WO2019021824A1 - 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体 - Google Patents

熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体 Download PDF

Info

Publication number
WO2019021824A1
WO2019021824A1 PCT/JP2018/026226 JP2018026226W WO2019021824A1 WO 2019021824 A1 WO2019021824 A1 WO 2019021824A1 JP 2018026226 W JP2018026226 W JP 2018026226W WO 2019021824 A1 WO2019021824 A1 WO 2019021824A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
thermally conductive
silicone gel
conductive silicone
gel composition
Prior art date
Application number
PCT/JP2018/026226
Other languages
English (en)
French (fr)
Inventor
健治 太田
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to CN201880055372.0A priority Critical patent/CN111051433B/zh
Priority to KR1020207003922A priority patent/KR102625362B1/ko
Priority to EP18838000.0A priority patent/EP3660099B1/en
Priority to US16/633,452 priority patent/US11674040B2/en
Priority to JP2019532496A priority patent/JP7160508B2/ja
Publication of WO2019021824A1 publication Critical patent/WO2019021824A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a thermally conductive silicone gel composition excellent in gap fill and repair properties while having high thermal conductivity, a thermally conductive member comprising the same, and a heat dissipation structure using the same.
  • thermally conductive silicone composition comprising an organopolysiloxane and a thermally conductive filler such as aluminum oxide powder or zinc oxide powder is widely used,
  • a thermally conductive silicone composition filled with a large amount of thermally conductive filler has been proposed to cope with high heat release.
  • Patent Document 1 and Patent Document 2 disclose that the surface of a thermally conductive filler is treated with a hydrolyzable silane having a long chain alkyl group to heat these thermally conductive silicone compositions. Even if the conductive inorganic filler is highly loaded, the molded product is imparted with flexibility and heat resistant mechanical properties, and the increase in viscosity is reduced to improve the moldability and thermally conductive silicone having high thermal conductivity. It is proposed that the composition is feasible.
  • thermally conductive silicone compositions although a certain viscosity reduction and improvement in moldability are observed, highly refined electric / electronic materials due to their insufficient fluidity. There are cases where sufficient heat dissipation can not be realized, for example, because it is difficult to apply precisely to the structure of the above, and a gap is generated between the heat sink and the electronic member to be dissipated to cause latent heat. Furthermore, for these electronic members, the repairability corresponding to positioning, circuit relocation, etc.
  • the thermally conductive cured product is easily fixed to the member, It is difficult to peel off the thermally conductive cured product from the member without any residue, which may cause deterioration in yield at the time of manufacture, and may be an obstacle to repair and reuse of electronic / electrical devices such as electronic components and batteries.
  • JP-A-11-209618 Japanese Patent Laid-Open No. 2000-001616
  • the present invention has been made to solve the above-mentioned problems, and it is an electronic component having many gaps in order to maintain high fluidity of the whole composition even when the thermally conductive inorganic filler is highly packed.
  • Thermally conductive silicone gel composition which is excellent in precision coating properties and gap fill properties to etc., and which has high peelability of the obtained thermally conductive cured product and excellent repairability of heat dissipation structures such as electronic and electrical devices. Intended to be provided.
  • the thermally conductive cured product obtained is a soft gel composition, damage to the member can be prevented by relieving stress caused by the difference in thermal expansion coefficient between the electronic component and the heat dissipation structure.
  • Another object of the present invention is to provide a heat conductive member using the heat conductive silicone gel composition and a heat dissipation structure using the same.
  • thermally conductive silicone gel composition comprising the following components (A) to (E), and the present invention I reached.
  • (B) has a viscosity of 1 to 1,000 mPa ⁇ s at 25 ° C., contains an average of 2 to 4 silicon-bonded hydrogen atoms in the molecule, and has at least 2 of them in the side chain of the molecular chain Linear organohydrogenpolysiloxane: an amount such that 0.2 to 5 moles of silicon-bonded hydrogen atoms in component (B) are contained with respect to 1 mole of alkenyl groups contained in component (A).
  • the object of the present invention is that the above component (E) has the following structural formula: YnSi (OR) 4-n (Wherein Y is an alkyl group having 6 to 18 carbon atoms, R is an alkyl group having 1 to 5 carbon atoms, and n is a number of 1 or 2) Is suitably solved in the case of an alkoxysilane represented by the formula (E), in particular when the component (E) is a trialkoxysilane having an alkyl group having 6 to 18 carbon atoms such as decyl group. Be done.
  • the object of the present invention is also solved preferably by a thermally conductive silicone gel composition characterized in that the component (D) is surface-treated with the component (E).
  • the object of the present invention is preferably solved by a thermally conductive silicone gel composition comprising (F) a heat resistance imparting agent.
  • the object of the present invention is that the component (D) is (D1) plate-like boron nitride powder having an average particle diameter of 0.1 to 30 ⁇ m, (D2) having an average particle diameter of 0.1 to 50 ⁇ m Granular boron nitride powder, (D3) spherical and / or crushed aluminum oxide powder having an average particle size of 0.01 to 50 ⁇ m, or (D4) graphite having an average particle size of 0.01 to 50 ⁇ m, or
  • the solution is preferably achieved by a thermally conductive silicone gel composition which is a mixture of two or more of these.
  • component (B) contains an average of 2 to 3 silicon-bonded hydrogen atoms in the (B1) molecule, and at least two of them are in the side chain of the molecular chain.
  • the present invention is preferably solved by a composition which is a linear organohydrogenpolysiloxane, and in particular, a linear organo that has component (B) having two silicon-bonded hydrogen atoms on average in only a molecular side chain. More preferably, it is a hydrogen polysiloxane.
  • the object of the present invention is suitably solved by a thermally conductive member comprising the thermally conductive silicone gel composition, particularly by a thermally conductive member obtained by curing the composition.
  • a thermally conductive member comprising the thermally conductive silicone gel composition
  • a thermally conductive member obtained by curing the composition particularly by a thermally conductive member obtained by curing the composition.
  • the heat dissipation structure provided with these heat conductive members is suitably solved.
  • the heat dissipation structure is not particularly limited, but is preferably an electrical / electronic device such as an electrical / electronic component or a secondary battery, and a desired heat dissipation structure is designed and applied to desired BLT (Bond Line Thickness). May be
  • the entire composition maintains high flowability and is excellent in precision coating property and gap fill property to electronic parts having many gaps, etc.
  • the thermally conductive silicone gel composition in which the peelability of the obtained thermally conductive hardened
  • the thermally conductive cured product obtained is a soft gel composition, damage to the member can be prevented by relieving stress caused by the difference in thermal expansion coefficient between the electronic component and the heat dissipation structure.
  • a thermally conductive member using the thermally conductive silicone gel composition a heat dissipation structure using the same member (in particular, including a heat dissipation structure of electric and electronic parts and a heat dissipation structure of a secondary battery) It is possible to provide a heat dissipation structure) for electric and electronic devices.
  • Thermal conductive silicone gel composition has (A) an alkenyl group-containing organopolysiloxane having a viscosity of 10 to 100,000 mPa ⁇ s at 25 ° C., and (B) a viscosity of 1 to 1,000 mPa ⁇ s at 25 ° C.
  • the alkenyl group-containing organopolysiloxane which is the component (A) is a main component of the heat conductive silicone gel composition, and the viscosity at 25 ° C. is in the range of 10 to 100,000 mPa ⁇ s.
  • the viscosity at 25 ° C. of the component (A) is preferably in the range of 10 to 100,000 mPa ⁇ s, and more preferably in the range of 10 to 10,000 mPa ⁇ s.
  • the viscosity of the component (A) is less than 10 mPa ⁇ s, the physical properties of the resulting silicone gel tend to decrease, while when it exceeds 100,000 mPa ⁇ s, the handling operation of the resulting silicone gel composition There is a tendency for the sex and gap fill to decrease.
  • Component (A) is composed of one or more alkenyl group-containing organopolysiloxanes.
  • the molecular structure of such alkenyl group-containing organopolysiloxane is not particularly limited, and examples thereof include linear, branched, cyclic, three-dimensional network structures, and combinations thereof.
  • Component (A) may consist only of a linear alkenyl group-containing organopolysiloxane, or may consist only of an alkenyl group-containing organopolysiloxane having a branched structure, or a linear organo group It may be composed of a mixture of polysiloxane and alkenyl group-containing organopolysiloxane having a branched structure.
  • alkenyl group in the molecule examples include vinyl group, allyl group, butenyl group, hexenyl group and the like.
  • organic groups other than the alkenyl group in the component (A) alkyl groups such as methyl, ethyl and propyl; aryl groups such as phenyl and tolyl; 3, 3, 3-trifluoropropyl and the like
  • monovalent hydrocarbon groups other than alkenyl groups such as halogenated alkyl groups of the following.
  • Component (A) is particularly preferably a linear alkenyl group-containing organopolysiloxane, which preferably contains an alkenyl group at least at both molecular chain terminals, and contains an alkenyl group only at both molecular chain terminals It may be Such component (A) is not particularly limited.
  • dimethylpolysiloxane terminated with dimethylvinylsiloxy at both ends of molecular chain, dimethylvinylsiloxy copolymer blocked with dimethylvinylsiloxy at both ends of branched chain, both molecular chains Terminal trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain both terminal trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane / methylphenyl siloxane copolymer, molecular chain double-ended silanol group dimethylsiloxane / methylvinylsiloxane Copolymers, the weights of which some of the methyl groups of these polymers are substituted by alkyl groups other than methyl groups such as ethyl and propyl and halogenated alkyl groups such as 3,3,3-trifluoropropyl.
  • the component (A) of the present invention is further bonded to a silicon atom by the general formula: (Wherein, R 1 is the same or different, monovalent hydrocarbon group having no aliphatic unsaturated bond, R 2 is an alkyl group, R 3 is the same or different alkylene group, a Is an integer of 0 to 2, and p is an integer of 1 to 50.) And may have an alkoxysilyl-containing group represented by The organopolysiloxane having these functional groups suppresses thickening of the composition in the uncured state, and since it has an alkoxysilyl group in the molecule, it also functions as a surface treatment agent for the component (D). For this reason, thickening and oil bleeding of the composition to be obtained may be suppressed, and there may be obtained a benefit that handling workability is not impaired.
  • Component (B) is one of the characteristic components of the present invention and has a viscosity of 1 to 1,000 mPa ⁇ s at 25 ° C., and an average of 2 to 4 silicon-bonded hydrogen atoms in the molecule. And is a linear organohydrogenpolysiloxane having at least two of them in the side chain of the molecular chain. Having the structure means that Component (B) functions as a crosslinker in the present composition by a hydrosilylation reaction of a silicon-bonded hydrogen atom on a molecular side chain.
  • the component (B) functions as the crosslinker of the component (A) in the thermally conductive silicone gel composition of the present invention, and the entire composition is gently crosslinked to form a gel-like cured product.
  • the component (B) has an average of at least 2 silicon-bonded hydrogen atoms on the side chain of the molecular chain, and only 2 to 4 silicon-bonded hydrogen atoms in the molecule on average Since it contains, the crosslinking extension reaction mainly by 2 to 4 silicon-bonded hydrogen atoms on the side chain proceeds, and the thermal conductivity is excellent in the removability from the member, and the repairability such as repair and reuse. Form a cured silicone gel.
  • the component (B) contains an average of 2 to 3 silicon-bonded hydrogen atoms in the (B1) molecule, and at least two of them are molecular side chains (B1-1) an organohydrogenpolysiloxane having an average of 2 to 3 silicon-bonded hydrogen atoms on only a side chain of a molecular chain Is particularly preferred.
  • the silicon-bonded hydrogen atoms in the component (B) be only two on average in only the molecular side chain.
  • the component (B) contains 0.2 to 5 moles of silicon-bonded hydrogen atoms in component (B) relative to 1 mole of alkenyl group contained in at least component (A).
  • the heat conductive silicone gel cured product can be obtained in an amount of 0.3 to 2.0 moles, or in an amount of 0.4 to 1.0 moles. Particularly preferred from the viewpoint of the formation of the above and the peelability and repairability of the cured product.
  • the thermally conductive silicone gel is contained if the content of silicon-bonded hydrogen atoms in the component (B) is less than the above lower limit. If the upper limit is exceeded, the amount of silicon-bonded hydrogen atoms becomes excessive, and the removability and reparability of the cured product may be impaired.
  • Such component (B) is exemplified by molecular chain both terminal trimethylsiloxy group-capped methyl hydrogen siloxane / dimethylsiloxane copolymer, molecular chain both terminal dimethyl hydrogen siloxy group-capped methyl hydrogen siloxane / dimethyl siloxane copolymer Be done.
  • these examples are non-limiting, and a part of methyl group may be substituted by a phenyl group, a hydroxyl group, an alkoxy group etc.
  • the viscosity at 25 ° C. of the component (B) is not particularly limited, but is preferably in the range of 1 to 500 mPa ⁇ s, and from the viewpoint of contact failure prevention etc., low molecular weight siloxane oligomers (octamethyltetrasiloxane ( It is preferable that D4) and decamethylpentasiloxane (D5)) be reduced or eliminated.
  • composition of the present invention is an organohydrogenpolysiloxane other than the component (B), for example, a methylhydrogen having a molecular chain and a terminal both containing trimethylsiloxy groups having an average of more than 4 silicon-bonded hydrogen atoms in the molecule.
  • Siloxane / dimethyl siloxane copolymer molecular chain both terminal dimethylhydrogensiloxy group-blocked methyl hydrogen siloxane / dimethylsiloxane copolymer containing an average of more than 4 silicon-bonded hydrogen atoms in the molecule, both molecular chain A terminal trimethylsiloxy group-blocked methylhydrogenpolysiloxane, a molecular chain both terminal dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, a methylhydrogensiloxy group-containing siloxane resin or the like may be included as a crosslinking agent.
  • component (B) in the above amount as a crosslinker, and even when other organohydrogenpolysiloxanes are used in combination, the curing properties of the composition of the present invention and It is preferable that the ratio of a component (B) is more than fixed amount from a viewpoint of the peelability and repairability of hardened
  • the value of [H non-B ] / ([H B ] + [H non-B ]) exceeds the above upper limit, the influence of the component (B) in the entire crosslinking agent in the composition becomes relatively small. In some cases, the releasability and reparability of the cured product may be impaired or cause curing failure.
  • the content of the organohydrogenpolysiloxane in the composition including the component (B) is the silicon atom bond in the organohydrogenpolysiloxane relative to 1 mole of the alkenyl group contained in the component (A) in the composition
  • the amount of hydrogen atoms is 0.2 to 5 moles, the amount of 0.3 to 2.0 moles, or the range of 0.4 to 1.0 moles of hydrogen atoms, It is particularly preferable from the viewpoint of formation of a cured silicone gel cured product and releasability and repairability of the same cured product.
  • the organohydrogenpolysiloxane in the composition is the mixture shown in the above (B'2), in particular, it is a mixture of component (B) and dimethylhydrogensiloxy-blocked dimethylpolysiloxane terminated with a molecular chain.
  • the amount of silicon-bonded hydrogen atoms in the organohydrogenpolysiloxane is preferably 0.5 to 1.5 mol, and preferably 0.7 to 1. More preferably, the amount is in the range of 0 mol.
  • the organohydrogenpolysiloxane in the composition is substantially only the component (B), the amount of 0.3 to 1.5 moles of silicon-bonded hydrogen atoms in the organohydrogenpolysiloxane It is preferably in the range of 0.4 to 1.0 mol.
  • the type and content of the organohydrogenpolysiloxane in the composition is within the above range, the flowability and gap fill properties of the heat conductive silicone gel composition, which is the technical effect of the present invention, are most excellent.
  • the physical properties, particularly the releasability and the reparability, of the resulting thermally conductive silicone gel cured product are the best.
  • the hydrosilylation reaction catalyst examples include platinum-based catalysts, rhodium-based catalysts and palladium-based catalysts, and platinum-based catalysts are preferable because they can significantly accelerate the curing of the present composition.
  • platinum-based catalyst fine platinum powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, platinum-alkenyl siloxane complex, platinum-olefin complex, platinum-carbonyl complex, and these platinum-based catalysts, silicone resin, polycarbonate
  • a catalyst dispersed or encapsulated with a thermoplastic resin such as a resin or an acrylic resin is exemplified, and a platinum-alkenyl siloxane complex is particularly preferable.
  • alkenyl siloxane 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane,
  • the alkenyl siloxane which substituted a part of methyl group of these alkenyl siloxanes by the ethyl group, the phenyl group, etc., and the alkenyl siloxane which substituted the vinyl group of these alkenyl siloxanes with the allyl group, the hexenyl group etc. is illustrated.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferable because the stability of the platinum-alkenylsiloxane complex is good.
  • a particulate platinum-containing hydrosilylation reaction catalyst dispersed or encapsulated with a thermoplastic resin may be used.
  • a non-platinum-based metal catalyst such as iron, ruthenium or iron / cobalt may be used as a catalyst for promoting the hydrosilylation reaction.
  • the addition amount of the hydrosilylation reaction catalyst is a catalytic amount, and is within the range of 0.01 to 100 ppm such that the metal atom is within the range of 0.01 to 500 ppm by mass based on the component (A) Preferably, the amount is in the range of 0.01 to 50 ppm.
  • the composition of the present invention further contains a hydrosilylation reaction inhibitor from the viewpoint of the handling property.
  • the hydrosilylation reaction inhibitor is a component for suppressing the hydrosilylation reaction of the thermally conductive silicone gel composition of the present invention, and specifically, for example, acetylenes such as ethynyl cyclohexanol, amines, Reaction inhibitors such as carboxylic acid esters and phosphorous acid esters can be mentioned.
  • the addition amount of the reaction inhibitor is usually 0.001 to 5% by mass of the whole silicone gel composition.
  • Component (D) is a thermally conductive filler for imparting thermal conductivity to the composition and a thermally conductive member obtained by curing the composition.
  • Such component (D) is selected from the group consisting of pure metals, alloys, metal oxides, metal hydroxides, metal nitrides, metal carbides, metal silicides, carbon, soft magnetic alloys and ferrites. At least one powder and / or fiber is preferable, and metal-based powder, metal oxide-based powder, metal nitride-based powder, or carbon powder is suitable.
  • Such a thermally conductive filler is preferably surface-treated with an alkoxysilane, which is the component (E) described later, in whole or in part. Furthermore, separately from the component (E), or together with the component (E), those powders and / or fibers which have been treated with various surface treatment agents known as coupling agents may be used.
  • Pure metals include bismuth, lead, tin, antimony, indium, cadmium, zinc, silver, copper, nickel, aluminum, iron and silicon metal.
  • the alloy include an alloy composed of two or more metals selected from the group consisting of bismuth, lead, tin, antimony, indium, cadmium, zinc, silver, aluminum, iron and silicon metal.
  • Metal oxides include alumina, zinc oxide, silicon oxide, magnesium oxide, beryllium oxide, chromium oxide and titanium oxide.
  • Metal hydroxides include magnesium hydroxide, aluminum hydroxide, barium hydroxide and calcium hydroxide.
  • Metal nitrides include boron nitride, aluminum nitride and silicon nitride.
  • Metal carbides include silicon carbide, boron carbide and titanium carbide.
  • Metal silicides include magnesium silicide, titanium silicide, zirconium silicide, tantalum silicide, niobium silicide, chromium silicide, tungsten silicide and molybdenum silicide.
  • Examples of carbon include diamond, graphite, fullerene, carbon nanotube, graphene, activated carbon and amorphous carbon black.
  • the ferrite include Mn-Zn ferrite, Mn-Mg-Zn ferrite, Mg-Cu-Zn ferrite, Ni-Zn ferrite, Ni-Cu-Zn ferrite and Cu-Zn ferrite.
  • component (D) silver powder, aluminum powder, aluminum oxide powder, zinc oxide powder, aluminum nitride powder or graphite is preferable.
  • metal oxide powder or metal nitride powder is preferable, and aluminum oxide powder, zinc oxide powder, or aluminum nitride powder is particularly preferable.
  • a component (D) is not specifically limited, For example, spherical shape, needle shape, disk shape, rod shape, indefinite shape is mentioned, Preferably, it is spherical shape and irregular shape.
  • the average particle size of the component (D) is not particularly limited, but is preferably in the range of 0.01 to 100 ⁇ m, and more preferably in the range of 0.01 to 50 ⁇ m.
  • Component (D) is (D1) plate-like boron nitride powder having an average particle size of 0.1 to 30 ⁇ m, (D2) granular boron nitride powder having an average particle size of 0.1 to 50 ⁇ m, (D3 ) Spherical and / or crushed aluminum oxide powder having an average particle diameter of 0.01 to 50 ⁇ m, or (D4) spherical and / or crushed graphite having an average particle diameter of 0.01 to 50 ⁇ m, or two of them It is particularly preferred that it is a mixture of more than types. Most preferably, it is a mixture of two or more types of spherical and crushed aluminum oxide powder having an average particle diameter of 0.01 to 50 ⁇ m. In particular, by combining the large particle size aluminum oxide powder and the small particle size aluminum oxide powder in a ratio according to the close-packing theoretical distribution curve, the packing efficiency is improved, and viscosity reduction and high thermal conductivity can be achieved.
  • the content of the component (D) is in the range of 400 to 3,500 parts by mass, preferably 400 to 3,000 parts by mass with respect to 100 parts by mass of the component (A). If the content of the component (D) is less than the lower limit of the above range, the thermal conductivity of the resulting composition becomes insufficient, while if it exceeds the upper limit of the above range, the component (E) is blended or Even in the case of using it for surface treatment of the component (D), the viscosity of the composition obtained becomes extremely high, and the handling workability, gap fill properties and the like decrease.
  • the component (E) is a characteristic component of the present composition together with the component (B), and is an alkoxysilane having an alkyl group having 6 or more carbon atoms in the molecule.
  • specific examples of the alkyl group having 6 or more carbon atoms include alkyl groups such as hexyl group, octyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, and aralkyl groups such as benzyl group and phenylethyl group.
  • an alkyl group having 6 to 20 carbon atoms is particularly preferable.
  • component (E) has the following structural formula: YnSi (OR) 4-n (Wherein Y is an alkyl group having 6 to 18 carbon atoms, R is an alkyl group having 1 to 5 carbon atoms, and n is a number of 1 or 2)
  • Y is an alkyl group having 6 to 18 carbon atoms
  • R is an alkyl group having 1 to 5 carbon atoms
  • n is a number of 1 or 2
  • the methoxy group is exemplified as the OR group, and the methoxy group, the ethoxy group, the propoxy group, the butoxy group and the like are exemplified, and the methoxy group and the ethoxy group are particularly preferable.
  • n is preferably 1, 2 or 3, particularly preferably 1.
  • such component (E) is C 6 H 13 Si (OCH 3 ) 3 , C 8 H 17 Si (OC 2 H 5 ) 3 , C 10 H 21 Si (OCH 3 ) 3 , C 11 H 23 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 , C 14 H 29 Si (OC 2 H 5 ) 3 and the like are exemplified, and decyltrimethoxysilane is most preferable.
  • the amount of the component (E) used is 0.1 to 2.0% by mass with respect to the above-mentioned component (D), and when the amount used is less than the above-mentioned lower limit, the viscosity of the composition is reduced. The effect may be insufficient. When the amount of component (E) used exceeds the upper limit, the effect of viscosity reduction may be saturated, and the alkoxysilane may be further separated, which may reduce the storage stability of the composition.
  • the component (E) is preferably blended in the form in which the component (D) is surface-treated with the component (E), and at least a part of the component (D) is surface-treated with the component (E) It is particularly preferred from the standpoint of improving the flowability and gap fill properties of the present composition.
  • a component (E) as a surface treating agent, the quantity used as 0.15-1.2 mass% with respect to the said component (D) is preferable, and the range of 0.2-1.0 mass% is more preferable.
  • the surface treatment method with component (E) is not particularly limited, direct treatment with a thermally conductive inorganic filler which is component (D), integral blending, dry concentrate, etc. may be used. it can.
  • Direct processing methods include dry methods, slurry methods, spray methods, etc., and integral methods include direct methods, master batch methods, etc. Of these, dry methods, slurry methods, direct methods are often used.
  • all the components (D) and (E) may be premixed using a known mixing apparatus, and the surface may be treated.
  • a part of Component (E) may form a hydrolysis or polymer on the surface of Component (D), and the surface treatment in the present invention Is included in the concept of
  • the mixing apparatus is not particularly limited, and may be a single- or twin-screw continuous mixer, a two-roll, a Ross mixer, a Hobart mixer, a dental mixer, a planetary mixer, a kneader mixer, a Henschel mixer, and the like.
  • composition of the present invention comprises the above-mentioned components (A) to (E), optionally other crosslinking agents and a hydrosilylation reaction inhibitor, but the thermally conductive silicone gel composition and the cured product thereof From the viewpoint of heat resistance improvement, it is preferable to further contain (F) a heat resistance imparting agent.
  • the component (F) is not particularly limited as long as it can impart heat resistance to the composition of the present invention and a cured product thereof, and examples thereof include iron oxide, titanium oxide, cerium oxide, magnesium oxide, aluminum oxide and zinc oxide Examples thereof include metal oxides, metal hydroxides such as cerium hydroxide, phthalocyanine compounds, carbon black, cerium silanolates, cerium fatty acid salts, and reaction products of organopolysiloxanes and carboxylates of cerium. Particularly preferred is a phthalocyanine compound, for example, an additive selected from the group consisting of metal-free phthalocyanine compounds and metal-containing phthalocyanine compounds disclosed in JP-A-2014-503680 is suitably used, metal-containing phthalocyanines.
  • copper phthalocyanine compounds are particularly preferred.
  • An example of the most preferable and non-limiting heat resistance imparting agent is 29H, 31H-phthalocyaninato (2-)-N29, N30, N31, N32 copper.
  • Such phthalocyanine compounds are commercially available, for example, Stan-toneTM 40SP03 from PolyOne Corporation (Avon Lake, Ohio, USA).
  • the blending amount of such component (F) may be in the range of 0.01 to 5.0% by mass of the whole composition, 0.05 to 0.2% by mass, 0.07 to 0 It may be in the range of 1% by mass.
  • optional components can be blended within a range that does not impair the object of the present invention.
  • this optional component include inorganic fillers such as fumed silica, wet silica, crushed quartz, titanium oxide, magnesium carbonate, zinc oxide, iron oxide, diatomaceous earth, carbon black (also referred to as "inorganic filler")
  • inorganic fillers obtained by hydrophobizing the surface of such inorganic fillers with organosilicon compounds, organopolysiloxanes containing no silicon-bonded hydrogen atoms and silicon-bonded alkenyl groups, cold resistance imparting agent flame retardancy imparting agent, thixo And additives, etc.
  • the thermally conductive silicone gel composition of the present invention may optionally contain one or more kinds of known adhesiveness imparting agents, cationic surfactants, anionic surfactants, nonionic surfactants, etc.
  • Antistatic agent; dielectric filler; electrically conductive filler; releasable component; thixotropic agent; antifungal agent etc. can be included.
  • an organic solvent may be added.
  • the thermally conductive silicone gel composition of the present invention can be prepared by mixing the above-mentioned components.
  • the component (D) and the component (E) are mixed beforehand to make the surface of the component (D) a component
  • it can be prepared by mixing the remaining components (A) to (C), component (F), and other optional components.
  • the remaining component (B), component (C), component (A) F) can be prepared by mixing other optional ingredients.
  • the mixing method of each component may be a conventionally known method, and is not particularly limited, but in general, mixing using a mixing apparatus is preferable since a uniform mixture is obtained by simple stirring.
  • a mixing apparatus There are no particular limitations on such a mixing apparatus, and a single- or twin-screw continuous mixer, a two-roll, a Ross mixer, a Hobart mixer, a dental mixer, a planetary mixer, a kneader mixer, a Henschel mixer, etc. are exemplified.
  • the heat conductive silicone gel composition of the present invention may be used as a one-component type (including one-component type) composition, and if necessary, a multi-component type in which separated multi-components are mixed at the time of use It may be used as a composition of liquid type, especially including two-component type.
  • each component of the composition can be used in a single storage container, and in the case of the multi-component type, a plurality of individually stored compositions are mixed in a predetermined ratio It can be used.
  • these packages can be selected as desired according to the hardening method, application means, and application object which will be described later, and are not particularly limited.
  • the heat conductive silicone gel composition of the present invention is excellent in fluidity, capable of precise application, and excellent in gap fill properties. Specifically, the viscosity of the composition before curing is in the range of 10 to 500 Pa ⁇ s at 25 ° C., and more preferably 50 to 400 Pa ⁇ s.
  • the thermally conductive silicone gel composition of the present invention is cured by a hydrosilylation reaction to form a cured silicone gel having excellent thermal conductivity.
  • the temperature conditions for curing the hydrosilylation-curable silicone gel composition are not particularly limited, but are usually in the range of 20 ° C. to 150 ° C., and more preferably in the range of 20 to 80 ° C.
  • the silicone gel cured product of the present invention preferably has a hardness satisfying the range of 2 to 70, and more preferably 2 to 50, as measured by a type E hardness meter specified by JIS K6249.
  • the hardness of 70 is indicated by Type A hardness tester generally used in elastomer applications, and it becomes 50 or less, and the silicone gel cured product with such hardness has the characteristics of silicone gel such as low elastic modulus and low stress. It becomes a thing.
  • the hardness is greater than 70, although the adhesion to the heat generating member is excellent, the followability may be deteriorated, and if the hardness is less than 2, the fixability of the heat generating member is excellent although the followability is excellent. There is a risk of getting worse.
  • the thermally conductive silicone gel composition of the present invention can stably be highly filled with the thermally conductive filler, and is 2.0 W / mK or more, preferably 3.0 W / mK or more, more preferably 3
  • a composition of 0 to 7.0 W / mK and a cured silicone gel can be designed.
  • the heat conductive silicone gel composition of the present invention is a heat transfer material to be interposed at the interface between the heat interface of a heat generating component and a heat radiating member such as a heat sink or a circuit board for cooling the heat generating component by heat conduction. It is useful as a heat conductive member, and can form a heat dissipation structure provided with this.
  • the type and size of the heat-generating component, and the structure of the details are not particularly limited.
  • the thermally conductive silicone gel composition of the present invention has a high thermal conductivity and a gap fill to the member. Adhesion and followability to heat-generating members with excellent surface roughness and fine asperities and narrow gap structures, as well as flexibility unique to gels
  • the present invention is suitably applied to a heat dissipation structure of electric and electronic devices including batteries.
  • the electrical / electronic equipment provided with the member comprising the above-described heat conductive silicone composition, but, for example, secondary cells such as cell-type lithium ion electrode secondary cells and cell stack-type fuel cells Battery; electronic circuit board such as printed circuit board; diode (LED), organic electric field element (organic EL), laser diode, IC chip packaged with optical semiconductor element such as LED array; personal computer, digital video disc, portable Examples include CPUs used for electronic devices such as telephones and smartphones; and LSI chips such as driver ICs and memories.
  • secondary cells such as cell-type lithium ion electrode secondary cells and cell stack-type fuel cells Battery
  • electronic circuit board such as printed circuit board
  • personal computer digital video disc
  • portable Examples include CPUs used for electronic devices such as telephones and smartphones; and LSI chips such as driver ICs and memories.
  • heat removal heat dissipation
  • heat conductivity heat conductivity
  • the heat conductive member using the silicone gel composition is excellent in heat dissipation and handling workability even when applied to power semiconductor applications such as engine control in a transport machine, power train system, air conditioner control, etc. Excellent heat resistance and thermal conductivity can be realized even when used in a harsh environment by being incorporated in a vehicle-mounted electronic component such as a control unit (ECU).
  • ECU control unit
  • the thermally conductive silicone gel composition according to the present invention can be disposed not only in the horizontal plane but also in the vertical plane by controlling its rheology, and heat generation of electric / electronic parts, secondary batteries, etc.
  • the microstructure of the sex part can also penetrate and provide a heat dissipating structure without gaps.
  • the heat dissipation properties of the electric / electronic device provided with the heat dissipation structure are improved, the problems of latent heat and thermal runaway are improved, and the soft gel-like cured product protects the partial structure of the electric / electronic device. In some cases, its reliability and operational stability can be improved.
  • thermally conductive silicone gel composition of the present invention may be applied to these substrates as a thermally conductive silicone gel composition (fluid) before curing or as a thermally conductive silicone cured product. it can.
  • the method of forming the heat dissipation structure using the heat conductive silicone gel composition of the present invention is not limited for the heat generating component, for example, the heat conductive silicone gel composition of the present invention There is a method of curing the composition by pouring it and filling it to a sufficient gap and then heating it or leaving it at room temperature.
  • the present composition may be a one-pack type package, and in that case, from the viewpoint of improvement of handling workability and pot life of the composition, fine particles dispersed or encapsulated with a thermoplastic resin. Platinum-containing hydrosilylation reaction catalysts may be used and are preferred.
  • the thermally conductive silicone gel composition of the present invention can be cured at room temperature or under heating of 50 ° C. or less.
  • the composition may be a one-pack type or multi-pack type package, and after mixing, it may be heated at room temperature or 50 ° C. or less for 1 hour to several days under room temperature or 50 ° C. or less. It is preferable to cure.
  • the shape, thickness, arrangement, etc. of the thermally conductive silicone gel obtained by the above curing can be designed as desired, and may be cured as necessary after being filled in the gap between electric and electronic devices, peeling off It may be coated or cured on a film provided with a layer (separator), and may be handled alone as a thermally conductive silicone gel cured product on the film. Also, in this case, the heat conductive sheet may be in the form of a sheet reinforced by a known reinforcing material.
  • the thermally conductive silicone gel composition of the present invention is excellent in gap fill property, and forms a gel-like thermally conductive member which is flexible and excellent in thermal conductivity. Therefore, electrodes and electrodes in electric and electronic parts, electric elements
  • the present invention is also effective for devices having a narrow gap between an electric element, an electric element and a package, or a structure in which these structures do not easily follow the expansion and contraction of the silicone gel, for example, secondary battery, IC Semiconductor elements such as hybrid ICs and LSIs, electric circuits and modules on which such electric elements such as semiconductor elements, capacitors, and electric resistors are mounted, various sensors such as pressure sensors, igniters and regulators for automobiles, power generation systems, Alternatively, it can be used for power devices such as space transportation systems.
  • Components (A) to (E) were mixed as follows to obtain thermally conductive silicone gel compositions of Examples 1 to 6 and Comparative Examples 1 to 7.
  • Component (A), Component (D) and Component (E) are mixed in the number of parts shown in Tables 1 to 3 (Examples 1 to 6 and Comparative Examples 1 to 7), and further, under reduced pressure, at 160 ° C. for 1 hour Mixed. After cooling to room temperature, component (B), component (C), and other components shown in the table were added and mixed uniformly.
  • thermally conductive silicone gel cured product The resulting composition was used to make a 12 mm high, 50 mm long and 30 mm wide frame on a polypropylene sheet using a polyethylene backer, filled with the obtained composition, and a Teflon (registered trademark) sheet on the top. It was pressed so as to be smooth, and cured as it is under an atmosphere of 25 ° C. for 1 day. After curing, the Teflon (registered trademark) sheet and the polyethylene backer were removed to obtain a thermally conductive silicone gel cured product.
  • the thermally conductive silicone gel composition obtained by the number of parts shown in Examples 1 to 6 and Comparative Examples 1 to 7 is blended with the component (D) so as to obtain a thermal conductivity of 3.5 W / mK.
  • the thermal conductivity is a value measured by a probe method using QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the viscosity is a value measured by a rotational viscometer at 25 ° C.
  • the Vi content is the content of the vinyl group portion (CH 2 CHCH—) in the alkenyl group.
  • Component (C) Complex of platinum and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane having a C-1 platinum concentration of 0.6% by weight
  • D-1 crushed aluminum oxide powder having an average particle size of 0.4 ⁇ m
  • D-2 crushed aluminum oxide powder having an average particle size of 2.5 ⁇ m
  • D-3 spherical aluminum oxide powder having an average particle size of 35 ⁇ m
  • each thermally conductive silicone gel composition according to the present invention shows stress relaxation by compressive deformation by stress, It was possible to peel easily by fixed deformation by subsequent tensile stress, and showed repairability.
  • Comparative Examples 1 to 3 and 7 lacking the component B-1 of the present invention although stress relaxation is indicated by compressive deformation due to stress, the subsequent tensile stress is insufficient in releasability, and silicone It was not possible to improve the repairability while causing deformation of the gel cured product. Moreover, it was not suitable for use which is the object of the present invention. Also, in Comparative Example 4-6 in which the component B-1 is used but the ratio is outside the range of the claim with non-B3, the peelability is insufficient with the same result, and the repairability is improved. I could not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

[課題]高い熱伝導率を有しながら、ギャップフィル性およびリペア性に優れた熱伝導性シリコーンゲル組成物、それからなる熱伝導性部材およびそれを用いる放熱構造体を提供する。 [解決手段](A)アルケニル基含有オルガノポリシロキサン、(B)分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、(C)ヒドロシリル化反応用触媒、(D)熱伝導性充填剤、および(E)分子内に炭素原子数6以上のアルキル基を有するアルコキシシランを含有してなる、熱伝導性シリコーンゲル組成物、それを硬化してなるシリコーンゲル、およびそれらの使用。

Description

熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
本発明は、高い熱伝導率を有しながら、ギャップフィル性およびリペア性に優れた熱伝導性シリコーンゲル組成物、それからなる熱伝導性部材およびそれを用いる放熱構造体に関する。
近年、トランジスター、IC、メモリー素子等の電子部品を登載したプリント回路基板やハイブリッドICの高密度・高集積化、二次電池(セル式)の容量の増大にともなって、電子部品や電池等の電子・電気機器から発生する熱を効率よく放熱するために、オルガノポリシロキサン、および酸化アルミニウム粉末、酸化亜鉛粉末等の熱伝導性充填剤からなる熱伝導性シリコーン組成物が広く利用されており、特に、高い放熱量に対応すべく、多量の熱伝導性充填剤を充填した熱伝導性シリコーン組成物が提案されている。
例えば、特許文献1および特許文献2には、熱伝導性充填剤の表面を、長鎖アルキル基を有する加水分解性シランで処理することにより、これらの熱伝導性シリコーン組成物に対して、熱伝導性無機充填剤を高充填化しても、成形物に柔軟性と耐熱機械特性が付与され、また、粘度上昇を低減して成形加工性を向上させ、高い熱伝導率を有する熱伝導性シリコーン組成物が実現可能であることが提案されている。
しかしながら、これらの熱伝導性シリコーン組成物にあっては、一定の粘度低減や成形性の改善は認められるものの、その流動性が不十分であるために、高度に精密化された電気・電子材料の構造に対する精密塗布が困難であり、かつ、放熱すべき電子部材との間に間隙(ギャップ)が生じて潜熱の原因になるなど、十分な放熱性が実現できない場合がある。さらに、これらの電子部材については、位置決めや回路再配置等に対応したリペア性が求められるところ、従来の熱伝導性シリコーン組成物は熱伝導性硬化物が部材に対して固着しやすく、これらの熱伝導性硬化物を残滓なく部材から剥離することが困難であり、製造時の歩留まりの悪化、電子部品や電池等の電子・電気機器の修繕や再利用の障害となる場合がある。
特開平11-209618号公報 特開2000-001616号公報
本発明は、上記課題を解決すべくなされたものであり、熱伝導性無機充填剤を高充填化した場合であっても、組成物全体が高い流動性を維持するために間隙の多い電子部品等に対する精密塗布性およびギャップフィル性に優れ、かつ、得られる熱伝導性硬化物の剥離性が高く、電子・電気機器等の放熱構造体のリペア性に優れた熱伝導性シリコーンゲル組成物を提供することを目的とする。更に得られる熱伝導性硬化物は柔らかいゲル組成物であることから、電子部品と放熱構造体の熱膨張率の違いにより生じる応力を緩和することにより、部材の破損を防止できる。また、本発明は、当該熱伝導性シリコーンゲル組成物を用いた熱伝導性部材、同部材を用いた放熱構造体を提供することを目的とする。
鋭意検討の結果、本発明者らは、以下の成分(A)~(E)を含有してなる熱伝導性シリコーンゲル組成物を用いることで、上記課題を解決できる事を見出し、本発明に到達した。
(A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン 100質量部、
(B)25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、
(C)触媒量のヒドロシリル化反応用触媒、
(D)熱伝導性充填剤 400~3,500質量部、および (E)分子内に炭素原子数6以上のアルキル基を有するアルコキシシラン 前記の成分(D)に対して0.1~2.0質量%となる量
また、本発明の目的は、上記の成分(E)が、下記構造式:
YnSi(OR)4-n
(式中、Yは炭素原子数6~18のアルキル基であり、Rは炭素原子数1~5のアルキル基であり、nは1または2の数である)
で表されるアルコキシシランである場合に好適に解決され、特に、成分(E)が、デシル基等の炭素原子数6~18のアルキル基を有するトリアルコキシシランであるである場合に好適に解決される。
また、本発明の目的は、前記の成分(D)が、成分(E)により表面処理されていることを特徴とする熱伝導性シリコーンゲル組成物により、好適に解決される。
また、本発明の目的は、さらに、(F)耐熱性付与剤を含有してなる熱伝導性シリコーンゲル組成物により、好適に解決される。
同様に、本発明の目的は、成分(D)が、(D1)平均粒径が0.1~30μmである板状の窒化ホウ素粉末、(D2)平均粒径が0.1~50μmである顆粒状の窒化ホウ素粉末、(D3)平均粒径が0.01~50μmである球状及び/若しくは破砕状の酸化アルミニウム粉末、又は(D4)平均粒径が0.01~50μmであるグラファイト、或いはこれらの2種類以上の混合物である熱伝導性シリコーンゲル組成物により、好適に解決される。
同様に、本発明の目的は、成分(B)が、(B1)分子内に平均して2~3個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンである組成物により好適に解決され、特に、成分(B)が分子鎖側鎖のみに平均して2個のケイ素原子結合水素原子を有する直鎖状のオルガノハイドロジェンポリシロキサンであることがより好ましい。さらに、組成物中の成分(B)中のケイ素原子結合水素原子([HB])と、成分(B)以外のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子の含有量([Hnon-B])について、[Hnon-B]/ ([HB]+[Hnon-B])の値が0.0~0.70の範囲であることが好ましく、同値は、0.0~0.50、0.0~0.25、0.0であってよい。
さらに、本発明の目的は、これらの熱伝導性シリコーンゲル組成物からなる熱伝導性部材、特に、同組成物を硬化させてなる熱伝導性部材により、好適に解決される。また、これらの熱伝導性部材を備えた放熱構造体により、好適に解決される。
当該放熱構造体は特に限定されないが、電気・電子部品、二次電池等の電気・電子機器であることが好ましく、微細な放熱構造について、所望のBLT(Bond Line Thickness)を設計して適用してもよい。
本発明により、熱伝導性無機充填剤を高充填化した場合であっても、組成物全体が高い流動性を維持するために間隙の多い電子部品等に対する精密塗布性およびギャップフィル性に優れ、かつ、得られる熱伝導性硬化物の剥離性が高く、電子部品のリペア性に優れた熱伝導性シリコーンゲル組成物が提供される。更に得られる熱伝導性硬化物は柔らかいゲル組成物であることから、電子部品と放熱構造体の熱膨張率の違いにより生じる応力を緩和することにより、部材の破損を防止できる。また、本発明により、当該熱伝導性シリコーンゲル組成物を用いた熱伝導性部材、同部材を用いた放熱構造体(特に、電気・電子部品の放熱構造および二次電池の放熱構造を含む、電気・電子機器の放熱構造体)を提供することができる。
[熱伝導性シリコーンゲル組成物]
本発明に係る組成物は、(A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン、(B)25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサン、(C)ヒドロシリル化反応用触媒、(D)熱伝導性充填剤、および(E)分子内に炭素原子数6以上のアルキル基を有するアルコキシシランを各々特定量含有してなり、任意でさらに(F)耐熱性付与剤およびその他の添加剤を配合することができる。以下、各成分について説明する。
[(A)アルケニル基含有オルガノポリシロキサン]
成分(A)であるアルケニル基含有オルガノポリシロキサンは、熱伝導性シリコーンゲル組成物の主剤であり、25℃における粘度が10~100,000mPa・sの範囲内である。(A)成分の25℃における粘度は、10~100,00mPa・sの範囲内であることが好ましく、10~10,000mPa・sの範囲内であることがより好ましい。(A)成分の粘度が10mPa・s未満であると、得られるシリコーンゲルの物理的特性が低下する傾向があり、一方、100,000mPa・sを超えると、得られるシリコーンゲル組成物の取扱作業性およびギャップフィル性が低下する傾向がある。
成分(A)は、1種又は2種以上のアルケニル基含有オルガノポリシロキサンで構成される。こうしたアルケニル基含有オルガノポリシロキサンの分子構造は、特に限定されず、例えば、直鎖状、分枝鎖状、環状、三次元網状構造、並びにこれらの組み合わせが挙げられる。成分(A)は、直鎖状のアルケニル基含有オルガノポリシロキサンのみからなっていてもよく、分枝構造を有するアルケニル基含有オルガノポリシロキサンのみからなっていてもよく、または、直鎖状のオルガノポリシロキサンと分枝構造を有するアルケニル基含有オルガノポリシロキサンとの混合物からなっていてもよい。また、分子内のアルケニル基として、ビニル基、アリル基、ブテニル基、ヘキセニル基等が例示される。また、成分(A)中のアルケニル基以外の有機基として、メチル基、エチル基、プロピル基等のアルキル基;フェニル基、トリル基等のアリール基;3,3,3-トリフロロプロピル基等のハロゲン化アルキル基等のアルケニル基を除く一価炭化水素基が例示される。
特に好適には、成分(A)は、直鎖状のアルケニル基含有オルガノポリシロキサンであり、少なくとも分子鎖両末端にアルケニル基を含有することが好ましく、分子鎖両末端のみにアルケニル基を含有していてもよい。こうした成分(A)としては、特に限定されないが、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、これらの重合体のメチル基の一部がエチル基、プロピル基等のメチル基以外のアルキル基や3,3,3-トリフロロプロピル基等のハロゲン化アルキル基で置換された重合体、これらの重合体のビニル基がアリル基、ブテニル基、ヘキセニル基等のビニル基以外のアルケニル基で置換された重合体、およびこれらの重合体の2種以上の混合物が挙げられる。なお、これらのアルケニル基含有オルガノポリシロキサンは、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
本発明の成分(A)は、さらに、ケイ素原子に結合した一般式:
Figure JPOXMLDOC01-appb-C000001
(式中、Rは同じかまたは異なる、脂肪族不飽和結合を有さない一価炭化水素基であり、Rはアルキル基であり、Rは同じかまたは異なるアルキレン基であり、aは0~2の整数であり、pは1~50の整数である。)
で表されるアルコキシシリル含有基を有しても良い。これらの官能基を有するオルガノポリシロキサンは、未硬化状態における組成物の増粘を抑制し、かつ分子中にアルコキシシリル基を有するため、成分(D)の表面処理剤としても機能する。このため、得られる組成物の増粘やオイルブリードが抑制され、取扱作業性が損なわれないという恩恵を得られる場合がある。
[(B)オルガノハイドロジェンポリシロキサン]
成分(B)は、本発明の特徴的な成分の一つであり、25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンである。当該構造を有することは、成分(B)が本組成物において、分子鎖側鎖上のケイ素原子結合水素原子のヒドロシリル化反応により架橋延長剤として機能することを意味する。
成分(B)は、本発明の熱伝導性シリコーンゲル組成物において、成分(A)の架橋延長剤として機能し、組成物全体を、緩やかに架橋させ、ゲル状の硬化物を形成する。ここで、成分(B)は、分子鎖側鎖上に平均して少なくとも2個のケイ素原子結合水素原子を有し、かつ、分子内のケイ素原子結合水素原子を平均して2~4個のみ含むことから、主として側鎖上の2個~4個のケイ素原子結合水素原子による架橋延長反応が進行して、部材からの剥離性に優れ、修繕・再利用等のリペア性に優れた熱伝導性シリコーンゲル硬化物を形成する。
剥離性およびリペア性の改善の見地から、成分(B)は、(B1)分子内に平均して2~3個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンであることが好ましく、(B1-1)分子鎖側鎖のみに平均して2~3個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンであることが特に好ましい。なお、成分(B)中のケイ素原子結合水素原子は、分子鎖側鎖のみに平均して2個のみであることが最も好ましい。
本発明の組成物は、成分(B)について、少なくとも成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量の範囲にあることが必要であり、0.3~2.0モルとなる量、または0.4~1.0モルとなる量の範囲であることが、得られる熱伝導性シリコーンゲル硬化物の形成および同硬化物の剥離性およびリペア性の見地から、特に好ましい。具体的には、組成物中に成分(B)以外のオルガノハイドロジェンポリシロキサンが存在しない場合、成分(B)中のケイ素原子結合水素原子の含有量が前記下限未満では、熱伝導性シリコーンゲル組成物の硬化不良の原因となる場合があり、前記上限を超えると、ケイ素原子結合水素原子の量が過剰となって、同硬化物の剥離性およびリペア性が損なわれる場合がある。
このような成分(B)は、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体が例示される。なお、これらの例示は非限定的であり、メチル基の一部はフェニル基、水酸基、アルコキシ基等で置換されていてもよい。
成分(B)の25℃における粘度は特に限定されないが、好ましくは、1~500mPa・sの範囲内であり、さらに、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
[その他の架橋剤の併用]
本発明の組成物は、成分(B)以外のオルガノハイドロジェンポリシロキサン、例えば、分子内のケイ素原子結合水素原子を平均して4個を超える数含む分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内のケイ素原子結合水素原子を平均して4個を超える数含む分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、メチルハイドロジェンシロキシ基含有シロキサンレジン等を架橋剤として含んでも良い。しかしながら、少なくとも、上記の量の成分(B)を、架橋延長剤として含むことが必要であり、その他のオルガノハイドロジェンポリシロキサンを併用する場合であっても、本発明の組成物の硬化特性および硬化物の剥離性およびリペア性の見地から、成分(B)の比率が一定量以上であることが好ましい。また、これらのオルガノハイドロジェンポリシロキサンの分子中のケイ素原子結合水素原子の個数(平均値)は8個を超えない範囲が好ましい。
具体的には、組成物中の成分(B)中のケイ素原子結合水素原子([HB])と、成分(B)以外のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子の含有量([Hnon-B])について、[Hnon-B]/ ([HB]+[Hnon-B])の値が0.0~0.70の範囲であることが好ましく、同値は0.0~0.50、0.0~0.25、0.0であってよい。[Hnon-B]/ ([HB]+[Hnon-B])の値が前記上限を超えると、組成物中の架橋剤全体に占める成分(B)の影響が相対的に小さくなり、硬化物の剥離性およびリペア性が損なわれたり、硬化不良の原因となる場合がある。
本発明の技術的効果の見地から、本組成物中の架橋剤であるオルガノハイドロジェンポリシロキサンは、以下の組み合わせが好適である。

(B´1): 成分(B)のみ、または、組成中に意図的に他のオルガノハイドロジェンポリシロキサンが配合されておらず、実質的に成分(B)のみ

(B´2):成分(B)に加えて、
分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、
分子内のケイ素原子結合水素原子を平均して5~8個含む分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、および
分子内のケイ素原子結合水素原子を平均して5~8個含む含む分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体
から選ばれる1種類又は2種類以上を含有する、オルガノハイドロジェンポリシロキサン混合物

ただし、仮に上記の成分(B´2)を用いる場合であっても、[Hnon-B]/ ([HB]+[Hnon-B])の値は上記同様の範囲であることが好ましい。
[組成物中のオルガノハイドロジェンポリシロキサン(架橋剤)の量]
成分(B)を含めた組成物中のオルガノハイドロジェンポリシロキサンの含有量は、組成物中の成分(A)に含まれるアルケニル基1モルに対して、オルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子が0.2~5モルとなる量であり、0.3~2.0モルとなる量、または0.4~1.0モルとなる量の範囲であることが、得られる熱伝導性シリコーンゲル硬化物の形成および同硬化物の剥離性およびリペア性の見地から、特に好ましい。
特に、組成物中のオルガノハイドロジェンポリシロキサンが、前記の(B´2)で示した混合物、特に、成分(B)と分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサンの混合物である場合、同組成物の硬化性を改善する見地から、オルガノハイドロジェンポリシロキサンの中のケイ素原子結合水素原子が0.5~1.5モルとなる量であることが好ましく、0.7~1.0モルとなる量の範囲であることがより好ましい。一方、組成物中のオルガノハイドロジェンポリシロキサンが、実質的に成分(B)のみである場合、オルガノハイドロジェンポリシロキサンの中のケイ素原子結合水素原子が0.3~1.5モルとなる量であることが好ましく、0.4~1.0モルとなる量の範囲であることがより好ましい。組成物中のオルガノハイドロジェンポリシロキサンの種類および含有量が前記範囲内である場合、本発明の技術的効果である、熱伝導性シリコーンゲル組成物の流動性、ギャップフィル性に最も優れ、かつ、得られる熱伝導性シリコーンゲル硬化物の物理的特性、特に、剥離性およびリペア性が最も良好となる。
[(C)ヒドロシリル化反応用触媒]
ヒドロシリル化反応用触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体、およびこれらの白金系触媒を、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂で分散あるいはカプセル化した触媒が例示され、特に、白金-アルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
ヒドロシリル化反応用触媒の添加量は触媒量であり、成分(A)に対して、金属原子が質量単位で0.01~500ppmの範囲内となる量、0.01~100ppmの範囲内となる量、あるいは、0.01~50ppmの範囲内となる量であることが好ましい。
[ヒドロシリル化反応抑制剤]
本発明の組成物には、その取扱作業性の見地から、さらにヒドロシリル化反応抑制剤を含むことが好ましい。ヒドロシリル化反応抑制剤は、本発明の熱伝導性シリコーンゲル組成物のヒドロシリル化反応を抑制するための成分であって、具体的には、例えば、エチニルシクロヘキサノールのようなアセチレン系、アミン系、カルボン酸エステル系、亜リン酸エステル系等の反応抑制剤が挙げられる。反応抑制剤の添加量は、通常、シリコーンゲル組成物全体の0.001~5質量%である。特に、シリコーンゲル組成物の取扱作業性を向上させる目的では、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-フェニル-1-ブチン-3-オール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のシクロアルケニルシロキサン;ベンゾトリアゾール等のトリアゾール化合物等が特に制限なく使用することができる。
[(D)熱伝導性充填剤]
成分(D)は、本組成物および本組成物を硬化させてなる熱伝導性部材に熱伝導性を付与するための熱伝導性充填剤である。このような成分(D)としては、純金属、合金、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、金属ケイ化物、炭素、軟磁性合金及びフェライトからなる群から選ばれた、少なくとも1種以上の粉末及び/又はファイバーであることが好ましく、金属系粉末、金属酸化物系粉末、金属窒化物系粉末、または炭素粉末が好適である。
かかる熱伝導性充填剤は、後述する成分(E)であるアルコキシシランにより、その全部又は一部について表面処理がなされていることが好ましい。さらに、成分(E)と別に、あるいは成分(E)と共に、これらの粉体及び/又はファイバーとして、カップリング剤として知られている各種表面処理剤により処理されているものを用いてもよい。成分(D)の粉体及び/又はファイバーを処理するための表面処理剤としては、成分(E)のほか、界面活性剤、その他のシランカップリング剤、アルミニウム系カップリング剤及びシリコーン系表面処理剤などが挙げられる。
純金属としては、ビスマス、鉛、錫、アンチモン、インジウム、カドミウム、亜鉛、銀、銅、ニッケル、アルミニウム、鉄及び金属ケイ素が挙げられる。合金としては、ビスマス、鉛、錫、アンチモン、インジウム、カドミウム、亜鉛、銀、アルミニウム、鉄及び金属ケイ素からなる群から選択される二種以上の金属からなる合金が挙げられる。金属酸化物としては、アルミナ、酸化亜鉛、酸化ケイ素、酸化マグネシウム、酸化ベリリウム、酸化クロム及び酸化チタンが挙げられる。金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化バリウム、及び水酸化カルシウムが挙げられる。金属窒化物としては、窒化ホウ素、窒化アルミニウム及び窒化ケイ素が挙げられる。金属炭化物としては、炭化ケイ素、炭化ホウ素及び炭化チタンが挙げられる。金属ケイ化物としては、ケイ化マグネシウム、ケイ化チタン、ケイ化ジルコニウム、ケイ化タンタル、ケイ化ニオブ、ケイ化クロム、ケイ化タングステン及びケイ化モリブデンが挙げられる。炭素としては、ダイヤモンド、グラファイト、フラーレン、カーボンナノチューブ、グラフェン、活性炭及び不定形カーボンブラックが挙げられる。軟磁性合金としては、Fe-Si合金、Fe-Al合金、Fe-Si-Al合金、Fe-Si-Cr合金、Fe-Ni合金、Fe-Ni-Co合金、Fe-Ni-Mo合金、Fe-Co合金、Fe-Si-Al-Cr合金、Fe-Si-B合金及びFe-Si-Co-B合金が挙げられる。フェライトとしては、Mn-Znフェライト、Mn-Mg-Znフェライト、Mg-Cu-Znフェライト、Ni-Znフェライト、Ni-Cu-Znフェライト及びCu-Znフェライトが挙げられる。
なお、成分(D)として好適には、銀粉末、アルミニウム粉末、酸化アルミニウム粉末、酸化亜鉛粉末、窒化アルミニウム粉末またはグラファイトである。また、本組成物に、
電気絶縁性が求められる場合には、金属酸化物系粉末、または金属窒化物系粉末であることが好ましく、特に、酸化アルミニウム粉末、酸化亜鉛粉末、または窒化アルミニウム粉末であることが好ましい。
成分(D)の形状は特に限定されないが、例えば、球状、針状、円盤状、棒状、不定形状が挙げられ、好ましくは、球状、不定形状である。また、成分(D)の平均粒子径は特に限定されないが、好ましくは、0.01~100μmの範囲内であり、さらに好ましくは、0.01~50μmの範囲内である。
成分(D)は、(D1)平均粒径が0.1~30μmである板状の窒化ホウ素粉末、(D2)平均粒径が0.1~50μmである顆粒状の窒化ホウ素粉末、(D3)平均粒径が0.01~50μmである球状及び/若しくは破砕状の酸化アルミニウム粉末、又は(D4)平均粒径が0.01~50μmである球状及び/若しくは破砕状グラファイト、或いはこれらの2種類以上の混合物であることが特に好ましい。最も好適には、平均粒径が0.01~50μmである球状および破砕状の酸化アルミニウム粉末の2種類以上の混合物である。特に、粒径の大きい酸化アルミニウム粉末と粒径の小さい酸化アルミニウム粉末を最密充填理論分布曲線に従う比率で組み合わせることにより、充填効率が向上して、低粘度化及び高熱伝導化が可能になる。
成分(D)の含有量は、成分(A)100質量部に対して400~3,500質量部の範囲内であり、好ましくは、400~3,000質量部の範囲内である。これは、成分(D)の含有量が上記範囲の下限未満であると、得られる組成物の熱伝導性が不十分となり、一方、上記範囲の上限を超えると、成分(E)を配合又は成分(D)の表面処理に用い田場合であっても、得られる組成物の粘度が著しく高くなり、その取扱作業性、ギャップフィル性等が低下するからである。
[(E)アルキルアルコキシシラン]
成分(E)は、成分(B)と共に本組成物の特徴的な成分であり、分子内に炭素原子数6以上のアルキル基を有するアルコキシシランである。ここで、炭素原子数6以上のアルキル基の具体例としてはヘキシル基、オクチル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基やベンジル基、フェニルエチル基等のアラルキル基などが挙げられるが、特に炭素数6~20のアルキル基が好ましい。炭素原子数6未満のアルキル基を有するアルコキシシランの場合、組成物の粘度を低下させる効果が不十分であり、組成物の粘度が上昇して、所望の流動性およびギャップフィル性が実現できない場合がある。また、炭素原子数20以上のアルキル基等を有するアルコキシシランを用いた場合、工業的供給性に劣るほか、成分(A)の種類によっては、相溶性が低下する場合がある。
好適には、成分(E)は、下記構造式:
YnSi(OR)4-n
(式中、Yは炭素原子数6~18のアルキル基であり、Rは炭素原子数1~5のアルキル基であり、nは1または2の数である)
で表されるアルコキシシランであり、OR基としてメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが例示され、特にメトキシ基及びエトキシ基が好ましい。また、nは1,2又は3であり、特に1であることが好ましい。
このような成分(E)は、具体的には、C613Si(OCH33、C817Si(OC253、C1021Si(OCH33、C1123Si(OCH33、C1225Si(OCH33、C1429Si(OC253等が例示され、最も好適には、デシルトリメトキシシランである。
成分(E)の使用量は、前記の成分(D)に対して0.1~2.0質量%となる量であり、使用量が前記下限未満であると、組成物の粘度を低下させる効果が不十分となる場合がある。また、成分(E)の使用量が前記上限を超えると、粘度低下の効果が飽和し、更にアルコキシシランが分離して、組成物の保存安定性が低下する場合がある。
本発明において、成分(E)は、前記の成分(D)を成分(E)により表面処理された形態で配合することが好ましく、成分(D)の少なくとも一部が成分(E)により表面処理されたことが、本組成物の流動性およびギャップフィル性の改善の見地から、特に好ましい。表面処理剤として成分(E)を使用する場合、前記の成分(D)に対して0.15~1.2質量%となる量が好ましく、0.2~1.0質量%の範囲がより好ましい。
成分(E)による表面処理方法は特に制限されるものではないが、成分(D)である熱伝導性無機充填剤への直接処理法、インテグラルブレンド法、ドライコンセントレート法等を用いることができる。直接処理法には、乾式法、スラリー法、スプレー法等があり、インテグラルブレンド法としては、直接法、マスターバッチ法等があるが、このうち乾式法、スラリー法、直接法が良く用いられる。好適には、成分(D)と成分(E)の全量を公知の混合装置を用いて事前に混合し、その表面を処理する形態であってよい。なお、前記の特許文献1および特許文献2に記載の通り、成分(D)の表面で、成分(E)の一部が加水分解ないし重合体を形成していてもよく、本発明における表面処理の概念に包摂されるものである。
上記混合装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ヘンシェルミキサー等が例示される。
[成分(F)]
本発明組成物は、前記の成分(A)~(E)、任意で他の架橋剤およびヒドロシリル化反応抑制剤を含んでなるものであるが、熱伝導性シリコーンゲル組成物およびその硬化物の耐熱性改善の見地から、さらに、(F)耐熱性付与剤を含有することが好ましい。成分(F)として、本発明の組成物およびその硬化物に耐熱性を付与できるものならば特に限定されないが、例えば、酸化鉄、酸化チタン、酸化セリウム、酸化マグネシウム、酸化アルミニウム、酸化亜鉛等の金属酸化物、水酸化セリウム等の金属水酸化物、フタロシアニン化合物、カーボンブラック、セリウムシラノレ-ト、セリウム脂肪酸塩、オルガノポリシロキサンとセリウムのカルボン酸塩との反応生成物等が挙げられる。特に好適には、フタロシアニン化合物であり、例えば、特表2014-503680号公報に開示された無金属フタロシアニン化合物及び金属含有フタロシアニン化合物からなる群より選択される添加剤が好適に用いられ、金属含有フタロシアニン化合物のうち、銅フタロシアニン化合物が特に好適である。最も好適かつ非限定的な耐熱性付与剤の一例は、29H,31H-フタロシアニナト(2-)-N29,N30,N31,N32銅である。このようなフタロシアニン化合物は市販されており、例えば、PolyOne Corporation(Avon Lake,Ohio,USA)のStan-tone(商標)40SP03がある。
このような成分(F)の配合量は、組成物全体の0.01~5.0質量%の範囲内とするであってよく、0.05~0.2質量%、0.07~0.1質量%の範囲であってもよい。
[その他の添加剤]
本発明の熱伝導性シリコーンゲル組成物は、上記した成分以外にも、本発明の目的を損なわない範囲で任意成分を配合することができる。この任意成分としては、例えば、ヒュームドシリカ、湿式シリカ、粉砕石英、酸化チタン、炭酸マグネシウム、酸化亜鉛、酸化鉄、ケイ藻土、カーボンブラック等の無機充填剤(「無機充填材」ともいう)、こうした無機充填剤の表面を有機ケイ素化合物により疎水処理してなる無機充填剤、ケイ素原子結合水素原子およびケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、耐寒性付与剤難燃性付与剤、チクソ性付与剤、顔料、染料等が挙げられる。また、本発明の熱伝導性シリコーンゲル組成物は、所望により、公知の接着性付与剤、カチオン系界面活性剤、アニオン系界面活性剤、または非イオン系界面活性剤などからなる1種類以上の帯電防止剤;誘電性フィラー;電気伝導性フィラー;離型性成分;チクソ性付与剤;防カビ剤などを含むことができる。また、所望により、有機溶媒を添加してもよい。
[組成物の製造方法]
本発明の熱伝導性シリコーンゲル組成物は、上記の各成分を混合することにより調製でき、例えば、事前に成分(D)と成分(E)を混合して、成分(D)の表面を成分(E)で処理した後、残る成分(A)~(C)、成分(F)、並びに他の任意の成分を混合することにより調製できる。または、成分(A)中で成分(D)と成分(E)を混合し、成分(D)の表面を成分(E)で処理した後、残る成分(B)、成分(C)、成分(F)、並びに他の任意の成分を混合することにより調製できる。各成分の混合方法は、従来公知の方法でよく、特に限定されないが、通常、単純な攪拌により均一な混合物となることから、混合装置を用いた混合が好ましい。こうした混合装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ヘンシェルミキサー等が例示される。
[組成物の形態およびパッケージ]
本発明の熱伝導性シリコーンゲル組成物は、一成分型(一液型を含む)の組成物として用いてもよく、必要に応じ、分液した多成分を使用時に混合する多成分型(多液型、特に二液型を含む)の組成物として用いてもよい。一成分型の場合、組成物の各構成成分を単一の保存容器に入れて使用することができ、多成分型の場合、個別に保存される複数の組成物を所定の比率で混合して使用することができる。なお、これらのパッケージは、後述する硬化方法や塗布手段、適用対象に応じて所望により選択することができ、特に制限されない。
[熱伝導性シリコーンゲル組成物]
本発明の熱伝導性シリコーンゲル組成物は、流動性に優れ、精密な塗布が可能であり、かつ、ギャップフィル性に優れる。具体的には、硬化前の組成物の粘度が25℃において10~500Pa・s範囲であり、特に50~400Pa・sであることがより好ましい。
本発明の熱伝導性シリコーンゲル組成物は、ヒドロシリル化反応により硬化して、熱伝導性に優れたシリコーンゲル硬化物を形成する。このヒドロシリル化反応硬化型のシリコーンゲル組成物を硬化するための温度条件は、特に限定されないが、通常20℃~150℃の範囲内であり、より好ましくは20~80℃の範囲内である。
本発明のシリコーンゲル硬化物は、JIS K6249で規定されるタイプE硬度計で2~70の範囲を満たす硬度を有することが好ましく、2~50の範囲を満たすことがさらに好ましい。硬度70を示すものはエラストマー用途に一般的に使用されるタイプA型硬度計で50以下となり、こうした範囲の硬度を持つシリコーンゲル硬化物は、低弾性率および低応力といったシリコーンゲルの特徴を有するものになる。一方、硬度が70より大きい場合には、発熱部材との密着性は優れるものの、追従性が悪くなる恐れがあり、硬度が2未満の場合には追従性に優れるものの、発熱部材の固定性が悪くなる恐れがある。
[熱伝導率]
本発明の熱伝導性シリコーンゲル組成物は、熱伝導性充填剤を安定的に高充填することができ、2.0W/mK以上、好適には3.0W/mK以上、より好適には3.0~7.0W/mKの組成物およびシリコーンゲル硬化物を設計可能である。
[用途および放熱構造体]
本発明の熱伝導性シリコーンゲル組成物は、熱伝導による発熱性部品の冷却のために、発熱性部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料(熱伝導性部材)として有用であり、これを備えた放熱構造体を形成することができる。ここで、発熱性部品の種類や大きさ、細部の構造は特に限定されるものではないが、本発明の熱伝導性シリコーンゲル組成物は、高い熱伝導性を有しながら部材へのギャップフィル性に優れ、微細な凹凸や狭いギャップ構造を有する発熱性部材に対しても密着性と追従性が高く、かつ、ゲル特有の柔軟性を併せ持つことから、電気・電子部品又はセル方式の二次電池類を含む電気・電子機器の放熱構造体に好適に適用される。
前記の熱伝導性シリコーン組成物からなる部材を備えた電気・電子機器は特に制限されるものではないが、例えば、セル方式のリチウムイオン電極二次電池、セルスタック式の燃料電池等の二次電池;プリント基板のような電子回路基板;ダイオード(LED)、有機電界素子(有機EL)、レーザーダイオード、LEDアレイのような光半導体素子がパッケージされたICチップ;パーソナルコンピューター、デジタルビデオディスク、携帯電話、スマートフォン等の電子機器に使用されるCPU;ドライバICやメモリー等のLSIチップ等が例示される。特に、高集積密度で形成された高性能デジタル・スイッチング回路においては、集積回路の性能及び信頼性に対して熱除去(放熱)が主要な要素となっているが、本発明に係る熱伝導性シリコーンゲル組成物を用いてなる熱伝導性部材は、輸送機中のエンジン制御やパワー・トレーン系、エアコン制御などのパワー半導体用途に適用した場合にも、放熱性および取扱作業性に優れ、電子制御ユニット(ECU)など車載電子部品に組み込まれて過酷な環境下で使用された場合にも、優れた耐熱性および熱伝導性を実現できる。また、本発明に係る熱伝導性シリコーンゲル組成物は、そのレオロジーを制御することで、水平面だけでなく垂直面にも配置することができ、かつ、電気・電子部品や二次電池等の発熱性部品の微細構造にも侵入して間隙(ギャップ)のない放熱構造体を与えることができる。これにより、当該放熱構造体を備えた電気・電子機器について放熱性が改善され、潜熱や熱暴走の問題が改善されるほか、柔軟なゲル状硬化物により電気・電子機器の部分構造を保護し、その信頼性と動作安定性を改善できる場合がある。
上記の電気・電子機器を構成する材料としては、例えば、樹脂、セラミック、ガラス、アルミニウムのような金属等が挙げられる。本発明の熱伝導性シリコーンゲル組成物は、硬化前の熱伝導性シリコーンゲル組成物(流動体)としても、熱伝導性シリコーン硬化物としても、これらの基材に適用して使用することができる。
[硬化方法]
発熱性部品について、本発明の熱伝導性シリコーンゲル組成物を用いた放熱構造を形成する方法は限定されず、例えば、電気・電子部品について放熱部分に本発明の熱伝導性シリコーンゲル組成物を注ぎ、十分に間隙まで充填した後、これを加熱したり、室温で放置したりすることにより、この組成物を硬化させる方法が挙げられる。
迅速な硬化が求められる用途にあっては、特に、比較的速やかに全体を硬化させることができることから、これを加熱して硬化させる方法が好ましい。この際、加熱温度が高くなると、封止または充填している電気・電子部品封止剤中の気泡や亀裂の発生が促進されるので、50~250℃の範囲内に加熱することが好ましく、特に、70~130℃の範囲内に加熱することが好ましい。また、加熱硬化の場合、本組成物を一液型のパッケージとしてもよく、その場合、取扱作業性および組成物のポットライフの改善の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよく、かつ、好ましい。
一方、本発明の熱伝導性シリコーンゲル組成物は、室温または50度以下の加温下で硬化させることができる。その場合、本組成物を一液型または多液型のパッケージとしてもよく、混合後、室温または50度以下の加温下で1時間から数日間かけて室温または50度以下の加温下で硬化させることが好ましい。
なお上記の硬化により得られた熱伝導性シリコーンゲルの形状、厚さおよび配置等は所望により設計可能であり、電気・電子機器の間隙に充填した後に必要に応じて硬化させてもよく、剥離層(セパレータ)を設けたフィルム上に塗布ないし硬化させ、フィルム上の熱伝導性シリコーンゲル硬化物として単独で取り扱ってもよい。また、その場合、公知の補強材により補強された熱伝導性シートの形態であってもよい。
[電気・電子機器の具体例]
本発明の熱伝導性シリコーンゲル組成物は、ギャップフィル性に優れ、柔軟かつ熱伝導性に優れたゲル状の熱伝導性部材を形成するので、電気・電子部品中の電極と電極、電気素子と電気素子、電気素子とパッケージ等の隙間が狭いものや、これらの構造がこのシリコーンゲルの膨張・収縮に追随しにくい構造を有するものに対しても有効であり、例えば、二次電池、IC、ハイブリッドIC、LSI等の半導体素子、このような半導体素子、コンデンサ、電気抵抗器等の電気素子を実装した電気回路やモジュール、圧力センサー等の各種センサー、自動車用のイグナイターやレギュレーター、発電システム、または宇宙輸送システム等のパワーデバイス等に対しても使用することができる。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。
成分(A)~(E)を以下のように混合して、実施例1~6および比較例1~7の熱伝導性シリコーンゲル組成物を得た。
表1~表3(実施例1~6および比較例1~7)に示す部数で、成分(A)、成分(D)、成分(E)を混合し、さらに減圧下、160℃で1時間混合した。常温になるまで冷却し、次に成分(B)、成分(C)、その他表中に示される成分を加えて均一になるように混合した。

[熱伝導性シリコーンゲル硬化物の作成]
 得られた組成物は、ポリプロピレンシート上にポリエチレン製バッカーを用いて高さ12mm、縦50mm、横30mmの枠を作成、得られた組成物を充填し、上にテフロン(登録商標)製シートを平滑になるように押し付け、そのままの状態で25℃の雰囲気下で1日硬化させた。硬化後、テフロン(登録商標)製シートとポリエチレン製バッカーを外し、熱伝導性シリコーンゲル硬化物を得た。

 実施例1~6および比較例1~7に示す部数により得られた熱伝導性シリコーンゲル組成物は3.5W/mKの熱伝導率を得られるように成分(D)を配合している。この熱伝導率は京都電子工業株式会社製QTM-500を使用して、プローブ法にて測定された値である。
 本発明に関わる効果に関する試験は次のように行った。結果を表1~3に示す。
[硬さ]
 硬さの測定にはASKER社製ASKER TYPE E型硬度計を使用した。

[圧縮変形]
 圧縮変形率はStable Micro Systems社製TA.XT.plusテクスチャーアナライザーを用いて、0.5mm/秒の速度で10Nの応力をかけて10秒間保持し、10Nの応力到達時の試験体厚み12mmに対する変形率の値を読み取った。プローブは直径1.27cmのものを使用し、試験の開始位置は20mmとした。サンプルは上記で示した高さ12mm、縦50mm、横30mmのシリコーンゲル硬化物を台に固定して使用した。

[引張変形]
 引張変形率はテクスチャーアナライザーを用いて、0.5mm/秒の速度で10Nの応力をかけて10秒間保持したのち、0.5mm/秒の速度で開始位置の20mm高さまで引張り上げ、応力を示さなくなった時の試験体厚み12mmに対する変形率の値を読み取った。試験開始位置20mmまで応力を示したものは、シリコーンゲル硬化物がプローブに粘着して変形し、剥離することができなかった。
以下に示す実施例等では下記の化合物ないし組成物を原料に用いた。粘度は25℃において回転粘度計により測定された値であり、Vi含有量はアルケニル基中のビニル基部分(CH2=CH-)の含有量である。
成分(A):
A-1:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(粘度 400mPa・s,Vi含有量 0.43質量%)
成分(B):
B-1:分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内に平均2個、分子鎖側鎖に平均2個(粘度 20mPa・s,Si-H 含有量 0.10質量%)

その他の架橋剤:
non-B-2:分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内に平均5個、分子鎖側鎖に平均5個(粘度 5mPa・s,Si-H 含有量 0.75質量%)
non-B-3:分子鎖両末端ジメチルハイドロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子内に平均2個、分子鎖側鎖に平均0個(粘度 10mPa・s,Si-H 含有量0.15質量%)
成分(C):
C-1白金濃度が0.6重量%である白金と1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの錯体
成分(D):
D-1:平均粒子径0.4μmの破砕状酸化アルミニウム粉末
D-2:平均粒子径2.5μmの破砕状酸化アルミニウム粉末
D-3:平均粒子径35μmの球状酸化アルミニウム粉末
成分(E):
E-1:デシルトリメトキシシラン
成分(F):
F-1:29H,31H-フタロシアニナト(2-)-N29,N30,N31,N32銅
Figure JPOXMLDOC01-appb-T000002


Figure JPOXMLDOC01-appb-T000003


Figure JPOXMLDOC01-appb-T000004
実施例1~6に示すとおり、本発明にかかる各熱伝導性シリコーンゲル組成物(熱伝導率の設計値:3.5W/mK)は、応力により圧縮変形することによって応力緩和を示しながら、その後の引張応力により一定の変形で容易に剥離することが可能であり、リペア性を示していた。
一方、本発明の構成成分B-1を欠いた比較例1-3,7においては、応力により圧縮変形することによって応力緩和を示すものの、その後の引張応力では剥離性が不十分であり、シリコーンゲル硬化物の変形を起こすと共に、リペア性を改善することができなかった。また、本発明の目的である使用には適さないものであった。また、成分B-1を使用しているものの、non-B3と比率が請求範囲外である比較例4-6においても、同様の結果で剥離性が不十分であり、リペア性を改善することができなかった。

Claims (13)

  1.  (A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン 100質量部、
     (B)25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、
     (C)触媒量のヒドロシリル化反応用触媒、
     (D)熱伝導性充填剤 400~3,500質量部、および
     (E)分子内に炭素原子数6以上のアルキル基を有するアルコキシシラン 前記の成分(D)に対して0.1~2.0質量%となる量
    を含有してなる、熱伝導性シリコーンゲル組成物。
  2. 前記の成分(E)が、下記構造式:
    YnSi(OR)4-n
    (式中、Yは炭素原子数6~18のアルキル基であり、Rは炭素原子数1~5のアルキル基であり、nは1または2の数である)
    で表されるアルコキシシランである、請求項1の熱伝導性シリコーンゲル組成物。
  3. 前記の成分(E)が、炭素原子数6~18のアルキル基を有するトリアルコキシシランである、請求項1または請求項2の熱伝導性シリコーンゲル組成物。
  4. 前記の成分(D)が、成分(E)により表面処理されていることを特徴とする、請求項1~請求項3のいずれか1項に記載の熱伝導性シリコーンゲル組成物。
  5. さらに、(F)耐熱性付与剤を含有してなる、請求項1~請求項4のいずれか1項に記載の熱伝導性シリコーンゲル組成物。
  6. 前記の成分(D)が、(D1)平均粒径が0.1~30μmである板状の窒化ホウ素粉末、(D2)平均粒径が0.1~50μmである顆粒状の窒化ホウ素粉末、(D3)平均粒径が0.01~50μmである球状及び/若しくは破砕状の酸化アルミニウム粉末、又は(D4)平均粒径が0.01~50μmであるグラファイト、或いはこれらの2種類以上の混合物である、請求項1~5のいずれか記載の熱伝導性シリコーン組成物。
  7. 前記の成分(B)が、(B1)分子内に平均して2~3個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンである、請求項1~6のいずれか1項に記載の熱伝導性シリコーン組成物。
  8. 組成物中の成分(B)中のケイ素原子結合水素原子([HB])と、成分(B)以外のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子の含有量([Hnon-B])について、[Hnon-B]/ ([HB]+[Hnon-B])の値が0.0~0.70の範囲である、請求項1~6のいずれか1項に記載の熱伝導性シリコーン組成物。
  9. 請求項1~8のいずれか1項に記載の熱伝導性シリコーンゲル組成物からなる熱伝導性部材。
  10. 請求項1~8のいずれか記載の熱伝導性シリコーンゲル組成物を硬化させてなる熱伝導性部材。
  11. 請求項9または請求項10に記載の熱伝導性部材を備えた放熱構造体。
  12. 電気・電子機器である、請求項11の放熱構造体。
  13. 電気・電子部品または二次電池である、請求項11の放熱構造体。
PCT/JP2018/026226 2017-07-24 2018-07-11 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体 WO2019021824A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880055372.0A CN111051433B (zh) 2017-07-24 2018-07-11 导热性硅酮凝胶组合物、导热性部件及散热构造体
KR1020207003922A KR102625362B1 (ko) 2017-07-24 2018-07-11 열전도성 실리콘 겔 조성물, 열전도성 부재 및 방열 구조체
EP18838000.0A EP3660099B1 (en) 2017-07-24 2018-07-11 Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
US16/633,452 US11674040B2 (en) 2017-07-24 2018-07-11 Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
JP2019532496A JP7160508B2 (ja) 2017-07-24 2018-07-11 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017142709 2017-07-24
JP2017-142709 2017-07-24

Publications (1)

Publication Number Publication Date
WO2019021824A1 true WO2019021824A1 (ja) 2019-01-31

Family

ID=65040740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026226 WO2019021824A1 (ja) 2017-07-24 2018-07-11 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体

Country Status (7)

Country Link
US (1) US11674040B2 (ja)
EP (1) EP3660099B1 (ja)
JP (1) JP7160508B2 (ja)
KR (1) KR102625362B1 (ja)
CN (1) CN111051433B (ja)
TW (1) TWI784028B (ja)
WO (1) WO2019021824A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363368A (zh) * 2020-04-10 2020-07-03 湖南国芯半导体科技有限公司 流体状高导热有机硅凝胶及其制备方法和应用
JP6942907B1 (ja) * 2020-07-07 2021-09-29 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2022009486A1 (ja) * 2020-07-07 2022-01-13 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2022075434A1 (ja) * 2020-10-09 2022-04-14 ダウ・東レ株式会社 熱伝導性シリコーン組成物および熱伝導性部材
WO2022138627A1 (ja) * 2020-12-21 2022-06-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 耐水性を有する接着性ポリオルガノシロキサン組成物
WO2023160907A1 (en) * 2022-02-22 2023-08-31 Wacker Chemie Ag Thermally conductive silicone composition and method for producing thermally conductive cured product using the composition
JP7412581B2 (ja) 2020-01-30 2024-01-12 エルケム・シリコーンズ・ユーエスエイ・コーポレーション 循環経済に有用であって、剥離可能でありかつ綺麗に剥離可能な特性を有するシリコーンエラストマーを含む、物品
US12037460B2 (en) 2019-03-29 2024-07-16 Dow Toray Co., Ltd. Multi-component type thermally conductive silicone-gel composition, thermally conductive material and heat-emission structure

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051434B (zh) 2017-07-24 2022-03-29 陶氏东丽株式会社 多成分硬化型导热性硅酮凝胶组合物、导热性部件及散热构造体
US11578245B2 (en) 2017-07-24 2023-02-14 Dow Toray Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
JP7092196B2 (ja) * 2018-08-01 2022-06-28 信越化学工業株式会社 シリコーン粘着剤組成物及びこれを用いた粘着テープ又は粘着フィルム
WO2022038888A1 (ja) * 2020-08-21 2022-02-24 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体
US20220064381A1 (en) * 2020-09-03 2022-03-03 Illinois Tool Works Inc. Silicone potting composition and uses thereof
JP6988023B1 (ja) * 2020-09-03 2022-01-05 富士高分子工業株式会社 熱伝導性シリコーン放熱材料
CN112322048A (zh) * 2020-11-03 2021-02-05 杭州之江新材料有限公司 一种有机硅凝胶组合物及其制备方法和应用
CN113337230B (zh) * 2021-05-11 2022-03-15 广东创辉鑫材科技股份有限公司 一种金属基板的高导热半固化胶膜及其制备方法
CN114507506B (zh) * 2022-02-22 2024-07-19 广州集泰化工股份有限公司 一种单组分加成型导热粘接胶及其制备方法和应用
WO2024138039A1 (en) * 2022-12-23 2024-06-27 Dow Silicones Corporation Thermally-conductive silicone composition, thermally-conductive member, and heat dissipation structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (ja) 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
JP2000001616A (ja) 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP2014503680A (ja) 2011-01-26 2014-02-13 ダウ コーニング コーポレーション 高温安定熱伝導性材料
JP2015119173A (ja) * 2013-11-15 2015-06-25 信越化学工業株式会社 熱伝導性複合シート
JP2016151010A (ja) * 2015-02-19 2016-08-22 信越化学工業株式会社 付加硬化型シリコーン組成物
WO2016140020A1 (ja) * 2015-03-02 2016-09-09 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2016219738A (ja) * 2015-05-26 2016-12-22 信越化学工業株式会社 ヒートシンク
JP2017039802A (ja) * 2015-08-17 2017-02-23 積水化学工業株式会社 半導体素子保護用材料及び半導体装置
JP2017043717A (ja) * 2015-08-27 2017-03-02 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2017210518A (ja) * 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604424A (en) 1986-01-29 1986-08-05 Dow Corning Corporation Thermally conductive polyorganosiloxane elastomer composition
JP3580366B2 (ja) 2001-05-01 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
ATE416235T1 (de) 2001-05-14 2008-12-15 Dow Corning Toray Co Ltd Wärmeleitende silikonzusammensetzung
JP4937494B2 (ja) 2003-12-05 2012-05-23 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性シリコーン組成物
JP4828145B2 (ja) 2005-03-30 2011-11-30 東レ・ダウコーニング株式会社 熱伝導性シリコーンゴム組成物
GB0512193D0 (en) 2005-06-15 2005-07-20 Dow Corning Silicone rubber compositions
JP2008239719A (ja) 2007-03-26 2008-10-09 Dow Corning Toray Co Ltd シリコーンエラストマー組成物およびシリコーンエラストマー
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5507059B2 (ja) 2008-05-27 2014-05-28 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物および電子装置
CN104194733B (zh) * 2009-03-02 2018-04-27 霍尼韦尔国际公司 热界面材料及制造和使用它的方法
US8440312B2 (en) * 2009-03-12 2013-05-14 Dow Corning Corporation Thermal interface materials and methods for their preparation and use
JP5644747B2 (ja) 2011-12-13 2014-12-24 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP6472094B2 (ja) 2014-04-09 2019-02-20 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
JP6390361B2 (ja) * 2014-11-11 2018-09-19 信越化学工業株式会社 紫外線増粘型熱伝導性シリコーングリース組成物
EP3533837B1 (en) * 2016-10-31 2024-05-15 Dow Toray Co., Ltd. One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
US11578245B2 (en) * 2017-07-24 2023-02-14 Dow Toray Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
CN111051434B (zh) * 2017-07-24 2022-03-29 陶氏东丽株式会社 多成分硬化型导热性硅酮凝胶组合物、导热性部件及散热构造体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (ja) 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
JP2000001616A (ja) 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP2014503680A (ja) 2011-01-26 2014-02-13 ダウ コーニング コーポレーション 高温安定熱伝導性材料
JP2015119173A (ja) * 2013-11-15 2015-06-25 信越化学工業株式会社 熱伝導性複合シート
JP2016151010A (ja) * 2015-02-19 2016-08-22 信越化学工業株式会社 付加硬化型シリコーン組成物
WO2016140020A1 (ja) * 2015-03-02 2016-09-09 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2016219738A (ja) * 2015-05-26 2016-12-22 信越化学工業株式会社 ヒートシンク
JP2017039802A (ja) * 2015-08-17 2017-02-23 積水化学工業株式会社 半導体素子保護用材料及び半導体装置
JP2017043717A (ja) * 2015-08-27 2017-03-02 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2017210518A (ja) * 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660099A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12037460B2 (en) 2019-03-29 2024-07-16 Dow Toray Co., Ltd. Multi-component type thermally conductive silicone-gel composition, thermally conductive material and heat-emission structure
JP7412581B2 (ja) 2020-01-30 2024-01-12 エルケム・シリコーンズ・ユーエスエイ・コーポレーション 循環経済に有用であって、剥離可能でありかつ綺麗に剥離可能な特性を有するシリコーンエラストマーを含む、物品
CN111363368A (zh) * 2020-04-10 2020-07-03 湖南国芯半导体科技有限公司 流体状高导热有机硅凝胶及其制备方法和应用
JP6942907B1 (ja) * 2020-07-07 2021-09-29 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2022009486A1 (ja) * 2020-07-07 2022-01-13 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2022075434A1 (ja) * 2020-10-09 2022-04-14 ダウ・東レ株式会社 熱伝導性シリコーン組成物および熱伝導性部材
WO2022138627A1 (ja) * 2020-12-21 2022-06-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 耐水性を有する接着性ポリオルガノシロキサン組成物
JPWO2022138627A1 (ja) * 2020-12-21 2022-06-30
WO2023160907A1 (en) * 2022-02-22 2023-08-31 Wacker Chemie Ag Thermally conductive silicone composition and method for producing thermally conductive cured product using the composition

Also Published As

Publication number Publication date
EP3660099B1 (en) 2024-09-11
US20200239758A1 (en) 2020-07-30
TW201908459A (zh) 2019-03-01
JP7160508B2 (ja) 2022-10-25
EP3660099A4 (en) 2021-05-05
KR20200033879A (ko) 2020-03-30
CN111051433A (zh) 2020-04-21
CN111051433B (zh) 2022-12-30
TWI784028B (zh) 2022-11-21
JPWO2019021824A1 (ja) 2020-07-30
US11674040B2 (en) 2023-06-13
EP3660099A1 (en) 2020-06-03
KR102625362B1 (ko) 2024-01-18

Similar Documents

Publication Publication Date Title
JP7160508B2 (ja) 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
TWI811225B (zh) 多成分固化型導熱性聚矽氧凝膠組合物、導熱性構件及散熱結構體
CN111094458B (zh) 导热性硅酮凝胶组合物、导热性部件及散热构造体
JP7422742B2 (ja) 多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
JP7144542B2 (ja) サーマルギャップフィラー及びバッテリーマネジメントシステムへのその用途
WO2022038888A1 (ja) 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体
TWI851537B (zh) 導熱性聚矽氧凝膠組合物、導熱性構件及散熱結構體
TWI851694B (zh) 多成分型導熱性聚矽氧凝膠組成物、導熱性構件及散熱結構體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207003922

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018838000

Country of ref document: EP

Effective date: 20200224