WO2023026353A1 - 周波数選択切り替え回路 - Google Patents

周波数選択切り替え回路 Download PDF

Info

Publication number
WO2023026353A1
WO2023026353A1 PCT/JP2021/030941 JP2021030941W WO2023026353A1 WO 2023026353 A1 WO2023026353 A1 WO 2023026353A1 JP 2021030941 W JP2021030941 W JP 2021030941W WO 2023026353 A1 WO2023026353 A1 WO 2023026353A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
output
phase adjustment
adjustment circuit
phase
Prior art date
Application number
PCT/JP2021/030941
Other languages
English (en)
French (fr)
Inventor
裕之 青山
明道 廣田
秀憲 湯川
徹 深沢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/030941 priority Critical patent/WO2023026353A1/ja
Priority to JP2023543514A priority patent/JP7459390B2/ja
Publication of WO2023026353A1 publication Critical patent/WO2023026353A1/ja
Priority to US18/425,088 priority patent/US20240171163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/00006Changing the frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00286Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency

Definitions

  • the present invention mainly relates to frequency filters that perform filtering in the frequency domain.
  • a frequency filter (hereinafter referred to as a filter) that suppresses unnecessary frequency components and allows only desired frequency components to pass through is an indispensable device in various radars and communication devices.
  • a filter that suppresses unnecessary frequency components and allows only desired frequency components to pass through is an indispensable device in various radars and communication devices.
  • the number of cases where one device uses multiple frequency bands is increasing.
  • Patent Document 1 discloses a method of constructing a so-called dual-band filter, a bandpass filter having two passbands, by combining two filters with different operating frequencies and two impedance matching circuit pairs.
  • the operating frequency refers to the center frequency of the passband of the filter.
  • cognitive radio has been proposed in which user terminals and base stations monitor the surrounding radio wave conditions and freely change the frequency and method according to the conditions for communication.
  • devices are required to support a plurality of communication methods and frequencies, and in addition to outputting both, it is required to be able to select and output only one of them.
  • the prior art circuits pass both signals of two predetermined frequencies, there is a problem that the frequency band to be used cannot be selected after the equipment is shipped.
  • the present invention has been made in view of the problems of the conventional techniques as described above, and is a frequency band that can dynamically switch between outputting either one or both of two frequency bands.
  • An object of the present invention is to provide a selection switching circuit.
  • a frequency selection switching circuit includes an input terminal for inputting a signal, an output terminal for outputting a signal, and an input terminal connected to the input terminal.
  • a branching circuit for branching into two frequency components and outputting a first frequency component to a first output terminal and a second frequency component to a second output terminal; and a first output terminal of the branching circuit.
  • a first phase adjustment circuit having a first end connected to the branching circuit;
  • a second phase adjustment circuit having a first end connected to a second output end of the branching circuit; The input end is connected to the second end of the circuit for use, the output end is directly or indirectly connected to the output terminal, and the output of the signal input to the input end to the output end is either a conductive state or a non-conductive state.
  • the input end is connected to the second end of the first switch and the second phase adjustment circuit, the output end is directly or indirectly connected to the output terminal, and the signal input to the input end is output and a second switch capable of switching the output to the terminal between a conducting state and a non-conducting state.
  • FIG. 2 is a block diagram showing one operating state of the frequency selective switching circuit 1 according to Embodiment 1.
  • FIG. It is a circuit diagram showing an ON state of a single switch. It is a circuit diagram showing an OFF state of a single switch.
  • 4 is a circuit simulation result showing a characteristic example (an example of outputting only frequency component f1 ) of the frequency selection switching circuit 1 according to Embodiment 1;
  • 4 is a circuit simulation result showing a characteristic example (an example of outputting only frequency component f2 ) of the frequency selection switching circuit 1 according to Embodiment 1.
  • FIG. 4 is a circuit simulation result showing a characteristic example of the frequency selection switching circuit 1 according to Embodiment 1 (an example of outputting both frequency components f1 and f2 ).
  • FIG. 4 is a circuit diagram showing a configuration example of a phase adjustment circuit
  • FIG. 4 is a circuit diagram showing a configuration example of a phase adjustment circuit
  • FIG. 4 is a circuit diagram showing a configuration example of a phase adjustment circuit
  • FIG. 10 is a block diagram showing one operating state of the frequency selective switching circuit according to the second embodiment
  • FIG. 12 is a block diagram showing one operating state of the frequency selective switching circuit according to the third embodiment
  • FIG. 4 is a circuit diagram showing an SP2T switch and a terminating resistor with its output switched;
  • 10 is a circuit simulation result showing an example of characteristics of the frequency selection switching circuit 3 according to the third embodiment (an example of outputting only the frequency component f1 ).
  • 10 is a circuit simulation result showing an example of characteristics of the frequency selection switching circuit 3 according to Embodiment 3 (an example of outputting only frequency component f2 ).
  • 11 is a circuit simulation result showing an example of characteristics of the frequency selection switching circuit 3 according to Embodiment 3 (an example of outputting both frequency components f1 and f2 ).
  • FIG. 1 is a block diagram showing one operating state of the frequency selective switching circuit 1 according to Embodiment 1 of the present invention.
  • the frequency switching circuit 1 has an input terminal 10a for inputting a signal, an output terminal 10b for outputting a signal, an input signal having a frequency component f 1 (first frequency component), A 2-branching circuit 11 for branching and outputting according to f 2 (second frequency component), and a first branching circuit 11 for switching the output of the input signal between a conducting (ON) state and a non-conducting (OFF) state.
  • An input terminal 10a is connected to the input (input terminal) of the 2-branching circuit 11, and a terminal (first output terminal) to which f1 is output among the outputs of the 2-branching circuit 11 is connected to a first phase adjustment circuit.
  • One end (first end) of the phase adjusting circuit 12a is connected to a terminal (second output end) to which f2 is output among the outputs of the branching circuit, to which the second phase adjusting circuit 12b is connected.
  • One end (first end) is connected, and the input (input end) of the first switch 13a is connected to the other end (second end) of the first phase adjustment circuit 12a.
  • the input (input terminal) of the second switch 13b is connected to the other end (second terminal) of the second phase adjustment circuit 12b, and the output (output terminal) of the first and second switches 13a is connected. terminal), the output (output terminal) of the second switch 13b and the output terminal 10b are connected to the branch point 16 with each other. Branch point 16 is connected to output terminal 10b.
  • the frequency selection switching circuit 1 switches the state of either one or both of the first switch 13a and the second switch 13b, so that the frequency components f 1 and f 2 or both f 1 and f 2 frequency components. Next, the operation will be explained.
  • 2 and 3 are circuit diagrams respectively showing the conductive (ON) state and non-conductive (OFF) state of the switch 13a or 13b in the frequency selection switching circuit 1 of this embodiment.
  • Continuous here means being electrically connected in the operating frequency band, and "non-conducting” means not being electrically connected.
  • 2 and 3 are circuit diagrams showing ON or OFF states of the switches 13a and 13b, and both are represented as the switch 13 without distinguishing between them. 2 and 3, an input terminal 10c is connected to the input side of the switch 13, and an output terminal 10d is connected to the output side thereof.
  • the switch 13 is assumed to be lossless for simplification, and in the ON state shown in FIG. Let the phase be ⁇ S .
  • the passage amplitude between the input terminal 10c and the output terminal 10d is 0 regardless of the frequency
  • the reflection amplitude of the output terminal 10d is 1
  • the reflection phase is ⁇ S .
  • Both the transmission phase ⁇ S and the reflection phase ⁇ S used here are functions with frequency as a variable.
  • the reflection phase ⁇ S is assumed to be 0 degree regardless of the frequency in order to describe the basic operation principle.
  • the first phase adjustment circuit 12a and the second phase adjustment circuit 12b are circuits having a function of adjusting the phase of the input high frequency signal without changing its amplitude.
  • the first switch 13a is set to the ON state
  • the second switch 13b is set to the OFF state. Therefore, since the reflection amplitude is 1 and the reflection phase is 0 from the branch point 16 to the second switch 13b side (hereinafter referred to as the lower side), the path below the branch point 16 cannot be seen electrically.
  • the signal output from the first switch 13a is directly output to the output terminal 10b.
  • the frequency component f1 passes through the two-branching circuit 11, the first phase adjustment circuit 12a and the first switch 13a in order, and is output from the output terminal 10b as it is. be done.
  • the frequency component f2 is output in the frequency selection switching circuit 1 of the present embodiment.
  • the first switch 13a is turned off and the second switch 13b is turned on. Therefore, since the reflection amplitude is 1 and the reflection phase is 0 from the branch point 16 to the first switch 13a side (hereinafter referred to as the upper side), the path above the branch point 16 cannot be seen electrically.
  • the signal output from the switch 13b is directly output to the output terminal 10b.
  • the frequency component f2 passes through the two-branching circuit 11, the second phase adjustment circuit 12b and the second switch 13b in order, and is output from the output terminal 10b as it is. be done.
  • both frequency components f1 and f2 are output simultaneously in the frequency selection switching circuit 1 of the present embodiment.
  • both the first and second switches 13a and 13b are set to the ON state. In this state, if the frequency component f1 is open below the branch point 16 and the frequency component f2 is open above the branch point 16, both frequency components f1 and f2 can be output at the same time. becomes possible.
  • ⁇ 1 (f 2 ) is the passing phase at f 2 of the first phase adjustment circuit 12 a
  • ⁇ S (f 2 ) is the passing phase at f 2 of the ON-state first switch 13 a
  • the reflection phase at f 2 of the f 1 output terminal is ⁇ d1 (f 2 )
  • the conditional expression where the path above the branch point 16 is open at f 2 is expressed by equation (1).
  • Equation (1) the pass phase at f 1 of the second phase adjustment circuit 12b is ⁇ 2 (f 1 )
  • the pass phase at f 1 of the second switch 13b in the ON state is ⁇ S (f 1 )
  • the conditional expression for opening the path below the branch point 16 at f1 is expressed by the following equation (2). be.
  • Equation (2) Equation (3). Therefore, by designing so as to satisfy the equations (1) and (2) at the same time, it is possible to output the frequency components f 1 and f 2 at the same time.
  • the equations (1) and (2) are satisfied according to the reflection phases ⁇ d1 and ⁇ d2 of the two-branching circuit 11 and the passage phase ⁇ S of the first and second switches 13a and 13b.
  • the pass phases ⁇ 1 and ⁇ 2 of the first and second phase adjustment circuits 12a and 12b may be designed so as to
  • FIG. 4 A solid line and a broken line in the figure indicate amplitudes of S11 (input reflection coefficient) and S21 (transmission coefficient from the input terminal to the output terminal), respectively.
  • S11 input reflection coefficient
  • S21 transmission coefficient from the input terminal to the output terminal
  • the collection number selection switching circuit 1 in the present embodiment switches the state of either or both of the first switch 13a and the second switch 13b, so that the frequency output from the 2-branching circuit 11 It is possible to output either one of the components f1 , f2 , or to output the frequency of both frequency components f1 , f2 .
  • the phase adjustment circuits 12a and 12b described in the first embodiment are used for adjusting only the phase without changing the amplitude of the signal passing through. Therefore, it can be realized using a transmission line such as a microstrip line or a coaxial line. Also, by using a transmission line and a lumped constant element together, it is possible to achieve a desired phase while achieving miniaturization.
  • 7, 8 and 9 are configuration examples of the phase adjustment circuit.
  • FIG. 7 shows the transmission line 21, which is designed so that its electrical length ⁇ is equal to ⁇ 1 (f 2 ) and ⁇ 2 (f 1 ) obtained from the equations (1) and (2). can be realized.
  • phase adjustment circuits 8 and 9 are phase adjustment circuits configured using inductors 22a, 22b, 22c, capacitors 23a, b, and 23c.
  • the phase adjustment circuit shown in FIG. 8 comprises series inductors 22a, 22b and a parallel capacitor 23a arranged therebetween, while the phase adjustment circuit shown in FIG. parallel inductor 22c. Both can realize different code pass phases.
  • the phase adjustment circuits shown in FIGS. 8 and 9 are configured by connecting lumped constant elements so as to realize the circuit diagrams shown in the respective figures, and the circuits shown in FIGS. 8 and 9 are used as unit structures. It is arranged and configured periodically.
  • a configuration example of a phase adjustment circuit using the circuits of FIGS. 7, 8 and 9 together is also conceivable.
  • phase adjustment circuit refers to a circuit having a function of adjusting only the pass phase without changing the pass amplitude as much as possible, and other circuits may be used as long as the circuit has the above function.
  • FIG. 10 is a block diagram showing one operating state of the frequency selective switching circuit 2 according to the embodiment of the present invention.
  • the frequency switching circuit 2 according to the present embodiment has an input terminal 10a for inputting a signal, an output terminal 10b for outputting a signal, and demultiplexes the input signal according to its frequency components f 1 and f 2 .
  • a first switch 13a and a second switch 13b for switching the output of the input signal between a conducting (ON) state and a non-conducting (OFF) state, a first phase It comprises an adjustment circuit 12 a , a second phase adjustment circuit 12 b , a third phase adjustment circuit 12 c , a fourth phase adjustment circuit 12 d and a branch point 16 .
  • One terminal (second terminal) of the third phase adjustment circuit 12c is connected to the output (output terminal) of the first switch 13a, and the output (output terminal) of the second switch 13b is connected to the fourth terminal.
  • One terminal (second end) of the phase adjustment circuit 12d is connected, the other end (first end) of the third phase adjustment circuit 12c and the other end of the fourth phase adjustment circuit 12d are connected.
  • One terminal (first end) and the output terminal 10b are connected to a branch point 16 with each other.
  • the frequency selection switching circuit 2 according to the present embodiment is different from the frequency selection switching circuit 1 according to the first embodiment, between the first switch 13a and the branch point 16 and between the second switch 13b. , and the branch point 16 are added with third and fourth phase adjustment circuits, respectively.
  • the frequency selection switching circuit 2 of the present embodiment newly introduces the third phase adjustment circuit 12c and the fourth phase adjustment circuit 12d . A function equivalent to that of the frequency selection switching circuit 1 of form 1 can be realized.
  • each state and circuit diagram of the first and second switches 13a and 13b are as shown in FIGS. Same as form 1.
  • the reflection phase ⁇ S of the output terminal 10d in the OFF state shown in FIG. 3 is a function of frequency, and unlike the first embodiment, assumes an arbitrary value.
  • the third phase adjustment circuit 12c and the fourth phase adjustment circuit 12d also have the function of adjusting the phase of the high frequency signal, like the first phase adjustment circuit 12a and the second phase adjustment circuit 12b. circuit.
  • the first switch 13a is set to the ON state
  • the second switch 13b is set to the OFF state. Therefore, the fourth phase adjustment circuit 12d and the second switch 13b which is set to the OFF state are connected to the lower side of the branch point 16 in this order. Note that the second phase adjustment circuit 12b located ahead of the second switch 13b is electrically isolated because the second switch 13b is set to OFF.
  • the area below the branch point 16 should be electrically open.
  • the condition is expressed by the following equation (3) using the output reflection phase ⁇ S (f 1 ) in the OFF state of the second switch 13b and the passage phase ⁇ 4 (f 1 ) of the fourth phase adjustment circuit 12d. is represented as
  • Equation (3) the frequency component f1 in the signal input from the input terminal 10a of the frequency selection switching circuit 2 is divided into two by the two-way dividing circuit 11, the first phase adjustment circuit 12a, and the first switch. 13a and the third phase adjustment circuit 12c, and is output from the output terminal 10b as it is.
  • the first switch 13a is turned off, and the second switch 13b is turned on. Therefore, the third phase adjustment circuit 12c and the first switch 13a set to the OFF state are connected in this order from the branch point 16 to the upper side.
  • the first phase adjustment circuit 12a located ahead of the first switch 13a is electrically isolated because the first switch 13a is set to OFF.
  • the area above the branch point 16 should be electrically open.
  • the condition is expressed by the following equation (4) using the output reflection phase ⁇ S (f 2 ) in the OFF state of the first switch 13a and the passage phase ⁇ 3 (f 2 ) of the third phase adjustment circuit 12c. is represented as
  • Equation (4) the frequency component f2 in the signal input from the input terminal 10a of the frequency selection switching circuit 2 is divided into two by the two-branching circuit 11, the second phase adjustment circuit 12b, and the second switch. 13b and the fourth phase adjustment circuit 12d, and is output from the output terminal 10b as it is.
  • both frequency components f1 and f2 are output simultaneously in the frequency selection switching circuit 2 of the present embodiment.
  • both the first switch 13a and the second switch 13b are set to the ON state.
  • ⁇ 1 (f 2 ) is the passage phase at f 2 of the first phase adjustment circuit 12 a
  • ⁇ S (f 2 ) is the passage phase at f 2 of the first switch 13 a in the ON state
  • ⁇ S (f 2 ) is the passage phase at f 2 for the third phase adjustment.
  • ⁇ 3 (f 2 ) be the passing phase at f 2 of the circuit 12c
  • ⁇ d1 (f 2 ) be the reflection phase at f 2 of the f 1 output terminal of the two-branching circuit 11 .
  • a conditional expression for opening at f2 is represented by expression (5).
  • Equation (5) the passage phase at f 1 of the second phase adjustment circuit 12b is ⁇ 2 (f 1 )
  • the passage phase at f 1 of the second switch 13b in the ON state is ⁇ S (f 1 )
  • the conditional expression that the side path is open at f1 is expressed by equation (6).
  • Equation (6) it is possible to output f 1 and f 2 at the same time by designing to satisfy the equations (5) and (6) at the same time.
  • equations (3) to (6) are used according to the reflection phases ⁇ d1 and ⁇ d2 of the two-branching circuit 11 used and the passage phase ⁇ S of the first switch 13a and the second switch 13b.
  • the pass phases ⁇ 1 to ⁇ 4 of the first to fourth phase adjustment circuits 12a to 12d should be designed to satisfy the requirements.
  • the reflection phase ⁇ of the first switch 13a and the second switch 13b is changed by providing the third phase adjustment circuit 12c and the fourth phase adjustment circuit 12d.
  • S a function similar to that of the frequency selection switching circuit described in the first embodiment can be realized.
  • Embodiment 3 In the frequency selection switching circuit 1 of Embodiment 1, when only one of the frequency components is output, reflection occurs due to the other frequency component. In this embodiment, a case will be described in which reflection due to the other frequency component that occurs when only one of these frequency components is output is reduced.
  • FIG. 11 is a block diagram showing one operating state of the frequency selection switching circuit 3 according to the embodiment of the present invention.
  • the frequency switching circuit 3 has an input terminal 10a for inputting a signal, an output terminal 10b for outputting a signal, and demultiplexes the input signal according to its frequency components f 1 and f 2 .
  • 2 branching circuit 11 for outputting, a first SP2T switch 14a for switching the output of the input signal in two ways, a second SP2T switch 14b for switching the output of the input signal in two ways, the first It is composed of a terminating resistor 15 a , a second terminating resistor 15 b , a first phase adjustment circuit 12 a , a second phase adjustment circuit 12 b and a branch point 16 .
  • An input terminal 10a is connected to the input (first end) of the diplexer circuit 11, and a terminal (second end) to which the frequency component f1 of the output of the diplexer circuit 11 is output is connected to the first terminal.
  • One end (first end) of the phase adjustment circuit 12a is connected, and a second phase adjustment circuit 12b is connected to a terminal (third end) to which f2 of the branching circuit output is output.
  • a first termination resistor 15a is connected to one output terminal (first output terminal) of the second SP2T switch 14b, and a second termination resistor 15b is connected to one output terminal (first output terminal) of the second SP2T switch 14b.
  • the other output terminal (second output terminal) of the SP2T switch 14a, the other output terminal (second output terminal) of the second SP2T switch 14b, and the output terminal 10b are connected to the branch point 16. be.
  • the frequency selection switching circuit 3 differs from the frequency selection switching circuit 1 according to the first embodiment by replacing the first switch 13a with the first SP2T switch 14a and the first terminating resistor. 15a, and the second switch 13b is replaced with a second SP2T switch 14b and a second terminating resistor 15b.
  • FIGS. 12 and 13 are circuit diagrams each showing a state in which the output of the switch 14a or the switch 14b in the frequency selection switching circuit 3 of this embodiment is switched between two ways. This figure is a circuit diagram showing the operation states of the SP2T switches 14a and 14b, and both are represented here as the SP2T switch 14 without distinguishing between them.
  • an input terminal 10c is connected to the input side of the SP2T switch 14, an output terminal 10d is connected to one output, and a terminating resistor 15 is connected to the other output.
  • the switched state of the switch shown in FIG. 12 that is, the state in which the input terminal 10c and the output terminal 10d are electrically connected via the SP2T switch 14, is defined as the ON state
  • the switched state of the SP2T switch shown in FIG. A state in which the input terminal 10c and the terminating resistor 15 are electrically connected via the SP2T switch 14 is defined as an OFF state.
  • a high frequency signal input from the input terminal 10c is output to the output terminal 10d via the SP2T switch 14.
  • the SP2T switch 14 in the ON state, a high frequency signal input from the input terminal 10c is input to the terminating resistor 15 via the SP2T switch 14 and terminated by the terminating resistor 15 without reflection.
  • the SP2T switch 14 in the ON state shown in FIG. Let ⁇ S .
  • the passage amplitude between the input terminal 10c and the output terminal 10d is 0 regardless of the frequency
  • the reflection amplitude of the output terminal 10d is 1
  • the reflection phase is ⁇ S .
  • Both the transmission phase ⁇ S and the reflection phase ⁇ S are functions with frequency as a variable.
  • the reflection phase ⁇ S is treated as 0 degree regardless of the frequency in order to describe the basic operation principle.
  • the frequency component f2 when only the frequency component f1 is output, the frequency component f2 is input from the input terminal 10a and output from the f2 output terminal of the diplexer circuit 11, It is input to the second phase adjustment circuit 12b and the second switch 13b. As described above, when only the frequency component f1 is output, the second switch 13b is set to OFF. They pass in reverse order and are finally output from the input terminal 10a.
  • the case of outputting only the frequency component f1 has been described, but in the case of outputting only the frequency component f2 , the frequency component f1 is similarly output from the input terminal 10a, although the path is different.
  • the frequency selection switching circuit 1 described in Embodiment 1 if only one of the frequency components f 1 and f 2 input from the input terminal 10a is to be output from the output terminal 10b, the other frequency component is It is reflected inside the circuit and output as a reflected wave from the input terminal 10a. Therefore, when a circuit is connected to the front stage of the frequency selection switching circuit 1, that is, to the input terminal 10a, the input impedance of the frequency selection switching circuit 1 viewed from that circuit changes greatly depending on the operating state of the frequency selection switching circuit 1. . In particular, when an active circuit such as a power amplifier is connected to the front stage of the frequency selection switching circuit 1, there is a problem that the power amplifier tends to become unstable due to such a change in impedance.
  • the first switch 13a is the first SP2T switch 14a and the first termination resistor 15a
  • the second switch 13b is the second SP2T switch. Replace with switch 14b and second terminating resistor 15b.
  • high-frequency signals input to the SP2T switches 14a and 14b are output from one of the outputs in the ON state, and are non-reflectively terminated by the terminating resistors 15a and 15b connected to the other output in the OFF state. be able to.
  • the frequency selection switching circuit 3 shown in FIG. 11 outputs only one of the frequency components f 1 and f 2 , the input reflection amplitude at the input terminal 10a in the other frequency band is reduced. be able to.
  • FIGS. 14, 15 and 16 are circuit simulation results showing an example of the characteristics of the frequency selection switching circuit 3 of this embodiment. , the simulation results when only the frequency component f2 is output, and when both the frequency component f1 and the frequency component f2 are output.
  • the setting (ON or OFF) of the first SP2T switch 14a and the second SP2T switch 14b for realizing each output is as described above.
  • the horizontal axis represents the normalized frequency
  • the vertical axis represents the amplitude of the S parameter when the input terminal 10a is port 1 and the output terminal 10b is port 2.
  • FIG. A solid line and a broken line in the figure indicate the amplitudes of S11 and S21, respectively. Comparing FIGS. 4 and 5 with FIGS.
  • the frequency selection switching circuit 3 of the present embodiment can reduce the reflection that occurs when only one of the frequency components is output in the frequency selection switching circuit 1 of the first embodiment. .
  • the switches 13a and 13b are replaced with the SP2T switch 14a and the terminating resistor 15a, and the SP2T switch 14b and the terminating resistor 15b, respectively, in the frequency selection switching circuit 1 described in the first embodiment.
  • the case has been described by similarly replacing the frequency selection switching circuit 2 described in the second embodiment, it is possible to obtain the effects described above.
  • the frequency selection switching circuit of the first embodiment, 2 The frequency selection switching circuit of the second embodiment, 3
  • the frequency selection switching circuit of the third embodiment 10a input terminal, 10b output terminal, 10c input terminal, 10d output terminal, 11 Diplexer circuit, 12a to 12d, first to fourth phase adjustment circuits, 13a, first switch, 13b, second switch, 14a, first SP2T switch, 14b, second SP2T switch, 15a, first termination Resistor 15b Second termination resistor 16 Branch point 21 Transmission line 22a to 22c Inductor 23a to 23c Capacitor.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Transmitters (AREA)

Abstract

信号を入力する入力端子と、信号を出力する出力端子と、入力端子に入力端が接続され、入力端子に入力された信号を第1の周波数成分と第2の周波数成分に分波し、第1の周波数成分を第1の出力端に、第2の周波数成分を第2の出力端に出力する分波回路と、分波回路の第1の出力端に第1の端が接続された第1の位相調整用回路と、分波回路の第2の出力端に第1の端が接続された第2の位相調整用回路と、第1の位相調整用回路の第2の端に入力端が接続され、出力端子に出力端が直接または間接に接続され、入力端に入力された信号の出力端への出力を導通状態と非導通状態のいずれかに切り替えられる第1のスイッチと、第2の位相調整用回路の第2の端に入力端が接続され、出力端子に出力端が直接または間接に接続され、入力端に入力された信号の出力端への出力を導通状態と非導通状態のいずれかに切り替えられる第2のスイッチとを備える周波数選択切り替え回路。

Description

周波数選択切り替え回路
 本発明は、主として周波数領域におけるフィルタリングを行う周波数フィルタに関する。
 各種レーダや通信機器において、不要な周波数成分を抑圧し、所望の周波数成分のみを通過させる周波数フィルタ(以下、フィルタ)は必要不可欠なデバイスである。近年では、一つの機器において複数の周波数帯を使用するケースも増えている。
 また、周波数資源の有効利用あるいはレーダや通信システムの高度化のため、より柔軟に動作周波数を変更可能なデバイスが求められており、前記要求を満足するフィルタの必要性が増している。
 特許文献1では、動作周波数の異なる二つのフィルタと二つのインピーダンス整合回路対を組み合わせることで、二つの通過帯域を持つ帯域通過フィルタいわゆるデュアルバンドフィルタを構築する方法が開示されている。なお、ここで動作周波数とは、フィルタの通過帯域の中心周波数を指す。
特開平08-321738号公報
 たとえば、無線通信において、ユーザ端末や基地局が周辺の電波状況をモニタリングし、その状況に応じて周波数や方式を自由に変更して通信するコグニティブ無線が提唱されている。コグニティブ無線では、機器が複数の通信方式及び周波数に対応しており、双方を出力することに加えて、いずれか一方のみを選択して出力可能であることが求められている。しかしながら、先行技術による回路はあらかじめ決定された二つの周波数信号の両方を通過させるため、機器の出荷後に使用する周波数帯を選択することができないといった課題がある。
 本発明は、上述したような従来の技術が有する問題点に鑑みてなされたものであって、二つの周波数帯の内どちらか一方、あるいは両方を出力するかを動的に切り替えることができる周波数選択切り替え回路を提供することを目的とする。
 本開示に係る周波数選択切り替え回路は、信号を入力する入力端子と、信号を出力する出力端子と、入力端子に入力端が接続され、入力端子に入力された信号を第1の周波数成分と第2の周波数成分に分波し、第1の周波数成分を第1の出力端に、第2の周波数成分を第2の出力端に出力する分波回路と、分波回路の第1の出力端に第1の端が接続された第1の位相調整用回路と、分波回路の第2の出力端に第1の端が接続された第2の位相調整用回路と、第1の位相調整用回路の第2の端に入力端が接続され、出力端子に出力端が直接または間接に接続され、入力端に入力された信号の出力端への出力を導通状態と非導通状態のいずれかに切り替えられる第1のスイッチと、第2の位相調整用回路の第2の端に入力端が接続され、出力端子に出力端が直接または間接に接続され、入力端に入力された信号の出力端への出力を導通状態と非導通状態のいずれかに切り替えられる第2のスイッチとを有する。
 本発明によれば、二つの周波数帯の内どちらか一方、あるいは両方を出力するかを動的に切り替えることができる周波数選択切り替え回路を実現できる。
実施の形態1に係る周波数選択切り替え回路1の一動作状態を表すブロック図である。 スイッチ単体のON状態を表す回路図である。 スイッチ単体のOFF状態を表す回路図である。 実施の形態1に係る周波数選択切り替え回路1の特性例(周波数成分fのみを出力する例)を表す回路シミュレーション結果である。 実施の形態1に係る周波数選択切り替え回路1の特性例(周波数成分fのみを出力する例)を表す回路シミュレーション結果である。 実施の形態1に係る周波数選択切り替え回路1の特性例(周波数成分f及びfの両方を出力する例)を表す回路シミュレーション結果である。 位相調整用回路の構成例を示す回路図である。 位相調整用回路の構成例を示す回路図である。 位相調整用回路の構成例を示す回路図である。 実施の形態2に係る周波数選択切り替え回路の一動作状態を表すブロック図である。 実施の形態3に係る周波数選択切り替え回路の一動作状態を表すブロック図である。 出力を切り替えた状態のSP2Tスイッチ及び終端抵抗を表す回路図である。 出力を切り替えた状態のSP2Tスイッチ及び終端抵抗を表す回路図である。 実施の形態3に係る周波数選択切り替え回路3の特性例(周波数成分fのみを出力する例)を表す回路シミュレーション結果である。 実施の形態3に係る周波数選択切り替え回路3の特性例(周波数成分fのみを出力する例)を表す回路シミュレーション結果である。 実施の形態3に係る周波数選択切り替え回路3の特性例(周波数成分f及びfの両方を出力する例)を表す回路シミュレーション結果である。
実施の形態1
 以下、図面を参照しつつ、実施の形態について説明する。なお、図中、同一または類似の部分には同一の番号を付する。
 図1は本発明の実施の形態1に係る周波数選択切り替え回路1の一動作状態を表すブロック図である。
 本実施の形態に係る周波数切り替え回路1は、信号を入力するための入力端子10a、信号を出力するための出力端子10b、入力された信号をその周波数成分f(第1の周波数成分)、f(第2の周波数成分)に応じて分波し出力する2分波回路11、入力された信号の出力を導通(ON)状態と非導通(OFF)状態のいずれかに切り替えられる第1のスイッチ13a、第2のスイッチ13b、第1の位相調整用回路12a、第2の位相調整用回路12b、分岐点12bから構成される。
 2分波回路11の入力(入力端)には入力端子10aが接続され、2分波回路11の出力のうちfが出力される端子(第1の出力端)には第1の位相調整用回路12aの一方の端部(第1の端)が接続され、分波回路の出力のうちfが出力される端子(第2の出力端)には第2の位相調整用回路12bの一方の端部(第1の端)が接続され、第1の位相調整用回路12aのもう一方の端部(第2の端)には第1のスイッチ13aの入力(入力端)が接続され、第2の位相調整用回路12bのもう一方の端部(第2の端)には第2のスイッチ13bの入力(入力端)が接続され、第1及び第2のスイッチ13aの出力(出力端)と第2のスイッチ13bの出力(出力端)と出力端子10bは互いに分岐点16へ接続される。分岐点16は出力端子10bへと接続される。
 本実施の形態における周波数選択切り替え回路1は、第1のスイッチ13a及び第2のスイッチ13bのいずれかもしくは両方の状態を切り替えることで、2分波回路11から出力された周波数成分f、fのどちらか一方を出力する、あるいはf、fの両方の周波数成分を出力することが可能である。
 次に動作について説明する。
 本実施の形態における周波数選択切り替え回路1の動作について述べる上で、まず、スイッチの動作状態の定義について述べる。図2及び図3はそれぞれ本実施の形態の周波数選択切り替え回路1におけるスイッチ13aあるいは13bの導通(ON)状態、非導通(OFF)状態を表す回路図である。
 ここで言う導通とは、使用周波数帯において電気的に接続されていることを指し、非導通とは、電気的に接続されていないことを指す。なお、図2及び図3はスイッチ13a、13bのONまたはOFF状態を示すための回路図であり、ここでは両者は区別せずともにスイッチ13として表されている。図2及び図3においてスイッチ13の入力側には入力端子10cが、出力側には出力端子10dがそれぞれ接続されている。
 本実施の形態では、簡単化のためスイッチ13は無損失とし、図2で示したON状態においては、入力端子10cと出力端子10dとの間の通過振幅は周波数によらず1であり、通過位相はθとする。また、図3で示したOFF状態においては、入力端子10cと出力端子10dとの間の通過振幅は周波数によらず0とし、出力端子10dの反射振幅を1かつ反射位相をφとする。ここで出てきた通過位相θ及び反射位相φは、ともに周波数を変数とした関数のことである。
 なお、本実施の形態では、基本的な動作原理について述べるため、反射位相φは周波数によらず0度として扱うものとする。また、第1の位相調整用回路12a及び第2の位相調整用回路12bは、入力された高周波信号の振幅を変化させることなく、その位相を調整する機能を有する回路である。
 まず、本実施の形態の周波数選択切り替え回路1において周波数成分fのみを出力する場合について考える。このとき、第1のスイッチ13aはON状態に、第2のスイッチ13bはOFF状態に設定される。従って、分岐点16から第2のスイッチ13b側(以下、下側とする)は反射振幅が1かつ反射位相が0となるため、電気的には分岐点16より下側の経路は見えず、第1のスイッチ13aから出力された信号はそのまま出力端子10bへ出力される。
 以上より、入力端子10aから入力された信号の内、周波数成分fは2分波回路11、第1の位相調整用回路12a及び第1のスイッチ13aを順に通過し、そのまま出力端子10bより出力される。
 同様に、本実施の形態の周波数選択切り替え回路1において周波数成分fのみを出力する場合について考える。このとき、第1のスイッチ13aはOFF状態に、第2のスイッチ13bはON状態に設定される。従って、分岐点16から第1のスイッチ13a側(以下、上側とする)は反射振幅が1かつ反射位相が0となるため、電気的には分岐点16より上側の経路は見えず、第2のスイッチ13bから出力された信号はそのまま出力端子10bへ出力される。以上より、入力端子10aから入力された信号の内、周波数成分fは2分波回路11、第2の位相調整用回路12b及び第2のスイッチ13bを順に通過し、そのまま出力端子10bより出力される。
 最後に、本実施の形態の周波数選択切り替え回路1において周波数成分f及びfの両方を同時に出力する場合について考える。このとき、第1及び第2のスイッチ13a、13bはともにON状態に設定される。本状態において、周波数成分fにおいて分岐点16から下側が開放となり、かつ周波数成分fにおいて分岐点16より上側が開放となれば、f及びfの両方の周波数成分を同時に出力することが可能となる。
 第1の位相調整用回路12aのfにおける通過位相をθ(f)、ON状態の第1のスイッチ13aのfにおける通過位相をθ(f)、2分波回路11のf出力端子のfにおける反射位相をφd1(f)とすると、分岐点16より上側の経路がfにおいて開放となる条件式は式(1)で表される。

Figure JPOXMLDOC01-appb-I000001
 ただし、式(1)においてn=0、1、2、・・・である。同様に、第2の位相調整用回路12bのfにおける通過位相をθ(f)、ON状態の第2のスイッチ13bのfにおける通過位相をθ(f)、2分波回路11のf出力端子のfにおける反射位相をφd2(f)とすると、分岐点16より下側の経路がfにおいて開放となる条件式は次の式(2)で表される。

Figure JPOXMLDOC01-appb-I000002
 ただし、式(2)においてm=0、1、2、・・・である。従って、式(1)及び式(2)を同時に満足するよう設計を行うことで、周波数成分f、fを同時に出力することが可能となる。
 実際の設計では、使用する2分波回路11の反射位相φd1、φd2及び第1及び第2のスイッチ13a、13bの通過位相θSに応じて、式(1)及び式(2)を満足するよう第1及び第2の位相調整用回路12a、12bの通過位相θ、θを設計すればよい。
 図4、図5及び図6は、本実施の形態の周波数選択切り替え回路1の特性の一例を表す回路シミュレーション結果であり、図4、図5及び図6はそれぞれfのみを出力する場合、fのみを出力する場合、fとfの両方を出力する場合のシミュレーション結果である。なお、各出力を実現するための第1及び第2のスイッチ13a、13bの設定(ONまたはOFF)は前述したとおりである。
 図4、図5及び図6の横軸は規格化周波数であり、縦軸は入力端子10aをポート1、出力端子10bをポート2とした場合のSパラメータの振幅を表している。図中の実線及び破線はそれぞれS11(入力反射係数)、S21(入力端子から出力端子への透過係数)の振幅を示す。本図からわかるように、第1及び第2のスイッチ13a、13bの設定変更により、fのみ出力、fのみ出力、f及びfの同時出力の3状態を実現できていることが確認できる。
 このように、本実施の形態における集荷数選択切り替え回路1は、第1のスイッチ13a及び第2のスイッチ13bのいずれかもしくは両方の状態を切り替えることで、2分波回路11から出力された周波数成分f1、のどちらか一方を出力する、あるいは、周波数成分f1、の両方の周波数を出力することが可能である。
 なお、本実施の形態1で述べた位相調整用回路12a、12bは通過振幅を変化させずに位相のみを調整する用途で使用される。従って、マイクロストリップ線路あるいは同軸線路などの伝送線路を用いて実現することが可能である。また、伝送線路と集中定数素子と併用することで小型化を図りつつ所望の位相を実現することも可能である。
 図7、図8及び図9は、位相調整用回路の構成例である。
 図7は伝送線路21を表し、その電気長θが式(1)及び式(2)より求められたθ(f)、θ(f)と等しくなるように設計することで所望の位相を実現することができる。
 図8及び図9は、インダクタ22a、インダクタ22b、インダクタ22c、キャパシタ23a、キャパシタb及びキャパシタ23cを用いて構成した位相調整用回路である。図8で示した位相調整用回路は直列インダクタ22a、22bとその間に配置された並列キャパシタ23aから構成され、一方、図9で示した位相調整用回路は直列キャパシタ23b、23cとその間に配置された並列インダクタ22cから構成される。
 両者は互いに異なる符号の通過位相を実現することができる。なお、図8及び図9で示した位相調整用回路は、各図で示した回路図を実現するよう集中定数素子を接続して構成されるほか、図8あるいは図9の回路を単位構造として周期的に配置して構成される。また、図7、図8及び図9の回路を併用した位相調整用回路の構成例も考えられる。
 なお、本実施の形態では図7、図8及び図9を基に典型的な位相調整用回路の構成例について述べたが、これらは本発明の範囲を限定するものではない。前述した通り位相調整用回路は、通過振幅を極力変化させることなく通過位相のみを調整する機能を有する回路を指し、前記機能を有する回路であれば他の構成でもよい。
実施の形態2
 実施の形態1では、反射位相φは周波数によらず0度として扱った場合、つまり、スイッチが理想開放であった場合について述べた。本実施の形態では、実際に使用するスイッチの特性について考慮した場合について述べる。
 図10は、本発明の実施の形態に係る周波数選択切り替え回路2の一動作状態を表すブロック図である。
 本実施の形態に係る周波数切り替え回路2は、信号を入力するための入力端子10a、信号を出力するための出力端子10b、入力された信号をその周波数成分f、fに応じて分波し出力する2分波回路11、入力された信号の出力を導通(ON)状態と非導通(OFF)状態のいずれかに切り替えられる第1のスイッチ13a、第2のスイッチ13b、第1の位相調整用回路12a、第2の位相調整用回路12b、第3の位相調整用回路12c、第4の位相調整用回路12d、分岐点16から構成される。
 第1のスイッチ13aの出力(出力端)には第3の位相調整用回路12cの一方の端子(第2の端)が接続され、第2のスイッチ13bの出力(出力端)には第4の位相調整用回路12dの一方の端子(第2の端)が接続され、第3の位相調整用回路12cのもう一方の端(第1の端)及び第4の位相調整用回路12dのもう一方の端子(第1の端)と、出力端子10bは、互いに分岐点16へ接続される。
 以上に述べたように本実施の形態に係る周波数選択切り替え回路2は、実施の形態1に係る周波数選択切り替え回路1において、第1のスイッチ13aと分岐点16の間と、第2のスイッチ13bと分岐点16の間にそれぞれ第3及び第4の位相調整用回路を追加した構成である。
 実施の形態1で述べた周波数選択切り替え回路1では、OFF状態における第1及び第2のスイッチ13a、13bの出力端子の反射位相φをφ=0としており、その場合にのみ第1のスイッチ13a及び第2のスイッチ13bの状態を切り替えることで、2分波回路11から出力された周波数成分f、fのどちらか一方を出力する、あるいはf、fの両方の周波数成分を出力することが可能であった。これに対し、本実施の形態の周波数選択切り替え回路2は、第3の位相調整用回路12c及び第4の位相調整用回路12dを新たに導入することにより、反射位相φによらず、実施の形態1の周波数選択切り替え回路1と同等の機能を実現することが可能となる。
 次に動作について説明する。なお、実施の形態1と重複する記述については省略するものとする。また、本実施の形態に係る周波数選択切り替え回路2において、第1及び第2のスイッチ13a、13bの各状態と回路図は図2及び図2で示した通りであり、その動作については実施の形態1と同様である。ただし、図3で示したOFF状態における出力端子10dの反射位相φは周波数の関数であり、実施の形態1と異なり任意の値をとるものとする。さらに、第3の位相調整用回路12c及び第4の位相調整用回路12dも第1の位相調整用回路12a及び第2の位相調整用回路12bと同様に高周波信号の位相を調整する機能を有する回路である。
 まず、本実施の形態の周波数選択切り替え回路2において周波数成分fのみを出力する場合について考える。このとき、第1のスイッチ13aはON状態に、第2のスイッチ13bはOFF状態に設定される。従って、分岐点16から下側には第4の位相調整用回路12d、OFF状態に設定された第2のスイッチ13bが順に接続される。なお、第2のスイッチ13bより先の第2の位相調整用回路12bについては第2のスイッチ13bがOFFに設定されているため電気的にアイソレートされている。
 周波数成分fにおいて分岐点16より下側の経路が電気的に見えなくなるためには、分岐点16より下側が電気的に開放となればよい。前記条件は、第2のスイッチ13bのOFF状態における出力反射位相φ(f)と、第4の位相調整用回路12dの通過位相θ(f)を用いて以下の式(3)のように表される。

Figure JPOXMLDOC01-appb-I000003
 ただし、式(3)においてn=0、1、2、・・・である。式(3)を満足するとき、周波数選択切り替え回路2の入力端子10aから入力された信号のうち周波数成分fは、2分波回路11、第1の位相調整用回路12a、第1のスイッチ13a及び第3の位相調整用回路12cを順に通過し、そのまま出力端子10bより出力される。
 同様に、本実施の形態の周波数選択切り替え回路2において周波数成分fのみを出力する場合について考える。このとき、第1のスイッチ13aはOFF状態に、第2のスイッチ13bはON状態に設定される。従って、分岐点16から上側には第3の位相調整用回路12c、OFF状態に設定された第1のスイッチ13aが順に接続される。なお、第1のスイッチ13aより先の第1の位相調整用回路12aについては第1のスイッチ13aがOFFに設定されているため電気的にアイソレートされている。
 周波数成分fにおいて分岐点16より上側の経路が電気的に見えなくなるためには、分岐点16より上側が電気的に開放となればよい。前記条件は、第1のスイッチ13aのOFF状態における出力反射位相φ(f)と、第3の位相調整用回路12cの通過位相θ(f)を用いて以下の式(4)のように表される。

Figure JPOXMLDOC01-appb-I000004
 ただし、式(4)においてm=0、1、2、・・・である。式(4)を満足するとき、周波数選択切り替え回路2の入力端子10aから入力された信号のうち周波数成分fは、2分波回路11、第2の位相調整用回路12b、第2のスイッチ13b及び第4の位相調整用回路12dを順に通過し、そのまま出力端子10bより出力される。
 最後に、本実施の形態の周波数選択切り替え回路2において周波数成分f及びfの両方を同時に出力する場合について考える。このとき、第1のスイッチ13a及び第2のスイッチ13bはともにON状態に設定される。本状態において、周波数成分fにおいて分岐点16から下側が開放となり、かつ周波数成分fにおいて分岐点16より上側が開放となれば、f及びfの両方の周波数成分を同時に出力することが可能となる。
 第1の位相調整用回路12aのfにおける通過位相をθ(f)、ON状態の第1のスイッチ13aのfにおける通過位相をθ(f)、第3の位相調整用回路12cのfにおける通過位相をθ(f)、2分波回路11のf出力端子のfにおける反射位相をφd1(f)とすると、分岐点16より上側の経路がfにおいて開放となる条件式は式(5)で表される。

Figure JPOXMLDOC01-appb-I000005

 ただし、式(5)においてh=0、1、2、・・・である。同様に、第2の位相調整用回路12bのfにおける通過位相をθ(f)、ON状態の第2のスイッチ13bのfにおける通過位相をθ(f)、第4の位相調整用回路12dのfにおける通過位相をθ(f)、2分波回路11のf出力端子のfにおける反射位相をφd2(f)とすると、分岐点16より下側の経路がfにおいて開放となる条件式は式(6)で表される。

Figure JPOXMLDOC01-appb-I000006
 ただし、式(6)においてi=0、1、2、・・・である。従って、式(5)及び式(6)を同時に満足するよう設計を行うことで、f、fを同時に出力することが可能となる。実際の設計では、使用する2分波回路11の反射位相φd1、φd2及び第1のスイッチ13a及び第2のスイッチ13bの通過位相θに応じて、式(3)~(6)を満足するよう第1~第4の位相調整用回路12a~12dの通過位相θ~θを設計すればよい。
 本実施の形態で述べた周波数選択切り替え回路2では、第3の位相調整用回路12c及び第4の位相調整用回路12dを設けることで第1のスイッチ13a及び第2のスイッチ13bの反射位相φによらず、実施の形態1で述べた周波数選択切り替え回路と同様の機能を実現することができる。これにより、例えば市販品を使用する場合などのデバイスの特性を設計することができない場合においても、第1のスイッチ13a及び第2のスイッチ13bの設定変更により、fのみ出力、fのみ出力、f及びfの同時出力の3状態を切り替えることが可能となる。
実施の形態3
 実施の形態1の周波数選択切り替え回路1において、どちらか一方の周波数成分のみを出力する場合、もう一方の周波数成分により反射が生じる。
 本実施の形態では、このどちらか一方の周波数成分のみを出力する場合に生じるもう一方の周波数成分による反射を低減する場合について説明する。
 図11は本発明の実施の形態に係る周波数選択切り替え回路3の一動作状態を表すブロック図である。
 本実施の形態に係る周波数切り替え回路3は、信号を入力するための入力端子10a、信号を出力するための出力端子10b、入力された信号をその周波数成分f、fに応じて分波し出力する2分波回路11、入力された信号の出力を2通りに切り替えられる第1のSP2Tスイッチ14a、入力された信号の出力を2通りに切り替えられる第2のSP2Tスイッチ14b、第1の終端抵抗15a、第2の終端抵抗15b、第1の位相調整用回路12a、第2の位相調整用回路12b、分岐点16から構成される。
 2分波回路11の入力(第1の端)には入力端子10aが接続され、分波回路11の出力のうち周波数成分fが出力される端子(第2の端)には第1の位相調整用回路12aの一方の端部(第1の端)が接続され、分波回路の出力のうちfが出力される端子(第3の端)には第2の位相調整用回路12bの一方の端部(第1の端)が接続され、第1の位相調整用回路12aのもう一方の端部(第2の端)には第1のSP2Tスイッチ14aの入力端が接続され、第2の位相調整用回路12bのもう一方の端部(第2の端)には第2のSP2Tスイッチ14bの入力端が接続され、第1のSP2Tスイッチ14aの一方の出力端(第1の出力端)には、第1の終端抵抗15aが接続され、第2のSP2Tスイッチ14bの一方の出力端(第1の出力端)には、第2の終端抵抗15bが接続され、第1のSP2Tスイッチ14aのもう一方の出力端(第2の出力端)と、第2のSP2Tスイッチ14bのもう一方の出力端(第2の出力端)と、出力端子10bは互いに分岐点16へ接続される。
 以上に述べたように本実施の形態に係る周波数選択切り替え回路3は、実施の形態1に係る周波数選択切り替え回路1において、第1のスイッチ13aを第1のSP2Tスイッチ14aと第1の終端抵抗15aで、また、第2のスイッチ13bを第2のSP2Tスイッチ14bと第2の終端抵抗15bで置換した構成となっている。
 本発明の実施の形態に係る周波数選択切り替え回路3の動作について述べる上で、まず、図12及び図13に示すようにSP2Tスイッチの動作状態の定義について述べる。
 図12及び図13はそれぞれ本実施の形態の周波数選択切り替え回路3におけるスイッチ14aあるいはスイッチ14bの出力を2通りに切り替えた状態を表す回路図である。なお、本図はSP2Tスイッチ14a、スイッチ14bの動作状態を示すための回路図であり、ここでは両者は区別せずともにSP2Tスイッチ14として表されている。
 本図においてSP2Tスイッチ14の入力側には入力端子10cが、一方の出力には出力端子10dが、もう一方の出力には終端抵抗15がそれぞれ接続されている。ここで、図12に図示したスイッチの切り替え状態、すなわち入力端子10cと出力端子10dがSP2Tスイッチ14を介して導通している状態をON状態とし、図13に図示したSP2Tスイッチの切り替え状態、すなわち入力端子10cと終端抵抗15がSP2Tスイッチ14を介して導通している状態をOFF状態と定義する。
 ON状態においては入力端子10cから入力された高周波信号はSP2Tスイッチ14を介し出力端子10dへ出力される。一方、OFF状態においては入力端子10cから入力された高周波信号はSP2Tスイッチ14を介し終端抵抗15へ入力され、終端抵抗15で無反射終端される。
 以下の説明では簡単化のためSP2Tスイッチ14は無損失とし、図12で示したON状態においては、入力端子10cと出力端子10dとの間の通過振幅は周波数によらず1であり通過位相はθとする。また、図13で示したOFF状態においては、入力端子10cと出力端子10dとの間の通過振幅は周波数によらず0とし、出力端子10dの反射振幅を1かつ反射位相をφとする。通過位相θ及び反射位相φは、ともに周波数を変数とした関数である。なお、本実施の形態においては、基本的な動作原理について述べるため、反射位相φは周波数によらず0度として扱う。
 実施の形態1で述べた周波数選択切り替え回路1では、周波数成分fのみを出力する場合、周波数成分fは入力端子10aから入力され、2分波回路11のf出力端子より出力され、第2の位相調整用回路12b及び第2のスイッチ13bに入力される。前述のとおり、周波数成分fのみを出力する場合では第2のスイッチ13bはOFFに設定されるため、第2のスイッチ13bに入力された信号は反射し、上記と同一の経路上の回路を逆の順番で通過し、最終的には入力端子10aより出力される。ここでは、周波数成分fのみを出力する場合について述べたが、fのみを出力する場合についても経路が異なるものの、同様に入力端子10aより周波数成分fが出力される。
 従って、実施の形態1で述べた周波数選択切り替え回路1では、入力端子10aより入力した周波数成分f、fのどちらか一方のみを出力端子10bより出力しようとすると、もう一方の周波数成分は回路内部で反射し入力端子10aから反射波として出力される。そのため、周波数選択切り替え回路1の前段、すなわち入力端子10aに回路が接続された場合には、その回路から周波数選択切り替え回路1を見た入力インピーダンスが周波数選択切り替え回路1の動作状態によって大きく変化する。特に周波数選択切り替え回路の1の前段に電力増幅器のようなアクティブ回路が接続された場合には、このようなインピーダンスの変化によって電力増幅器が不安定になりやすいといった問題がある。
 これに対し、本実施の形態に係る周波数選択切り替え回路3では、第1のスイッチ13aを第1のSP2Tスイッチ14aと第1の終端抵抗15aで、また、第2のスイッチ13bを第2のSP2Tスイッチ14bと第2の終端抵抗15bで置き換える。これにより、SP2Tスイッチ14a、SP2Tスイッチ14bに入力された高周波信号をON状態では一方の出力より出力し、OFF状態ではもう一方の出力に接続された終端抵抗15a、終端抵抗15bによって無反射終端することができる。
 その結果、図11で示した周波数選択切り替え回路3ではf、fどちらか一方の周波数成分のみを出力する場合においても、もう一方の周波数帯における入力端子10aでの入力反射振幅を低下させることができる。
 図14、図15及び図16は本実施の形態の周波数選択切り替え回路3の特性の一例を表す回路シミュレーション結果であり、図14、図15及び図16はそれぞれ周波数成分fのみを出力する場合、周波数成分fのみを出力する場合、周波数成分fと周波数成分fの両方を出力する場合のシミュレーション結果である。なお、各出力を実現するための第1のSP2Tスイッチ14a及び第2のSP2Tスイッチ14bの設定(ONまたはOFF)は前述したとおりである。
 本図の横軸は規格化周波数であり、縦軸は入力端子10aをポート1、出力端子10bをポート2とした場合のSパラメータの振幅を表している。図中の実線及び破線はそれぞれS11、S21の振幅を示す。
 図4及び図5と図14及び図15をそれぞれ比較すると、周波数成分fのみ出力する場合において周波数成分fにおける反射振幅が、周波数成分fのみ出力する場合において周波数成分fにおける反射振幅がともに小さくなっていることが確認できる。これより、本実施の形態の周波数選択切り替え回路3は、実施の形態1の周波数選択切り替え回路1においてどちらか一方の周波数成分のみを出力する場合に生じていた反射を低減することができることがわかる。
 なお、本実施の形態3では、実施の形態1で述べた周波数選択切り替え回路1に対して、スイッチ13a及びスイッチ13bをそれぞれSP2Tスイッチ14aと終端抵抗15a及びSP2Tスイッチ14bと終端抵抗15bで置き換えた場合について説明したが、実施の形態2で述べた周波数選択切り替え回路2に対して同様に置き換えを行うことで、上述したような効果を得ることが可能である。
1 実施の形態1の周波数選択切り替え回路、2 実施の形態2の周波数選択切り替え回路、3 実施の形態3の周波数選択切り替え回路、10a 入力端子、10b 出力端子、10c 入力端子、10d 出力端子、11 2分波回路、12a~12d 第1~第4の位相調整用回路、13a 第1のスイッチ、13b 第2のスイッチ、14a 第1のSP2Tスイッチ、14b 第2のSP2Tスイッチ、15a 第1の終端抵抗、15b 第2の終端抵抗、16 分岐点、21 伝送線路、22a~22c インダクタ、23a~23c キャパシタ。

Claims (6)

  1.  信号を入力する入力端子と、
     信号を出力する出力端子と、
     前記入力端子に入力端が接続され、前記入力端子に入力された前記信号を第1の周波数成分と第2の周波数成分に分波し、前記第1の周波数成分を第1の出力端に、前記第2の周波数成分を第2の出力端に出力する分波回路と、
     前記分波回路の第1の出力端に第1の端が接続された第1の位相調整用回路と、
     前記分波回路の第2の出力端に第1の端が接続された第2の位相調整用回路と、
     前記第1の位相調整用回路の第2の端に入力端が接続され、前記出力端子に出力端が直接または間接に接続され、前記入力端に入力された信号の前記出力端への出力を導通状態と非導通状態のいずれかに切り替えられる第1のスイッチと、
     前記第2の位相調整用回路の第2の端に入力端が接続され、前記出力端子に出力端が直接または間接に接続され、前記入力端に入力された信号の前記出力端への出力を導通状態と非導通状態のいずれかに切り替えられる第2のスイッチと
    を備える周波数選択切り替え回路。
  2.  前記第1の位相調整用回路は、前記第2の周波数成分の周波数の信号が、導通状態の前記第1のスイッチと前記第1の位相調整用回路を通過して、前記2分波回路の第1の出力端で反射し、再度前記第1の位相調整用回路と導通状態の前記第1のスイッチを通過する場合に、最後に前記第1のスイッチから出力した信号の位相と最初に前記第1のスイッチへ入力した信号の位相とを同位相に調整し、
     前記第2の位相調整用回路は、前記第1の周波数成分の周波数の信号が、導通状態の前記第2のスイッチと前記第2の位相調整用回路を通過して、前記2分波回路の第2の出力端で反射し、再度前記第2の位相調整用回路と導通状態の前記第2のスイッチを通過する場合に、最後に前記第2のスイッチから出力した信号の位相と最初に前記第2のスイッチへ入力した信号の位相とを同位相に調整する、
    請求項1に記載の周波数選択切り替え回路。
  3.  前記出力端子に第1の端が接続された第3の位相調整用回路と、
     前記出力端子に第1の端が接続された第4の位相調整用回路と
    を有し、
     前記第1のスイッチは、前記第1の位相調整用回路の第2の端に入力端が接続され、前記第3の位相調整用回路の第2の端に出力端が接続され、
     前記第2のスイッチは、前記第2の位相調整用回路の第2の端に入力端が接続され、前記第4の位相調整用回路の第2の端に出力端が接続される
    請求項1に記載の周波数選択切り替え回路。
  4.  前記第4の位相調整用回路は、前記第1の周波数成分の周波数の信号が、前記第4の位相調整用回路を通過して非導通状態の前記第2のスイッチの出力端で反射し再度前記第4の位相調整用回路を通過する場合に、最後に前記第4のスイッチから出力した信号の位相と最初に前記第4のスイッチへ入力した信号の位相とを同位相に調整し、
     前記第3の位相調整用回路は、前記第2の周波数成分の周波数の信号が、前記第3の位相調整用回路を通過して非導通状態の前記第1のスイッチの出力端で反射し再度前記第3の位相調整用回路を通過する場合に、最後に前記第3のスイッチから出力した信号の位相と最初に前記第3のスイッチへ入力した信号の位相とを同位相に調整し、
     前記第1の位相調整用回路は、前記第2の周波数成分の周波数の信号が、前記第3の位相調整用回路と導通状態の前記第1のスイッチと前記第1の位相調整用回路を通過して前記2分波回路の第1の出力端で反射し、再度前記第1の位相調整用回路と導通状態の前記第1のスイッチと前記第3の位相調整用回路を通過する場合に、最後に前記第3のスイッチから出力した信号の位相と最初に前記第3のスイッチへ入力した信号の位相とを同位相に調整し、
     前記第2の位相調整用回路は、前記第1の周波数成分の周波数の信号が、前記第4の位相調整用回路と導通状態の前記第2のスイッチと前記第2の位相調整用回路を通過して前記2分波回路の第2の出力端で反射し、再度前記第2の位相調整用回路と導通状態の前記第2のスイッチと前記第4の位相調整用回路を通過する場合に、最後に前記第4のスイッチから出力した信号の位相と最初に前記第4のスイッチへ入力した信号の位相とを同位相に調整する、
    請求項3に記載の周波数選択切り替え回路。
  5.  前記第1のスイッチは、入力端と、第1の出力端と第2の出力端を有し、前記第1の位相調整用回路の第2の端に前記入力端が接続され、前記出力端子に前記第1の出力端子が接続され、
     前記第2のスイッチは、入力端と、第1の出力端と第2の出力端を有し、前記第2の位相調整用回路の第2の端に前記入力端が接続され、前記出力端子に前記第1の出力端子が接続され、
     前記第1のスイッチの第2の出力端に接続された第1の終端抵抗と、
     前記第2のスイッチの第2の出力端に接続された第2の終端抵抗と
    を有する請求項1に記載の周波数選択切り替え回路。
  6.  前記第1のスイッチは、入力端と、第1の出力端と第2の出力端を有し、前記第1の位相調整用回路の第2の端に前記入力端が接続され、前記第3の位相調整用回路の第2の端に前記第1の出力端が接続され、
     前記第2のスイッチは、入力端と、第1の出力端と第2の出力端を有し、前記第2の位相調整用回路の第2の端に前記入力端が接続され、前記第4の位相調整用回路の第2の端に前記第1の出力端が接続され、
     前記第1のスイッチの第2の出力端に接続された第1の終端抵抗と、
     前記第2のスイッチの第2の出力端に接続された第2の終端抵抗と
    を有する請求項3に記載の周波数選択切り替え回路。
PCT/JP2021/030941 2021-08-24 2021-08-24 周波数選択切り替え回路 WO2023026353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/030941 WO2023026353A1 (ja) 2021-08-24 2021-08-24 周波数選択切り替え回路
JP2023543514A JP7459390B2 (ja) 2021-08-24 2021-08-24 周波数選択切り替え回路
US18/425,088 US20240171163A1 (en) 2021-08-24 2024-01-29 Frequency selecting/switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030941 WO2023026353A1 (ja) 2021-08-24 2021-08-24 周波数選択切り替え回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/425,088 Continuation US20240171163A1 (en) 2021-08-24 2024-01-29 Frequency selecting/switching circuit

Publications (1)

Publication Number Publication Date
WO2023026353A1 true WO2023026353A1 (ja) 2023-03-02

Family

ID=85321788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030941 WO2023026353A1 (ja) 2021-08-24 2021-08-24 周波数選択切り替え回路

Country Status (3)

Country Link
US (1) US20240171163A1 (ja)
JP (1) JP7459390B2 (ja)
WO (1) WO2023026353A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151329A1 (ja) * 2014-04-01 2015-10-08 株式会社村田製作所 アンテナ整合装置
JP2015204629A (ja) * 2014-04-11 2015-11-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. キャリアアグリゲーション回路、高周波モジュール、および無線装置
WO2019021983A1 (ja) * 2017-07-25 2019-01-31 株式会社村田製作所 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549323B2 (ja) 2006-07-31 2010-09-22 シャープ株式会社 高周波分配回路と、それを用いたlnbおよびアンテナ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151329A1 (ja) * 2014-04-01 2015-10-08 株式会社村田製作所 アンテナ整合装置
JP2015204629A (ja) * 2014-04-11 2015-11-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. キャリアアグリゲーション回路、高周波モジュール、および無線装置
WO2019021983A1 (ja) * 2017-07-25 2019-01-31 株式会社村田製作所 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置

Also Published As

Publication number Publication date
US20240171163A1 (en) 2024-05-23
JP7459390B2 (ja) 2024-04-01
JPWO2023026353A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
US10200012B2 (en) High-frequency filter, front-end circuit, and communication apparatus
US6472953B1 (en) Band switching filter using a surface acoustic wave resonator and an antenna duplexer using the same
EP2332208B1 (en) A reconfigurable filter apparatus
US7714681B2 (en) Reconfigurable phase-shifter
US8410871B2 (en) Tunable resonator and tunable filter
WO2013005264A1 (ja) 可変フィルタ装置および通信装置
US10110194B2 (en) Variable filter circuit, RF front end circuit and communication device
JP2005124126A (ja) インピーダンス回路網、これを用いたフィルタ回路、増幅回路、半導体集積回路、電子機器及び無線通信装置
CN107735955B (zh) 高频前端电路
CN109644011A (zh) 多路复用器
JP2004194310A (ja) スイッチング回路および周波数帯域分離回路
CN213937873U (zh) 高频模块和通信装置
JP2004222250A (ja) 周波数選択性バラントランス
US11838003B2 (en) Composite filter device
US11418224B2 (en) Radio frequency module and communication device
WO2015119179A1 (ja) 可変フィルタ回路および無線通信装置
WO2023026353A1 (ja) 周波数選択切り替え回路
US10027307B2 (en) Ultra broadband network of fixed or switched frequency selective filters
EP1440511B1 (en) Compact 180 degree phase shifter
KR101788824B1 (ko) 단일 스위치 제어 마이크로스트립 재구성 듀플렉서 장치
JP2001160766A (ja) デュプレクサ及び通信機装置
US20180234078A1 (en) Tunable filter, radio frequency front-end circuit, and communication apparatus
CN110995198A (zh) 一种小型化快速可重构式预选器装置
TWI803020B (zh) 射頻切換器
CN218976663U (zh) 滤波器及射频收发系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023543514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE