WO2021140659A1 - 表示装置の製造装置及び表示装置の製造方法 - Google Patents
表示装置の製造装置及び表示装置の製造方法 Download PDFInfo
- Publication number
- WO2021140659A1 WO2021140659A1 PCT/JP2020/000700 JP2020000700W WO2021140659A1 WO 2021140659 A1 WO2021140659 A1 WO 2021140659A1 JP 2020000700 W JP2020000700 W JP 2020000700W WO 2021140659 A1 WO2021140659 A1 WO 2021140659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mother substrate
- prism
- laminate
- display device
- interface
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
Definitions
- the present disclosure relates to a display device manufacturing device and a display device manufacturing method.
- Display devices equipped with light emitting elements have been developed, and in particular, display devices equipped with OLEDs (Organic Light Emitting Diodes) and inorganic light emitting diodes or QLEDs (Quantum dot Light Emitting Diodes) are quantum.
- Display devices equipped with (dot light emitting diodes) are attracting a great deal of attention because they can realize low power consumption, thinning, and high image quality.
- a display device provided with such an OLED, a display device provided with an inorganic light emitting diode or a QLED, or the like, which does not need to be provided with a backlight, is flexible so that it can be freely bent. There is a high demand for display devices.
- Patent Document 1 describes a method for manufacturing a flexible display device including a Laser Lift Off step (LLO step).
- LLO step Laser Lift Off step
- FIG. 17A is a diagram showing a schematic configuration of the conventional manufacturing apparatus 100 used in the manufacturing method of the conventional flexible display device including the LLO step described in Patent Document 1.
- the manufacturing apparatus 100 shown in FIG. 17A is a manufacturing apparatus for a flexible display device including a laminated body including a light emitting element layer, and is a support 101, a light source 103 of a first laser beam, and a second laser beam.
- the light source 105, the optical system 104, and the optical system 106 are included.
- the laser beam from the light source 103 of the first laser beam is optically applied to the irradiation target substrate 102 composed of the transparent substrate 111 which is the mother substrate and the laminate 112 including the light emitting element layer.
- the first laser beam LB1 has an incident angle of substantially 0 with respect to a direction perpendicular to the interface between the transparent substrate 111 and the laminated body 112. That is, the first laser beam LB1 is substantially perpendicularly incident on the interface between the transparent substrate 111 and the laminated body 112.
- the irradiation target substrate 102 is irradiated with the laser light from the light source 105 of the second laser light from the transparent substrate 111 side as the second laser beam LB2 via the optical system 106. It is a figure which shows the case.
- the second laser beam LB2 has a larger incident angle with respect to the direction perpendicular to the interface between the transparent substrate 111 and the laminated body 112 as compared with the first laser beam LB1.
- the transparent substrate 111 and the laminated body As shown in FIG. 17B, when particles (foreign matter) P or defects are present on the facing surface, which is the surface facing the surface on which the laminated body 112 of the transparent substrate 111 is formed, the transparent substrate 111 and the laminated body
- the first laser beam LB1 which is substantially perpendicularly incident to the interface with 112, does not have a sufficient irradiation amount in the lower part of the particles P due to the influence of the particles P, for example, and the transparent substrate 111 and the laminate 112 A peeling problem occurs at the interface of.
- the incident angle with respect to the direction perpendicular to the interface between the transparent substrate 111 and the laminated body 112 is the first laser beam LB1.
- the second laser beam LB2 which is larger than the above, in combination with the first laser beam LB1, a sufficient irradiation amount is secured even in the lower part of the particles P, and the transparent substrate 111 and the laminated body 112 are separated at the interface. It is designed to prevent problems from occurring.
- the direction is other than the direction perpendicular to the surface itself of the transparent substrate on which the particles (foreign matter) or defects are present. Since the laser beam is radiated from the surface, there is a problem that it is difficult to improve the irradiation efficiency of the laser beam. Specifically, in the conventional display device manufacturing apparatus, when irradiating the laser beam from a direction other than the vertical direction, it is necessary to increase the laser beam in order to obtain a sufficient effect as compared with the vertical irradiation.
- the present disclosure provides a display device manufacturing device and a display device manufacturing method capable of improving the irradiation efficiency of laser light even when particles (foreign substances) or defects are present on the transparent substrate.
- the purpose is.
- the display device manufacturing apparatus of the present disclosure is used to solve the above-mentioned problems.
- a laminate including a light emitting element layer formed on the mother substrate is provided.
- the surface of the mother substrate facing the surface on which the laminate is formed is the facing surface of the mother substrate.
- An irradiation source provided on the opposite surface side to irradiate the laser beam,
- a prism provided on the opposite surface side and irradiated with the laser beam,
- a liquid layer provided between the facing surface and the prism is further provided.
- the laser beam from the irradiation source passes through the prism, the liquid layer, and the mother substrate in sequence, and has a total reflection angle or more with respect to a direction perpendicular to the interface between the mother substrate and the laminate.
- the interface between the mother substrate and the laminate is irradiated at an angle to peel the laminate from the mother substrate.
- Laser light from an irradiation source provided on the facing surface side facing the surface on which the laminated body of the mother substrate is formed is emitted between the prism provided on the facing surface side and between the facing surface and the prism.
- the liquid layer provided in the above and the mother substrate are sequentially passed through, and the mother substrate and the laminate are formed at an angle equal to or greater than the total reflection angle with respect to the direction perpendicular to the interface between the mother substrate and the laminate. It includes a peeling step of irradiating the interface with and peeling the laminated body from the mother substrate.
- a display device manufacturing device and a display device manufacturing method capable of improving the irradiation efficiency of laser light even when particles (foreign substances) or defects are present on the transparent substrate.
- FIG. 3 It is a figure which shows the schematic structure of the display device which is a laminated body peeled off from a mother substrate. It is a figure which shows the schematic structure of the irradiation target substrate which consists of a mother substrate and a display device which is a laminated body formed on the mother substrate. It is a figure which shows the schematic structure of the manufacturing apparatus of the display apparatus of Embodiment 1.
- (A), (b) and (c) are diagrams for explaining the case where the manufacturing apparatus of the display device illustrated in FIG. 3 is in the evanescent optical LLO mode and the laminated body is peeled off from the mother substrate.
- FIG. 5 is a diagram schematically showing how a laser beam sequentially passes through a prism, a liquid layer, and a mother substrate in a display device manufacturing apparatus according to a second modification of the first embodiment. It is a figure for demonstrating the condition which determines the angle more than the total reflection angle (critical angle) when the laser light incident on the prism provided in the manufacturing apparatus of the display apparatus of Embodiment 1 is parallel light. is there.
- (A) and (b) are diagrams showing a schematic configuration of a manufacturing apparatus of the display device of the second embodiment further including a detector.
- the laser beam is generated by the manufacturing apparatus of the display device of the second embodiment while moving one of the irradiation source, the prism, and the mother substrate including the laminate in the first direction with respect to the other.
- (B) is a diagram showing a case where the display device of the second embodiment has an irradiation source, a prism, and a mother substrate including a laminate, with respect to the other. It is a figure which shows the case which irradiates a laser beam while moving in a 2nd direction. It is a figure which shows the schematic structure of the manufacturing apparatus of the display apparatus of Embodiment 3. It is a figure for demonstrating the preferable shape of the prism provided in the manufacturing apparatus of the display apparatus of Embodiment 3.
- (A), (b) and (c) are diagrams showing the fourth embodiment, and describe a case where the manufacturing apparatus of the display device shown in FIG. 3 peels off the laminate from the mother substrate in the normal LLO mode. It is a figure for doing.
- (A), (b) and (c) are diagrams showing a schematic configuration of a conventional manufacturing apparatus used in a conventional manufacturing method of a flexible display device including an LLO step.
- the manufacturing device of the display device is in the evanescent light LLO mode.
- the refractive index of the laminated body 1 is smaller than the refractive index of the mother substrate 11/11'and LLO is performed by evanescent light, that is, the manufacturing device of the display device is in the evanescent light LLO mode.
- the refractive index of the laminated body 1 ′′ is larger than the refractive index of the mother substrate 11 ′′ and LLO is performed with the irradiated laser light without using evanescent light, that is, .
- the case where the manufacturing apparatus of the display apparatus is usually in the LLO mode will be described.
- FIG. 2 is a diagram showing a schematic configuration of an irradiation target substrate 30 including a mother substrate 11 and a display device which is a laminated body 1 formed on the mother substrate 11.
- the irradiation target substrate 30 includes a mother substrate 11 that allows light in a predetermined wavelength region to pass through, and a laminate 1 including a light emitting element layer 5 formed on the mother substrate 11.
- the surface of the mother substrate 11 facing the surface on which the laminate 1 is formed is the facing surface DH of the mother substrate 11.
- the laminate 1 formed on the mother substrate 11, that is, the display device includes a resin layer 12 in contact with the mother substrate 11, a barrier layer 3, a thin film transistor layer (TFT layer) 4, and light emission.
- the element layer 5 and the sealing layer 6 are provided in this order.
- the mother substrate 11 has heat resistance that can withstand the process temperature required for the process of forming each layer of the laminated body 1, and at least the transmission characteristic of light that passes the laser light from the irradiation source, which will be described later.
- the type is not particularly limited, but in the present embodiment, the mother substrate 11 has the above-mentioned heat resistance and transmission characteristics of light passing through laser light, infrared light, ultraviolet light, and visible light from an irradiation source. A transparent glass substrate having was used. Further, in the present embodiment, since the manufacturing device of the display device is used in the evanescent optical LLO mode, a mother substrate 11 having a refractive index larger than that of the laminated body 1 is used.
- the interface KM between the mother substrate 11 and the resin layer 12 of the laminate 1 in contact with the mother substrate 11 causes total reflection, and the resin layer 12 causes absorption of evanescent light.
- a polyimide resin having a refractive index of about 1.5 to 1.7 is used as the resin layer 12, and a high refractive index transparent glass having a refractive index of about 1.8 to 2.0 is used as the mother substrate 11.
- a substrate is used.
- the case where the polyimide resin is used as the material of the resin layer 12 has been described as an example, but the present invention is not limited to this, and for example, an epoxy resin, a polyamide resin, or the like may be used. ..
- the barrier layer 3 is a layer that prevents moisture and impurities from reaching the transistor Tr and the light emitting device layer 5, and is, for example, a silicon oxide film, a silicon nitride film, or a silicon nitride film formed by CVD, or a silicon nitride film. It can be composed of these laminated films.
- the transistor Tr and the capacitive element are provided on the upper layers of the resin layer 12 and the barrier layer 3.
- the thin film layer 4 including the transistor Tr and the capacitive element includes a semiconductor film 15, an inorganic insulating film (gate insulating film) 16 above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and a gate electrode.
- the capacitive element is the same layer as the counter electrode CE of the capacitive element formed directly above the inorganic insulating film 18, the inorganic insulating film 18, and the layer formed directly below the inorganic insulating film 18 and forming the gate electrode GE. It is composed of a capacitive electrode formed so as to overlap with the counter electrode CE of the capacitive element.
- a transistor (thin film transistor (TFT)) Tr is configured to include a semiconductor film 15, an inorganic insulating film 16, a gate electrode GE, an inorganic insulating film 18, an inorganic insulating film 20, a source electrode and a drain electrode.
- the semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
- LTPS low temperature polysilicon
- oxide semiconductor oxide semiconductor
- the gate electrode GE, the counter electrode CE of the capacitive element, the source electrode and the drain electrode, and the layer SH forming the wiring thereof are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), and chromium (Ta). It is composed of a single-layer film or a laminated film of a metal containing at least one of Cr), titanium (Ti), copper (Cu), and silver (Ag).
- the inorganic insulating films 16/18/20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride film, or a laminated film thereof formed by a CVD method.
- the interlayer insulating film 21 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
- the light emitting element layer 5 includes a first electrode 22 above the interlayer insulating film 21, a functional layer 24 including a light emitting layer above the first electrode 22, and a second electrode 25 above the functional layer 24. Including.
- An edge cover (bank) 23 that covers the edge of the first electrode 22 is formed on the interlayer insulating film 21.
- Each subpixel SP of the display device which is the laminated body 1, includes an island-shaped first electrode 22, a functional layer 24 including a light emitting layer, and a second electrode 25.
- the edge cover 23 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
- the functional layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the lower layer side.
- the light emitting layer is formed in an island shape for each subpixel SP by a vapor deposition method or an inkjet method, but the other layers may be solid common layers. Further, a configuration in which one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer is not formed is also possible.
- the first electrode 22 can be formed by, for example, laminating ITO (Indium Tin Oxide) and an alloy containing Ag, but is not particularly limited as long as conductivity and light reflectivity can be ensured.
- the second electrode 25 can be made of a translucent conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), but if conductivity and translucency can be ensured, it is possible. There is no particular limitation.
- the first electrode 22 is provided for each sub-pixel (pixel) SP and is electrically connected to the drain electrode of the transistor Tr. Further, the second electrode 25 is provided in common to all sub-pixels (pixels) SP. Further, the transistor Tr is driven for each sub-pixel SP.
- the light emitting element formed by the light emitting element layer 5 is an OLED (Organic Light Emitting Diode)
- OLED Organic Light Emitting Diode
- the light emitting element formed by the layer 5 may be, for example, an inorganic light emitting diode or a QLED (Quantum dot Light Emitting Diode).
- the sealing layer 6 is translucent, and has a first inorganic sealing film 26 that covers the second electrode 25, an organic sealing film 27 that is formed above the first inorganic sealing film 26, and an organic sealing. It includes a second inorganic sealing film 28 that covers the film 27.
- the sealing layer 6 covering the light emitting element layer 5 prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
- the first inorganic sealing film 26 and the second inorganic sealing film 28 may each be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by CVD. it can.
- the organic sealing film 27 is a translucent organic film thicker than the first inorganic sealing film 26 and the second inorganic sealing film 28, and is made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin. can do.
- an organic sealing film 27 is provided between the first inorganic sealing film 26 and the second inorganic sealing film 28, and the sealing is composed of one layer of organic film and two layers of inorganic film.
- the stop layer 6 has been described as an example, the present invention is not limited to this, and the sealing layer 6 may be formed of only one or more inorganic films or one or more organic films, and two layers. It may be formed of the above inorganic film and two or more organic films.
- an example is a case where the first electrode 22 has light reflectivity and the second electrode 25 has light transmissivity, that is, the display device which is the laminated body 1 is a top emission type.
- the present invention is not limited to this, and the display device which is the laminated body 1 is a bottom emission type in which the first electrode 22 has light transmittance and the second electrode 25 has light reflection property. It may be.
- FIG. 1 is a diagram showing a schematic configuration of a display device which is a laminated body 1 peeled off from a mother substrate 11.
- the mother substrate is irradiated.
- the laminated body 1 can be peeled off from 11.
- LLO step Laser Lift Off step
- the resin layer 12 of the laminate 1 in contact with the mother substrate 11 is selected so that the refractive index of the resin layer 12 is smaller than the refractive index of the mother substrate 11.
- FIG. 3 is a diagram showing a schematic configuration of a manufacturing device 40 of the display device of the first embodiment used in the above-mentioned LLO process.
- the display device manufacturing device 40 shown in FIG. 3 is provided on the facing surface DH side of the mother substrate 11 and is provided on the facing surface DH side of the irradiation device 31 including the irradiation source 31L for irradiating the laser beam L0 and the mother substrate 11. It is provided with a prism 32 to be irradiated with the laser beam L0, and a liquid layer 33 provided between the facing surface DH of the mother substrate 11 and the prism 32.
- the prism 32 totally reflects the laser beam at the interface KM between the mother substrate 11 and the laminate 1 with respect to the line KM'in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1. It is used to secure the incident angle of the laser beam with an angle ⁇ equal to or greater than the reflection angle (critical angle).
- the direction orthogonal to the longitudinal direction of the prism 32 (the left-right direction of (a) and 5 (b) of FIG. 5) (the vertical direction of (a) and 5 (b) of FIG. 5). ) Is used, but if the angle of incidence required for total internal reflection of the laser beam at the interface KM between the mother substrate 11 and the laminate 1 can be secured, a prism having a triangular cross section is used. , Not limited to this.
- the liquid layer 33 provided between the facing surface DH and the prism 32 of the mother substrate 11 is an interface formed by the facing surface DH and the liquid layer 33 and an interface formed by the prism 32 and the liquid layer 33, respectively.
- a material having a refractive index close to the refractive index of the mother substrate 11 and the refractive index of the prism 32 so that interfacial reflection does not occur but the material is not limited thereto.
- the refractive index of the liquid layer 33, the refractive index of the prism 32, and The refractive index of the mother substrate 11 may be different. That is, the materials of the liquid layer 33, the prism 32, and the liquid layer 33 can be appropriately selected as long as the interfacial reflection due to the difference in refractive index does not occur.
- the prism 32 uses a high refractive index transparent glass material which is the same material as the material of the mother substrate 11, and the liquid layer 33 has an anisole (organic solvent) having a refractive index of about 1.51.
- anisole organic solvent
- the present invention is not limited to this. If reflection does not occur at the interface due to the difference in refractive index, for example, as the liquid layer 33, PFPE (fluorine-containing organic solvent) having a refractive index of about 1.3 or its refractive index is about 1.33. Water may be used.
- the mother substrate 11 is provided so that no interfacial reflection occurs at the interface between the liquid layer 33 and the prism 32 and the interface between the liquid layer 33 and the mother substrate 11. Since the material, the material of the prism 32, and the material of the liquid layer 33 are selected, as shown in FIG. 3, the laser light L0 from the irradiation source 31L of the irradiation device 31 is the prism 32 like the laser light L1. It is incident on the interface KM between the mother substrate 11 and the laminated body 1 while substantially maintaining the angle of incidence on the surface.
- the laser light L0 from the irradiation source 31L of the irradiation device 31 passes through the prism 32, the liquid layer 33, and the mother substrate 11 in sequence, and is laminated with the mother substrate 11 as the laser light L1.
- the mother substrate 11 at an angle ⁇ equal to or greater than the total reflection angle (critical angle) with respect to the line KM'(the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1) in the direction perpendicular to the interface KM with the body 1.
- the interface KM between the and the laminate 1 is irradiated, and the laminate 1 is peeled from the mother substrate 11 by the evanescent light L2.
- the angle ⁇ equal to or greater than the total reflection angle (critical angle) described above is the interface KM between the mother substrate 11 and the laminate 1, that is, the interface KM between the mother substrate 11 and the resin layer 12, and the laminate 1 is the mother substrate. It is an angle for realizing total reflection at the interface between the mother substrate 11 and the air layer after being peeled from 11.
- the manufacturing apparatus 40 of the display device shown in FIG. 3 peels the laminate 1 from the mother substrate 11 in the evanescent optical LLO mode. It is a figure for demonstrating the case.
- the laser beam L1 has an angle ⁇ equal to or greater than the total reflection angle (critical angle) with respect to the line KM'in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1.
- total reflection occurs at the interface KM between the mother substrate 11 and the laminate 1 in the spot SPT1 and the resin layer 12 of the laminate 1 (FIG. 2). See), the absorption of the evanescent light L2 occurs. Therefore, in the spot SPT1, the laminate 1 is completely peeled off from the mother substrate 11 by the absorption of the evanescent light L2 in the resin layer 12 of the laminate 1, and the spot SPT1'shown in FIG. 4B is obtained.
- the laser light L1a after the evanescent light L2 is once absorbed in the resin layer 12 of the laminated body 1 is totally reflected by the facing surface DH of the mother substrate 11 and again.
- the wavelength component of the absorption of the evanescent light L2'in the resin layer 12 of the laminate 1 is weak, although it is incident on the interface KM between the mother substrate 11 and the laminate 1.
- the laser light L1b after the evanescent light L2 / L2'is absorbed in the resin layer 12 of the laminated body 1 is totally reflected by the facing surface DH of the mother substrate 11. Again, in the spot SPT3, the light is incident on the interface KM between the mother substrate 11 and the laminate 1, but the wavelength component of the absorption of the evanescent light L2'' in the resin layer 12 of the laminate 1 is even weaker.
- an air layer is already formed between the mother substrate 11 and the laminate 1 in the portion where the laminate 1 is peeled off from the mother substrate 11, that is, in the spot SPT1', and the laminate 1 is laminated.
- the evanescent light L2 is not absorbed by the resin layer 12 of the body 1, and the laser light L1 is totally reflected at the interface between the mother substrate 11 and the air layer as it is.
- the portion where the laminated body 1 is not peeled from the mother substrate 11, that is, the laser beam L1 propagated to the spot SPT2 causes total reflection at the interface KM between the mother substrate 11 and the laminated body 1, and the laminated body 1 is formed. Absorption of evanescent light L2 occurs in the resin layer 12 of the above.
- the laser light L1a after the evanescent light L2 is once absorbed in the resin layer 12 of the laminated body 1 is totally reflected by the facing surface DH of the mother substrate 11 and again.
- the wavelength component of the absorption of the evanescent light L2'in the resin layer 12 of the laminate 1 is weak, although it is incident on the interface KM between the mother substrate 11 and the laminate 1.
- an air layer is already formed between the mother substrate 11 and the laminate 1 in the portion where the laminate 1 is peeled off from the mother substrate 11, that is, in the spots SPT1'and SPT2'. Therefore, the evanescent light L2 is not absorbed by the resin layer 12 of the laminated body 1, and the laser light L1 is totally reflected at the interface between the mother substrate 11 and the air layer as it is. Then, the portion where the laminated body 1 is not peeled from the mother substrate 11, that is, the laser beam L1 propagated to the spot SPT3 causes total reflection at the interface KM between the mother substrate 11 and the laminated body 1, and the laminated body 1 is formed. Absorption of evanescent light L2 occurs in the resin layer 12 of the above.
- the laser light L1a after the evanescent light L2 is once absorbed in the resin layer 12 of the laminated body 1 is totally reflected by the facing surface DH of the mother substrate 11 and again. Although it is incident on the interface KM between the mother substrate 11 and the laminate 1, the wavelength component of the absorption of evanescent light in the resin layer 12 of the laminate 1 is weak.
- the irradiation device 31 shown in FIG. 3 is an irradiation source moving mechanism (shown) that moves the irradiation source 31L that irradiates the laser light L0 and the irradiation source 31L that irradiates the laser light L0 to the first direction D1 or the second direction D2.
- the irradiation device 31 can be moved in the first direction D1 or the second direction D2 by the irradiation source moving mechanism.
- the laser beam L0 from the irradiation source 31L has substantially the same width as the length in the longitudinal direction of the prism 32, but is not limited to this.
- the defective DEF shown in FIG. 3 is a portion existing on the facing surface DH of the mother substrate 11, such as a scratch or a foreign substance, and obstructs the passage of the laser beam L0 from the irradiation source 31L in the mother substrate 11. ..
- the manufacturing device 40 of the display device displays one of the irradiation device 31 and the prism 32 including the irradiation source 31L and the mother substrate 11 including the laminate 1 with respect to the other. It is a figure which shows the case which irradiates a laser beam while moving relatively in one direction D1, and (b) of FIG. 5 (b) of FIG. It is a figure which shows the case which irradiates a laser beam while moving one of the mother substrate 11 including the laminated body 1 with respect to the other relatively in the 2nd direction D2.
- the display device manufacturing device 40 moves the irradiation device 31 including the irradiation source 31L and the prism 32 relative to the mother substrate 11 including the laminate 1 in the first direction D1 or the second direction D2.
- the mother substrate 11 including the laminated body 1 may be moved relative to the irradiation device 31 and the prism 32 including the irradiation source 31L in the first direction D1 or the second direction D2. It may be provided with a mechanism capable of causing it.
- the incident direction of the laser beam on the interface KM between the mother substrate 11 and the laminated body 1 is different depending on whether the laser beam is moving in the first direction D1 or the second direction D2.
- the manufacturing device 40 of the display device includes all of the irradiation source moving mechanism, the prism moving mechanism 34, and the mother substrate moving mechanisms 35a and 35b included in the irradiation device 31.
- the display device manufacturing device 40 may not include the mother substrate moving mechanisms 35a and 35b, but may include only the irradiation source moving mechanism provided by the irradiation device 31 and the prism moving mechanism 34.
- the display device manufacturing device 40 may not include the irradiation source moving mechanism included in the irradiation device 31 and the prism moving mechanism 34, but may include only the mother substrate moving mechanisms 35a and 35b.
- one of the irradiation source moving mechanism provided in the prism moving mechanism 34 and the irradiating device 31 and the mother substrate moving mechanisms 35a and 35b is used with respect to the other in the first direction D1.
- the irradiation device 31 and the prism 32 including the irradiation source 31L are moved in the first direction D1 or the second direction with respect to the mother substrate 11 including the laminate 1. It can be moved relative to direction D2.
- the manufacturing device 40 of the display device does not include the mother substrate moving mechanisms 35a and 35b but includes only the irradiation source moving mechanism provided by the irradiation device 31 and the prism moving mechanism 34, the laminated body. Since the mother substrate 11 including 1 is fixed, the irradiation source 31L can be moved by moving the irradiation source moving mechanism provided in the prism moving mechanism 34 and the irradiation device 31 to the first direction D1 or the second direction D2. The irradiation device 31 and the prism 32 including the above can be moved relative to the mother substrate 11 including the laminated body 1 in the first direction D1 or the second direction D2.
- the manufacturing device 40 of the display device does not include the irradiation source moving mechanism and the prism moving mechanism 34 included in the irradiation device 31, but includes only the mother substrate moving mechanisms 35a and 35b, the irradiation is performed. Since the device 31 and the prism 32 are fixed, by moving the mother substrate moving mechanisms 35a and 35b in the first direction D1 or the second direction D2, the irradiation device 31 including the irradiation source and the prism 32 can be moved. The mother substrate 11 including the laminated body 1 can be relatively moved in the first direction D1 or the second direction D2.
- the irradiation device 31 is provided with an irradiation source moving mechanism for moving the irradiation source 31L in the first direction D1 or the second direction D2 or the like has been described as an example, but the present invention is limited to this. Will not be done.
- the irradiation device 31 including the irradiation source 31L may be configured to inject laser light into the moving prism 32 by using an optical system that expands and contracts the intermediate optical path in a fixed state.
- the irradiation apparatus 31 and the prism 32 including the irradiation source 31L and the mother substrate 11 including the laminate 1 are provided. One of them is moved to the first direction D1 and the second direction D2 different from the first direction D1 with respect to the other, and during the movement, the laser light from the irradiation source 31L is transferred to the prism 32.
- the liquid layer 33 and the mother substrate 11 are sequentially passed through, and at an angle ⁇ equal to or more than the total reflection angle (critical angle) with respect to the line KM'in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1.
- the interface KM between the mother substrate 11 and the laminate 1 is irradiated, and the laminate 1 is peeled from the mother substrate 11 by the evanescent light.
- first direction D1 is the downward direction and the second direction D2 is the upward direction
- first direction D1 and the second direction D2 are in different directions.
- the direction is not particularly limited.
- the first direction D1 may be upward
- the second direction D2 may be downward
- the first direction D1 may be right
- the second direction D2 may be left
- the direction D1 may be the left direction and the second direction D2 may be the right direction.
- the first direction D1 and the second direction D2 are not limited to opposite directions, and may be, for example, orthogonal directions, and the size of the defect DEF existing on the facing surface DH of the mother substrate 11 is large. It can be set appropriately in consideration of the pod position and the like.
- one of the irradiation device 31 and the prism 32 including the irradiation source 31L and the mother substrate 11 including the laminated body 1 is relative to the other in the first direction D1 and the second direction D2.
- the case of irradiating the laser beam while moving in a specific manner will be described as an example, but the present invention is not limited to this.
- the prism 32 and the laminated body 1 are used. The laser beam is irradiated to the mother substrate 11 including the mother substrate 11 while moving relatively in the first direction D1 and the second direction D2.
- FIG. 6A is a diagram for explaining the case shown in FIG. 5A, in which a defective DEF is present on the facing surface DH of the mother substrate 11, and FIG. 6B is a diagram.
- FIG. 5B is a diagram for explaining a case shown in FIG. 5B, in which a defective DEF is present on the facing surface DH of the mother substrate 11.
- the laser beam L0 from the irradiation source 31L of the irradiation device 31 moving relative to the first direction D1 is relative to the first direction D1 at the same speed as the irradiation device 31.
- the interface between the mother substrate 11 and the laminated body 1 by sequentially passing through the prism 32 moving to, the liquid layer 33 provided between the facing surface DH of the mother substrate 11 and the prism 32, and the mother substrate 11.
- the interface KM between the mother substrate 11 and the laminated body 1 is irradiated with an angle ⁇ equal to or more than the total reflection angle (critical angle) with respect to the line KM'in the direction perpendicular to the KM, and from the mother substrate 11 by evanescent light.
- the laminate 1 is peeled off. However, in the place where the defective DEF exists on the facing surface DH of the mother substrate 11, a part of the laser light L0 from the irradiation source 31L becomes scattered light L3 due to the defective DEF, and the remaining part becomes the laser light L4.
- the interface KM between the mother substrate 11 and the laminate 1 is irradiated, but the laser light L4 is weak and the evanescent light L5 is also insufficient to separate the laminate 1 from the mother substrate 11.
- the laser beam L0 from the irradiation source is a liquid layer provided between the prism 32, which is moving relative to the second direction D2 at the same speed as the irradiation device 31, and the facing surface DH and the prism 32 of the mother substrate 11.
- 33 and the mother substrate 11 are sequentially passed through, and the mother substrate is at an angle ⁇ equal to or more than the total reflection angle (critical angle) with respect to the line KM'in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1.
- the interface KM between the 11 and the laminated body 1 is irradiated, and the laminated body 1 is peeled from the mother substrate 11 by the evanescent light.
- the display device manufacturing apparatus 40 is moving in the first direction D1 with respect to the interface KM between the mother substrate 11 and the laminate 1. Since the incident direction of the laser light and the incident direction of the laser light moving in the second direction D2 are different, the insufficient irradiation amount of the laser light moving in the first direction D1 due to the influence of the defect DEF can be obtained. It is supplemented by the irradiation amount of the laser beam moving in the two directions D2.
- the display device manufacturing device 40 even if a defective DEF is present on the facing surface DH of the mother substrate 11, it is possible to suppress the occurrence of peeling defects.
- the liquid layer 33 provided between the facing surface DH of the mother substrate 11 and the prism 32 overlaps with at least the prism 32.
- the reason why it is preferable that the liquid layer 33 overlaps with the prism 32 at least, that is, the reason why the liquid layer 33 is required as the optical path of the laser light is that an air layer having a large difference in refractive index exists between the prism 32 and the mother substrate 11. Then, the laser light having an incident angle equal to or higher than the critical angle at their interface is totally reflected and cannot pass through the air layer.
- the reason why it is preferable that the liquid layer 33 does not superimpose the optical path of the laser light totally reflected at the interface KM between the mother substrate 11 and the laminate 1 is at the interface KM between the mother substrate 11 and the laminate 1.
- the optical path of the totally reflected laser light when the liquid layer 33 exists on the facing surface DH of the mother substrate 11, the laser light totally reflected at the interface KM between the mother substrate 11 and the laminate 1 in the liquid layer 33. This is because there is a possibility that
- FIG. 7 is a diagram showing a schematic configuration of a manufacturing device 41 of a display device, which is a first modification of the first embodiment.
- the display device manufacturing device 41 further includes a second irradiation device 31'including an irradiation source 31L together with an irradiation device 31 including an irradiation source 31L. It is different from the device 40.
- one prism 32 can be simultaneously irradiated with the laser beam L0 from a plurality of directions.
- the laser light L0 from the irradiation device 31 including the irradiation source 31L can be irradiated from the diagonally upper left direction of the prism 32
- the laser light L0 from the second irradiation device 31'including the irradiation source 31L is the prism 32. It can be irradiated from the diagonally upper right direction of.
- the irradiation device 31 including the irradiation source 31L and the second irradiation including the irradiation source 31L can be irradiated. Irradiate the laser beam while moving one of the device 31'and the prism 32 and the mother substrate 11 including the laminated body 1 relative to the other in the first direction D1 or the second direction D2. Just do it. Therefore, as compared with the above-mentioned manufacturing apparatus 40 of the display device that irradiates the laser beam while moving relative to the first direction D1 and the second direction D2, the time required for the peeling step can be significantly shortened. Even when the defective DEF is present on the facing surface DH of the mother substrate 11, it is possible to suppress the occurrence of peeling defects.
- irradiation device 31 In addition to the configuration shown in FIG. 7, for example, only one irradiation device 31 is provided, and instead of the laser light L0 from the second irradiation device 31', the middle of the path of the laser light L0 from the irradiation device 31.
- a beam splitter provided at a point may be used to split the irradiation into two parts, and even with such a configuration, the same effect as that of the manufacturing device 41 of the display device shown in FIG. 7 can be obtained.
- the laser beam L0 is the prism 32 and the liquid layer 33. It is a diagram schematically showing how the laser beam passes through the mother substrate 11 in sequence, and FIG. 8B and FIG. 8C show a prism in which the laser beam is emitted in the manufacturing apparatus of the display device of the comparative example. It is a diagram schematically showing how the liquid layer and the mother substrate are sequentially passed through.
- the liquid layer 33 and the prism 32 are used in the manufacturing device 40 of the display device of the first embodiment or the manufacturing device 41 of the display device which is the first modification of the first embodiment.
- the material of the mother substrate 11, the material of the prism 32, and the material of the liquid layer 33 are selected so that interfacial reflection does not occur at the interface of the mother substrate 11 and the interface between the liquid layer 33 and the mother substrate 11. , No reflections occur at these interfaces. Therefore, the laser light L0 from the irradiation source 31L is irradiated to the interface KM between the substrate 11 and the laminate 1 as the laser light L1 without loss of the laser light due to the interfacial reflection.
- the material of the mother substrate 11R is selected, interfacial reflection occurs at any of the interface between the liquid layer 33R and the prism 32R and the interface between the liquid layer 33R and the mother substrate 11R. Therefore, the laser light L0 from the irradiation source 31L is irradiated to the interface KM between the substrate 11 and the laminate 1 as the laser light L1'due to the loss of the laser light due to the interfacial reflection.
- interfacial reflection occurs in this way, the utilization efficiency of the laser light is lowered, which is not preferable.
- the material and prism of the liquid layer 33R' are such that the refractive index of the liquid layer 33R'is smaller than the refractive index of the prism 32R'and the refractive index of the mother substrate 11R'.
- the material of 32R'and the material of the mother substrate 11R'are selected interfacial reflection occurs at both the interface between the liquid layer 33R'and the prism 32R' and the interface between the liquid layer 33R'and the mother substrate 11R'. Is occurring.
- the laser light L0 from the irradiation source 31L is irradiated to the interface KM between the substrate 11 and the laminate 1 as the laser light L1 ′′ due to the loss of the laser light due to the interfacial reflection.
- interfacial reflection occurs in this way, the utilization efficiency of the laser light is lowered, which is not preferable.
- FIG. 9 schematically shows a state in which the laser beam L0 sequentially passes through the prism 32', the liquid layer 33, and the mother substrate 11' in the manufacturing apparatus of the display device which is the second modification of the first embodiment. It is a figure shown.
- the mother substrate 11' is different from the mother substrate 11 described above in that the surface of the mother substrate 11 on the liquid layer 33 side is further provided with an inclined refractive index structure.
- the prism 32' is different from the above-mentioned prism 32 in that the surface of the above-mentioned prism 32 on the liquid layer 33 side is further provided with an inclined refractive index structure.
- the inclined refractive index structure means a structure that approaches the magnitude of the refractive index of the liquid layer 33 as it approaches the liquid layer 33.
- the interface between the liquid layer 33 and the prism 32' is At the interface between the liquid layer 33 and the mother substrate 11', no interfacial reflection occurs. Therefore, the laser light L0 from the irradiation source 31L is irradiated to the interface KM between the substrate 11'and the laminate 1 as the laser light L1 without loss of the laser light due to the interfacial reflection.
- the surface of the mother substrate 11 on the liquid layer 33 side (opposing surface DH) and the surface of the prism 32 on the liquid layer 33 side described above are subjected to a known surface modification treatment to incorporate a tilted refractive index structure. May be good.
- a separately produced inclined refractive index structure in which the refractive index changes intermittently may be attached to the surface of the prism 32 or the surface of the mother substrate 11 (opposing surface DH).
- each of the mother substrate 11'and the prism 32' may have an inclined refractive index structure to prevent the occurrence of interfacial reflection at the interface with the liquid layer 33.
- the liquid layer 33 is formed on at least the liquid layer 33 side of each of the prism 32'and the mother substrate 11'.
- a gradient refractive index structure is provided that approaches the magnitude of the refractive index of the liquid layer 33 as it approaches.
- FIG. 10 shows a condition for determining an angle ⁇ equal to or greater than the total reflection angle (critical angle) when the laser light L incident on the prism 32 provided in the manufacturing device 40 of the display device of the first embodiment is parallel light. It is a figure for demonstrating.
- x is the irradiation width of the laser beam L
- ⁇ is the incident surface of the prism 32 on which the laser beam L is incident and the exit surface of the prism 32 on which the laser beam L is emitted (the mother substrate 11). It is an angle formed by the facing surface DH and the surface facing the surface), and is an angle equal to or larger than the total reflection angle (critical angle) at which total reflection occurs at the interface KM between the mother substrate 11 and the laminate 1.
- d is the thickness of the mother substrate 11
- a is the optical path length in the mother substrate 11 of the laser beam L
- 2a is the reciprocating optical path length in the mother substrate 11 of the laser light L.
- the width of the exit surface of the prism 32 (the surface facing the facing surface DH of the mother substrate 11) in the drawing is along the direction orthogonal to the longitudinal direction of the prism 32.
- the length of the lower side of the cross section cut is equal to or greater than the reciprocating light path length 2a in the mother substrate 11, the laser light totally reflected at the interface KM between the mother substrate 11 and the laminate 1 is emitted to the outside through the prism 32. It ends up. Therefore, the length of the lower side in the cross section cut along the direction orthogonal to the longitudinal direction of the prism 32 needs to be less than the reciprocating optical path length 2a in the mother substrate 11.
- the length of the lower side of the cross section cut along the direction orthogonal to the longitudinal direction of the prism 32 is preferably 2a> b because the incident width b of the laser beam L to the mother substrate 11 is preferable.
- the mother The laser beam L can be repeatedly totally reflected in the substrate 11.
- Each of the spots SPT1 and SPT2 of the laser beam L in FIG. 10 is the magnitude of the laser beam L that is irradiated to the interface between the mother substrate 11 and the laminate 1 at one time.
- FIG. 11 shows a condition for determining an angle ⁇ equal to or greater than the total reflection angle (critical angle) when the laser beam L incident on the prism 32 provided in the manufacturing apparatus 40 of the display device of the first embodiment is spread light. It is a figure for demonstrating.
- x is the irradiation width of the laser light L when the laser light L incident on the prism 32 is parallel light, and x'is the irradiation width of the laser light L incident on the prism 32. It is the irradiation width of the laser beam L when the nation angle ⁇ ( ⁇ > 0), that is, the spreading light having the spreading angle ⁇ .
- ⁇ - ⁇ is an angle formed by the incident surface of the prism 32 on which the laser beam L is incident and the exit surface of the prism 32 on which the laser beam is emitted (the surface facing the facing surface DH of the mother substrate 11). The angle is equal to or greater than the total reflection angle (critical angle) at which total reflection occurs at the interface KM between the mother substrate 11 and the laminate 1.
- d is the thickness of the mother substrate 11, and a is the inside of the mother substrate 11 of the laser beam incident at an angle of ⁇ - ⁇ with respect to the direction perpendicular to the interface between the mother substrate 11 and the laminate 1.
- 2a is the reciprocating optical path length in the mother substrate 11 of the laser beam incident at an angle of ⁇ - ⁇ with respect to the direction perpendicular to the interface between the mother substrate 11 and the laminate 1, and 3a. Is the optical path length of one round trip and one way in the mother substrate 11 of the laser beam incident on the mother substrate 11 at an angle of ⁇ with respect to the direction perpendicular to the interface between the mother substrate 11 and the laminated body 1.
- a' is the optical path length in the mother substrate 11 of the laser beam incident at an angle of ⁇ + ⁇ with respect to the direction perpendicular to the interface between the mother substrate 11 and the laminate 1, and b is the spread angle ⁇ . It is the incident width to the mother substrate 11 of the laser light which has.
- the width of the exit surface of the prism 32 (the surface facing the facing surface DH of the mother substrate 11) in the drawing is along the direction orthogonal to the longitudinal direction of the prism 32.
- the length of the lower side of the cross section cut is equal to or greater than the reciprocating light path length 2a in the mother substrate 11, the laser light totally reflected at the interface KM between the mother substrate 11 and the laminate 1 is emitted to the outside through the prism 32. It ends up. Therefore, the length of the lower side in the cross section cut along the direction orthogonal to the longitudinal direction of the prism 32 needs to be less than the reciprocating optical path length 2a in the mother substrate 11.
- the length of the lower side of the cross section cut along the direction orthogonal to the longitudinal direction of the prism 32 is preferably 2a> b because the incident width b of the laser beam to the mother substrate 11 is preferable.
- the condition that the spots SPT1, SPT2, SPT3, and SPT4 of the laser beam L overlap each other is 3a ⁇ b + a'. Since 3a is 3d ⁇ tan ( ⁇ - ⁇ ), b is (x / cos ⁇ ), and a'is d ⁇ tan ( ⁇ + ⁇ ), d ⁇ cos ⁇ ⁇ (3tan ( ⁇ - ⁇ ) ⁇ tan).
- the equation (C) of ( ⁇ + ⁇ )) ⁇ x can be obtained.
- the thickness d of the mother substrate 11, the irradiation width x of the laser light, and the declination angle ⁇ , an angle ⁇ equal to or greater than the total reflection angle (critical angle) satisfying the above equation (D) is determined.
- the laser light can be repeatedly totally reflected in the mother substrate 11.
- the method for manufacturing the display device of the present embodiment includes a laminate forming step of forming a laminate 1 including a light emitting element layer 5 on a mother substrate 11 that allows light in a predetermined wavelength region to pass through, and a laminate 1 of the mother substrate 11 is formed.
- the laser light L0 from the irradiation source provided on the facing surface DH side facing the surface is subjected to the laser beam L0 provided between the prism 32 provided on the facing surface DH side and the liquid layer provided between the facing surface DH and the prism 32.
- the 33 and the mother substrate 11 are passed through in sequence to form a line KM'(direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1) in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1.
- one of the irradiation source and the prism 32 and the mother substrate 11 including the laminated body 1 is moved with respect to the other.
- the laser beam L0 from the irradiation source is sequentially passed through the prism 32, the liquid layer 33, and the mother substrate 11, and the line KM'(mother) in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1.
- the interface KM between the mother substrate 11 and the laminate 1 is irradiated with an angle ⁇ equal to or greater than the total reflection angle (critical angle) with respect to the interface KM between the substrate 11 and the laminate 1), and the evanescent light is emitted.
- the laminated body 1 is peeled from the mother substrate 11 by L2.
- one of the irradiation source and the prism 32 and the mother substrate 11 including the laminated body 1 is in the first direction with respect to the other. It is moved in the second direction D2 different from D1 and the first direction D1, and is in the incident direction of the laser beam moving in the first direction D1 with respect to the interface KM between the mother substrate 11 and the laminated body 1 and in the second direction D2. It is preferable that the direction of incidence of the moving laser beam is different from that of the incident direction.
- Embodiment 2 of the present invention will be described with reference to FIGS. 12 and 13.
- the manufacturing apparatus 40'of the display device of the present embodiment is different from the first embodiment in that the detector 39 for detecting the total reflected light from the interface KM between the mother substrate 11 and the laminate 1 is further provided.
- the detector 39 for detecting the total reflected light from the interface KM between the mother substrate 11 and the laminate 1 is further provided.
- others are as described in the first embodiment.
- members having the same functions as the members shown in the drawings of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- 12 (a) and 12 (b) are diagrams showing a schematic configuration of a manufacturing device 40'of the display device of the second embodiment further including a detector 39.
- the manufacturing apparatus 40'of the display device is located on the opposite surface DH side of the mother substrate 11 from the interface KM between the mother substrate 11 and the laminate 1.
- a detector 39 for detecting total reflected light is provided.
- the prism 32 and the liquid layer 33 are made of mothers so that the total reflected light L6 / L6'from the interface KM between the mother substrate 11 and the laminate 1 can be detected by the detector 39. It is superimposed on the optical path of the laser light totally reflected at the interface KM between the substrate 11 and the laminate 1.
- the detector 39 can detect a part of the total reflected light of the laser light L0 from the irradiation source provided in the irradiation device 31, the interface KM between the mother substrate 11 of the laser light L0 and the laminate 1 Only a part of the total reflected light needs to pass through the mother substrate 11, the liquid layer 33 and the prism 32, and is incident on the detector 39.
- the total reflected light L6 / L6'detected by the detector 39 is the total reflected light of the laser light L0 from the irradiation source provided in the irradiation device 31
- a second irradiation source 31L that irradiates the facing surface DH side of the mother substrate 11 with at least one of infrared light, ultraviolet light, and visible light in addition to the laser light L0 described above.
- the total reflected light detected by the detector 39 is at least one of the infrared light, the ultraviolet light and the visible light.
- the second irradiation source 31L'that irradiates at least one of infrared light, ultraviolet light, and visible light may be included in the irradiation device 31 together with the irradiation source 31L that irradiates the laser light L0.
- the second irradiation source 31L'that irradiates at least one of infrared light, ultraviolet light, and visible light does not need to be irradiated at the same time as the irradiation source 31L that irradiates the laser light L0, and is independently irradiated. You may.
- the detector 39 Relatively strong light is detected.
- the total reflected light L6'detected by the detector 39 is affected by the defect DEF existing on the facing surface DH of the mother substrate 11 (due to the defect DEF).
- the detector 39 detects a relatively weak light.
- the detector 39 since the detector 39 is provided, it is possible to grasp at which position of the facing surface DH of the mother substrate 11 the defective DEF exists by the detector 39. As described above, in the vicinity of the portion where the defective DEF exists in the mother substrate 11, peeling failure at the interface KM between the mother substrate 11 and the laminate 1 due to insufficient irradiation amount of laser light is likely to occur, so that the mother substrate 11 If it is possible to grasp at which position of the facing surface DH of 11 the defect DEF exists, it is also possible to grasp at which position the additional laser light irradiation should be performed.
- the manufacturing device 40'of the display device has one of the irradiation device 31 and the prism 32 including the irradiation source 31L and the mother substrate 11 including the laminated body 1 with respect to the other. It is a figure which shows the case which irradiates a laser beam while moving relative to the 1st direction D1, and (b) of FIG. 13 shows the irradiation apparatus 31 and the irradiation apparatus 31 including the irradiation source 31L by the manufacturing apparatus 40'of the display apparatus. It is a figure which shows the case which irradiates the laser light while moving one of the prism 32 and the mother substrate 11 including the laminated body 1 relative to the other in the 2nd direction D2.
- the irradiation device 31 including the irradiation source 31L and the prism 32 are in the first direction with respect to the mother substrate 11 including the laminate 1.
- the detector 39 can detect the position of the defect DEF that obstructs the passage of the laser beam from the irradiation source on the mother substrate 11 when moving relative to D1. Then, based on the data regarding the position of the defect DEF that obstructs the passage of the laser light from the irradiation source 31L on the mother substrate 11 detected by the detector 39, as shown in FIG. 13B, the second direction D2 is reached. It is possible to determine the position at which the laser beam irradiation is started while moving. That is, since the additional laser light can be irradiated only to the specific region R1 in which the defective DEF exists on the facing surface DH of the mother substrate 11, the process time required for the peeling step can be shortened.
- the interface between the mother substrate 11 and the laminate 1 is the same as in the case of the display device manufacturing device 40 shown in FIGS. 6A and 6B.
- the incident direction of the laser beam moving in the first direction D1 and the incident direction of the laser beam moving in the second direction D2 with respect to the KM are made different, and the laser beam is moving in the first direction D1 due to the influence of the defect DEF. It is preferable that the insufficient irradiation amount of the laser light of the above is supplemented by the irradiation amount of the laser light moving in the second direction D2.
- the prism 32 ′′ provided in the manufacturing apparatus 40 ′′ of the display device of the present embodiment has, for example, a trapezoidal shape, and receives total reflected light L6 from the interface KM between the mother substrate 11 and the laminate 1. , Reflected inside the prism 32'' and irradiated to the mother substrate 11 side as retrolight L7, and the retrolight L7 is on the line KM'in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1.
- the interface KM between the mother substrate 11 and the laminate 1 is irradiated, and the laminate 1 is peeled from the mother substrate 11 by the evanescent light L8.
- the others are as described in the first and second embodiments.
- members having the same functions as the members shown in the drawings of the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted.
- FIG. 14 is a diagram showing a schematic configuration of the manufacturing device 40 ′′ of the display device of the third embodiment.
- the prism 32 ′′ provided in the manufacturing apparatus 40 ′′ of the display device receives the total reflected light L6 from the interface KM between the mother substrate 11 and the laminate 1 inside the prism 32 ′′. It is reflected by and irradiates the mother substrate 11 side as retrolight L7.
- the retrospective light L7 has a total reflection angle (critical angle) with respect to the line KM'(the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1) in the direction perpendicular to the interface KM between the mother substrate 11 and the laminate 1.
- the interface KM between the mother substrate 11 and the laminate 1 is irradiated, and the laminate 1 is peeled from the mother substrate 11 by the evanescent light L8.
- a part of the totally reflected laser light becomes scattered light L9 due to the defective DEF, and the remaining part becomes the laser light L10, which is laminated with the mother substrate 11.
- the interface KM with 1 is irradiated, the laser beams L10 and L12 are weak, and the evanescent light L11 is also insufficient for peeling the laminate 1 from the mother substrate 11.
- the mother substrate 11 and the laminate 1 are formed.
- the incident direction of the laser beam moving in the first direction D1 and the incident direction of the laser beam moving in the second direction D2 with respect to the interface KM are made different, and the laser beam moves to the first direction D1 due to the influence of the defect DEF. It is preferable that the insufficient irradiation amount of the laser light inside is supplemented by the irradiation amount of the laser light moving in the second direction D2.
- a prism 32'' having a trapezoidal cross section cut along a direction orthogonal to the longitudinal direction is provided, and the prism 32'' is used. Then, the return light L6 of the primary total reflection from the interface KM between the mother substrate 11 and the laminate 1 is used as the retrolight L7, and is completely reflected again at the interface KM between the mother substrate 11 and the laminate 1. Can be reused. Therefore, as long as there is no scattering due to the defective DEF or attenuation due to the absorption of the mother substrate 11 itself, the retrolight L7 can be propagated in the mother substrate 11 by total reflection.
- FIG. 15 is a diagram for explaining a preferable shape of the prism 32 ′′ provided in the manufacturing apparatus 40 ′′ of the display device of the third embodiment.
- x is the irradiation width of the laser beam L
- ⁇ is the incident surface of the prism 32 ′′ on which the laser beam L is incident and the exit surface of the prism 32 ′′ on which the laser beam L is emitted. It is an angle formed by the surface facing the facing surface DH of the mother substrate 11) and equal to or greater than the total reflection angle (critical angle) at which total reflection occurs at the interface KM between the mother substrate 11 and the laminate 1.
- d is the thickness of the mother substrate 11, and d ′ is the thickness of the portion of the prism 32 ′′ other than the incident surface.
- a is the optical path length in the mother substrate 11 of the laser light L
- 2a is the reciprocating optical path length in the mother substrate 11 of the laser light L
- a' is the prism 32'' of the totally reflected laser light
- 2a' is the reciprocating optical path length in the prism 32 ′′ of the totally reflected laser light
- b is the incident width of the laser light L to the mother substrate 11.
- the laser light L incident on the incident surface of the prism 32'' is assumed to be parallel light, and the laser light L is assumed to be incident perpendicular to the incident surface of the prism 32''. To do.
- the width of the exit surface of the prism 32'' (the surface facing the facing surface DH of the mother substrate 11) in the left-right direction in the drawing is orthogonal to the longitudinal direction of the prism 32''.
- the length of the lower side of the cross section cut along the direction is 2a + 2a'+ 2a or more, the laser light totally reflected at the interface KM between the mother substrate 11 and the laminate 1 is emitted to the outside through the prism 32''. It ends up. Therefore, the length of the lower side in the cross section cut along the direction orthogonal to the longitudinal direction of the prism 32 ′′ needs to be less than 2a + 2a ′′ + 2a.
- the length Z of the lower side in the cross section cut along the direction orthogonal to the longitudinal direction of the prism 32 ′′ satisfies the following formula (E).
- the length Z'of the upper side of the cross section cut along the direction orthogonal to the longitudinal direction of the prism 32'' is cut along the direction orthogonal to the longitudinal direction of the prism 32''.
- the case where the length of the lower side in the cross section is set to Zb will be described as an example.
- the return light of the first total internal reflection from the interface KM between the mother substrate 11 and the laminated body 1 is used as recursive light once again.
- the length is not particularly limited as long as it can be totally reflected at the interface KM between the mother substrate 11 and the laminate 1.
- the refractive index of the laminated body 1 ′′ is larger than the refractive index of the mother substrate 11 ′′, and LLO is performed by the irradiated laser light without using the evanescent light, that is, the display device. It differs from the first embodiment in that the manufacturing apparatus is usually in the LLO mode, and the others are as described in the first embodiment. For convenience of explanation, members having the same functions as the members shown in the drawings of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the manufacturing apparatus 40 of the display device shown in FIG. 3 is in the normal LLO mode, and the mother substrate 11 ′′ to the laminate 1 ′′. It is a figure for demonstrating the case of peeling off.
- the laser beam L1 is the laminated body 1 ′.
- LLO that is, peeling of the laminated body 1'' from the mother substrate 11''
- the spot SPT1' where the LLO was generated, the laminated body 1 ′′ and the mother substrate 11 ′′ were slightly separated from each other to form an air layer (not shown). Occurs.
- the refractive index of this air layer is 1.0, and due to the air layer smaller than the refractive index of the mother substrate 11 ′′, the laser beam L1 is combined with the laminated body 1 ′′ as shown in FIG. 16 (b). LLO is generated while advancing in the spot SPT2 of the interface KM with the mother substrate 11 ′′, that is, in the mother substrate 11 ′′ to the right side of the figure. Then, as shown in FIG. 16 (c), in the spot SPT2'where the LLO was generated, the laminated body 1 ′′ and the mother substrate 11 ′′ were slightly separated from each other to form an air layer (not shown). Occurs.
- the laser beam L1 is emitted from the spot SPT3 at the interface KM between the laminate 1 ′′ and the mother substrate 11 ′′, as shown in FIG. 16 (c). That is, LLO is generated while advancing in the mother substrate 11 ′′ to the right side of the figure.
- the manufacturing device 40 of the display device in the above-described first embodiment is in the normal LLO mode
- the present invention is not limited to this, and the above-described second embodiment is not limited to this.
- the normal LLO mode can be realized even in the configuration of the third embodiment.
- a laminate including a light emitting element layer formed on the mother substrate is provided.
- the surface of the mother substrate facing the surface on which the laminate is formed is the facing surface of the mother substrate.
- An irradiation source provided on the opposite surface side to irradiate the laser beam,
- a prism provided on the opposite surface side and irradiated with the laser beam,
- a liquid layer provided between the facing surface and the prism is further provided.
- the laser beam from the irradiation source passes through the prism, the liquid layer, and the mother substrate in sequence, and has a total reflection angle or more with respect to a direction perpendicular to the interface between the mother substrate and the laminate.
- a display device manufacturing device that irradiates the interface between the mother substrate and the laminate at an angle to peel the laminate from the mother substrate.
- the apparatus for manufacturing a display device further comprising at least one of a mother substrate moving mechanism for moving the mother substrate including the laminated body and a prism moving mechanism for moving the prism.
- One of the prism and the mother substrate containing the laminate is moved with respect to the other. During the movement, the laser beam from the irradiation source sequentially passes through the prism, the liquid layer, and the mother substrate in a direction perpendicular to the interface between the mother substrate and the laminated body.
- the apparatus for manufacturing a display device according to any one of aspects 1 to 4, wherein the interface between the mother substrate and the laminate is irradiated at an angle equal to or greater than the total reflection angle to peel the laminate from the mother substrate.
- a second irradiation source provided on the opposite surface side and irradiating at least one of infrared light, ultraviolet light, and visible light is further provided.
- the display device manufacturing apparatus according to any one of aspects 1 to 11, wherein the prism has a triangular cross section cut along a direction orthogonal to the longitudinal direction.
- the triangular shape referred to here has two surfaces, for example, an interface between the mother substrate and the laminate and a surface where the incident light beam of the laser whose angle formed with respect to the interface is equal to or greater than the critical angle becomes a normal.
- the shape of the cross section cut into a vertical surface is approximately triangular, and also includes those in which the vertices are rounded.
- the display device manufacturing apparatus according to any one of aspects 1 to 10, wherein the prism has a trapezoidal cross section cut along a direction orthogonal to the longitudinal direction.
- the trapezoidal shape referred to here has two surfaces, for example, an interface between the mother substrate and the laminate and a surface whose normal angle is the incident light beam of the laser whose angle formed with respect to the interface is equal to or greater than the critical angle.
- the shape of the cross section cut into a vertical surface includes an approximately trapezoidal shape, and the apex thereof is also included in a rounded shape.
- the prism reflects total reflected light from the interface between the mother substrate and the laminated body inside the prism and irradiates the mother substrate side as retrolight.
- the retrospective light is applied to the interface between the mother substrate and the laminate at an angle equal to or greater than the total reflection angle with respect to the direction perpendicular to the interface between the mother substrate and the laminate, and the laminate is emitted from the mother substrate.
- Aspect 17 Aspects 1 to 16, wherein at least on the liquid layer side of each of the prism and the mother substrate, an inclined refractive index structure that approaches the magnitude of the refractive index of the liquid layer as it approaches the liquid layer is provided.
- the manufacturing apparatus of the display device according to any one.
- the refractive index of the laminated body is smaller than the refractive index of the mother substrate,
- the laser beam from the irradiation source passes through the prism, the liquid layer, and the mother substrate in sequence, and has a total reflection angle or more with respect to a direction perpendicular to the interface between the mother substrate and the laminate.
- the apparatus for manufacturing a display device according to any one of aspects 1 to 17, wherein the interface between the mother substrate and the laminate is irradiated at an angle, and the laminate is peeled from the mother substrate by evanescent light.
- Laser light from an irradiation source provided on the facing surface side facing the surface on which the laminated body of the mother substrate is formed is emitted between the prism provided on the facing surface side and between the facing surface and the prism.
- the liquid layer provided in the above and the mother substrate are sequentially passed through, and the mother substrate and the laminate are formed at an angle equal to or greater than the total reflection angle with respect to the direction perpendicular to the interface between the mother substrate and the laminate.
- a method for manufacturing a display device which comprises a peeling step of irradiating the interface with and peeling the laminated body from the mother substrate.
- one of the prism and the mother substrate including the laminated body is moved with respect to the other in a first direction and a second direction different from the first direction.
- the liquid layer is superposed on at least the prism, and is formed and removed so as not to be superposed on the optical path of the laser light totally reflected at the interface between the mother substrate and the laminated body.
- the present invention can be used in a display device manufacturing device and a display device manufacturing method.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Laser Beam Processing (AREA)
Abstract
表示装置の製造装置(40)においては、レーザー光(L0)は、プリズム(32)と、液体層(33)と、母基板(11'')とを順次通過して、母基板(11'')と積層体(1'')との界面(KM)に垂直な方向の線(KM')に対して全反射角以上の角度(θ)で、母基板(11'')と積層体(1'')との界面(KM)に照射され、母基板(11'')から積層体(1'')を剥離させる。
Description
本開示は、表示装置の製造装置及び表示装置の製造方法に関するものである。
近年、発光素子を備えた様々な表示装置が開発されており、特に、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた表示装置や、無機発光ダイオードまたはQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えた表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、高い注目を浴びている。
そして、このようなOLEDを備えた表示装置や、無機発光ダイオードまたはQLEDを備えた表示装置などのように、バックライトを備える必要がない表示装置については、自由に曲げることができるように、フレキシブル表示装置化への要求が高い。
例えば、下記特許文献1には、Laser Lift Off工程(LLO工程)を含むフレキシブル表示装置の製造方法について記載されている。
図17の(a)は、上記特許文献1に記載された、LLO工程を含む従来のフレキシブル表示装置の製造方法において用いられる従来の製造装置100の概略構成を示す図である。
図17の(a)に示す製造装置100は、発光素子層を含む積層体を含んだフレキシブル表示装置の製造装置であり、支持体101と、第1レーザー光の光源103と、第2レーザー光の光源105と、光学系104と、光学系106と、を含む。
図17の(b)は、母基板である透明基板111と、発光素子層を含む積層体112とからなる照射対象基板102に対して、第1レーザー光の光源103からのレーザー光を、光学系104を介して、透明基板111側から、第1レーザービームLB1として照射する場合を示す図である。第1レーザービームLB1は、透明基板111と積層体112との界面に垂直な方向に対する入射角がほぼ0である。すなわち、第1レーザービームLB1は、透明基板111と積層体112との界面に対して、ほぼ垂直入射される。
図17の(c)は、照射対象基板102に対して、第2レーザー光の光源105からのレーザー光を、光学系106を介して、透明基板111側から、第2レーザービームLB2として照射する場合を示す図である。第2レーザービームLB2は、透明基板111と積層体112との界面に垂直な方向に対する入射角が第1レーザービームLB1と比較して大きい。
図17の(b)に示すように、透明基板111の積層体112が形成された面と対向する面である対向表面にパーティクル(異物)Pや欠陥が存在する場合、透明基板111と積層体112との界面に対して、ほぼ垂直入射される第1レーザービームLB1は、例えば、パーティクルPの影響により、パーティクルPの下部では、十分な照射量とならず、透明基板111と積層体112との界面で剥離不具合が発生してしまう。
そこで、図17の(a)に示す製造装置100の場合、図17の(c)に示すように、透明基板111と積層体112との界面に垂直な方向に対する入射角が第1レーザービームLB1と比較して大きい第2レーザービームLB2を、第1レーザービームLB1と併用することで、パーティクルPの下部においても、十分な照射量を確保し、透明基板111と積層体112との界面で剥離不具合が発生するのを抑制するようになっている。
しかしながら、上記のような従来の表示装置の製造装置では、透明基板にパーティクル(異物)や欠陥が存在する場合、パーティクル(異物)や欠陥が存在する透明基板の面そのものに対して、垂直方向以外からレーザー光を照射するので、レーザー光の照射効率を向上させることが難しいという問題があった。具体的にいえば、従来の表示装置の製造装置では、垂直方向以外からレーザー光を照射する場合、垂直照射と比較して十分な効果を得るためにレーザー光を強くする必要があった。
上記の課題に鑑み、本開示は、透明基板にパーティクル(異物)や欠陥が存在する場合でも、レーザー光の照射効率を向上させることができる表示装置の製造装置及び表示装置の製造方法を提供することを目的とする。
本開示の表示装置の製造装置は、前記の課題を解決するために、
母基板と、
前記母基板上に形成された発光素子層を含む積層体と、を備え、
前記母基板の前記積層体が形成された面と対向する面が、前記母基板の対向表面であり、
前記対向表面側に設けられて、レーザー光を照射する照射源と、
前記対向表面側に設けられて、前記レーザー光が照射されるプリズムと、
前記対向表面と前記プリズムとの間に設けられた液体層とを、さらに備え、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる。
母基板と、
前記母基板上に形成された発光素子層を含む積層体と、を備え、
前記母基板の前記積層体が形成された面と対向する面が、前記母基板の対向表面であり、
前記対向表面側に設けられて、レーザー光を照射する照射源と、
前記対向表面側に設けられて、前記レーザー光が照射されるプリズムと、
前記対向表面と前記プリズムとの間に設けられた液体層とを、さらに備え、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる。
本開示の表示装置の製造方法は、前記の課題を解決するために、
所定波長領域の光を通す母基板に、発光素子層を含む積層体を形成する積層体形成工程と、
前記母基板の前記積層体が形成された面と対向する対向表面側に設けられた照射源からのレーザー光を、前記対向表面側に設けられたプリズムと、前記対向表面と前記プリズムとの間に設けられた液体層と、前記母基板とを順次通過させて、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する剥離工程と、を含む。
所定波長領域の光を通す母基板に、発光素子層を含む積層体を形成する積層体形成工程と、
前記母基板の前記積層体が形成された面と対向する対向表面側に設けられた照射源からのレーザー光を、前記対向表面側に設けられたプリズムと、前記対向表面と前記プリズムとの間に設けられた液体層と、前記母基板とを順次通過させて、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する剥離工程と、を含む。
本開示の一態様によれば、透明基板にパーティクル(異物)や欠陥が存在する場合でも、レーザー光の照射効率を向上させることができる表示装置の製造装置及び表示装置の製造方法を提供できる。
本開示の実施の形態について、図1から図16に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
後述する実施形態1~3においては、積層体1の屈折率が母基板11・11’の屈折率よりも小さく、エバネッセント光によりLLOを行う場合、すなわち、表示装置の製造装置がエバネッセント光LLOモードである場合について説明する。一方、後述する実施形態4においては、積層体1’’の屈折率が母基板11’’の屈折率よりも大きく、エバネッセント光を用いずに、照射したレーザー光にてLLOを行う場合、すなわち、表示装置の製造装置が通常LLOモードである場合について説明する。
〔実施形態1〕
図2は、母基板11と、母基板11に形成された積層体1である表示装置とからなる照射対象基板30の概略構成を示す図である。
図2は、母基板11と、母基板11に形成された積層体1である表示装置とからなる照射対象基板30の概略構成を示す図である。
図2に示すように、照射対象基板30は、所定波長領域の光を通す母基板11と、母基板11に形成された発光素子層5を含む積層体1と、を含む。なお、母基板11の積層体1が形成された面と対向する面が、母基板11の対向表面DHである。
図2に示すように、母基板11に形成された積層体1、すなわち、表示装置には、母基板11と接する樹脂層12と、バリア層3と、薄膜トランジスタ層(TFT層)4と、発光素子層5と、封止層6とがこの順に備えられている。
母基板11としては、積層体1の各層の形成工程に必要とされる工程温度に耐えられる耐熱性と、後述する少なくとも照射源からのレーザー光を通す光の透過特性とを有するのであれば、その種類は特に限定されないが、本実施形態においては、母基板11として、上述した耐熱性と、照射源からのレーザー光、赤外光、紫外光及び可視光を通す光の透過特性と、を有する透明ガラス基板を用いた。また、本実施形態では、表示装置の製造装置をエバネッセント光LLOモードで使用するため、母基板11として、積層体1の屈折率よりもその屈折率が大きいものを用いた。特に、本実施形態では、母基板11と、母基板11と接する積層体1の樹脂層12との界面KMで、全反射を生じさせるとともに、樹脂層12でエバネッセント光の吸光を生じさせるため、樹脂層12として、その屈折率が約1.5~1.7であるポリイミド樹脂を用いており、母基板11として、その屈折率が約1.8~2.0である高屈折率透明ガラス基板を用いている。
本実施形態においては、樹脂層12の材料として、ポリイミド樹脂を用いた場合を一例に挙げて説明したが、これに限定されることはなく、例えば、エポキシ樹脂、ポリアミド樹脂等を用いてもよい。
バリア層3は、水分や不純物が、トランジスタTrや発光素子層5に到達することを防ぐ層であり、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
トランジスタTr及び容量素子は、樹脂層12及びバリア層3の上層に設けられている。トランジスタTr及び容量素子を含む薄膜トランジスタ層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜(ゲート絶縁膜)16と、無機絶縁膜16よりも上層のゲート電極GEと、ゲート電極GEよりも上層の無機絶縁膜(第1絶縁膜)18と、無機絶縁膜18よりも上層の容量素子の対向電極CEと、容量素子の対向電極CEよりも上層の無機絶縁膜(第2絶縁膜)20と、無機絶縁膜20よりも上層の、ソース電極、ドレイン電極及びその配線を形成する層SHと、ソース電極とドレイン電極とその配線を形成する層SHよりも上層の層間絶縁膜21とを含む。
なお、容量素子は、無機絶縁膜18の直上に形成された容量素子の対向電極CEと、無機絶縁膜18と、無機絶縁膜18の直下に形成され、ゲート電極GEを形成する層と同一層で、容量素子の対向電極CEと重畳するように形成された容量電極と、で構成される。
半導体膜15、無機絶縁膜16、ゲート電極GE、無機絶縁膜18、無機絶縁膜20、ソース電極及びドレイン電極を含むように、トランジスタ(薄膜トランジスタ(TFT))Trが構成される。
半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。
ゲート電極GE、容量素子の対向電極CE、ソース電極とドレイン電極とその配線を形成する層SHは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)、及び銀(Ag)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。
無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜、窒化シリコン(SiNx)膜あるいは酸窒化シリコン膜またはこれらの積層膜によって構成することができる。
層間絶縁膜21は、例えば、ポリイミド樹脂やアクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
発光素子層5は、層間絶縁膜21よりも上層の第1電極22と、第1電極22よりも上層の発光層を含む機能層24と、機能層24よりも上層の第2電極25とを含む。層間絶縁膜21上には、第1電極22のエッジを覆うエッジカバー(バンク)23が形成されている。
積層体1である表示装置のサブピクセルSPごとに、島状の第1電極22と、発光層を含む機能層24と、第2電極25とを含む。エッジカバー23は、例えば、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
機能層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法によって、サブピクセルSPごとに島状に形成されるが、その他の層はベタ状の共通層とすることもできる。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のうち1以上の層を形成しない構成も可能である。
第1電極22は、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成することができるが、導電性及び光反射性を確保できるのであれば、特に限定されない。また、第2電極25は、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透光性の導電材で構成することができるが、導電性及び透光性を確保できるのであれば、特に限定されない。
第1電極22は、サブピクセル(画素)SP毎に設けられ、トランジスタTrのドレイン電極に電気的に接続されている。また、第2電極25は、全てのサブピクセル(画素)SPに共通して設けられている。また、トランジスタTrは、サブピクセルSP毎に駆動される。
本実施形態においては、発光素子層5が構成する発光素子がOLED(Organic Light Emitting Diode:有機発光ダイオード)である場合を一例に挙げて説明するが、これに限定されることはなく、発光素子層5が構成する発光素子は、例えば、無機発光ダイオードまたはQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)であってもよい。
封止層6は透光性であり、第2電極25を覆う第1無機封止膜26と、第1無機封止膜26よりも上側に形成される有機封止膜27と、有機封止膜27を覆う第2無機封止膜28とを含む。発光素子層5を覆う封止層6は、水、酸素等の異物の発光素子層5への浸透を防いでいる。
第1無機封止膜26及び第2無機封止膜28はそれぞれ、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、第1無機封止膜26及び第2無機封止膜28よりも厚い、透光性有機膜であり、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
本実施形態においては、第1無機封止膜26と第2無機封止膜28との間に有機封止膜27を備えた、1層の有機膜と2層の無機膜から構成される封止層6を一例に挙げて説明したが、これに限定されることはなく、封止層6は、1層以上の無機膜または1層以上の有機膜のみで形成されてもよく、2層以上の無機膜と2層以上の有機膜とで形成されてもよい。
なお、本実施形態においては、第1電極22が光反射性を有し、第2電極25が透光性を有する場合、すなわち、積層体1である表示装置がトップエミッション型である場合を一例に挙げて説明するが、これに限定されることはなく、積層体1である表示装置は、第1電極22が透光性を有し、第2電極25が光反射性を有するボトムエミッション型であってもよい。
図1は、母基板11から剥離された積層体1である表示装置の概略構成を示す図である。
図2に示す母基板11と積層体1とを含む照射対象基板30に対して、レーザー光を、母基板11側から、母基板11と積層体1との界面に照射することで、母基板11から積層体1を剥離することができる。このようなLaser Lift Off工程(LLO工程)により、図1に図示する積層体1からなるフレキシブル表示装置を得ることができる。また、本実施形態では、母基板11と、母基板11と接する積層体1の樹脂層12とにおいて、樹脂層12の屈折率が母基板11の屈折率よりも小さいものが選択されており、表示装置の製造装置では、エバネッセント光によりLLOを行うエバネッセント光LLOモードが実行される。
図3は、上述したLLO工程に用いられる実施形態1の表示装置の製造装置40の概略構成を示す図である。
図3に示す表示装置の製造装置40は、母基板11の対向表面DH側に設けられて、レーザー光L0を照射する照射源31Lを含む照射装置31と、母基板11の対向表面DH側に設けられて、レーザー光L0が照射されるプリズム32と、母基板11の対向表面DHとプリズム32との間に設けられた液体層33とを、備えている。
プリズム32は、レーザー光を、母基板11と積層体1との界面KMで全反射させるために必要な母基板11と積層体1との界面KMに垂直な方向の線KM’に対して全反射角(臨界角)以上の角度θのレーザー光の入射角度を確保するために用いている。本実施形態においては、プリズム32の長手方向(図5の(a)及び図5の(b)の左右方向)と直交する方向(図5の(a)及び図5の(b)の上下方向)に沿って切断した断面が三角形状であるプリズムを用いているが、レーザー光を、母基板11と積層体1との界面KMで全反射させるために必要な入射角度を確保できるのであれば、これに限定されることはない。
プリズム32を用いずに、母基板11と積層体1との界面KMと平行な母基板11の対向表面DHからレーザー光を直接入射させた場合には、母基板11と積層体1との界面KMで全反射させるために必要な入射角度は、物理的に得られない。
また、母基板11の対向表面DHとプリズム32との間に設けられた液体層33は、対向表面DHと液体層33とが形成する界面及びプリズム32と液体層33とが形成する界面のそれぞれにおいて、界面反射が生じないように、母基板11の屈折率及びプリズム32の屈折率と近い屈折率を有する材料を選択することが好ましいが、これに限定されることはない。液体層33とプリズム32との界面や液体層33と母基板11との界面で、屈折率差による界面反射が生じないのであれば、例えば、液体層33の屈折率、プリズム32の屈折率及び母基板11の屈折率はそれぞれ異なってもよい。すなわち、屈折率差による界面反射が生じないのであれば、液体層33、プリズム32及び液体層33の材料は適宜選択できる。
本実施形態においては、プリズム32として、母基板11の材料と同一材料である高屈折率透明ガラス材料を用いており、液体層33として、その屈折率が約1.51であるアニソール(有機溶媒)を用いた場合を一例に挙げて説明するが、これに限定されることはない。屈折率差による界面での反射が生じないのであれば、例えば、液体層33として、その屈折率が約1.3であるPFPE(フッ素含有有機溶媒)またはその屈折率が約1.33である水を用いてもよい。
以上のように、本実施形態においては、液体層33と、プリズム32との界面、及び液体層33と、母基板11との界面において、何れも界面反射が発生しないように、母基板11の材料、プリズム32の材料、及び液体層33の材料を選択しているので、図3に示すように、照射装置31の照射源31Lからのレーザー光L0は、レーザー光L1のように、プリズム32への入射角度をほぼ維持しながら、母基板11と積層体1との界面KMに入射される。
図3に示すように、照射装置31の照射源31Lからのレーザー光L0は、プリズム32と、液体層33と、母基板11とを順次通過して、レーザー光L1として、母基板11と積層体1との界面KMに垂直な方向の線KM’(母基板11と積層体1との界面KMに垂直な方向)に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射され、かつ、エバネッセント光L2により、母基板11から積層体1を剥離させる。なお、上述した全反射角(臨界角)以上の角度θは、母基板11と積層体1との界面KM、すなわち、母基板11と樹脂層12との界面KMと、積層体1が母基板11から剥離した後の母基板11と空気層との界面とで全反射を実現するための角度である。
図4の(a)、図4の(b)及び図4の(c)は、図3に図示した表示装置の製造装置40がエバネッセント光LLOモードで、母基板11から積層体1を剥離する場合を説明するための図である。
図4の(a)に示すように、レーザー光L1が、母基板11と積層体1との界面KMに垂直な方向の線KM’に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに入射されると、スポットSPT1では、母基板11と積層体1との界面KMで全反射が生じるとともに、積層体1の樹脂層12(図2参照)でエバネッセント光L2の吸光が生じる。したがって、スポットSPT1では、積層体1の樹脂層12でのエバネッセント光L2の吸光により、母基板11から積層体1が完全に剥離し、図4の(b)に示すスポットSPT1’となる。
なお、図4の(a)に示すように、積層体1の樹脂層12でエバネッセント光L2の吸光が一度生じた後のレーザー光L1aは、母基板11の対向表面DHで全反射され、再び、スポットSPT2では、母基板11と積層体1との界面KMに入射されるが、積層体1の樹脂層12でのエバネッセント光L2’の吸光の波長成分は弱い。
また、図4の(a)に示すように、積層体1の樹脂層12でエバネッセント光L2・L2’の吸光が生じた後のレーザー光L1bは、母基板11の対向表面DHで全反射され、再び、スポットSPT3では、母基板11と積層体1との界面KMに入射されるが、積層体1の樹脂層12でのエバネッセント光L2’’の吸光の波長成分はさらに弱い。
図4の(b)に示すように、既に、母基板11から積層体1が剥離した部分、すなわち、スポットSPT1’では、母基板11と積層体1との間に空気層が形成され、積層体1の樹脂層12でのエバネッセント光L2の吸光は生じず、レーザー光L1は、そのまま、母基板11と空気層との界面で全反射が生じる。そして、母基板11から積層体1が剥離されていない部分、すなわち、スポットSPT2に伝搬されたレーザー光L1により、母基板11と積層体1との界面KMで全反射が生じるとともに、積層体1の樹脂層12でエバネッセント光L2の吸光が生じる。
なお、図4の(b)に示すように、積層体1の樹脂層12でエバネッセント光L2の吸光が一度生じた後のレーザー光L1aは、母基板11の対向表面DHで全反射され、再び、スポットSPT3では、母基板11と積層体1との界面KMに入射されるが、積層体1の樹脂層12でのエバネッセント光L2’の吸光の波長成分は弱い。
図4の(c)に示すように、既に、母基板11から積層体1が剥離した部分、すなわち、スポットSPT1’・SPT2’では、母基板11と積層体1との間に空気層が形成され、積層体1の樹脂層12でのエバネッセント光L2の吸光は生じず、レーザー光L1は、そのまま、母基板11と空気層との界面で全反射が生じる。そして、母基板11から積層体1が剥離されていない部分、すなわち、スポットSPT3に伝搬されたレーザー光L1により、母基板11と積層体1との界面KMで全反射が生じるとともに、積層体1の樹脂層12でエバネッセント光L2の吸光が生じる。
なお、図4の(c)に示すように、積層体1の樹脂層12でエバネッセント光L2の吸光が一度生じた後のレーザー光L1aは、母基板11の対向表面DHで全反射され、再び、母基板11と積層体1との界面KMに入射されるが、積層体1の樹脂層12でのエバネッセント光の吸光の波長成分は弱い。
図3に示す照射装置31は、レーザー光L0を照射する照射源31Lと、レーザー光L0を照射する照射源31Lを第1方向D1または第2方向D2などに移動させる照射源移動機構(図示せず)とを、備えており、照射装置31は、前記照射源移動機構によって、第1方向D1または第2方向D2などに移動可能である。なお、本実施形態においては、照射源31Lからのレーザー光L0は、プリズム32の長手方向の長さとほぼ同じ幅を有するが、これに限定されることはない。
図3に示す欠陥DEFは、母基板11の対向表面DHに存在する、例えば、傷や異物などであり、母基板11において、照射源31Lからのレーザー光L0の通過を妨害する部分を意味する。
図5の(a)は、表示装置の製造装置40が、照射源31Lを含む照射装置31及びプリズム32と、積層体1を含む母基板11とのうちの一方を、他方に対して、第1方向D1に相対的に移動しながら、レーザー光を照射する場合を示す図であり、図5の(b)は、表示装置の製造装置40が、照射源31Lを含む照射装置31及びプリズム32と、積層体1を含む母基板11とのうちの一方を、他方に対して、第2方向D2に相対的に移動しながら、レーザー光を照射する場合を示す図である。
表示装置の製造装置40は、照射源31Lを含む照射装置31及びプリズム32を、積層体1を含む母基板11に対して、第1方向D1または、第2方向D2に相対的に移動させることができる機構を備えていてもよく、積層体1を含む母基板11を、照射源31Lを含む照射装置31及びプリズム32に対して、第1方向D1または、第2方向D2に相対的に移動させることができる機構を備えていてもよい。
また、詳しくは後述するように、母基板11と積層体1との界面KMに対するレーザー光の入射方向は、第1方向D1に移動中と、第2方向D2に移動中とで、異なる。
本実施形態においては、表示装置の製造装置40が、照射装置31が備えている照射源移動機構と、プリズム移動機構34と、母基板移動機構35a・35bとを、全て備えている場合を一例挙げて説明するが、これに限定されることはない。例えば、表示装置の製造装置40は、母基板移動機構35a・35bは備えてなく、照射装置31が備えている照射源移動機構と、プリズム移動機構34のみを備えていてもよい。また、表示装置の製造装置40は、照射装置31が備えている照射源移動機構と、プリズム移動機構34とは備えてなく、母基板移動機構35a・35bのみを備えていてもよい。
表示装置の製造装置40の場合、プリズム移動機構34及び照射装置31が備えている照射源移動機構と、母基板移動機構35a・35bとのうちの一方を、他方に対して、第1方向D1または、第2方向D2に相対的に移動させることで、例えば、照射源31Lを含む照射装置31及びプリズム32を、積層体1を含む母基板11に対して、第1方向D1または、第2方向D2に相対的に移動させることができる。
また、表示装置の製造装置40が、母基板移動機構35a・35bは備えてなく、照射装置31が備えている照射源移動機構と、プリズム移動機構34のみを備えている場合には、積層体1を含む母基板11は固定されているので、プリズム移動機構34及び照射装置31が備えている照射源移動機構を、第1方向D1または、第2方向D2に移動させることで、照射源31Lを含む照射装置31及びプリズム32を、積層体1を含む母基板11に対して、第1方向D1または、第2方向D2に相対的に移動させることができる。
さらに、表示装置の製造装置40が、照射装置31が備えている照射源移動機構と、プリズム移動機構34とは備えてなく、母基板移動機構35a・35bのみを備えている場合には、照射装置31とプリズム32とは固定されているので、母基板移動機構35a・35bを、第1方向D1または、第2方向D2に移動させることで、照射源を含む照射装置31及びプリズム32を、積層体1を含む母基板11に対して、第1方向D1または、第2方向D2に相対的に移動させることができる。
なお、本実施形態においては、照射装置31が照射源31Lを第1方向D1または第2方向D2などに移動させる照射源移動機構を備えている場合を一例に挙げて説明したが、これに限定されることはない。例えば、照射源31Lを含む照射装置31は固定された状態で、中間光路を伸縮させる光学系を用いて、移動するプリズム32にレーザー光を入射させる構成であってもよい。
図5の(a)及び図5の(b)に示すように、表示装置の製造装置40においては、照射源31Lを含む照射装置31及びプリズム32と、積層体1を含む母基板11とのうちの一方は、他方に対して、第1方向D1と、第1方向D1とは異なる第2方向D2とに移動され、前記移動中には、照射源31Lからのレーザー光は、プリズム32と、液体層33と、母基板11とを順次通過して、母基板11と積層体1との界面KMに垂直な方向の線KM’に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射され、かつ、エバネッセント光により、母基板11から積層体1を剥離させる。
本実施形態においては、第1方向D1が下方向であり、第2方向D2が上方向である場合を、一例に挙げて説明するが、第1方向D1と第2方向D2とが異なる方向であるならば、その方向は特に限定されない。例えば、第1方向D1が上方向であり、第2方向D2が下方向であってもよく、第1方向D1が右方向であり、第2方向D2が左方向であってもよく、第1方向D1が左方向であり、第2方向D2が右方向であってもよい。また、第1方向D1と第2方向D2とは、反対方向に限定されることはなく、例えば、直交する方向などであってもよく、母基板11の対向表面DHに存在する欠陥DEFの大きさや位置などを考慮して、適宜設定することができる。
本実施形態においては、照射源31Lを含む照射装置31及びプリズム32と、積層体1を含む母基板11とのうちの一方を、他方に対して、第1方向D1及び第2方向D2に相対的に移動しながら、レーザー光を照射する場合を一例に挙げて説明するが、これに限定されない。例えば、照射源31Lを含む照射装置31は固定された状態で、中間光路を伸縮させる光学系を用いて、移動するプリズム32にレーザー光を入射させる構成の場合、プリズム32を、積層体1を含む母基板11に対して、第1方向D1及び第2方向D2に相対的に移動しながら、レーザー光を照射することとなる。
図6の(a)は、図5の(a)に示す場合であって、母基板11の対向表面DHに欠陥DEFが存在する場合を説明するための図であり、図6の(b)は、図5の(b)に示す場合であって、母基板11の対向表面DHに欠陥DEFが存在する場合を説明するための図である。
図6の(a)に示すように、第1方向D1に相対的に移動中の照射装置31の照射源31Lからのレーザー光L0は、照射装置31と同じ速度で第1方向D1に相対的に移動中のプリズム32と、母基板11の対向表面DHとプリズム32との間に設けられた液体層33と、母基板11とを順次通過して、母基板11と積層体1との界面KMに垂直な方向の線KM’に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射され、かつ、エバネッセント光により、母基板11から積層体1を剥離させる。しかし、母基板11の対向表面DHに欠陥DEFが存在する箇所では、照射源31Lからのレーザー光L0は、その一部が欠陥DEFによって散乱光L3となり、残りの一部がレーザー光L4として、母基板11と積層体1との界面KMに照射されるが、レーザー光L4は弱く、エバネッセント光L5も、母基板11から積層体1を剥離させるには不十分である。
このような箇所では、剥離不具合が生じる恐れがあるため、表示装置の製造装置40においては、図6の(b)に示すように、第2方向D2に相対的に移動中の照射装置31の照射源からのレーザー光L0は、照射装置31と同じ速度で第2方向D2に相対的に移動中のプリズム32と、母基板11の対向表面DHとプリズム32との間に設けられた液体層33と、母基板11とを順次通過して、母基板11と積層体1との界面KMに垂直な方向の線KM’に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射され、かつ、エバネッセント光により、母基板11から積層体1を剥離させる。
なお、図6の(a)及び図6の(b)に示すように、表示装置の製造装置40においては、母基板11と積層体1との界面KMに対する、第1方向D1に移動中のレーザー光の入射方向と、第2方向D2に移動中のレーザー光の入射方向とが、異なるので、欠陥DEFの影響による第1方向D1に移動中のレーザー光の不十分な照射量を、第2方向D2に移動中のレーザー光の照射量で補っている。
したがって、表示装置の製造装置40においては、母基板11の対向表面DHに欠陥DEFが存在する場合であっても、剥離不具合が生じるのを抑制できる。
なお、図3、図6の(a)及び図6の(b)に示すように、母基板11の対向表面DHとプリズム32との間に設けられた液体層33は、少なくともプリズム32と重畳し、母基板11と積層体1との界面KMで全反射されたレーザー光の光路とは、重畳しないように、形成及び除去することが好ましい。
液体層33が、少なくともプリズム32と重畳することが好ましい理由、すなわち、レーザー光の光路として液体層33が必要である理由は、プリズム32と母基板11間に屈折率差の大きい空気層が存在すると、それらの界面で臨界角以上の入射角を有するレーザー光は全反射され、空気層を通過できないからである。
また、液体層33が、母基板11と積層体1との界面KMで全反射されたレーザー光の光路とは、重畳しないことが好ましい理由は、母基板11と積層体1との界面KMで全反射されたレーザー光の光路であって、母基板11の対向表面DHに液体層33が存在すると、当該液体層33で母基板11と積層体1との界面KMで全反射されたレーザー光が散乱する可能性があるからである。
図7は、実施形態1の第1変形例である表示装置の製造装置41の概略構成を示す図である。
図7に示すように、表示装置の製造装置41は、照射源31Lを含む照射装置31とともに、照射源31Lを含む第2照射装置31’をさらに備えている点において、上述した表示装置の製造装置40とは異なる。
図7に示すように、表示装置の製造装置41の場合、一つのプリズム32に対して、複数の方向からレーザー光L0を同時に照射することができる。例えば、照射源31Lを含む照射装置31からのレーザー光L0は、プリズム32の斜め左上方向から照射することができ、照射源31Lを含む第2照射装置31’からのレーザー光L0は、プリズム32の斜め右上方向から照射することができる。
表示装置の製造装置41の場合、一つのプリズム32に対して、複数の方向からレーザー光L0を同時に照射することができるので、照射源31Lを含む照射装置31、照射源31Lを含む第2照射装置31’及びプリズム32と、積層体1を含む母基板11とのうちの一方を、他方に対して、第1方向D1または第2方向D2に相対的に移動しながら、レーザー光を照射すればよい。したがって、第1方向D1及び第2方向D2に相対的に移動しながら、レーザー光を照射する上述した表示装置の製造装置40と比較すると、剥離工程にかかる時間を大幅に短縮することができるとともに、母基板11の対向表面DHに欠陥DEFが存在する場合であっても、剥離不具合が生じるのを抑制できる。
なお、図7に示した構成以外に、例えば、一つの照射装置31だけを設けて、第2照射装置31’からのレーザー光L0に代えて、照射装置31からのレーザー光L0の経路の中間点に設けたビームスプリッタで2分割して照射する構成としてもよく、このような構成でも、図7に図示した表示装置の製造装置41と同様の効果を得ることができる。
図8の(a)は、実施形態1の表示装置の製造装置40または、実施形態1の第1変形例である表示装置の製造装置41において、レーザー光L0が、プリズム32と、液体層33と、母基板11とを順次通過する様子を模式的に示した図であり、図8の(b)及び図8の(c)は、比較例の表示装置の製造装置において、レーザー光がプリズムと、液体層と、母基板とを順次通過する様子を模式的に示した図である。
図8の(a)に示すように、実施形態1の表示装置の製造装置40または、実施形態1の第1変形例である表示装置の製造装置41においては、液体層33と、プリズム32との界面、及び液体層33と、母基板11との界面において、何れも界面反射が発生しないように、母基板11の材料、プリズム32の材料、及び液体層33の材料を選択しているので、これらの界面において反射は生じていない。したがって、照射源31Lからのレーザー光L0は、界面反射によるレーザー光の損失なく、レーザー光L1として、基板11と積層体1との界面KMに照射される。
一方、図8の(b)に示すように、液体層33Rの屈折率が、プリズム32Rの屈折率及び母基板11Rの屈折率より大きくなるように、液体層33Rの材料、プリズム32Rの材料及び母基板11Rの材料が選択された場合、液体層33Rと、プリズム32Rとの界面、及び液体層33Rと、母基板11Rとの界面の何れにおいても界面反射が発生している。したがって、照射源31Lからのレーザー光L0は、界面反射によるレーザー光の損失により、レーザー光L1’として、基板11と積層体1との界面KMに照射される。このように界面反射が生じると、レーザー光の利用効率が低下してしまうので、好ましくない。
また、図8の(c)に示すように、液体層33R’の屈折率が、プリズム32R’の屈折率及び母基板11R’の屈折率より小さくなるように、液体層33R’の材料、プリズム32R’の材料及び母基板11R’の材料が選択された場合、液体層33R’と、プリズム32R’との界面、及び液体層33R’と、母基板11R’との界面の何れにおいても界面反射が発生している。したがって、照射源31Lからのレーザー光L0は、界面反射によるレーザー光の損失により、レーザー光L1’’として、基板11と積層体1との界面KMに照射される。このように界面反射が生じると、レーザー光の利用効率が低下してしまうので、好ましくない。
図9は、実施形態1の第2変形例である表示装置の製造装置において、レーザー光L0が、プリズム32’と、液体層33と、母基板11’とを順次通過する様子を模式的に示した図である。
図9に示すように、母基板11’の場合、上述した母基板11の液体層33側の表面に傾斜屈折率構造をさらに備えている点において、上述した母基板11とは異なる。また、プリズム32’の場合、上述したプリズム32の液体層33側の表面に傾斜屈折率構造をさらに備えている点において、上述したプリズム32とは異なる。なお、傾斜屈折率構造とは、液体層33に近づくにつれて、当該液体層33の屈折率の大きさに近づく構造を意味する。
図9に示すように、傾斜屈折率構造を備えた母基板11’と、傾斜屈折率構造を備えたプリズム32’とを用いた場合には、液体層33と、プリズム32’との界面、及び液体層33と、母基板11’との界面において、何れも界面反射が発生しない。したがって、照射源31Lからのレーザー光L0は、界面反射によるレーザー光の損失なく、レーザー光L1として、基板11’と積層体1との界面KMに照射される。
なお、上述した母基板11の液体層33側の表面(対向表面DH)及び上述したプリズム32の液体層33側の表面を、公知の表面改質処理することにより、傾斜屈折率構造を取り入れてもよい。あるいは、別に作製された、屈折率が断続的に変化する傾斜屈折率構造を、プリズム32の表面や母基板11の表面(対向表面DH)に張り付けてもよい。さらには、母基板11’及プリズム32’のそれぞれ自体を、傾斜屈折率構造とし、液体層33との界面で界面反射の発生を防ぐ構成としてもよい。
以上のように、図9に示す実施形態1の第2変形例である表示装置の製造装置においては、プリズム32’及び母基板11’のそれぞれの少なくとも液体層33側には、液体層33に近づくにつれて、当該液体層33の屈折率の大きさに近づく傾斜屈折率構造が設けられている。
図10は、実施形態1の表示装置の製造装置40に備えらえたプリズム32に入射されるレーザー光Lが平行光である場合における、全反射角(臨界角)以上の角度θを決定する条件を説明するための図である。
図10に示す、xは、レーザー光Lの照射幅であり、θは、レーザー光Lが入射されるプリズム32の入射面とレーザー光Lが出射されるプリズム32の出射面(母基板11の対向表面DHと対向する面)とが成す角度であり、かつ、母基板11と積層体1との界面KMで全反射が生じる全反射角(臨界角)以上の角度である。また、dは、母基板11の厚さであり、aは、レーザー光Lの母基板11内の光路長であり、2aは、レーザー光Lの母基板11内の往復光路長であり、bは、レーザー光Lの母基板11への入射幅である。なお、プリズム32の入射面に入射されるレーザー光Lは、平行光であるものとし、さらに、レーザー光Lは、プリズム32の入射面に対して、垂直に入射されるものとする。
図10において点線で示すように、プリズム32の出射面(母基板11の対向表面DHと対向する面)の図中の左右方向の幅が、すなわち、プリズム32の長手方向と直交する方向に沿って切断した断面における下辺の長さが、母基板11内の往復光路長2a以上である場合、母基板11と積層体1との界面KMで全反射されたレーザー光がプリズム32を通じて外部へ出てしまう。したがって、プリズム32の長手方向と直交する方向に沿って切断した断面における下辺の長さは、母基板11内の往復光路長2a未満である必要がある。
プリズム32の長手方向と直交する方向に沿って切断した断面における下辺の長さは、レーザー光Lの母基板11への入射幅bとすることが好ましいので、2a>bとなる。
母基板11内の往復光路長2aを、母基板11の厚さdと上述した角度θとから求めると、2a=2d×tanθとなる。また、レーザー光Lの母基板11への入射幅bを、レーザー光Lの照射幅xと上述した角度θとから求めると、b=x/cosθとなる。
以上から、(2d×tanθ)>(x/cosθ)となり、2d×sinθ>xという式(A)を得ることができる。
既知の値である、母基板11の厚さdと、レーザー光Lの照射幅xとから、上記式(A)を満たす全反射角(臨界角)以上の角度θを決定することで、母基板11内でレーザー光Lを繰り返し全反射させることができる。
なお、図10におけるレーザー光LのスポットSPT1・SPT2の各々は、母基板11と積層体1との界面に、一度に照射されるレーザー光Lの大きさである。
図11は、実施形態1の表示装置の製造装置40に備えらえたプリズム32に入射されるレーザー光Lが拡がり光である場合における、全反射角(臨界角)以上の角度θを決定する条件を説明するための図である。
図11に示す、xは、プリズム32に入射されるレーザー光Lが平行光である場合のレーザー光Lの照射幅であり、x’は、プリズム32に入射されるレーザー光Lが、ディクリネーション角φ(φ>0)、すなわち、拡がり角φを有する拡がり光である場合のレーザー光Lの照射幅である。θ-φは、レーザー光Lが入射されるプリズム32の入射面とレーザー光が出射されるプリズム32の出射面(母基板11の対向表面DHと対向する面)とが成す角度であり、かつ、母基板11と積層体1との界面KMで全反射が生じる全反射角(臨界角)以上の角度である。また、dは、母基板11の厚さであり、aは、母基板11と積層体1との界面に垂直な方向に対してθ-φの角度で入射されるレーザー光の母基板11内の光路長であり、2aは、母基板11と積層体1との界面に垂直な方向に対してθ-φの角度で入射されるレーザー光の母基板11内の往復光路長であり、3aは、母基板11と積層体1との界面に垂直な方向に対してθ-φの角度で入射されるレーザー光の母基板11内の1往復と1片道の光路長である。なお、a’は、母基板11と積層体1との界面に垂直な方向に対してθ+φの角度で入射されるレーザー光の母基板11内の光路長であり、bは、拡がり角φを有するレーザー光の母基板11への入射幅である。
図11において点線で示すように、プリズム32の出射面(母基板11の対向表面DHと対向する面)の図中の左右方向の幅が、すなわち、プリズム32の長手方向と直交する方向に沿って切断した断面における下辺の長さが、母基板11内の往復光路長2a以上である場合、母基板11と積層体1との界面KMで全反射されたレーザー光がプリズム32を通じて外部へ出てしまう。したがって、プリズム32の長手方向と直交する方向に沿って切断した断面における下辺の長さは、母基板11内の往復光路長2a未満である必要がある。
プリズム32の長手方向と直交する方向に沿って切断した断面における下辺の長さは、レーザー光の母基板11への入射幅bとすることが好ましいので、2a>bとなる。
母基板11内の往復光路長2aを、母基板11の厚さdと上述した角度θ-φとから求めると、2a=2d×tan(θ-φ)となる。また、レーザー光の母基板11への入射幅bを、レーザー光の照射幅xと上述した角度θとから求めると、b=x/cosθとなる。
以上から、(2d×tan(θ-φ))>(x/cosθ)となり、2d×cosθ×tan(θ-φ)>xという式(B)を得ることができる。
また、図11に示すように、レーザー光LのスポットSPT1・SPT2・SPT3・SPT4同士が重なる条件は、3a<b+a’である。3aは3d×tan(θ-φ)であり、bは(x/cosθ)であり、a’は、d×tan(θ+φ)であるので、d×cosθ×(3tan(θ-φ)-tan(θ+φ))<xという式(C)を得ることができる。
したがって、上記式(B)及び上記式(C)から、d×cosθ×(3tan(θ-φ)-tan(θ+φ))<x<2d×cosθ×tan(θ-φ)という式(D)を得ることができる。
既知の値である、母基板11の厚さdと、レーザー光の照射幅xと、ディクリネーション角φとから、上記式(D)を満たす全反射角(臨界角)以上の角度θを決定することで、母基板11内でレーザー光を繰り返し全反射させることができる。
本実施形態の表示装置の製造方法は、所定波長領域の光を通す母基板11に、発光素子層5を含む積層体1を形成する積層体形成工程と、母基板11の積層体1が形成された面と対向する対向表面DH側に設けられた照射源からのレーザー光L0を、対向表面DH側に設けられたプリズム32と、対向表面DHとプリズム32との間に設けられた液体層33と、母基板11とを順次通過させて、母基板11と積層体1との界面KMに垂直な方向の線KM’(母基板11と積層体1との界面KMに垂直な方向)に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射し、かつ、エバネッセント光L2により、母基板11から積層体1を剥離する剥離工程と、を含む。
さらに、本実施形態の表示装置の製造方法は、前記剥離工程においては、前記照射源及びプリズム32と、積層体1を含む母基板11とのうちの一方を、他方に対して、移動しながら、前記照射源からのレーザー光L0を、プリズム32と、液体層33と、母基板11とを順次通過させ、母基板11と積層体1との界面KMに垂直な方向の線KM’(母基板11と積層体1との界面KMに垂直な方向)に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射し、かつ、エバネッセント光L2により、母基板11から積層体1を剥離する。
さらに、本実施形態の表示装置の製造方法は、前記剥離工程においては、前記照射源及びプリズム32と、積層体1を含む母基板11とのうちの一方は、他方に対して、第1方向D1及び第1方向D1とは異なる第2方向D2に移動され、母基板11と積層体1との界面KMに対する、第1方向D1に移動中のレーザー光の入射方向と、第2方向D2に移動中のレーザー光の入射方向とは、異なることが好ましい。
〔実施形態2〕
次に、図12及び図13に基づき、本発明の実施形態2について説明する。本実施形態の表示装置の製造装置40’は、母基板11と積層体1との界面KMからの全反射光を検出する検出器39を、さらに備えている点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図12及び図13に基づき、本発明の実施形態2について説明する。本実施形態の表示装置の製造装置40’は、母基板11と積層体1との界面KMからの全反射光を検出する検出器39を、さらに備えている点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図12の(a)及び図12の(b)は、検出器39をさらに備えた実施形態2の表示装置の製造装置40’の概略構成を示す図である。
図12の(a)及び図12の(b)に示すように、表示装置の製造装置40’は、母基板11の対向表面DH側に、母基板11と積層体1との界面KMからの全反射光を検出する検出器39を、備えている。
表示装置の製造装置40’においては、母基板11と積層体1との界面KMからの全反射光L6・L6’を、検出器39で検出できるように、プリズム32及び液体層33を、母基板11と積層体1との界面KMで全反射されたレーザー光の光路と重畳させている。
なお、照射装置31に備えられた照射源からのレーザー光L0の全反射光の一部を検出器39で検出できればよいので、レーザー光L0の母基板11と積層体1との界面KMからの全反射光の一部のみが、母基板11と液体層33とプリズム32とを通過して、検出器39に入射されればよい。
本実施形態においては、検出器39が検出する全反射光L6・L6’が、照射装置31に備えられた照射源からのレーザー光L0の全反射光である場合を一例に挙げて説明するが、これに限定されることはない。例えば、表示装置の製造装置40’は、母基板11の対向表面DH側に、上述したレーザー光L0以外に、赤外光、紫外光及び可視光の少なくとも一つを照射する第2照射源31L’を、さらに備えていてもよく、この場合、検出器39が検出する全反射光は、前記赤外光、前記紫外光及び前記可視光の少なくとも一つである。なお、赤外光、紫外光及び可視光の少なくとも一つを照射する第2照射源31L’は、レーザー光L0を照射する照射源31Lとともに、照射装置31に含まれていてもよい。
なお、赤外光、紫外光及び可視光の少なくとも一つを照射する第2照射源31L’は、レーザー光L0を照射する照射源31Lと同時に照射するようにする必要はなく、独立的に照射してもよい。
図12の(a)に示すように、検出器39で検出される全反射光L6が、母基板11の対向表面DHに存在する欠陥DEFの影響を受けていない場合には、検出器39では比較的強い光が検出される。一方、図12の(b)に示すように、検出器39で検出される全反射光L6’が、母基板11の対向表面DHに存在する欠陥DEFの影響を受けている場合(欠陥DEFによって一部のレーザー光L0が散乱光L3となった場合)には、検出器39では比較的弱い光が検出される。
したがって、表示装置の製造装置40’の場合、検出器39を備えているので、検出器39によって、母基板11の対向表面DHのどの位置に欠陥DEFが存在するかを把握することができる。上述したように、母基板11において、欠陥DEFが存在する部分の周辺では、レーザー光の照射量不足による母基板11と積層体1との界面KMでの剥離不具合が発生しやすいため、母基板11の対向表面DHのどの位置に欠陥DEFが存在するかを把握できれば、追加のレーザー光の照射をどの位置で行えばよいかも把握できる。
図13の(a)は、表示装置の製造装置40’が、照射源31Lを含む照射装置31及びプリズム32と、積層体1を含む母基板11とのうちの一方を、他方に対して、第1方向D1に相対的に移動しながら、レーザー光を照射する場合を示す図であり、図13の(b)は、表示装置の製造装置40’が、照射源31Lを含む照射装置31及びプリズム32と、積層体1を含む母基板11とのうちの一方を、他方に対して、第2方向D2に相対的に移動しながら、レーザー光を照射する場合を示す図である。
図13の(a)に示すように、表示装置の製造装置40’は、例えば、照射源31Lを含む照射装置31及びプリズム32が、積層体1を含む母基板11に対して、第1方向D1に相対的に移動時に、母基板11における照射源からのレーザー光の通過を妨害する欠陥DEFの位置を、検出器39が検出できる。そして、検出器39が検出した母基板11における照射源31Lからのレーザー光の通過を妨害する欠陥DEFの位置に関するデータに基づいて、図13の(b)に示すように、第2方向D2へ移動しながらレーザー光の照射を開始する位置を決定することができる。すなわち、母基板11の対向表面DHに欠陥DEFが存在する特定領域R1についてのみ追加のレーザー光の照射を行うことができるので、剥離工程にかかる工程時間を短縮することができる。
なお、表示装置の製造装置40’の場合も、図6の(a)及び図6の(b)に示す表示装置の製造装置40の場合と同様に、母基板11と積層体1との界面KMに対する、第1方向D1に移動中のレーザー光の入射方向と、第2方向D2に移動中のレーザー光の入射方向とが、異なるようにし、欠陥DEFの影響による第1方向D1に移動中のレーザー光の不十分な照射量を、第2方向D2に移動中のレーザー光の照射量で補うようにすることが好ましい。
〔実施形態3〕
次に、図14及び図15に基づき、本発明の実施形態3について説明する。本実施形態の表示装置の製造装置40’’に備えられたプリズム32’’は、例えば、台形状に構成されており、母基板11と積層体1との界面KMからの全反射光L6を、プリズム32’’の内部で反射して、再帰光L7として、母基板11側に照射し、再帰光L7は、母基板11と積層体1との界面KMに垂直な方向の線KM’に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射され、かつ、エバネッセント光L8により、母基板11から積層体1を剥離させる点において、実施形態1及び2とは異なり、その他については実施形態1及び2において説明したとおりである。説明の便宜上、実施形態1及び2の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図14及び図15に基づき、本発明の実施形態3について説明する。本実施形態の表示装置の製造装置40’’に備えられたプリズム32’’は、例えば、台形状に構成されており、母基板11と積層体1との界面KMからの全反射光L6を、プリズム32’’の内部で反射して、再帰光L7として、母基板11側に照射し、再帰光L7は、母基板11と積層体1との界面KMに垂直な方向の線KM’に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射され、かつ、エバネッセント光L8により、母基板11から積層体1を剥離させる点において、実施形態1及び2とは異なり、その他については実施形態1及び2において説明したとおりである。説明の便宜上、実施形態1及び2の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図14は、実施形態3の表示装置の製造装置40’’の概略構成を示す図である。
図14に示すように、表示装置の製造装置40’’に備えられたプリズム32’’は、母基板11と積層体1との界面KMからの全反射光L6を、プリズム32’’の内部で反射して、再帰光L7として、母基板11側に照射する。再帰光L7は、母基板11と積層体1との界面KMに垂直な方向の線KM’(母基板11と積層体1との界面KMに垂直な方向)に対して全反射角(臨界角)以上の角度θで、母基板11と積層体1との界面KMに照射され、かつ、エバネッセント光L8により、母基板11から積層体1を剥離させる。母基板11の対向表面DHに欠陥DEFが存在する箇所では、全反射されたレーザー光の一部が欠陥DEFによって散乱光L9となり、残りの一部がレーザー光L10として、母基板11と積層体1との界面KMに照射されるが、レーザー光L10・L12は弱く、エバネッセント光L11も、母基板11から積層体1を剥離させるには不十分である。
したがって、表示装置の製造装置40’’の場合も、図6の(a)及び図6の(b)に示す表示装置の製造装置40の場合と同様に、母基板11と積層体1との界面KMに対する、第1方向D1に移動中のレーザー光の入射方向と、第2方向D2に移動中のレーザー光の入射方向とが、異なるようにし、欠陥DEFの影響による第1方向D1に移動中のレーザー光の不十分な照射量を、第2方向D2に移動中のレーザー光の照射量で補うようにすることが好ましい。
表示装置の製造装置40’’の場合、図14に示すように、長手方向と直交する方向に沿って切断した断面が台形状であるプリズム32’’を備えており、プリズム32’’を用いて、母基板11と積層体1との界面KMからの1次全反射の戻り光L6を、再帰光L7として、もう一度、母基板11と積層体1との界面KMで全反射するように、再利用することができる。したがって、欠陥DEFによる散乱や母基板11自身の吸光による減衰がない限り、再帰光L7を、母基板11内で全反射で伝搬させることができる。
図15は、実施形態3の表示装置の製造装置40’’に備えらえたプリズム32’’の好ましい形状を説明するための図である。
図15に示す、xは、レーザー光Lの照射幅であり、θは、レーザー光Lが入射されるプリズム32’’の入射面とレーザー光Lが出射されるプリズム32’’の出射面(母基板11の対向表面DHと対向する面)とが成す角度であり、かつ、母基板11と積層体1との界面KMで全反射が生じる全反射角(臨界角)以上の角度である。dは、母基板11の厚さであり、d’は、プリズム32’’の入射面以外の部分の厚さである。aは、レーザー光Lの母基板11内の光路長であり、2aは、レーザー光Lの母基板11内の往復光路長であり、a’は、全反射されたレーザー光のプリズム32’’内の光路長であり、2a’は、全反射されたレーザー光のプリズム32’’内の往復光路長であり、bは、レーザー光Lの母基板11への入射幅である。なお、プリズム32’’の入射面に入射されるレーザー光Lは、平行光であるものとし、さらに、レーザー光Lは、プリズム32’’の入射面に対して、垂直に入射されるものとする。
図15において点線で示すように、プリズム32’’の出射面(母基板11の対向表面DHと対向する面)の図中の左右方向の幅が、すなわち、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さが、2a+2a’+2a以上である場合、母基板11と積層体1との界面KMで全反射されたレーザー光がプリズム32’’を通じて外部へ出てしまう。したがって、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さは、2a+2a’+2a未満である必要がある。
また、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さが、b+2a+2a’以下である場合、レーザー光Lの照射幅xに対して、プリズム32’’の内部で反射した後の母基板11への入射幅が不足する。
したがって、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さZは、下記式(E)を満たすことが好ましい。
(b+2a+2a’)<Z<(4a+2a’) 式(E)
なお、b=x/cosθであり、2a=2d×tanθであり、2a’=2d’×tanθであるので、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さは、下記式(F)となる。
なお、b=x/cosθであり、2a=2d×tanθであり、2a’=2d’×tanθであるので、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さは、下記式(F)となる。
(x/cosθ+(2d×+2d’)×tanθ)<Z<(4d+2d’)×tanθ 式(F)
なお、本実施形態においては、プリズム32’’の長手方向と直交する方向に沿って切断した断面における上辺の長さZ‘を、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さZ-bに設定した場合を一例に挙げて説明するが、母基板11と積層体1との界面KMからの1次全反射の戻り光を、再帰光として、もう一度、母基板11と積層体1との界面KMに全反射できる長さであれば、その長さは特に限定されない。
なお、本実施形態においては、プリズム32’’の長手方向と直交する方向に沿って切断した断面における上辺の長さZ‘を、プリズム32’’の長手方向と直交する方向に沿って切断した断面における下辺の長さZ-bに設定した場合を一例に挙げて説明するが、母基板11と積層体1との界面KMからの1次全反射の戻り光を、再帰光として、もう一度、母基板11と積層体1との界面KMに全反射できる長さであれば、その長さは特に限定されない。
〔実施形態4〕
次に、図16に基づき、本発明の実施形態4について説明する。本実施形態においては、積層体1’’の屈折率が母基板11’’の屈折率よりも大きく、エバネッセント光を用いずに、照射したレーザー光にてLLOを行う場合、すなわち、表示装置の製造装置が通常LLOモードである点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図16に基づき、本発明の実施形態4について説明する。本実施形態においては、積層体1’’の屈折率が母基板11’’の屈折率よりも大きく、エバネッセント光を用いずに、照射したレーザー光にてLLOを行う場合、すなわち、表示装置の製造装置が通常LLOモードである点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図16の(a)、図16の(b)及び図16の(c)は、図3に図示した表示装置の製造装置40が通常LLOモードで、母基板11’’から積層体1’’を剥離する場合を説明するための図である。
図16の(a)に示すように、積層体11’’の屈折率が1.7で、母基板11’’の屈折率が1.5である場合、レーザー光L1は、積層体1’’と母基板11’’との界面KMのスポットSPT1において、LLO(つまり、母基板11’’からの積層体1’’の剥離)を生じさせる。そして、図16の(b)に示すように、LLOが生じたスポットSPT1’では、積層体1’’と母基板11’’との間が微小に離間して空気層(図示せず)が生じる。
この空気層の屈折率は1.0であり、母基板11’’の屈折率よりも小さい当該空気層によりレーザー光L1は、図16の(b)に示すように、積層体1’’と母基板11’’との界面KMのスポットSPT2、すなわち、母基板11’’内を図の右側に進行しながら、LLOを生じさせる。そして、図16の(c)に示すように、LLOが生じたスポットSPT2’では、積層体1’’と母基板11’’との間が微小に離間して空気層(図示せず)が生じる。
母基板11’’の屈折率よりも小さい当該空気層によりレーザー光L1は、図16の(c)に示すように、積層体1’’と母基板11’’との界面KMのスポットSPT3、すなわち、母基板11’’内を図の右側に進行しながら、LLOを生じさせる。
なお、本実施形態においては、上述した実施形態1における表示装置の製造装置40が通常LLOモードである場合を一例に挙げて説明したが、これに限定されることはなく、上述した実施形態2及び実施形態3の構成でも通常LLOモードを実現することができるのは勿論である。
〔まとめ〕
〔態様1〕
母基板と、
前記母基板上に形成された発光素子層を含む積層体と、を備え、
前記母基板の前記積層体が形成された面と対向する面が、前記母基板の対向表面であり、
前記対向表面側に設けられて、レーザー光を照射する照射源と、
前記対向表面側に設けられて、前記レーザー光が照射されるプリズムと、
前記対向表面と前記プリズムとの間に設けられた液体層とを、さらに備え、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、表示装置の製造装置。
〔態様1〕
母基板と、
前記母基板上に形成された発光素子層を含む積層体と、を備え、
前記母基板の前記積層体が形成された面と対向する面が、前記母基板の対向表面であり、
前記対向表面側に設けられて、レーザー光を照射する照射源と、
前記対向表面側に設けられて、前記レーザー光が照射されるプリズムと、
前記対向表面と前記プリズムとの間に設けられた液体層とを、さらに備え、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、表示装置の製造装置。
〔態様2〕
前記積層体は、前記母基板と接する樹脂層を含むフレキシブル積層体である、態様1に記載の表示装置の製造装置。
前記積層体は、前記母基板と接する樹脂層を含むフレキシブル積層体である、態様1に記載の表示装置の製造装置。
〔態様3〕
前記積層体を含む前記母基板を移動させる母基板移動機構と、前記プリズムを移動させるプリズム移動機構との少なくとも一方を、さらに備える、態様1または2に記載の表示装置の製造装置。
前記積層体を含む前記母基板を移動させる母基板移動機構と、前記プリズムを移動させるプリズム移動機構との少なくとも一方を、さらに備える、態様1または2に記載の表示装置の製造装置。
〔態様4〕
前記照射源を移動させる照射源移動機構を、さらに備える、態様1から3の何れかに記載の表示装置の製造装置。
前記照射源を移動させる照射源移動機構を、さらに備える、態様1から3の何れかに記載の表示装置の製造装置。
〔態様5〕
前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、移動され、
前記移動中には、前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、態様1から4の何れかに記載の表示装置の製造装置。
前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、移動され、
前記移動中には、前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、態様1から4の何れかに記載の表示装置の製造装置。
〔態様6〕
前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、第1方向及び前記第1方向とは異なる第2方向に移動され、
前記母基板と前記積層体との界面に対する前記レーザー光の入射方向は、前記第1方向に移動中と、前記第2方向に移動中とで、異なる、態様5に記載の表示装置の製造装置。
前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、第1方向及び前記第1方向とは異なる第2方向に移動され、
前記母基板と前記積層体との界面に対する前記レーザー光の入射方向は、前記第1方向に移動中と、前記第2方向に移動中とで、異なる、態様5に記載の表示装置の製造装置。
〔態様7〕
前記対向表面側に、前記母基板と前記積層体との界面からの全反射光を検出する検出器を、さらに備える、態様1から6の何れかに記載の表示装置の製造装置。
前記対向表面側に、前記母基板と前記積層体との界面からの全反射光を検出する検出器を、さらに備える、態様1から6の何れかに記載の表示装置の製造装置。
〔態様8〕
前記検出器が検出する前記全反射光は、前記レーザー光である、態様7に記載の表示装置の製造装置。
前記検出器が検出する前記全反射光は、前記レーザー光である、態様7に記載の表示装置の製造装置。
〔態様9〕
前記対向表面側に設けられて、赤外光、紫外光及び可視光の少なくとも一つを照射する第2照射源を、さらに備え、
前記検出器が検出する前記全反射光は、前記赤外光、前記紫外光及び前記可視光の少なくとも一つである、態様7に記載の表示装置の製造装置。
前記対向表面側に設けられて、赤外光、紫外光及び可視光の少なくとも一つを照射する第2照射源を、さらに備え、
前記検出器が検出する前記全反射光は、前記赤外光、前記紫外光及び前記可視光の少なくとも一つである、態様7に記載の表示装置の製造装置。
〔態様10〕
前記照射源と、前記第2照射源とは、一つの照射装置に含まれている、態様9に記載の表示装置の製造装置。
前記照射源と、前記第2照射源とは、一つの照射装置に含まれている、態様9に記載の表示装置の製造装置。
〔態様11〕
前記液体層は、少なくとも前記プリズムと重畳し、前記母基板と前記積層体との界面で全反射されたレーザー光の光路とは、重畳しない、態様1から6の何れかに記載の表示装置の製造装置。
前記液体層は、少なくとも前記プリズムと重畳し、前記母基板と前記積層体との界面で全反射されたレーザー光の光路とは、重畳しない、態様1から6の何れかに記載の表示装置の製造装置。
〔態様12〕
前記プリズムは、長手方向と直交する方向に沿って切断した断面が三角形状である、態様1から11の何れかに記載の表示装置の製造装置。なお、ここでいう三角形状には、例えば、母基板と積層体との界面と、前記界面に対して成す角が臨界角以上になるレーザーの入射光線が法線となる面との2面に垂直な面に切断した断面の形状が概三角形であるものを含み、その頂点が丸みを帯びて形成されたものも含む。
前記プリズムは、長手方向と直交する方向に沿って切断した断面が三角形状である、態様1から11の何れかに記載の表示装置の製造装置。なお、ここでいう三角形状には、例えば、母基板と積層体との界面と、前記界面に対して成す角が臨界角以上になるレーザーの入射光線が法線となる面との2面に垂直な面に切断した断面の形状が概三角形であるものを含み、その頂点が丸みを帯びて形成されたものも含む。
〔態様13〕
前記プリズムは、長手方向と直交する方向に沿って切断した断面が台形状である、態様1から10の何れかに記載の表示装置の製造装置。なお、ここでいう台形状には、例えば、母基板と積層体との界面と、前記界面に対して成す角が臨界角以上になるレーザーの入射光線を法線となる面との2面に垂直な面に切断した断面の形状が概台形であるものを含み、その頂点が丸みを帯びて形成されたものも含む。
前記プリズムは、長手方向と直交する方向に沿って切断した断面が台形状である、態様1から10の何れかに記載の表示装置の製造装置。なお、ここでいう台形状には、例えば、母基板と積層体との界面と、前記界面に対して成す角が臨界角以上になるレーザーの入射光線を法線となる面との2面に垂直な面に切断した断面の形状が概台形であるものを含み、その頂点が丸みを帯びて形成されたものも含む。
〔態様14〕
前記プリズムは、前記母基板と前記積層体との界面からの全反射光を、前記プリズムの内部で反射して、再帰光として、前記母基板側に照射し、
前記再帰光は、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、態様13に記載の表示装置の製造装置。
前記プリズムは、前記母基板と前記積層体との界面からの全反射光を、前記プリズムの内部で反射して、再帰光として、前記母基板側に照射し、
前記再帰光は、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、態様13に記載の表示装置の製造装置。
〔態様15〕
前記液体層は、水または有機溶媒である、態様1から14の何れかに記載の表示装置の製造装置。
前記液体層は、水または有機溶媒である、態様1から14の何れかに記載の表示装置の製造装置。
〔態様16〕
前記液体層は、フッ素含有有機溶媒である、態様1から14の何れかに記載の表示装置の製造装置。
前記液体層は、フッ素含有有機溶媒である、態様1から14の何れかに記載の表示装置の製造装置。
〔態様17〕
前記プリズム及び前記母基板のそれぞれの少なくとも前記液体層側には、前記液体層に近づくにつれて、当該液体層の屈折率の大きさに近づく傾斜屈折率構造が設けられている、態様1から16の何れかに記載の表示装置の製造装置。
前記プリズム及び前記母基板のそれぞれの少なくとも前記液体層側には、前記液体層に近づくにつれて、当該液体層の屈折率の大きさに近づく傾斜屈折率構造が設けられている、態様1から16の何れかに記載の表示装置の製造装置。
〔態様18〕
前記積層体の屈折率が前記母基板の屈折率よりも小さく、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、かつ、エバネッセント光により、前記母基板から前記積層体を剥離させる、態様1から17の何れかに記載の表示装置の製造装置。
前記積層体の屈折率が前記母基板の屈折率よりも小さく、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、かつ、エバネッセント光により、前記母基板から前記積層体を剥離させる、態様1から17の何れかに記載の表示装置の製造装置。
〔態様19〕
所定波長領域の光を通す母基板に、発光素子層を含む積層体を形成する積層体形成工程と、
前記母基板の前記積層体が形成された面と対向する対向表面側に設けられた照射源からのレーザー光を、前記対向表面側に設けられたプリズムと、前記対向表面と前記プリズムとの間に設けられた液体層と、前記母基板とを順次通過させて、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する剥離工程と、を含む、表示装置の製造方法。
所定波長領域の光を通す母基板に、発光素子層を含む積層体を形成する積層体形成工程と、
前記母基板の前記積層体が形成された面と対向する対向表面側に設けられた照射源からのレーザー光を、前記対向表面側に設けられたプリズムと、前記対向表面と前記プリズムとの間に設けられた液体層と、前記母基板とを順次通過させて、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する剥離工程と、を含む、表示装置の製造方法。
〔態様20〕
前記剥離工程においては、前記プリズムと、前記積層体を含む前記母基板とのうちの一方を、他方に対して、移動しながら、前記照射源からのレーザー光を、前記プリズムと、前記液体層と、前記母基板とを順次通過させ、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する、態様19に記載の表示装置の製造方法。
前記剥離工程においては、前記プリズムと、前記積層体を含む前記母基板とのうちの一方を、他方に対して、移動しながら、前記照射源からのレーザー光を、前記プリズムと、前記液体層と、前記母基板とを順次通過させ、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する、態様19に記載の表示装置の製造方法。
〔態様21〕
前記剥離工程においては、前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、第1方向及び前記第1方向とは異なる第2方向に移動され、
前記母基板と前記積層体との界面に対する前記レーザー光の入射方向は、前記第1方向に移動中と、前記第2方向に移動中とで、異なる、態様20に記載の表示装置の製造方法。
前記剥離工程においては、前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、第1方向及び前記第1方向とは異なる第2方向に移動され、
前記母基板と前記積層体との界面に対する前記レーザー光の入射方向は、前記第1方向に移動中と、前記第2方向に移動中とで、異なる、態様20に記載の表示装置の製造方法。
〔態様22〕
前記剥離工程においては、前記液体層を、少なくとも前記プリズムと重畳し、前記母基板と前記積層体との界面で全反射されたレーザー光の光路とは、重畳しないように、形成及び除去する、態様19から21の何れかに記載の表示装置の製造方法。
前記剥離工程においては、前記液体層を、少なくとも前記プリズムと重畳し、前記母基板と前記積層体との界面で全反射されたレーザー光の光路とは、重畳しないように、形成及び除去する、態様19から21の何れかに記載の表示装置の製造方法。
〔態様23〕
前記剥離工程においては、前記第1方向への移動時に、検出器が検出した前記母基板における前記照射源からのレーザー光の通過を妨害する欠陥の位置に関するデータに基づいて、前記第2方向へ移動しながら前記レーザー光の照射を開始する位置を決定する、態様21に記載の表示装置の製造方法。
前記剥離工程においては、前記第1方向への移動時に、検出器が検出した前記母基板における前記照射源からのレーザー光の通過を妨害する欠陥の位置に関するデータに基づいて、前記第2方向へ移動しながら前記レーザー光の照射を開始する位置を決定する、態様21に記載の表示装置の製造方法。
〔態様24〕
前記剥離工程においては、前記母基板と前記積層体との界面に生じたエバネッセント光を用いて、前記母基板からの前記積層体の剥離が行われる、態様19から23の何れかに記載の表示装置の製造方法。
前記剥離工程においては、前記母基板と前記積層体との界面に生じたエバネッセント光を用いて、前記母基板からの前記積層体の剥離が行われる、態様19から23の何れかに記載の表示装置の製造方法。
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
本発明は、表示装置の製造装置及び表示装置の製造方法に利用することができる。
1、1’’ 積層体(表示装置)
5 発光素子層
11、11’、11’’ ガラス基板(母基板)
30 照射対象基板
31 照射装置
31L 照射源
31L’ 第2照射源
31’ 第2照射装置
32、32’、32’’ プリズム
33 液体層
34 プリズム移動機構
35a、35b 母基板移動機構
39 検出器
40、40’ 表示装置の製造装置
40’’ 表示装置の製造装置
41 表示装置の製造装置
DH 母基板の対向表面
KM 母基板と積層体との界面
KM’ 母基板と積層体との界面に垂直な方向の線
L0、L1、L4 レーザー光
L2、L5、L8、L11 エバネッセント光
L6、L6’ 全反射されたレーザー光
L7 再帰光
L3、L9 散乱光
θ 全反射角以上の角度
DEF 欠陥
D1 第1方向
D2 第2方向
5 発光素子層
11、11’、11’’ ガラス基板(母基板)
30 照射対象基板
31 照射装置
31L 照射源
31L’ 第2照射源
31’ 第2照射装置
32、32’、32’’ プリズム
33 液体層
34 プリズム移動機構
35a、35b 母基板移動機構
39 検出器
40、40’ 表示装置の製造装置
40’’ 表示装置の製造装置
41 表示装置の製造装置
DH 母基板の対向表面
KM 母基板と積層体との界面
KM’ 母基板と積層体との界面に垂直な方向の線
L0、L1、L4 レーザー光
L2、L5、L8、L11 エバネッセント光
L6、L6’ 全反射されたレーザー光
L7 再帰光
L3、L9 散乱光
θ 全反射角以上の角度
DEF 欠陥
D1 第1方向
D2 第2方向
Claims (24)
- 母基板と、
前記母基板上に形成された発光素子層を含む積層体と、を備え、
前記母基板の前記積層体が形成された面と対向する面が、前記母基板の対向表面であり、
前記対向表面側に設けられて、レーザー光を照射する照射源と、
前記対向表面側に設けられて、前記レーザー光が照射されるプリズムと、
前記対向表面と前記プリズムとの間に設けられた液体層とを、さらに備え、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、表示装置の製造装置。 - 前記積層体は、前記母基板と接する樹脂層を含むフレキシブル積層体である、請求項1に記載の表示装置の製造装置。
- 前記積層体を含む前記母基板を移動させる母基板移動機構と、前記プリズムを移動させるプリズム移動機構との少なくとも一方を、さらに備える、請求項1または2に記載の表示装置の製造装置。
- 前記照射源を移動させる照射源移動機構を、さらに備える、請求項1から3の何れか1項に記載の表示装置の製造装置。
- 前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、移動され、
前記移動中には、前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、請求項1から4の何れか1項に記載の表示装置の製造装置。 - 前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、第1方向及び前記第1方向とは異なる第2方向に移動され、
前記母基板と前記積層体との界面に対する前記レーザー光の入射方向は、前記第1方向に移動中と、前記第2方向に移動中とで、異なる、請求項5に記載の表示装置の製造装置。 - 前記対向表面側に、前記母基板と前記積層体との界面からの全反射光を検出する検出器を、さらに備える、請求項1から6の何れか1項に記載の表示装置の製造装置。
- 前記検出器が検出する前記全反射光は、前記レーザー光である、請求項7に記載の表示装置の製造装置。
- 前記対向表面側に設けられて、赤外光、紫外光及び可視光の少なくとも一つを照射する第2照射源を、さらに備え、
前記検出器が検出する前記全反射光は、前記赤外光、前記紫外光及び前記可視光の少なくとも一つである、請求項7に記載の表示装置の製造装置。 - 前記照射源と、前記第2照射源とは、一つの照射装置に含まれている、請求項9に記載の表示装置の製造装置。
- 前記液体層は、少なくとも前記プリズムと重畳し、前記母基板と前記積層体との界面で全反射されたレーザー光の光路とは、重畳しない、請求項1から6の何れか1項に記載の表示装置の製造装置。
- 前記プリズムは、長手方向と直交する方向に沿って切断した断面が三角形状である、請求項1から11の何れか1項に記載の表示装置の製造装置。
- 前記プリズムは、長手方向と直交する方向に沿って切断した断面が台形状である、請求項1から10の何れか1項に記載の表示装置の製造装置。
- 前記プリズムは、前記母基板と前記積層体との界面からの全反射光を、前記プリズムの内部で反射して、再帰光として、前記母基板側に照射し、
前記再帰光は、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、前記母基板から前記積層体を剥離させる、請求項13記載の表示装置の製造装置。 - 前記液体層は、水または有機溶媒である、請求項1から14の何れか1項に記載の表示装置の製造装置。
- 前記液体層は、フッ素含有有機溶媒である、請求項1から14の何れか1項に記載の表示装置の製造装置。
- 前記プリズム及び前記母基板のそれぞれの少なくとも前記液体層側には、前記液体層に近づくにつれて、当該液体層の屈折率の大きさに近づく傾斜屈折率構造が設けられている、請求項1から16の何れか1項に記載の表示装置の製造装置。
- 前記積層体の屈折率が前記母基板の屈折率よりも小さく、
前記照射源からのレーザー光は、前記プリズムと、前記液体層と、前記母基板とを順次通過して、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射され、かつ、エバネッセント光により、前記母基板から前記積層体を剥離させる、請求項1から17の何れか1項に記載の表示装置の製造装置。 - 所定波長領域の光を通す母基板に、発光素子層を含む積層体を形成する積層体形成工程と、
前記母基板の前記積層体が形成された面と対向する対向表面側に設けられた照射源からのレーザー光を、前記対向表面側に設けられたプリズムと、前記対向表面と前記プリズムとの間に設けられた液体層と、前記母基板とを順次通過させて、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する剥離工程と、を含む、表示装置の製造方法。 - 前記剥離工程においては、前記プリズムと、前記積層体を含む前記母基板とのうちの一方を、他方に対して、移動しながら、前記照射源からのレーザー光を、前記プリズムと、前記液体層と、前記母基板とを順次通過させ、前記母基板と前記積層体との界面に垂直な方向に対して全反射角以上の角度で、前記母基板と前記積層体との界面に照射し、前記母基板から前記積層体を剥離する、請求項19に記載の表示装置の製造方法。
- 前記剥離工程においては、前記プリズムと、前記積層体を含む前記母基板とのうちの一方は、他方に対して、第1方向及び前記第1方向とは異なる第2方向に移動され、
前記母基板と前記積層体との界面に対する前記レーザー光の入射方向は、前記第1方向に移動中と、前記第2方向に移動中とで、異なる、請求項20に記載の表示装置の製造方法。 - 前記剥離工程においては、前記液体層を、少なくとも前記プリズムと重畳し、前記母基板と前記積層体との界面で全反射されたレーザー光の光路とは、重畳しないように、形成及び除去する、請求項19から21の何れか1項に記載の表示装置の製造方法。
- 前記剥離工程においては、前記第1方向への移動時に、検出器が検出した前記母基板における前記照射源からのレーザー光の通過を妨害する欠陥の位置に関するデータに基づいて、前記第2方向へ移動しながら前記レーザー光の照射を開始する位置を決定する、請求項21に記載の表示装置の製造方法。
- 前記剥離工程においては、前記母基板と前記積層体との界面に生じたエバネッセント光を用いて、前記母基板からの前記積層体の剥離が行われる、請求項19から23の何れか1項に記載の表示装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/000700 WO2021140659A1 (ja) | 2020-01-10 | 2020-01-10 | 表示装置の製造装置及び表示装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/000700 WO2021140659A1 (ja) | 2020-01-10 | 2020-01-10 | 表示装置の製造装置及び表示装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021140659A1 true WO2021140659A1 (ja) | 2021-07-15 |
Family
ID=76787790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/000700 WO2021140659A1 (ja) | 2020-01-10 | 2020-01-10 | 表示装置の製造装置及び表示装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021140659A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194642A (ja) * | 2014-03-31 | 2015-11-05 | 株式会社東芝 | フレキシブルデバイスの製造方法及び装置 |
US20170157712A1 (en) * | 2014-11-07 | 2017-06-08 | International Business Machines Corporation | Damage-free self-limiting through-substrate laser ablation |
JP2018199163A (ja) * | 2015-12-25 | 2018-12-20 | 鴻海精密工業股▲ふん▼有限公司 | ラインビーム光源およびラインビーム照射装置ならびにレーザリフトオフ方法 |
US20190247958A1 (en) * | 2017-07-27 | 2019-08-15 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Laser lift off method and laser lift off system |
-
2020
- 2020-01-10 WO PCT/JP2020/000700 patent/WO2021140659A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194642A (ja) * | 2014-03-31 | 2015-11-05 | 株式会社東芝 | フレキシブルデバイスの製造方法及び装置 |
US20170157712A1 (en) * | 2014-11-07 | 2017-06-08 | International Business Machines Corporation | Damage-free self-limiting through-substrate laser ablation |
JP2018199163A (ja) * | 2015-12-25 | 2018-12-20 | 鴻海精密工業股▲ふん▼有限公司 | ラインビーム光源およびラインビーム照射装置ならびにレーザリフトオフ方法 |
US20190247958A1 (en) * | 2017-07-27 | 2019-08-15 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Laser lift off method and laser lift off system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5349415B2 (ja) | タッチ表示装置 | |
US7498605B2 (en) | Flat panel display | |
KR102264472B1 (ko) | 디스플레이 장치 | |
US9041017B2 (en) | Organic light-emitting display device with modified electrode surface | |
US8860034B2 (en) | Organic light-emitting display apparatus | |
KR20170050729A (ko) | 유기 발광 표시 장치 | |
US12101963B2 (en) | Display device including reflective and absorbing polarizers | |
JP2023009044A (ja) | 表示装置 | |
JPWO2019064342A1 (ja) | 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 | |
EP3736861A1 (en) | Display panel | |
WO2019064591A1 (ja) | 表示デバイス、表示デバイスの製造方法 | |
US20190372036A1 (en) | Display device including an insulating substrate with pixels disposed on a first surface | |
KR102510566B1 (ko) | 거울형 표시장치 | |
WO2021140659A1 (ja) | 表示装置の製造装置及び表示装置の製造方法 | |
KR102200258B1 (ko) | 플렉서블 디스플레이 장치 및 그의 제조 방법 | |
WO2019186845A1 (ja) | 表示装置及び表示装置の製造方法 | |
CN219628269U (zh) | 显示设备 | |
KR20220070134A (ko) | 디스플레이 패널 및 그 제조방법 | |
CN111697028A (zh) | 显示装置 | |
CN111971731B (zh) | 显示设备及显示设备的制造方法 | |
US11398610B2 (en) | Display device and method of manufacturing display device | |
KR20220061338A (ko) | 디스플레이 장치 및 전자기기 | |
KR102671454B1 (ko) | 표시 장치 및 이의 제조 방법 | |
JP5542710B2 (ja) | 表示装置用アレイ基板及び表示装置 | |
WO2019130427A1 (ja) | 表示デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20912799 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20912799 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |