WO2019021722A1 - 内燃機関制御システム - Google Patents

内燃機関制御システム Download PDF

Info

Publication number
WO2019021722A1
WO2019021722A1 PCT/JP2018/024217 JP2018024217W WO2019021722A1 WO 2019021722 A1 WO2019021722 A1 WO 2019021722A1 JP 2018024217 W JP2018024217 W JP 2018024217W WO 2019021722 A1 WO2019021722 A1 WO 2019021722A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
amount
internal combustion
combustion engine
control
Prior art date
Application number
PCT/JP2018/024217
Other languages
English (en)
French (fr)
Inventor
雄策 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018003851.3T priority Critical patent/DE112018003851B4/de
Publication of WO2019021722A1 publication Critical patent/WO2019021722A1/ja
Priority to US16/751,840 priority patent/US11008961B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/148Using a plurality of comparators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the disclosure in this specification relates to an internal combustion engine control system.
  • Patent Document 1 discloses a device for monitoring the presence or absence of a torque abnormality such that the actual torque of the internal combustion engine largely deviates from the driving torque (user's requested torque) of the internal combustion engine requested by the user.
  • part of the air flowing into the combustion chamber may be discharged from the exhaust port. is there.
  • scavenging by opening both the intake valve and the exhaust valve immediately after the start of the intake stroke, part of the intake air is blown through the exhaust port, and high temperature gas and unburned gas remaining in the combustion chamber are exhausted. To scavenge from the port.
  • An object of the present disclosure is to provide an internal combustion engine control system capable of accurately monitoring a torque abnormality.
  • An internal combustion engine control system is an arithmetic device that performs calculation using a control storage area, and a combustion state of the internal combustion engine according to a user request torque that is a drive torque of the internal combustion engine requested by a user.
  • the blowout state amount is a blowout amount that is the amount of intake air that is withdrawn from the exhaust port in a stroke, or the degree to which intake air is pulled out of the exhaust port, or the amount of air that is charged into the combustion chamber of the internal combustion engine
  • Visual calculation device calculates the estimated torque using the Fukinuki state quantity.
  • the estimated torque used for monitoring the torque abnormality is calculated using the blowout state quantity. Therefore, it is possible to reduce the calculation error of the estimated torque caused by the presence or absence of the scavenging or the like, and to monitor the torque abnormality with high accuracy.
  • FIG. 1 is a block diagram of an internal combustion engine control system according to a first embodiment
  • 2 is a block diagram of the control module shown in FIG.
  • FIG. 3 is a block diagram of the control module shown in FIG.
  • FIG. 4 is a schematic view of an internal combustion engine for explaining the scavenging situation
  • FIG. 5 is a block diagram of the monitoring module shown in FIG.
  • FIG. 6 is a diagram showing how the value of combustion torque with respect to the amount of air passing through the throttle is affected by scavenging
  • FIG. 7 is a flowchart showing a procedure of torque monitoring control in the first embodiment
  • FIG. 8 is a flowchart showing a processing procedure of the required torque for monitoring shown in FIG.
  • FIG. 9 is a flowchart showing a processing procedure of estimated torque estimation for monitoring shown in FIG.
  • FIG. 10 is a flowchart showing a processing procedure of blowout efficiency calculation in the first embodiment
  • FIG. 11 is a time chart showing an aspect in which the torque and the air amount change with time and an aspect in which the torque abnormality is erroneously determined.
  • FIG. 12 is a block diagram of a monitoring module according to a second embodiment
  • FIG. 13 is a block diagram of a monitoring module according to a third embodiment
  • FIG. 14 is a flowchart showing a processing procedure of estimated torque for monitoring shown in FIG.
  • FIG. 1 shows an electronic control unit (ECU) mounted on a vehicle, which controls the operation of an internal combustion engine mounted on the vehicle.
  • the internal combustion engine according to the present embodiment is an ignition ignition gasoline engine, but may be a self-ignition diesel engine. Further, the internal combustion engine according to the present embodiment includes a supercharger that pressurizes air and sucks it into the combustion chamber, and a valve adjustment device that adjusts the on / off valve timing of the intake and exhaust valves.
  • the ECU 10 includes an MCU 11 (Micro Controller Unit), an ignition drive IC 12, a fuel injection valve drive IC 13, a throttle drive IC 14, a communication circuit 15, and an integrated IC 16.
  • MCU 11 Micro Controller Unit
  • the MCU 11 includes a CPU 11a which is an arithmetic processing unit, a memory 11m which is a storage medium, an input processing circuit 11c, a communication circuit 11d, and a CPU check circuit 11e.
  • the MCU 11 includes the CPU 11a, the memory 11m, the input processing circuit 11c, the communication circuit 11d, and the CPU check circuit 11e integrated on one semiconductor chip, but is dispersed and integrated on a plurality of semiconductor chips.
  • a plurality of semiconductor chips may be mounted on a common substrate, or a semiconductor chip may be mounted on each of a plurality of substrates.
  • each semiconductor chip may be housed in one common housing, or may be housed in separate housings.
  • the memory 11 m is a storage medium for storing programs and data, and includes a non-transitional tangible storage medium for non-temporarily storing a program readable by the CPU 11 a.
  • the storage medium may be provided by semiconductor memory or a magnetic disk or the like.
  • the program stored in the memory 11m when executed by the CPU 11a, causes the ECU 10 to function as the device described in this specification and causes the control device to execute the method described in this specification.
  • control device may be provided by software stored in a tangible storage medium and a computer executing the same, only software, only hardware, or a combination thereof.
  • control device is provided by an electronic circuit that is hardware, it can be provided by a digital circuit or analog circuit that includes multiple logic circuits.
  • the MCU 11 receives various signals such as an engine rotational speed, an accelerator opening degree, an intake manifold pressure, an exhaust pressure, a water temperature, an oil temperature, an intake air temperature, and an external signal output from an external ECU. These signals are input from the outside of the ECU 10 to the input processing circuit 11c or the communication circuit 11d.
  • the engine speed signal is a signal representing the detected value of the crank angle sensor, and based on this detected value, the MCU 11 counts the rotational speed per unit time of the crankshaft (output shaft) of the internal combustion engine, that is, the rotational speed of the output shaft.
  • the signal of the accelerator opening is a signal representing the detected value of the accelerator pedal sensor, and the MCU 11 calculates the amount of depression of the accelerator pedal operated by the driver of the vehicle, that is, the user of the internal combustion engine based on this detected value.
  • the signal of the intake manifold pressure is a signal representing the detected value of the intake pressure sensor, and the MCU 11 calculates the pressure of the intake air taken into the combustion chamber based on this detected value.
  • the exhaust pressure signal is a signal representing the detection value of the exhaust pressure sensor, and the MCU 11 calculates the pressure of the exhaust gas discharged from the combustion chamber based on this detection value.
  • the water temperature signal is a signal that represents the detection value of the water temperature sensor, and the MCU 11 calculates the temperature of the water that cools the internal combustion engine based on this detection value.
  • the oil temperature signal is a signal representing a detected value of the oil temperature sensor, and the MCU 11 calculates the temperature of the lubricating oil of the internal combustion engine or the hydraulic oil of the hydraulic actuator based on the detected value.
  • the signal of the intake air temperature is a signal that represents the detection value of the intake air temperature sensor, and the MCU 11 calculates the temperature of the intake air taken into the combustion chamber based on this detection value.
  • a signal representing the operating state of an auxiliary device whose drive source is the output shaft of the internal combustion engine can be mentioned.
  • the said auxiliary machine it is a refrigerant
  • coolant compressor which the air conditioning apparatus which air-conditions a vehicle interior has, Comprising: The compressor which makes an output shaft of an internal combustion engine a drive source is mentioned.
  • the ignition drive IC 12 has a switching element for controlling power supply and interruption to an ignition device provided in the internal combustion engine, and the MCU 11 outputs a command signal to the switching element. Specifically, the MCU 11 calculates a target ignition timing, which is a target value of the timing for performing discharge ignition by the ignition device, based on the various signals such as the engine rotation speed described above, and the command signal is calculated according to the calculated target ignition timing. Output to the ignition drive IC12.
  • the fuel injection valve drive IC 13 has a switching element for controlling power supply and interruption to the fuel injection valve provided in the internal combustion engine, and the MCU 11 outputs a command signal to the switching element. Specifically, the MCU 11 calculates a target injection amount which is a target value of a period (that is, an injection amount) in which fuel injection is performed by the fuel injection valve based on various signals such as the engine rotation speed described above. The command signal is output to the fuel injection valve drive IC 13 in accordance with.
  • the throttle drive IC 14 has a switching element for controlling power supply and disconnection to an electronic throttle valve (charge throttle) provided in the internal combustion engine, and the MCU 11 outputs a command signal to the switching element. Specifically, the MCU 11 calculates a target opening degree which is a target value of the valve opening degree of the throttle 94 (see FIG. 4) based on various signals such as the engine rotation speed described above, and calculates the target opening degree calculated. In response, a command signal is output to the throttle drive IC 14.
  • a target opening degree which is a target value of the valve opening degree of the throttle 94 (see FIG. 4) based on various signals such as the engine rotation speed described above, and calculates the target opening degree calculated.
  • a command signal is output to the throttle drive IC 14.
  • the combustion state of the internal combustion engine is controlled by the ECU 10 controlling the operation of the ignition device, the fuel injection valve, and the throttle valve 94.
  • the target ignition timing, the target injection amount and the target opening degree calculated by the MCU 11 correspond to a target control amount that is a target value of a control amount for controlling the combustion state of the internal combustion engine.
  • the communication circuit 15 outputs various information held by the MCU 11 to the external ECU. For example, a signal of an abnormality flag representing that an abnormality such as a torque abnormality state occurs is output to a display ECU that controls the operation of a display device that the vehicle driver visually recognizes. The display ECU generates a warning display and a warning sound when acquiring the signal of the abnormality flag.
  • the integrated IC 16 includes a memory (not shown), a CPU that executes various programs stored in the memory, and the like. Depending on the program executed by the CPU, the integrated IC 16 functions as the microcomputer monitoring unit 16a or functions as the flash cut control unit 16b.
  • the CPU check circuit 11e checks whether the CPU 11a and the memory 11m are normal, such as executing a check (for example, parity check) whether the program and data stored in the memory 11m are normal.
  • the microcomputer monitoring unit 16a monitors the operation failure of the MCU 11 while referring to the check result of the CPU check circuit 11e.
  • the integrated IC 16 executes control of the electrocut, such as restricting the operation of the electropocket 94.
  • the target opening degree is fixed to a predetermined opening degree set in advance, and the output of the internal combustion engine is limited so as to be less than the predetermined output.
  • the target opening is made zero and the internal combustion engine is forcibly stopped.
  • the throttle cut control unit 16 b outputs a signal for commanding the throttle cut to the throttle drive IC 14.
  • the throttle drive IC 14 operates by giving priority to the throttle cut command signal over the command signal output from the MCU 11.
  • the MCU 11 has a control module 20 and a monitoring module 30. Each of these modules is a function provided by the common CPU 11a and the memory 11m. That is, the CPU 11 a and the memory 11 m function as the control module 20 when the CPU 11 a is executing the control program stored in the control storage area 20 m of the memory 11 m.
  • the CPU 11 a and the memory 11 m function as the monitoring module 30 when the CPU 11 a is executing the monitoring program stored in the monitoring storage area 30 m of the memory 11 m.
  • the control storage area 20m and the monitoring storage area 30m are separately set in different areas of the storage area of the memory 11m.
  • the control module 20 provides a “control arithmetic device” that calculates various target control amounts described above in accordance with a user request torque which is a drive torque of an internal combustion engine requested by a user.
  • the monitoring module 30 monitors whether or not the estimated torque which is an estimated value of the actual torque of the internal combustion engine deviates by a predetermined amount or more from the engine required torque required for the internal combustion engine.
  • a computing device is provided.
  • the ECU 10 provides an internal combustion engine control system including a control computing device and a monitoring computing device.
  • the control module 20 has functions as an engine required torque calculation unit 21 and a drive signal output unit 22.
  • the engine required torque calculation unit 21 calculates an engine required torque, which is a torque to be required for the internal combustion engine, based on various signals acquired from the input processing circuit 11c and the communication circuit 11d.
  • the drive signal output unit 22 calculates target control amounts such as the target ignition timing, the target injection amount, and the target opening degree described above in accordance with the engine request torque calculated by the engine request torque calculation unit 21. Furthermore, the drive signal output unit 22 outputs various command signals to the actuators such as the ignition drive IC 12, the fuel injection valve drive IC 13 and the throttle drive IC 14 according to the calculated target control amount.
  • the engine required torque calculation unit 21 includes a user required torque calculation unit 21 a, a pump loss calculation unit 21 b, a friction loss calculation unit 21 c, a torque efficiency calculation unit 21 d, and calculation units B1 to B6. It has a function.
  • the user request torque calculation unit 21a calculates the user request torque based on the engine speed and the accelerator opening degree described above.
  • the user request torque is calculated to a larger value as the engine rotational speed is higher and as the accelerator opening degree is larger.
  • a map representing the correlation between the engine rotational speed and the accelerator opening degree and the user request torque is stored in advance in the memory 11m, and the user request torque according to the engine rotational speed and the accelerator opening degree is referred to by referring to the map.
  • the user request torque calculation unit 21a calculates.
  • the pump loss calculating unit 21b calculates a pump loss torque, which is a value obtained by converting the pump loss into a torque, based on the above-described intake manifold pressure and exhaust pressure.
  • Pump loss is energy loss due to resistance received from intake and exhaust when the piston of the internal combustion engine reciprocates. As the intake manifold pressure is lower, the pump loss is set to a larger value on the assumption that the intake resistance in the intake stroke of the piston is larger. Further, the pump loss is set to a large value, assuming that the exhaust resistance in the exhaust stroke of the piston is larger as the exhaust pressure is higher.
  • a map representing the intake manifold pressure and the correlation between the exhaust pressure and the pump loss is stored in advance in the memory 11m, and the pump loss calculation unit 21b calculates the pump loss according to the intake manifold pressure and the exhaust pressure with reference to the map.
  • the friction loss calculation unit 21c calculates friction loss torque which is a value obtained by converting the friction loss into torque based on the water temperature and the oil temperature described above.
  • the friction loss is a mechanical energy loss due to the friction with the cylinder when the piston of the internal combustion engine reciprocates.
  • the friction loss is set to a large value, assuming that the friction is large, as the water temperature is out of the proper range and becomes low or high. Further, the friction loss is set to a large value, assuming that the viscosity of the lubricating oil or the like is larger as the oil temperature is lower.
  • a map representing the correlation between the water temperature and the oil temperature and the friction loss is stored in advance in the memory 11m, and the friction loss calculating unit 21c calculates the friction loss according to the water temperature and the oil temperature with reference to the map. .
  • the calculation unit B1 calculates the total loss torque by adding the pump loss calculated by the pump loss calculation unit 21b, the friction loss calculated by the friction loss calculation unit 21c, and the loss torque learning value.
  • the calculation unit B2 calculates the loss-included torque by adding the user request torque calculated by the user request torque calculation unit 21a, the total loss torque calculated by the calculation unit B1, and the external request torque.
  • a specific example of the externally required torque is, for the purpose of charging the on-vehicle battery, a torque for an increase in power generation such as increasing the amount of power generation by a generator driven by an internal combustion engine.
  • the calculation unit B3 calculates a reserve torque by adding a torque corresponding to each of the idle reserve, the catalyst warm-up reserve, and the auxiliary machine reserve. Each reserve torque is set by the control module 20 according to the operating state of the internal combustion engine such as the engine speed, the engine load, and the water temperature.
  • the calculating unit B4 calculates the reserve included torque by adding the reserve torque calculated by the calculating unit B3 to the loss-included torque calculated by the calculating unit B2.
  • the idle reserve torque is a torque corresponding to the amount of torque increase when performing control for increasing the torque at the time of idle operation of the internal combustion engine to stabilize the combustion.
  • the catalyst warm-up reserve torque is the amount of combustion energy used to raise the exhaust gas temperature when performing warm-up control to raise the exhaust gas temperature to raise the temperature of the catalyst for purifying the exhaust gas of the internal combustion engine above the activation temperature. It is a value obtained by converting the loss into torque.
  • the accessory reserve torque is a torque required to drive an accessory such as a generator whose drive source is an internal combustion engine.
  • the torque efficiency calculation unit 21 d calculates the torque efficiency based on the maximum torque generation ignition timing (MBT ignition timing), the knock learning included base retardation amount and the target lambda.
  • MBT ignition timing is an ignition timing at which the maximum torque can be obtained, and is different depending on the engine speed, the engine load, the water temperature, and the like.
  • knocking is apt to occur at the MBT ignition timing, it is required to ignite at a timing that is a predetermined time later than the MBT ignition timing, that is, a timing at which the predetermined angle is retarded.
  • the retarded timing is called base ignition timing.
  • the retardation amount (base retardation amount) differs depending on the engine speed, the engine load, the water temperature, and the like.
  • knock learning amount is used for the ignition timing from the next time on. Learning control to be reflected in control is called knock learning. Then, the timing at which the knocking learning amount is reflected in the base ignition timing corresponds to the target ignition timing.
  • the calculation unit B5 calculates a timing obtained by subtracting the target ignition timing from the MBT ignition timing as an MBT retardation amount that is a retardation amount of the target ignition timing with respect to the MBT ignition timing.
  • the torque efficiency calculation unit 21d calculates torque efficiency based on the MBT retardation amount calculated by the calculation unit B5 and the target lambda.
  • the torque efficiency is the ratio of the energy to be converted to the rotational torque of the crankshaft among the combustion energy in the combustion chamber. As the MBT retardation amount is smaller, that is, as the target ignition timing is closer to the MBT ignition timing, the torque efficiency is calculated to a higher value.
  • the target lambda is the target value of the ratio of air to fuel (lambda) included in the mixture that burns in the combustion chamber, and the torque efficiency calculator 21 d calculates torque efficiency to a value according to the target lambda. Do.
  • a map representing the MBT retardation amount and the correlation between the target lambda and the torque efficiency is stored in advance in the memory 11m, and the torque efficiency corresponding to the MBT retardation amount and the target lambda is referred to as torque efficiency.
  • the calculating unit 21d calculates.
  • Each of the MBT ignition timing, the base ignition timing, and the target lambda described above is set by the control module 20 according to the operating state of the internal combustion engine such as the engine speed, the engine load, and the water temperature.
  • the ECU 10 includes a detection circuit that detects the drive current or voltage output from the ignition drive IC. Then, the control module 20 calculates the engine required torque using the detected value by the detection circuit. Specifically, the actual ignition timing is calculated based on the detected value, and learning control relating to knock learning is executed using the actual ignition timing to calculate the knock learning amount.
  • the calculation unit B6 divides the reserve torque calculated by the calculation unit B4 by the torque efficiency calculated by the torque efficiency calculation unit 21d to calculate an engine request torque for control used for engine control.
  • the engine required torque calculation unit 21 calculates the engine required torque by dividing the value obtained by adding the total loss torque and the reserve torque to the user required torque by the torque efficiency.
  • the drive signal output unit 22 has functions as a target intake air amount calculation unit 221, a throttle signal output unit 222, an ignition signal output unit 223, and an INJ signal output unit 224.
  • the target intake air amount calculation unit 221 further includes a target in-cylinder air amount calculation unit 221 a and a control blowout amount calculation unit 221 b.
  • the intake amount refers to the amount of air that has passed through the throttle valve (electro throttle 94) attached to the intake pipe 95 (see FIG. 4).
  • the definition of the intake amount will be described using FIG. While describing in detail, an in-cylinder air amount, a blowout amount and scavenging will be described.
  • FIG. 4 shows a state immediately after the intake stroke of the internal combustion engine 90 starts and immediately after the piston 91 starts to descend from the top dead center, with both the intake valve 92 and the exhaust valve 93 opened. Show.
  • the open periods of both valves overlap, as shown by the arrows in FIG. 4, one of the air flowing into the combustion chamber 90a from the intake port 90in.
  • the part may blow through the exhaust port 90out.
  • Scavenging is a process of scavenging high temperature gas and unburned gas remaining in the combustion chamber 90a from the exhaust port 90out by actively utilizing this blow through.
  • the ECU 10 sets an overlap period so as to cause scavenging when the operating state of the internal combustion engine 90 satisfies a predetermined condition, and controls the operation of the valve adjustment device described above so as to achieve the setting.
  • the amount of air blown through the exhaust port 90out is referred to as the blowout amount, and the amount of air having passed through the throttle 94 is referred to as the throttle passing air amount or the intake amount. Further, of the amount of air passing through the throttle, the amount of air that is charged into the combustion chamber 90a and compressed without blowing through the exhaust port 90out is referred to as an in-cylinder air amount.
  • the blowout amount and the in-cylinder air amount correspond to the "openout state amount" representing the state of the blowout.
  • the target intake air amount calculation unit 221 calculates the target intake air amount based on the engine required torque, the engine speed, the engine operating state, and the intake system actuator operating state calculated by the engine required torque calculation unit 21. calculate.
  • the throttle signal output unit 222 outputs a command signal corresponding to the target intake amount calculated by the target intake amount calculation unit 221 to the throttle drive IC 14.
  • the ignition signal output unit 223 and the INJ signal output unit 224 output a command signal corresponding to the engine request torque calculated by the engine request torque calculation unit 21 to the ignition drive IC 12 and the fuel injection valve drive IC 13.
  • the target intake air amount calculation unit 221 has functions as a target in-cylinder air amount calculation unit 221a, a control blowout amount calculation unit 221b, and a calculation unit B7.
  • the target in-cylinder air amount calculation unit 221 a calculates a target in-cylinder air amount which is a target value of the in-cylinder air amount, based on the engine rotational speed and the engine required torque calculated by the engine required torque calculation unit 21.
  • the target cylinder air amount is calculated to be a larger value as the engine rotational speed is higher and as the engine required torque is larger.
  • a map representing the correlation between the engine speed and the required engine torque and the target in-cylinder air amount is stored in advance in the memory 11m, and the target cylinder corresponding to the engine speed and the required engine torque is referenced with reference to the map.
  • the user required torque calculation unit 21a calculates the inside air amount.
  • the control blowout amount calculation unit 221b calculates the blowout amount using a model based on the intake system actuator operation state and the engine operation state.
  • a model based on the intake system actuator operation state and the engine operation state.
  • the intake system actuator a supercharger, a valve adjustment device, a throttle 94 and the like can be mentioned.
  • engine operating conditions include engine speed, engine load, and water temperature.
  • the above model is a mathematical expression that represents the correlation between the shape and size of the flow path of the through hole shown in FIG. 4 and the intake system actuator operating state and the engine operating state.
  • the control blowout amount calculation unit 221 b calculates the blowout amount by substituting a physical quantity representing the operation state and the operation state into the above equation.
  • the calculation unit B7 calculates the target intake air amount by adding the blowout amount calculated by the control blowout amount calculation unit 221b to the target in-cylinder air amount calculated by the target cylinder air amount calculation unit 221a.
  • the control module 20 corrects the in-cylinder air amount corresponding to the engine required torque according to the blow-off amount to calculate the target intake amount, and controls the operation of the throttle 94 based on the target intake amount.
  • the monitoring module 30 monitors whether or not the estimated torque is in an abnormal torque state in which the estimated torque deviates from the engine required torque by a predetermined amount or more.
  • the estimated torque is the actual torque of the internal combustion engine. It is the value which estimated
  • the engine required torque is a torque required for the internal combustion engine, and is synonymous with the engine required torque calculated by the engine required torque calculation unit 21 of the control module 20.
  • the engine request torque calculated by the monitoring module 30 is a value used to monitor torque abnormality
  • the engine request torque calculated by the control module 20 is a value used to calculate a target control amount for the internal combustion engine. is there. That is, the engine required torque for monitoring and the engine required torque for control are values calculated in different areas of the storage area of the memory 11m.
  • the input securing unit 31 As shown in FIG. 1, in the monitoring module 30, the input securing unit 31, the engine required torque calculation unit 32, the estimated torque calculation unit 33, the torque comparison abnormality determination unit 34, the throttle cut control unit 35, and the in-cylinder air amount calculation for monitoring It has a function as a part 36.
  • the input securing unit 31 checks that the data of various signals acquired from the input processing circuit 11c and the communication circuit 11d are normal (for example, parity check). If abnormal, the input securing unit 31 executes data restoration, data reacquisition, data discarding, and the like. Thereby, it can be avoided that the monitoring module 30 performs various calculations using the abnormal data. That is, the input securing unit 31 guarantees that various data used for calculation by the monitoring module 30 are normal.
  • the torque comparison abnormality determination unit 34 calculates the difference between the period required torque calculated by the engine required torque calculation unit 32 and the estimated torque calculated by the estimated torque calculation unit 33, and if the difference is equal to or more than a predetermined value, It is determined that the torque abnormality state described above is present. If it is determined that the torque is in an abnormal state, the screw cut control unit 35 outputs a signal for commanding the screw cut to the screw drive IC 14 in the same manner as the screw cut control unit 16b.
  • the engine required torque calculation unit 32 has functions as a catalyst warmup required torque calculation unit 32a, an idle required torque calculation unit 32b, and a calculation unit B11.
  • the catalyst warm-up request torque calculation unit 32a calculates a catalyst warm-up request torque based on the catalyst warm-up target rotational speed and the accelerator opening degree described above.
  • the warm-up control for raising the exhaust gas temperature to raise the temperature of the catalyst for purifying the exhaust gas of the internal combustion engine above the activation temperature is as described above, and the target value of the engine speed during the warm-up control is being performed. Is the catalyst warm-up target rotational speed.
  • the catalyst warm-up request torque calculation unit 32a calculates the catalyst warm-up request torque based on the accelerator opening degree and the catalyst warm-up target rotational speed in the period in which the warm-up control is being performed.
  • the catalyst warm-up request torque is synonymous with the catalyst warm-up reserve torque.
  • the catalyst warm-up request torque calculated by the monitoring module 30 is a value used for monitoring a torque abnormality
  • the catalyst warm-up reserve torque calculated by the control module 20 is used to calculate the target control amount for the internal combustion engine This is the value used. That is, the catalyst warm-up request torque for monitoring and the catalyst warm-up reserve torque for control are values calculated in different areas of the storage area of the memory 11 m.
  • the catalyst warm-up target rotational speed and the accelerator opening degree are described as an example of variables used for calculation of the catalyst warm-up required torque, but water temperature, user request torque, engine rotational speed and intake are described as other variables.
  • the filling efficiency can be mentioned.
  • the intake charging efficiency is the ratio of the in-cylinder air amount to the throttle passing intake amount.
  • the catalyst warm-up request torque calculation unit 32a calculates a catalyst warm-up request torque using at least one of these variables.
  • the idle required torque calculation unit 32 b calculates an idle required torque based on the idle target rotational speed and the above-described engine rotational speed.
  • the idle control for increasing the torque at the time of idle operation of the internal combustion engine and stabilizing the combustion is as described above, and the target value of the engine speed during this idle control is the idle target speed. Then, the idle required torque calculation unit 32 b calculates the idle required torque based on the engine rotation speed and the idle target rotational speed during the period in which the idle control is being performed.
  • the idle request torque is synonymous with the idle reserve torque.
  • the idle required torque calculated by the monitoring module 30 is a value used to monitor torque abnormality
  • the idle reserve torque calculated by the control module 20 is a value used to calculate a target control amount for the internal combustion engine. is there. That is, the idle request torque for monitoring and the idle reserve torque for control are values calculated in different areas of the storage area of the memory 11m.
  • the idle target rotation speed and the engine rotation speed are described as an example of variables used to calculate the idle required torque, but other variables include water temperature, vehicle speed, atmospheric pressure and intake charge efficiency.
  • the idle required torque calculation unit 32 b calculates an idle required torque using at least one of these variables.
  • the idle required torque may be increased or decreased according to the water temperature or the engine rotational speed, or the idle required torque may be increased or decreased according to the charging efficiency.
  • the calculation unit B11 adds the catalyst warm-up request torque, the idle request torque, the user request torque, and the external request torque, which are calculated by the catalyst warm-up request torque calculation unit 32a and the idle request torque calculation unit 32b. Calculate the required engine torque required of the engine.
  • the user request torque used for this calculation is calculated using data of the engine speed and the accelerator opening degree secured by the input securing unit 31.
  • the engine required torque calculation unit 32 is various signals acquired from the input processing circuit 11c and the communication circuit 11d, and is requested to the internal combustion engine based on the signal (data) secured by the input guaranteeing unit 31. Calculate the engine request torque.
  • the estimated torque calculation unit 33 includes an estimated torque calculation unit 33a, an MBT ignition timing calculation unit 33b, a base ignition timing calculation unit 33c, a torque efficiency calculation unit 33d, a loss torque calculation unit 33e, and calculation units B12 and B13. , B14.
  • the estimated torque calculation unit 33a calculates the actual driving torque (MBT estimated torque of the internal combustion engine when the ignition timing is MBT based on the in-cylinder air amount and the engine rotational speed calculated by the monitoring in-cylinder air amount calculation unit 36. Estimate).
  • the MBT estimated torque is calculated to be a larger value as the engine rotational speed is higher and as the in-cylinder air amount is larger.
  • a map representing the correlation between the engine rotational speed and the in-cylinder air amount and the MBT estimated torque is stored in advance in the memory 11m, and the MBT estimation according to the engine rotational speed and the in-cylinder air amount with reference to the map
  • the estimated torque calculation unit 33a calculates the torque.
  • the MBT ignition timing calculation unit 33b calculates the MBT ignition timing based on the in-cylinder air amount and the engine speed.
  • the base ignition timing calculation unit 33c calculates the base ignition timing based on the in-cylinder air amount and the engine speed.
  • the MBT ignition timing and the base ignition timing are calculated with reference to the map stored in advance in the memory 11m, as in the estimated torque calculation unit 33a.
  • the calculation unit B12 calculates a value obtained by subtracting the base ignition timing calculated by the base ignition timing calculation unit 33c from the MBT ignition timing calculated by the MBT ignition timing calculation unit 33b as the above-described base retardation amount.
  • the torque efficiency calculation unit 33d calculates the above-described torque efficiency based on the base retardation amount calculated by the calculation unit B12. However, assuming that the knock learning amount is a predetermined amount or zero set in advance, the torque efficiency calculation unit 33 d calculates the torque efficiency.
  • the loss torque calculation unit 33e calculates loss torque obtained by converting the loss energy including the pump loss and the friction loss into torque based on the engine rotation speed and the water temperature. For example, a map representing the correlation between the engine rotational speed and the water temperature and the loss torque is stored in advance in the memory 11m, and the loss torque calculation unit 33e calculates loss torque according to the engine rotational speed and the water temperature with reference to the map.
  • the calculation unit B13 calculates a value obtained by multiplying the MBT estimated torque calculated by the estimated torque calculation unit 33a by the torque efficiency calculated by the torque efficiency calculation unit 33d as an estimated torque not considering the loss torque.
  • the calculation unit B14 calculates a value obtained by subtracting the loss torque calculated by the loss torque calculation unit 33e from the estimated torque calculated by the calculation unit B13 as an estimated torque for monitoring.
  • the estimated torque calculation unit 33 is various signals acquired from the input processing circuit 11c and the communication circuit 11d, and the internal combustion engine actually outputs based on the signal (data) secured by the input securing unit 31. Estimate the driving torque.
  • the monitoring in-cylinder air amount calculation unit 36 has functions as a blowout efficiency calculation unit 36a and a calculation unit B15.
  • the blowout efficiency calculation unit 36a calculates the blowout efficiency based on the amount of air passing through the throttle (the amount of intake air) and the engine speed.
  • the blowout efficiency is the ratio of the in-cylinder air amount to the intake amount, and the in-cylinder air amount decreases as the value of the blowout efficiency decreases.
  • the blowout efficiency is calculated to be a smaller value on the assumption that the higher the engine rotational speed and the larger the intake amount, the larger the blowout amount and the smaller the amount of air in the cylinder.
  • a map representing the correlation between the engine rotational speed and the intake amount and the blowout efficiency is stored in advance in the memory 11m, and the blowout efficiency according to the engine rotational speed and the intake amount is referred to 36a is calculated.
  • the intake amount used for this calculation is calculated by the monitoring module 30 based on the data secured by the input securing unit 31.
  • the detected value of the secured intake amount is used for calculation of the blowout efficiency. It is also good.
  • the calculation unit B15 calculates, as the in-cylinder air amount, a value obtained by multiplying the air intake amount with the air discharge efficiency calculated by the air discharge efficiency calculation unit 36a.
  • the intake amount used for this calculation is a value calculated by the monitoring module 30, and is different from the target in-cylinder air amount calculated by the control module 20.
  • the monitoring in-cylinder air amount calculation unit 36 corresponds to a monitoring blowout state calculation unit that calculates the in-cylinder air amount (the blowout state amount) used to calculate the estimated torque.
  • the horizontal axis in FIG. 6 indicates the amount of air passing through the throttle (the amount of intake air), and the vertical axis indicates the combustion torque.
  • the ignition-ignition internal combustion engine 90 unlike the self-ignition type, it is required to set the ratio of air to fuel (air-fuel ratio) contained in the mixture to be supplied to combustion to a desired ratio. Therefore, as shown in FIG. 6, as the intake amount increases, the amount of air-fuel mixture adjusted to a desired air-fuel ratio increases, and the combustion torque increases. However, when scavenging is performed, the amount of air-fuel mixture decreases because the amount of air in the cylinder decreases by the amount of the blowout amount.
  • the magnitude of the combustion torque with respect to the amount of air passing through the throttle (the amount of intake air) is smaller at the time of scavenging execution than at the time of non-execution.
  • the air-fuel mixture is reduced by the amount of the blowout amount and the combustion torque is reduced.
  • the monitoring function by the monitoring module 30 is always operated. Specifically, the main process shown in FIG. 7 is always executed.
  • the monitor execution condition For example, the completion of the check by the CPU check circuit 11e, the fact that the microcomputer monitoring unit 16a does not detect an abnormality, and the like are given as specific examples of the monitor execution condition.
  • the engine required torque computing unit 32 calculates the engine required torque for monitoring in S20 according to the subroutine processing of FIG. In S30, the estimated torque calculation unit 33 calculates an estimated torque for monitoring according to the subroutine processing of FIG.
  • the torque comparison abnormality determination unit 34 performs abnormality determination. That is, first, at S40, the engine required torque calculated at S20 is subtracted from the estimated torque calculated at S30 to calculate a torque deviation amount. In the next S50, an integrated value is calculated by integrating the torque deviation amount calculated in S40 with the previous value. In the next S60, when the integrated value calculated in S50 is equal to or more than a predetermined amount, it is determined that a torque abnormality has occurred. The integrated value is reset, for example, when the internal combustion engine is stopped. If it is determined in S60 that the torque is abnormal, in S70, the screw cut control unit 35 outputs a screw cut command signal.
  • the user request torque is calculated.
  • the block for calculating the user request torque is omitted in the engine request torque calculation unit 32 shown in FIG. 5
  • the user request torque is calculated based on the engine rotational speed and the accelerator opening, for example, similarly to the user request torque calculation unit 21a. Do.
  • the user request torque is calculated using the data of the engine speed and the accelerator opening degree secured by the input securing unit 31.
  • the catalyst warm-up request torque is based on at least one of catalyst warm-up target rotational speed, accelerator opening degree, water temperature, user request torque, engine speed and intake charging efficiency in S23.
  • the calculation unit 32a calculates a catalyst warm-up request torque.
  • the idle required torque calculation unit 32b calculates the idle required torque based on at least one of the idle target speed, the engine speed, the water temperature, the vehicle speed, the atmospheric pressure, and the intake charging efficiency in S25. calculate.
  • an externally required torque which is a driving torque resulting from an external request such as an increase in the amount of generated power, is calculated.
  • the user request torque in S21, the idle request torque in S25, the catalyst warm-up request torque in S23, and the external request torque in S26 are added. The added value is calculated as the engine required torque for monitoring.
  • S25 If S25 is not executed, for example, if it is determined that warm-up control is under way in S22, the value of the most recently calculated idle required torque is used for the calculation of S27.
  • S23 When S23 is not executed, if there is a catalyst warm-up request torque calculated most recently, that value is used for the calculation of S27.
  • the amount of air passing through the throttle (the amount of intake air) is calculated.
  • the intake amount used for this calculation is calculated by the monitoring module 30 using data such as the engine speed and the accelerator opening degree secured by the input securing unit 31.
  • the target value of the intake air amount is also calculated by the target intake air amount calculation unit 221 of the control module 20, but the intake air amount is also calculated by the monitoring module 30 separately from the calculation by the control module 20.
  • the intake amount is calculated using the model
  • the monitoring module 30 the intake amount is calculated without using the model.
  • the blowout path is a path of an intake and exhaust system including at least an intake port 90in, a combustion chamber 90a, and an exhaust port 90out.
  • the control module 20 substitutes various parameters representing the intake system actuator operating state and the engine operating state into the model to calculate the blowout state amount such as the blowout amount, and also calculates the intake amount.
  • the in-cylinder air amount is calculated based on the throttle passing air amount and the engine speed.
  • the throttle passing air amount used for this calculation is calculated by the monitoring module 30 based on the data secured by the input securing unit 31.
  • the throttle passing air amount is calculated based on the intake manifold pressure detected by the intake pressure sensor, the accelerator opening detected by the accelerator pedal sensor, and the intake air temperature detected by the intake air temperature sensor. Specifically, as the intake manifold pressure is higher, the accelerator opening degree is larger, and the intake air temperature is lower, the amount of air passing through the throttle is calculated more.
  • the blowout efficiency calculation unit 36a calculates the blowout efficiency according to the subroutine processing of FIG.
  • the calculation unit B15 calculates the in-cylinder air amount based on the blow-by efficiency and the throttle passing air amount calculated in S32.
  • the estimated torque calculation unit 33a calculates the MBT estimated torque based on the engine speed and the charging efficiency.
  • the MBT ignition timing calculation unit 33b calculates the MBT ignition timing based on the charging efficiency and the engine speed.
  • the base ignition timing calculation unit 33c estimates the base ignition timing based on the charging efficiency and the engine speed.
  • the torque efficiency calculation unit 33d calculates the ignition efficiency.
  • the loss torque calculation unit 33e calculates the loss torque based on the engine speed and the water temperature.
  • the MBT estimated torque in S34 is multiplied by the ignition efficiency in S37, and the loss torque in S38 is subtracted from the multiplication value to calculate an estimated torque for monitoring.
  • the degree of acceleration required which is the degree of acceleration of the vehicle requested by the vehicle user.
  • the degree of acceleration demand is defined as the ratio of the user demand torque to the engine demand torque.
  • blowout efficiency calculation unit 36a calculates the blowout efficiency using a map
  • two types of maps an acceleration map and a normal map
  • the blowout efficiency is calculated based on the intake air amount and the engine rotational speed using the acceleration map in S323.
  • the blow-out efficiency is calculated based on the intake air amount and the engine speed using the normal map.
  • the correlation between the engine speed and the intake amount and the blowout efficiency differs between the acceleration map and the normal map.
  • the blowout efficiency is determined with reference to both the blowout efficiency calculated using the normal map and the blowout efficiency calculated using the acceleration map.
  • the value of the blowout efficiency used for the calculation of S33 of FIG. 9 is determined based on the calculated history of the blowout efficiency. For example, immediately after changing from no intention to acceleration, blowout efficiency calculated using the normal map in the previous calculation and blowout efficiency and average value calculated using the acceleration map in the current calculation It will be the determined value of efficiency.
  • the lower part of FIG. 11 shows a state in which the amount of air passing through the throttle and the amount of air in the cylinder deviate from each other by the amount of the blowout amount by scavenging.
  • the blowout amount is excluded from the air amount contributing to the combustion. There is little divergence (see solid line).
  • the estimated torque is calculated based on the amount of air passing through the throttle, the amount of air including the air blow-off amount is regarded as the amount of air contributing to the combustion to estimate the torque. Deviation is larger (see dotted line).
  • the internal combustion engine control system includes a control module 20 (a computing device for control) and a monitoring module 30 (a computing device for monitoring).
  • the control module 20 is an arithmetic device that performs calculation using the control storage area 20m, and calculates a target control amount in accordance with a user request torque.
  • the monitoring module 30 is an arithmetic device that calculates using the monitoring storage area 30m different from the control storage area 20m, and is a torque abnormal state in which the estimated torque deviates from the engine required torque by a predetermined amount or more. To monitor Then, the monitoring module 30 calculates the estimated torque using the in-cylinder air amount (the blowout state amount). Therefore, the calculation error of the estimated torque due to the presence or absence of scavenging can be reduced, and torque abnormality can be monitored with high accuracy.
  • blow-out state quantity used for control of the internal combustion engine high calculation accuracy and a short calculation cycle are required, but in the case of the blow-out state quantity used for monitoring torque abnormality, compared with the case of use for control of the internal combustion engine The above requirement is reduced.
  • the request for guaranteeing that the data used for calculation of the blowout state quantity is normal becomes higher than that used for control.
  • the control module 20 includes a control blowout amount calculation unit 221 b (control blowout state calculation unit) that calculates the blowout amount (the blowout state amount) used for the calculation of the target control amount.
  • the monitoring module 30 includes a monitoring in-cylinder air amount calculation unit 36 that calculates an in-cylinder air amount (blowing-out state amount) used to calculate the estimated torque. That is, the monitoring module 30 calculates the blowout state amount separately from the blowout state amount calculated by the control module 20. Therefore, it becomes easy to respond to the different requirements mentioned above to each of the blow-out state quantity used for monitoring, and the blow-out state quantity used for control. For example, for the data used for the calculation executed by the control module 20, the above requirement can be met by increasing the calculation speed while lowering the normal security than the data used for the calculation executed by the monitoring module 30. .
  • the monitoring module 30 calculates the blowout state quantity based on at least one of the throttle passing air amount, the overlap period, the intake pressure, the exhaust pressure, and the engine speed. Since the amount of air passing through the throttle, the overlap period, the intake pressure, the exhaust pressure, and the engine speed have a high correlation with the blowout state amount, the blowout state amount can be accurately calculated according to the present embodiment.
  • the amount of air blown through increases as the amount of air passing through the throttle increases, as the overlap period increases, and as the engine speed increases. Further, as the amount of air passing through the throttle increases, the engine rotational speed increases, and the intake pressure increases, the amount of air in the cylinder (blowing-out state amount) increases.
  • the operation cycle of the monitoring module 30 is longer than the operation cycle of the control module 20. Therefore, it can be avoided that the operation processing load of the monitoring module 30 becomes larger than necessary.
  • the monitoring module 30 includes the input securing unit 31 that checks that the data acquired from the outside of the monitoring module 30 is normal. Therefore, it is possible to improve the guarantee that the data used for the calculation of the monitoring module 30 is normal, and it is possible to meet the above request.
  • the monitoring module 30 includes the engine required torque calculation unit 32 and the estimated torque calculation unit 33. Then, the engine required torque calculation unit 32 calculates, as reserve torque, a decrease in actual torque that occurs with the retardation of the ignition timing of the internal combustion engine, and calculates the engine required torque based on the calculated reserve torque and the user required torque. Therefore, the difference between the engine required torque and the estimated torque, which is caused due to the calculation of the engine required torque without considering the reserve torque, can be suppressed, so that the possibility of erroneous determination of torque abnormality can be suppressed.
  • control module 20 sets the target ignition timing to be retarded at the time of catalyst warmup request, and the engine required torque calculation unit 32 performs combustion corresponding to the retarded amount of catalyst warmup request.
  • the reserve torque is calculated to be equal to or more than the torque for the efficiency deterioration.
  • control module 20 sets the target ignition timing to be retarded during idle operation, and the engine required torque calculation unit 32 reduces the combustion efficiency corresponding to the retarded amount of the idle required torque.
  • the reserve torque is calculated to be equal to or higher than As described above, since the deterioration of the combustion efficiency caused by the retardation of the ignition timing such as the catalyst warm-up request and the idle request is reflected in the engine request torque for monitoring, the possibility of the above-mentioned erroneous determination can be suppressed.
  • the internal combustion engine control system according to the present embodiment is obtained by modifying the in-cylinder air quantity calculation unit 36 for monitoring of the first embodiment as shown in FIG. 12, and the first configuration is not particularly mentioned.
  • the configuration is the same as that of the embodiment.
  • the estimated torque calculation unit 33a, the MBT ignition timing calculation unit 33b, and the base ignition timing calculation unit 33c execute various calculations using the engine speed and the in-cylinder air amount. ing.
  • the in-cylinder air amount calculated by the monitoring in-cylinder air amount calculating unit 36 is used as the in-cylinder air amount used for these calculations.
  • the estimated torque calculation unit 33a, the MBT ignition timing calculation unit 33b, and the base ignition timing calculation unit 33c perform various calculations using the engine speed and the throttle passing air amount.
  • the calculation unit B13A multiplies the blowout efficiency calculated by the blowout efficiency calculation unit 36a by the drive torque calculated by the estimated torque calculation unit 33a and for which scavenging is not considered.
  • the value obtained by this multiplication can be said to be a value corrected to the driving torque in which scavenging is taken into consideration. Specifically, the drive torque is corrected to a larger value as the blowout efficiency is larger, and the drive torque is corrected to a smaller value as the blowout efficiency is smaller.
  • the blowout efficiency calculation unit 36a according to the present embodiment corresponds to a monitoring blowout state calculation unit that calculates the blowout efficiency (the blowout state amount) used to calculate the estimated torque.
  • the blowout state quantity used for calculating the estimated torque is used as the in-cylinder air amount, whereas in the monitoring module 30A according to the present embodiment, it is used for calculating the estimated torque.
  • the blowout state quantity is taken as the blowout efficiency. As described above, the blowout efficiency is the ratio of the in-cylinder air amount to the throttle passing air amount (intake amount).
  • the estimated torque for monitoring is calculated using the driving torque in which scavenging is considered, the calculation error of the estimated torque due to the presence or absence of scavenging can be reduced, and the torque abnormality is accurate It can be monitored well.
  • the blowout state quantity used for the calculation is calculated by itself (the monitoring module 30).
  • the monitoring module 30 has a monitoring cylinder internal air amount calculation unit 36.
  • the monitoring module 30B of the present embodiment shown in FIG. 13 eliminates the calculation of the blow-out state amount by itself and acquires the blow-out state amount calculated by the control module 20, and acquires the obtained blow-out state amount.
  • the monitoring module 30 calculates the estimated torque using. Specifically, the blowout amount calculated by the control blowout amount calculation unit 221b illustrated in FIG. 3 is input to the input securing unit 31 illustrated in FIG. The input securing unit 31 checks that the data representing the blowout amount is normal. The blowout amount secured by the check of the input securing unit 31 is input to a monitoring cylinder air amount calculating unit 36P illustrated in FIG.
  • the monitoring in-cylinder air amount calculation unit 36P has functions as an upper / lower limit guard calculation unit 36b, a guarded air flow rate calculation unit 36c, and a calculation unit B15B.
  • the upper and lower limit guard calculation unit 36b calculates an upper and lower limit guard based on the engine speed and the throttle passing air amount (intake amount).
  • the upper and lower limit guards are an upper limit blowout amount which is the upper limit of the blowout amount, and a lower limit blowout amount which is the lower limit of the blowout amount. As the engine speed is higher and the intake amount is larger, the upper limit air blow-off amount is calculated more. The lower the engine speed is, the smaller the intake air amount is, and the lower limit blowout amount is calculated to be smaller.
  • the guarded air blowout amount calculator 36c compares the size of the after-safety air blowout amount calculated by the control air blowout amount calculator 221b with the upper / lower limit guard. Furthermore, when the blowout amount is smaller than the lower limit blowout amount, the guarded blowout amount calculation unit 36c sets the value of the blowout amount as the lower limit blowout amount, and the blowout amount is larger than the upper limit blowout amount. Calculate the value of as the upper limit blowout amount. That is, the blowout amount obtained from the control module 20 is limited to a predetermined range to calculate a guarded blowout amount.
  • the calculation unit B15B calculates the in-cylinder air amount for monitoring by subtracting the blow-off amount calculated by the guarded air-release amount calculating unit 36c from the throttle passing air amount calculated by the monitoring module 30B.
  • the in-cylinder air amount calculated in this manner is used for calculation of the estimated torque by the estimated torque calculation unit 33 in the same manner as in FIG.
  • the processes of S32 and S33 shown in FIG. 9 are changed to S32B, S320B and S33B shown in FIG.
  • the monitoring module 30 acquires the blow-out amount calculated by the control module 20.
  • the upper and lower limit guard calculation unit 36b and the guarded air flow rate calculation unit 36c calculate the air flow rate with guard.
  • the calculation unit B15B calculates the in-cylinder air amount. Note that the monitoring module 30B when executing the process of S32 corresponds to an "acquisition unit" that acquires the blowout state amount calculated by the control blowout amount calculation unit 221b.
  • the blowout state amount used for the calculation of the estimated torque is the in-cylinder air amount.
  • the blowout state amount used for the calculation of the estimated torque is the blowout amount acquired from the control module 20.
  • the control module 20 includes the control blowout amount calculation unit 221b that calculates the blowout state amount used for the calculation of the target control amount.
  • the monitoring module 30B includes an acquisition unit (S32B) that acquires the blowout state amount calculated by the control blowout amount calculation unit 221b, and calculates the estimated torque using the blowout state amount acquired by the acquisition unit. According to this, it is possible to calculate the estimated torque for monitoring using the blowout state quantity calculated by the control module 20.
  • the various data used for the calculation of the monitoring module 30B is secured by the input securing unit 31, the various data used for the computation of the control module 20 is not guaranteed. Therefore, the blown-out state amount acquired from the control module 20 is more likely to be data-damaged than the blown-out state amount calculated by the monitoring modules 30, 30A in the first and second embodiments.
  • the monitoring module 30B sets the blowout state amount used for calculating the estimated torque to the upper limit of the predetermined range or Restrict to the lower limit. Therefore, even if the blowout state quantity obtained is data-damaged, the blowout state quantity used for calculating the estimated torque for monitoring is limited to the upper limit or the lower limit, and thus the data is more compared to the case where it is not limited. It is possible to suppress deterioration in torque abnormality monitoring accuracy caused by damage.
  • the disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure includes the illustrated embodiments and variations based on them by those skilled in the art.
  • the disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments have been omitted.
  • the disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment.
  • the disclosed technical scope is not limited to the description of the embodiments. It is to be understood that the technical scopes disclosed herein are indicated by the description of the scope of the claims, and further include all modifications within the meaning and scope equivalent to the descriptions of the scope of the claims.
  • the blowout state quantity used for the calculation of the estimated torque by the monitoring module 30A is the degree of blowout of the intake air from the exhaust port 90out (the blowout degree). Specifically, the ratio of the in-cylinder air amount to the throttle passing air amount (intake amount) (blowing efficiency) is used as the blowing degree. On the other hand, if it is a value which has a correlation with the ratio between the in-cylinder air amount and the blow-out amount, it can be used for calculation of the estimated torque as the blow-out degree.
  • the ratio of the blown-out amount to the intake amount may be used as the blown-out degree
  • the ratio of the blown-out amount to the cylinder air amount may be used as the blown-out degree
  • the inverse of these ratios may be used as the blown-out degree. Good.
  • the internal combustion engine control system (ECU 10) is applied to an internal combustion engine provided with a valve adjustment device and a supercharger, but is also applicable to an internal combustion engine not provided with a valve adjustment device. It is applicable also to an internal combustion engine which is not equipped with a feeder.
  • the calculation speed of the monitoring module 30 is slower than the calculation speed of the control module 20. Specifically, the check processing speed by the input securing unit 31 becomes a bottleneck, and the calculation speed of the engine required torque calculation unit 32 and the estimated torque calculation unit 33 is slower than the calculation speed of the engine required torque calculation unit 21 . On the other hand, the calculation speed of the monitoring module 30 may be equal to the calculation speed of the control module 20.
  • control storage area 20m and the monitoring storage area 30m are set in the storage area of one common memory 11m.
  • a plurality of memories may be provided in the ECU 10, the storage area of the first memory may be set as the control storage area, and the storage area of the second memory may be set as the monitoring storage area.
  • one common MCU 11 has the control storage area 20m and the monitoring storage area 30m.
  • the ECU 10 may be provided with a plurality of MCUs, the first MCU may have a control storage area, and the second MCU may have a monitoring storage area.
  • the reserve torque is reflected on the engine request torque calculated by the engine request torque calculation unit 32, and the estimated torque calculated by the estimated torque calculation unit 33 is corrected for the ignition timing by knock learning. It does not reflect the amount.
  • the correction amount of the ignition timing by knock learning that is, knock learning described above The amount may be reflected.
  • the ECU 10 is provided with a detection circuit for detecting the drive current or voltage output from the ignition drive IC, and the control module 20 executes knock learning control using a detection value by the detection circuit.
  • the command signal output from the drive signal output unit 22 to the ignition drive IC 12 may be regarded as the actual ignition timing, and knock learning control may be performed without using the detected value.
  • the calculation unit B3 shown in FIG. 2 adds each of the idle reserve, the catalyst warm-up reserve, and the accessory reserve to calculate reserve torque and outputs the reserve torque to the calculation unit B4.
  • the maximum value of the idle reserve, the catalyst warm-up reserve, and the auxiliary machine reserve may be calculated as the reserve torque and may be output to the calculation unit B4.
  • all of the idle reserve, the catalyst warm-up reserve, and the auxiliary machine reserve are used to calculate the reserve torque, but at least one of these reserves may be used to calculate the reserve torque.
  • the engine required torque is calculated by adding both the catalyst warmup required torque and the idle required torque to the user required torque.
  • the engine request torque may be calculated by adding the request torque having the larger value of the catalyst warm-up request torque and the idle request torque to the user request torque.
  • the internal combustion engine mounted on the vehicle is the control target of the ECU 10, but a stationary internal combustion engine other than the on-vehicle may be the control target of the ECU 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

内燃機関制御システムは、制御用記憶領域(20m)を用いて演算する演算装置であって、ユーザが要求する内燃機関(90)の駆動トルクであるユーザ要求トルクに応じて、内燃機関の燃焼状態を制御する制御量の目標値である目標制御量を演算する制御用演算装置(20)と、制御用記憶領域とは別の監視用記憶領域(30m)を用いて演算する演算装置であって、内燃機関の実トルクの推定値である推定トルクが、内燃機関に要求されている機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視する監視用演算装置(30、30A、30B)と、を備える。内燃機関の吸気行程で排気ポート(90out)から抜け出る吸気の量である吹抜量、または排気ポートから吸気が抜け出る度合、または内燃機関の燃焼室(90a)へ充填される空気量である筒内空気量を吹抜状態量とした場合、監視用演算装置は、吹抜状態量を用いて推定トルクを演算する。

Description

内燃機関制御システム 関連出願の相互参照
 本出願は、2017年7月28日に出願された日本特許出願番号2017-146908号に基づくもので、ここにその記載内容を援用する。
 この明細書における開示は、内燃機関制御システムに関する。
 特許文献1には、ユーザが要求する内燃機関の駆動トルク(ユーザ要求トルク)に対して内燃機関の実トルクが大きく乖離するといった、トルク異常の有無を監視する装置が開示されている。
特開2010-196713号公報
 さて、スロットルバルブを通過する空気の全てが圧縮行程で圧縮されて燃焼に用いられるとは限らず、例えばスカベンジングの目的で、燃焼室に流入した空気の一部を排気ポートから流出させる場合がある。スカベンジングとは、吸気行程の開始直後に、吸気弁と排気弁の両方を開弁させることで、吸気の一部を排気ポートから吹き抜けさせ、燃焼室に残留する高温ガスや未燃ガスを排気ポートから掃気させることである。
 したがって、スロットルバルブを通過する空気量が同じであっても吹き抜けの有無によって実トルクは異なってくる。このことに起因して、従来のトルク異常監視では、実トルクの推定誤差が大きくなる場合があり、トルク異常を精度良く監視できないおそれがある。
 本開示の目的は、トルク異常を精度良く監視できるようにした内燃機関制御システムを提供することである。
 本開示の一態様による内燃機関制御システムは、制御用記憶領域を用いて演算する演算装置であって、ユーザが要求する内燃機関の駆動トルクであるユーザ要求トルクに応じて、内燃機関の燃焼状態を制御する制御量の目標値である目標制御量を演算する制御用演算装置と、制御用記憶領域とは別の監視用記憶領域を用いて演算する演算装置であって、内燃機関の実トルクの推定値である推定トルクが、内燃機関に要求されている機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視する監視用演算装置と、を備え、内燃機関の吸気行程で排気ポートから抜け出る吸気の量である吹抜量、または排気ポートから吸気が抜け出る度合、または内燃機関の燃焼室へ充填される空気量である筒内空気量を吹抜状態量とし、監視用演算装置は、吹抜状態量を用いて推定トルクを演算する。
 内燃機関制御システムによると、トルク異常の監視に用いられる推定トルクは、吹抜状態量を用いて演算されている。そのため、スカベンジング等の吹き抜けの有無に起因した推定トルクの演算誤差を小さくでき、トルク異常を精度良く監視することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る内燃機関制御システムのブロック図であり、 図2は、図1に示す制御モジュールのブロック図であり、 図3は、図1に示す制御モジュールのブロック図であり、 図4は、スカベンジングの状況を説明する内燃機関の模式図であり、 図5は、図1に示す監視モジュールのブロック図であり、 図6は、スロットル通過空気量に対する燃焼トルクの値が、スカベンジングの影響を受ける様子を示す図であり、 図7は、第1実施形態においてトルク監視制御の手順を示すフローチャートであり、 図8は、図7に示す監視用要求トルク算出の処理手順を示すフローチャートであり、 図9は、図7に示す監視用推定トルク算出の処理手順を示すフローチャートであり、 図10は、第1実施形態において、吹抜効率算出の処理手順を示すフローチャートであり、 図11は、トルクおよび空気量の時間変化を示す一態様であって、トルク異常を誤判定する態様を示すタイムチャートであり、 図12は、第2実施形態に係る監視モジュールのブロック図であり、 図13は、第3実施形態に係る監視モジュールのブロック図であり、 図14は、図13に示す監視用推定トルク算出の処理手順を示すフローチャートである。
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。
 (第1実施形態)
 図1は、車両に搭載された電子制御装置(Electronic Control Unit)であって、車両に搭載された内燃機関の作動を制御するECU10を示す。本実施形態に係る内燃機関は点火着火式のガソリンエンジンであるが、自着火式のディーゼルエンジンであってもよい。また、本実施形態に係る内燃機関は、空気を加圧して燃焼室へ吸入させる過給機、および吸排気弁の開閉弁タイミングを調節するバルブ調節装置を備えている。ECU10は、MCU11(Micro Controller Unit)、点火駆動IC12、燃料噴射弁駆動IC13、電スロ駆動IC14、通信回路15および統合IC16を備える。
 MCU11は、演算処理装置であるCPU11aと、記憶媒体であるメモリ11mと、入力処理回路11cと、通信回路11dと、CPUチェック回路11eと、を備える。図1に示す例では、MCU11は1つの半導体チップ上に、CPU11a、メモリ11m、入力処理回路11c、通信回路11dおよびCPUチェック回路11eが集積されているが、複数の半導体チップに分散して集積させてもよい。また、複数の半導体チップに分散して集積させた場合、共通の基板に複数の半導体チップを実装させてもよいし、複数の基板の各々に半導体チップを実装させてもよい。さらに、共通した1つの筐体に各々の半導体チップを収容させてもよいし、別々の筐体に収容させてもよい。
 メモリ11mは、プログラムおよびデータを記憶する記憶媒体であり、CPU11aによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体を含む。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。メモリ11mに記憶されたプログラムは、CPU11aによって実行されることによって、ECU10をこの明細書に記載される装置として機能させ、この明細書に記載される方法を実行するように制御装置を機能させる。
 制御装置が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。
 MCU11には、エンジン回転数、アクセル開度、インマニ圧、排気圧、水温、油温、吸気温、外部ECUから出力された外部信号等の各種信号が入力される。これらの信号は、ECU10の外部から入力処理回路11cまたは通信回路11dへ入力される。
 エンジン回転数の信号は、クランク角センサの検出値を表す信号であり、この検出値に基づきMCU11は、内燃機関のクランク軸(出力軸)の単位時間当りの回転数、つまり出力軸の回転速度を演算する。アクセル開度の信号は、アクセルペダルセンサの検出値を表す信号であり、この検出値に基づきMCU11は、車両の運転者つまり内燃機関のユーザが操作したアクセルペダルの踏込量を演算する。
 インマニ圧の信号は、吸気圧センサの検出値を表す信号であり、この検出値に基づきMCU11は、燃焼室へ吸入される吸気の圧力を演算する。排気圧の信号は、排気圧センサの検出値を表す信号であり、この検出値に基づきMCU11は、燃焼室から排出される排気の圧力を演算する。水温の信号は、水温センサの検出値を表す信号であり、この検出値に基づきMCU11は、内燃機関を冷却する水の温度を演算する。油温の信号は、油温センサの検出値を表す信号であり、この検出値に基づきMCU11は、内燃機関の潤滑油や油圧アクチュエータの作動油の温度を演算する。
 吸気温の信号は、吸気温度センサの検出値を表す信号であり、この検出値に基づきMCU11は、燃焼室へ吸入される吸気の温度を演算する。外部ECUから出力された外部信号の具体例としては、内燃機関の出力軸を駆動源とする補機の作動状態を表す信号が挙げられる。上記補機の具体例としては、車室内を空調する空調装置が有する冷媒圧縮機であって、内燃機関の出力軸を駆動源とするコンプレッサが挙げられる。
 点火駆動IC12は、内燃機関が備える点火装置への電力供給と遮断を制御するスイッチング素子を有し、このスイッチング素子への指令信号をMCU11は出力する。具体的には、MCU11は、先述したエンジン回転数等の各種信号に基づき、点火装置で放電点火させる時期の目標値である目標点火時期を演算し、演算した目標点火時期に応じて指令信号を点火駆動IC12へ出力する。
 燃料噴射弁駆動IC13は、内燃機関が備える燃料噴射弁への電力供給と遮断を制御するスイッチング素子を有し、このスイッチング素子への指令信号をMCU11は出力する。具体的には、MCU11は、先述したエンジン回転数等の各種信号に基づき、燃料噴射弁で燃料噴射させる期間(つまり噴射量)の目標値である目標噴射量を演算し、演算した目標噴射量に応じて指令信号を燃料噴射弁駆動IC13へ出力する。
 電スロ駆動IC14は、内燃機関が備える電子スロットルバルブ(電スロ)への電力供給と遮断を制御するスイッチング素子を有し、このスイッチング素子への指令信号をMCU11は出力する。具体的には、MCU11は、先述したエンジン回転数等の各種信号に基づき、電スロ94(図4参照)のバルブ開度の目標値である目標開度を演算し、演算した目標開度に応じて指令信号を電スロ駆動IC14へ出力する。
 このように、点火装置、燃料噴射弁および電スロ94の作動をECU10が制御することで、内燃機関の燃焼状態は制御される。そして、MCU11により演算される目標点火時期、目標噴射量および目標開度は、内燃機関の燃焼状態を制御する制御量の目標値である目標制御量に相当する。
 通信回路15は、MCU11が把握している各種情報を外部ECUへ出力する。例えば、トルク異常状態等の異常が生じている旨を表す異常フラグの信号を、車両運転者が視認する表示装置の作動を制御する表示ECUへ出力する。表示ECUは、異常フラグの信号を取得した場合に警告表示や警告音を生じさせる。
 統合IC16は、図示しないメモリ、およびメモリに記憶されている各種のプログラムを実行するCPU等を備える。CPUが実行するプログラムに応じて、統合IC16は、マイクロコンピュータ監視部16aとして機能したり、電スロカット制御部16bとして機能したりする。
 ここで、CPUチェック回路11eは、メモリ11mに記憶されているプログラムおよびデータが正常であるかのチェック(例えばパリティチェック)を実行する等、CPU11aおよびメモリ11mが正常であるか否かをチェックする。マイクロコンピュータ監視部16aは、CPUチェック回路11eのチェック結果を参照しつつ、MCU11の作動不良を監視する。
 統合IC16は、マイクロコンピュータ監視部16aが異常を検出した場合には、電スロ94の作動を制限するといった電スロカットの制御を実行する。例えば、アクセル開度に拘らず、予め設定しておいた所定開度に目標開度を固定して、内燃機関の出力が所定出力未満となるように制限する。あるいは、目標開度をゼロにして内燃機関を強制的に停止させる。電スロカット制御部16bは、電スロ駆動IC14へ電スロカットを指令する信号を出力する。電スロ駆動IC14は、MCU11から出力される指令信号よりも電スロカット指令信号を優先して作動する。
 MCU11は、制御モジュール20および監視モジュール30を有する。これらのモジュールは、いずれについても、共通するCPU11aおよびメモリ11mにより提供される機能である。すなわち、メモリ11mの制御用記憶領域20mに記憶された制御プログラムをCPU11aが実行している時のCPU11aおよびメモリ11mは、制御モジュール20として機能する。
 また、メモリ11mの監視用記憶領域30mに記憶された監視プログラムをCPU11aが実行している時のCPU11aおよびメモリ11mは、監視モジュール30として機能する。制御用記憶領域20mおよび監視用記憶領域30mは、メモリ11mの記憶領域のうち異なる領域に、別々に設定されている。
 制御モジュール20は、ユーザが要求する内燃機関の駆動トルクであるユーザ要求トルクに応じて、先述した各種の目標制御量を演算する「制御用演算装置」を提供する。監視モジュール30は、内燃機関の実トルクの推定値である推定トルクが、内燃機関に要求されている機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視する「監視用演算装置」を提供する。ECU10は、制御用演算装置および監視用演算装置を備える内燃機関制御システムを提供する。
 制御モジュール20は、機関要求トルク算出部21および駆動信号出力部22としての機能を有する。機関要求トルク算出部21は、入力処理回路11cおよび通信回路11dから取得した各種信号に基づき、内燃機関に要求するべきトルクである機関要求トルクを算出する。駆動信号出力部22は、機関要求トルク算出部21で算出された機関要求トルクに応じて、先述した目標点火時期、目標噴射量、および目標開度等の目標制御量を演算する。さらに駆動信号出力部22は、演算された目標制御量に応じて、点火駆動IC12、燃料噴射弁駆動IC13および電スロ駆動IC14等のアクチュエータへ、各種の指令信号を出力する。
 図2を用いてより詳細に説明すると、機関要求トルク算出部21は、ユーザ要求トルク算出部21a、ポンプロス算出部21b、フリクションロス算出部21c、トルク効率算出部21dおよび演算部B1~B6としての機能を有する。
 ユーザ要求トルク算出部21a(図2参照)は、先述したエンジン回転数およびアクセル開度に基づきユーザ要求トルクを算出する。エンジン回転数が高回転数であるほど、また、アクセル開度が大きいほど、ユーザ要求トルクは大きい値に算出される。例えば、エンジン回転数およびアクセル開度とユーザ要求トルクとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数およびアクセル開度に応じたユーザ要求トルクをユーザ要求トルク算出部21aは算出する。
 ポンプロス算出部21bは、先述したインマニ圧および排気圧に基づき、ポンプロスをトルク換算した値であるポンプロストルクを算出する。ポンプロスとは、内燃機関のピストンが往復動する際に吸排気から受ける抵抗によるエネルギ損失のことである。インマニ圧が低いほど、ピストンの吸気行程での吸気抵抗が大きいとみなしてポンプロスは大きい値に設定される。また、排気圧が高いほど、ピストンの排気行程での排気抵抗が大きいとみなしてポンプロスは大きい値に設定される。例えば、インマニ圧および排気圧とポンプロスとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、インマニ圧および排気圧に応じたポンプロスをポンプロス算出部21bは算出する。
 フリクションロス算出部21cは、先述した水温および油温に基づき、フリクションロスをトルク換算した値であるフリクションロストルクを算出する。フリクションロスとは、内燃機関のピストンが往復動する際のシリンダとの摩擦による機械エネルギロスのことである。水温が適正範囲から外れて低温または高温になっているほど、摩擦が大きいとみなしてフリクションロスは大きい値に設定される。また、油温が低いほど潤滑油等の粘性が大きいとみなしてフリクションロスは大きい値に設定される。例えば、水温および油温とフリクションロスとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、水温および油温に応じたフリクションロスをフリクションロス算出部21cは算出する。
 演算部B1は、ポンプロス算出部21bにより算出されたポンプロス、フリクションロス算出部21cにより算出されたフリクションロス、およびロストルク学習値を加算して、総ロストルクを演算する。演算部B2は、ユーザ要求トルク算出部21aにより算出されたユーザ要求トルク、演算部B1により演算された総ロストルク、および外部要求トルクを加算して、ロス込みトルクを演算する。外部要求トルクの具体例としては、車載バッテリへの充電を目的として、内燃機関で駆動する発電機による発電量を増大させるといった、発電増大分のトルクが挙げられる。
 演算部B3は、アイドルリザーブ、触媒暖機リザーブおよび補機リザーブの各々に相当するトルクを加算してリザーブトルクを演算する。これら各々のリザーブトルクは、エンジン回転数、エンジン負荷および水温等の内燃機関の運転状態に応じて、制御モジュール20により設定される。演算部B4は、演算部B2により演算されたロス込みトルクに、演算部B3により演算されたリザーブトルクを加算して、リザーブ込みトルクを演算する。
 アイドルリザーブトルクとは、内燃機関のアイドル運転時にトルクアップさせて燃焼を安定化させる制御を実施するにあたり、そのトルクアップ分に相当するトルクのことである。触媒暖機リザーブトルクとは、内燃機関の排気を浄化する触媒を活性化温度以上に温度上昇させるべく排気温度を上昇させる暖機制御を実施するにあたり、排気温度を上昇させることに用いる燃焼エネルギのロス分をトルクに換算した値のことである。補機リザーブトルクとは、内燃機関を駆動源とする発電機等の補機を駆動させるのに要するトルクのことである。
 トルク効率算出部21dは、最大トルク発生点火時期(MBT点火時期)、ノック学習込みベース遅角量および目標ラムダに基づき、トルク効率を算出する。MBT点火時期とは、最大トルクが得られる点火時期のことであり、エンジン回転数やエンジン負荷、水温等に応じて異なる時期となる。但し、MBT点火時期ではノッキングが生じやすいので、MBT点火時期よりも所定時間遅い時期、つまり所定角度遅角させた時期で点火させることが要求される。その遅角させた時期をベース点火時期と呼ぶ。その遅角量(ベース遅角量)は、エンジン回転数やエンジン負荷、水温等に応じて異なる。
 また、ノッキングがセンサで検出された場合には、点火時期を所定時間だけ遅角させるように補正するフィードバック制御を実行しており、その遅角補正量(ノック学習量)を次回以降の点火時期制御に反映させる学習制御をノック学習と呼ぶ。そして、ベース点火時期にノック学習量を反映させた時期が目標点火時期に相当する。
 演算部B5は、MBT点火時期から目標点火時期を減算して得られた時期を、MBT点火時期に対する目標点火時期の遅角量であるMBT遅角量として演算する。トルク効率算出部21dは、演算部B5により演算されたMBT遅角量および目標ラムダに基づき、トルク効率を算出する。
 トルク効率とは、燃焼室での燃焼エネルギのうち、クランク軸の回転トルクに変換される分のエネルギの割合のことである。MBT遅角量が小さいほど、つまり目標点火時期がMBT点火時期に近いほど、トルク効率は高い値に算出される。目標ラムダとは、燃焼室で燃焼する混合気に含まれる、空気と燃料の比率(ラムダ)の目標値のことであり、トルク効率算出部21dは、目標ラムダに応じた値にトルク効率を算出する。例えば、MBT遅角量および目標ラムダとトルク効率との相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、MBT遅角量および目標ラムダに応じたトルク効率をトルク効率算出部21dは算出する。
 なお、上述したMBT点火時期、ベース点火時期および目標ラムダの各々は、エンジン回転数、エンジン負荷および水温等の内燃機関の運転状態に応じて、制御モジュール20により設定される。
 また、上記ノック学習に係る学習制御は制御モジュール20により実行される。本実施形態に係るECU10は、点火駆動ICから出力される駆動電流または電圧を検出する検出回路を備えている。そして、その検出回路による検出値を用いて、制御モジュール20は機関要求トルクを演算している。具体的には、上記検出値に基づき実点火時期を算出し、その実点火時期を用いてノック学習に係る学習制御を実行し、ノック学習量を算出している。
 演算部B6は、演算部B4により演算されたリザーブ込みトルクを、トルク効率算出部21dにより算出されたトルク効率で除算して、エンジン制御に用いる制御用の機関要求トルクを演算する。要するに、総ロストルクおよびリザーブトルクをユーザ要求トルクに加算した値を、トルク効率で除算することで、機関要求トルク算出部21は機関要求トルクを算出する。
 図3に示すように、駆動信号出力部22は、目標吸気量算出部221、電スロ信号出力部222、点火信号出力部223およびINJ信号出力部224としての機能を有する。さらに目標吸気量算出部221は、目標筒内空気量算出部221aおよび制御用吹抜量算出部221bを有する。ここで言う吸気量とは、吸気管95(図4参照)に取り付けられたスロットルバルブ(電スロ94)を通過した空気の量のことであり、以下、吸気量の定義について図4を用いて詳述するとともに、筒内空気量、吹抜量およびスカベンジングについて説明する。
 図4は、内燃機関90の吸気行程が開始した直後であり、ピストン91が上死点から下降を開始した直後の状態であって、吸気弁92および排気弁93をともに開弁させた状態を示す。このように両バルブの開弁期間をオーバーラップさせた状態では、エンジン回転数や過給度合によっては、図4中の矢印に示すように、吸気ポート90inから燃焼室90aへ流入した空気の一部が排気ポート90outから吹き抜ける場合がある。この吹き抜けを積極的に利用して、燃焼室90aに残留する高温ガスや未燃ガスを排気ポート90outから掃気させることをスカベンジングと呼ぶ。ECU10は、内燃機関90の運転状態が所定の条件を満たした場合に、スカベンジングを生じさせるようにオーバーラップ期間を設定し、その設定となるように先述したバルブ調節装置の作動を制御する。
 上記スカベンジングの如く、1燃焼サイクルにおいて、排気ポート90outから吹き抜ける空気の量を吹抜量と呼び、電スロ94を通過した空気の量をスロットル通過空気量または吸気量と呼ぶ。また、スロットル通過空気量のうち、排気ポート90outから吹き抜けずに燃焼室90aに充填されて圧縮される空気の量を筒内空気量と呼ぶ。これら吹抜量および筒内空気量は、吹抜けの状態を表す「吹抜状態量」に相当する。
 図3の説明に戻り、目標吸気量算出部221は、機関要求トルク算出部21により算出された機関要求トルク、エンジン回転数、エンジン運転状態、および吸気系アクチュエータ動作状態に基づき、目標吸気量を算出する。電スロ信号出力部222は、目標吸気量算出部221により算出された目標吸気量に応じた指令信号を電スロ駆動IC14へ出力する。なお、点火信号出力部223およびINJ信号出力部224は、機関要求トルク算出部21により算出された機関要求トルクに応じた指令信号を、点火駆動IC12および燃料噴射弁駆動IC13へ出力する。
 目標吸気量算出部221は、目標筒内空気量算出部221a、制御用吹抜量算出部221bおよび演算部B7としての機能を有する。
 目標筒内空気量算出部221aは、エンジン回転数および機関要求トルク算出部21により算出された機関要求トルクに基づき、筒内空気量の目標値である目標筒内空気量を算出する。エンジン回転数が高回転数であるほど、また、機関要求トルクが大きいほど、目標筒内空気量は大きい値に算出される。例えば、エンジン回転数および機関要求トルクと目標筒内空気量との相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数および機関要求トルクに応じた目標筒内空気量をユーザ要求トルク算出部21aは算出する。
 制御用吹抜量算出部221bは、吸気系アクチュエータ動作状態およびエンジン運転状態に基づき、モデルを用いて吹抜量を算出する。吸気系アクチュエータの具体例として、過給機、バルブ調節装置および電スロ94等が挙げられる。エンジン運転状態の具体例として、エンジン回転数、エンジン負荷および水温等が挙げられる。上記モデルは、図4に示す吹き抜けの流路の形状および大きさと、吸気系アクチュエータ動作状態およびエンジン運転状態との相関を表す数式である。これらの動作状態および運転状態を表す物理量を上記数式に代入することで、制御用吹抜量算出部221b(制御用吹抜状態算出部)は吹抜量を算出する。
 演算部B7は、目標筒内空気量算出部221aにより算出された目標筒内空気量に、制御用吹抜量算出部221bにより算出された吹抜量を加算して、目標吸気量を算出する。要するに、制御モジュール20は、機関要求トルクに対応する筒内空気量を吹抜量に応じて補正して目標吸気量を算出し、その目標吸気量に基づき電スロ94の作動を制御する。
 監視モジュール30は、推定トルクが機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視するものであることは先述した通りであり、推定トルクとは、内燃機関の実トルクを推定した値のことである。機関要求トルクとは、内燃機関に要求されているトルクのことであり、制御モジュール20の機関要求トルク算出部21により算出される機関要求トルクと同義である。但し、監視モジュール30で算出される機関要求トルクは、トルク異常の監視に用いられる値であり、制御モジュール20で算出される機関要求トルクは、内燃機関に対する目標制御量の算出に用いられる値である。つまり、これら監視用の機関要求トルクと制御用の機関要求トルクは、メモリ11mの記憶領域のうち異なる領域で演算された値である。
 図1に示すように、監視モジュール30は、入力保障部31、機関要求トルク演算部32、推定トルク演算部33、トルク比較異常判定部34、電スロカット制御部35および監視用筒内空気量算出部36としての機能を有する。
 入力保障部31は、入力処理回路11cおよび通信回路11dから取得した各種信号のデータが正常であることをチェック(例えばパリティチェック)する。異常であれば、データ修復、データ再取得、データ廃棄等を入力保障部31は実行する。これにより、監視モジュール30が異常データを用いて各種の算出を行うことを回避できる。つまり、入力保障部31は、監視モジュール30による算出に用いられる各種データが正常であることを保障する。
 トルク比較異常判定部34は、機関要求トルク演算部32により算出された期間要求トルクと、推定トルク演算部33により算出された推定トルクとの差分を算出し、その差分が所定以上であれば、上述したトルク異常状態であると判定する。トルク異常状態であると判定された場合、電スロカット制御部35は、電スロカット制御部16bと同様にして、電スロ駆動IC14へ電スロカットを指令する信号を出力する。
 図5に示すように、機関要求トルク演算部32は、触媒暖機要求トルク算出部32a、アイドル要求トルク算出部32bおよび演算部B11としての機能を有する。
 触媒暖機要求トルク算出部32aは、触媒暖機目標回転数および先述したアクセル開度に基づき、触媒暖機要求トルクを算出する。内燃機関の排気を浄化する触媒を活性化温度以上に温度上昇させるべく排気温度を上昇させる暖機制御については先述した通りであり、暖機制御を実行している期間におけるエンジン回転数の目標値が触媒暖機目標回転数である。そして、触媒暖機要求トルク算出部32aは、暖機制御を実行している期間におけるアクセル開度および触媒暖機目標回転数に基づき、触媒暖機要求トルクを算出する。
 触媒暖機要求トルクとは、触媒暖機リザーブトルクと同義である。但し、監視モジュール30で算出される触媒暖機要求トルクは、トルク異常の監視に用いられる値であり、制御モジュール20で算出される触媒暖機リザーブトルクは、内燃機関に対する目標制御量の算出に用いられる値である。つまり、これら監視用の触媒暖機要求トルクと制御用の触媒暖機リザーブトルクは、メモリ11mの記憶領域のうち異なる領域で演算された値である。
 図5では、触媒暖機要求トルクの算出に用いる変数の例示として触媒暖機目標回転数およびアクセル開度を記載しているが、他の変数として、水温、ユーザ要求トルク、エンジン回転数および吸気充填効率が挙げられる。吸気充填効率とは、スロットル通過吸気量に対する筒内空気量の比率のことである。触媒暖機要求トルク算出部32aは、これらの変数の少なくとも1つを用いて触媒暖機要求トルクを算出する。
 なお、アクセルペダルが踏み込まれていない時の触媒暖機目標回転数が大きいほど、触媒暖機要求トルク(リザーブ量)は大きく算出される。また、アクセルペダルが踏み込まれている時のアクセル開度が所定未満であれば触媒暖機要求トルクは所定値に設定され、所定以上であればゼロに設定される。また、水温やエンジン回転数に応じて触媒暖機要求トルクは増減されてもよいし、充填効率に応じて触媒暖機要求トルクは増減されてもよい。
 アイドル要求トルク算出部32bは、アイドル目標回転数および先述したエンジン回転数に基づき、アイドル要求トルクを算出する。内燃機関のアイドル運転時にトルクアップさせて燃焼を安定化させるアイドル制御については先述した通りであり、このアイドル制御を実行している期間におけるエンジン回転数の目標値がアイドル目標回転数である。そして、アイドル要求トルク算出部32bは、アイドル制御を実行している期間におけるエンジン回転数およびアイドル目標回転数に基づき、アイドル要求トルクを算出する。
 アイドル要求トルクとは、アイドルリザーブトルクと同義である。但し、監視モジュール30で算出されるアイドル要求トルクは、トルク異常の監視に用いられる値であり、制御モジュール20で算出されるアイドルリザーブトルクは、内燃機関に対する目標制御量の算出に用いられる値である。つまり、これら監視用のアイドル要求トルクと制御用のアイドルリザーブトルクは、メモリ11mの記憶領域のうち異なる領域で演算された値である。
 図5では、アイドル要求トルクの算出に用いる変数の例示としてアイドル目標回転数およびエンジン回転数を記載しているが、他の変数として、水温、車速、大気圧および吸気充填効率が挙げられる。アイドル要求トルク算出部32bは、これらの変数の少なくとも1つを用いてアイドル要求トルクを算出する。
 なお、アクセルペダルが踏み込まれていない時の目標回転数とエンジン回転数との差分が小さいほど、アイドル要求トルク(リザーブ量)は大きく算出される。また、アクセルペダルが踏み込まれている時のアクセル開度が小さいほど、アイドル要求トルクは大きく算出される。また、水温やエンジン回転数に応じてアイドル要求トルクは増減されてもよいし、充填効率に応じてアイドル要求トルクは増減されてもよい。
 演算部B11は、触媒暖機要求トルク算出部32aおよびアイドル要求トルク算出部32bで算出された触媒暖機要求トルクおよびアイドル要求トルクと、ユーザ要求トルクと、外部要求トルクとを加算して、内燃機関に要求されている機関要求トルクを算出する。この算出に用いるユーザ要求トルクは、入力保障部31により保障されたエンジン回転数およびアクセル開度のデータを用いて算出される。
 以上により、機関要求トルク演算部32は、入力処理回路11cおよび通信回路11dから取得した各種信号であって、入力保障部31により保障された信号(データ)に基づき、内燃機関に要求されている機関要求トルクを算出する。
 図5に示すように、推定トルク演算部33は、推定トルク算出部33a、MBT点火時期算出部33b、ベース点火時期算出部33c、トルク効率算出部33d、ロストルク算出部33eおよび演算部B12、B13、B14としての機能を有する。
 推定トルク算出部33aは、監視用筒内空気量算出部36により算出される筒内空気量およびエンジン回転数に基づき、点火時期がMBTである場合における内燃機関の実際の駆動トルク(MBT推定トルク)を推定する。エンジン回転数が高回転数であるほど、また、筒内空気量が大きいほど、MBT推定トルクは大きい値に算出される。例えば、エンジン回転数および筒内空気量とMBT推定トルクとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数および筒内空気量に応じたMBT推定トルクを推定トルク算出部33aは算出する。
 MBT点火時期算出部33bは、筒内空気量およびエンジン回転数に基づきMBT点火時期を算出する。ベース点火時期算出部33cは、筒内空気量およびエンジン回転数に基づきベース点火時期を算出する。これらのMBT点火時期およびベース点火時期は、推定トルク算出部33aと同様にして、メモリ11mに予め記憶させておいたマップを参照して算出される。
 演算部B12は、MBT点火時期算出部33bにより算出されたMBT点火時期から、ベース点火時期算出部33cにより算出されたベース点火時期を減算した値を、先述したベース遅角量として演算する。トルク効率算出部33dは、演算部B12により演算されたベース遅角量に基づき、先述したトルク効率を算出する。但し、ノック学習量が予め設定しておいた所定量またはゼロとみなして、トルク効率算出部33dはトルク効率を算出する。
 ロストルク算出部33eは、エンジン回転数および水温に基づき、ポンプロスおよびフリクションロスを含むロスエネルギをトルク換算したロストルクを算出する。例えば、エンジン回転数および水温とロストルクとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数および水温に応じたロストルクをロストルク算出部33eは算出する。
 演算部B13は、推定トルク算出部33aにより算出されたMBT推定トルクに、トルク効率算出部33dにより演算されたトルク効率を乗算した値を、ロストルクを考慮しない推定トルクとして演算する。演算部B14は、演算部B13により演算された推定トルクから、ロストルク算出部33eにより算出されたロストルクを減算した値を、監視用の推定トルクとして演算する。
 以上により、推定トルク演算部33は、入力処理回路11cおよび通信回路11dから取得した各種信号であって、入力保障部31により保障された信号(データ)に基づき、内燃機関が実際に出力している駆動トルクを推定する。
 監視用筒内空気量算出部36は、吹抜効率算出部36aおよび演算部B15としての機能を有する。吹抜効率算出部36aは、スロットル通過空気量(吸気量)およびエンジン回転数に基づき、吹抜効率を算出する。吹抜効率とは、吸気量に対する筒内空気量の割合のことであり、吹抜効率の値が小さいほど筒内空気量は小さくなる。エンジン回転数が高回転数であるほど、また、吸気量が大きいほど、吹抜量が多くなり筒内空気量が少なくなるとみなして、吹抜効率は小さい値に算出される。例えば、エンジン回転数および吸気量と吹抜効率との相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数および吸気量に応じた吹抜効率を吹抜効率算出部36aは算出する。この算出に用いられる吸気量は、監視モジュール30により、入力保障部31で保障されたデータに基づき算出される。あるいは、吸気量を検出するエアフロメータにより吸気量が検出され、その検出値が入力保障部31により保障されている場合には、その保障された吸気量の検出値を吹抜効率の算出に用いてもよい。
 演算部B15は、吹抜効率算出部36aにより算出された吹抜効率を吸気量に乗算した値を、筒内空気量として算出する。この算出に用いられる吸気量は、監視モジュール30で算出された値であり、制御モジュール20で算出される目標筒内空気量とは異なる。本実施形態に係る監視用筒内空気量算出部36は、推定トルクの演算に用いる筒内空気量(吹抜状態量)を算出する監視用吹抜状態算出部に相当する。
 図6の横軸はスロットル通過空気量(吸気量)を示し、縦軸は燃焼トルクを示す。点火着火式の内燃機関90の場合、自着火式とは異なり、燃焼に供する混合気に含まれる空気と燃料の比率(空燃比)を所望の比率にすることが要求される。そのため、図6に示すように吸気量が多いほど、所望の空燃比に調節された混合気の量が多くなり、燃焼トルクが大きくなる。但し、スカベンジングを実施する場合には、吹抜量の分だけ筒内空気量が少なくなるので、混合気の量は少なくなる。よって、スロットル通過空気量(吸気量)に対する燃焼トルクの大きさは、スカベンジング実行時には非実行時に比べて小さくなる。図6の例では、吸気量が所定以上の高負荷運転領域において、スカベンジングの実行に伴い、吹抜量の分だけ混合気が少なくなり燃焼トルクが低下している。
 内燃機関の運転期間中には、監視モジュール30による監視機能が常時作動する。具体的には、図7に示すメイン処理が常時実行される。
 図7のメイン処理では、先ずS10において、モニタ実行条件が満たされているか否かを判定する。例えば、CPUチェック回路11eによるチェックが完了していることや、マイクロコンピュータ監視部16aが異常を検出していないこと等が、モニタ実行条件の具体例として挙げられる。
 モニタ実行条件が満たされていると判定された場合、S20において、図8のサブルーチン処理にしたがって、監視用の機関要求トルクを機関要求トルク演算部32が算出する。S30では、図9のサブルーチン処理にしたがって、監視用の推定トルクを推定トルク演算部33が算出する。
 S40、S50、S60では、トルク比較異常判定部34による異常判定を実行する。すなわち、先ずS40において、S30で算出した推定トルクから、S20で算出した機関要求トルクを減算して、トルク乖離量を算出する。次のS50では、S40で算出したトルク乖離量を前回値に積算した積算値を算出する。次のS60では、S50で算出した積算値が所定量以上である場合に、トルク異常が生じていると判定する。当該積算値は、例えば内燃機関を停止させるとリセットされる。S60にてトルク異常と判定された場合、S70において、電スロカット制御部35が電スロカット指令信号を出力する。
 図8のサブルーチン処理では、先ずS21において、ユーザ要求トルクを算出する。図5に示す機関要求トルク演算部32ではユーザ要求トルクの算出ブロックを省略しているが、例えばユーザ要求トルク算出部21aと同様にして、エンジン回転数およびアクセル開度に基づきユーザ要求トルクを算出する。但し、入力保障部31により保障されたエンジン回転数およびアクセル開度のデータを用いてユーザ要求トルクを算出する。
 S22では、触媒を活性化温度以上に温度上昇させる暖機制御が実行されているか否かを判定する。例えば、エンジン回転数、アクセル開度および水温等に基づき、暖機制御が実行中であるか否かを判定する。暖機制御実行中と判定された場合、S23において、触媒暖機目標回転数、アクセル開度、水温、ユーザ要求トルク、エンジン回転数および吸気充填効率の少なくとも1つに基づき、触媒暖機要求トルク算出部32aが触媒暖機要求トルクを算出する。
 暖機制御実行中と判定されなかった場合、S24では、アイドル運転時にトルクアップさせて燃焼を安定化させるアイドル制御が実行されているか否かを判定する。例えば、エンジン回転数およびアクセル開度に基づきアイドル制御が実行中であるか否かを判定する。アイドル制御実行中と判定された場合、S25において、アイドル目標回転数、エンジン回転数、水温、車速、大気圧および吸気充填効率の少なくとも1つに基づき、アイドル要求トルク算出部32bがアイドル要求トルクを算出する。
 S26では、発電量増大等の外部要求に起因した駆動トルクである外部要求トルクを算出する。次のS27では、S21によるユーザ要求トルク、S25によるアイドル要求トルク、S23による触媒暖機要求トルク、およびS26による外部要求トルクを加算する。その加算した値を、監視用の機関要求トルクとして算出する。
 なお、S22で暖機制御中と判定された場合等、S25が実行されない場合には、直近に算出されたアイドル要求トルクがあれば、その値をS27の算出に用いる。また、S23が実行されない場合には、直近に算出された触媒暖機要求トルクがあれば、その値をS27の算出に用いる。
 図9のサブルーチン処理では、先ずS31において、スロットル通過空気量(吸気量)を算出する。この算出に用いる吸気量は、入力保障部31により保障されたエンジン回転数およびアクセル開度等のデータを用いて、監視モジュール30により算出される。吸気量の目標値は制御モジュール20の目標吸気量算出部221でも算出されるが、制御モジュール20による算出とは別に、監視モジュール30によっても吸気量は算出される。先述した通り、制御モジュール20ではモデルを用いて吸気量が算出されるのに対し、監視モジュール30ではモデルを用いずに吸気量が算出される。
 具体的には、制御モジュール20では、図4に示す吹抜経路の形状および大きさを数値化したモデルが制御用記憶領域20mに記憶されている。吹抜経路とは、吸気ポート90in、燃焼室90aおよび排気ポート90outを少なくとも含む吸排気系の経路である。制御モジュール20は、吸気系アクチュエータ動作状態およびエンジン運転状態を表す各種パラメータを上記モデルに代入することで、吹抜量等の吹抜状態量を算出するとともに、吸気量についても算出する。
 一方、監視モジュール30では、スロットル通過空気量およびエンジン回転数に基づき筒内空気量を算出する。この算出に用いられるスロットル通過空気量は、監視モジュール30により、入力保障部31で保障されたデータに基づき算出される。例えば、吸気圧センサにより検出されたインマニ圧と、アクセルペダルセンサにより検出されたアクセル開度と、吸気温センサにより検出された吸気温とに基づき、スロットル通過空気量を算出する。具体的には、インマニ圧が高いほど、また、アクセル開度が大きいほど、吸気温が低いほど、スロットル通過空気量を多く算出する。
 S32では、図10のサブルーチン処理にしたがって、吹抜効率を吹抜効率算出部36aが算出する。S33では、S32で算出された吹抜効率、およびスロットル通過空気量に基づき、筒内空気量を演算部B15が算出する。
 S34では、エンジン回転数および充填効率に基づき、推定トルク算出部33aがMBT推定トルクを算出する。S35では、充填効率およびエンジン回転数に基づき、MBT点火時期算出部33bがMBT点火時期を算出する。S36では、充填効率およびエンジン回転数に基づき、ベース点火時期算出部33cがベース点火時期を推定する。
 S37では、S35で算出したMBT点火時期から、S36で算出したベース点火時期を減算した値(ベース遅角量)に基づき、トルク効率算出部33dが点火効率を算出する。S38では、エンジン回転数および水温に基づき、ロストルク算出部33eがロストルクを算出する。
 S39では、S34によるMBT推定トルクにS37による点火効率を乗算し、その乗算値からS38によるロストルクを減算することで、監視用の推定トルクを算出する。
 図10のサブルーチン処理では、先ずS321において、車両ユーザが要求する車両の加速度合である加速要求度を算出する。例えばこの加速要求度は、機関要求トルクに対するユーザ要求トルクの割合で定義される。S322では、ユーザが車両を加速走行させる意図が有るか否かを判定する。具体的には、S321で算出された加速要求度が所定値以上であれば、加速意図有りと判定する。
 吹抜効率算出部36aがマップを用いて吹抜効率を算出する旨は先述した通りであるが、上記マップとして加速用マップおよび通常用マップの2種類がメモリ11mに記憶されており、加速意図の有無に応じてこれらのマップを選択して用いている。すなわち、加速意図有りと判定された場合、S323において、加速用マップを用いて、吸気量およびエンジン回転数に基づき吹抜効率を算出する。一方、加速意図無しと判定された場合、通常用マップを用いて、吸気量およびエンジン回転数に基づき吹抜効率を算出する。加速用マップと通常用マップとでは、エンジン回転数および吸気量と吹抜効率との相関が異なる。加速時には、バルブ調節装置の作動の応答遅れや吸気圧の応答遅れが存在するので、これらの応答遅れを考慮して、上記相関を異ならせている。
 S325では、通常用マップを用いて算出された吹抜効率と加速用マップを用いて算出された吹抜効率との両方を参照して吹抜効率を決定する。換言すれば、算出された吹抜効率の履歴に基づき、図9のS33の算出に用いる吹抜効率の値を決定する。例えば、加速意図無しから有りに変化した直後では、前回の算出において通常用マップを用いて算出された吹抜効率と、今回の算出において加速用マップを用いて算出された吹抜効率と平均値を吹抜効率の決定値とする。
 図11の下段はスカベンジングによる吹抜量の分だけ、スロットル通過空気量と筒内空気量とが乖離している状態を示す。このような状況下において、図11の下段に示すように、筒内空気量に基づき推定トルクを算出すると、燃焼に寄与する空気量から吹抜量が除外されるため、機関要求トルクと推定トルクとの乖離は少ない(実線参照)。これに対し、スロットル通過空気量に基づき推定トルクを算出すると、吹抜量が含まれた空気量を燃焼に寄与する空気量とみなしてトルクを推定することになるので、機関要求トルクと推定トルクとの乖離は大きくなる(点線参照)。
 本実施形態に係る内燃機関制御システムは、制御モジュール20(制御用演算装置)と、監視モジュール30(監視用演算装置)と、を備える。制御モジュール20は、制御用記憶領域20mを用いて演算する演算装置であって、ユーザ要求トルクに応じて目標制御量を演算する。監視モジュール30は、制御用記憶領域20mとは別の監視用記憶領域30mを用いて演算する演算装置であって、推定トルクが機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視する。そして監視モジュール30は、筒内空気量(吹抜状態量)を用いて推定トルクを演算する。そのため、スカベンジングの有無に起因した推定トルクの演算誤差を小さくでき、トルク異常を精度良く監視できる。
 ここで、内燃機関の制御に用いる吹抜状態量の場合、高い演算精度と短い演算周期が要求されるが、トルク異常の監視に用いる吹抜状態量の場合、内燃機関の制御に用いる場合に比べて上記要求が低くなる。但し、監視に用いる吹抜状態量の場合、吹抜状態量の演算に用いるデータが正常時であることの保障に対する要求は、制御に用いる場合に比べて高くなる。
 この点を鑑み、本実施形態では、制御モジュール20は、目標制御量の演算に用いる吹抜量(吹抜状態量)を算出する制御用吹抜量算出部221b(制御用吹抜状態算出部)を有する。監視モジュール30は、推定トルクの演算に用いる筒内空気量(吹抜状態量)を算出する監視用筒内空気量算出部36を有する。つまり、制御モジュール20が算出する吹抜状態量とは別に、監視モジュール30が吹抜状態量を算出する。そのため、監視に用いる吹抜状態量と制御に用いる吹抜状態量の各々に対して、上述した異なる要求に応じることが容易になる。例えば、制御モジュール20が実行する演算に用いられるデータについては、監視モジュール30が実行する演算に用いられるデータよりも正常保障を低くしつつ演算速度を速くすることで、上記要求に応じることができる。
 さらに本実施形態では、監視モジュール30は、スロットル通過空気量、オーバーラップ期間、吸気圧、排気圧、およびエンジン回転数の少なくとも1つに基づき、吹抜状態量を算出する。これらのスロットル通過空気量、オーバーラップ期間、吸気圧、排気圧およびエンジン回転数は吹抜状態量と相関が高いので、本実施形態によれば吹抜状態量を精度良く算出できる。なお、スロットル通過空気量が多いほど、オーバーラップ期間が長いほど、エンジン回転数が多いほど、吹抜量(吹抜状態量)は多くなる。また、スロットル通過空気量が多いほど、エンジン回転数が多いほど、吸気圧が高いほど、筒内空気量(吹抜状態量)は多くなる。
 さて、監視に用いる吹抜状態量に要求される演算速度および演算精度は、制御に用いる吹抜状態量に比べて低いことは、先述した通りである。この点を鑑み、本実施形態では、監視モジュール30の演算周期は制御モジュール20の演算周期より長い。そのため、監視モジュール30の演算処理負荷が必要以上に大きくなることを回避できる。
 また、監視に用いる吹抜状態量の場合、吹抜状態量の演算に用いるデータが正常時であることの保障に対する要求は、制御に用いる場合に比べて高くなることは、先述した通りである。この点を鑑み、本実施形態では、監視モジュール30は、監視モジュール30の外部から取得したデータが正常であることをチェックする入力保障部31を有する。そのため、監視モジュール30の演算に用いるデータが正常時であることの保障を向上でき、上記要求に応えることができる。
 さらに本実施形態では、監視モジュール30は、機関要求トルク演算部32および推定トルク演算部33を有する。そして機関要求トルク演算部32は、内燃機関の点火時期の遅角に伴い生じる実トルクの低下分をリザーブトルクとして算出し、算出したリザーブトルクおよびユーザ要求トルクに基づき機関要求トルクを演算する。そのため、リザーブトルクを考慮せずに機関要求トルクを演算することに起因して生じる、機関要求トルクと推定トルクとの乖離を抑制できるので、トルク異常を誤判定するおそれを抑制できる。
 さらに本実施形態では、制御モジュール20は、目標点火時期を触媒暖機要求時に遅角させるように設定しており、機関要求トルク演算部32は、触媒暖機要求の遅角量に相当する燃焼効率悪化分のトルク以上となるようにリザーブトルクを算出する。
 さらに本実施形態では、制御モジュール20は、目標点火時期をアイドル運転時に遅角させるように設定しており、機関要求トルク演算部32は、アイドル要求トルクの遅角量に相当する燃焼効率悪化分のトルク以上となるようにリザーブトルクを算出する。このように、触媒暖機要求やアイドル要求の如く点火時期の遅角に起因した燃焼効率悪化分が、監視用の機関要求トルクに反映されるので、上述した誤判定のおそれを抑制できる。
 (第2実施形態)
 本実施形態に係る内燃機関制御システムは、上記第1実施形態の監視用筒内空気量算出部36を図12に示すように変形させたものであり、特に言及していない構成については第1実施形態と同じ構成である。
 上記第1実施形態に係る監視モジュール30では、推定トルク算出部33a、MBT点火時期算出部33bおよびベース点火時期算出部33cは、エンジン回転数および筒内空気量を用いて各種の算出を実行している。そして、これらの算出に用いる筒内空気量には、監視用筒内空気量算出部36により算出された筒内空気量が用いられている。
 これに対し、本実施形態に係る監視モジュール30Aでは、推定トルク算出部33a、MBT点火時期算出部33bおよびベース点火時期算出部33cは、エンジン回転数およびスロットル通過空気量を用いて各種の算出を実行している。演算部B13Aは、推定トルク算出部33aで算出された駆動トルクであってスカベンジングが考慮されていない駆動トルクに、吹抜効率算出部36aで算出された吹抜効率を乗算する。
 この乗算により得られる値は、スカベンジングが考慮された駆動トルクに補正された値であると言える。具体的には、吹抜効率が大きいほど駆動トルクは大きい値に補正され、抜効率が小さいほど駆動トルクは小さい値に補正される。本実施形態に係る吹抜効率算出部36aは、推定トルクの演算に用いる吹抜効率(吹抜状態量)を算出する監視用吹抜状態算出部に相当する。
 要するに、上記第1実施形態に係る監視モジュール30では、推定トルクの演算に用いる吹抜状態量を筒内空気量としているのに対し、本実施形態に係る監視モジュール30Aでは、推定トルクの演算に用いる吹抜状態量を吹抜効率としている。先述した通り、吹抜効率とは、スロットル通過空気量(吸気量)に対する筒内空気量の割合である。
 以上により、本実施形態によれば、スカベンジングが考慮された駆動トルクを用いて監視用推定トルクを算出するので、スカベンジングの有無に起因した推定トルクの演算誤差を小さくでき、トルク異常を精度良く監視できる。
 (第3実施形態)
 上記第1実施形態では、監視モジュール30が推定トルクを演算するにあたり、その演算に用いる吹抜状態量を自身(監視モジュール30)が算出している。具体的には、監視モジュール30が監視用筒内空気量算出部36を有している。
 これに対し、図13に示す本実施形態の監視モジュール30Bは、吹抜状態量を自身が算出することを廃止して、制御モジュール20で算出された吹抜状態量を取得し、取得した吹抜状態量を用いて監視モジュール30が推定トルクを演算している。具体的には、図3に示す制御用吹抜量算出部221bにより算出された吹抜量は、図1に示す入力保障部31に入力される。入力保障部31は、吹抜量を表すデータが正常であることをチェックする。入力保障部31のチェックにより保障された吹抜量は、図13に示す監視用筒内空気量算出部36Pに入力される。
 監視用筒内空気量算出部36Pは、上下限ガード算出部36b、ガード付き吹抜量算出部36cおよび演算部B15Bとしての機能を有する。
 上下限ガード算出部36bは、エンジン回転数およびスロットル通過空気量(吸気量)に基づき、上下限ガードを算出する。上下限ガードとは、吹抜量の上限である上限吹抜量、および吹抜量の下限である下限吹抜量のことである。エンジン回転数が高回転数であるほど、吸気量が多いほど、上限吹抜量は多く算出される。エンジン回転数が低回転数であるほど、吸気量が少ないほど、下限吹抜量は少なく算出される。
 ガード付き吹抜量算出部36cは、制御用吹抜量算出部221bにより算出された保障後の吹抜量と上下限ガードとを大小比較する。さらにガード付き吹抜量算出部36cは、吹抜量が下限吹抜量を下回って小さい場合には、吹抜量の値を下限吹抜量とし、吹抜量が上限吹抜量を上回って大きい場合には、吹抜量の値を上限吹抜量として算出する。つまり、制御モジュール20から取得した吹抜量を所定範囲に制限してガード付きの吹抜量を算出する。
 演算部B15Bは、監視モジュール30Bが算出したスロットル通過空気量から、ガード付き吹抜量算出部36cにより算出された吹抜量を減算して、監視用の筒内空気量として演算する。このようにして演算された筒内空気量は、図5と同様にして推定トルク演算部33による推定トルクの演算に用いられる。
 本実施形態では、図9に示すS32、S33の処理を、図14に示すS32B、S320B、S33Bに変更している。S32Bでは、先述した通り、制御モジュール20が算出した吹抜量を監視モジュール30が取得する。S320Bでは、上下限ガード算出部36bおよびガード付き吹抜量算出部36cがガード付きの吹抜量を算出する。S33Bでは、演算部B15Bが筒内空気量を算出する。なお、S32の処理を実行している時の監視モジュール30Bは、制御用吹抜量算出部221bにより算出された吹抜状態量を取得する「取得部」に相当する。
 要するに、上記第1実施形態に係る監視モジュール30では、推定トルクの演算に用いる吹抜状態量を筒内空気量としている。これに対し、本実施形態に係る監視モジュール30Bでは、推定トルクの演算に用いる吹抜状態量を、制御モジュール20から取得した吹抜量としている。
 以上により、本実施形態によれば、制御モジュール20は、目標制御量の演算に用いる吹抜状態量を算出する制御用吹抜量算出部221bを有する。監視モジュール30Bは、制御用吹抜量算出部221bにより算出された吹抜状態量を取得する取得部(S32B)を有し、取得部により取得された吹抜状態量を用いて推定トルクを演算する。これによれば、制御モジュール20で算出した吹抜状態量を利用して監視用の推定トルクを演算できる。
 ここで、監視モジュール30Bの演算に用いる各種データは入力保障部31により保障されているのに対し、制御モジュール20の演算に用いる各種データは上記保障が為されていない。そのため、制御モジュール20から取得した吹抜状態量は、上記第1および第2実施形態にて監視モジュール30、30Aが算出した吹抜状態量に比べると、データ損傷している蓋然性高い。
 この点を鑑み、本実施形態では、監視モジュール30Bは、取得部により取得された吹抜状態量が所定範囲を超えた場合には、推定トルクの演算に用いる吹抜状態量を、所定範囲の上限または下限に制限する。そのため、取得された吹抜状態量がデータ損傷している場合であっても、監視用の推定トルクの演算に用いる吹抜状態量は上限または下限に制限されるので、制限されない場合に比べて、データ損傷に起因したトルク異常監視精度の悪化を抑制できる。
 (他の実施形態)
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、1つの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
 上記第2実施形態では、監視モジュール30Aによる推定トルクの演算に用いる吹抜状態量を、排気ポート90outから吸気が抜け出る度合(吹抜度合)としている。具体的には、吹抜度合として、スロットル通過空気量(吸気量)に対する筒内空気量の割合(吹抜効率)を用いている。これに対し、筒内空気量と吹抜量との割合と相関のある値であれば、吹抜度合として推定トルクの演算に用いることができる。例えば、吸気量に対する吹抜量の割合を吹抜度合として用いてもよいし、筒内空気量に対する吹抜量の割合を吹抜度合として用いてもよいし、これらの割合の逆数を吹抜度合として用いてもよい。
 上記各実施形態に係る内燃機関制御システム(ECU10)は、バルブ調節装置および過給機を備える内燃機関に適用されているが、バルブ調節装置を備えていない内燃機関にも適用可能であり、過給機を備えていない内燃機関にも適用可能である。
 上記各実施形態では、監視モジュール30の演算速度は制御モジュール20の演算速度よりも遅い。具体的には、入力保障部31によるチェック処理速度がボトルネックとなり、機関要求トルク演算部32および推定トルク演算部33の演算速度は、機関要求トルク算出部21の演算速度よりも遅くなっている。これに対し、監視モジュール30の演算速度が制御モジュール20の演算速度と同等であってもよい。
 上記各実施形態では、共通する1つのメモリ11mの記憶領域に、制御用記憶領域20mおよび監視用記憶領域30mを設定している。これに対し、ECU10に複数のメモリを設け、第1のメモリの記憶領域を制御用記憶領域として設定し、第2のメモリの記憶領域を監視用記憶領域として設定してもよい。
 上記各実施形態では、共通する1つのMCU11が、制御用記憶領域20mおよび監視用記憶領域30mを有している。これに対し、ECU10に複数のMCUを設け、第1のMCUが制御用記憶領域を有し、第2のMCUが監視用記憶領域を有するように構成されていてもよい。
 上記第1実施形態に係る監視モジュール30では、機関要求トルク演算部32が算出する機関要求トルクにリザーブトルクを反映させ、推定トルク演算部33が算出する推定トルクにはノック学習による点火時期の補正量を反映させていない。これに対し、機関要求トルク演算部32が算出する機関要求トルクにリザーブトルクを反映させず、推定トルク演算部33が算出する推定トルクには、ノック学習による点火時期の補正量つまり先述したノック学習量を反映させてもよい。
 上記各実施形態では、ECU10は、点火駆動ICから出力される駆動電流または電圧を検出する検出回路を備えており、その検出回路による検出値を用いて、制御モジュール20はノック学習制御を実行している。これに対し、駆動信号出力部22が点火駆動IC12へ出力する指令信号を実点火時期とみなし、上記検出値を用いることなくノック学習制御を実行してもよい。
 図2に示す演算部B3は、アイドルリザーブ、触媒暖機リザーブおよび補機リザーブの各々を加算してリザーブトルクを演算して演算部B4へ出力している。これに対し、アイドルリザーブ、触媒暖機リザーブおよび補機リザーブの最大値をリザーブトルクとして演算し、演算部B4へ出力してもよい。
 上記第1実施形態では、アイドルリザーブ、触媒暖機リザーブおよび補機リザーブの全てをリザーブトルクの算出に用いているが、これらリザーブの少なくとも1つをリザーブトルクの算出に用いるようにしてもよい。
 図3に示すように、上記第1実施形態では、触媒暖機要求トルクおよびアイドル要求トルクの両方を、ユーザ要求トルクに加算して機関要求トルクを算出している。これに対し、触媒暖機要求トルクおよびアイドル要求トルクのうち値の大きい方の要求トルクを、ユーザ要求トルクに加算して機関要求トルクを算出してもよい。
 上記各実施形態では、車両に搭載された内燃機関をECU10の制御対象としているが、車載以外の定置式の内燃機関をECU10の制御対象としてもよい。

 

Claims (7)

  1.  制御用記憶領域(20m)を用いて演算する演算装置であって、ユーザが要求する内燃機関(90)の駆動トルクであるユーザ要求トルクに応じて、前記内燃機関の燃焼状態を制御する制御量の目標値である目標制御量を演算する制御用演算装置(20)と、
     前記制御用記憶領域とは別の監視用記憶領域(30m)を用いて演算する演算装置であって、前記内燃機関の実トルクの推定値である推定トルクが、前記内燃機関に要求されている機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視する監視用演算装置(30、30A、30B)と、
    を備え、
     前記内燃機関の吸気行程で排気ポート(90out)から抜け出る吸気の量である吹抜量、または前記排気ポートから吸気が抜け出る度合、または前記内燃機関の燃焼室(90a)へ充填される空気量である筒内空気量を吹抜状態量とし、
     前記監視用演算装置は、前記吹抜状態量を用いて前記推定トルクを演算する内燃機関制御システム。
  2.  前記制御用演算装置は、前記目標制御量の演算に用いる前記吹抜状態量を算出する制御用吹抜状態算出部(221b)を有し、
     前記監視用演算装置は、前記推定トルクの演算に用いる前記吹抜状態量を算出する監視用吹抜状態算出部(36、36a)を有する請求項1に記載の内燃機関制御システム。
  3.  前記監視用吹抜状態算出部は、
     吸気管(95)に取り付けられたスロットルバルブ(94)を通過する空気量、吸気弁(92)の開弁期間と排気弁(93)の開弁期間とが重複するオーバーラップ期間、吸気圧、排気圧、および機関回転速度の少なくとも1つに基づき、前記吹抜状態量を算出する請求項2に記載の内燃機関制御システム。
  4.  前記制御用演算装置は、前記目標制御量の演算に用いる前記吹抜状態量を算出する制御用吹抜状態算出部(221b)を有し、
     前記監視用演算装置は、前記制御用吹抜状態算出部により算出された前記吹抜状態量を取得する取得部(S32B)を有し、前記取得部により取得された前記吹抜状態量を用いて前記推定トルクを演算する請求項1に記載の内燃機関制御システム。
  5.  前記監視用演算装置は、前記取得部により取得された前記吹抜状態量が所定範囲を超えた場合には、前記推定トルクの演算に用いる前記吹抜状態量を、前記所定範囲の上限または下限に制限する請求項4に記載の内燃機関制御システム。
  6.  前記監視用演算装置の演算周期は、前記制御用演算装置の演算周期より長い請求項1~5のいずれか1つに記載の内燃機関制御システム。
  7.  前記監視用演算装置は、前記監視用演算装置の外部から取得したデータが正常であることをチェックする入力保障部(31)を有する請求項1~6のいずれか1つに記載の内燃機関制御システム。

     
PCT/JP2018/024217 2017-07-28 2018-06-26 内燃機関制御システム WO2019021722A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018003851.3T DE112018003851B4 (de) 2017-07-28 2018-06-26 Steuersystem einer Maschine mit interner Verbrennung
US16/751,840 US11008961B2 (en) 2017-07-28 2020-01-24 Internal combustion engine control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017146908A JP6780600B2 (ja) 2017-07-28 2017-07-28 内燃機関制御システム
JP2017-146908 2017-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/751,840 Continuation US11008961B2 (en) 2017-07-28 2020-01-24 Internal combustion engine control system

Publications (1)

Publication Number Publication Date
WO2019021722A1 true WO2019021722A1 (ja) 2019-01-31

Family

ID=65039644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024217 WO2019021722A1 (ja) 2017-07-28 2018-06-26 内燃機関制御システム

Country Status (4)

Country Link
US (1) US11008961B2 (ja)
JP (1) JP6780600B2 (ja)
DE (1) DE112018003851B4 (ja)
WO (1) WO2019021722A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907555B2 (en) 2017-07-28 2021-02-02 Denso Corporation Internal combustion engine control system
US11313306B2 (en) 2017-08-01 2022-04-26 Denso Corporation Torque monitoring device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780600B2 (ja) 2017-07-28 2020-11-04 株式会社デンソー 内燃機関制御システム
JP7096852B2 (ja) * 2020-02-25 2022-07-06 本田技研工業株式会社 エンジン制御装置
JP7351259B2 (ja) * 2020-06-08 2023-09-27 トヨタ自動車株式会社 車両の制御装置
CN111946527B (zh) * 2020-07-31 2021-10-15 东风汽车集团有限公司 汽油机火路扭矩效率确定方法和实际点火效率确定方法
US11512677B1 (en) * 2022-03-08 2022-11-29 Fca Us Llc Pre-chamber jet ignition torque control with two ignition sources

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221068A (ja) * 2001-01-26 2002-08-09 Denso Corp 内燃機関のトルク制御装置
JP2010043536A (ja) * 2008-08-08 2010-02-25 Denso Corp 車両の制御装置
JP2011032903A (ja) * 2009-07-30 2011-02-17 Denso Corp 車両の制御装置
JP2011052696A (ja) * 2010-12-14 2011-03-17 Denso Corp 内燃機関の監視装置
JP2014173535A (ja) * 2013-03-11 2014-09-22 Nissan Motor Co Ltd 内燃機関の制御装置及び内燃機関の制御方法
JP2016098786A (ja) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2017015062A (ja) * 2015-07-07 2017-01-19 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545221B4 (de) * 1995-12-05 2005-08-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10210684B4 (de) 2002-03-12 2005-04-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Moments einer Antriebseinheit eines Fahrzeugs
DK1596880T3 (da) * 2002-12-23 2011-06-14 Univ Rice William M Fremgangsmåder og sammensætninger til undertrykkelse af fibrocytdifferentiering
JP4483720B2 (ja) * 2005-06-23 2010-06-16 株式会社デンソー 電子制御装置
DE102007031769B4 (de) 2007-07-07 2009-07-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Überwachung eines Funktionsrechners in einem Steuergerät
US8224559B2 (en) 2010-01-21 2012-07-17 GM Global Technology Operations LLC Method and apparatus to monitor a mass airflow metering device in an internal combustion engine
JP5790882B2 (ja) 2012-07-25 2015-10-07 トヨタ自動車株式会社 過給エンジンの制御装置
JP6642090B2 (ja) 2016-02-19 2020-02-05 富士ゼロックス株式会社 品質管理装置及び品質管理プログラム
JP6780600B2 (ja) 2017-07-28 2020-11-04 株式会社デンソー 内燃機関制御システム
JP6717271B2 (ja) 2017-07-28 2020-07-01 株式会社デンソー 内燃機関制御システム
JP6809408B2 (ja) 2017-08-01 2021-01-06 株式会社デンソー トルク監視装置および内燃機関制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221068A (ja) * 2001-01-26 2002-08-09 Denso Corp 内燃機関のトルク制御装置
JP2010043536A (ja) * 2008-08-08 2010-02-25 Denso Corp 車両の制御装置
JP2011032903A (ja) * 2009-07-30 2011-02-17 Denso Corp 車両の制御装置
JP2011052696A (ja) * 2010-12-14 2011-03-17 Denso Corp 内燃機関の監視装置
JP2014173535A (ja) * 2013-03-11 2014-09-22 Nissan Motor Co Ltd 内燃機関の制御装置及び内燃機関の制御方法
JP2016098786A (ja) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2017015062A (ja) * 2015-07-07 2017-01-19 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907555B2 (en) 2017-07-28 2021-02-02 Denso Corporation Internal combustion engine control system
US11313306B2 (en) 2017-08-01 2022-04-26 Denso Corporation Torque monitoring device

Also Published As

Publication number Publication date
DE112018003851B4 (de) 2023-07-27
DE112018003851T5 (de) 2020-04-09
US20200158036A1 (en) 2020-05-21
JP2019027350A (ja) 2019-02-21
JP6780600B2 (ja) 2020-11-04
US11008961B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2019021722A1 (ja) 内燃機関制御システム
JP6717271B2 (ja) 内燃機関制御システム
WO2019026545A1 (ja) トルク監視装置および内燃機関制御システム
US9458774B2 (en) Abnormal combustion suppression control apparatus for internal combustion engine
US10458310B2 (en) Control device for internal combustion engine
US9228515B2 (en) Controller and control method for internal combustion engine
JP6071370B2 (ja) 内燃機関の制御装置
US9976497B2 (en) Control device for internal combustion engine
JP6809415B2 (ja) 内燃機関制御システム
US10260443B2 (en) Internal combustion engine and control method thereof
US20170284326A1 (en) Engine control device and engine
US20070023010A1 (en) Method of controlling the injection begin of a fuel injection valve of an internal combustion engine
US20200355138A1 (en) Internal combustion engine control system
CN107917003B (zh) 一种发动机运转平稳性的控制方法
US7421331B2 (en) Method for operating an internal combustion engine, particularly of a motor vehicle
US11754004B2 (en) Control method and control device for internal combustion engine
JP2019127832A (ja) 内燃機関制御システム
JP2007040218A (ja) 圧縮着火内燃機関の制御装置
JP2006316635A (ja) 燃料噴射制御装置
JP2019094873A (ja) 内燃機関制御システム
JP2006046075A (ja) 水素添加内燃機関の制御装置
US7082929B2 (en) Method for determining amount of fuel injection in engine system
CN117167130A (zh) 一种冷却系统机油压力控制方法及装置
JP2007046573A (ja) 内燃機関の制御装置
JP2017036737A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838364

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18838364

Country of ref document: EP

Kind code of ref document: A1