WO2019021976A1 - ロータリ圧縮機 - Google Patents

ロータリ圧縮機 Download PDF

Info

Publication number
WO2019021976A1
WO2019021976A1 PCT/JP2018/027394 JP2018027394W WO2019021976A1 WO 2019021976 A1 WO2019021976 A1 WO 2019021976A1 JP 2018027394 W JP2018027394 W JP 2018027394W WO 2019021976 A1 WO2019021976 A1 WO 2019021976A1
Authority
WO
WIPO (PCT)
Prior art keywords
end plate
chamber
plate cover
cylinder
discharge
Prior art date
Application number
PCT/JP2018/027394
Other languages
English (en)
French (fr)
Inventor
上田 健史
泰幸 泉
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN201880049213.XA priority Critical patent/CN110945246B/zh
Priority to US16/633,049 priority patent/US11078911B2/en
Publication of WO2019021976A1 publication Critical patent/WO2019021976A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings

Definitions

  • the present invention relates to a rotary compressor.
  • a two-cylinder rotary compressor is used to compress a refrigerant.
  • the suction, compression, and discharge processes are performed with 180 ° different phases in the two upper and lower cylinders. It is configured.
  • the discharge process of one cylinder occupies about 1/3 of one rotation. Therefore, 1/3 of one rotation is the discharge process of one cylinder (process where the discharge valve is open), the other 1/3 is the discharge process of the other cylinder, and the remaining 1/3 Is the process in which both discharge valves are closed.
  • the upper muffler chamber hereinafter also referred to as the upper end plate cover chamber
  • the lower muffler chamber hereinafter referred to as Both are also referred to as the lower end plate cover chamber
  • the pressure in the compression chamber which is the most upstream of the flow of the refrigerant in the compressed high-pressure region is the highest, followed by the muffler chamber and then the inside of the compressor casing outside the upper muffler chamber.
  • the pressure in the upper muffler chamber becomes higher than the pressure in the compressor casing outside the upper muffler chamber and the pressure in the lower muffler chamber. Therefore, at the next moment, the flow of refrigerant from the upper muffler chamber to the inside of the compressor casing outside the upper muffler chamber and the flow of refrigerant from the upper muffler chamber back to the refrigerant passage hole to the lower muffler chamber are It occurs.
  • a so-called backflow phenomenon of the refrigerant occurs in which the refrigerant compressed by the upper cylinder becomes high pressure and a part of the refrigerant discharged to the upper muffler chamber flows back to the refrigerant passage hole and flows into the lower muffler chamber.
  • the flow from the upper muffler chamber to the inside of the compressor casing, which is the outside of the upper muffler chamber, is the original flow, but the refrigerant that has flowed from the upper muffler chamber to the lower muffler chamber is again processed after the discharge process of the upper cylinder is completed.
  • the refrigerant flows through the refrigerant passage hole and the upper muffler chamber into the compressor housing outside the upper muffler chamber.
  • the flow into the compressor housing is essentially an unnecessary flow, resulting in energy loss and reduced efficiency of the rotary compressor.
  • the lower muffler chamber is made smaller by forming the lower end plate cover in a flat plate shape or forming a bulging portion only in part of the lower end plate cover.
  • the technology disclosed herein has been made in view of the above, and it is an object of the present invention to provide a rotary compressor that can improve efficiency and suppress vibration.
  • a rotary compressor includes a vertically disposed cylindrical compressor casing provided with a discharge unit for the refrigerant at the upper part and a suction unit for the refrigerant at the lower part and sealed, and the compressor case
  • the compressor includes: a compression unit disposed at a lower part, compressing a refrigerant sucked from the suction part and discharging the refrigerant from the discharge part, and a motor disposed at an upper part of the compressor casing to drive the compression part
  • An upper cylinder and a lower cylinder having an annular shape, an upper end plate closing the upper side of the upper cylinder, a lower end plate closing the lower side of the lower cylinder, and the upper cylinder disposed between the upper cylinder and the lower cylinder
  • a rotating shaft supported by an intermediate partition plate closing the lower side of the lower cylinder and the upper side of the lower cylinder, a main bearing portion provided on the upper end plate, and a sub bearing portion provided on the lower end plate and rotated by the motor And the rotating shaft
  • the lower end plate includes the lower discharge A lower discharge valve of a reed valve type which opens and closes a hole, a lower discharge valve receiving recess which is extended in a groove shape from the lower discharge hole and receives the lower discharge valve, and the lower discharge of the lower discharge valve receiving recess.
  • the refrigerant is formed to overlap the hole side
  • a lower discharge chamber concave portion communicating with the passage hole, the lower end plate cover is formed in a flat plate shape, and a bulging portion having a portion opposed to the lower discharge hole is provided;
  • the lower discharge valve housing concave portion, the lower discharge chamber concave portion, and the bulging portion are formed, and the volume of the bulging portion is the sum of the displacement volumes of the upper compression chamber and the lower compression chamber. It is 1/18 or more and 1/9 or less.
  • the efficiency of the rotary compressor can be enhanced and vibration can be suppressed.
  • FIG. 1 is a longitudinal sectional view showing a rotary compressor of the embodiment.
  • FIG. 2 is an exploded perspective view showing the compression unit of the rotary compressor of the embodiment.
  • FIG. 3 is a plan view of the lower end plate of the rotary compressor of the embodiment as viewed from below.
  • FIG. 4 is a plan view of the lower end plate cover of the rotary compressor of the embodiment as viewed from above.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4, showing the lower end plate cover of the rotary compressor of the embodiment.
  • FIG. 6 is a cross-sectional view taken along the line AA in FIG. 3, showing the main part of the rotary compressor of the embodiment.
  • FIG. 7 is a longitudinal sectional view showing the main part of the rotary compressor of the embodiment.
  • FIG. 8 is a view showing the relationship between the efficiency and the volume of the bulging portion when the displacement volume is 35 cc in the rotary compressor of the embodiment.
  • FIG. 9 is a view showing the relationship between the vibration and the volume of the bulging portion when the displacement volume is 35 cc in the rotary compressor of the embodiment.
  • FIG. 10 is a diagram showing the relationship between the efficiency and the volume of the bulging portion when the displacement volume is 24 cc in the rotary compressor of the embodiment.
  • FIG. 11 is a view showing the relationship between the vibration and the volume of the bulging portion when the displacement volume is 24 cc in the rotary compressor of the embodiment.
  • FIG. 12 is a plan view of the lower end plate cover in the rotary compressor of the first modification as viewed from above.
  • FIG. 13 is a cross-sectional view taken along the line CC in FIG. 11, showing the lower end plate cover in the rotary compressor of the first modification.
  • FIG. 14 is a longitudinal cross-sectional view showing the main part of the rotary compressor of the first modification.
  • FIG. 15 is a plan view of the lower end plate cover in the rotary compressor of Modification 2 as viewed from above.
  • FIG. 16 is a cross-sectional view taken along the line DD in FIG. 15, showing the lower end plate cover in the rotary compressor of the second modification.
  • FIG. 17 is a longitudinal cross-sectional view showing the main parts of a rotary compressor according to a second modification.
  • FIG. 18 is a plan view of the lower end plate cover in the rotary compressor of Modification 3 as viewed from above.
  • FIG. 19 is a cross-sectional view taken along the line E-E in FIG. 18, showing the lower end plate cover in the rotary compressor of the third modification.
  • FIG. 20 is a longitudinal cross-sectional view showing the main parts of a rotary compressor of the third modification.
  • FIG. 21 is a plan view of the lower end plate cover in the rotary compressor of Modification 4 as viewed from above.
  • FIG. 22 is a cross-sectional view taken along line FF in FIG. 20, showing a lower end plate cover in the rotary compressor of the fourth modification.
  • FIG. 23 is a longitudinal cross-sectional view showing the main parts of a rotary compressor of the fourth modification.
  • FIG. 1 is a longitudinal sectional view showing a rotary compressor of the embodiment.
  • FIG. 2 is an exploded perspective view showing the compression unit of the rotary compressor of the embodiment.
  • FIG. 3 is a plan view of the lower end plate of the rotary compressor of the embodiment as viewed from below.
  • the rotary compressor 1 is disposed at the upper portion in the compressor case 10 and the compression unit 12 disposed in the lower portion in the hermetically sealed vertically placed cylindrical compressor case 10, and is rotated.
  • the motor 11 drives the compression unit 12 via the shaft 15, and a vertically placed cylindrical accumulator 25 fixed to the outer peripheral surface of the compressor housing 10 and sealed.
  • the compressor housing 10 has an upper suction pipe 105 and a lower suction pipe 104 for suctioning the refrigerant, and the upper suction pipe 105 and the lower suction pipe 104 are provided at the lower side of the side surface of the compressor housing 10.
  • the accumulator 25 is connected to the upper cylinder chamber 130T (see FIG. 2) of the upper cylinder 121T via the upper suction pipe 105 as the suction portion and the accumulator upper curved pipe 31T, and the lower suction pipe 104 and the accumulator lower curvature as the suction portion
  • the lower cylinder 121S is connected to the lower cylinder chamber 130S (see FIG. 2) through the pipe 31S.
  • the positions of the upper suction pipe 105 and the lower suction pipe 104 overlap and are located at the same position.
  • the motor 11 includes a stator 111 disposed outside and a rotor 112 disposed inside.
  • the stator 111 is fixed to the inner peripheral surface of the compressor housing 10 by shrink fitting or welding.
  • the rotor 112 is fixed to the rotating shaft 15 by shrink fitting.
  • the lower shaft portion 151 of the lower eccentric portion 152S is rotatably supported by the auxiliary bearing portion 161S provided on the lower end plate 160S, and the main shaft portion 153 above the upper eccentric portion 152T is an upper end of the rotary shaft 15 It is rotatably supported by a main bearing portion 161T provided on the plate 160T.
  • An upper eccentricity portion 152T and a lower eccentricity portion 152S are provided on the rotation shaft 15 with a phase difference of 180 degrees to each other, and the upper piston 125T is supported by the upper eccentricity portion 152T, and the lower eccentricity portion
  • the lower piston 125S is supported by 152S.
  • the rotary shaft 15 is rotatably supported by the entire compression unit 12 and, by rotation, causes the outer circumferential surface 139T of the upper piston 125T to revolve along the inner circumferential surface 137T of the upper cylinder 121T.
  • the outer peripheral surface 139S of 125S is revolved along the inner peripheral surface 137S of the lower cylinder 121S.
  • the lubricity of the sliding parts such as the upper cylinder 121T, the upper piston 125T, the lower cylinder 121S, and the lower piston 125S sliding in the compression part 12 is secured, and the upper compression chamber 133T (see FIG. 2) and lubricating oil 18 for sealing the lower compression chamber 133S (see FIG. 2) are sealed so as to substantially immerse the compression section 12.
  • a mounting leg 310 for locking a plurality of elastic support members (not shown) for supporting the entire rotary compressor 1 is fixed.
  • the compression unit 12 compresses the refrigerant drawn from the upper suction pipe 105 and the lower suction pipe 104 and discharges the refrigerant from a discharge pipe 107 described later.
  • the compression unit 12 includes, from the top, an upper end plate cover 170T having an expanded portion 181 in which a hollow space is formed inside, an upper end plate 160T, an annular upper cylinder 121T, an intermediate partition plate 140, and an annular The lower cylinder 121S, the lower end plate 160S, and the flat lower end plate cover 170S are stacked.
  • the entire compression section 12 is fixed by a plurality of through bolts 174 and 175 and an auxiliary bolt 176 which are disposed substantially concentrically from above and below.
  • a cylindrical inner circumferential surface 137T is formed on the upper cylinder 121T.
  • An upper piston 125T having an outer diameter smaller than the inner diameter of the inner peripheral surface 137T of the upper cylinder 121T is disposed inside the inner peripheral surface 137T of the upper cylinder 121T, and the inner peripheral surface 137T of the upper cylinder 121T and the upper piston 125T are disposed.
  • An upper compression chamber 133T for suctioning, compressing and discharging the refrigerant is formed between the outer peripheral surface 139T and the outer peripheral surface 139T.
  • a cylindrical inner circumferential surface 137S is formed on the lower cylinder 121S.
  • the lower piston 125S having an outer diameter smaller than the inner diameter of the inner peripheral surface 137S of the lower cylinder 121S is disposed inside the inner peripheral surface 137S of the lower cylinder 121S, and the inner peripheral surface 137S of the lower cylinder 121S and the lower piston 125S
  • a lower compression chamber 133S for suctioning, compressing and discharging the refrigerant is formed between the outer peripheral surface 139S and the lower peripheral surface 139S.
  • the upper cylinder 121T has an upper side protruding portion 122T that protrudes from the outer peripheral portion to the outer peripheral side in the radial direction of the cylindrical inner peripheral surface 137T.
  • An upper vane groove 128T extending radially outward from the upper cylinder chamber 130T is provided in the upper side protrusion 122T.
  • An upper vane 127T is slidably disposed in the upper vane groove 128T.
  • the lower cylinder 121S has a lower side projecting portion 122S protruding from the outer peripheral portion to the outer peripheral side in the radial direction of the cylindrical inner peripheral surface 137S.
  • the lower protrusion 122S is provided with a lower vane groove 128S extending radially outward from the lower cylinder chamber 130S.
  • a lower vane 127S is slidably disposed in the lower vane groove 128S.
  • the upper side protruding portion 122T is formed over a predetermined protruding range along the circumferential direction of the inner peripheral surface 137T of the upper cylinder 121T.
  • the lower protruding portion 122S is formed over a predetermined protruding range along the circumferential direction of the inner circumferential surface 137S of the lower cylinder 121S.
  • the upper side protruding portion 122T and the lower side protruding portion 122S are used as a chuck holding portion for fixing to the processing jig when the upper cylinder 121T and the lower cylinder 121S are processed.
  • An upper spring hole 124T is provided in the upper side protruding portion 122T at a position not overlapping the upper cylinder chamber 130T at a position overlapping the upper vane groove 128T from the outer side surface.
  • An upper spring 126T is disposed in the upper spring hole 124T.
  • a lower spring hole 124S is provided in the lower protrusion 122S at a position overlapping the lower vane groove 128S from the outer side surface with a depth not penetrating the lower cylinder chamber 130S.
  • a lower spring 126S is disposed in the lower spring hole 124S.
  • the upper cylinder 121T communicates the radially outer side of the upper vane groove 128T with the inside of the compressor housing 10 at the opening to introduce the compressed refrigerant in the compressor housing 10, and the upper vane 127T is An upper pressure introducing passage 129T is formed which applies a back pressure by the pressure of the refrigerant.
  • the compressed refrigerant in the compressor housing 10 is introduced into the lower cylinder 121S by communicating the radially outer side of the lower vane groove 128S with the inside of the compressor housing 10, and the pressure of the refrigerant in the lower vane 127S
  • a lower pressure introducing passage 129S for applying a back pressure is formed.
  • An upper suction hole 135T that engages with the upper suction pipe 105 is provided in the upper side protruding portion 122T of the upper cylinder 121T.
  • a lower suction hole 135S fitted with the lower suction pipe 104 is provided in the lower side projecting portion 122S of the lower cylinder 121S.
  • the upper side of the upper cylinder chamber 130T is closed by the upper end plate 160T, and the lower side is closed by the intermediate partition plate 140.
  • the upper side of the lower cylinder chamber 130S is closed by the intermediate partition plate 140, and the lower side is closed by the lower end plate 160S.
  • the upper cylinder chamber 130T is provided in the upper suction chamber 131T communicated with the upper suction hole 135T and the upper end plate 160T when the upper vane 127T is pressed by the upper spring 126T and abuts on the outer peripheral surface 139T of the upper piston 125T. It is divided into an upper compression chamber 133T communicating with the upper discharge hole 190T.
  • the lower cylinder chamber 130S is provided in the lower suction chamber 131S communicating with the lower suction hole 135S and the lower end plate 160S when the lower vane 127S is pressed by the lower spring 126S and abuts on the outer peripheral surface 139S of the lower piston 125S. It is divided into a lower compression chamber 133S communicating with the lower discharge hole 190S.
  • the upper discharge hole 190T is provided in proximity to the upper vane groove 128T
  • the lower discharge hole 190S is provided in proximity to the lower vane groove 128S.
  • the refrigerant compressed in the upper compression chamber 133T is discharged from the upper compression chamber 133T through the upper discharge hole 190T.
  • the refrigerant compressed in the lower compression chamber 133S is discharged from the lower compression chamber 133S through the lower discharge hole 190S.
  • the upper end plate 160T is provided with an upper discharge hole 190T which penetrates the upper end plate 160T and communicates with the upper compression chamber 133T of the upper cylinder 121T.
  • An upper valve seat 191T is formed around the upper discharge hole 190T on the outlet side of the upper discharge hole 190T.
  • an upper discharge valve accommodation concave portion 164T extending in a groove shape from the position of the upper discharge hole 190T toward the outer periphery of the upper end plate 160T is formed.
  • the entire reed valve type upper discharge valve 200T and the entire upper discharge valve press 201T that regulates the opening degree of the upper discharge valve 200T are accommodated.
  • the upper discharge valve 200T is fixed at its base end portion in the upper discharge valve accommodating recess 164T by the upper rivet 202T, and its tip end opens and closes the upper discharge hole 190T.
  • the upper discharge valve holder 201T has its base end superimposed on the upper discharge valve 200T and is fixed in the upper discharge valve accommodation recess 164T by the upper rivet 202T, and its tip is curved in the direction in which the upper discharge valve 200T opens. Then, the opening degree of the upper discharge valve 200T is restricted.
  • the upper discharge valve accommodating recess 164T has a width slightly larger than the widths of the upper discharge valve 200T and the upper discharge valve retainer 201T, and accommodates the upper discharge valve 200T and the upper discharge valve retainer 201T.
  • the discharge valve 200T and the upper discharge valve retainer 201T are positioned.
  • the lower end plate 160S is provided with a lower discharge hole 190S which penetrates the lower end plate 160S and communicates with the lower compression chamber 133S of the lower cylinder 121S.
  • An annular lower valve seat 191S is formed around the lower discharge hole 190S on the outlet side of the lower discharge hole 190S.
  • the lower valve seat 191S is formed to bulge with respect to the bottom surface of a lower discharge chamber concave portion 163S described later.
  • a lower discharge valve accommodating recess 164S extending in a groove shape from the position of the lower discharge hole 190S toward the outer periphery of the lower end plate 160S is formed on the lower side (lower end plate cover 170S side) of the lower end plate 160S.
  • the entire reed valve type lower discharge valve 200S and the entire lower discharge valve press 201S for regulating the opening degree of the lower discharge valve 200S are stored.
  • the lower discharge valve 200S has a base end fixed to the lower discharge valve receiving recess 164S by the lower rivet 202S, and a distal end opens and closes the lower discharge hole 190S.
  • the lower discharge valve presser 201S has a base end superimposed on the lower discharge valve 200S and is fixed in the lower discharge valve receiving recess 164S by the lower rivet 202S, and the tip is curved in the direction in which the lower discharge valve 200S opens. Then, the opening degree of the lower discharge valve 200S is regulated.
  • the lower discharge valve accommodating recess 164S is formed to have a width slightly larger than the widths of the lower discharge valve 200S and the lower discharge valve retainer 201S, and accommodates the lower discharge valve 200S and the lower discharge valve retainer 201S.
  • the discharge valve 200S and the lower discharge valve press 201S are positioned.
  • an upper end plate cover chamber 180T is formed between the upper end plate 160T tightly fixed to each other and the upper end plate cover 170T having the bulging portion 181.
  • a lower end plate cover chamber 180S (see FIG. 3) is formed between the lower end plate 160S closely attached and fixed to each other and the flat lower end plate cover 170S.
  • Two refrigerant passage holes 136A as refrigerant communication holes that penetrate the lower end plate 160S, lower cylinder 121S, middle partition plate 140, upper end plate 160T and upper cylinder 121T and communicate the lower end plate cover chamber 180S and the upper end plate cover chamber 180T 136B (hatched portion in FIG. 3) is provided.
  • the refrigerant passage holes 136A, 136B are formed in a circular shape, and are arranged adjacent to each other along the outer peripheral surface of the lower end plate 160S.
  • the refrigerant passage hole 136A is formed to have a diameter larger than that of the refrigerant passage hole 136B, and is disposed on the base end side (lower rivet 202S side) of the lower discharge valve 200S than the refrigerant passage hole 136B.
  • the refrigerant passage hole 136A is disposed such that a portion thereof overlaps the inner peripheral surface of the lower discharge chamber concave portion 163S.
  • the refrigerant passage hole 136B is disposed in the lower discharge chamber concave portion 163S in contact with the inner peripheral surface of the lower discharge chamber concave portion 163S.
  • two refrigerant passage holes 136A and 136B are provided, but the number of refrigerant passage holes is not limited to two.
  • the lower discharge chamber concave portion 163S is in communication with the lower discharge valve housing concave portion 164S.
  • the lower discharge chamber concave portion 163S is formed to have the same depth as the lower discharge valve housing concave portion 164S so as to overlap the lower discharge hole 190S side of the lower discharge valve housing concave portion 164S.
  • the lower discharge hole 190S side of the lower discharge valve accommodation recess 164S is accommodated in the lower discharge chamber recess 163S.
  • the refrigerant passage hole 136 is disposed at a position where at least a part thereof overlaps the lower discharge chamber concave portion 163S and communicates with the lower discharge chamber concave portion 163S.
  • the through bolt 174 or the like is passed through the lower surface of the lower end plate 160S (the contact surface with the lower end plate cover 170S) except the area where the lower discharge chamber concave portion 163S and the lower discharge valve accommodating concave portion 164S are formed.
  • a plurality of bolt holes 138 (FIG. 3) are provided.
  • the refrigerant passage hole 136 is disposed at a position where at least a portion thereof overlaps the upper discharge chamber concave portion 163T and communicates with the upper discharge chamber concave portion 163T.
  • the upper discharge chamber concave portion 163T and the upper discharge valve housing concave portion 164T formed in the upper end plate 160T are not shown in detail but a lower discharge chamber concave portion 163S and a lower discharge valve housing concave portion 164S formed in the lower end plate 160S It is formed in the same shape.
  • the upper end plate cover chamber 180T is formed of a dome-like bulging portion 181 of the upper end plate cover 170T, an upper discharge chamber concave portion 163T, and an upper discharge valve accommodation concave portion 164T.
  • coolant by rotation of the rotating shaft 15 is demonstrated.
  • the upper piston 125T fitted to the upper eccentric portion 152T of the rotating shaft 15 revolves along the inner peripheral surface 137T of the upper cylinder 121T by the rotation of the rotating shaft 15.
  • the suction chamber 131T sucks the refrigerant from the upper suction pipe 105 while expanding the volume
  • the upper compression chamber 133T compresses the refrigerant while reducing the volume
  • the pressure of the compressed refrigerant is the upper end plate cover outside the upper discharge valve 200T.
  • the upper discharge valve 200T When the pressure in the chamber 180T is higher, the upper discharge valve 200T is opened, and the refrigerant is discharged from the upper compression chamber 133T to the upper end plate cover chamber 180T.
  • the refrigerant discharged into the upper end plate cover chamber 180T is discharged into the compressor housing 10 from the upper end plate cover discharge hole 172T (see FIG. 1) provided in the upper end plate cover 170T.
  • the lower piston 125S fitted to the lower eccentric portion 152S of the rotating shaft 15 revolves along the inner circumferential surface 137S of the lower cylinder 121S by the rotation of the rotating shaft 15.
  • the lower suction chamber 131S sucks the refrigerant from the lower suction pipe 104 while expanding the volume
  • the lower compression chamber 133S compresses the refrigerant while reducing the volume
  • the pressure of the compressed refrigerant is the lower end of the outer side of the lower discharge valve 200S.
  • the lower discharge valve 200S is opened, and the refrigerant is discharged from the lower compression chamber 133S to the lower end plate cover chamber 180S.
  • the refrigerant discharged into the lower end plate cover chamber 180S is discharged into the compressor housing 10 from the upper end plate cover discharge hole 172T provided in the upper end plate cover 170T through the refrigerant passage hole 136 and the upper end plate cover chamber 180T. .
  • the refrigerant discharged into the compressor housing 10 has a notch (not shown) provided on the outer periphery of the stator 111 and communicates with the upper and lower sides, a gap (not shown) of the winding portion of the stator 111, or the stator 111
  • the air is guided to the upper side of the motor 11 through a gap 115 (see FIG. 1) between the rotor 112 and the rotor 112, and is discharged from a discharge pipe 107 as a discharge part disposed at the top of the compressor housing 10.
  • FIG. 4 is a plan view of the lower end plate cover 170S of the rotary compressor 1 of the embodiment as viewed from above.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4, showing the lower end plate cover 170S of the rotary compressor 1 of the embodiment.
  • FIG. 6 is a cross-sectional view taken along the line AA in FIG. 3, showing the main part of the rotary compressor 1 of the embodiment.
  • FIG. 7 is a longitudinal sectional view showing the main part of the rotary compressor 1 of the embodiment.
  • the lower end plate cover 170 ⁇ / b> S is formed in a flat plate shape, and has a bulging portion 171 ⁇ / b> S bulging downward of the rotary compressor 1.
  • the bulging portion 171S forms a lower end plate cover chamber 180S. Therefore, as shown in FIG. 6, the lower end plate cover chamber 180S is formed by the lower discharge chamber concave portion 163S and the lower discharge valve accommodation concave portion 164S provided in the lower end plate 160S, and the bulging portion 171S of the lower end plate cover 170S. ing.
  • the bulging portion 171S of the lower end plate cover 170S is provided at a position (position facing the lower discharge hole 190S) facing the tip of the lower discharge valve retainer 201S.
  • the bulging portion 171S has a portion (bottom portion) facing the lower discharge hole 190S, and overlaps with at least a part of the lower discharge hole 190S in a cross section orthogonal to the axial direction of the rotating shaft 15. .
  • a portion may be accommodated in which the tip end portion of the lower discharge valve press 201S protrudes from the lower discharge chamber concave portion 163S to the lower end plate cover 170S side.
  • the circular through-hole 145 by which the subshaft part 151 is penetrated is formed in the center of the lower end plate cover 170S.
  • the through bolt 174 or the like is formed in the lower end plate cover 170S and in the area other than the bulging portion 171S except the area opposed to the lower discharge chamber concave portion 163S and the lower discharge valve accommodating concave portion 164S of the lower end plate 160S.
  • a plurality of bolt holes 138 (FIG. 4) are provided through which the
  • the bulging portion 171S of the lower end plate cover 170S is in contact with the lower surface of the lower end plate 160S over the entire peripheral edge portion 171a of the bulging portion 171S.
  • the bulging portion 171S does not have a portion extending over the sub bearing portion 161S, the refrigerant may leak from the lower end plate cover chamber 180S due to the variation in the shape of the bulging portion 171S and the shape of the sub bearing portion 161S.
  • the air tightness in the bulging portion 171S is enhanced.
  • the bulging portion 171S has a pair of opposing side walls 171b, and the distance between the pair of side walls 171b is the lower end plate in the radial direction of the rotating shaft 15.
  • the cover 170S is expanded from the inner peripheral side to the outer peripheral side.
  • the refrigerant discharged from the lower discharge hole 190S and the refrigerant in the bulging portion 171S are arranged along the pair of side walls 171b of the bulging portion 171S on the outer peripheral side of the lower end plate 160S, It is made easy to flow to the 136B side, and it is possible to appropriately adjust the flow of the refrigerant in the lower end plate cover chamber 180S as needed.
  • FIG. 8 is a view showing the relationship between the efficiency of the rotary compressor 1 and the volume of the bulging portion 171S when the displacement volume is 35 cc in the rotary compressor 1 of the embodiment.
  • FIG. 9 is a view showing the relationship between the vibration when the displacement volume is 35 cc and the volume of the bulging portion 171S in the rotary compressor 1 of the embodiment.
  • FIG. 10 is a view showing the relationship between the efficiency and the volume of the bulging portion 171S when the displacement volume is 24 cc in the rotary compressor 1 of the embodiment.
  • FIG. 11 is a view showing the relationship between the vibration when the displacement volume is 24 cc and the volume of the bulging portion 171S in the rotary compressor 1 of the embodiment.
  • shaft shows efficiency [%] of the rotary compressor 1
  • a horizontal axis shows volume [cc] of the bulging part 171S.
  • the vertical axis represents the amplitude [ ⁇ m] of the vibration generated in the lower end plate cover 170S, and one scale of the vertical axis corresponds to 10 [ ⁇ m].
  • the horizontal axes in FIGS. 9 and 11 indicate the volume [cc] of the bulging portion 171S.
  • the displacement volume refers to the total displacement volume of the displacement volume of the upper compression chamber 133T of the upper cylinder 121T and the displacement volume of the lower compression chamber 133S of the lower cylinder 121S.
  • the amplitude of the vibration is an amplitude with respect to the tangential direction of the outer peripheral surface of the lower portion of the compressor housing 10.
  • the rotary is performed when the volume of the bulging portion 171S is in the range of 2 cc to 4 cc.
  • the efficiency of the compressor 1 can be enhanced, and the amplitude of vibration generated in the lower end plate cover 170S can be suppressed.
  • the volume of the bulging portion 171S be 3 cc. Therefore, based on the excluded volume of 35 cc, the volume of the bulging portion 171S is at least 1/18, 1/9 or more of the excluded volume of the total excluded volume of the upper compression chamber 133T and the lower compression chamber 133S.
  • the volume of the bulging portion 171S is 2 cc.
  • the efficiency of the rotary compressor 1 can be enhanced, and the amplitude of the vibration generated in the lower end plate cover 170S can be suppressed.
  • the volume of the bulging portion 171S be 3 cc.
  • the volume of the bulging portion 171S is at least 1/12 or more of the excluded volume of the total excluded volume of the upper compression chamber 133T and the lower compression chamber 133S, 1/6
  • the improvement of the efficiency of the rotary compressor 1 and the suppression of the vibration generated in the lower end plate cover 170S can be properly achieved.
  • the efficiency of the rotary compressor 1 and the pressure pulsation in the lower end plate cover chamber 180S are lower discharge valve accommodation concave portion 164S and lower discharge chamber concave portion which form the lower end plate cover chamber 180S in addition to the volume of the bulging portion 171S described above. It also depends on each volume of 163S. However, when the volume of the lower discharge valve housing concave portion 164S and the lower discharge chamber concave portion 163S is large, the increase in the amplitude generated in the rotary compressor 1 is not caused, and therefore, it is not necessary to provide the bulging portion 171S in the lower end plate cover 170S. .
  • the amplitude may increase due to the excluded volume, that is, the discharge flow rate of the refrigerant discharged from the lower discharge hole 190S. .
  • the volume of the lower discharge valve housing concave portion 164S and the lower discharge chamber concave portion 163S accommodates the lower discharge valve 200S and the lower discharge valve press 201S, for example, for appropriately securing the mechanical strength of the lower end plate 160S.
  • the volume of the lower discharge valve housing recess 164S and the lower discharge chamber recess 163S can be kept small. Therefore, in the present embodiment, the volume of the lower end plate cover chamber 180S is secured by increasing the volume of the bulging portion 171S of the lower end plate cover 170S.
  • the volume of the bulging portion 171S is set to be in the range of 1/18 or more and 1/9 or less of the excluded volume.
  • the volume of the bulging portion 171S of the lower end plate cover 170S is set to about 1.9 cc to about 3.9 cc. Both the improvement of the efficiency of the compressor 1 and the suppression of vibration can be achieved.
  • the displacement volume of the rotary compressor 1 in which the volume of the bulging portion 171S is formed in the range of 1/18 or more and 1/9 or less of the displacement volume is not limited to 35 cc.
  • the volume of the bulging portion 171S is set to, for example, about 1.6 cc to about 3.3 cc when the displacement volume is 30 cc, and 1 when the displacement volume is 24 cc. .3 cc to about 2.7 cc, it is possible to achieve both improvement in efficiency and suppression of vibration.
  • the lower end plate cover 170S in the rotary compressor 1 of the embodiment is provided with the expanded portion 171S having a portion facing the lower discharge hole 190S, and the expanded portion 171S forming the lower end plate cover chamber 180S.
  • the volume is 1/18 or more and 1/9 or less of the total of the displacement volumes of the upper compression chamber 133T and the lower compression chamber 133S.
  • the volume of the bulging portion 171S is optimized to suppress pressure pulsation, so that the efficiency of the rotary compressor 1 can be enhanced and the vibration of the rotary compressor 1 can be suppressed. Therefore, the improvement of the energy consumption efficiency (coefficient of performance / COP: Coefficient Of Performance) in the refrigeration cycle using the rotary compressor 1 and the suppression of the vibration of the rotary compressor 1 can be properly achieved.
  • the bulging portion 171S of the lower end plate cover 170S in the rotary compressor 1 of the embodiment is in contact with the lower surface of the lower end plate 160S over the entire peripheral edge portion 171a of the bulging portion 171S. Since the portion 171S does not have a portion extending over the sub bearing portion 161S, the refrigerant is prevented from leaking from the lower end plate cover chamber 180S due to the variation in the shape of the bulging portion 171S and the shape of the sub bearing portion 161S. The airtightness in the portion 171S can be enhanced.
  • Modifications 1 to 4 will be described with reference to the drawings.
  • the same components as those of the embodiment are denoted by the same reference numerals as those of the embodiment, and the description thereof will be omitted.
  • Modifications 1 to 4 differ from the lower end plate cover 170S in the embodiment in the shape of the bulging portion of the lower end plate cover.
  • FIG. 12 is a plan view of the lower end plate cover in the rotary compressor of the first modification as viewed from above.
  • FIG. 13 is a cross-sectional view taken along the line CC in FIG. 11, showing the lower end plate cover in the rotary compressor of the first modification.
  • FIG. 14 is a longitudinal cross-sectional view showing the main part of the rotary compressor of the first modification.
  • the bulging portion 171S-1 of the lower end plate cover 170S-1 in the first modification is formed in a hemispherical shape having a portion facing the lower discharge hole 190S.
  • the bulging portion 171S-1 of the lower end plate cover 170S-1 is in contact with the lower surface of the lower end plate 160S over the entire peripheral edge portion 171a of the bulging portion 171S-1. Thereby, the airtightness in the bulging portion 171S-1 is enhanced.
  • the bulging portion 171S-1 has a hemispherical inner surface, so that the refrigerant discharged from the lower discharge hole 190S and the refrigerant in the bulging portion 171S-1 can be obtained. It is easy to flow into the lower discharge chamber concave portion 163S along the inner surface of the bulging portion 171S-1, and it is possible to appropriately adjust the flow of the refrigerant in the lower end plate cover chamber 180S as needed.
  • the same effect as that of the embodiment can be obtained, and the shape of the bulging portion 171S-1 can be simplified as compared with the embodiment.
  • the processability of the bulging portion 171S-1 in press working Can be enhanced.
  • FIG. 15 is a plan view of the lower end plate cover in the rotary compressor of Modification 2 as viewed from above.
  • FIG. 16 is a cross-sectional view taken along the line DD in FIG. 15, showing the lower end plate cover in the rotary compressor of the second modification.
  • FIG. 17 is a longitudinal cross-sectional view showing the main parts of a rotary compressor according to a second modification.
  • the bulging portion 171S-2 of the lower end plate cover 170S-2 in the second modification has a portion facing the lower discharge hole 190S.
  • the curvature of the outer peripheral side corner portion 171c located on the outer peripheral side of the lower end plate cover 170S-2 in the radial direction of the rotating shaft 15 is located on the inner peripheral side of the lower end plate cover 170S-2. It is larger than the curvature of the inner corner portion 171 d.
  • the refrigerant discharged from the lower discharge hole 190S and the refrigerant in the bulging portion 171S-2 can easily flow to the refrigerant passage holes 136A and 136B along the inner surface of the outer peripheral side corner portion 171c, if necessary It is possible to appropriately adjust the flow of the refrigerant in the lower end plate cover chamber 180S.
  • the distance between the pair of side walls 171b is from the inner peripheral side to the outer peripheral side of the lower end plate cover 170S-2 in the radial direction of the rotating shaft 15. Is expanding.
  • the refrigerant discharged from the lower discharge hole 190S can easily flow toward the refrigerant passage holes 136A and 136B along the pair of side walls 171b of the bulging portion 171S-2 and, if necessary, in the lower end plate cover chamber 180S. It is possible to appropriately adjust the flow of the refrigerant in the
  • the bulging portion 171S-2 of the lower end plate cover 170S-2 is in contact with the lower surface of the lower end plate 160S over the entire peripheral edge portion 171a of the bulging portion 171S-2. Thereby, the airtightness in the bulging portion 171S-2 is enhanced.
  • the refrigerant in the lower end plate cover chamber 180S is drawn along the inner surface of the outer peripheral corner 171c. It can be made easy to flow to passage holes 136A, 136B. Also in the second modification, the same effect as that of the embodiment can be obtained.
  • FIG. 18 is a plan view of the lower end plate cover in the rotary compressor of Modification 3 as viewed from above.
  • FIG. 19 is a cross-sectional view taken along the line E-E in FIG. 18, showing the lower end plate cover in the rotary compressor of the third modification.
  • FIG. 20 is a longitudinal cross-sectional view showing the main parts of a rotary compressor of the third modification.
  • the bulging portion 171S-3 of the lower end plate cover 170S-3 in the third modification has a portion facing the lower discharge hole 190S, and the lower end plate cover 170S-3
  • the side wall 171b on the side of the through hole 145 is cut away to form a cutout 171e.
  • the peripheral edge portion 171a excluding the notch portion 171e is in contact with the lower surface of the lower end plate 160S, and the notch portion 171e abuts on the outer peripheral surface of the sub bearing portion 161S. It is done.
  • the distance between the pair of side walls 171b is the outer periphery from the inner peripheral side of the lower end plate cover 170S-3 in the radial direction of the rotating shaft 15. It is expanding toward the side.
  • the change in the distance between the pair of side walls 171b is steeper.
  • the refrigerant discharged from the lower discharge hole 190S and the refrigerant in the bulging portion 171S-3 are placed along the pair of side walls 171b of the bulging portion 171S, on the outer peripheral side of the lower end plate 160S. It is made easier to flow to the 136A, 136B side.
  • the bulging portion 171S-3 since the bulging portion 171S-3 has the cutout portion 171e, the airtightness in the bulging portion 171S-3 is reduced compared to the above-described embodiment and the first and second modifications. Even if the refrigerant slightly leaks from between the bulging portion 171S-3 and the sub bearing portion 161S into the compressor housing 10, there is no influence, and the processability of the bulging portion 171S-3 can be enhanced. Also in the third modification, the same effect as that of the embodiment can be obtained.
  • the third modification described above is not limited to the configuration in which the cutaway portion 171e of the bulging portion 171S-3 is abutted against the outer peripheral surface of the sub bearing portion 161S.
  • the bulging portion 171S-3 is extended along the outer peripheral surface of the sub bearing portion 161S from the notch portion 171e, and the outer peripheral surface of the sub bearing portion 161S It may be formed to cover the Further, the structure in which a part of the bulging portion 171S-3 covers the sub bearing portion 161S in this manner may be applied in the above-described embodiment and the first and second modifications.
  • FIG. 21 is a plan view of the lower end plate cover in the rotary compressor of Modification 4 as viewed from above.
  • FIG. 22 is a cross-sectional view taken along line FF in FIG. 20, showing a lower end plate cover in the rotary compressor of the fourth modification.
  • FIG. 23 is a longitudinal cross-sectional view showing the main parts of a rotary compressor of the fourth modification.
  • the bulging portion 171S-4 of the lower end plate cover 170S-4 in the fourth modification has a portion facing the lower discharge hole 190S. At least a part of the bulging portion 171S-4 is formed so as to overlap the lower discharge chamber concave portion 163S and the lower discharge valve accommodation concave portion 164S in a cross section orthogonal to the axial direction of the rotary shaft 15 (see FIG. 3) .
  • the expanded portion 171S-4 secures a volume by widening the area occupied by the cross section orthogonal to the axial direction of the rotating shaft 15, the depth of the lower end plate cover 170S-4 in the thickness direction is made shallow. It becomes possible to form.
  • the bulging portion 171S-4 is formed in a shape including a portion where the volume changes in a cross section orthogonal to the axial direction of the rotating shaft 15, a so-called throttling portion, so that the refrigerant in the lower end plate cover chamber 180S It is possible to disturb the flow and appropriately adjust the flow of the refrigerant.
  • the bulging portion 171S-4 of the lower end plate cover 170S-4 is in contact with the lower surface of the lower end plate 160S over the entire peripheral portion 171a of the bulging portion 171S-4. Thereby, the airtightness in the bulging portion 171S-4 is enhanced.
  • the bulging portion 171S-4 is formed so as to overlap with the lower discharge chamber concave portion 163S and the lower discharge valve housing concave portion 164S, respectively, whereby the volume of the bulging portion 171S-4 is obtained.
  • the depth of the bulging portion 171S-4 can be formed shallow. Also in the fourth modification, the same effect as that of the embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

ロータリ圧縮機(1)において、下端板(160S)は、下吐出孔(190S)を開閉するリード弁型の下吐出弁(200S)と、下吐出孔(190S)から溝状に延ばされて下吐出弁(200S)が収容される下吐出弁収容凹部(164S)と、下吐出弁収容凹部(164S)の下吐出孔(190S)側に重なるように形成されて冷媒通路孔(136)と連通する下吐出室凹部(163S)と、を有する。下端板カバー(170S)は、平板状に形成され、下吐出孔(190S)に対向する部分を有する膨出部(171S)が設けられる。下端板カバー室(180S)は、下吐出弁収容凹部(164S)と、下吐出室凹部(163S)と、膨出部(171S)とによって形成される。膨出部(171S)の容積は、上圧縮室(133T)と下圧縮室(133S)のそれぞれの排除容積の合計の1/18以上、1/9以下である。

Description

ロータリ圧縮機
 本発明は、ロータリ圧縮機に関する。
 例えば空気調和機や冷凍装置では、冷媒を圧縮するために2シリンダ型のロータリ圧縮機が用いられている。2シリンダ型のロータリ圧縮機では、回転軸の1回転あたりのトルクの変動をできるだけ小さくするために、一般に、吸入、圧縮、吐出の工程が2つの上下シリンダにおいて180°異なる位相で行われるように構成されている。起動時など特異な運転条件を除き、通常の室外温度及び室内温度での空気調和機の運転では、1つのシリンダの吐出工程が、1回転中の約1/3を占める。したがって、1回転中の1/3が、一方のシリンダの吐出工程(吐出弁が開いている工程)であり、他の1/3が、他方のシリンダの吐出工程であり、残りの1/3が、両方の吐出弁が閉じている工程である。
 2つの上シリンダと下シリンダの両方の吐出弁が閉じて圧縮室から吐出される冷媒の流れがないときは、上マフラー室(以下、上端板カバー室とも称する。)と下マフラー室(以下、下端板カバー室とも称する。)の両方が、上マフラー室の外側である圧縮機筐体内と同じ圧力となる。一方のシリンダの吐出工程では、圧縮された高圧域のなかでも冷媒の流れの最も上流となる圧縮室の圧力が最も高く、次いでマフラー室、上マフラー室の外側の圧縮機筐体内の順となる。したがって、上シリンダの吐出弁が開いた直後は、上マフラー室の外側の圧縮機筐体内や下マフラー室の圧力よりも上マフラー室の圧力が高くなる。よって、次の瞬間には、上マフラー室から上マフラー室の外側の圧縮機筐体内への冷媒の流れと、上マフラー室から冷媒通路孔を逆流して下マフラー室への冷媒の流れとが生じる。このように上シリンダで圧縮されて高圧となって上マフラー室に吐出された冷媒の一部が冷媒通路孔を逆流して下マフラー室に流れ込む、いわゆる冷媒の逆流現象が生じる。
 上マフラー室から、上マフラー室の外側である圧縮機筐体内への流れは、本来の流れであるが、上マフラー室から下マフラー室へ流れた冷媒は、上シリンダの吐出工程の終了後に再度冷媒通路孔及び上マフラー室を通って上マフラー室の外側の圧縮機筐体内に流れることになる。圧縮機筐体内への流れは、本来、必要のない流れであり、エネルギー損失となってロータリ圧縮機の効率を低下させる。そして、下端板及び下端板カバーに形成される下マフラー室を大きくし過ぎると、上マフラー室から逆流した冷媒が、下マフラー室へ流れ込む空間が大きくなるので、ロータリ圧縮機の効率の低下が大きくなる傾向にある。
特開2016-118142号公報
 そこで、ロータリ圧縮機の効率の低下を抑えるために、下端板カバーを平板状に形成したり、下端板カバーの一部のみに膨出部を形成したりすることにより、下マフラー室を小さくし、ロータリ圧縮機の効率の低下が抑える技術が知られている。
 しかしながら、下端板カバーの膨出部の容積を小さくし過ぎた場合、下マフラー室が小さくなり過ぎることで、下シリンダの下圧縮室で圧出された冷媒が、下マフラー室から、冷媒通路孔を通って上マフラー室へ早めに流れ込む。このため、下マフラー室内の圧力脈動が大きくなり、下マフラー室による消音効果を適正に得られず、下端板カバーに生じる振動の振幅が大きくなる問題がある。
 一方、下端板カバーの膨出部の容積を大きくした場合、下マフラー室内の圧力脈動が小さくなり、圧力脈動に伴ってロータリ圧縮機に生じる振動の振幅の増大が抑えられる。しかし、この場合、上マフラー室から冷媒連通孔を通って下マフラー室へ逆流した冷媒が流れ込む空間が大きくなるので、ロータリ圧縮機の効率の低下を招く。
 したがって、ロータリ圧縮機の効率の向上と、ロータリ圧縮機の振動の抑制とを両立することが困難であった。
 開示の技術は、上記に鑑みてなされたものであって、効率を高めると共に振動を抑えることができるロータリ圧縮機を提供することを目的とする。
 本願の開示するロータリ圧縮機の一態様は、上部に冷媒の吐出部が設けられ下部に冷媒の吸入部が設けられ密閉された縦置き円筒状の圧縮機筐体と、前記圧縮機筐体の下部に配置され前記吸入部から吸入された冷媒を圧縮し前記吐出部から吐出する圧縮部と、前記圧縮機筐体の上部に配置され前記圧縮部を駆動するモータとを有し、前記圧縮部は、環状の上シリンダ及び下シリンダと、前記上シリンダの上側を閉塞する上端板と前記下シリンダの下側を閉塞する下端板と、前記上シリンダと前記下シリンダの間に配置され前記上シリンダの下側及び前記下シリンダの上側を閉塞する中間仕切板と、前記上端板に設けられた主軸受部と前記下端板に設けられた副軸受部とに支持され前記モータにより回転される回転軸と、前記回転軸に互いに180度の位相差をつけて設けられた上偏心部及び下偏心部と、前記上偏心部に嵌合され前記上シリンダの内周面に沿って公転し前記上シリンダ内に上シリンダ室を形成する上ピストンと、前記下偏心部に嵌合され前記下シリンダの内周面に沿って公転し前記下シリンダ内に下シリンダ室を形成する下ピストンと、前記上シリンダに設けられた上ベーン溝から前記上シリンダ室内に突出し前記上ピストンに当接して前記上シリンダ室を上吸入室と上圧縮室に区画する上ベーンと、前記下シリンダに設けられた下ベーン溝から前記下シリンダ室内に突出し前記下ピストンに当接して前記下シリンダ室を下吸入室と下圧縮室に区画する下ベーンと、前記上端板を覆って前記上端板との間に上端板カバー室を形成し前記上端板カバー室と前記圧縮機筐体の内部とを連通する上端板カバー吐出孔を有する上端板カバーと、前記下端板を覆って前記下端板との間に下端板カバー室を形成する下端板カバーと、前記上端板に設けられ前記上圧縮室と上端板カバー室とを連通させる上吐出孔と、前記下端板に設けられ前記下圧縮室と下端板カバー室とを連通させる下吐出孔と、前記下端板、前記下シリンダ、前記中間仕切板、前記上端板及び前記上シリンダを貫通し前記下端板カバー室と前記上端板カバー室とを連通する冷媒通路孔と、を備えるロータリ圧縮機において、前記下端板は、前記下吐出孔を開閉するリード弁型の下吐出弁と、前記下吐出孔から溝状に延ばされて前記下吐出弁が収容される下吐出弁収容凹部と、前記下吐出弁収容凹部の前記下吐出孔側に重なるように形成されて前記冷媒通路孔と連通する下吐出室凹部と、を有し、前記下端板カバーは、平板状に形成され、前記下吐出孔に対向する部分を有する膨出部が設けられ、前記下端板カバー室は、前記下吐出弁収容凹部と、前記下吐出室凹部と、前記膨出部とによって形成され、前記膨出部の容積は、前記上圧縮室と前記下圧縮室のそれぞれの排除容積の合計の1/18以上、1/9以下である。
 本願の開示するロータリ圧縮機の一態様によれば、ロータリ圧縮機の効率を高めると共に振動を抑えることができる。
図1は、実施例のロータリ圧縮機を示す縦断面図である。 図2は、実施例のロータリ圧縮機の圧縮部を示す分解斜視図である。 図3は、実施例のロータリ圧縮機の下端板を下方から見た平面図である。 図4は、実施例のロータリ圧縮機の下端板カバーを上方から見た平面図である。 図5は、実施例のロータリ圧縮機の下端板カバーを示す、図4中のB-B断面図である。 図6は、実施例のロータリ圧縮機の要部を示す、図3中のA-A断面図である。 図7は、実施例のロータリ圧縮機の要部を示す縦断面図である。 図8は、実施例のロータリ圧縮機において、排除容積が35ccの場合の効率と膨出部の容積との関係を示す図である。 図9は、実施例のロータリ圧縮機において、排除容積が35ccの場合の振動と膨出部の容積との関係を示す図である。 図10は、実施例のロータリ圧縮機において、排除容積が24ccの場合の効率と膨出部の容積との関係を示す図である。 図11は、実施例のロータリ圧縮機において、排除容積が24ccの場合の振動と膨出部の容積との関係を示す図である。 図12は、変形例1のロータリ圧縮機における下端板カバーを上方から見た平面図である。 図13は、変形例1のロータリ圧縮機における下端板カバーを示す、図11中のC-C断面図である。 図14は、変形例1のロータリ圧縮機の要部を示す縦断面図である。 図15は、変形例2のロータリ圧縮機における下端板カバーを上方から見た平面図である。 図16は、変形例2のロータリ圧縮機における下端板カバーを示す、図15中のD-D断面図である。 図17は、変形例2のロータリ圧縮機の要部を示す縦断面図である。 図18は、変形例3のロータリ圧縮機における下端板カバーを上方から見た平面図である。 図19は、変形例3のロータリ圧縮機における下端板カバーを示す、図18中のE-E断面図である。 図20は、変形例3のロータリ圧縮機の要部を示す縦断面図である。 図21は、変形例4のロータリ圧縮機における下端板カバーを上方から見た平面図である。 図22は、変形例4のロータリ圧縮機における下端板カバーを示す、図20中のF-F断面図である。 図23は、変形例4のロータリ圧縮機の要部を示す縦断面図である。
 以下に、本願の開示するロータリ圧縮機の実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示するロータリ圧縮機が限定されるものではない。
 (ロータリ圧縮機の構成)
 図1は、実施例のロータリ圧縮機を示す縦断面図である。図2は、実施例のロータリ圧縮機の圧縮部を示す分解斜視図である。図3は、実施例のロータリ圧縮機の下端板を下方から見た平面図である。
 図1に示すように、ロータリ圧縮機1は、密閉された縦置き円筒状の圧縮機筐体10内の下部に配置された圧縮部12と、圧縮機筐体10内の上部に配置され回転軸15を介して圧縮部12を駆動するモータ11と、圧縮機筐体10の外周面に固定され密閉された縦置き円筒状のアキュムレータ25と、を備えている。
 圧縮機筐体10は、冷媒を吸入する上吸入管105及び下吸入管104を有しており、上吸入管105及び下吸入管104が圧縮機筐体10の側面下部に設けられている。アキュムレータ25は、吸入部としての上吸入管105及びアキュムレータ上湾曲管31Tを介して上シリンダ121Tの上シリンダ室130T(図2参照)と接続され、吸入部としての下吸入管104及びアキュムレータ下湾曲管31Sを介して下シリンダ121Sの下シリンダ室130S(図2参照)と接続されている。本実施例では、圧縮機筐体10の周方向において、上吸入管105と下吸入管104の位置が重なっており、同一位置に位置する。
 モータ11は、外側に配置されたステータ111と、内側に配置されたロータ112と、を備えている。ステータ111は、圧縮機筐体10の内周面に焼嵌めまたは溶接によって固定されている。ロータ112は、回転軸15に焼嵌めによって固定されている。
 回転軸15は、下偏芯部152Sの下方の副軸部151が、下端板160Sに設けられた副軸受部161Sに回転自在に支持され、上偏芯部152Tの上方の主軸部153が上端板160Tに設けられた主軸受部161Tに回転自在に支持されている。回転軸15には、上偏芯部152Tと下偏芯部152Sとが互いに180度の位相差をつけて設けられており、上偏芯部152Tに上ピストン125Tが支持され、下偏芯部152Sに下ピストン125Sが支持されている。これによって、回転軸15は、圧縮部12全体に対して回転自在に支持されると共に、回転によって上ピストン125Tの外周面139Tを上シリンダ121Tの内周面137Tに沿って公転運動させ、下ピストン125Sの外周面139Sを下シリンダ121Sの内周面137Sに沿って公転運動させる。
 圧縮機筐体10の内部には、圧縮部12において摺動する上シリンダ121Tと上ピストン125T及び下シリンダ121Sと下ピストン125S等の摺動部の潤滑性を確保し、上圧縮室133T(図2参照)及び下圧縮室133S(図2参照)をシールするための潤滑油18が、圧縮部12をほぼ浸漬する量だけ封入されている。圧縮機筐体10の下側には、ロータリ圧縮機1全体を支持する複数の弾性支持部材(図示せず)を係止する取付脚310(図1参照)が固定されている。
 図1に示すように、圧縮部12は、上吸入管105及び下吸入管104から吸入された冷媒を圧縮し、後述する吐出管107から吐出する。図2に示すように、圧縮部12は、上から、内部に中空空間が形成された膨出部181を有する上端板カバー170T、上端板160T、環状の上シリンダ121T、中間仕切板140、環状の下シリンダ121S、下端板160S及び平板状の下端板カバー170Sを積層して構成されている。圧縮部12全体は、上下から略同心円上に配置された複数の通しボルト174,175及び補助ボルト176によって固定されている。
 上シリンダ121Tには、円筒状の内周面137Tが形成されている。上シリンダ121Tの内周面137Tの内側には、上シリンダ121Tの内周面137Tの内径よりも小さい外径の上ピストン125Tが配置されており、上シリンダ121Tの内周面137Tと上ピストン125Tの外周面139Tとの間に、冷媒を吸入し圧縮して吐出する上圧縮室133Tが形成される。下シリンダ121Sには、円筒状の内周面137Sが形成されている。下シリンダ121Sの内周面137Sの内側には、下シリンダ121Sの内周面137Sの内径よりも小さい外径の下ピストン125Sが配置されており、下シリンダ121Sの内周面137Sと下ピストン125Sの外周面139Sとの間に、冷媒を吸入し圧縮して吐出する下圧縮室133Sが形成される。
 図2に示すように、上シリンダ121Tは、外周部から、円筒状の内周面137Tの径方向における外周側へ張り出した上側方突出部122Tを有する。上側方突出部122Tには、上シリンダ室130Tから放射状に外方へ延びる上ベーン溝128Tが設けられている。上ベーン溝128T内には、上ベーン127Tが摺動可能に配置されている。下シリンダ121Sは、外周部から、円筒状の内周面137Sの径方向における外周側へ張り出した下側方突出部122Sを有する。下側方突出部122Sには、下シリンダ室130Sから放射状に外方へ延びる下ベーン溝128Sが設けられている。下ベーン溝128S内には、下ベーン127Sが摺動可能に配置されている。
 上側方突出部122Tは、上シリンダ121Tの内周面137Tの周方向に沿って、所定の突出範囲にわたって形成されている。下側方突出部122Sは、下シリンダ121Sの内周面137Sの周方向に沿って、所定の突出範囲にわたって形成されている。上側方突出部122T及び下側方突出部122Sは、上シリンダ121T及び下シリンダ121Sの加工時に加工治具に固定するためのチャック用保持部として用いられる。上側方突出部122T及び下側方突出部122Sが加工治具に固定されることで、上シリンダ121T及び下シリンダ121Sが所定の位置に位置決めされる。
 上側方突出部122Tには、外側面から上ベーン溝128Tと重なる位置に、上シリンダ室130Tに貫通しない深さで上スプリング穴124Tが設けられている。上スプリング穴124Tには上スプリング126Tが配置されている。下側方突出部122Sには、外側面から下ベーン溝128Sと重なる位置に、下シリンダ室130Sに貫通しない深さで下スプリング穴124Sが設けられている。下スプリング穴124Sには下スプリング126Sが配置されている。
 また、上シリンダ121Tには、上ベーン溝128Tの径方向外側と圧縮機筐体10内とを開口部で連通して圧縮機筐体10内の圧縮された冷媒を導入し、上ベーン127Tに冷媒の圧力により背圧をかける上圧力導入路129Tが形成されている。また、下シリンダ121Sには、下ベーン溝128Sの径方向外側と圧縮機筐体10内とを連通して圧縮機筐体10内の圧縮された冷媒を導入し、下ベーン127Sに冷媒の圧力により背圧をかける下圧力導入路129Sが形成されている。
 上シリンダ121Tの上側方突出部122Tには、上吸入管105と嵌合する上吸入孔135Tが設けられている。下シリンダ121Sの下側方突出部122Sには、下吸入管104と嵌合する下吸入孔135Sが設けられている。
 図2に示すように、上シリンダ室130Tは、上側が上端板160Tで閉塞され、下側が中間仕切板140で閉塞されている。下シリンダ室130Sは、上側が中間仕切板140で閉塞され、下側が下端板160Sで閉塞されている。
 上シリンダ室130Tは、上ベーン127Tが上スプリング126Tに押圧されて上ピストン125Tの外周面139Tに当接することによって、上吸入孔135Tに連通する上吸入室131Tと、上端板160Tに設けられた上吐出孔190Tに連通する上圧縮室133Tと、に区画される。下シリンダ室130Sは、下ベーン127Sが下スプリング126Sに押圧されて下ピストン125Sの外周面139Sに当接することによって、下吸入孔135Sに連通する下吸入室131Sと、下端板160Sに設けられた下吐出孔190Sに連通する下圧縮室133Sと、に区画される。
 また、上吐出孔190Tは、上ベーン溝128Tに近接して設けられており、下吐出孔190Sは、下ベーン溝128Sに近接して設けられている。上圧縮室133T内で圧縮された冷媒は、上圧縮室133T内から上吐出孔190Tを通って吐出される。下圧縮室133S内で圧縮された冷媒は、下圧縮室133S内から下吐出孔190Sを通って吐出される。
 図2に示すように、上端板160Tには、上端板160Tを貫通して上シリンダ121Tの上圧縮室133Tと連通する上吐出孔190Tが設けられている。上吐出孔190Tの出口側には、上吐出孔190Tの周囲に上弁座191Tが形成されている。上端板160Tの上側(上端板カバー170T側)には、上吐出孔190Tの位置から上端板160Tの外周に向かって溝状に延びる上吐出弁収容凹部164Tが形成されている。
 上吐出弁収容凹部164T内には、リード弁型の上吐出弁200T全体と、上吐出弁200Tの開度を規制する上吐出弁押さえ201T全体とが収容されている。上吐出弁200Tは、基端部が上吐出弁収容凹部164T内に上リベット202Tにより固定されており、先端部が上吐出孔190Tを開閉する。上吐出弁押さえ201Tは、基端部が上吐出弁200Tに重ねられて上吐出弁収容凹部164T内に上リベット202Tにより固定されており、先端部が上吐出弁200Tが開く方向へ湾曲して(反って)いて上吐出弁200Tの開度を規制する。また、上吐出弁収容凹部164Tは、その幅が上吐出弁200T及び上吐出弁押さえ201Tの幅よりわずかに大きく形成されており、上吐出弁200T及び上吐出弁押さえ201Tを収容すると共に、上吐出弁200T及び上吐出弁押さえ201Tを位置決めしている。
 図3に示すように、下端板160Sには、下端板160Sを貫通して下シリンダ121Sの下圧縮室133Sと連通する下吐出孔190Sが設けられている。下吐出孔190Sの出口側には、下吐出孔190Sの周囲に環状の下弁座191Sが形成されている。下弁座191Sは、後述する下吐出室凹部163Sの底面に対して盛り上がって形成されている。下端板160Sの下側(下端板カバー170S側)には、下吐出孔190Sの位置から下端板160Sの外周に向かって溝状に延びる下吐出弁収容凹部164Sが形成されている。
 下吐出弁収容凹部164S内には、リード弁型の下吐出弁200S全体と、下吐出弁200Sの開度を規制する下吐出弁押さえ201S全体とが収容されている。下吐出弁200Sは、基端部が下吐出弁収容凹部164S内に下リベット202Sにより固定されており、先端部が下吐出孔190Sを開閉する。下吐出弁押さえ201Sは、基端部が下吐出弁200Sに重ねられて下吐出弁収容凹部164S内に下リベット202Sにより固定されており、先端部が下吐出弁200Sが開く方向へ湾曲して(反って)いて下吐出弁200Sの開度を規制する。また、下吐出弁収容凹部164Sは、その幅が下吐出弁200S及び下吐出弁押さえ201Sの幅よりわずかに大きく形成されており、下吐出弁200S及び下吐出弁押さえ201Sを収容すると共に、下吐出弁200S及び下吐出弁押さえ201Sを位置決めしている。
 また、互いに密着固定された上端板160Tと、膨出部181を有する上端板カバー170Tとの間には、上端板カバー室180Tが形成される。互いに密着固定された下端板160Sと平板状の下端板カバー170Sとの間には、下端板カバー室180S(図3参照)が形成される。下端板160S、下シリンダ121S、中間仕切板140、上端板160T及び上シリンダ121Tを貫通し下端板カバー室180Sと上端板カバー室180Tとを連通する冷媒連通孔としての2つの冷媒通路孔136A、136B(図3中の斜線部分)が設けられている。
 図3に示すように、冷媒通路孔136A、136Bは、円形状に形成されており、下端板160Sの外周面に沿って隣接して配置されている。冷媒通路孔136Aは、冷媒通路孔136Bよりも直径が大きく形成されており、冷媒通路孔136Bよりも下吐出弁200Sの基端部側(下リベット202S側)に配置されている。冷媒通路孔136Aは、下吐出室凹部163Sの内周面に一部が重なるように配置されている。冷媒通路孔136Bは、下吐出室凹部163Sの内周面に接して、下吐出室凹部163S内に配置されている。なお、本実施例では、2つの冷媒通路孔136A、136Bを有するが、冷媒通路孔の個数が2つに限定されるものではない。
 図3に示すように、下吐出室凹部163Sは、下吐出弁収容凹部164Sに連通されている。下吐出室凹部163Sは、下吐出弁収容凹部164Sの下吐出孔190S側に重なるように、下吐出弁収容凹部164Sの深さと同じ深さに形成されている。下吐出弁収容凹部164Sの下吐出孔190S側は、下吐出室凹部163Sに収容されている。冷媒通路孔136は、少なくとも一部が下吐出室凹部163Sに重なり、下吐出室凹部163Sと連通する位置に配置されている。
 また、下端板160Sの下面(下端板カバー170Sとの当接面)には、下吐出室凹部163S及び下吐出弁収容凹部164Sが形成された領域以外の領域に、通しボルト174等が通される複数のボルト孔138(図3)が設けられている。
 冷媒通路孔136は、少なくとも一部が上吐出室凹部163Tに重なって上吐出室凹部163Tと連通する位置に配置されている。上端板160Tに形成された上吐出室凹部163T及び上吐出弁収容凹部164Tについては、詳細な図示を省略するが、下端板160Sに形成された下吐出室凹部163S及び下吐出弁収容凹部164Sと同様の形状に形成されている。上端板カバー室180Tは、上端板カバー170Tのドーム状の膨出部181と上吐出室凹部163Tと上吐出弁収容凹部164Tとによって形成されている。
 以下に、回転軸15の回転による冷媒の流れを説明する。上シリンダ室130T内において、回転軸15の回転によって、回転軸15の上偏芯部152Tに嵌合された上ピストン125Tが、上シリンダ121Tの内周面137Tに沿って公転することにより、上吸入室131Tが容積を拡大しながら上吸入管105から冷媒を吸入し、上圧縮室133Tが容積を縮小しながら冷媒を圧縮し、圧縮した冷媒の圧力が上吐出弁200Tの外側の上端板カバー室180Tの圧力より高くなると、上吐出弁200Tが開いて上圧縮室133Tから上端板カバー室180Tへ冷媒が吐出される。上端板カバー室180Tに吐出された冷媒は、上端板カバー170Tに設けられた上端板カバー吐出孔172T(図1参照)から圧縮機筐体10内に吐出される。
 また、下シリンダ室130S内において、回転軸15の回転によって、回転軸15の下偏芯部152Sに嵌合された下ピストン125Sが、下シリンダ121Sの内周面137Sに沿って公転することにより、下吸入室131Sが容積を拡大しながら下吸入管104から冷媒を吸入し、下圧縮室133Sが容積を縮小しながら冷媒を圧縮し、圧縮した冷媒の圧力が下吐出弁200Sの外側の下端板カバー室180Sの圧力より高くなると、下吐出弁200Sが開いて下圧縮室133Sから下端板カバー室180Sへ冷媒が吐出される。下端板カバー室180Sに吐出された冷媒は、冷媒通路孔136及び上端板カバー室180Tを通って上端板カバー170Tに設けられた上端板カバー吐出孔172Tから圧縮機筐体10内に吐出される。
 圧縮機筐体10内に吐出された冷媒は、ステータ111外周に設けられた上下に連通する切欠き(図示せず)、又はステータ111の巻線部の隙間(図示せず)、又はステータ111とロータ112との隙間115(図1参照)を通ってモータ11の上方に導かれ、圧縮機筐体10の上部に配置された吐出部としての吐出管107から吐出される。
 (ロータリ圧縮機の特徴的な構成)
 次に、実施例のロータリ圧縮機1の特徴的な構成について説明する。本実施例において、下端板カバー170Sの膨出部171Sの容積が特徴となる。図4は、実施例のロータリ圧縮機1の下端板カバー170Sを上方から見た平面図である。図5は、実施例のロータリ圧縮機1の下端板カバー170Sを示す、図4中のB-B断面図である。図6は、実施例のロータリ圧縮機1の要部を示す、図3中のA-A断面図である。図7は、実施例のロータリ圧縮機1の要部を示す縦断面図である。
 図4及び図5に示すように、下端板カバー170Sは、平板状に形成されており、ロータリ圧縮機1の下方へ膨出する膨出部171Sを有する。膨出部171Sは、下端板カバー室180Sを形成している。したがって、図6に示すように、下端板カバー室180Sは、下端板160Sに設けられた下吐出室凹部163S及び下吐出弁収容凹部164Sと、下端板カバー170Sの膨出部171Sとによって形成されている。
 下端板カバー170Sの膨出部171Sは、下吐出弁押さえ201Sの先端部と対向する位置(下吐出孔190Sに対向する位置))に設けられている。言い換えると、膨出部171Sは、下吐出孔190Sに対向する部分(底部)を有しており、回転軸15の軸方向に直交する断面において下吐出孔190Sの少なくとも一部とに重なっている。また、膨出部171Sには、下端板160Sの厚み方向において、下吐出弁押さえ201Sの先端部が下吐出室凹部163Sから、下端板カバー170S側へ突出する部分が収容されてもよい。
 図4及び図5に示すように、下端板カバー170Sの中央には、副軸部151が挿通される円形の貫通穴145が形成されている。また、下端板カバー170Sには、及び膨出部171S以外の領域であって、下端板160Sの下吐出室凹部163S及び下吐出弁収容凹部164Sに対向する領域以外の領域に、通しボルト174等が通される複数のボルト孔138(図4)が設けられている。
 図7に示すように、下端板カバー170Sの膨出部171Sは、下端板160Sの下面に、膨出部171Sの周縁部171a全体に亘って当接している。これにより、膨出部171Sが副軸受部161Sに跨る部分を有していないので、膨出部171Sの形状と副軸受部161Sとの形状のバラツキによって下端板カバー室180Sから冷媒が漏れることが抑えられ、膨出部171S内の気密性が高められる。
 また、図3及び図4に示すように、膨出部171Sは、対向する一対の側壁171bを有しており、一対の側壁171bが対向する間隔が、回転軸15の径方向において、下端板カバー170Sの内周側から外周側へ向かって拡大している。これにより、下吐出孔190Sから吐出された冷媒や膨出部171S内の冷媒を、膨出部171Sの一対の側壁171bに沿って、下端板160Sの外周側に配置された冷媒通路孔136A、136B側へ流れやすくし、必要に応じて下端板カバー室180S内での冷媒の流れを適宜調整することが可能とされている。
 (下端板カバーの膨出部の容積)
 図8は、実施例のロータリ圧縮機1において、排除容積が35ccの場合のロータリ圧縮機1の効率と膨出部171Sの容積との関係を示す図である。図9は、実施例のロータリ圧縮機1において、排除容積が35ccの場合の振動と膨出部171Sの容積との関係を示す図である。図10は、実施例のロータリ圧縮機1において、排除容積が24ccの場合の効率と膨出部171Sの容積との関係を示す図である。図11は、実施例のロータリ圧縮機1において、排除容積が24ccの場合の振動と膨出部171Sの容積との関係を示す図である。図8及び図10において、縦軸がロータリ圧縮機1の効率[%]を示し、横軸が膨出部171Sの容積[cc]を示す。図9及び図11において、縦軸が下端板カバー170Sに生じる振動の振幅[μm]を示しており、縦軸の1目盛りが10[μm]に相当する。図9及び図11における横軸は、膨出部171Sの容積[cc]を示す。ここで、排除容積とは、上シリンダ121Tの上圧縮室133Tの排除容積と、下シリンダ121Sの下圧縮室133Sの排除容積との合計の排除容積を指している。また、振動の振幅は、圧縮機筐体10の下部の外周面の接線方向に対する振幅である。
 図8及び図9に示すように、圧縮部12の排除容積が35[cc]の場合、膨出部171Sの容積が2[cc]以上、4[cc]以下の範囲内のときに、ロータリ圧縮機1の効率を高めると共に、下端板カバー170Sに生じる振動の振幅を抑えることができる。この範囲内において、膨出部171Sの容積が3[cc]のときが好ましい。したがって、35[cc]の排除容積を基準とすると、膨出部171Sの容積を、上圧縮室133Tと下圧縮室133Sのそれぞれの排除容積の合計の排除容積の1/18以上、1/9以下の範囲内とすることにより、ロータリ圧縮機1の効率の向上と、下端板カバー170Sに生じる振動の抑制とを適正に両立することができる。
 また、図10及び図11に示すように、圧縮部12の排除容積が35[cc]の場合と同様に、排除容積が24[cc]の場合、膨出部171Sの容積が2[cc]以上、4[cc]以下の範囲内のときに、ロータリ圧縮機1の効率を高めると共に、下端板カバー170Sに生じる振動の振幅を抑えることができる。この範囲内において、膨出部171Sの容積が3[cc]のときが好ましい。したがって、24[cc]の排除容積を基準とすると、膨出部171Sの容積を、上圧縮室133Tと下圧縮室133Sのそれぞれの排除容積の合計の排除容積の1/12以上、1/6以下の範囲内とすることにより、ロータリ圧縮機1の効率の向上と、下端板カバー170Sに生じる振動の抑制とを適正に両立することができる。
 ところで、ロータリ圧縮機1の効率、下端板カバー室180S内における圧力脈動は、上述した膨出部171Sの容積以外に、下端板カバー室180Sを形成する下吐出弁収容凹部164S及び下吐出室凹部163Sの各容積にも依存する。しかし、下吐出弁収容凹部164S及び下吐出室凹部163Sの容積が大きい場合には、ロータリ圧縮機1に生じる振幅の増大を招かないので、下端板カバー170Sに膨出部171Sを設ける必要はない。一方、本実施例のように下吐出弁収容凹部164S及び下吐出室凹部163Sの容積が小さい場合、排除容積、つまり下吐出孔190Sから吐出される冷媒の吐出流量により振幅が増大することがある。本実施例では、下端板160Sの機械的強度を適正に確保する等の理由により、下吐出弁収容凹部164S及び下吐出室凹部163Sの容積が、下吐出弁200S及び下吐出弁押さえ201Sを収容する空間が確保される程度の大きさ(必要最小限)であって、下吐出弁収容凹部164S及び下吐出室凹部163Sの容積が小さく抑えられている。このため、本実施例は、下端板カバー室180Sの容積を、下端板カバー170Sの膨出部171Sの容積を大きくすることで確保するものである。
 そして、本実施例では、排除容積が35[cc]のロータリ圧縮機1の場合において、膨出部171Sの容積を排除容積の1/18以上、1/9以下の範囲になるように設定することにより、ロータリ圧縮機1の効率の向上と、振動の抑制とを両立するものである。
 言い換えると、排除容積が35[cc]である場合において、下端板カバー170Sの膨出部171Sの容積が、1.9[cc]程度~3.9[cc]程度に設定することにより、ロータリ圧縮機1の効率の向上と、振動の抑制とを両立することができる。
 なお、膨出部171Sの容積が排除容積の1/18以上、1/9以下の範囲に形成されるロータリ圧縮機1の排除容積を35[cc]に限定するものではない。膨出部171Sの容積は、例えば、排除容積が30[cc]のときに1.6[cc]程度~3.3[cc]程度に設定され、排除容積が24[cc]のときに1.3[cc]程度~2.7[cc]程度に設定されることにより、効率の向上と、振動の抑制とを両立させることが可能になる。
 上述したように、実施例のロータリ圧縮機1における下端板カバー170Sは、下吐出孔190Sに対向する部分を有する膨出部171Sが設けられ、下端板カバー室180Sを形成する膨出部171Sの容積が、上圧縮室133Tと下圧縮室133Sのそれぞれの排除容積の合計の1/18以上、1/9以下である。これにより、膨出部171Sの容積が適正化されて圧力脈動が抑えられるので、ロータリ圧縮機1の効率を高めると共に、ロータリ圧縮機1の振動を抑えることができる。したがって、ロータリ圧縮機1を用いた冷凍サイクルにおけるエネルギー消費効率(成績係数/COP:Coefficient Of Performance)の向上と、ロータリ圧縮機1の振動の抑制とを適正に両立することができる。
 また、実施例のロータリ圧縮機1における下端板カバー170Sの膨出部171Sは、下端板160Sの下面に、膨出部171Sの周縁部171a全体に亘って当接している、これにより、膨出部171Sが副軸受部161Sに跨る部分を有していないので、膨出部171Sの形状と副軸受部161Sとの形状のバラツキによって下端板カバー室180Sから冷媒が漏れることが抑えられ、膨出部171S内の気密性が高めることができる。
 以下、変形例1~4について図面を参照して説明する。変形例1~4において、実施例と同一の構成には、実施例と同一の符号を付して説明を省略する。変形例1~4は、下端板カバーの膨出部の形状が実施例における下端板カバー170Sと異なる。
変形例1
 図12は、変形例1のロータリ圧縮機における下端板カバーを上方から見た平面図である。図13は、変形例1のロータリ圧縮機における下端板カバーを示す、図11中のC-C断面図である。図14は、変形例1のロータリ圧縮機の要部を示す縦断面図である。
 図12及び図13に示すように、変形例1における下端板カバー170S-1が有する膨出部171S-1は、下吐出孔190Sに対向する部分を有する半球状に形成されている。図14に示すように、下端板カバー170S-1の膨出部171S-1は、下端板160Sの下面に、膨出部171S-1の周縁部171a全体に亘って当接している。これにより、膨出部171S-1内の気密性が高められる。
 また、図12及び図13に示すように、膨出部171S-1は、半球状の内面を有することにより、下吐出孔190Sから吐出された冷媒や膨出部171S-1内の冷媒を、膨出部171S-1の内面に沿って、下吐出室凹部163S内へ流れやすくし、必要に応じて下端板カバー室180S内での冷媒の流れを適宜調整することが可能とされている。
 変形例1においても、実施例と同様の効果が得られ、実施例に比べて膨出部171S-1の形状が簡素化されるので、例えば、プレス加工における膨出部171S-1の加工性を高めることができる。
変形例2
 図15は、変形例2のロータリ圧縮機における下端板カバーを上方から見た平面図である。図16は、変形例2のロータリ圧縮機における下端板カバーを示す、図15中のD-D断面図である。図17は、変形例2のロータリ圧縮機の要部を示す縦断面図である。
 図15及び図16に示すように、変形例2における下端板カバー170S-2が有する膨出部171S-2は、下吐出孔190Sに対向する部分を有する。膨出部171S-2は、回転軸15の径方向において、下端板カバー170S-2の外周側に位置する外周側隅部171cの曲率が、下端板カバー170S-2の内周側に位置する内周側隅部171dの曲率よりも大きい。これにより、下吐出孔190Sから吐出された冷媒や膨出部171S-2内の冷媒を、外周側隅部171cの内面に沿って冷媒通路孔136A、136B側へ流れやすくし、必要に応じて下端板カバー室180S内での冷媒の流れを適宜調整することが可能とされている。
 また、膨出部171S-2においても、実施例と同様に、一対の側壁171bが対向する間隔が、回転軸15の径方向において、下端板カバー170S-2の内周側から外周側へ向かって拡大している。これにより、下吐出孔190Sから吐出された冷媒を、膨出部171S-2の一対の側壁171bに沿って冷媒通路孔136A、136B側へ流れやすくし、必要に応じて下端板カバー室180S内での冷媒の流れを適宜調整することが可能とされている。
 図17に示すように、下端板カバー170S-2の膨出部171S-2は、下端板160Sの下面に、膨出部171S-2の周縁部171a全体に亘って当接している。これにより、膨出部171S-2内の気密性が高められる。
 変形例2によれば、外周側隅部171cの曲率が内周側隅部171dの曲率よりも大きいことにより、下端板カバー室180S内の冷媒を、外周側隅部171cの内面に沿って冷媒通路孔136A、136Bへ流れやすくすることができる。また、変形例2においても、実施例と同様の効果が得られる。
変形例3
 図18は、変形例3のロータリ圧縮機における下端板カバーを上方から見た平面図である。図19は、変形例3のロータリ圧縮機における下端板カバーを示す、図18中のE-E断面図である。図20は、変形例3のロータリ圧縮機の要部を示す縦断面図である。
 図18及び図19に示すように、変形例3における下端板カバー170S-3が有する膨出部171S-3は、下吐出孔190Sに対向する部分を有しており、下端板カバー170S-3の貫通穴145側の側壁171bが切り欠かれた切欠部171eが形成されている。図20に示すように、膨出部171S-3は、切欠部171eを除く周縁部171aが、下端板160Sの下面に当接しており、切欠部171eが副軸受部161Sの外周面に突き当てられている。
 また、図18及び図19に示すように、膨出部171S-3は、一対の側壁171bが対向する間隔が、回転軸15の径方向において、下端板カバー170S-3の内周側から外周側へ向かって拡大している。本変形例3では、実施例、変形例2に比べて、一対の側壁171bが対向する間隔の変化が急峻に形成されている。これにより、下吐出孔190Sから吐出された冷媒や膨出部171S-3内の冷媒を、膨出部171Sの一対の側壁171bに沿って、下端板160Sの外周側に配置された冷媒通路孔136A、136B側へ更に流れやすくされている。
 変形例3によれば、膨出部171S-3が切欠部171eを有することにより、上述した実施例及び変形例1、2と比べて膨出部171S-3内の気密性が低下するが、膨出部171S-3と副軸受部161Sとの間から圧縮機筐体10内へ冷媒が僅かに漏れたとしても影響がなく、膨出部171S-3の加工性を高めることができる。また、変形例3においても、実施例と同様の効果が得られる。
 なお、図示しないが、上述した変形例3は、膨出部171S-3の切欠部171eが副軸受部161Sの外周面に突き当てられる構成に限定されるものではない。例えば、膨出部171S-3内の気密性を高めるために、膨出部171S-3は、切欠部171eから副軸受部161Sの外周面に沿って延ばされ、副軸受部161Sの外周面を覆うように形成されてもよい。また、このように膨出部171S-3の一部が副軸受部161Sを覆う構造は、上述した実施例及び変形例1、2において適用されてもよい。
変形例4
 図21は、変形例4のロータリ圧縮機における下端板カバーを上方から見た平面図である。図22は、変形例4のロータリ圧縮機における下端板カバーを示す、図20中のF-F断面図である。図23は、変形例4のロータリ圧縮機の要部を示す縦断面図である。
 図21及び図22に示すように、変形例4における下端板カバー170S-4が有する膨出部171S-4は、下吐出孔190Sに対向する部分を有する。膨出部171S-4の少なくとも一部は、回転軸15の軸方向に直交する断面において、下吐出室凹部163Sと下吐出弁収容凹部164Sとにそれぞれ重なって形成されている(図3参照)。このように膨出部171S-4は、回転軸15の軸方向に直交する断面において占める面積を広げることによって容積が確保されるので、下端板カバー170S-4の厚み方向に対する深さを浅くする形成することが可能になる。また、膨出部171S-4は、回転軸15の軸方向に直交する断面において容積が変化する部分、いわゆる絞り部分を含む形状に形成されることにより、下端板カバー室180S内での冷媒の流れを乱れさせ、冷媒の流れを適宜調整することが可能とされている。
 図23に示すように、下端板カバー170S-4の膨出部171S-4は、下端板160Sの下面に、膨出部171S-4の周縁部171a全体に亘って当接している。これにより、膨出部171S-4内の気密性が高められる。
 変形例4によれば、膨出部171S-4の少なくとも一部が、下吐出室凹部163Sと下吐出弁収容凹部164Sとにそれぞれ重なって形成されることにより、膨出部171S-4の容積が増えるので、膨出部171S-4の深さを浅く形成することができる。また、変形例4においても、実施例と同様の効果が得られる。
   1 ロータリ圧縮機
  10 圧縮機筐体
  11 モータ
  12 圧縮部
  15 回転軸
 105 上吸入管(吸入部)
 104 下吸入管(吸入部)
 107 吐出管(吐出部)
 121T 上シリンダ
 121S 下シリンダ
 125T 上ピストン
 125S 下ピストン
 127T 上ベーン
 127S 下ベーン
 128T 上ベーン溝
 128S 下ベーン溝
 130T 上シリンダ室
 130S 下シリンダ室
 131T 上吸入室
 131S 下吸入室
 133T 上圧縮室
 133S 下圧縮室
 136 冷媒通路孔(冷媒連通孔)
 140 中間仕切板
 160T 上端板
 160S 下端板
 163T 上吐出室凹部
 163S 下吐出室凹部
 164T 上吐出弁収容凹部
 164S 下吐出弁収容凹部
 170S 下端板カバー
 171S 膨出部
 171a 周縁部
 171b 側壁
 171c 外周側隅部
 171d 内周側隅部
 171e 切欠部
 180T 上端板カバー室
 180S 下端板カバー室
 190T 上吐出孔
 190S 下吐出孔
 200T 上吐出弁
 200S 下吐出弁

Claims (6)

  1.  上部に冷媒の吐出部が設けられ下部に冷媒の吸入部が設けられ密閉された縦置き円筒状の圧縮機筐体と、前記圧縮機筐体の下部に配置され前記吸入部から吸入された冷媒を圧縮し前記吐出部から吐出する圧縮部と、前記圧縮機筐体の上部に配置され前記圧縮部を駆動するモータとを有し、
     前記圧縮部は、
     環状の上シリンダ及び下シリンダと、
     前記上シリンダの上側を閉塞する上端板と前記下シリンダの下側を閉塞する下端板と、
     前記上シリンダと前記下シリンダの間に配置され前記上シリンダの下側及び前記下シリンダの上側を閉塞する中間仕切板と、
     前記上端板に設けられた主軸受部と前記下端板に設けられた副軸受部とに支持され前記モータにより回転される回転軸と、
     前記回転軸に互いに180度の位相差をつけて設けられた上偏心部及び下偏心部と、
     前記上偏心部に嵌合され前記上シリンダの内周面に沿って公転し前記上シリンダ内に上シリンダ室を形成する上ピストンと、
     前記下偏心部に嵌合され前記下シリンダの内周面に沿って公転し前記下シリンダ内に下シリンダ室を形成する下ピストンと、
     前記上シリンダに設けられた上ベーン溝から前記上シリンダ室内に突出し前記上ピストンに当接して前記上シリンダ室を上吸入室と上圧縮室に区画する上ベーンと、
     前記下シリンダに設けられた下ベーン溝から前記下シリンダ室内に突出し前記下ピストンに当接して前記下シリンダ室を下吸入室と下圧縮室に区画する下ベーンと、
     前記上端板を覆って前記上端板との間に上端板カバー室を形成し前記上端板カバー室と前記圧縮機筐体の内部とを連通する上端板カバー吐出孔を有する上端板カバーと、
     前記下端板を覆って前記下端板との間に下端板カバー室を形成する下端板カバーと、
     前記上端板に設けられ前記上圧縮室と上端板カバー室とを連通させる上吐出孔と、
     前記下端板に設けられ前記下圧縮室と下端板カバー室とを連通させる下吐出孔と、
     前記下端板、前記下シリンダ、前記中間仕切板、前記上端板及び前記上シリンダを貫通し前記下端板カバー室と前記上端板カバー室とを連通する冷媒通路孔と、
    を備えるロータリ圧縮機において、
     前記下端板は、前記下吐出孔を開閉するリード弁型の下吐出弁と、前記下吐出孔から溝状に延ばされて前記下吐出弁が収容される下吐出弁収容凹部と、前記下吐出弁収容凹部の前記下吐出孔側に重なるように形成されて前記冷媒通路孔と連通する下吐出室凹部と、を有し、
     前記下端板カバーは、平板状に形成され、前記下吐出孔に対向する部分を有する膨出部が設けられ、
     前記下端板カバー室は、前記下吐出弁収容凹部と、前記下吐出室凹部と、前記膨出部とによって形成され、
     前記膨出部の容積は、前記上圧縮室と前記下圧縮室のそれぞれの排除容積の合計の1/18以上、1/9以下である、ロータリ圧縮機。
  2.  前記下端板カバーの前記膨出部は、前記下端板の下面に、前記膨出部の周縁部全体に亘って当接している、
    請求項1に記載のロータリ圧縮機。
  3.  前記膨出部の一部が、前記下端板の前記副軸受部の外周面に突き当てられている、
    請求項1に記載のロータリ圧縮機。
  4.  前記膨出部は、対向する一対の側壁を有し、当該一対の側壁が対向する間隔が、前記回転軸の径方向において、前記下端板カバーの内周側から外周側へ向かって拡大している、
    請求項1ないし3のいずれか1項に記載のロータリ圧縮機。
  5.  前記下端板カバーの前記膨出部は、前記回転軸の径方向において、前記下端板カバーの外周側に位置する外周側隅部の曲率が、前記下端板カバーの内周側に位置する内周側隅部の曲率よりも大きい、
    請求項1ないし4いずれか1項に記載のロータリ圧縮機。
  6.  前記下端板カバーの前記膨出部の少なくとも一部は、前記回転軸の軸方向に直交する断面において、前記下吐出室凹部と前記下吐出弁収容凹部とに重なって形成されている、
    請求項1または2に記載のロータリ圧縮機。
PCT/JP2018/027394 2017-07-24 2018-07-20 ロータリ圧縮機 WO2019021976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880049213.XA CN110945246B (zh) 2017-07-24 2018-07-20 旋转式压缩机
US16/633,049 US11078911B2 (en) 2017-07-24 2018-07-20 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-143068 2017-07-24
JP2017143068A JP6460172B1 (ja) 2017-07-24 2017-07-24 ロータリ圧縮機

Publications (1)

Publication Number Publication Date
WO2019021976A1 true WO2019021976A1 (ja) 2019-01-31

Family

ID=65040227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027394 WO2019021976A1 (ja) 2017-07-24 2018-07-20 ロータリ圧縮機

Country Status (4)

Country Link
US (1) US11078911B2 (ja)
JP (1) JP6460172B1 (ja)
CN (1) CN110945246B (ja)
WO (1) WO2019021976A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835272B1 (ja) 2020-02-26 2021-02-24 株式会社富士通ゼネラル ロータリ圧縮機
DE102021105373A1 (de) * 2021-03-05 2022-09-08 Mann+Hummel Gmbh Filterelement, Filterelementanordnung und Filtersystem mit einer Filterelementanordnung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044600A (ja) * 2014-08-22 2016-04-04 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
WO2016076064A1 (ja) * 2014-11-10 2016-05-19 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712726A (zh) 2004-06-21 2005-12-28 乐金电子(天津)电器有限公司 封闭式压缩机用消音器
JP2006022766A (ja) 2004-07-09 2006-01-26 Sanyo Electric Co Ltd 多気筒回転圧縮機
JP2009002297A (ja) 2007-06-25 2009-01-08 Daikin Ind Ltd ロータリ圧縮機
US20110058970A1 (en) * 2009-09-10 2011-03-10 Jason James Hugenroth Rotary compressor and method
CN102472281B (zh) * 2009-09-11 2015-01-14 东芝开利株式会社 多汽缸旋转式压缩机和制冷循环装置
JP2011208616A (ja) * 2010-03-30 2011-10-20 Fujitsu General Ltd ロータリ圧縮機
EP2884108B1 (en) * 2012-08-09 2018-11-07 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle apparatus
CN204140397U (zh) 2014-08-01 2015-02-04 广东美芝制冷设备有限公司 旋转压缩机
JP6112104B2 (ja) 2014-12-19 2017-04-12 株式会社富士通ゼネラル ロータリ圧縮機
CN105134594B (zh) 2015-08-24 2017-11-07 广东美芝制冷设备有限公司 旋转式压缩机
CN205370980U (zh) 2016-01-15 2016-07-06 广东美芝制冷设备有限公司 压缩机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044600A (ja) * 2014-08-22 2016-04-04 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
WO2016076064A1 (ja) * 2014-11-10 2016-05-19 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置

Also Published As

Publication number Publication date
CN110945246B (zh) 2021-10-08
JP6460172B1 (ja) 2019-01-30
JP2019023449A (ja) 2019-02-14
US11078911B2 (en) 2021-08-03
CN110945246A (zh) 2020-03-31
US20200208634A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
EP2728192B1 (en) Rotary compressor
JP6112104B2 (ja) ロータリ圧縮機
JP6578932B2 (ja) ロータリ圧縮機
AU2016225795B2 (en) Rotary compressor
JP6102760B2 (ja) ロータリ圧縮機
WO2019021976A1 (ja) ロータリ圧縮機
CN111033050B (zh) 旋转式压缩机
JP2013076337A (ja) ロータリ圧縮機
CN115151727B (zh) 回转式压缩机
JP6705317B2 (ja) ロータリ圧縮機
CN107476973B (zh) 旋转式压缩机
JP7044463B2 (ja) ロータリ圧縮機
CN110892158B (zh) 旋转式压缩机
CN115244300A (zh) 旋转式压缩机
JP2020193579A (ja) ロータリ圧縮機
JP7225988B2 (ja) ロータリ圧縮機
JP5471992B2 (ja) ロータリ圧縮機
JP6064726B2 (ja) ロータリ圧縮機
JP7225987B2 (ja) ロータリ圧縮機
JP2017053316A (ja) ロータリ圧縮機
JP2020180581A (ja) ロータリ圧縮機
JP2023151330A (ja) 密閉型圧縮機及びその製造方法
JP2015194093A (ja) ロータリ圧縮機
JP2016089811A (ja) ロータリ圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837807

Country of ref document: EP

Kind code of ref document: A1