とし、スイッチSW5およびSW6を導通として第3帯域を通過帯域とするフィルタ12を選択した場合、オフ容量Coffが大きくなるほど第1回路に信号が回り込む。このため、第3帯域低域側の減衰特性が悪化するとともに、第3帯域内にリップルが発生して挿入損失を悪化させる。
 なお、スイッチSW1、SW2、SW5およびSW6の全てが導通の場合については、オフ容量Coffの影響は無いため、記載していない。
 上記のようなスイッチ素子のオフ容量Coffによるフィルタ特性の劣化を抑制する構成として図20に示される構成が挙げられる。
 図20は、実施例3に係る高周波フィルタ30の回路ブロック図である。同図に示された高周波フィルタ30は、フィルタ11および12と、移相器21および22と、スイッチSW1、SW2、SW3、SW4、SW5、SW6、SW7およびSW8と、入出力端子110および120と、を備える。高周波フィルタ30は、実施の形態2に係る高周波フィルタ20と比較して、スイッチSW3、SW4、SW7およびSW8が配置されている点が構成として異なる。以下、本実施例に係る高周波フィルタ30について、実施の形態2に係る高周波フィルタ20と同じ点は説明を省略し、異なる点を中心に説明する。
 第1回路は、さらに、スイッチSW3と、スイッチSW4とを有する。
 第2回路は、さらに、スイッチSW7と、スイッチSW8とを有する。
 スイッチSW3は、フィルタ11とスイッチSW1との接続ノード、および、グランドに接続され、スイッチSW1と排他的に導通および非導通が切り替えられる第3スイッチ素子である。スイッチSW4は、フィルタ11とスイッチSW2との接続ノード、および、グランドに接続され、スイッチSW2と排他的に導通および非導通が切り替えられる第4スイッチ素子である。スイッチSW7は、移相器21とスイッチSW5との接続ノード、および、グランドに接続され、スイッチSW5と排他的に導通および非導通が切り替えられる第7スイッチ素子である。スイッチSW8は、移相器22とスイッチSW6との接続ノード、および、グランドに接続され、スイッチSW6と排他的に導通および非導通が切り替えられる第8スイッチ素子である。
 高周波フィルタ30は、第2帯域をBand3受信通過帯域としたフィルタ11、および、第3帯域をBand39通過帯域としたフィルタ12の2つのフィルタを有し、フィルタ12とノードX1との間に移相器21が配置され、フィルタ12とノードX2との間に移相器22が配置されている。
 図21は、実施例3に係る高周波フィルタ30の通過特性を表すグラフである。
 同図の(a)に示すように、スイッチSW5およびSW6がオフ状態となっても、スイッチSW7およびSW8がオン状態となることで、第2回路に信号が回り込むことを抑制できる。このため、スイッチSW7およびSW8が配置されている高周波フィルタ30(SW7&SW8あり)は、理想SW(Coffなし)と同等の通過特性となる。つまり、スイッチSW5およびSW6が非導通である第2回路の影響が低減され、第2帯域内のリップルを抑制して挿入損失を低減するとともに、第2帯域近傍の減衰特性を向上できる。
 また、同図の(b)に示すように、スイッチSW1およびSW2がオフ状態となっても、スイッチSW3およびSW4がオン状態となることで、第1回路に信号が回り込むことを抑制できる。このため、スイッチSW3およびSW4が配置されている高周波フィルタ30(SW3&SW4あり)は、理想SW(Coffなし)と同等の通過特性となる。つまり、スイッチSW1およびSW2が非導通である第1回路の影響が低減され、第3帯域内のリップルを抑制して挿入損失を低減するとともに、第3帯域近傍の減衰特性を向上できる。
 [2.5 移相器21および22の回路構成例]
 実施例1および実施例2では、移相器21および22は理想素子であるものとしたが、ここでは、移相器21および22の具体的構成を例示する。
 図22Aは、実施の形態2の変形例1に係る高周波フィルタ20Bの回路構成図である。同図に示された高周波フィルタ20Bは、フィルタ11Aおよび12Aと、移相器21Bおよび22Bと、スイッチSW1、SW2、SW5およびSW6と、入出力端子110および120と、を備える。本変形例に係る高周波フィルタ20Bは、実施例2に係る高周波フィルタ20Aと比較して、移相器の具体的回路構成が示されている点が異なる。以下、本変形例に係る高周波フィルタ20Bについて、実施例2に係る高周波フィルタ20Aと同じ点は説明を省略し、異なる点を中心に説明する。
 移相器21Bは、ノードX1とフィルタ12Aの一方の端子とを結ぶ直列腕経路に配置された2つのインダクタLs21、および、当該直列腕経路上のノードおよびグランドに接続されたキャパシタCp21で構成されたT型の第1移相器である。移相器22Bは、ノードX2とフィルタ12Aの他方の端子とを結ぶ直列腕経路に配置された2つのインダクタLs22、および、当該直列腕経路上のノードおよびグランドに接続されたキャパシタCp22で構成されたT型の第2移相器である。移相器21Bおよび移相器22Bは、低域通過型フィルタ回路(LPF型移相器)を構成している。なお、2つのインダクタLs21のインダクタンス値は異なっていてもよい。また、インダクタンスLs21は2つ配置されていなくてもよく、1つであってもよい。
 図22Bは、実施の形態2の変形例2に係る高周波フィルタ20Cの回路構成図である。同図に示された高周波フィルタ20Cは、フィルタ11Aおよび12Aと、移相器21Cおよび22Cと、スイッチSW1、SW2、SW5およびSW6と、入出力端子110および120と、を備える。本変形例に係る高周波フィルタ20Cは、実施例2に係る高周波フィルタ20Aと比較して、移相器の具体的回路構成が示されている点が異なる。以下、本変形例に係る高周波フィルタ20Cについて、実施例2に係る高周波フィルタ20Aと同じ点は説明を省略し、異なる点を中心に説明する。
 移相器21Cは、ノードX1とフィルタ12Aの一方の端子とを結ぶ直列腕経路に配置された2つのキャパシタCs21、および、当該直列腕経路上のノードおよびグランドに接続されたインダクタLp21で構成されたT型の第1移相器である。移相器22Cは、ノードX2とフィルタ12Aの他方の端子とを結ぶ直列腕経路に配置された2つのキャパシタCs22、および、当該直列腕経路上のノードおよびグランドに接続されたインダクタLp22で構成されたT型の第2移相器である。移相器21Cおよび移相器22Cは、高域通過型フィルタ回路(HPF型移相器)を構成している。なお、2つのキャパシタCs21の容量値は異なっていてもよい。また、キャパシタCs21は2つ配置されていなくてもよく、1つであってもよい。
 変形例1に係る高周波フィルタ20Bおよび変形例2に係る高周波フィルタ20Cにおいても、移相器21および22を理想素子とした実施例2に係る高周波フィルタ20Aと同様の通過帯域内特性が得られる。つまり、第2回路の移相器21Bおよび22B、ならびに、移相器21Cおよび22Cは、第1帯域の振幅差が大きい周波数帯である第2回路の第3帯域低域側の減衰帯域、すなわち、第2回路において最も低い減衰極の周波数から、第2帯域低域側の10dBカットオフ周波数の範囲内に、第2帯域においてインピーダンスが最大となる周波数が位置するように、位相が調整されている。
 図23は、実施の形態2の変形例1および2に係る高周波フィルタの通過特性を比較したグラフである。
 移相器として高域通過型フィルタ回路が適用された場合には、図23の(a)および(c)に示すように、第1帯域および第3帯域選択時に、通過帯域低域側の減衰特性が向上する。
 一方、移相器として低域通過型フィルタ回路が適用された場合には、図23の(a)および(c)に示すように、第1帯域および第3帯域選択時に、通過帯域高域側(例えば、中心周波数の2倍および3倍の周波数)の減衰特性が向上する。
 変形例1および2に係る高周波フィルタによれば、要求される高周波フィルタの特性に応じて、移相器の回路構成を適宜選択することが可能となる。
 なお、変形例1に係る高周波フィルタ20Bおよび変形例2に係る高周波フィルタ20Cにおいて、第1移相器および第2移相器の一方が低域通過型フィルタ回路であって、他方が高域通過型フィルタ回路であってもよい。
 また、実施例1および2では、T型の移相器としたが、直列腕回路にキャパシタまたはインダクタの一方を有し、並列腕回路にキャパシタまたはインダクタの他方を有した、π型の移相器であってもよい。つまり、第1移相器および第2移相器は、2素子(2次)以上の素子で構成されていればよい。また、第1移相器および第2移相器は、ストリップラインまたはマイクロストリップラインなどで構成される遅延線であってもよい。
 (実施の形態3)
 本実施の形態では、第1回路および第2回路に加えて、第3フィルタおよびスイッチ素子で構成された回路が、ノードX1およびノードX2に接続された高周波フィルタについて説明する。
 [3.1 実施例4に係る高周波フィルタ40Aの回路構成]
 図24Aは、実施例4に係る高周波フィルタ40Aの回路構成図である。同図に示された高周波フィルタ40Aは、フィルタ11A、12Aおよび12Aaと、移相器21、22、21aおよび22aと、スイッチSW1、SW2、SW5、SW6、SW35およびSW36と、入出力端子110および120と、を備える。本実施例に係る高周波フィルタ40Aは、実施例2に係る高周波フィルタ20Aと比較して、フィルタ12Aa、スイッチSW35およびSW36を有する第2a回路(第3回路)が、ノードX1とノードX2との間に並列付加されている点が構成として異なる。以下、本実施例に係る高周波フィルタ40Aについて、実施例2に係る高周波フィルタ20Aと同じ点は説明を省略し、異なる点を中心に説明する。
 フィルタ12Aaは、移相器21aおよび22aとともに第2a回路を構成する第3フィルタである。
 スイッチSW35は、ノードX1と移相器21aとの間に接続されたスイッチ素子である。スイッチSW36は、ノードX2と移相器22aとの間に接続されたスイッチ素子である。
 フィルタ12Aa、移相器21aおよび22a、ならびにスイッチSW35およびSW36で構成された第2a回路は、ノードX1およびX2に接続されている。
 移相器21aは、フィルタ12Aaの一方の端子に接続された第3移相器である。また、移相器22aは、フィルタ12Aaの他方の端子に接続された第4移相器である。つまり、スイッチSW35、移相器21a、フィルタ12Aa、移相器22a、およびスイッチSW36は、この順で、ノードX1とノードX2との間に直列接続されている。
 フィルタ12Aaは、ノードX1とノードX2とを結ぶ経路上に配置された直列腕共振子s31およびs32と、当該経路上の各ノードとグランドとの間に配置された並列腕共振子p31、p32およびp33と、を備える。これにより、フィルタ12Aaは、ラダー型の帯域通過型フィルタを構成している。フィルタ12Aaは、第1帯域と周波数が異なる第1a帯域(第4帯域)の一部の周波数を含む帯域であって、第1a帯域より狭い帯域幅を有し、かつ、第2帯域の中心周波数より高域側に位置し、かつ、第3帯域と周波数が異なる第3a帯域(第5帯域)を通過帯域としている。
 表3に、実施例4に係る高周波フィルタ40Aの回路パラメータを示す。
Figure JPOXMLDOC01-appb-T000003
 以下、実施例4に係る高周波フィルタでは、第2帯域をLTEのBand3受信通過帯域(1805-1880MHz)とし、第3帯域をLTEのBand39通過帯域(1880-1920MHz)とし、第3a帯域を1880-1950MHz)とし、第1帯域を(Band3受信通過帯域+Band39通過帯域)(1805-1920MHz)とし、第1a帯域を1805-1950MHz)としている。
 [3.2 実施例4に係る高周波フィルタ40Aのフィルタ特性]
 図24Bは、実施例4に係る高周波フィルタ40Aのスイッチの切り替えによる通過特性の変化を表すグラフである。高周波フィルタ40Aは、スイッチSW1、SW2、SW5、SW6、SW35およびSW36の導通および非導通を適宜切り替えることにより、複数の帯域幅のフィルタへと可変できる周波数可変型の高周波フィルタとなる。なお、本実施例では、5つの帯域幅を切り替えることが可能となる。
 図24Bの(a)に示すように、高周波フィルタ40Aは、スイッチSW1、SW2、SW5およびSW6を導通とし、スイッチSW35およびSW36を非導通とした場合、第1帯域を通過帯域とするフィルタとなる。また、図24Bの(b)に示すように、スイッチSW1、SW2、SW35およびSW36を導通とし、スイッチSW5およびSW6を非導通とした場合、第1a帯域を通過帯域とするフィルタとなる。また、図24Bの(c)に示すように、スイッチSW1およびSW2を導通とし、スイッチSW5、SW6、SW35およびSW36を非導通とした場合、第2帯域を通過帯域とするフィルタとなる。また、図24Bの(d)に示すように、スイッチSW5およびSW6を導通とし、スイッチSW1、SW2、SW35およびSW36を非導通とした場合、第3帯域を通過帯域とするフィルタとなる。また、図24Bの(e)に示すように、スイッチSW35およびSW36を導通とし、スイッチSW1、SW2、SW5およびSW6を非導通とした場合、第3a帯域を通過帯域とするフィルタとなる。
 実施例4に係る高周波フィルタ40Aにおいて、フィルタ12Aの両方の入出力端子に移相器21および22が接続され、フィルタ12Aaの両方の入出力端子に移相器21aおよび22aが接続されることで、高周波フィルタ40Aの第1帯域および第1a帯域において、リップルが低減されることで挿入損失が低減する。
 実施例4に係る高周波フィルタ40Aが、第1帯域および第1a帯域においてリップルおよび挿入損失を低減する要因について、以下に説明する。
 図25は、実施例4に係る高周波フィルタ40Aの第1帯域における広帯域化の要因を説明するグラフである。なお、高周波フィルタ40Aの通過帯域として第1帯域が選択されている場合には、スイッチSW1、SW2、SW5およびSW6は導通状態、かつ、スイッチSW35およびSW36は非導通状態である。同図の(a)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。同図の(b)には、スイッチSW1が導通状態である場合のノードX1から第1回路単体を見たインピーダンス特性およびスイッチSW5が導通状態である場合のノードX1から第2回路単体を見たインピーダンス特性が示されている。同図の(c)には、スイッチSW5が導通状態である場合のノードX2から第1回路単体を見たインピーダンス特性およびスイッチSW6が導通状態である場合のノードX2から第2回路単体を見たインピーダンス特性が示されている。同図の(d)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。同図の(e)には、第1回路と第2回路との位相差が示されている。
 実施例4に係る高周波フィルタ40Aでは、第1帯域が選択された場合、第2回路単体をノードX1から見たインピーダンス|Z11|が極大となる特異点のうち最大のインピーダンスとなる周波数f11が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21および22の位相が調整されている。また、第2回路単体をノードX2から見たインピーダンス|Z22|が極大となる特異点のうち最大のインピーダンスとなる周波数f22が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21および22の位相が調整されている。
 フィルタ12Aの減衰極の周波数fでは位相変化が大きく、フィルタ11Aとの位相差が大きくなるとともに、振幅差も大きくなる。そのため、移相器21および22の位相調整によって、フィルタ12Aの通過帯域低域側の減衰極の周波数fから低周波数側10dBカットオフ周波数fまでの周波数範囲に、第2回路のインピーダンス極大の特異点を合わせることにより、上記周波数範囲の高周波信号が、第2回路のフィルタ12Aに流れこむことを抑制できる。つまり、第2回路が減衰している周波数帯域で第2回路への信号の回り込みを抑制できる。これにより、高周波フィルタ40Aの第1帯域内のリップルを抑制し挿入損失を低減することが可能となる。
 さらに、移相器21および22の位相調整により、第1回路と第2回路との振幅差が小さい周波数帯で同位相となるように調整することにより、第1帯域に含まれる周波数の高周波信号は、第1回路および第2回路を経由した後で、互いに打ち消し合うことがない。これにより、高周波フィルタ40Aの第1帯域に含まれる周波数において、第1帯域内のリップルを抑制し挿入損失を低減できる。
 本実施例では、図25の(e)に示すように、スイッチSW5およびSW6が導通状態である場合にノードX1およびX2から第2回路を単体で見た場合、第2帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:3箇所)あり、第3帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:1箇所)あってもよい。
 上記構成によれば、第1帯域、第2帯域、および第3帯域を切り替えることができる周波数可変型の高周波フィルタ40Aにおいて、第1帯域内のリップルを抑制することが可能となる。
 図26は、実施例4に係る高周波フィルタ40Aの第1a帯域における広帯域化の要因を説明するグラフである。なお、高周波フィルタ40Aの通過帯域として第1a帯域が選択されている場合には、スイッチSW1、SW2、SW35およびSW36は導通状態、かつ、スイッチSW5およびSW6は非導通状態である。同図の(a)には、ノードX1-X2間の第1回路単体および第2a回路単体の通過特性が示されている。同図の(b)には、ノードX1からスイッチSW1が導通状態である場合の第1回路単体およびスイッチSW35が導通状態である場合の第2a回路単体を見たインピーダンス特性が示されている。同図の(c)には、ノードX2からスイッチSW2が導通状態である場合の第1回路単体およびスイッチSW36が導通状態である場合の第2a回路単体を見たインピーダンス特性が示されている。同図の(d)には、ノードX1-X2間の第1回路単体および第2a回路単体の位相特性が示されている。同図の(e)には、第1回路と第2a回路との位相差が示されている。
 実施例4に係る高周波フィルタ40Aでは、第1a帯域が選択された場合、第2a回路単体をノードX1から見たインピーダンス|Z11|が極大となる特異点のうち最大のインピーダンスとなる周波数f11が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21aおよび22aの位相が調整されている。また、第2a回路単体をノードX2から見たインピーダンス|Z22|が極大となる特異点のうち最大のインピーダンスとなる周波数f22が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21aおよび22aの位相が調整されている。
 フィルタ12Aaの減衰極の周波数fでは位相変化が大きく、フィルタ11Aとの位相差が大きくなるとともに、振幅差も大きくなる。そのため、移相器21aおよび22aの位相調整によって、フィルタ12Aaの通過帯域低域側の減衰極の周波数fから低周波数側10dBカットオフ周波数fまでの周波数範囲に、第2a回路のインピーダンス極大の特異点を合わせることにより、上記周波数範囲の高周波信号が、第2a回路のフィルタ12Aaに流れこむことを抑制できる。つまり、第2a回路が減衰している周波数帯域で第2a回路への信号の回り込みを抑制できる。これにより、高周波フィルタ40Aの第1a帯域内のリップルを抑制し挿入損失を低減することが可能となる。
 さらに、移相器21aおよび22aの位相調整により、第1回路と第2a回路との振幅差が小さい周波数帯で同位相となるように調整することにより、第1a帯域に含まれる周波数の高周波信号は、第1回路および第2a回路を経由した後で、互いに打ち消し合うことがない。これにより、高周波フィルタ40Aの第1a帯域に含まれる周波数において、第1a帯域内のリップルを抑制し挿入損失を低減できる。
 本実施例では、図26の(e)に示すように、スイッチSW35およびSW36が導通状態である場合にノードX1およびX2から第2a回路を単体で見た場合、第2帯域において、第1回路と第2a回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:3箇所)あり、第3帯域において、第1回路と第2a回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:1箇所)あってもよい。
 上記構成によれば、第1a帯域、第2帯域、および第3帯域を切り替えることができる周波数可変型の高周波フィルタ40Aにおいて、第1a帯域内のリップルを抑制することが可能となる。
 本実施例に係る高周波フィルタ40Aによれば、通過帯域の切り替えのバリエーションを増やしつつ、第1帯域内および第1a帯域内のリップルを低減させて挿入損失を低減させることが可能となる。
 (実施の形態4)
 本実施の形態では、縦結合型共振器を有するフィルタで構成された高周波フィルタについて説明する。
 [4.1 実施例5に係る高周波フィルタ50Aの回路構成]
 図27Aは、実施例5に係る高周波フィルタ50Aの回路構成図である。同図に示された高周波フィルタ50Aは、フィルタ11Bおよび12Aと、移相器21Dおよび22Dと、スイッチSW1、SW2、SW5およびSW6と、入出力端子110および120と、を備える。本実施例に係る高周波フィルタ50Aは、実施例2に係る高周波フィルタ20Aと比較して、第1回路ならびに移相器の回路構成が異なる。以下、本実施例に係る高周波フィルタ50Aについて、実施例2に係る高周波フィルタ20Aと同じ点は説明を省略し、異なる点を中心に説明する。
 フィルタ11Bは、ノードX1とノードX2とを結ぶ第1経路上に配置された直列腕共振子s11、s12およびs13と、当該第1経路上の各ノードとグランドとの間に配置された並列腕共振子p11およびp12と、直列腕共振子s12およびs13に接続された縦結合型共振器15Aと、を備える。これにより、フィルタ11Bは、帯域通過型フィルタを構成している。縦結合型共振器15Aは、5つのIDT電極と当該5つのIDT電極の並び方向の両端に配置された反射器とで構成されている。なお、縦結合型共振器のIDT電極の数は2つ以上であればよい。
 移相器21Dは、フィルタ12Aの一方の端子に接続された第1移相器である。また、移相器22Dは、フィルタ12Aの他方の端子に接続された第2移相器である。つまり、移相器21D、フィルタ12A、および移相器22Dは、この順で、ノードX1とノードX2との間に直列接続されている。
 移相器21Dは、ノードX1とフィルタ12Aの一方の端子とを結ぶ直列腕経路に配置された1つのキャパシタCs21、および、当該直列腕経路上のノードおよびグランドに接続された1つのインダクタLp21で構成されている。移相器22Dは、ノードX2とフィルタ12Aの他方の端子とを結ぶ直列腕経路に配置された1つのキャパシタCs22、および、当該直列腕経路上のノードおよびグランドに接続された1つのインダクタLp22で構成されている。
 表4に、実施例5に係る高周波フィルタ50Aの回路パラメータを示す。
Figure JPOXMLDOC01-appb-T000004
 本実施例では、フィルタ11Bは、縦結合型共振器15Aを有しているため、フィルタ11Bは、減衰特性に有利なフィルタ特性となっている。このため、移相器21Dおよび22Dに、高い減衰特性は要求されない。この観点から、移相器21Dおよび22Dは、それぞれ、1つのキャパシタおよび1つのインダクタで構成することが可能となる。
 なお、移相器21Dおよび22Dの回路構成は、上記構成に限定されない。キャパシタおよびインダクタは、それぞれ複数配置されていてもよく、T型およびπ型などの接続構成も任意である。
 [4.2 実施例5に係る高周波フィルタ50Aのフィルタ特性]
 図27Bは、実施例5に係る高周波フィルタ50Aのスイッチの切り替えによる通過特性の変化を表すグラフである。図27Bの(a)に示すように、高周波フィルタ50Aは、スイッチSW1、SW2、SW5およびSW6の全てを導通とした場合、第1帯域(Band3受信通過帯域+Band39通過帯域)を通過帯域とするフィルタとなる。また、図27Bの(b)に示すように、スイッチSW1およびSW2を導通とし、SW5およびSW6を非導通とした場合、第2帯域(Band3受信通過帯域)を通過帯域とするフィルタとなる。また、図27Bの(c)に示すように、スイッチSW1およびSW2を非導通とし、SW5およびSW6を導通とした場合、第3帯域(Band39通過帯域)を通過帯域とするフィルタとなる。
 なお、本実施例では、第1回路側にスイッチSW1およびSW2が配置され、第2回路側にスイッチSW5およびSW6が配置された回路構成としたが、第1回路側のみにスイッチが接続された構成でもよいし、第2回路側のみにスイッチが接続された構成でもよい。第1回路側のみにスイッチが接続された構成の場合、高周波フィルタは第1帯域と第3帯域とを切り替えるフィルタとなる。また、第2回路側のみにスイッチが接続された構成の場合、高周波フィルタは第1帯域と第2帯域とを切り替えるフィルタとなる。
 実施例5に係る高周波フィルタ50Aにおいても、実施例2に係る高周波フィルタ20Aと同様に、フィルタ12Aの両方の入出力端子に移相器21Dおよび22Dが接続されることで、高周波フィルタ50Aの第1帯域において、リップルが低減されることで挿入損失が低減する。
 実施例5に係る高周波フィルタ50Aの第1帯域におけるリップルおよび挿入損失を低減する要因について、以下に説明する。
 図28は、実施例5に係る高周波フィルタ50Aの広帯域化の要因を説明するグラフである。同図の(a)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。同図の(b)には、スイッチSW1が導通状態である場合のノードX1から第1回路単体を見たインピーダンス特性およびスイッチSW5が導通状態である場合のノードX1から第2回路単体を見たインピーダンス特性が示されている。同図の(c)には、スイッチSW2が導通状態である場合のノードX2から第1回路単体を見たインピーダンス特性およびスイッチSW6が導通状態である場合のノードX2から第2回路単体を見たインピーダンス特性が示されている。同図の(d)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。同図の(e)には、第1回路と第2回路との位相差が示されている。
 実施例5に係る高周波フィルタ50Aでは、第2回路単体をノードX1から見たインピーダンス|Z11|が極大となる特異点のうち最大のインピーダンスとなる周波数f11が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21Dおよび22Dの位相が調整されている。また、第2回路単体をノードX2から見たインピーダンス|Z22|が極大となる特異点のうち最大のインピーダンスとなる周波数f22が、第2帯域の低域端の周波数fから、フィルタ12Aの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21Dおよび22Dの位相が調整されている。
 フィルタ12Aの減衰極の周波数fでは位相変化が大きく、フィルタ11Bとの位相差が大きくなるとともに、振幅差も大きくなる。そのため、移相器21Dおよび22Dの位相調整によって、フィルタ12Aの通過帯域低域側の減衰極の周波数fから低周波数側10dBカットオフ周波数fまでの周波数範囲に、第2回路のインピーダンス極大の特異点のうち最大のインピーダンスとなる周波数f11およびf22を合わせることにより、上記周波数範囲の高周波信号が、第2回路のフィルタ12Aに流れこむことを抑制できる。つまり、第2回路が減衰している周波数帯域で第2回路への信号の回り込みを抑制できる。これにより、高周波フィルタ50Aの第1帯域内のリップルを抑制し挿入損失を低減することが可能となる。
 さらに、移相器21Dおよび22Dの位相調整により、第1回路と第2回路との振幅差が小さい周波数帯で同位相となるように調整することにより、第1帯域に含まれる周波数の高周波信号は、第1回路および第2回路を経由した後で、互いに打ち消し合うことがない。これにより、高周波フィルタ50Aの第1帯域に含まれる周波数において、第1帯域内のリップルを抑制し挿入損失を低減できる。
 以上のように、高周波フィルタ50Aが、スイッチSW1、SW2、SW5およびSW6の導通状態により第1帯域を通過帯域とする場合、第1帯域の挿入損失を低減することが可能となる。
 本実施例では、図28の(e)に示すように、スイッチSW5およびSW6が導通状態である場合にノードX1およびX2から第2回路を単体で見た場合、第2帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:2箇所)あり、第3帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:1箇所)あってもよい。
 上記構成によれば、第1帯域、第2帯域、および第3帯域を切り替えることができる周波数可変型の高周波フィルタ50Aにおいて、第1帯域内のリップルを抑制することが可能となる。また、フィルタ11Bが縦結合型共振器15Aで構成されているので、高周波フィルタ50Aの通過帯域低域側において、急峻性が向上するとともに減衰量を向上できる。
 (実施の形態5)
 本実施の形態では、スイッチ素子を有するインピーダンス回路が付加された並列腕回路を有する第1フィルタおよび第2フィルタで構成された高周波フィルタについて説明する。
 [5.1 実施例6に係る高周波フィルタ60Aの回路構成]
 図29Aは、実施例6に係る高周波フィルタ60Aの回路構成図である。同図に示された高周波フィルタ60Aは、フィルタ11Cおよび12Bと、移相器21Cおよび22Cと、スイッチSW1、SW2、SW5およびSW6と、入出力端子110および120と、を備える。本実施例に係る高周波フィルタ60Aは、実施の形態2の変形例2に係る高周波フィルタ20Cと比較して、第1フィルタおよび第2フィルタの回路構成が異なる。以下、本実施例に係る高周波フィルタ60Aについて、実施の形態2の変形例2に係る高周波フィルタ20Cと同じ点は説明を省略し、異なる点を中心に説明する。
 フィルタ11Cは、3つの直列腕回路(直列腕共振子s11、s12およびs13)と、並列腕回路101、102、103および104と、を備える。
 直列腕共振子s11~s13は、ノードX1およびX2を結ぶ第1経路上に設けられている。
 並列腕回路101~104のそれぞれは、ノードX1およびX2を結ぶ第1経路上の各ノードおよびグランドに接続された並列腕回路である。
 並列腕回路101は、並列腕共振子p11と、並列腕共振子p11に直列接続されたインピーダンス回路111とを有している。インピーダンス回路111は、キャパシタCp11と、スイッチSW11とを有する。スイッチSW11は、キャパシタCp11と並列接続された第9スイッチ素子である。インピーダンス回路111がキャパシタCp11とスイッチSW11との並列回路で構成されているので、スイッチSW11が導通から非導通へと切り替わることにより、並列腕回路101の共振周波数が高域側へと切り替えられる。
 並列腕回路102は、並列腕共振子p12と、並列腕共振子p12に直列接続されたインピーダンス回路112とを有している。インピーダンス回路112は、キャパシタCp12と、スイッチSW12とを有する。スイッチSW12は、キャパシタCp12と並列接続された第9スイッチ素子である。インピーダンス回路112がキャパシタCp12とスイッチSW12との並列回路で構成されているので、スイッチSW12が導通から非導通へと切り替わることにより、並列腕回路102の共振周波数が高域側へと切り替えられる。
 並列腕回路104は、並列腕共振子p14と、並列腕共振子p14に直列接続されたインピーダンス回路114とを有している。インピーダンス回路114は、キャパシタCp14と、スイッチSW14とを有する。スイッチSW14は、キャパシタCp14と並列接続された第9スイッチ素子である。インピーダンス回路114がキャパシタCp14とスイッチSW14との並列回路で構成されているので、スイッチSW14が導通から非導通へと切り替わることにより、並列腕回路104の共振周波数が高域側へと切り替えられる。
 並列腕回路103は、並列腕共振子p13と、並列腕共振子p13に直列接続されたインピーダンス回路113とを有している。インピーダンス回路113は、インダクタLp13と、スイッチSW13とを有する。スイッチSW13は、インダクタLp13と並列接続された第9スイッチ素子である。インピーダンス回路113がインダクタLp13とスイッチSW13との並列回路で構成されているので、スイッチSW13が導通から非導通へと切り替わることにより、並列腕回路103の共振周波数が低域側へと切り替えられる。
 並列腕回路の共振周波数は、ラダー型フィルタにおける通過帯域低域側の減衰極を規定することから、フィルタ11Cは、スイッチSW11、SW12、SW13、SW14の導通および非導通の切り替えにより、通過帯域低域側の急峻度および通過帯域低域端の周波数が可変する。
 フィルタ12Bは、2つの直列腕回路(直列腕共振子s21およびs22)と、並列腕回路201、202、および203と、を備える。
 直列腕共振子s21およびs22は、ノードX1およびX2を結ぶ第2経路上に設けられている。
 並列腕回路201~203のそれぞれは、ノードX1およびX2を結ぶ第2経路上の各ノードおよびグランドに接続された並列腕回路である。
 並列腕回路201は、並列腕共振子p21と、並列腕共振子p21に直列接続されたインピーダンス回路211とを有している。インピーダンス回路211は、キャパシタCp21と、スイッチSW21とを有する。スイッチSW21は、キャパシタCp21と並列接続された第9スイッチ素子である。インピーダンス回路211がキャパシタCp21とスイッチSW21との並列回路で構成されているので、スイッチSW21が導通から非導通へと切り替わることにより、並列腕回路201の共振周波数が高域側へと切り替えられる。
 並列腕回路202は、並列腕共振子p22と、並列腕共振子p22に直列接続されたインピーダンス回路212とを有している。インピーダンス回路212は、キャパシタCp22と、スイッチSW22とを有する。スイッチSW22は、キャパシタCp22と並列接続された第9スイッチ素子である。インピーダンス回路212がキャパシタCp22とスイッチSW22との並列回路で構成されているので、スイッチSW22が導通から非導通へと切り替わることにより、並列腕回路202の共振周波数が高域側へと切り替えられる。
 並列腕回路203は、並列腕共振子p23と、並列腕共振子p23に直列接続されたインピーダンス回路213とを有している。インピーダンス回路213は、キャパシタCp23と、スイッチSW23とを有する。スイッチSW23は、キャパシタCp23と並列接続された第9スイッチ素子である。インピーダンス回路213がキャパシタCp23とスイッチSW23との並列回路で構成されているので、スイッチSW23が導通から非導通へと切り替わることにより、並列腕回路203の共振周波数が高域側へと切り替えられる。
 フィルタ12Bは、スイッチSW21、SW22、SW23の導通および非導通の切り替えにより、通過帯域低域側の急峻度および通過帯域低域端の周波数が可変する。
 表5に、実施例6に係る高周波フィルタ60Aの回路パラメータを示す。
Figure JPOXMLDOC01-appb-T000005
 [5.2 実施例6に係る高周波フィルタ60Aのフィルタ特性]
 図29Bは、実施例6に係る高周波フィルタ60Aのスイッチの切り替えによる通過特性の変化を表すグラフである。高周波フィルタ60Aは、スイッチSW1、SW2、SW5、SW6、SW11~SW14、および、SW21~SW23の導通および非導通を適宜切り替えることにより、複数の帯域幅のフィルタへと可変できる周波数可変型の高周波フィルタとなる。なお、本実施例では、6つの通過帯域を切り替えることが可能となる。
 図29Bの(a)に示すように、高周波フィルタ60Aは、スイッチSW1、SW2、SW11、SW12、SW14、SW21~SW23を導通とし、スイッチSW13を非導通とした場合、第1帯域(Band3受信通過帯域およびBand39通過帯域)を通過帯域とするフィルタとなる。また、図29Bの(b)に示すように、スイッチSW1、SW2、SW11、SW12、SW14、および、SW21~SW23を導通とし、スイッチSW5、SW6およびSW13を非導通とした場合、第2帯域(Band3受信通過帯域)を通過帯域とするフィルタとなる。また、図29Bの(c)に示すように、スイッチSW5、SW6、SW11、SW12、SW14、および、SW21~SW23を導通とし、スイッチSW1、SW2およびSW13を非導通とした場合、第3帯域(Band39通過帯域)を通過帯域とするフィルタとなる。また、図29Bの(d)に示すように、スイッチSW1、SW2、SW5、SW6、SW13、SW21~SW23を導通とし、スイッチSW11、SW12、SW14を非導通とした場合、第1帯域に対して通過帯域低域側の減衰極および通過帯域低域端が高周波側へシフトした第1b帯域を通過帯域とするフィルタとなる。なお、この場合、第2回路は選択されていないため、SW21-SW23の導通および非導通は、どちらであってもフィルタ特性に影響しない。また、図29Bの(e)に示すように、スイッチSW1、SW2、SW13を導通とし、スイッチSW5、SW6、SW11、SW12、SW14を非導通とした場合、第2帯域に対して通過帯域低域側の減衰極および通過帯域低域端が高周波側へシフトした第2b帯域を通過帯域とするフィルタとなる。なお、この場合、第1回路は選択されていないため、SW11-SW14の導通および非導通は、どちらであってもフィルタ特性に影響しない。また、図29Bの(f)に示すように、スイッチSW5、SW6を導通とし、スイッチSW1、SW2、SW21~SW23を非導通とした場合、第3帯域に対して通過帯域低域側の減衰極および通過帯域低域端が高周波側へシフトした第3b帯域を通過帯域とするフィルタとなる。
 実施例6に係る高周波フィルタ60Aにおいて、フィルタ12Bの両方の入出力端子に移相器21Cおよび22Cが接続されることで、高周波フィルタ60Aの第1帯域および第1b帯域において、リップルが低減されることで挿入損失が低減する。
 実施例6に係る高周波フィルタ60Aが、第1帯域および第1b帯域においてリップルおよび挿入損失を低減する要因について、以下に説明する。
 図30は、実施例6に係る高周波フィルタ60Aの第1帯域における広帯域化の要因を説明するグラフである。同図の(a)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。同図の(b)には、スイッチSW1が導通状態である場合のノードX1から第1回路単体を見たインピーダンス特性およびスイッチSW5が導通状態である場合のノードX1から第2回路単体を見たインピーダンス特性が示されている。同図の(c)には、スイッチSW2が導通状態である場合のノードX2から第1回路単体を見たインピーダンス特性およびスイッチSW6が導通状態である場合のノードX2から第2回路単体を見たインピーダンス特性が示されている。同図の(d)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。同図の(e)には、第1回路と第2回路との位相差が示されている。
 実施例6に係る高周波フィルタ60Aでは、第1帯域が選択された場合、第2回路単体をノードX1から見たインピーダンス|Z11|が極大となる特異点のうち最大のインピーダンスとなる周波数f11が、第2帯域の低域端の周波数fから、フィルタ12Bの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21Cおよび22Cの位相が調整されている。また、第2回路単体をノードX2から見たインピーダンス|Z22|が極大となる特異点のうち最大のインピーダンスとなる周波数f22が、第2帯域の低域端の周波数fから、フィルタ12Bの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21Cおよび22Cの位相が調整されている。
 フィルタ12Bの減衰極の周波数fでは位相変化が大きく、フィルタ11Cとの位相差が大きくなるとともに、振幅差も大きくなる。そのため、移相器21Cおよび22Cの位相調整によって、周波数fからカットオフ周波数fまでの周波数範囲に、第2回路のインピーダンス極大の特異点のうち最大のインピーダンスとなる周波数f11およびf22を合わせることにより、上記周波数範囲の高周波信号が、第2回路のフィルタ12Bに流れこむことを抑制できる。つまり、第2回路が減衰している周波数帯域で第2回路への信号の回り込みを抑制できる。これにより、高周波フィルタ60Aの第1帯域内のリップルを抑制し挿入損失を低減することが可能となる。
 以上のように、高周波フィルタ60Aが、スイッチSW1、SW2、SW5およびSW6の導通状態により第1帯域を通過帯域とする場合、第1帯域の挿入損失を低減することが可能となる。
 さらに、移相器21Cおよび22Cの位相調整により、第1回路と第2回路との振幅差が小さい周波数帯で同位相となるように調整することにより、第1帯域に含まれる周波数の高周波信号は、第1回路および第2回路を経由した後で、互いに打ち消し合うことがない。これにより、第1帯域内のリップルを抑制し挿入損失を低減できる。
 本実施例では、図30の(e)に示すように、第2回路のノードX1およびX2から第2回路を単体で見た場合、第2帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:2箇所)あり、第3帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:1箇所)あってもよい。
 上記構成によれば、第1帯域、第2帯域、および第3帯域を切り替えることができる周波数可変型の高周波フィルタ60Aにおいて、第1帯域内のリップルを抑制することが可能となる。
 図31は、実施例6に係る高周波フィルタ60Aの第1b帯域における広帯域化の要因を説明するグラフである。同図の(a)には、ノードX1-X2間の第1回路単体および第2回路単体の通過特性が示されている。同図の(b)には、スイッチSW1が導通状態である場合のノードX1から第1回路単体を見たインピーダンス特性およびスイッチSW5が導通状態である場合のノードX1から第2回路単体を見たインピーダンス特性が示されている。同図の(c)には、スイッチSW2が導通状態である場合のノードX2から第1回路単体を見たインピーダンス特性およびスイッチSW6が導通状態である場合のノードX2から第2回路単体を見たインピーダンス特性が示されている。同図の(d)には、ノードX1-X2間の第1回路単体および第2回路単体の位相特性が示されている。同図の(e)には、第1回路と第2回路との位相差が示されている。
 実施例6に係る高周波フィルタ60Aでは、第1b帯域が選択された場合、第2回路単体をノードX1から見たインピーダンス|Z11|が極大となる特異点のうち最大のインピーダンスとなる周波数f11が、第2帯域の低域端の周波数fから、フィルタ12Bの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21Cおよび22Cの位相が調整されている。また、第2回路単体をノードX2から見たインピーダンス|Z22|が極大となる特異点のうち最大のインピーダンスとなる周波数f22が、第2帯域の低域端の周波数fから、フィルタ12Bの通過帯域低域側のカットオフ周波数fまでの周波数帯に含まれるように、移相器21Cおよび22Cの位相が調整されている。
 フィルタ12Bの減衰極の周波数fでは位相変化が大きく、フィルタ11Cとの位相差が大きくなるとともに、振幅差も大きくなる。そのため、移相器21Cおよび22Cの位相調整によって、周波数fからカットオフ周波数fまでの周波数範囲に、第2回路のインピーダンス極大の特異点のうち最大のインピーダンスとなる周波数f11およびf22を合わせることにより、上記周波数範囲の高周波信号が、第2回路のフィルタ12Bに流れこむことを抑制できる。つまり、第2回路が減衰している周波数帯域で第2回路への信号の回り込みを抑制できる。これにより、高周波フィルタ60Aの第1b帯域内のリップルを抑制し挿入損失を低減することが可能となる。
 以上のように、高周波フィルタ60Aが、スイッチSW1、SW2、SW5およびSW6の導通状態により第1b帯域を通過帯域とする場合、第1b帯域の挿入損失を低減することが可能となる。
 さらに、移相器21Cおよび22Cの位相調整により、第1回路と第2回路との振幅差が小さい周波数帯で同位相となるように調整することにより、第1b帯域に含まれる周波数の高周波信号は、第1回路および第2回路を経由した後で、互いに打ち消し合うことがない。これにより、第1b帯域内のリップルを抑制し挿入損失を低減できる。
 本実施例では、図31の(e)に示すように、第2回路のノードX1およびX2から第2回路を単体で見た場合、第2b帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:2箇所)あり、第3b帯域において、第1回路と第2回路とが同位相(0°または-360°)になっている周波数が少なくとも1箇所(同図の破線丸印:1箇所)あってもよい。
 上記構成によれば、第1b帯域、第2b帯域、および第3b帯域を切り替えることができる周波数可変型の高周波フィルタ60Aにおいて、第1b帯域内のリップルを抑制することが可能となる。
 本実施例に係る高周波フィルタ60Aによれば、通過帯域の切り替えのバリエーションを増やしつつ、第1帯域内および第1b帯域内のリップルを低減させて挿入損失を低減させることが可能となる。
 なお、直列腕共振子の数および並列腕回路の数は、フィルタ特性の要求仕様に応じて適宜決定される。また、直列腕共振子の替わりに、インダクタやキャパシタなどの回路素子が配置されていてもよい。
 また、本実施例に係る高周波フィルタ60Aにおいて、フィルタ11Cおよび12Bのそれぞれを構成する、1つの直列腕共振子およびその直列腕に接続された1つの並列腕回路で構成される単位回路としては、図32A~図32D、および、図33A~図33Gのような変形例が挙げられる。
 図32Aは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例1の回路構成図である。同図に示されたフィルタ13Aは、直列腕回路151と並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、互いに並列接続されたスイッチ(第9スイッチ素子)およびキャパシタを有する。スイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数が切り替わる。
 図32Bは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例2の回路構成図である。同図に示されたフィルタ13Bは、直列腕回路151と並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、互いに並列接続されたスイッチ(第9スイッチ素子)およびインダクタを有する。スイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数が切り替わる。
 図32Cは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例3の回路構成図である。同図に示されたフィルタ13Cは、直列腕回路151と並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、互いに並列接続されたスイッチ(第9スイッチ素子)とインダクタとの直列回路およびキャパシタを有する。スイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数が切り替わる。
 図32Dは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例4の回路構成図である。同図に示されたフィルタ13Dは、直列腕回路151と並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、互いに並列接続されたスイッチ(第9スイッチ素子)とキャパシタとの直列回路およびインダクタを有する。スイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数が切り替わる。
 図33Aは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例5の回路構成図である。同図に示されたフィルタ14Aは、直列腕回路151と、並列腕回路とで構成されている。並列腕回路は、並列腕共振子p1と、互いに直列接続された並列腕共振子p2およびスイッチ(第9スイッチ素子)と、を有する。並列腕共振子p1の共振周波数は並列腕共振子p2の共振周波数より低く、並列腕共振子p1の反共振周波数は並列腕共振子p2の反共振周波数より低く設定されている。スイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数および反共振周波数の少なくとも一方が切り替わる。
 図33Bは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例6の回路構成図である。同図に示されたフィルタ14Bは、直列腕回路151と並列腕回路とで構成されている。並列腕回路は、並列腕共振子p1と、互いに直列接続された並列腕共振子p2およびインピーダンス回路を有する。並列腕共振子p1の共振周波数は並列腕共振子p2の共振周波数と異なり、並列腕共振子p1の反共振周波数は並列腕共振子p2の反共振周波数と異なる。インピーダンス回路は、互いに並列接続されたスイッチ(第9スイッチ素子)およびキャパシタを有する。並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、スイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数の少なくとも1つと、反共振周波数の少なくとも1つとが、ともに切り替わる。
 図33Cは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例7の回路構成図である。同図に示されたフィルタ14Cは、直列腕回路151と、並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1および第1インピーダンス回路と、互いに直列接続された並列腕共振子p2および第2インピーダンス回路とを有する。並列腕共振子p1の共振周波数は並列腕共振子p2の共振周波数と異なり、並列腕共振子p1の反共振周波数は並列腕共振子p2の反共振周波数と異なる。第1インピーダンス回路は、互いに並列接続されたスイッチSW1(第9スイッチ素子)およびキャパシタを有する。第2インピーダンス回路は、互いに並列接続されたスイッチSW2(第9スイッチ素子)およびキャパシタを有する。並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、それぞれのスイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数の少なくとも1つと、反共振周波少なくとも1つとが、ともに切り替わる。
 図33Dは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例8の回路構成図である。同図に示されたフィルタ14Dは、直列腕回路151と、並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、互いに並列接続されたスイッチSW1(第9スイッチ素子)および並列腕共振子p2を有する。並列腕共振子p1の共振周波数は並列腕共振子p2の共振周波数と異なり、並列腕共振子p1の反共振周波数は並列腕共振子p2の反共振周波数と異なる。スイッチの導通および非導通の切り替えにより、並列腕回路の共振周波数および反共振周波数の周波数と個数が切り替わる。
 図33Eは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例9の回路構成図である。同図に示されたフィルタ14Eは、直列腕回路151と、並列腕回路とで構成されている。並列腕回路は、並列腕共振子p1およびp2が並列接続された回路と、インピーダンス回路とが直列接続された構成を有する。並列腕共振子p1の共振周波数は並列腕共振子p2の共振周波数より低く、並列腕共振子p1の反共振周波数は並列腕共振子p2の反共振周波数より低く設定されている。インピーダンス回路は、互いに並列接続されたスイッチSW1(第9スイッチ素子)およびキャパシタを有する。並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、スイッチの導通および非導通の切り替えにより、並列腕回路の2つの共振周波数が切り替わる。
 図33Fは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例10の回路構成図である。同図に示されたフィルタ14Fは、直列腕回路151と、並列腕回路とで構成されている。並列腕回路は、並列腕共振子p1およびp2が並列接続された回路と、インピーダンス回路とが直列接続された構成を有する。並列腕共振子p1の共振周波数は並列腕共振子p2の共振周波数より低く、並列腕共振子p1の反共振周波数は並列腕共振子p2の反共振周波数より低く設定されている。インピーダンス回路は、互いに並列接続されたスイッチSW1(第9スイッチ素子)およびインダクタを有する。並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、スイッチの導通および非導通の切り替えにより、並列腕回路の2つの共振周波数が切り替わる。
 図33Gは、実施例6に係る高周波フィルタ60Aを構成する各フィルタの変形例11の回路構成図である。同図に示されたフィルタ14Gは、直列腕回路と、並列腕回路161とで構成されている。直列腕回路は、直列腕共振子s1とキャパシタおよびスイッチ(第9スイッチ素子)の直列回路とが並列接続された構成を有する。スイッチの導通および非導通の切り替えにより、直列腕回路の反共振周波数が切り替わる。
 (実施の形態6)
 以上の実施の形態1~6で説明した高周波フィルタは、使用バンド数が多いシステムに対応するマルチプレクサおよび高周波フロントエンド回路に適用することもできる。そこで、本実施の形態では、このようなマルチプレクサおよび高周波フロントエンド回路および通信装置について説明する。
 図34は、実施の形態6に係る通信装置9およびその周辺回路の構成図である。
 同図に示すように、通信装置9は、複数のスイッチにより構成されるスイッチ群210と、複数のフィルタにより構成されるフィルタ群220と、送信側スイッチ231と、受信側スイッチ251、252および253と、スイッチ271および272と、送信増幅回路241、242および243と、受信増幅回路261、262、263および264と、RF信号処理回路(RFIC)7と、ベースバンド信号処理回路(BBIC)8と、アンテナ素子5と、を備える。
 スイッチ群210は、制御部(図示せず)からの制御信号にしたがって、アンテナ素子5と所定のバンドに対応する信号経路とを接続し、例えば、複数のSPST型のスイッチによって構成される。なお、アンテナ素子5と接続される信号経路は1つに限らず、複数であってもかまわない。つまり、通信装置9は、キャリアアグリゲーションに対応してもかまわない。
 フィルタ群220は、例えば次の帯域を通過帯域に有する複数のフィルタ(デュプレクサを含む)によって構成される。具体的には、当該帯域は、(i-Tx)Band3、4および66の送信帯域、(i-Rx)Band3またはBand3、39の受信帯域、(ii-Tx)Band25の送信帯域、(ii-Rx)Band25の受信帯域、(iii-Tx)Band1または65の送信帯域、(iii-Rx)Band1、4、65、66の受信帯域、(iv-Tx)Band30の送信帯域、(iv-Rx)Band30の受信帯域、(v)Band7の送信帯域、(vi)Band7またはBand7、38の受信帯域、(vii)Band39の送受信帯域、(viii)Band34の送受信帯域、(ix)Band40の送受信帯域、(x)Band41または38の送受信帯域、である。
 送信側スイッチ231は、フィルタ群220の中心周波数が低いローバンド側の複数の送信側信号経路に接続された複数の選択端子と送信増幅回路241に接続された共通端子とを有するスイッチ回路である。
 受信側スイッチ251は、複数の受信側信号経路に接続された複数の選択端子と受信増幅回路261に接続された共通端子とを有するスイッチ回路である。受信側スイッチ252は、複数の受信側信号経路に接続された複数の選択端子と受信増幅回路262に接続された共通端子とを有するスイッチ回路である。受信側スイッチ253は、受信側信号経路およびスイッチ271の選択端子に接続された複数の選択端子と受信増幅回路263に接続された共通端子とを有するスイッチ回路である。
 スイッチ271は、所定のバンド(ここではBand39)の送受信経路に接続された共通端子と、受信側スイッチ253の選択端子および送信増幅回路242に接続された2つの選択端子とを有するスイッチ回路である。スイッチ272は、複数の送受信経路に接続された複数の選択端子と、送信増幅回路243、受信増幅回路264に接続された2つの選択端子とを有するスイッチ回路である。
 これらのスイッチは、フィルタ群220の後段(ここでは受信側信号経路における後段)に設けられ、制御部(図示せず)からの制御信号にしたがって接続状態が切り替えられる。
 送信増幅回路241、242および243は、それぞれ、所定の周波数帯域の高周波送信信号を電力増幅するパワーアンプである。
 受信増幅回路261、262、263および264は、それぞれ、所定の周波数帯域の高周波受信信号を電力増幅するローノイズアンプである。
 RF信号処理回路(RFIC)7は、アンテナ素子5で送受信される高周波信号を処理する回路である。具体的には、RF信号処理回路(RFIC)7は、アンテナ素子5から受信側信号経路を介して入力された高周波信号(ここでは高周波受信信号)を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC)8へ出力する。また、RF信号処理回路(RFIC)7は、ベースバンド信号処理回路(BBIC)8から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号(ここでは高周波送信信号)を送信側信号経路に出力する。
 このように構成された通信装置9は、上記(i-Tx)~(x)のいずれかを通過帯域に有するフィルタの少なくとも1つとして、実施の形態1~5のいずれかに係るフィルタを備える。
 なお、通信装置9のうち、スイッチ群210と、フィルタ群220と、送信側スイッチ231と、受信側スイッチ251、252および253と、スイッチ271および272と、送信増幅回路241、242および243と、受信増幅回路261、262、263および264と、上記制御部とは、高周波フロントエンド回路6を構成する。また、スイッチ群210とフィルタ群220とは、マルチプレクサを構成する。なお、本発明に係るマルチプレクサは、本実施の形態のように、フィルタ群220が、スイッチ群210を介して共通端子に接続されていてもよいし、実施の形態1~5のいずれかに係る複数のフィルタが、共通端子に直接接続されている構成であってもよい。
 ここで、上記制御部は、図34には図示していないが、RF信号処理回路(RFIC)が有していてもよいし、制御部が制御する各スイッチとともにスイッチICを構成していてもよい。
 以上のように構成された高周波フロントエンド回路6および通信装置9によれば、上記実施の形態1~5のいずれかに係るフィルタを備えることにより、通過帯域内のリップル(挿入損失偏差)が低減された低損失かつ広帯域の高周波フロントエンド回路および通信装置を実現できる。
 また、本実施の形態に係る高周波フロントエンド回路6によれば、フィルタ群220(複数の高周波フィルタ)の前段または後段に設けられた送信側スイッチ231、受信側スイッチ251、252および253、ならびにスイッチ271および272(スイッチ回路)を備える。これにより、高周波信号が伝達される信号経路の一部を共通化することができる。よって、例えば、複数の高周波フィルタに対応する送信増幅回路241、242および243、ならびに、受信増幅回路261、262、263および264(増幅回路)を共通化することができる。したがって、高周波フロントエンド回路の小型化および低コスト化が可能となる。
 なお、送信側スイッチ231、受信側スイッチ251、252および253、ならびにスイッチ271および272は、少なくとも1つが設けられていればよい。また、送信側スイッチの個数、ならびに、受信側スイッチの個数は、上記説明した個数に限らず、例えば、1つの送信側スイッチと1つの受信側スイッチとが設けられていてもかまわない。また、送信側スイッチおよび受信側スイッチの選択端子等の個数も、本実施の形態に限らず、それぞれ2つであってもかまわない。
 (その他の実施の形態)
 以上、本発明に係る高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置について、実施の形態1~6を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態1~6では、第2帯域をLTEのBand3受信通過帯域(1805-1880MHz)に適用し、第3帯域をLTEのBand39通過帯域(1880-1920MHz)に適用し、第1帯域をBand3受信通過帯域とBand39通過帯域とを含む帯域(1805-1920MHz)に適用した例を示したが、これに限られない。
 第2帯域をLTEのBand28A受信通過帯域(758-788MHz)に適用し、第3帯域をLTEのBand20受信通過帯域(791-821MHz)に適用し、第1帯域をBand28A受信通過帯域とBand20受信通過帯域とを含む帯域(758-821MHz)に適用してもよい。
 また、第2帯域をLTEのBand38通過帯域(2570-2620MHz)に適用し、第3帯域をLTEのBand7受信通過帯域(2620-2690MHz)に適用し、第1帯域をBand38通過帯域とBand7受信通過帯域とを含む帯域(2570-2690MHz)に適用してもよい。
 また、各フィルタを構成する直列腕共振子および並列腕共振子の各々は、1つの共振子に限らず、1つの共振子が分割された複数の分割共振子によって構成されていてもかまわない。
 また、実施の形態1~6で示された移相器は、位相変換とともにインピーダンス変換の機能も有しており、「インピーダンス変換器」と読み替えてもよい。
 また、例えば、制御部は、RF信号処理回路(RFIC)7の外部に設けられていてもよく、例えば、高周波フロントエンド回路6に設けられていてもかまわない。つまり、高周波フロントエンド回路6は、上記説明した構成に限らず、実施の形態1~5のいずれかに係る高周波フィルタと、当該高周波フィルタが備えるスイッチ素子のオンおよびオフを制御する制御部と、を備えてもかまわない。
 また、例えば、高周波フロントエンド回路6または通信装置9において、各構成要素の間に、インダクタやキャパシタが接続されていてもかまわない。なお、インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。
 また、実施の形態1~5のいずれかに係る高周波フィルタが備える各スイッチ素子は、例えば、GaAsもしくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、または、ダイオードスイッチが挙げられる。このようなスイッチは小型であるため、実施の形態1~5のいずれかに係る高周波フィルタを小型化することができる。
 また、実施の形態1~5のいずれかに係る高周波フィルタが備える直列腕共振子および並列腕共振子は、弾性波を用いた弾性波共振子であり、例えば、SAW(Surface Acoustic Wave)を利用した共振子、BAW(Bulk Acoustic Wave)を利用した共振子、もしくは、FBAR(Film Bulk Acoustic Resonator)等である。なお、SAWには、表面波だけでなく境界波も含まれる。さらに、並列腕共振子は、インダクタンス成分およびキャパシタンス成分で構成された等価回路モデル(例えば、BVDモデルなど)で表現される共振子または回路であって、共振周波数および反共振周波数を有する共振子または回路であればよい。
 本発明は、広帯域かつ低損失なフィルタ、マルチプレクサ、フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。
 5  アンテナ素子
 6  高周波フロントエンド回路
 7  RF信号処理回路(RFIC)
 8  ベースバンド信号処理回路(BBIC)4
 9  通信装置
 10、10A、10B、20、20A、20B、20C、30、40A、50A、60A、500、600  高周波フィルタ
 11、11A、11B、11C、11D、12、12A、12Aa、12B、12D、13A、13B、13C、13D、14A、14B、14C、14D、14E、14F、14G  フィルタ
 15A  縦結合型共振器
 21、21a、21B、21C、21D、22、22a、22B、22C、22D  移相器
 101、102、103、104、161、201、202、203  並列腕回路
 110、120  入出力端子
 111、112、113、114、211、212、213  インピーダンス回路
 151  直列腕回路
 210  スイッチ群
 220  フィルタ群
 231  送信側スイッチ
 241、242、243  送信増幅回路
 251、252、253  受信側スイッチ
 261、262、263、264 受信増幅回路
 271、272  スイッチ
 321  IDT電極
 301a、301b  櫛歯電極
 322  反射器
 301  電極膜
 302  圧電基板
 301g  密着層
 301h  主電極層
 303  保護層
 310a、310b、410  電極指
 311a、311b、411  バスバー電極
 Cp11、Cp12、Cp14、Cp21、Cp22、Cp23、Cs21、Cs22  キャパシタ
 Lp13、Lp21、Lp22、Ls21、Ls22  インダクタ
 p11、p12、p13、p14、p21、p22、p23、p31、p32、p33  並列腕共振子
 s11、s12、s13、s21、s22、s31、s32  直列腕共振子
 SW1、SW11、SW12、SW13、SW14、SW2、SW21、SW22、SW23、SW3、SW35、SW36、SW4、SW5、SW6、SW7、SW8  スイッチ

Claims (20)

  1.  第1帯域を通過帯域とする高周波フィルタであって、
     第1入出力端子と第2入出力端子とを結ぶ経路上に設けられた第1ノード、ならびに、前記経路上の前記第1ノードおよび前記第2入出力端子の間に設けられた第2ノードに接続された第1回路と、
     前記第1ノードおよび前記第2ノードに接続された第2回路と、を備え、
      前記第1回路は、
       前記第1帯域の一部の周波数を含む帯域であって、前記第1帯域より狭い帯域幅を有する第2帯域を通過帯域とする第1フィルタを有し、
      前記第2回路は、
       前記第1帯域の一部の周波数を含む帯域であって、前記第1帯域より狭い帯域幅を有し、かつ、前記第2帯域の中心周波数より高周波数側に位置する第3帯域を通過帯域とする第2フィルタと、
       前記第2フィルタの一方の端子に接続された第1移相器と、
       前記第2フィルタの他方の端子に接続された第2移相器と、を有する、
     高周波フィルタ。
  2.  前記第1ノードおよび前記第2ノードの少なくとも一方から前記第2回路を単体で見た場合、前記第2回路のインピーダンスが極大となる特異点のうち最大のインピーダンスとなる周波数が、前記第2帯域の低域端の周波数から前記第2フィルタの通過帯域低域側のカットオフ周波数までの範囲に含まれるように、前記第1移相器および第2移相器の位相が調整されている、
     請求項1に記載の高周波フィルタ。
  3.  前記第1ノードおよび前記第2ノードの少なくとも一方から前記第2回路を単体で見た場合、
     前記第2帯域において、前記第1回路と前記第2回路とが同位相になっている周波数が少なくとも1箇所あり、
     前記第3帯域において、前記第1回路と前記第2回路とが同位相になっている周波数が少なくとも1箇所ある、
     請求項1または2に記載の高周波フィルタ。
  4.  前記第3帯域の低域端の周波数において、
     前記第1フィルタおよび前記第2フィルタの位相差と、前記第1移相器および前記第2移相器の移相和との和が、312°以上かつ362°以下となるように、前記第1移相器および前記第2移相器の移相が調整されている、
     請求項1~3のいずれか1項に記載の高周波フィルタ。
  5.  前記経路は、
     前記第1ノード、前記第1回路、および前記第2ノードを経由する第1経路と、
     前記第1ノード、前記第2回路、および前記第2ノードを経由する第2経路と、を含み、
     前記第1フィルタは、
     前記第1経路上に設けられた第1直列腕回路と、
     前記第1経路上に設けられたノードとグランドとに接続された第1並列腕回路と、を有し、
     前記第2フィルタは、
     前記第1移相器と前記第2移相器とを結ぶ前記第2経路上に設けられた第2直列腕回路と、
     前記第2経路上に設けられたノードとグランドとに接続された第2並列腕回路と、を有し、
     前記第1直列腕回路、前記第1並列腕回路、前記第2直列腕回路、および、前記第2並列腕回路のうちの少なくとも1つは、弾性波共振子を有し、
     前記弾性波共振子の少なくとも1つは、
     圧電性を有する基板上に形成されたIDT(InterDigital Transducer)電極と、
     反射器と、を有し、
     前記弾性波共振子の少なくとも1つにおける前記IDT電極の電極周期で定まる弾性波の波長をλとした場合、前記IDT電極と前記反射器とのピッチは、0.42λ以上かつ0.50λ未満である、
     請求項1~4のいずれか1項に記載の高周波フィルタ。
  6.  前記第1回路は、さらに、
     前記第1ノードと前記第1フィルタとの間に接続された第1スイッチ素子と、
     前記第2ノードと前記第1フィルタとの間に接続された第2スイッチ素子と、を有し、
     前記第1スイッチ素子および前記第2スイッチ素子の導通および非導通の切り替えにより、前記第1帯域と前記第3帯域とが切り替わる、
     請求項1~5のいずれか1項に記載の高周波フィルタ。
  7.  前記第1回路は、さらに、
     前記第1スイッチ素子と前記第1フィルタとの間の接続ノードと、グランドとの間に接続され、前記第1スイッチ素子と排他的に導通および非導通が切り替えられる第3スイッチ素子と、
     前記第2スイッチ素子と前記第1フィルタとの間の接続ノードと、グランドとの間に接続され、前記第2スイッチ素子と排他的に導通および非導通が切り替えられる第4スイッチ素子と、を有する、
     請求項6に記載の高周波フィルタ。
  8.  前記第2回路は、さらに、
     前記第1ノードと前記第1移相器との間に接続された第5スイッチ素子と、
     前記第2ノードと前記第2移相器との間に接続された第6スイッチ素子と、を有し、
     前記第5スイッチ素子および前記第6スイッチ素子の導通および非導通の切り替えにより、前記第1帯域と前記第2帯域とが切り替わる、
     請求項1~7のいずれか1項に記載の高周波フィルタ。
  9.  前記第2回路は、さらに、
     前記第5スイッチ素子と前記第1移相器との間の接続ノードと、グランドとの間に接続され、前記第5スイッチ素子と排他的に導通および非導通が切り替えられる第7スイッチ素子と、
     前記第6スイッチ素子と前記第2移相器との間の接続ノードと、グランドとの間に接続され、前記第6スイッチ素子と排他的に導通および非導通が切り替えられる第8スイッチ素子と、を有する、
     請求項8に記載の高周波フィルタ。
  10.  さらに、
     前記第1ノードおよび前記第2ノードに接続された第3回路を備え、
      前記第3回路は、
       前記第1帯域と異なる第4帯域の一部の周波数を含む帯域であって、前記第4帯域より狭い帯域幅を有し、かつ、前記第2帯域の中心周波数より高周波数側に位置し、かつ、前記第3帯域と異なる第5帯域を通過帯域とする第3フィルタと、
       前記第3フィルタの一方の端子に接続された第3移相器と、
       前記第3フィルタの他方の端子に接続された第4移相器と、を有する、
     請求項8または9に記載の高周波フィルタ。
  11.  前記第1移相器は、
      前記第1ノードと前記第2フィルタの一方の端子とを結ぶ直列腕経路に配置された1以上のインダクタ、および、前記直列腕経路上のノードとグランドとの間に接続されたキャパシタを有する低域通過型フィルタ回路、または、
      前記直列腕経路に配置された1以上のキャパシタ、および、前記直列腕経路上のノードおよびグランドに接続されたインダクタで構成された高域通過型フィルタ回路である、
     請求項1~10のいずれか1項に記載の高周波フィルタ。
  12.  前記第2移相器は、
      前記第2ノードと前記第2フィルタの他方の端子とを結ぶ直列腕経路に配置された1以上のインダクタ、および、前記直列腕経路上のノードおよびグランドに接続されたキャパシタで構成された低域通過型フィルタ回路、または、
     前記直列腕経路に配置された1以上のキャパシタ、および、前記直列腕経路上のノードおよびグランドに接続されたインダクタで構成された高域通過型フィルタ回路である、
     請求項1~11のいずれか1項に記載の高周波フィルタ。
  13.  前記第1移相器および前記第2移相器は、キャパシタまたはインダクタからなるインピーダンス素子である、
     請求項1~10のいずれか1項に記載の高周波フィルタ。
  14.  前記第1フィルタおよび第2フィルタの少なくとも一方は、
      前記第1ノードと前記第2ノードとを結ぶ前記経路上に配置された直列腕回路と、
      前記経路上のノードおよびグランドに接続された並列腕回路と、を有し、
     前記直列腕回路および前記並列腕回路の少なくとも一方は、
      共振子、および、第9スイッチ素子、を有し、
     前記第9スイッチ素子の導通および非導通の切り替えにより、前記直列腕回路および前記並列腕回路の少なくとも一方の共振周波数および反共振周波数の少なくとも一方の周波数が切り替わる、
     請求項1~13のいずれか1項に記載の高周波フィルタ。
  15.  前記第1フィルタおよび前記第2フィルタの少なくとも一方は、弾性表面波フィルタ、弾性境界波フィルタ、および、バルク弾性波(BAW:Bulk Acoustic Wave)を用いた弾性波フィルタのいずれかである、
     請求項1~14のいずれか1項に記載の高周波フィルタ。
  16.  前記第1フィルタおよび前記第2フィルタの少なくとも一方は、縦結合型共振器を有する、
     請求項15に記載の高周波フィルタ。
  17.  第1移相器の位相と第2移相器の位相とは異なる、
     請求項16に記載の高周波フィルタ。
  18.  請求項1~17のいずれか1項に記載の高周波フィルタを含む複数のフィルタを備え、
     前記複数のフィルタの入力端子または出力端子は、共通端子に直接的または間接的に接続されている、
     マルチプレクサ。
  19.  請求項1~17のいずれか1項に記載の高周波フィルタまたは請求項18に記載のマルチプレクサと、
     前記高周波フィルタまたは前記マルチプレクサに直接的または間接的に接続された増幅回路と、を備える、
     高周波フロントエンド回路。
  20.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項19に記載の高周波フロントエンド回路と、を備える、
     通信装置。
PCT/JP2018/027433 2017-07-25 2018-07-23 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 WO2019021983A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202311040641.5A CN117060880A (zh) 2017-07-25 2018-07-23 高频滤波器、多工器、高频前端电路以及通信装置
CN201880049640.8A CN110999081B (zh) 2017-07-25 2018-07-23 高频滤波器、多工器、高频前端电路以及通信装置
US16/746,996 US11283428B2 (en) 2017-07-25 2020-01-20 Radio frequency filter, multiplexer, radio frequency front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-143985 2017-07-25
JP2017143985 2017-07-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/746,996 Continuation US11283428B2 (en) 2017-07-25 2020-01-20 Radio frequency filter, multiplexer, radio frequency front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2019021983A1 true WO2019021983A1 (ja) 2019-01-31

Family

ID=65040863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027433 WO2019021983A1 (ja) 2017-07-25 2018-07-23 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置

Country Status (3)

Country Link
US (1) US11283428B2 (ja)
CN (2) CN110999081B (ja)
WO (1) WO2019021983A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034965A (ja) * 2019-08-28 2021-03-01 京セラ株式会社 受信装置
US20210152155A1 (en) * 2019-11-18 2021-05-20 Murata Manufacturing Co., Ltd. Composite filter device
WO2023026353A1 (ja) * 2021-08-24 2023-03-02 三菱電機株式会社 周波数選択切り替え回路
WO2023054301A1 (ja) * 2021-09-29 2023-04-06 株式会社村田製作所 弾性波フィルタ装置およびマルチプレクサ
US12028052B2 (en) * 2019-11-18 2024-07-02 Murata Manufacturing Co., Ltd. Composite filter device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927334B2 (ja) * 2018-02-05 2021-08-25 株式会社村田製作所 フィルタ装置、高周波フロントエンド回路、および通信装置
WO2019150689A1 (ja) * 2018-02-05 2019-08-08 株式会社村田製作所 フィルタ装置、高周波フロントエンド回路、および通信装置
US20220321099A1 (en) * 2021-04-02 2022-10-06 Resonant Inc. Tiled transversely-excited film bulk acoustic resonator high power filters
DE102019210496A1 (de) 2018-07-18 2020-01-23 Skyworks Solutions, Inc. Hybrides akustisches lc filter mit unterdrückung von harmonischen
US10848126B2 (en) * 2018-10-30 2020-11-24 Avago Technologies International Sales Pte. Limited Band pass filter having parallel connected notch filter circuits
DE102018131054B4 (de) * 2018-12-05 2020-10-08 RF360 Europe GmbH Mikroakustisches HF-Filter
KR20200078084A (ko) * 2018-12-21 2020-07-01 삼성전기주식회사 프론트 엔드 모듈
US10790563B1 (en) * 2019-03-04 2020-09-29 Qualcomm Incorporated Reconfigurable phase-shifting networks
EP3975330A1 (en) * 2020-09-28 2022-03-30 Nokia Technologies Oy Radio communications
US20220200645A1 (en) * 2020-12-18 2022-06-23 Skyworks Solutions, Inc. Stacked resonator based antennaplexer
CN115833789B (zh) * 2023-02-09 2023-05-02 成都湖山电子科技有限公司 一种开关滤波系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321738A (ja) * 1995-05-24 1996-12-03 Matsushita Electric Ind Co Ltd 二周波数帯域通過フィルタ及び二周波数分波器及び二周波数合成器
JP2004166258A (ja) * 2002-10-25 2004-06-10 Hitachi Metals Ltd 平衡−不平衡型マルチバンドフィルタモジュール
JP2005184143A (ja) * 2003-12-16 2005-07-07 Murata Mfg Co Ltd 弾性表面波分波器、通信機
JP2014502803A (ja) * 2010-12-10 2014-02-03 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
JP2014039199A (ja) * 2012-08-17 2014-02-27 Taiyo Yuden Co Ltd 弾性波フィルタ、デュプレクサ及びモジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69615914T2 (de) * 1995-05-16 2002-04-04 Matsushita Electric Ind Co Ltd Funkübertragungsvorrichtung für Zeitmultiplex-Vielfachzugriffssystem
FI106894B (fi) * 1998-06-02 2001-04-30 Nokia Mobile Phones Ltd Resonaattorirakenteita
GB2346049A (en) * 1999-01-19 2000-07-26 Roke Manor Research Duplex filtering
CN100536328C (zh) * 2002-10-25 2009-09-02 日立金属株式会社 平衡-不平衡型多频带滤波模块
JP2008160629A (ja) 2006-12-26 2008-07-10 Matsushita Electric Ind Co Ltd 無線受信回路、無線受信装置及び無線受信装置の切替方法
JP5083125B2 (ja) * 2008-08-27 2012-11-28 株式会社村田製作所 分波器、半導体集積回路装置および通信用携帯端末
WO2010027310A1 (en) * 2008-09-08 2010-03-11 Telefonaktiebolaget L M Ericsson (Publ) A reconfigurable filter apparatus
DE112012002502B4 (de) * 2011-06-17 2018-06-07 Murata Manufacturing Co., Ltd. Demultiplexer
EP2913923A4 (en) * 2012-10-24 2016-06-01 Murata Manufacturing Co FILTER DEVICE
US9837983B2 (en) * 2015-03-13 2017-12-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic filter device with combined passband
CN105514547A (zh) * 2016-01-27 2016-04-20 华南理工大学 一种基于新型频率分离结构的低通-带通五工器
JP6430974B2 (ja) * 2016-01-27 2018-11-28 太陽誘電株式会社 共振回路およびフィルタ回路
JP6927334B2 (ja) * 2018-02-05 2021-08-25 株式会社村田製作所 フィルタ装置、高周波フロントエンド回路、および通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321738A (ja) * 1995-05-24 1996-12-03 Matsushita Electric Ind Co Ltd 二周波数帯域通過フィルタ及び二周波数分波器及び二周波数合成器
JP2004166258A (ja) * 2002-10-25 2004-06-10 Hitachi Metals Ltd 平衡−不平衡型マルチバンドフィルタモジュール
JP2005184143A (ja) * 2003-12-16 2005-07-07 Murata Mfg Co Ltd 弾性表面波分波器、通信機
JP2014502803A (ja) * 2010-12-10 2014-02-03 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
JP2014039199A (ja) * 2012-08-17 2014-02-27 Taiyo Yuden Co Ltd 弾性波フィルタ、デュプレクサ及びモジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034965A (ja) * 2019-08-28 2021-03-01 京セラ株式会社 受信装置
JP7249246B2 (ja) 2019-08-28 2023-03-30 京セラ株式会社 受信装置
US20210152155A1 (en) * 2019-11-18 2021-05-20 Murata Manufacturing Co., Ltd. Composite filter device
US12028052B2 (en) * 2019-11-18 2024-07-02 Murata Manufacturing Co., Ltd. Composite filter device
WO2023026353A1 (ja) * 2021-08-24 2023-03-02 三菱電機株式会社 周波数選択切り替え回路
JP7459390B2 (ja) 2021-08-24 2024-04-01 三菱電機株式会社 周波数選択切り替え回路
WO2023054301A1 (ja) * 2021-09-29 2023-04-06 株式会社村田製作所 弾性波フィルタ装置およびマルチプレクサ

Also Published As

Publication number Publication date
CN110999081A (zh) 2020-04-10
CN110999081B (zh) 2023-08-08
CN117060880A (zh) 2023-11-14
US11283428B2 (en) 2022-03-22
US20200153412A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
CN110999081B (zh) 高频滤波器、多工器、高频前端电路以及通信装置
CN109643986B (zh) 弹性波滤波器装置、高频前端电路以及通信装置
CN111034042B (zh) 滤波器装置、多工器、高频前端电路以及通信装置
WO2018037968A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
CN109643988B (zh) 弹性波滤波器装置、高频前端电路以及通信装置
US10944381B2 (en) Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device
WO2018051846A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
CN109661777B (zh) 弹性波滤波器装置、高频前端电路以及通信装置
JP6750676B2 (ja) 高周波フィルタ回路、マルチプレクサ、高周波フロントエンド回路及び通信装置
US10958242B2 (en) Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device
WO2018097203A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2018151218A1 (ja) フィルタ装置、マルチプレクサ、高周波フロントエンド回路、および通信装置
US11394368B2 (en) Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device
CN109792238B (zh) 弹性波滤波器装置、高频前端电路以及通信装置
WO2018056224A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置
WO2017204348A1 (ja) 高周波フィルタ回路、高周波フロントエンド回路及び通信装置
WO2019003619A1 (ja) 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2018061878A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置
WO2018016279A1 (ja) 高周波フィルタ回路、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2019003855A1 (ja) 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2018159020A1 (ja) 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2018056056A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP