WO2019019615A1 - 激光剥离方法及激光剥离系统 - Google Patents

激光剥离方法及激光剥离系统 Download PDF

Info

Publication number
WO2019019615A1
WO2019019615A1 PCT/CN2018/076401 CN2018076401W WO2019019615A1 WO 2019019615 A1 WO2019019615 A1 WO 2019019615A1 CN 2018076401 W CN2018076401 W CN 2018076401W WO 2019019615 A1 WO2019019615 A1 WO 2019019615A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
laser beam
illumination direction
laser
material layer
Prior art date
Application number
PCT/CN2018/076401
Other languages
English (en)
French (fr)
Inventor
王婷
蒋志亮
周桢力
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/336,885 priority Critical patent/US11084127B2/en
Publication of WO2019019615A1 publication Critical patent/WO2019019615A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of laser stripping technology, and more particularly to a laser stripping method and a laser stripping system.
  • Laser Lift Off has a wide range of applications due to its simple operation, high degree of implementation, and efficient separation of substrates and organic material layers without damaging the substrate. For example, it is applied to many fields such as preparation of organic light emitting diodes, flexible display, and peeling of thin wafers.
  • a laser lift-off method comprising: controlling a laser beam to penetrate a substrate in a first illumination direction to scan a layer of a material layer and a substrate of the substrate, wherein the substrate is away from the material layer There is at least one particle on one side, and an area of the interface that is not illuminated by the laser beam in the first illumination direction is an occlusion area; and the control laser beam penetrates the substrate in a second illumination direction to the material The interface of the layer and the substrate is scanned such that at least a portion of the occlusion region is illuminated by the laser beam of the second illumination direction; the material layer and the substrate are separated.
  • the method before controlling the laser beam to penetrate the substrate in the second illumination direction to scan the interface between the material layer and the substrate, the method further includes: detecting a size of the particle, and detecting The size of the particles and the first illumination direction determine the second illumination direction.
  • the first illumination direction is a direction in which an angle between the laser beam and the substrate is ⁇ 1
  • the second illumination direction is an angle between the laser beam and the substrate is ⁇ 2 a direction in which the first illumination direction and the second illumination direction are located on a same side perpendicular to a plane of the substrate;
  • ⁇ 2 is: Where L is the largest dimension of the at least one particle and H is the thickness of the substrate.
  • the first illumination direction is a direction in which an angle between the laser beam and the substrate is ⁇ 1
  • the second illumination direction is an angle between the laser beam and the substrate is ⁇ 2 a direction in which the first illumination direction and the second illumination direction are located on different sides perpendicular to a plane of the substrate;
  • ⁇ 2 is: Where L is the largest dimension of the at least one particle and H is the thickness of the substrate.
  • the method further comprises: controlling the laser beam to penetrate the substrate in a third illumination direction to scan the interface between the material layer and the substrate, A region of the interface that is not illuminated by the laser beam of the first illumination direction and the laser beam of the second illumination direction is illuminated by the laser beam of the third illumination direction.
  • the first illumination direction is a direction in which an angle between the laser beam and the substrate is ⁇ 1
  • the second illumination direction is an angle between the laser beam and the substrate is ⁇ 2 a direction in which the angle between the laser beam and the substrate is ⁇ 3
  • the first illumination direction and the second illumination direction are located in a plane perpendicular to a plane of the substrate a side
  • the first illumination direction and the third illumination direction are located on different sides perpendicular to a plane of the substrate;
  • ⁇ 2 is:
  • ⁇ 3 is:
  • L is the largest dimension of the at least one particle
  • H is the thickness of the substrate.
  • the detecting the size of the at least one particle, and determining the second illumination direction according to the detected size of the at least one particle and the first illumination direction including: detecting In the case where the substrate has a plurality of particles on a side away from the material layer, the size of the largest of the plurality of particles is determined according to the size of the plurality of particles detected; according to the size of the largest particle And the first illumination direction determines the second illumination direction.
  • the method before controlling the laser beam to penetrate the substrate in the second illumination direction to scan the interface between the material layer and the substrate, the method further comprises: detecting the at least one particle on the substrate a position, determining a position of the occlusion region according to the detected position of the at least one particle on the substrate and the first illumination direction; controlling a laser beam to penetrate the substrate in a second illumination direction to Scanning the interface of the material layer and the substrate includes controlling the laser beam to penetrate the substrate in a second illumination direction to scan the occlusion region.
  • a laser stripping system comprising: a laser source for emitting a laser beam; a control device coupled to the laser source and configured to control emission from the laser source The laser beam penetrates the substrate in a first illumination direction to scan the interface of the layer of material disposed and the substrate, and at least one particle on a side of the substrate away from the material layer, the interface is not The area illuminated by the laser beam in the first illumination direction is an occlusion area; the control device is further configured to control the laser beam emitted by the laser source to penetrate the substrate in a second illumination direction to The interface of the material layer and the substrate is scanned such that at least a portion of the occlusion region is illuminated by the laser beam in the second illumination direction.
  • the laser stripping system further comprises: detecting means for detecting the position and/or size of the at least one particle.
  • the detecting device is an automatic optical detecting device.
  • Figure 1 (a) is a schematic diagram of the principle of laser stripping
  • Figure 1 (b) is a schematic diagram of the principle of a particle affecting laser peeling
  • FIG. 2 is a schematic flow chart of a laser stripping method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view 1 of laser stripping provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural view 2 of a laser stripping provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of a laser beam irradiated in two second illumination directions according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram 3 of laser stripping according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram 4 of laser stripping according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram 5 of laser stripping according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a laser stripping system according to an embodiment of the present disclosure.
  • the hard substrate 10 and the flexible substrate 20 are separated by laser (the material of the flexible substrate 20 may be, for example, polyimide).
  • the material of the flexible substrate 20 may be, for example, polyimide.
  • the laser penetrates the hard substrate 10 and is absorbed by the organic material of the laser action region 201 of the flexible substrate 20, the organic material of the laser action region 201 is destroyed by the action of the laser, thereby causing the hard substrate 10 and The flexible substrate 20 is separated.
  • the laser is easily affected by the particles in the laser lift-off technique, and the particles prevent the absorption of the laser by the organic material.
  • the presence of the particles 30 affects the absorption of the laser light by the organic material of the flexible substrate 20, causing the structure of the material of the laser action region 201 not to be completely destroyed (as shown by the dashed circle in FIG. 1(b))
  • the flexible substrate 20 and the rigid substrate 10 are separated, the flexible substrate 20 and the rigid substrate 10 are difficult to tear in the region where the particles 30 are blocked.
  • Embodiments of the present disclosure provide a laser lift-off method and a laser lift-off system that can easily separate a substrate and a material layer from the prior art.
  • the embodiment of the present disclosure provides a laser stripping method, as shown in FIG. 2 and FIG. 3, including:
  • the control laser beam penetrates the substrate 10 in a first illumination direction (the first illumination direction is indicated by a solid arrow in FIG. 3) to scan the interface of the stacked material layer 20 and the substrate 10, and the substrate 10 is away from the material.
  • one or more laser emitters 50 emit one or more laser beams, that is, one or more laser spots (two lasers are emitted in FIG. 4 of the present disclosure).
  • the device 50 is an example).
  • the one or more laser beams are integrated by an optical processing device 60 to obtain a linear laser beam.
  • a linear laser beam is scanned at the interface of material layer 20 and substrate 10 to separate material layer 20 from substrate 10.
  • the optical processing device 60 may include an integrated optical system 601 and a spot shaping optical system 602.
  • the integrated optical system 601 is used to integrate one or more pulsed laser spots emitted by the plurality of laser emitters 50 into a single beam of light.
  • a spot shaping optical system 602 is used to shape the beam to obtain a linear laser beam of the desired size.
  • the process of scanning the laser beam in the first illumination direction is not limited, and the process described above with reference to FIG. 1(a) can be referred to.
  • the interface between the material layer 20 and the substrate 10 is the surface where the material layer 20 and the substrate 10 are in contact. In this case, the interface between the material layer 20 and the substrate 10 is scanned, and the structure of the surface of the material layer 20 in contact with the substrate 10 is broken, thereby separating the material layer 20 from the substrate 10.
  • the interface between the material layer 20 and the substrate 10 is an optically transparent adhesive layer. In this case, the interface between the material layer 20 and the substrate 10 is scanned, and the structure of the optically clear adhesive is broken, thereby separating the material layer 20 from the substrate 10.
  • the first irradiation direction is a direction in which the angle between the laser beam and the substrate 10 is ⁇ 1 , and the size of ⁇ 1 is not limited, and may be any angle greater than zero degrees, for example, 10°, 20°, 30°, 40°, 50. °, 60°, 70°, 80°, 90°, etc.
  • the occlusion region 40 when the laser beam is scanned in the first illumination direction, the occlusion region 40 is not irradiated due to the presence of at least one particle 30, and thus the structure of the occlusion region 40 in the interface is not destroyed, so the material layer of the occlusion region 40 is 20 and the substrate 10 are not easily separated.
  • the size of the occlusion region 40 is related to the size of the at least one particle 30 described above.
  • the position of the occlusion region 40 is related to the position of the corresponding one of the at least one particle 30 and the first illumination direction.
  • the control laser beam penetrates the substrate 10 in a second illumination direction (the second illumination direction is indicated by a dashed arrow in FIG. 3) to scan the interface of the material layer 20 and the substrate 10 such that at least a portion of the occlusion region 40 is second.
  • the laser beam in the direction of illumination is illuminated.
  • all of the occlusion regions 40 that are not irradiated when scanning in the first irradiation direction may be irradiated, or only the partial occlusion region 40 may be irradiated.
  • the angle of the two illumination directions is related.
  • the second illumination direction and the first The direction of illumination must be different.
  • the difference may be that the directions of illumination are different.
  • the first and second illumination directions are on different sides perpendicular to the plane of the substrate 10, such as the first illumination direction is on the left side of the plane perpendicular to the substrate 10, and the second illumination direction is on the substrate 10 The right side of the plane.
  • the difference may be that the angle between the laser beam and the substrate 10 is different when the first irradiation direction and the second irradiation direction are irradiated.
  • the angle between the laser beam and the substrate 10 when irradiated in the first illumination direction is 90°, 85°, 80°, 75°, 70°, etc., respectively, and the laser beam is irradiated in the second illumination direction.
  • the angles of the substrate 10 correspond to 60°, 55°, 50°, 45°, 40°, and the like, respectively.
  • the entire interface of the material layer 20 and the substrate 10 may be scanned, or only the occlusion region 40 that is not irradiated when scanned in the first irradiation direction may be scanned.
  • the same laser source can be used to emit the laser beam in the first illumination direction and the laser beam in the second illumination direction; or the laser beam in the first illumination direction and the laser in the second illumination direction can be respectively emitted by using different laser sources. bundle.
  • the material layer 20 and the substrate 10 may be separated by a stripping device; the material layer 20 and the substrate 10 may be manually separated, which is not limited herein.
  • the embodiment of the present disclosure provides a laser stripping method.
  • the laser beam is second after the laser beam scans the interface of the material layer 20 and the substrate 10 in the first irradiation direction.
  • the irradiation direction scans the interface of the material layer 20 and the substrate 10 so that at least a portion of the occlusion regions 40 that are not illuminated when the laser beam is scanned in the first irradiation direction can be illuminated.
  • the embodiment of the present disclosure increases the area of the interface irradiated to the material layer 20 and the substrate 10, and thus the present disclosure is implemented relative to the prior art. For example, it is easier to separate the material layer 20 from the substrate 10 to improve product yield.
  • the size of the unirradiated occlusion region 40 is related to the size of a corresponding one of the at least one particle 30.
  • the size of the angle and the relationship between the second illumination direction and the first illumination direction affect the laser light irradiated in the second illumination direction.
  • the beam is illuminated to the size of the occlusion area 40. Referring to FIG. 5, it can be seen that the area of the occlusion area 40 when the laser beam is irradiated in the direction A is larger than the area of the occlusion area 40 when the laser beam is irradiated in the direction B.
  • the method further includes: detecting a size of the at least one particle 30, and determining a second illumination direction based on the detected size of the at least one particle 30 and the first illumination direction.
  • the size of at least one particle 30 can be detected using equipment in the prior art.
  • the size of at least one particle 30 is detected by an Automatic Optic Inspection (AOI).
  • AOI Automatic Optic Inspection
  • the second illumination direction is accurately determined according to the first illumination direction and the size of the at least one particle 30, and the laser beam is irradiated in the second illumination direction, so that the illumination region 40 can be illuminated in the second illumination direction.
  • the area is as large as possible to facilitate the peeling of the material layer 20 and the substrate 10.
  • the first illumination direction is a direction in which the angle between the laser beam and the substrate 10 is ⁇ 1
  • the second illumination direction is a direction in which the angle between the laser beam and the substrate 10 is ⁇ 2 .
  • the first illumination direction and the second illumination direction are located on the same side perpendicular to the plane of the substrate 10.
  • the first illumination direction and the second illumination direction are both located on the left side perpendicular to the plane of the substrate 10; ⁇ 2 is:
  • L is the largest dimension of at least one particle 30 and H is the thickness of the substrate 10.
  • the thickness of the substrate 10 is generally about 0.5 mm
  • the thickness of the material layer 20 is about 10 ⁇ m
  • the thickness of the material layer 20 applied to the material layer 20 is about 100 nm, so that at least one particle can be ignored.
  • the length along the thickness direction of the substrate 10 and the thickness of the laser beam applied to the material layer 20 are 30.
  • the shape of at least one of the particles 30 is not limited and may be a spherical shape, a square shape, or other irregular shape or the like.
  • L is the largest dimension of at least one particle 30, i.e., the maximum length of at least one particle 30 in a direction parallel to the substrate 10.
  • the occlusion region 40 that is not illuminated when the laser beam is irradiated in the first irradiation direction can be entirely illuminated. Thereby, the interface between the material layer 20 and the substrate 10 can be entirely illuminated, facilitating the peeling of the material layer 20 and the substrate 10.
  • the second illumination direction may be an angle between the laser beam and the substrate 10 being Or the angle between the laser beam and the substrate 10 is smaller than
  • the direction of the laser beam can also completely illuminate the occlusion area 40. That is, ⁇ 2 can be:
  • the first illumination direction is a direction in which the angle between the laser beam and the substrate 10 is ⁇ 1
  • the second illumination direction is a direction in which the angle between the laser beam and the substrate 10 is ⁇ 2
  • the first illumination direction and the second illumination direction are located on different sides perpendicular to the plane of the substrate 10.
  • the first illumination direction is located on the left side perpendicular to the plane of the substrate 10
  • the second illumination direction is located on the right side of the plane perpendicular to the substrate 10
  • ⁇ 2 is:
  • L is the largest dimension of at least one particle 30 and H is the thickness of the substrate 10.
  • the occlusion region 40 that is not irradiated when the laser beam is irradiated in the first irradiation direction can be entirely illuminated, so that the interface between the material layer 20 and the substrate 10 can be completely illuminated. The peeling of the material layer 20 and the substrate 10 is facilitated.
  • the second illumination direction may be an angle between the laser beam and the substrate 10 being Or the angle between the laser beam and the substrate 10 is smaller than
  • the direction of the laser beam can also completely illuminate the occlusion area 40. That is, ⁇ 2 can be:
  • the method before the separation of the material layer 20 and the substrate 10, the method further includes: controlling the laser beam to penetrate the substrate 10 in the third irradiation direction to interface with the material layer 20 and the substrate 10. Scanning is performed such that a region of the interface that is not illuminated by the laser beam of the first illumination direction and the laser beam of the second illumination direction is illuminated by the laser beam of the third illumination direction.
  • the third illumination direction is not limited, and may be located on a different side from the plane perpendicular to the substrate 10 than the second illumination direction; or may be located on the same side of the plane perpendicular to the substrate 10 as the second illumination direction, as long as it can be illuminated
  • the area illuminated by the first irradiation direction and the second irradiation direction may be used.
  • the laser beam irradiated in the second irradiation direction and the laser beam irradiated in the third irradiation direction may be simultaneously irradiated or may be irradiated in a time-division manner.
  • the laser beam in addition to controlling the laser beam to illuminate the occlusion region 40 in the second illumination direction, the laser beam is controlled to illuminate the interface of the material layer 20 and the substrate 10 in the third illumination direction. In this way, the area of the region where the interface between the material layer 20 and the substrate 10 is illuminated can be further increased, so that the area of the occlusion region 40 that is not illuminated when the first illumination direction is irradiated is further reduced, thereby facilitating the material layer 20. Separated from the substrate 10.
  • the first illumination direction is a direction in which the angle between the laser beam and the substrate 10 is ⁇ 1
  • the second illumination direction is a direction in which the angle between the laser beam and the substrate 10 is ⁇ 2
  • the three irradiation directions are directions in which the angle between the laser beam and the substrate 10 is ⁇ 3 .
  • the first illumination direction and the second illumination direction are located on the same side perpendicular to the plane of the substrate 10.
  • the first illumination direction and the third illumination direction are located on different sides perpendicular to the plane of the substrate 10. As shown in FIG. 8, the first illumination direction and the second illumination direction are located on the left side perpendicular to the plane of the substrate 10, and the third illumination direction is located on the right side perpendicular to the plane of the substrate 10;
  • ⁇ 2 is:
  • ⁇ 3 is:
  • L is the maximum size of at least one of the particles 30, and H is the thickness of the substrate 10.
  • control laser beam scans the interface of the material layer 20 and the substrate 10 in the first illumination direction, the second illumination direction, and the third illumination direction, and the second illumination direction Third illumination direction
  • all of the occlusion regions 40 that are not illuminated when the laser beam is irradiated in the first irradiation direction can be irradiated, which facilitates the peeling of the material layer 20 and the substrate 10.
  • ⁇ 3 can be less than When ⁇ 2 can be less than Or, at the same time, And That is, for any X between 0 and L, ⁇ 2 and ⁇ 3 can be: And At this time, it is also possible to irradiate all of the occlusion regions 40 that are not illuminated when the laser beam is irradiated in the first irradiation direction.
  • a plurality of particles 30 may remain on the side of the substrate 10 remote from the material layer 20. If the size of each of the particles 30 is detected and the second irradiation direction is adjusted according to the size of each of the particles 30, the laser peeling process is complicated, the peeling time is long, and the production efficiency is lowered. The larger the size of the particles 30, the larger the area of the occlusion region 40 when illuminated in the first illumination direction.
  • the occlusion region 40 of the particles 30 which is the largest when irradiated in the first irradiation direction can be irradiated, the occlusion region 40 of the other particles 30 can be entirely irradiated.
  • the embodiment of the present disclosure optionally detects the size of the at least one particle 30 and determines the second illumination direction according to the detected size of the at least one particle 30 and the first illumination direction, including: detecting that the substrate 10 is far away In the case where there are a plurality of particles 30 on one side of the material layer 20, the size of the largest size particles 30 among the plurality of particles 30 is determined according to the size of the plurality of particles 30 detected; according to the size of the largest particles 30 and A direction of illumination determines a second direction of illumination.
  • the sizes of the plurality of particles 30 detected are compared to determine the size of the particles 30 having the largest size among the plurality of particles 30.
  • the area of the occlusion region 40 formed is the largest, and thus, when the laser beam is scanned in the second illumination direction, The area of the particles 30 having the largest size of the particles 30 can be irradiated, and the areas blocked by the particles 30 of other sizes can be irradiated. Therefore, when the second irradiation direction determined by the size of the largest particle 30 and the first irradiation direction is irradiated, the area of the occlusion region 40 that is irradiated is large, which facilitates the separation of the material layer 20 and the substrate 10.
  • the laser beam When the laser beam is scanned in the second irradiation direction, if the entire interface of the material layer 20 and the substrate 10 is scanned, the unobstructed region when irradiated in the first irradiation direction is repeatedly irradiated.
  • the laser beam scans the interface of the material layer 20 and the substrate 10 multiple times, which may cause damage to the material layer 20.
  • the method before the laser beam is controlled to penetrate the substrate 10 in the second illumination direction to scan the interface of the material layer 20 and the substrate 10, the method further includes: detecting at least one particle 30 at a position on the substrate 10, determining a position of the occlusion region 40 according to the detected position of the at least one particle 30 on the substrate 10 and the first illumination direction; controlling the laser beam to penetrate the substrate 10 in the second illumination direction to the material layer 20 Scanning the interface with the substrate 10 includes controlling the laser beam to penetrate the substrate 10 in the second illumination direction to scan the occlusion region 40.
  • how to detect the position of the at least one particle 30 on the substrate 10 is not limited, and the position of the at least one particle 30 on the substrate 10 can be detected by an optical detecting device such as an AOI. Furthermore, the size of at least one of the particles 30 and its position on the substrate 10 can be detected simultaneously using the same device.
  • scanning the occlusion region 40 means that all the interfaces of the material layer 20 and the substrate 10 are not scanned.
  • the area around the occlusion area 40 may also be scanned, which may be ignored.
  • the laser beam when the laser beam is scanned in the second illumination direction, the laser beam is controlled to scan the occlusion region 40, so that the region that has been irradiated by the laser beam in the first illumination direction can be prevented from being irradiated again, thereby preventing the material from being irradiated. Layer 20 is damaged.
  • the embodiment of the present disclosure provides a laser stripping system, as shown in FIG. 9, comprising: a laser source 70 for emitting a laser beam; a control device 80, the control device 80 is connected to the laser source 70, and configured to control the laser source
  • the emitted laser beam penetrates the substrate 10 in the first irradiation direction to scan the interface of the layer of the material layer 20 and the substrate 10, and the particles 30 on the side of the substrate 10 away from the material layer 20 are not in the interface.
  • the area illuminated by the laser beam in the first illumination direction is the occlusion area 40; the control device 80 is further configured to control the laser beam emitted from the laser source 70 to penetrate the substrate 10 in the second illumination direction to the material layer 20 and the substrate 10 The interface is scanned such that at least a portion of the occlusion region 40 is illuminated by the laser beam in the second illumination direction.
  • Control device 80 may be executed by a microprocessor programmed to perform one or more of the operations and/or functions described herein, in accordance with one or more embodiments.
  • the controller is implemented in whole or in part by specially configured hardware (eg, by one or more application specific integrated circuits or ASICs).
  • the same laser source 70 may be controlled to respectively emit the laser beam of the first illumination direction and the laser beam of the second illumination direction; or as shown in FIG. 9, the laser source 70 includes the first sub-laser source 701 and the second sub-field.
  • the laser source 702 controls the laser beam emitted from the first sub-laser source 701 to scan the interface of the material layer 20 and the substrate 10 in the first illumination direction, and controls the laser beam emitted from the second sub-laser source 702.
  • the two illumination directions scan the interface of the material layer 20 and the substrate 10.
  • the first sub-laser source 701 can include at least one laser emitter 50 and an optical processing device 60 as shown in FIG.
  • the optical processing device 60 is configured to perform integration processing on at least one laser beam emitted from the at least one laser emitter 50 to obtain a linear laser beam.
  • a linear laser beam is scanned at the interface of material layer 20 and substrate 10 to separate material layer 20 from substrate 10.
  • Optical processing device 60 can include an integrated optical system 601 and a spot shaping optical system 602.
  • the integrated optical system 601 is used to integrate a plurality of pulsed laser spots emitted by the plurality of laser emitters 50 into a single beam of light.
  • a spot shaping optical system 602 is used to shape the beam to obtain a linear laser beam of the desired size.
  • the second sub-laser source 702 includes at least one laser emitter 50 that can be illuminated with at least one laser spot emitted by at least one of the laser emitters 50 that occludes at least one of the particles 30. Since the area of the area blocked by the at least one particle 30 is small when the laser beam emitted from the first sub-laser source 701 is irradiated in the first illumination direction, the second sub-laser source 702 may optionally include only one laser emitter 50.
  • the embodiment of the present disclosure provides a laser stripping system. Since the control device 80 can control the laser beam emitted by the laser source 70 to scan the interface of the material layer 20 and the substrate 10 in the first irradiation direction, the laser source 70 is also controlled. The laser beam scans the interface of the material layer 20 and the substrate 10 in the second illumination direction to illuminate at least a portion of the occlusion region 40 that is not illuminated when the laser beam of the first illumination direction is scanned.
  • the embodiment of the present disclosure increases the area of the interface irradiated to the material layer 20 and the substrate 10, and thus relative to the prior art, Embodiments of the present disclosure make it easier to separate material layer 20 from substrate 10.
  • the laser lift-off system further includes: a detecting device for detecting the position and/or size of the at least one particle 30.
  • the type of the detecting device is not limited, and may be, for example, an optical detecting device such as an AOI or a Pattern inspection machine.
  • a CCD Charge-coupled Device
  • the laser beam emitted from the laser source 70 scans the entire interface of the material layer 20 and the substrate 10 in the first irradiation direction, if the laser beam emitted from the laser source 70 is also in the second irradiation direction to the material layer 20
  • the entire interface with the substrate 10 is scanned such that at least a portion of the occlusion region 40 blocked by the at least one particle 30 when the laser beam is illuminated in the first illumination direction is illuminated by the laser beam when illuminated in the second illumination direction.
  • the unoccluded area of at least one of the particles 30 when illuminated in the first illumination direction is repeatedly illuminated.
  • the laser beam scans the interface of the material layer 20 and the substrate 10 multiple times, possibly causing damage to the material layer 20.
  • the laser lift-off system also includes detection means for detecting the position of at least one particle 30.
  • detection means for detecting the position of at least one particle 30.
  • the first irradiation direction and the at least one particle 30 can be used.
  • the size of the second illumination direction is precisely determined so that the area of the occlusion area 40 (the area that is not illuminated when irradiated in the first illumination direction) when the laser beam is irradiated in the second illumination direction is as large as possible, which is advantageous for the material layer. 20 and the substrate 10 are peeled off.
  • the invention may also provide additional embodiments, which may include any of the above embodiments, and one or more of the components, functions or structures in the additional embodiments may be in any of the various embodiments described above Replace or supplement one or more of the components, functions, or structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光剥离方法,包括:控制激光束以第一照射方向穿透基板(10),以对层叠设置的材料层(20)和所述基板的界面进行扫描,所述基板远离所述材料层的一侧具有颗粒(30),所述界面中未被所述第一照射方向的激光束照到的区域为遮挡区域(40);控制激光束以第二照射方向穿透所述基板,以对所述材料层和所述基板的界面进行扫描,使得至少部分所述遮挡区域被所述第二照射方向的激光束照到;将所述材料层和所述基板分离。该方法容易将材料层与基板分离,提高产品良率。还公开了一种激光剥离系统。

Description

激光剥离方法及激光剥离系统
本申请要求于2017年7月27日提交中国专利局、申请号为201710625191.4、申请名称为“一种激光剥离方法及激光剥离系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及激光剥离技术领域,尤其涉及一种激光剥离方法及激光剥离系统。
背景技术
目前,激光剥离技术(Laser Lift Off)因操作简单,可实行度高,且在不损坏基板的情况下能有效分离基板和有机材料层,因而具有很广泛的应用。例如,应用于有机发光二极管的制备、柔性显示、薄晶圆片的剥离等诸多领域。
发明内容
本公开的实施例采用如下技术方案:
一方面,提供一种激光剥离方法,包括:控制激光束以第一照射方向穿透基板,以对层叠设置的材料层和所述基板的界面进行扫描,在所述基板远离所述材料层的一侧上有至少一个颗粒,所述界面中未被所述第一照射方向的激光束照到的区域为遮挡区域;控制激光束以第二照射方向穿透所述基板,以对所述材料层和所述基板的界面进行扫描,使得至少部分所述遮挡区域被所述第二照射方向的激光束照到;将所述材料层和所述基板分离。
可选的,在控制激光束以第二照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描之前,所述方法还包括:检测所述颗粒的尺寸,并根据检测到的所述颗粒的尺寸以及所述第一照射方向确定所述第二照射方向。
可选的,所述第一照射方向为所述激光束与所述基板的夹角为θ 1的方向,所述第二照射方向为所述激光束与所述基板的夹角为θ 2的方向,所述第一照射方向和所述第二照射方向位于垂直于所述基板的平面的同一侧;
θ 2为:
Figure PCTCN2018076401-appb-000001
其中,L为所述至少一个颗粒的最大尺寸,H为所述基板的厚度。
可选的,所述第一照射方向为所述激光束与所述基板的夹角为θ 1的方向,所述第二照射方向为所述激光束与所述基板的夹角为θ 2的方向,所述第一照射方向和所述第二照射方向位于垂直于所述基板的平面的不同侧;
θ 2为:
Figure PCTCN2018076401-appb-000002
其中,L为所述至少一个颗粒的最大尺寸,H为所述基板的厚度。
可选的,在将所述材料层和所述基板分离之前,所述方法还包括:控制激光束以第三照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描,使得所述界面中不被所述第一照射方向的激光束和所述第二照射方向的激光束照到的区域被所述第三照射方向的激光束照到。
进一步可选的,所述第一照射方向为所述激光束与所述基板的夹角为θ 1的方向,所述第二照射方向为所述激光束与所述基板的夹角为θ 2的方向,所述第三照射方向为所述激光束与所述基板的夹角为θ 3的方向,所述第一照射方向和所述第二照射方向位于垂直于所述基板的平面的同一侧,所述第一照射方向和所述第三照射方向位于垂直于所述基板的平面的不同侧;
θ 2为:
Figure PCTCN2018076401-appb-000003
θ 3为:
Figure PCTCN2018076401-appb-000004
其中,0<X<L,L为所述至少一个颗粒的最大尺寸,H为所述基板的厚度。
可选的,所述检测所述至少一个颗粒的尺寸,并根据检测到的所述至少一个颗粒的尺寸以及所述第一照射方向确定所述第二照射方向,包括:在检测到在所述基板远离所述材料层的一侧上有多个颗粒的情况下,根据检测到的多个颗粒的尺寸,确定所述多个颗粒中尺寸最大的颗粒的尺寸;根据所述最大的颗粒的尺寸以及所述第一照射方向确定所述第二照射方向。
可选的,在控制激光束以第二照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描之前,所述方法还包括:检测所述至少一个颗粒在所述基板上的位置,根据检测到的所述至少一个颗粒在所述基板上的位置以及所述第一照射方向确定所述遮挡区域的位置;控制激光束以第二照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描包括:控制所述激光束以第二照射方向穿透基板,对所述遮挡区域进行扫描。
另一方面,提供一种激光剥离系统,包括:激光源,所述激光源用于发射激光束;控制装置,所述控制装置与所述激光源相连,配置为控制所述激光源发射出的激光束以第一照射方向穿透基板,以对层叠设置的材料层和所述基板的界面进行扫描,在所述基板远离所述材料层的一侧上有至少一个颗粒,所述界面中未被所述第一照射方向的激光束照到的区域为遮挡区域;所述控制装置还配置为控制所述激光源发射出的激光束以第二照射方向穿透所述基板,以对所述材料层和所述基板的界面进行扫描,使得至少部分所述遮挡区域被所述第二照射方向的激光束照到。
可选的,所述激光剥离系统还包括:检测装置,所述检测装置用于检测所述至少一个颗粒的位置和/或尺寸。
进一步可选的,所述检测装置为自动光学检测设备。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)为一种激光剥离的原理示意图;
图1(b)为一种颗粒影响激光剥离的原理示意图;
图2为本公开实施例提供的一种激光剥离方法的流程示意图;
图3为本公开实施例提供的一种激光剥离的结构示意图一;
图4为本公开实施例提供的一种激光剥离的结构示意图二;
图5为本公开实施例提供的一种激光束以两种第二照射方向照射时的结构示意图;
图6为本公开实施例提供一种激光剥离的结构示意图三;
图7为本公开实施例提供一种激光剥离的结构示意图四;
图8为本公开实施例提供一种激光剥离的结构示意图五;
图9为本公开实施例提供一种激光剥离系统的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
示例的,在柔性显示面板的制作中,如图1(a)所示,利用激光分离硬质基板10和柔性基板20(柔性基板20的材料例如可以为聚酰亚胺(Polyimide,简称PI))时,激光(Laser)穿透硬质基板10被柔性基板20的激光作用区201的有机材料吸收,激光作用区201的有机材料在激光的作用下结构受到破坏,从而使得硬质基板10和柔性基板20分离。
然而,由于直径小于10μm的颗粒在激光剥离技术的预清洗阶段很难完全去除,而激光剥离技术中激光又很容易受颗粒(Particle)的影响,颗粒会阻止有机材料对激光的吸收。如图1(b)所示,颗粒30的存在会影响柔性基板20的有机材料对激光的吸收,造成激光作用区201材料的结构没有完全破坏(如图1(b)中虚线圈所示),从而导致在分离柔性基板20和硬质基板10时,在颗粒30遮挡的区域柔性基板20和硬质基板10很难撕开。
本公开的实施例提供一种激光剥离方法及激光剥离系统,相对现有技术,可使基板和材料层易于分离。
本公开实施例提供一种激光剥离方法,如图2和图3所示,包括:
S100、控制激光束以第一照射方向(图3中以实线箭头示意第一照射方向)穿透基板10,以对层叠设置的材料层20和基板10的界面进行扫描,在基板10远离材料层20的一侧上有至少一个颗粒30,界面中未被第一照射方向的激光束照到的区域为遮挡区域40。
激光剥离系统在进行激光剥离时,如图4所示,一个或多个激光发射器50发射一束或多束激光束即一个或多个激光斑(本公开附图4中以两个激光发射器50为例)。该一束或多束激光束经过光学处理装置60的整合,得到线性激光束。线性激光束在材料层20和基板10的界面进行扫描,以将材料层20和基板10分离。此处,光学处理装置60可以包括整合光学系统601和光斑整形光学系统602。整合光学系统601用于将多个激光发射器50发射的一个或多个脉冲激光斑整合成一束光。光斑整形光学系统602用于对光束进行整形,得到所需要尺寸的线性激光束。本公开实施例中,激光束以第一照射方向扫描的过程不做限定,可以参见上文中的参照着图1(a)所描述的过程。
此处,当材料层20直接形成在基板10上时,材料层20和基板10的界面为材料层20和基板10接触的面。这种情况下,对材料层20和基板10的界面进行扫描,材料层20与基板10接触的面的结构受到破坏,从而使材料层20和基板10分离。当材料层20通过光学透明胶形成在基板10上时,材料层20和基板10的界面为光学透明胶层。这种情况下,对材料层20和基板10的界面进行扫描,光学透明胶的结构被破坏,从而使材料层20和基板10分离。
第一照射方向为激光束和基板10的夹角为θ 1的方向,对于θ 1的大小不进行限定,可以是大于零度的任意角度,例如10°、20°、30°、40°、50°、60°、70°、80°、90°等。
需要说明的是,激光束以第一照射方向进行扫描时,由于至少一个颗粒30的存在,遮挡区域40未被照射到,因而界面中遮挡区域40的结构没有破坏,因此遮挡区域40的材料层20和基板10不易分离。遮挡区域40的大小与上述至少一个颗粒30的尺寸有关。遮挡区域40的位置与至少一个颗粒30中相应的一个的位置和第一照射方向有关。
S101、控制激光束以第二照射方向(图3中以虚线箭头示意第二 照射方向)穿透基板10,以对材料层20和基板10的界面进行扫描,使得至少部分遮挡区域40被第二照射方向的激光束照到。
此处,当以第二照射方向进行扫描时,可以使以第一照射方向扫描时未被照射到的遮挡区域40全部被照射到,也可以是仅部分遮挡区域40被照射到,这与第二照射方向的角度有关。
本领域技术人员应该明白,由于激光束以第二照射方向进行扫描时,可以使以第一照射方向扫描时未被照射到的至少部分遮挡区域40被照射到,因此第二照射方向和第一照射方向必然是不相同的。该不同可以是照射的方向不相同。例如在一些实施例中,第一和第二照射方向位于垂直于基板10的平面的不同侧,比如第一照射方向位于垂直于基板10的平面的左侧,第二照射方向位于垂直于基板10的平面的右侧。该不同也可以是以第一照射方向和第二照射方向照射时激光束与基板10的夹角不相同。例如在一些实施例中,以第一照射方向照射时激光束与基板10的夹角分别为90°、85°、80°、75°、70°等,以第二照射方向照射时激光束与基板10的夹角分别对应为60°、55°、50°、45°、40°等。
此外,激光束以第二照射方向进行扫描时,可以对材料层20和基板10的界面整体进行扫描,也可以只对以第一照射方向扫描时未被照射到的遮挡区域40进行扫描。在此基础上,可以利用同一激光源发射第一照射方向的激光束和第二照射方向的激光束;也可以利用不同的激光源分别发射第一照射方向的激光束和第二照射方向的激光束。
S102、将材料层20和基板10分离。
此处,可以利用剥膜设备将材料层20和基板10分离;也可以通过人工将材料层20和基板10分离,此处不作限定。
本公开实施例提供一种激光剥离方法,在利用激光剥离材料层20和基板10时,由于激光束以第一照射方向对材料层20和基板10的界面进行扫描后,激光束还以第二照射方向对材料层20和基板10的界面进行扫描,从而可以将以第一照射方向的激光束扫描时未照到的遮挡区域40中的至少部分区域照到。相对于现有技术中仅以第一照射方向对材料层和基板的界面进行照射,本公开实施例增加了照射到材料层20和基板10的界面的面积,因而相对现有技术,本公开实施例更容易将 材料层20和基板10分离,提高产品良率。
本领域技术人员应该明白,激光束照射到材料层20和基板10的界面的面积越大,材料层20和基板10越易于分离。当激光束以第一照射方向照射材料层20和基板10的界面时,未照射到的遮挡区域40的大小与至少一个颗粒30中相应的一个的尺寸有关。当激光束以第二照射方向照射时,第二照射方向的激光束与基板10形成夹角。该夹角的大小以及第二照射方向与第一照射方向的关系(第一照射方向和第二照射方向位于垂直于基板10的平面同一侧或不同侧)会影响以第二照射方向照射的激光束照到遮挡区域40的大小。参考图5,可以看出激光束以方向A照射时,照到遮挡区域40的面积大于激光束以方向B照射时照到遮挡区域40的面积。
基于上述,为了确定第二照射方向以使遮挡区域40尽可能都能被照到,因此可选的在控制激光束以第二照射方向穿透基板10,以对材料层20和基板10的界面进行扫描之前,上述方法还包括:检测至少一个颗粒30的尺寸,并根据检测到的至少一个颗粒30的尺寸以及第一照射方向确定第二照射方向。
其中,对于如何检测至少一个颗粒30的尺寸不进行限定。可以利用现有技术中的设备对至少一个颗粒30的尺寸进行检测。例如,通过自动光学检测设备(Automatic Optic Inspection,简称AOI)检测至少一个颗粒30的尺寸。
本公开实施例,根据第一照射方向和至少一个颗粒30的尺寸精确确定第二照射方向,并使激光束以第二照射方向照射,这样可以使以第二照射方向时照到遮挡区域40的面积尽可能大,便于材料层20和基板10剥离。
可选的,如图6所示,第一照射方向为激光束与基板10的夹角为θ 1的方向,第二照射方向为激光束与基板10的夹角为θ 2的方向。第一照射方向和第二照射方向位于垂直于基板10的平面的同一侧。例如,如图6所示,第一照射方向和第二照射方向均位于垂直于基板10的平面的左侧;θ 2为:
Figure PCTCN2018076401-appb-000005
其中,L为至少一个颗粒30的最大尺寸,H为 基板10的厚度。
此处,由于基板10的厚度一般在0.5mm左右,材料层20的厚度在10μm左右,激光束作用到材料层20的厚度(即激光作用区)为100nm左右,因此可以忽略不考虑至少一个颗粒30沿基板10的厚度方向的长度以及激光束作用到材料层20的厚度。
需要说明的是,对于至少一个颗粒30的形状不进行限定,可以是球形、方形或其它不规则形状等。L为至少一个颗粒30的最大尺寸,即为至少一个颗粒30沿平行于基板10的方向的最大长度。
参考图6,根据
Figure PCTCN2018076401-appb-000006
Figure PCTCN2018076401-appb-000007
根据
Figure PCTCN2018076401-appb-000008
Figure PCTCN2018076401-appb-000009
Figure PCTCN2018076401-appb-000010
本公开实施例,激光束以第二照射方向照射时,若第一照射方向和第二照射方向位于垂直于基板10的平面的同一侧,且第二照射方向的
Figure PCTCN2018076401-appb-000011
则激光束以第二照射方向照射时可以将激光束以第一照射方向照射时未照到的遮挡区域40全部照到。从而,材料层20和基板10的界面可以被全部照到,有利于材料层20和基板10的剥离。
此外,第二照射方向除了可以是激光束与基板10的夹角为
Figure PCTCN2018076401-appb-000012
的方向,还可以是激光束与基板10的夹角小于
Figure PCTCN2018076401-appb-000013
的方向,此时激光束同样可以将遮挡区域40完全照到。也即,θ 2可以为:
Figure PCTCN2018076401-appb-000014
可选的,如图7所示,第一照射方向为激光束与基板10的夹角为θ 1的方向,第二照射方向为激光束与基板10的夹角为θ 2的方向。第一照射方向和第二照射方向位于垂直于基板10的平面的不同侧。例如,如图7所示,第一照射方向位于垂直于基板10的平面的左侧,第二照射方向位于垂直于基板10的平面的右侧;θ 2为:
Figure PCTCN2018076401-appb-000015
其中,L为至少一个颗粒30的最大尺寸,H为基板10的厚度。
参考图7,根据
Figure PCTCN2018076401-appb-000016
Figure PCTCN2018076401-appb-000017
根据
Figure PCTCN2018076401-appb-000018
Figure PCTCN2018076401-appb-000019
Figure PCTCN2018076401-appb-000020
本公开实施例,激光束以第二照射方向照射时,若第一照射方向和第二照射方向位于垂直于基板10的平面的不同侧,且第二照射方向的
Figure PCTCN2018076401-appb-000021
时,则激光束以第二照射方向照射时可以将激光束以第一照射方向照射时未照到的遮挡区域40全部照到,从而可以将材料层20和基板10的界面全部照到,有利于材料层20和基板10的剥离。
此外,第二照射方向除了可以是激光束与基板10的夹角为
Figure PCTCN2018076401-appb-000022
的方向,还可以是激光束与基板10的夹角小于
Figure PCTCN2018076401-appb-000023
的方向,此时激光束同样可以将遮挡区域40完全照到。也即,θ 2可以为:
Figure PCTCN2018076401-appb-000024
当激光束以第二照射方向照射时,有可能没有将以第一照射方向照射时未照到的遮挡区域40全部照到。基于此,本公开实施例可选的,在将材料层20和基板10分离之前,上述方法还包括:控制激光束以第三照射方向穿透基板10,以对材料层20和基板10的界面进行扫描,使得界面中不被第一照射方向的激光束和第二照射方向的激光束照到的区域被第三照射方向的激光束照到。
对于第三照射方向不进行限定,可以与第二照射方向分别位于垂直于基板10的平面的不同侧;也可以与第二照射方向位于垂直于基板10的平面的同一侧,只要能够照到不被第一照射方向和第二照射方向照到的区域即可。
此处,以第二照射方向照射的激光束和以第三照射方向照射的激光束可以同时进行照射,也可以分时进行照射。
本公开实施例,除了控制激光束以第二照射方向对遮挡区域40进行照射外,还控制激光束以第三照射方向对材料层20和基板10的界面进行照射。这样,可以使材料层20和基板10的界面被照到的区域的面积进一步增加,以使第一照射方向照射时未照到的遮挡区域40的面积进一步减小,从而更有利于材料层20和基板10分离。
进一步可选的,如图8所示,第一照射方向为激光束与基板10的夹角为θ 1的方向,第二照射方向为激光束与基板10的夹角为θ 2的方向,第三照射方向为激光束与基板10的夹角为θ 3的方向。第一照射方向和第二照射方向位于垂直于基板10的平面的同一侧。第一照射方向和第三照射方向位于垂直于基板10的平面的不同侧。如图8所示,第一照射方向和第二照射方向位于垂直于基板10的平面的左侧,第三照射方向位于垂直于基板10的平面的右侧;
θ 2为:
Figure PCTCN2018076401-appb-000025
θ 3为:
Figure PCTCN2018076401-appb-000026
其中,0<X<L,L为至少一个颗粒30的最大尺寸,H为基板10的厚度。
参考图8,
Figure PCTCN2018076401-appb-000027
Figure PCTCN2018076401-appb-000028
根据
Figure PCTCN2018076401-appb-000029
Figure PCTCN2018076401-appb-000030
Figure PCTCN2018076401-appb-000031
根据
Figure PCTCN2018076401-appb-000032
Figure PCTCN2018076401-appb-000033
Figure PCTCN2018076401-appb-000034
当X=L/2,且θ 1=90°(即第一照射方向为垂直于基板10的方向)时,
Figure PCTCN2018076401-appb-000035
本公开实施例,当控制激光束以第一照射方向、第二照射方向和第三照射方向对材料层20和基板10的界面进行扫描,且第二照射方向的
Figure PCTCN2018076401-appb-000036
第三照射方向的
Figure PCTCN2018076401-appb-000037
时,可以将激光束以第一照射方向照射时未照到的遮挡区域40全部照射到,有利于材料层20和基板10的剥离。
Figure PCTCN2018076401-appb-000038
时,θ 3可以小于
Figure PCTCN2018076401-appb-000039
Figure PCTCN2018076401-appb-000040
时,θ 2可以小于
Figure PCTCN2018076401-appb-000041
或者,同时,
Figure PCTCN2018076401-appb-000042
Figure PCTCN2018076401-appb-000043
即,对于0~L之间的任一X,θ 2和θ 3可以分别为:
Figure PCTCN2018076401-appb-000044
Figure PCTCN2018076401-appb-000045
此 时,同样可以将激光束以第一照射方向照射时未照到的遮挡区域40全部照射到。
本领域技术人员应该明白,在激光剥离的预清洗阶段对材料层20和基板10清洗时,基板10远离材料层20的一侧会残留多个颗粒30。若对每个颗粒30的尺寸进行检测,并根据每个颗粒30的尺寸调节第二照射方向,这样会使得激光剥离过程复杂,且剥离时间较长,降低生产效率。颗粒30的尺寸越大,以第一照射方向照射时遮挡区域40的面积越大。以第二照射方向照射时,若能够将以第一照射方向照射时最大的颗粒30的遮挡区域40整体照射到,则其它颗粒30的遮挡区域40也就可以整体照射到。
基于上述,本公开实施例可选的,检测至少一个颗粒30的尺寸,并根据检测到的至少一个颗粒30的尺寸以及第一照射方向确定第二照射方向,包括:在检测到在基板10远离材料层20的一侧上有多个颗粒30的情况下,根据检测到的多个颗粒30的尺寸,确定多个颗粒30中尺寸最大的颗粒30的尺寸;根据最大的颗粒30的尺寸以及第一照射方向确定第二照射方向。
上述步骤中,若检测到多个颗粒30的尺寸,对检测到的多个颗粒30的尺寸进行对比,确定出多个颗粒30中尺寸最大的颗粒30的尺寸。
本公开实施例,由于多个颗粒30中尺寸最大的颗粒30在以第一照射方向进行扫描时,形成的遮挡区域40的面积最大,因而当激光束以第二照射方向进行扫描时,若多个颗粒30中尺寸最大的颗粒30遮挡的区域能够被照射到,其它尺寸的颗粒30遮挡的区域也就可以被照射到。因而,当以最大的颗粒30的尺寸以及第一照射方向确定出的第二照射方向进行照射时,照到的遮挡区域40的面积较大,有利于材料层20和基板10的分离。
当激光束以第二照射方向进行扫描时,若对材料层20和基板10的整个界面均进行扫描,则以第一照射方向照射时未被遮挡的区域会被重复照射。而激光束对材料层20和基板10的界面进行多次扫描,可能会造成材料层20的破坏。基于此,本公开实施例可选的,在控制激光束以第二照射方向穿透基板10,以对材料层20和基板10的界面进行扫描 之前,上述方法还包括:检测至少一个颗粒30在基板10上的位置,根据检测到的至少一个颗粒30在基板10上的位置以及第一照射方向确定遮挡区域40的位置;控制激光束以第二照射方向穿透基板10,以对材料层20和基板10的界面进行扫描包括:控制激光束以第二照射方向穿透基板10,对遮挡区域40进行扫描。
其中,对于如何检测至少一个颗粒30在基板10上的位置不进行限定,可以利用现有的设备如AOI等光学检测设备检测至少一个颗粒30在基板10上的位置。此外,可以利用同一设备同时对至少一个颗粒30的尺寸以及其在基板10上的位置进行检测。
需要说明的是,对遮挡区域40进行扫描,是指不对材料层20和基板10的界面全部进行扫描。在对遮挡区域40进行扫描时,可能还会扫描到遮挡区域40周围的区域,对此可以忽略不考虑。
本公开实施例,当激光束以第二照射方向进行扫描时,控制激光束对遮挡区域40进行扫描,从而可以避免已被第一照射方向的激光束照射到的区域再次被照射,进而防止材料层20受到破坏。
本公开实施例提供一种激光剥离系统,如图9所示,包括:激光源70,激光源70用于发射激光束;控制装置80,控制装置80与激光源70相连,配置为控制激光源70发射出的激光束以第一照射方向穿透基板10,以对层叠设置的材料层20和基板10的界面进行扫描,在基板10远离材料层20的一侧上有颗粒30,界面中未被第一照射方向的激光束照到的区域为遮挡区域40;控制装置80还配制为控制激光源70发射出的激光束以第二照射方向穿透基板10,以对材料层20和基板10的界面进行扫描,使得至少部分遮挡区域40被第二照射方向的激光束照到。
根据一个或多个实施例,控制装置80可以由编程为用于执行本文所描述的一个或多个操作和/或功能的微处理器来执行。根据一个或多个实施例,所述控制器整个或部分地由专门配置的硬件来执行(例如,由一个或多个专用集成电路或ASIC来执行)。
此处,可以控制同一激光源70分别发射第一照射方向的激光束和第二照射方向的激光束;还可以是如图9所示,激光源70包括第一子激光源701和第二子激光源702,控制装置80控制第一子激光源701发射出的激光束以第一照射方向对材料层20和基板10的界面进行扫描, 控制第二子激光源702发射出的激光束以第二照射方向对材料层20和基板10的界面进行扫描。
在此基础上,第一子激光源701可以如图4所示,包括至少一个激光发射器50以及光学处理装置60。光学处理装置60用于对至少一个激光发射器50发出的至少一束激光束进行整合处理,以得到线性激光束。线性激光束在材料层20和基板10的界面进行扫描,以将材料层20和基板10分离。光学处理装置60可以包括整合光学系统601和光斑整形光学系统602。整合光学系统601用于将多个激光发射器50发射的多个脉冲激光斑整合成一束光。光斑整形光学系统602用于对光束进行整形,得到所需要尺寸的线性激光束。第二子激光源702包括至少一个激光发射器50,可以利用至少一个激光发射器50发射的至少一个激光斑对至少一个颗粒30遮挡的区域进行照射。由于第一子激光源701出射的激光束以第一照射方向照射时,至少一个颗粒30遮挡的区域的面积较小,因而第二子激光源702可选仅包括一个激光发射器50。
本公开实施例提供一种激光剥离系统,由于控制装置80可以控制激光源70发射出的激光束以第一照射方向对材料层20和基板10的界面进行扫描,还控制激光源70发射出的激光束以第二照射方向对材料层20和基板10的界面进行扫描,以将第一照射方向的激光束扫描时未照到的遮挡区域40中的至少部分区域照到。相对于现有技术中仅以第一个照射方向对材料层20和基板10的界面进行照射,本公开实施例增加了照射到材料层20和基板10的界面的面积,因而相对现有技术,本公开实施例更容易将材料层20和基板10分离。
可选的,如图9所示,激光剥离系统还包括:检测装置,检测装置用于检测至少一个颗粒30的位置和/或尺寸。
其中,对于检测装置的类型不进行限定,例如可以是AOI或Pattern(图案)检查机等光学检测设备。此外,AOI设备和Pattern检查机上还可以设置CCD(Charge-coupled Device,电荷耦合摄像机)。
此处,当激光源70发射出的激光束以第一照射方向对材料层20和基板10的整个界面进行扫描后,若激光源70发射出的激光束还以第二照射方向对材料层20和基板10的整个界面均进行扫描,以使得激光束以第一照射方向照射时至少一个颗粒30遮挡的至少部分遮挡区域40被 激光束以第二照射方向照射时照到。这样,以第一照射方向照射时至少一个颗粒30的未遮挡的区域会被重复照射。而且激光束对材料层20和基板10的界面进行多次扫描,可能会造成材料层20的破坏。因此,激光剥离系统还包括检测装置,用于检测至少一个颗粒30的位置。这样,激光束以第二照射方向照射时,可以仅对以第一照射方向照射时的未照到的遮挡区域40进行照射,防止材料层20受到破坏。
此外,当激光束以第二照射方向对材料层20和基板10的界面进行扫描时,由于可以利用检测装置对至少一个颗粒30的尺寸进行检测,因而可以根据第一照射方向和至少一个颗粒30的尺寸精确确定第二照射方向,以使激光束以第二照射方向照射时照到的遮挡区域40(以第一照射方向照射时未照到的区域)的面积尽可能大,有利于材料层20和基板10剥离。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
本发明还可提供附加的实施例,这些附加实施例可以包括上述任何一个实施例,且该附加实施例中的组件、功能或结构中的一个或多个可以由上述任一不同的实施例中的组件、功能或结构中的一个或多个替换或补充。

Claims (11)

  1. 一种激光剥离方法,包括:
    控制激光束以第一照射方向穿透基板,以对层叠设置的材料层和所述基板的界面进行扫描,在所述基板远离所述材料层的一侧上有至少一个颗粒,所述界面中未被所述第一照射方向的激光束照到的区域为遮挡区域;
    控制激光束以第二照射方向穿透所述基板,以对所述材料层和所述基板的界面进行扫描,使得至少部分所述遮挡区域被所述第二照射方向的激光束照到;
    将所述材料层和所述基板分离。
  2. 根据权利要求1所述的激光剥离方法,其中,在控制激光束以第二照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描之前,所述方法还包括:
    检测所述至少一个颗粒的尺寸,并根据检测到的所述至少一个颗粒的尺寸以及所述第一照射方向确定所述第二照射方向。
  3. 根据权利要求2所述的激光剥离方法,其中,所述第一照射方向为所述激光束与所述基板的夹角为θ 1的方向,所述第二照射方向为所述激光束与所述基板的夹角为θ 2的方向,所述第一照射方向和所述第二照射方向位于垂直于所述基板的平面的同一侧;
    θ 2为:
    Figure PCTCN2018076401-appb-100001
    其中,L为所述至少一个颗粒的最大尺寸,H为所述基板的厚度。
  4. 根据权利要求2所述的激光剥离方法,其中,所述第一照射方向为所述激光束与所述基板的夹角为θ 1的方向,所述第二照射方向为所述激光束与所述基板的夹角为θ 2的方向,所述第一照射方向和所述第二照射方向位于垂直于所述基板的平面的不同侧;
    θ 2为:
    Figure PCTCN2018076401-appb-100002
    其中,L为所述至少一个颗粒的最大尺寸,H为所述基板的厚度。
  5. 根据权利要求2所述的激光剥离方法,其中,在将所述材料层和所述基板分离之前,所述方法还包括:
    控制激光束以第三照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描,使得所述界面中不被所述第一照射方向的激光束和所述第二照射方向的激光束照到的区域被所述第三照射方向的激光束照到。
  6. 根据权利要求5所述的激光剥离方法,其中,所述第一照射方向为所述激光束与所述基板的夹角为θ 1的方向,所述第二照射方向为所述激光束与所述基板的夹角为θ 2的方向,所述第三照射方向为所述激光束与所述基板的夹角为θ 3的方向,所述第一照射方向和所述第二照射方向位于垂直于所述基板的平面的同一侧,所述第一照射方向和所述第三照射方向位于垂直于所述基板的平面的不同侧;
    θ 2为:
    Figure PCTCN2018076401-appb-100003
    θ 3为:
    Figure PCTCN2018076401-appb-100004
    其中,0<X<L,L为所述至少一个颗粒的最大尺寸,H为所述基板的厚度。
  7. 根据权利要求2所述的激光剥离方法,其中,所述检测所述至少一个颗粒的尺寸,并根据检测到的所述至少一个颗粒的尺寸以及所述第一照射方向确定所述第二照射方向,包括:
    在检测到在所述基板远离所述材料层的一侧上有多个颗粒的情况下,根据检测到的多个颗粒的尺寸,确定所述多个颗粒中尺寸最大的颗粒的尺寸;
    根据所述最大的颗粒的尺寸以及所述第一照射方向确定所述第二照射方向。
  8. 根据权利要求1所述的激光剥离方法,其中,在控制激光束以第二照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描之前,所述方法还包括:
    检测所述至少一个颗粒在所述基板上的位置,根据检测到的所述至少一个颗粒在所述基板上的位置以及所述第一照射方向确定所述遮挡区域的位置;
    控制激光束以第二照射方向穿透基板,以对所述材料层和所述基板的界面进行扫描包括:控制所述激光束以第二照射方向穿透基板,对所述遮挡区域进行扫描。
  9. 一种激光剥离系统,包括:
    激光源,所述激光源用于发射激光束;
    控制装置,所述控制装置与所述激光源相连,配置为控制所述激光源发射出的激光束以第一照射方向穿透基板,以对层叠设置的材料层和所述基板的界面进行扫描,在所述基板远离所述材料层的一侧上有至少一个颗粒,所述界面中未被所述第一照射方向的激光束照到的区域为遮挡区域;所述控制装置还配置为控制所述激光源发射出的激光束以第二照射方向穿透所述基板,以对所述材料层和所述基板的界面进行扫描,使得至少部分所述遮挡区域被所述第二照射方向的激光束照到。
  10. 根据权利要求9所述的激光剥离系统,其中,所述激光剥离系统还包括:检测装置,所述检测装置配置为检测所述至少一个颗粒的位置和/或尺寸。
  11. 根据权利要求10所述的激光剥离系统,其中,所述检测装置为自动光学检测设备。
PCT/CN2018/076401 2017-07-27 2018-02-12 激光剥离方法及激光剥离系统 WO2019019615A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/336,885 US11084127B2 (en) 2017-07-27 2018-02-12 Laser lift off method and laser lift off system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710625191.4 2017-07-27
CN201710625191.4A CN107414289B (zh) 2017-07-27 2017-07-27 一种激光剥离方法及激光剥离系统

Publications (1)

Publication Number Publication Date
WO2019019615A1 true WO2019019615A1 (zh) 2019-01-31

Family

ID=60430582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076401 WO2019019615A1 (zh) 2017-07-27 2018-02-12 激光剥离方法及激光剥离系统

Country Status (3)

Country Link
US (1) US11084127B2 (zh)
CN (1) CN107414289B (zh)
WO (1) WO2019019615A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414289B (zh) * 2017-07-27 2019-05-17 京东方科技集团股份有限公司 一种激光剥离方法及激光剥离系统
WO2019097673A1 (ja) * 2017-11-17 2019-05-23 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
CN112020781A (zh) * 2018-04-20 2020-12-01 深圳市柔宇科技股份有限公司 显示面板激光剥离方法及激光剥离设备
CN112042271A (zh) * 2018-05-09 2020-12-04 堺显示器制品株式会社 柔性发光器件的制造方法以及制造装置
KR102174928B1 (ko) * 2019-02-01 2020-11-05 레이저쎌 주식회사 멀티 빔 레이저 디본딩 장치 및 방법
CN110052716B (zh) * 2019-05-15 2021-11-09 大茂伟瑞柯车灯有限公司 一种应用在车灯的激光剥离方法
WO2021140659A1 (ja) * 2020-01-10 2021-07-15 シャープ株式会社 表示装置の製造装置及び表示装置の製造方法
CN114334779A (zh) * 2021-12-28 2022-04-12 深圳市华星光电半导体显示技术有限公司 激光剥离设备以及激光剥离方法
CN114447257B (zh) * 2022-01-17 2023-11-28 深圳市华星光电半导体显示技术有限公司 柔性基板剥离方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170515A (ja) * 2002-11-18 2004-06-17 Sony Corp ホログラム用振幅マスクの製造方法
JP2015194642A (ja) * 2014-03-31 2015-11-05 株式会社東芝 フレキシブルデバイスの製造方法及び装置
CN105679772A (zh) * 2016-01-29 2016-06-15 武汉华星光电技术有限公司 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
WO2016143316A1 (ja) * 2015-03-10 2016-09-15 シャープ株式会社 薄膜素子装置の製造方法及びそれに用いる光照射装置
CN106141451A (zh) * 2016-07-22 2016-11-23 京东方科技集团股份有限公司 一种薄膜组件切割方法及装置
CN107414289A (zh) * 2017-07-27 2017-12-01 京东方科技集团股份有限公司 一种激光剥离方法及激光剥离系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127148B1 (zh) * 1970-02-24 1976-08-11
JPH0677181A (ja) * 1992-08-26 1994-03-18 Matsushita Electric Ind Co Ltd 化合物半導体の微細構造形成方法
JPH06277863A (ja) * 1993-03-29 1994-10-04 Toshiba Corp 積層基板の加工方法
US6924456B2 (en) * 2003-04-21 2005-08-02 Intel Corporation Method and apparatus for particle removal
CN1579697A (zh) * 2003-08-07 2005-02-16 鸿富锦精密工业(深圳)有限公司 一种激光加工方法
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
JP4473715B2 (ja) 2004-11-29 2010-06-02 富士通株式会社 積層体切断方法及び積層体
JP2007118009A (ja) * 2005-10-25 2007-05-17 Seiko Epson Corp 積層体の加工方法
JP5142144B2 (ja) * 2007-08-28 2013-02-13 メック株式会社 プリント配線板の製造方法
CN103117212B (zh) * 2011-09-15 2015-07-08 清华大学 用于复杂结构半导体器件的激光退火方法
JP2016166120A (ja) * 2015-03-06 2016-09-15 三星ダイヤモンド工業株式会社 積層基板の加工方法及びレーザ光による積層基板の加工装置
CN206153761U (zh) * 2016-09-26 2017-05-10 华中科技大学 一种多焦点激光分离夹层玻璃装置
DE102017205635A1 (de) * 2017-04-03 2018-10-04 3D-Micromac Ag Verfahren und Fertigungssystem zur Herstellung mikroelektronischer Komponenten mit Schichtaufbau

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170515A (ja) * 2002-11-18 2004-06-17 Sony Corp ホログラム用振幅マスクの製造方法
JP2015194642A (ja) * 2014-03-31 2015-11-05 株式会社東芝 フレキシブルデバイスの製造方法及び装置
WO2016143316A1 (ja) * 2015-03-10 2016-09-15 シャープ株式会社 薄膜素子装置の製造方法及びそれに用いる光照射装置
CN105679772A (zh) * 2016-01-29 2016-06-15 武汉华星光电技术有限公司 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
CN106141451A (zh) * 2016-07-22 2016-11-23 京东方科技集团股份有限公司 一种薄膜组件切割方法及装置
CN107414289A (zh) * 2017-07-27 2017-12-01 京东方科技集团股份有限公司 一种激光剥离方法及激光剥离系统

Also Published As

Publication number Publication date
US20190247958A1 (en) 2019-08-15
CN107414289B (zh) 2019-05-17
CN107414289A (zh) 2017-12-01
US11084127B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2019019615A1 (zh) 激光剥离方法及激光剥离系统
JP6672053B2 (ja) ウェーハの加工方法
JP6985031B2 (ja) Ledディスプレーパネルの製造方法
TWI550754B (zh) A laser processing apparatus and a substrate having a pattern are provided
JP2015141937A (ja) 光デバイス及び光デバイスの加工方法
JP4977432B2 (ja) ヒ化ガリウムウエーハのレーザー加工方法
JP6483152B2 (ja) 基板監視装置、および、基板監視方法
US10388827B2 (en) Method for manufacturing semiconductor element by dividing semiconductor wafer using pressing member having tip portion
JP2007012878A (ja) ウエーハの分割方法
JP6255192B2 (ja) 光デバイス及び光デバイスの加工方法
TW201737376A (zh) 晶圓的加工方法
JP2015138815A (ja) 光デバイス及び光デバイスの加工方法
JP2015216140A (ja) 光デバイスの加工方法
JP6602705B2 (ja) ウェハエッジ検査装置
KR20150034075A (ko) 레이저 가공 장치 및, 패턴이 있는 기판의 가공 조건 설정 방법
TWI599430B (zh) Laser processing equipment
TWI550703B (zh) A method of processing a substrate having a pattern
JP5747454B2 (ja) レーザリフト方法およびレーザリフト装置
TWI636844B (zh) 雷射加工方法
JP2006320940A (ja) レーザ加工装置における加工範囲設定方法、および加工範囲設定プログラム
TWI538040B (zh) Processing method of optical element wafers
JP2009277778A (ja) ウエーハの分割方法
JP5892811B2 (ja) チャックテーブルを用いたウェーハのレーザー加工方法
WO2024084752A1 (ja) レーザ照射システム、レーザ照射方法、及び有機elディスプレイの製造方法
JP5892810B2 (ja) 粘着テープ及び粘着テープを用いたウェーハのレーザー加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18837179

Country of ref document: EP

Kind code of ref document: A1