WO2019015707A1 - Verfahren und vorrichtung zum herstellen von 3d-formteilen mit spektrumswandler - Google Patents

Verfahren und vorrichtung zum herstellen von 3d-formteilen mit spektrumswandler Download PDF

Info

Publication number
WO2019015707A1
WO2019015707A1 PCT/DE2018/000205 DE2018000205W WO2019015707A1 WO 2019015707 A1 WO2019015707 A1 WO 2019015707A1 DE 2018000205 W DE2018000205 W DE 2018000205W WO 2019015707 A1 WO2019015707 A1 WO 2019015707A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
powder
temperature
sintering
radiator
Prior art date
Application number
PCT/DE2018/000205
Other languages
English (en)
French (fr)
Inventor
Daniel GÜNTHER
Christoph Scheck
Imre BARDOS
Original Assignee
Voxeljet Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voxeljet Ag filed Critical Voxeljet Ag
Priority to KR1020207001896A priority Critical patent/KR102615544B1/ko
Priority to JP2020502707A priority patent/JP2020527491A/ja
Priority to US16/629,107 priority patent/US11279087B2/en
Priority to CN201880048291.8A priority patent/CN110944824B/zh
Priority to EP18756365.5A priority patent/EP3655234A1/de
Publication of WO2019015707A1 publication Critical patent/WO2019015707A1/de
Priority to US17/673,419 priority patent/US11731361B2/en
Priority to US18/229,534 priority patent/US20240025118A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40056Circuits for driving or energising particular reading heads or original illumination means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method and an apparatus for producing three-dimensional models by means of layer construction technique.
  • European Patent EP 0 431 924 B1 describes a method for producing three-dimensional objects from computer data.
  • a Parti kelmaterial is applied in a thin layer on a platform and this selectively printed by means of a print head with a binder material.
  • the Parti kel Scheme printed with the binder sticks and solidifies under the influence of the binder and optionally an additional hardener.
  • the platform is lowered by one layer thickness into a structural cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain desired height of the object is reached.
  • the printed and solidified areas create a three-dimensional object.
  • This object made of solidified particulate material is embedded after its completion in loose Parti kelmaterial and is then freed from it. This is done for example by means of a nipple. The desired objects then remain, which are then removed from the residual powder, e.g. be freed by brushing.
  • CONFIRMATION COPY loose particulate material is applied in layers and selectively solidified by means of a controlled physical radiation source.
  • This process can process various particle materials, including polymer materials.
  • the disadvantage here is that the particle bed of material can not exceed a certain bulk density, which is usually 60% of the solids density.
  • the strength of the desired components depends significantly on the achieved density. In this respect, it would be necessary here for a high strength of the components to add 40% or more of the volume of particulate material in the form of the liquid binder. This is not only a relatively time consuming process because of the single drop entry, but also causes many process problems, e.g. are given by the inevitable shrinkage of the amount of liquid during solidification.
  • the solidification of the particulate material takes place via the introduction of infrared radiation, whereby the particulate material is physically bound by means of a melting process, whereby the comparatively poor absorption of heat radiation becomes
  • IR acceptor aborber
  • the IR radiation can be introduced via various options, such as a rod-shaped IR lamp, which moves evenly over the construction field
  • the selectivity is achieved by targeted printing of the respective layer with an IR acceptor. In the places that were printed, the IR radiation coupled thereby much better in the Parti kelmaterial, as in the unprinted areas. This leads to a selective heating in the layer above the melting point and thus for selective solidification.
  • HSS high-speed sintering
  • PA12 polyamide 12
  • the material can be obtained as a fine powder, which can be processed directly in this quality. Due to the manufacturing process, however, high costs are incurred, which can exceed the costs for standard polyamide by a factor of 20-30.
  • the powder In the prior art high-speed sintering process, as with laser sintering, the powder is brought to a temperature close to the melting point of the material for processing. In the process, the powder "ages" and can only be used conditionally in subsequent processes, resulting in a low recycling rate, which negatively influences the process costs.
  • the accuracy of the components is significantly influenced by the process control.
  • the homogeneity of the variables such as powder bed density and temperature in the installation space is crucial.
  • the known methods of high-speed sintering involve a number of disadvantages, which relate on the one hand to the recycling rate and on the other to the process costs, and thus increase the unit costs and make them relatively expensive.
  • the aging of the powder is a crucial problem and the associated low recycling rate hindering the dissemination of this process. So far, approx. 50% of the unprinted powder to be replaced after a process. With powder prices of approx. 80 € / kg and a construction volume of several hundred liters, high financial expenditures are necessary here.
  • Restricting powder aging chemically is another approach.
  • nitrogen-purged machines are common in laser sintering. This can prevent powder oxidation.
  • aging can not be completely restricted because of the process, since part of the solidification reaction takes place through a post-reaction of the polymer. To limit this after-reaction would signify substantial strength limitations.
  • One problem with known high-speed sintering methods is the setting of advantageous process conditions such as e.g. the temperature window based on the particulate materials used.
  • the high-speed sintering process combines many process parameters, and the 3D printing machines used herein have many design features and components, so it is difficult to assemble the appropriate components and set up a beneficial or improved process, the improved process conditions allow. Often, it is not possible to determine which design changes are necessary to achieve acceptable process results and to obtain high-quality 3D parts or to optimize the process.
  • Another problem in the adjustment of the process conditions is to combine the process conditions so that on the one hand a sufficiently strong component is produced with desired and advantageous properties and at the same time not to be solidified Particle material process conditions are suspended so that easy unpacking remains possible.
  • a problem in this regard is that the surrounding material in the process is over-solidified and therefore difficult to separate from the component or at great expense.
  • Another problem is the radiation characteristics of conventional IR emitters, which can be installed for a high-speed sintering process SD printing process.
  • the radiation characteristics of conventional IR emitters operating thermally consist of a broad continuous spectrum of different wavelengths, the distribution of which largely corresponds to Planck's law of radiation.
  • the heating coil temperature is 2400 K and thus have a peak wavelength of about 1.2 ⁇ .
  • both surface types i.
  • the regulation of the process temperature is carried out according to the prior art by radiant heaters on the construction field. These are preferably designed as long-wave to medium-wave infrared emitters, since they heat the particulate material most effectively and have no selectivity with respect to the printed powder surface. Since the thus required long-wave infrared radiation is associated with a low temperature, emitters of these wavelengths and performance data are designed according to the prior art as a thermal emitter. Here, a good-emitting surface is usually heated by heat conduction by means of a resistance heater or a wire. Due to the heat conduction of these emitting materials in the time range of a few minutes, these react only very slowly to a change in the control value.
  • Another object of the present invention was to provide an apparatus and / or method in which the two different temperatures or temperature windows or temperature ranges, i. Warm-up temperature range or basic temperature range or warm-up temperature or basic temperature on the one hand and sintering temperature window or sintering temperature range or sintering temperature on the other hand, can be better controlled.
  • a further object of the present invention is to provide a method and a device in order to be able to carry out the heating of the surface types "printed and unprinted" in a targeted and cost-effective manner.
  • Fig. 1 heating systems of an exemplary embodiment
  • Fig. 3 process flow of a process according to the invention
  • Fig. 4 a) Schematic energy absorption and discharge curves of a powder such as polyamide 12, b) temperature curves with liquidus and solidus lines of the surface type unprinted area, c) temperature curves with liquidus and solidus lines of the surface type printed area
  • Fig. 5 Embodiment of the sintering lamp with two different beam structures.
  • Fig. 6 overhead radiator executed by means of combination of short-wave infrared radiator and spectrum converter in the beam path
  • Fig. 7 Radiation spectra, a) overlap of long-wave and short-wave radiation with absorption range powder (II) and absorber (I) in execution Sinteraggregat without filter, b) with filter; the hatched area represents the radiation energy absorbed by the absorber.
  • “Shaped body” or “component” in the sense of the invention are all three-dimensional objects produced by means of the method according to the invention and / or the device according to the invention, which have a dimensional stability.
  • Construction space is the geometric location in which the particle material bed during the construction process by repeated coating with Particle material grows or passes through the bed with continuous principles. In general, the space is limited by a floor, the building platform, by walls and an open deck, the building level. In continuous principles, there is usually a conveyor belt and bounding sidewalls.
  • the "heating-up phase” indicates heating of the device at the beginning of the process
  • the heating-up phase is completed when the target temperature of the device becomes stationary.
  • the "cooling phase” is at least as long lasting until the temperature is so low that the components experience no significant plastic deformation when removing from the space.
  • particulate materials it is possible to use all materials known for powder-based 3D printing, in particular polymers, ceramics and metals
  • the particulate material is preferably a dry, freely flowing powder, but a cohesive, cut-resistant powder or a particle-laden liquid can also be used.
  • particulate material and powder are used synonymously.
  • the "particulate material application” is the process by which a defined layer of powder is produced, either on the build platform or on an inclined plane relative to a conveyor belt with continuous principles.
  • the particulate matter application is also referred to in this document as “coating” or " Recoats "called.
  • selective liquid application can be carried out after each particle material application or, depending on the requirements of the molded article and for optimizing the production of shaped articles, also irregularly, for example several times with respect to a particle material application, whereby a sectional image is printed by the desired body.
  • any known 3D printing device can be used, which the includes required components.
  • Conventional components include coaters, construction field, means for moving the construction field or other components in continuous processes, metering devices and heat and radiation and other components known in the art, which are therefore not detailed here.
  • the "absorber” is a medium which can be processed with an inkjet printing head or with another device operating like a matrix, and which promotes the absorption of radiation for local heating of the powder.
  • Reflector fluid is the antagonist of the absorber used in the art to prevent particulate matter from sintering.
  • the “absorption” refers to the absorption of the heat energy of radiation by the powder. The absorption depends on the powder type and the wavelength of the radiation.
  • carrier refers to the medium in which the actual absorber is present, which may be an oil, a solvent or, more generally, a liquid.
  • Randomtion in the sense of the invention is, for example, heat radiation, IR radiation, microwave radiation or / and radiation in the visible or UV range
  • thermal radiation is used, for example generated by an IR radiator.
  • Random-induced heating in this document means irradiation of the building field with fixed or mobile radiation sources.
  • the absorber must be optimized for the type of radiation.This should lead to varying degrees of warming of "activated” and not “activated” powder.
  • IR heating specifically means irradiation of the construction field with an IR emitter, whereby the emitter can also be static be moved or with a track unit on the construction field.
  • the absorber By using the absorber, the IR heating in the construction field leads to different increases in temperature.
  • Random heating generalizes the term “IR heating.”
  • the absorption of radiation of any wavelength can heat a solid or a liquid.
  • An “IR emitter” is a source of infrared radiation, usually using glowing wires in quartz or ceramic housings to produce the radiation, and depending on the materials used, different wavelengths of radiation, and the wavelength of this type of emitter also depends on the power ,
  • a “radiation source” generally emits radiation of a particular wavelength or wavelength range, and a source of nearly monochromatic radiation is referred to as a "monochromatic emitter”.
  • a radiation source is also referred to as an "emitter”.
  • An "overhead radiator” in the sense of the invention is a radiation source that is mounted above the construction field, but is stationary and can be regulated in terms of its radiation power, and essentially ensures non-selective heating over the entire area.
  • the "Sinterstrahler” is a radiation source which heats the printed process powder above its sintering temperature and may be stationary, but in preferred embodiments it is moved over the construction field.
  • “Secondary radiator” is a radiator that itself becomes the active emitter of radiation through a passive heating process.
  • “SinterrT is the term for the partial coalescence of the particles in the powder. Connected to sintering in this system is the construction of strength.
  • sintered window denotes the difference between the temperature of the melting point occurring during the first heating of the powder and the solidification point which occurs during subsequent cooling.
  • the "sintering temperature” is the temperature at which the powder first melts and combines.
  • the "packing density” describes the filling of the geometric space by solids, which depends on the nature of the particle material and the application device and is an important starting point for the sintering process.
  • shrinkage refers to the process of geometrically shortening a dimension of a geometrical body as a result of a physical process.For example, sintering of non-ideally packed powders is a process involving shrinkage relative to the initial volume ,
  • Deformation occurs when the body experiences uneven shrinkage during a physical process. This deformation can be reversible or irreversible. The deformation is often related to the global geometry of the component.
  • curling in this document refers to an effect which results from the layered procedure in the described invention, whereby layers produced in quick succession are exposed to different shrinkage due to physical effects Bond then in a direction that does not coincide with the direction of shrinkage.
  • the “gray value” refers to the amount of absorber printed in the powder, whereby according to the invention different gray values can be printed on the construction field in order to achieve different degrees of heating.
  • Spectrum converter in the sense of the invention is an agent which absorbs radiation, for example electromagnetic heat radiation, and emits or emits one or more defined wavelength ranges, in which case the spectrum converter is characterized by an emitter of electromagnetic heat radiation (short-wave or long-wave radiation), ie by a lamp or a radiator, such as an overhead radiator or a sintering unit, illuminated and then outputs a defined electromagnetic heat radiation.
  • electromagnetic heat radiation short-wave or long-wave radiation
  • Frtering or “filtering” in the sense of the invention is a masking out of subareas of an electromagnetic radiation spectrum, wherein the desired electromagnetic radiation spectrum is recorded on a target surface, e.g. a construction field surface, hits.
  • Temporal window or “temperature range” in the sense of the invention is a defined temperature range which lies below or in the sintering region of the particulate material used.
  • a "radiated spectrum of one or more wavelength ranges" in the sense of the invention corresponds to the radiated spectrum of the spectrum converter.
  • a "diffuser" within the meaning of the invention is an agent that scatters incident electromagnetic radiation, for example, homogeneously and / or uniformly and / or directionally independent.
  • Base temperature in the sense of the invention refers to the temperature to which the particulate material is heated and which is lower than the melting temperature and / or the sintering temperature.
  • the object underlying the application is achieved by a method for producing 3D molded parts, wherein particulate building material is applied in a defined layer by means of coaters on a construction field, selectively one or more liquids or Parti kelmaterial one or more absorbers are applied, a Energy input by means of emitters, the areas selectively selectively deposited absorber solidify, the construction field lowered by one layer thickness or the coater is increased by a layer thickness, these steps are repeated until the desired 3D molded parts is produced, characterized in that the method at least uses a spectrum converter.
  • the invention thus provides a method in which advantageously the temperature windows of the recurring process steps can be set more precisely. As a result, further significant improvements in process management, product quality, material recycling rate, environmental benefits and cost benefits are associated.
  • the process management is gentler for the machines used and existing components.
  • the heat development is also partially lower and at least more precisely controllable.
  • the process becomes more energy efficient.
  • a spectrum converter can be used which is at least one filter which filters short-wave or long-wave radiation.
  • the filtered radiation range can be selected so that it is compatible with the spectrum of the particulate material used.
  • the filter will do so selected that preferably the spectrum irradiated on the particulate material has a wavelength of 8-3.5 micrometers.
  • the filter or filters can be selected such that the wavelengths of the radiation for the heating phase and / or the sintering phase are optimized and thus improved temperature windows are achieved on the material layer itself on the construction field.
  • any material compatible with the process parameters can be used and used.
  • a powder material a polyamide powder, a polyamide-based thermoplastic elastomer, or a urethane-based thermoplastic elastomer may be used.
  • the filters and temperature windows can then be adapted accordingly in order to achieve advantageous process control and advantages for u.a. to achieve the product parameters and recycling rate.
  • the inventive method is characterized in that the applied powder layer is heated by a first heating step to a base temperature of the powder without absorber, which is located within the sintering window of the powder material, and a second sintering step by supplying heat to a selective solidification of the absorber-printed areas at a sintering temperature above the melting temperature of the powder leads, wherein the areas with selectively applied absorber in the first step more heat than the areas without absorber and thus a temperature difference between areas is set with and without absorber.
  • a device suitable for producing 3D molded parts comprising all components necessary for a powder-based printing process, characterized in that it comprises at least one spectrum converter, preferably cooling slots, cooling recesses, cooling grooves and / or cooling holes having.
  • a device according to the invention advantageously achieves that disadvantages of known devices and methods can be reduced or substantially avoided.
  • the device according to the invention makes it possible to shift the temperature windows into more defined areas and thus to achieve more optimal temperature ranges with regard to the materials used. Associated with this are further advantages with regard to the quality of the intermediates and products. Furthermore, thus, the recycling rate of the powder material can be increased, which u.a. a cost reduction and thus lower production costs can be achieved.
  • a device is characterized in that the spectrum converter is at least one filter which defines a selected wavelength range and filters this wavelength range.
  • the filter is a borosilicate disk.
  • the selected wavelength range is selected from long-wave or short-wave infrared radiation, preferably in the wavelength range of 8 ⁇ - 3.5pm or 3.5 ⁇ - 0.5pm.
  • the spectrum transducers may be arranged in any suitable manner. It may be advantageous if at least two spectrum converters are arranged substantially one above the other, preferably a cavity is located between the at least two spectrum transformers.
  • a device according to the invention has all the components required and known for a high-speed sintering method, which therefore do not need to be described in detail here.
  • Components suitable for the method according to the invention are components selected from Construction platform, side walls, job box, coater (recoater), printhead, ceramic foil, energy input means, preferably at least one radiator, preferably an overhead radiator and / or a Sinterstrahleraggregat.
  • an essential aspect of the present invention is to control the wavelength ranges or temperature windows of the process and to perform the printing process in defined areas.
  • the overhead radiator emits a wavelength range of 8-3, 5 pm or / and the sintered radiator aggregate, preferably including a filter, has a wavelength range of 3.5-0.5 pm, which is radiated onto the particle material and / or the construction surface.
  • the device according to the invention is characterized in that the device further comprises one or more components selected from the group comprising a fluid-cooled radiator, a fan, an insulation of the building container, an insulation of the construction platform, a resistance heater, a heating coil , a resistance heater of the coater, a pyrometer, a diffuser and an infrared emitter.
  • the object is achieved by using radiation sources as sintered radiators which correspond to conventional, cost-effective IR or drying radiators, but whose proportion in the long-wave IR spectrum is kept away from the powder surface by means of a filter introduced in the beam path.
  • filters may be special glasses having a suitable absorption characteristic.
  • the absorbed, non-transmitted radiation energy can be cooled away without much effort, since an air flow is prevented on the powder surface, which would cool them and would interrupt the sintering process.
  • the larger area compared to the tube of a near-infrared radiator favors the effectiveness of air cooling, which can be carried out technically very simple and inexpensive due to its. In smaller versions, it is sufficient to make use of the convective air movements, so that they can do without an electrically operated unit such as a motor fan.
  • Filters based on a non-solid substance may equally correspond to filter and cooling medium.
  • the illumination with higher radiation intensity is thus accessible, which increases the composite of the individual partially melted in the layer construction process surfaces. This benefits the strength of the molds to be produced.
  • the use of radiation sources described not only allows the reduction of the emitter distance to the surface, but also the size of the emitter, whereby more compact machine geometries can be realized and the energy efficiency can be increased to a considerable extent. Since the usable radiator power is decoupled from the emission of long-wave radiation, the performance of the device can be easily increased. The process itself remains almost untouched. An increase in the process speed can be achieved.
  • a body introduced into the beam path can be heated in a planar manner so that it is itself stimulated to indicate radiation in the long-wave range.
  • the central task of deliberately heating the respective surface types is achieved by using short-wave IR emitters with radiation filters.
  • the prior art method consists of the steps of laminating, printing, exposing to radiation and lowering.
  • the first step is analogous to layer formation in the known powder-based 3D printing. Powder is brought up in front of a blade applied a building platform and smoothed with the blade. The positions of the build platform in two successive coating operations determines the layer thickness.
  • the layer is printed.
  • liquids are applied with an inkjet printhead. Part of the liquid is an absorber that causes local heating of the powder when exposed to radiation.
  • the thus printed layer is now covered with a radiation source and thus selectively heated.
  • a radiation source without a filter
  • the entire powder is heated strongly. But especially in activated areas, the temperature increases so that the particles begin to sinter.
  • spotlights with filters this process can be better controlled and targeted to the respective surface types.
  • the construction field is lowered by one layer thickness. Then all the above steps are repeated until the desired component is created.
  • the construction field or the unprinted areas are kept at a temperature close to the sintering temperature.
  • the additional energy for sintering the powder is low and can be introduced by gentle means.
  • the temperature surrounding the component is so high that during the ongoing building process, even in the edge regions of the component, the temperature does not fall below the recrystallization temperature and thus disturbs the layer formation.
  • an additional stationary radiation source can be present above the construction field. It works whenever the building site is not covered by an aggregate such as the coater or the printhead.
  • This so-called overhead radiator is preferably regulated so that set a constant temperature on the construction field.
  • a pyrometer sensor can be used to determine the temperature feedback.
  • the overhead radiator represents the central temperature control component in such an arrangement.
  • the function of the overhead radiator is the regulation of the process temperature. This control can also be realized by the Sinterstrahler. It must be used for the heating of unprinted surfaces matched emitters and their performance are regulated according to the requirements of the process. Similarly, the printed areas must be heated with radiation necessary for sintering and low shrinkage building.
  • static radiation panels can be realized, which combine the function of the overhead and the Sinterstrahlers. If a geometric movement of the radiation intensity makes sense geometrically, these can be composed of switchable blocks. For example, field-wise radiators can be switched off, e.g. to protect delicate components such as the printhead while driving.
  • the device necessary to carry out the invention is closely related to a 3D printer for powder-based printing.
  • the entire device is heated.
  • all heating elements are used to increase the temperature.
  • the heating phase is completed when the temperature at all measuring points of the system remains constant.
  • FIG. 1 The individual heating systems of a preferred embodiment of the invention are shown in FIG. 1 below:
  • the construction platform (102), on which the particulate material is deposited in the process and with the aid of which the layer thickness of the layers (107) is adjusted, can be heated by various systems.
  • an electrical resistance heater (104) is used. This is also preferred, based on considerations of homogeneity of the heating effect as a flat heating foil.
  • the effect of this heating is detected and regulated by a sensor.
  • the sensor is connected directly to the build platform. This itself is purposefully made of metal, preferably aluminum. Insulation (106) covers the build platform (102) down.
  • the build platform can be heated by a fluid.
  • the preferred metallic building platform heating coil (104) are installed below the preferred metallic building platform heating coil (104) are installed. Again below is an insulation (106) for homogenizing the heating effect.
  • the heating coil for example, flows through a tempering oil.
  • the preselection of the oil temperature allows an exact adjustment of the temperature. If the flow is high enough and the power adjusted, very high control qualities of the temperature can be achieved in this way.
  • the construction platform (102) is moved in the so-called construction container (110). This is removable depending on the design of the device from the device. As a result, a high temporal machine efficiency be achieved because during the unpacking of the components, a second building container can be used in the device.
  • the building container (110) is also heated.
  • the same techniques can be used for the build platform.
  • the container itself is preferably made of metal again. For a good heat transfer aluminum prefers.
  • the actually active heater (104) is again deposited with an insulation (105). Thus, the effect can be increased and the homogeneity can be increased.
  • a plug-in system for power connection may include an electrical connection or connectors for liquids.
  • the next essential heating system of a device according to the invention is the overhead radiator (108). It is inventively preferably mounted above the construction field and radiates perpendicular to the construction field. Also preferred are laterally mounted spotlights that radiate at a certain angle to the construction field. Such a construction is preferred to minimize shadowing by the coater or printhead.
  • the overhead radiator (108) can be equipped according to the invention with thermal radiators. These should have the lowest possible selectivity. For example, ceramic radiators with extremely long wavelengths can be used. The use of so-called medium wave quartz tungsten radiators is conceivable. The targeted heating of the different surface types then takes place through the sintered radiator (109).
  • a pyrometer (112) can be used as a sensor.
  • the pyrometer is aimed at a - by the control ensured not with absorber printed edge area - of the construction field.
  • the actual sintering is carried out in a preferred embodiment of the invention by a sintered radiator (109) carried along with the coater. This heats the construction field during the crossing. It can be used to heat the freshly printed powder or already covered powder layer.
  • a short-wave radiation source (201) with a pre-set filter (202) is used according to the invention, which, according to the invention optionally, can also have a plurality of filters.
  • a nested design of multiple filters (202) spaced apart (205) is preferable in order to ensure the cooling of the filters, as shown in Fig. 2b.
  • the powder is preheated in a preferred embodiment of the device prior to application to the existing powder surface, so that the layer is not cooled too much.
  • this powder preheating is also an electrical resistance heater (111) in the coater (101) is suitable.
  • all units that are heated by contact heaters can also be heated indirectly via infrared radiation. It may be particularly advantageous to heat the coater with radiation, if in the device strong vibrations due to the powder used are required.
  • a powder layer is produced by the coater (101) on the building platform (FIG. 3 a).
  • the new layer can additionally be heated with the sintered radiator (109).
  • this layer is printed by one (100) or more inkjet printheads (100) ( Figure 3b).
  • the printed layer is then warmed up with the sintering lamp (109) and then covered again with powder (FIG. 3c). Then the build platform (102) is lowered (Fig. 3d).
  • FIG. 4 shows temperature diagrams again.
  • Figure 4a shows schematically the course of the energy emitted by the powder when it is heated in one cycle and cooled again.
  • sintering temperature the material melts or sinters (sintering temperature).
  • sintering temperature the material melts or sinters (sintering temperature).
  • recrystallization temperature the sintering temperature
  • FIG. 4b shows the course of the temperature on the unprinted surface.
  • the use of the sintered radiation source results in heating and cooling phases which are virtually constant. In the unprinted area the temperature never reaches the sintering temperature.
  • FIG. 4 c shows the course in the printed area.
  • the fluctuations are stronger.
  • the process is performed at least so that the sintering temperature is exceeded for a short time and so a part of the powder is melted and remains molten. If heated too much, all the powder melts in this area and massive distortion occurs. Too much cooling of the printed area must also be avoided, since otherwise the recrystallization sets in and then all shrinkage due to the now possible power transmission to a geometric delay (warping or curling), which makes the further process impossible under certain circumstances.
  • device with a sintering lamp containing short-wave IR radiator with radiation filter, and having a thermal overhead lamp
  • the building process or process cycle begins with the coating of the building platform with a powder layer of a layer thickness of, for example, ⁇ . Even during the coating by the coater 101, the powder is heated by the overhead radiator 108, provided that the coater 101 or print head 100 are not optically covered.
  • PA12 here PA2200 of the manufacturer EOS
  • PA12 here PA2200 of the manufacturer EOS
  • the Sinterstrahler (109) which provides only the radiation that heats well the printed surface is not turned on in this step.
  • the overhead radiator (108) contains a measuring device for regulating the surface temperature of the construction field.
  • the measuring device is designed as a miniature pyrometer (112), which can determine the temperature without contact.
  • the control must take into account that the measuring device is repeatedly shaded by the print head (100) and the coater (101). This can be done by switching off the measurement value recovery or by insensitive control loop parameters.
  • the absorber for example carbon black
  • the print head (100) which is tuned exactly to the wavelength of the radiation source.
  • the picture taken by the printhead (100) is applied to the particulate material corresponds to the current shaped body cross-section.
  • the third step is the Sinter researcher.
  • the radiation source of Sinterstrahleraggregats (109) is turned on and guided over the site.
  • the power of the radiation source and the speed determine the irradiation power on the construction field.
  • the sintered radiator (109) with radiation filter made of, for example, borosilicate glass with a thickness of 2 mm from the manufacturer GVB GmbH does not heat unprinted surfaces during this drive.
  • the temperature of the printed areas thus increases, while unprinted areas are not affected.
  • the long-wave part of the radiation emitted by the radiation source which approximates to the wavelength distribution of a blackbody and has a peak wavelength of 1.2 ⁇ , absorbed from a wavelength of 3 ⁇ through the radiation filter.
  • the fourth step is to lower the build platform (102) by the thickness of a powder layer (107).
  • the construction field to the overhead emitter (108) is free and the temperature can be readjusted. Thereafter, the process cycle starts all over again with the coating process.
  • Fig. 1 describes a device which can realize the process mentioned in the example.
  • the overhead radiator (108) is designed as a long- to medium-wave thermal radiation source.
  • the building box floor and the building platform are tempered by resistance heaters (104).
  • the coater (101) and the sintered radiator assembly (109) are connected. This unit and the printhead (100) may but need not be moved separately over the construction field.
  • the sintered radiator (109) as shown in Fig. 2a removably equipped with a short-wave radiator (201) and vor nowem filter (202).
  • the long-wave components generated by the short-wave radiator (203) are absorbed by the filter so that only short-wave components can reach the powder surface (204).
  • Example 2 Device of a sintering lamp equipped with cooling function
  • Fig. 2b and Fig. 2c Shown in Fig. 2b and Fig. 2c is an embodiment of the sintering lamp with integrated cooling.
  • the radiation filters are hereby exemplified in duplicate (202a, 202b). In this case, both elements are not in contact, but have a certain distance (205) to each other. In this construction, most of the generated long-wave infrared radiation is absorbed by the filter (202a), which is closest to the short-wavelength radiator (201). Due to the long-wave infrared radiation, this is heated, but lets pass the short-wave radiation. Thus, the second filter (202b), which faces the particle surface of FIG. 1, is not heated by this long-wave thermal radiation.
  • the second filter also leaves the short-wave radiation unaffected, so that it can be used to heat the surface of the particle material wetted by the print head (100) above its melting temperature. Due to the now much lower temperatures of the second filter is prevented by the coating process (Fig. 3a) swirled Parti kelmaterial on its surface melts and glued, whereby the radiation flow would be blocked.
  • the cooling of the first filter (202a) can take place convectively (FIG. 2b) by means of openings in the housing of the unit (206) or by means of a cooling unit (FIG. 2c).
  • An embodiment by means of a cooling unit lends itself to larger versions of the sintering lamp.
  • (207) denotes a heat sink through which a cooling fluid, preferably water, flows. Convection in the unit is ensured by a fan (208), which is located on the heat sink.
  • the first filter (202a) terminates with the housing wall of the unit.
  • Example 3 Device of a sintering lamp equipped with cooling function and diffuser
  • an embodiment of the filter (202b) described in example 2 as a diffuser (202c) makes sense, in order uniformly to irradiate the entire surface of the particle material located on the construction platform when passing through the sintering lamp (204b). This ensures that a sufficiently high strength of the molding to be created can be achieved even at the edge regions of the construction platform.
  • the diffuser used in this example is cryolite glass, white opal glass manufactured by Edmund Optics.
  • Example 4 Apparatus of a sintering lamp, equipped with two short-wave radiators, each with and without radiation filter
  • the build process or process cycle begins with the coating of the build platform (102) with a powder layer.
  • the sintered radiator without filter (501) of the assembly (109), which also provides the radiation that heats well the unprinted surface is turned on in this step and heats the powder to a base temperature below the melting temperature but above the recrystallization temperature.
  • the energy supply is controlled by the power and the travel speed. Conveniently, the temperature generated is detected and also adjusted.
  • the absorber is applied, which is tuned exactly to the wavelengths of the radiation source (502) for the printed areas transmitted through the filter.
  • the image applied to the powder by the print head (100) will correspond to the current shape body cross section.
  • the third step is the Sinterfahrt.
  • the sintering unit (109) is turned on and guided over the construction field.
  • the power of the radiation source and the speed determine the irradiation power on the powder bed.
  • the aggregate with two spectra (501.502) during this ride can influence unprinted and printed areas in a targeted manner. The temperature of the printed areas thus increases, while in unprinted areas of the energy loss can be compensated by radiation.
  • the fourth step is to lower the build platform (102) by one layer thickness and is kept extremely short in this exemplary process.
  • This step is not listed in the illustration.
  • Example 5 Device of an overhead lamp equipped with short-wave radiators and absorber surface
  • the overhead lamp (108) is implemented by means of short-wave radiators with a peak wavelength in the range of 1.2 ⁇ m (601), which heat an absorber (603) located in the beam path (602) between the IR emitter and the powder surface in a planar manner. This in turn emits infrared radiation (604), but in a much longer wavelength spectrum, preferably with peak wavelengths around 4 ⁇ m.
  • the design of the absorber takes place in the smallest possible thickness of a few millimeters in order to keep the heat capacity of the material small and thus to minimize the reaction time of the emitted long-wave radiation.
  • a non-oxide ceramic made of aluminum nitride manufacturer Ceramtec, since this has a high thermal conductivity of about 200 W / mK and thus allows a fast reaction time in the structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)

Abstract

Verfahren und eine Vorrichtung zum Herstellen von 3D-Formteilen, wobei ein Spektrumswandler verwendet wird. Dieser ist definiert als ein Mittel, das eine Strahlung aufnimmt, z. B. elektromagnetische Wärmestrahlung, und einen oder mehrere definierte Wellenlängenbereiche abstrahlt oder abgibt; hierbei wird der Spektrumswandler von einem Emitter einer elektromagnetischen Wärmestrahlung (kurzwellige oder langwellige Strahlung), d.h. von einer Lampe oder einem Strahler, z.B. ein Overheadstrahler oder eine Sinteraggregat, angestrahlt und gibt dann eine definierte elektromagnetische Wärmestrahlung ab.

Description

Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtaufbautechnik.
In der europäischen Patentschrift EP 0 431 924 Bl wird ein Verfahren zur Herstellung dreidimensionaler Objekte aus Computerdaten beschrieben. Dabei wird ein Parti kelmaterial in einer dünnen Schicht auf eine Plattform aufgetragen und dieses selektiv mittels eines Druckkopfes mit einem Bindermaterial bedruckt. Der mit dem Binder bedruckte Parti kelbereich verklebt und verfestigt sich unter dem Einfluss des Binders und gegebenenfalls eines zusätzlichen Härters. Anschließend wird die Plattform um eine Schichtdicke in einen Bauzylinder abgesenkt und mit einer neuen Schicht Partikelmaterial versehen, die ebenfalls, wie oben beschrieben, bedruckt wird. Diese Schritte werden wiederholt, bis eine gewisse, erwünschte Höhe des Objektes erreicht ist. Aus den bedruckten und verfestigten Bereichen entsteht so ein dreidimensionales Objekt.
Dieses aus verfestigtem Partikelmaterial hergestellte Objekt ist nach seiner Fertigstellung in losem Parti kelmaterial eingebettet und wird anschließend davon befreit. Dies erfolgt beispielsweise mittels eines Saugers. Übrig bleiben danach die gewünschten Objekte, die dann vom Restpulver z.B. durch Abbürsten befreit werden.
In ähnlicher Weise arbeiten auch andere Pulver-gestützte Rapid- Prototyping-Prozesse (auch als schichtweises Aufbauen von Modellen oder als Schichtbautechnik bezeichnete Verfahren), wie z.B. das selektive Lasersintern oder das Elektron-Beam-Sintern bei denen jeweils ebenso ein
1
BESTÄTIGUNGSKOPIE loses Partikelmaterial schichtweise ausgebracht und mit Hilfe einer gesteuerten physikalischen Strahlungsquelle selektiv verfestigt wird.
Im Folgenden werden alle diese Verfahren unter dem Begriff „dreidimensionale Druckverfahren" oder 3D-Druckverfahren verstanden.
Das 3D-Drucken auf Basis pulverförmiger Werkstoffe und Eintrag flüssiger Binder ist unter den Schichtbautechniken das schnellste Verfahren.
Mit diesem Verfahren lassen sich verschiedene Partikelmaterialien, unter anderem auch polymere Werkstoffe, verarbeiten. Der Nachteil besteht hier jedoch darin, dass die Partikelmaterialschüttung eine gewisse Schüttdichte, die üblicherweise 60% der Feststoffdichte beträgt, nicht übersteigen kann. Die Festigkeit der gewünschten Bauteile hängt jedoch maßgeblich von der erreichten Dichte ab. Insofern wäre es hier für eine hohe Festigkeit der Bauteile erforderlich, 40% und mehr des Partikelmaterialvolumens in Form des flüssigen Binders zuzugeben. Dies ist nicht nur aufgrund des Einzeltropfeneintrages ein relativ zeitaufwändiger Prozess, sondern bedingt auch viele Prozessprobleme, die z.B. durch die zwangsläufige Schwindung der Flüssigkeitsmenge beim Verfestigen gegeben sind.
In einer anderen Ausführungsform, der unter dem Begriff „High-Speed- Sintering" in der Fachwelt bekannt ist, erfolgt die Verfestigung des Partikelmaterials über Eintrag von Infrarotstrahlung. Das Partikelmaterial wird dabei physikalisch über einen Aufschmelzvorgang gebunden. Hierbei wird die vergleichsweise schlechte Aufnahme von Wärmestrahlung bei farblosen Kunststoffen ausgenutzt. Diese lässt sich durch Einbringen eines IR-Akzeptors (Absorber) in den Kunststoff um ein Vielfaches steigern. Die IR-Strahlung kann dabei über verschiedene Möglichkeiten wie z.B. einer stabförmigen IR-Lampe eingebracht werden, die gleichmäßig über das Baufeld bewegt wird. Die Selektivität wird über das gezielte Bedrucken der jeweiligen Schicht mit einem IR-Akzeptor erreicht. An den Stellen, die bedruckt wurden, koppelt die IR Strahlung dadurch wesentlich besser in das Parti kelmaterial ein, als in den unbedruckten Bereichen. Dies führt zu einer selektiven Erwärmung in der Schicht über den Schmelzpunkt hinaus und damit zur selektiven Verfestigung. Dieser Prozess wird z.B. in EP1740367B1 und EP1648686B1 beschrieben und im Folgenden mit der Bezeichnung HSS abgekürzt.
Vom Lasersinterprozess sind verschiedene Materialien bekannt, die auch mit diesem Verfahren verarbeitet werden können. Dabei ist bei weitem das wichtigste Material Polyamid 12 (PA12). Für dieses Material gibt es mehrere Hersteller. Es werden für Schichtbau verfahren ausgezeichnete Festigkeiten erzielt.
Das Material kann als feines Pulver bezogen werden, das direkt in dieser Qualität verarbeitet werden kann. Bedingt durch den Herstellungsprozess fallen aber hohe Kosten an, die die Kosten für Standardpolyamid um den Faktor 20-30 übertreffen können.
Beim High-Speed-Sintering-Prozess nach dem Stand der Technik wird das Pulver, genau wie bei Lasersintern, zur Verarbeitung auf eine Temperatur nahe des Schmelzpunktes des Materials gebracht. Dabei „altert" das Pulver und kann in Folgeprozessen nur noch bedingt eingesetzt werden. Es ergibt sich eine geringe Recyclingquote, die die Prozesskosten negativ beeinflusst.
Die Genauigkeit der Bauteile wird maßgeblich durch die Prozessführung beeinflusst. Dabei ist die Homogenität der Größen wie Pulverbettdichte und Temperatur im Bauraum entscheidend.
Die bekannten Verfahren des High-Speed-Sintering beinhalten eine Vielzahl von Nachteilen, die zum einen die Recyclingrate und zum anderen die Prozesskosten betreffen und damit die Stückkosten erhöhen und relativ teuer machen. Insbesondere ist die Alterung des Pulvers ein entscheidendes Problem und die damit verbundene geringe Recyclingrate sehr hinderlich bei der Verbreitung dieses Prozesses. Bislang müssen ca. 50 % des unbedruckten Pulvers nach einem Prozess ersetzt werden. Bei Pulverpreisen von ca. 80€/kg und Bauvolumen von mehreren hundert Litern sind hier hohe finanzielle Aufwendungen nötig.
Ein Ansatz zur Lösung der prozessbedingten Probleme und damit eine Kostensenkung ist die Verwendung von günstigeren Pulvern. Diesem Vorgehen sind allerdings enge Grenzen gesetzt, da die meisten Pulver kein ausreichendes„Sinterfenster" aufweisen, um sicher verarbeitet zu werden. Das bedeutet, dass für die Pulver kaum stabile Prozessgrößen gefunden werden können.
Die Pulveralterung chemisch Einzuschränken ist ein weiterer Ansatz. Dabei sind beispielsweise mit Stickstoff gespülte Maschinen im Lasersintern üblich. Damit kann Pulveroxidation verhindert werden. Ganz einschränken kann man die Alterung aber schon verfahrensbedingt nicht, da ein Teil der Verfestigungsreaktion durch eine Nachreaktion des Polymers geschieht. Diese Nachreaktion einzuschränken, würde wesentliche Festigkeitseinschränkungen bedeuten.
Ein Problem bei bekannten High-Speed-Sintering-Verfahren ist die Einstellung von vorteilhaften Verfahrensbedingungen wie z.B. der Temperaturfenster bezogen auf die verwendeten Partikelmaterialien. Das High-Speed-Sintering-Verfahren vereint sehr viele Prozessparameter und die hierin verwendeten 3D-Druckmaschinen weisen sehr viele konstruktive Merkmale und Bauteile auf, sodass es schwierig ist, die geeigneten Bauteile zusammen zu stellen und einen vorteilhaften oder verbesserten Verfahrensablauf einzustellen, die verbesserte Verfahrensbedingungen erlauben. Oft ist nicht feststellbar, welche konstruktiven Änderungen nötig sind, um annehmbare Verfahrensergebnisse zu erreichen und qualitativ hochwertige 3D-Teile zu erhalten bzw. das Verfahren zu optimieren.
Ein weiteres Problem bei der Einstellung der Verfahrensbedingungen ist die Verfahrensbedingungen so zu kombinieren, dass einerseits ein genügend festes Bauteil mit gewünschten und vorteilhaften Eigenschaften hergestellt wird und gleichzeitig das nicht zu verfestigende Parti kelmaterial Verfahrensbedingungen ausgesetzt werden, damit ein leichtes Entpacken möglich bleibt. Ein Problem in dieser Hinsicht ist, dass das Umgebungsmaterial in dem Verfahren zu stark verfestigt wird und sich deshalb schlecht von dem Bauteil oder nur mit erhöhtem Aufwand trennen lässt.
Ein weiteres Problem ist die Strahlungscharakteristik von konventionellen IR-Strahlern, die für ein High-Speed-Sintering-Verfahren SD- Druckverfahren verbaut werden können.
Die Strahlungscharakteristik von konventionellen IR-Strahlern, die thermisch arbeiten, besteht aus einem breiten kontinuierlichen Spektrum verschiedener Wellenlängen, deren Verteilung weitgehend dem planckschen Strahlungsgesetz entsprechen. Um eine genügend hohe Leistungsdichte, sowie lang Lebensdauer zu erreichen, werden in der Regel kurzwellige Quarzröhren-Infrarotstrahler eingesetzt, deren Heizwendel-Temperatur bei 2400 K liegt und die somit eine Peak- Wellenlänge von ca. 1,2 μιη aufweisen.
Zwar ist es mit diesen Strahlern möglich, den Sintervorgang durchzuführen, allerdings führen die im Strahlungsspektrum mitinbegriffenen langwelligen Anteile zu einer im Sinne des Prozesses unkontrollierten Aufheizung des unbedruckten Pulvers, wodurch dieses ebenfalls zu einem gewissen Grad mitgesintert wird. Dies ist nachteilig und unerwünscht, da es das Druckverfahren und die hergestellten Produkte in ihrer Qualität verschlechtert und das Parti kelmaterial, das nicht gesintert werden soll, weniger wiederverwendbar macht.
Das Ziel, beide Flächentypen, d.h. den nicht zu verfestigenden Bereich und den zu sinternden Bereich zur Herstellung eines 3D-Formteils bzw. bedruckt und unbedruckt, gezielt beeinflussen zu können, kann nur eingeschränkt erreicht werden.
Folglich muss ein Kompromiss eingegangen werden zwischen schlechten mechanischen Eigenschaften des erzeugten Formkörpers als Folge zu geringen Energieeintrags beim Sintervorgang auf der einen Seite und starken Anhaftungen an den Bauteilen, die deren Geometrie beeinflussen, als Folge zu hohen Energieeintrags auf der anderen. Außerdem lässt sich das Pulver in engen Zwischenräumen der Formkörper dann nicht mehr entfernen.
Die maximal erreichbare Pulver-Recyclingquote sinkt bei hohem Energieeintrag drastisch, sodass hohe Kosten durch die nötige Zugabemenge an Frischpulver entstehen.
Erschwert wird dieser Effekt noch dadurch, dass die hohe Heizwendeltemperatur konventioneller kurzwelliger IR-Strahler zur Aufheizung der Quarzglasröhre führt, die diese umgibt. Dadurch erreicht diese Temperaturen von bis zu 900 K, wodurch sie selbst zum Emitter lang- bis mittelwelliger IR-Strahlung und somit zum, sog. „Sekundärstrahler" wird.
Eine Lösung des Problems der langwelligen IR-Strahlung mittels monochromatischer Emitter wie z.B. LEDs ist aufgrund der erforderlichen hohen Leistungsdichte sehr kostspielig und aufwendig. Praktisch also nicht realisierbar.
Ebenso stellt der Einsatz spezieller thermischer Nahinfrarot-Strahler mit höherer Wendeltemperatur bzw. kleinerer Peak-Wellenlänge und damit geringerer langwelliger Strahlungsanteile hohe technische Ansprüche, wie z.B. eine ausreichende Kühlung der Strahler-Röhren, insbesondere an den Wendeldurchführungen. Des Weiteren sind beide Lösung am Markt derzeit nicht etabliert und somit nur schwer verfügbar. Die Lebensdauer von Nah infrarotstrahier ist gegenüber kurzwelligen Strahlern außerdem aufgrund der hohen Drahttemperatur stark verkürzt. Die dadurch entstehenden zusätzlichen Kosten addieren sich zu den hohen Anschaffungskosten der Strahleraggregate. Dies stellt einen weiteren Nachteil bekannter Vorrichtungen für ein High-Speed-Sintering-Verfahren dar. Der Einsatz von Strahlern mit Wolfram-Halogen-Kreisprozess ist aufgrund des häufigen An- und Abschaltens des Aggregats und der dadurch resultierenden Kurzlebigkeit nicht zielführend.
Das Verdrucken einer Art von Reflektorflüssigkeit auf die nicht zu sinternden Stellen ist zwar nach dem Stand der Technik möglich, aber nicht kostengünstig umsetzbar. Aufgrund der geringen Raumausfüllung additiver Fertigungsverfahren von in der Regel max. 20% bedeutet dies auch einen hohen Verbrauch der Reflektorflüssigkeit zum Benetzen der restlichen Fläche, was sich in hohen Betriebskosten niederschlägt. Außerdem wird die doppelte Anzahl an Druckköpfen benötigt.
Aufgrund der Abstrahlcharakteristik der Sinterlampe entstehen auf dem Pulverbett Inhomogenitäten in der Temperaturverteilung. Diese sind dadurch begründet, dass die Sinterlampe keinen idealen unendlichen langen Strahler darstellt. An den Rändern des Baufelds wird somit grundsätzlich weniger Energie bei der Sinterfahrt eingebracht als in der Mitte. Dies führt zu geringerem Schichtverbund des Formkörpers in der Nähe der Baufeldränder. Zwar kann der Effekt mittels einer Vergrößerung der Sinterlampe nahezu behoben werden, dies widerspricht aber der Forderung nach kompaktem Aufbau der Maschine, welcher für die Temperaturführung von Vorteil ist.
Die Regelung der Prozesstemperatur erfolgt nach dem Stand der Technik durch Heizstrahler über dem Baufeld. Diese sind bevorzugt als langwellige bis mittelwellige Infrarot-Strahler ausgelegt, da diese das Partikelmaterial am effektivsten erwärmen und bzgl. der bedruckten Pulverfläche keinerlei Selektivität aufweisen. Da die somit erforderliche langwellige Infrarotstrahlung mit einer geringen Temperatur einhergeht, sind Strahler dieser Wellenlängen und Leistungsdaten nach dem Stand der Technik als thermische Emitter ausgeführt. Hierbei wird eine gut emittierende Fläche meist über Wärmeleitung mittels einer Widerstandsheizung oder eines Drahtes erhitzt. Aufgrund der Wärmeleitung dieser emittierenden Materialien im Zeitbereich einiger Minuten reagieren diese auf eine Änderung des Stellwerts nur sehr träge.
Der Stand der Technik erlaubt also insgesamt keine vollständig getrennte Steuerung der beiden für den Prozess relevanten Temperaturen. Somit ist eine stabile Prozessführung und damit einhergehende konstante mechanische Eigenschaften der erzeugten 3D-Formkörper innerhalb des gesamten Bauprozesses nahezu unmöglich.
Die mangelnde Kontrolle des gesamten Prozesses erschwert das Verarbeiten anderer, nicht auf PA12 basierten Partikelmaterials, z.B. TPU (thermoplastisches Elastomer auf Urethanbasis) -basierter Materialsysteme. Die schlechte Regelbarkeit der Temperaturführung hat derzeit eine sehr eingeschränkte Entwicklung von neuen Werkstoffen für bekannte High-Speed-Sintering-Verfahren (High-Speed-Sintering SD- Druckverfahren) und Vorrichtungen zur Folge.
Es war deshalb eine Aufgabe der vorliegenden Erfindung die Nachteile des Standes der Technik zu vermindern oder ganz zu vermeiden.
Eine weitere Aufgabe der vorliegenden Erfindung war es eine Vorrichtung und/oder ein Verfahren zur Verfügung zu stellen bei dem die zwei unterschiedlichen Temperaturen oder Temperaturfenster oder Temperaturbereiche, d.h. Aufwärmtemperaturbereich oder Grundtemperaturbereich bzw. Aufwärmtemperatur oder Grundtemperatur einerseits und Sintertemperaturfenster oder Sintertemperaturbereich bzw. Sintertemperatur andererseits, besser gesteuert werden können.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung bereitzustellen, um die Erwärmung der Flächentypen „bedruckt und unbedruckt" gezielt und kostengünstig vornehmen zu können. Kurze Beschreibung der Figuren
Fig. 1 : Heizsysteme einer beispielhaften Ausführung
Fig. 2: Beispielhafte Ausführung einer Sinterlampe mit vorgesetztem Filterelement a), mehreren Filterelementen b), mit Kühlung c) bzw. mit Diffusor d)
Fig. 3: Verfahrensablauf eines erfindungsgemäßen Prozesses
Fig. 4: a) Schematische Energieaufnahme- und Abgabekurven eines Pulvers wie Polyamid 12, b) Temperaturkurven mit Liquidus- und Soliduslinien des Flächentyps unbedruckte Fläche, c) Temperaturkurven mit Liquidus- und Soliduslinien des Flächentyps bedruckte Fläche
Fig. 5: Ausführung der Sinterlampe mit zwei verschiedenen Strahlenaufbauten.
Fig. 6: Overhead-Strahler ausgeführt mittels Kombination aus kurzwelliger Infrarotstrahler und Spektrumswandler im Strahlengang
Fig. 7: Strahlungsspektren, a) Überlappung langwelliger und kurzwelliger Strahlung mit Absorptionsbereich Pulver (II) und Absorber (I) bei Ausführung Sinteraggregat ohne Filter, b) mit Filter; der schraffierte Bereich stellt die vom Absorber aufgenommene Strahlungsenergie dar.
Ausführliche Beschreibung der Erfindung
Im Folgenden werden einige Begriffe der Erfindung näher erläutert.
„Formkörper" oder„Bauteil" im Sinne der Erfindung sind alles mittels des erfindungsgemäßen Verfahrens oder/und der erfindungsgemäßen Vorrichtung hergestellte dreidimensionale Objekte, die eine Formfestigkeit aufweisen.
„Bauraum" ist der geometrische Ort in dem die Partikelmaterialschüttung während des Bauprozesses durch wiederholtes Beschichten mit Parti kelmaterial wächst oder durch den die Schüttung bei kontinuierlichen Prinzipien hindurchläuft. Im Allgemeinen wird der Bauraum durch einen Boden, die Bauplattform, durch Wände und eine offene Deckfläche, die Bauebene, begrenzt. Bei kontinuierlichen Prinzipien existieren meist ein Förderband und begrenzende Seitenwände.
Die„Aufheizphase" kennzeichnet ein Erwärmen der Vorrichtung zu Beginn des Verfahrens. Die Aufheizphase ist abgeschlossen, wenn die Solltemperatur der Vorrichtung stationär wird.
Die„Abkühlphase" ist mindestens solange andauernd, bis die Temperatur so niedrig ist, dass die Bauteile keine merklichen plastischen Deformationen beim Entnehmen aus dem Bauraum erfahren.
Als„Partikelmaterialien" können alle für den Pulver-basierten 3D Druck bekannten Materialien verwendet werden, insbesondere Polymere, Keramiken und Metalle. Das Partikelmaterial ist vorzugsweise ein trocken frei fließendes Pulver, es kann aber auch ein kohäsives schnittfestes Pulver oder eine partikelbeladene Flüssigkeit verwendet werden. In dieser Schrift werden Partikelmaterial und Pulver synonym verwendet.
Der „Partikelmaterialauftrag" ist der Vorgang bei dem eine definierte Schicht aus Pulver erzeugt wird. Dies kann entweder auf der Bauplattform oder auf einer geneigten Ebene relativ zu einem Förderband bei kontinuierlichen Prinzipen erfolgen. Der Partikelmateria lauftrag wird in dieser Schrift auch„Beschichtung" oder„Recoaten" genannt.
„Selektiver Flüssigkeitsauftrag" kann im Sinne der Erfindung nach jedem Partikelmaterialauftrag erfolgen oder je nach den Erfordernissen des Formkörpers und zur Optimierung der Formkörperherstellung auch unregelmäßig, beispielsweise mehrfach bezogen auf einen Partikelmaterialauftrag, erfolgen. Dabei wird ein Schnittbild durch den gewünschten Körper aufgedruckt.
Als „Vorrichtung" zum Durchführen des erfindungsgemäßen Verfahrens kann jede bekannte 3D-Druckvorrichtung verwendet werden, die die erforderlichen Bauteile beinhaltet. Übliche Komponenten beinhalten Beschichter, Baufeld, Mittel zum Verfahren des Baufeldes oder anderer Bauteile bei kontinuierlichen Verfahren, Dosiervorrichtungen und Wärme- und Bestrahlungsmittel und andere dem Fachmann bekannte Bauteile, die deshalb hier nicht näher ausgeführt werden.
Der "„Absorber" ist im Sinne dieser Erfindung ein mit einem Tintenstrahldruckkopf oder mit einer anderen matrixartig arbeitenden Vorrichtung verarbeitbares Medium, das die Absorption von Strahlung zur lokalen Erwärmung des Pulvers fördert.
„Reflektorflüssigkeit" wird der Antagonist des Absorbers genannt, der nach dem Stand er Technik eingesetzt wird, um Partikelmaterialien am Sintern zu hindern.
Die „Absorption" bezeichnet die Aufnahme der Wärmeenergie von Strahlung durch das Pulver. Die Absorption ist abhängig vom Pulvertyp und der Wellenlänge der Strahlung.
Der„Träger" bezeichnet das Medium in dem der eigentliche Absorber vorhanden ist. Es kann sich um ein Öl, ein Lösemittel oder allgemein um eine Flüssigkeit handeln.
„Strahlung" im Sinne der Erfindung ist z.B. Wärmestrahlung, IR- Strahlung, Mikrowellenstrahlung oder/und Strahlung im sichtbaren Bereich oder UV-Bereich. In einer Ausführungsform wird Wärmestrahlung verwendet z.B. erzeugt durch einen IR-Strahler.
„Strahlungsinduzierte Erwärmung" bedeutet in dieser Schrift eine Bestrahlung des Baufeldes mit festen oder beweglichen Strahlungsquellen. Der Absorber muss für die Strahlungsart optimiert sein. Dabei soll es zu einer unterschiedlich starken Erwärmung von „aktiviertem" und nicht „aktiviertem" Pulver kommen.
„IR-Erwärmung" bedeutet in dieser Schrift speziell eine Bestrahlung des Baufeldes mit einem IR-Strahler. Dabei kann der Strahler ebenso statisch sein oder mit einer Verfahreinheit über das Baufeld bewegt werden. Durch den Einsatz des Absorbers führt die IR-Erwärmung im Baufeld zu unterschiedlich starken Temperaturanstiegen.
„Strahlungserwärmung" verallgemeinert den Begriff IR- Erwärmung. Durch die Absorption von Strahlung beliebiger Wellenlänge kann sich ein Festkörper oder eine Flüssigkeit erwärmen.
Mit Flächentyp wird die Differenzierung zwischen mit Absorber unbedruckten und bedruckten Bereichen zum Ausdruck gebracht.
Ein „IR-Strahler" ist eine Quelle von infraroter Strahlung. Dabei werden meist glühende Drähte in Quarz oder Keramikgehäusen zur Erzeugung der Strahlung benutzt. Je nach eingesetzten Materialien ergeben sich unterschiedliche Wellenlängen der Strahlung. Die Wellenlänge ist bei diesem Strahlertyp zusätzlich abhängig von der Leistung.
Eine „Strahlungsquelle" gibt generell Strahlung mit einer bestimmten Wellenlänge oder eines bestimmten Wellenlängenbereichs ab. Eine Strahlungsquelle mit nahezu monochromatischer Strahlung wird als „monochromatischer Strahler" bezeichnet. Eine Strahlungsquelle wird auch als„Emitter" bezeichnet.
Ein „Overheadstrahler" im Sinne der Erfindung ist eine Strahlungsquelle die über dem Baufeld angebracht ist. Sie ist stationär kann aber in ihrer Strahlungsleistung reguliert werden. Sie sorgt im Wesentlichen für eine flächige nicht selektive Erwärmung.
Der „Sinterstrahler" ist eine Strahlungsquelle, die das bedruckte Prozesspulver über seine Sintertemperatur erhitzt. Sie kann stationär sein. In bevorzugten Ausführungen wird sie aber über das Baufeld bewegt. Im Sinne dieser Erfindung ist der Sinterstrahler als monochromatischer Strahler ausgeführt.
„Sekundärstrahler" ist ein Strahler, der durch einen passiven Aufheizvorgang selbst zum aktiven Emitter von Strahlung wird. „SinterrT ist der Begriff für das partielle Zusammenwachsen der Partikel im Pulver. Mit dem Sintern verbunden ist bei diesem System der Aufbau von Festigkeit.
Der Begriff „Sinterfenster" bezeichnet die Differenz der Temperatur des beim ersten Aufheizen des Pulvers auftretenden Schmelzpunktes und dem bei anschließendem Abkühlen auftretenden Erstarrungspunktes.
Die„Sintertemperatur" ist die Temperatur ab der das Pulver erstmalig aufschmilzt und sich verbindet.
Unterhalb der „Rekristallisationstemperatur" wird einmal aufgeschmolzenes Pulver wieder fest und schwindet deutlich.
Die „Packungsdichte" beschreibt die Ausfüllung des geometrischen Raumes durch Feststoff. Sie hängt von der Natur des Partikelmaterials und der Auftragsvorrichtung ab und ist eine wichtige Ausgangsgröße für den Sinterprozess.
Der Begriff „Schwindung" bezeichnet den Vorgang der geometrischen Verkürzung einer Abmessung eines geometrischen Körpers infolge eines physikalischen Vorganges. Beispielhaft ist das Sintern von nicht ideal gepackten Pulvern ein Vorgang der eine Schwindung relativ auf das Anfangsvolumen mit sich bringt. Einer Schwindung kann eine Richtung zugeordnet werden.
„Deformation" tritt auf, wenn der Körper bei einem physikalischen Prozess eine ungleichmäßige Schwindung erfährt. Diese Deformation kann reversibel oder irreversibel sein. Die Deformation wird oft auf die globale Geometrie des Bauteils bezogen.
Als „Curling" wird in dieser Schrift ein Effekt bezeichnet, der vom schichtweisen Vorgehen bei der beschriebenen Erfindung kommt. Dabei sind jeweils kurz nacheinander erzeugte Schichten einer unterschiedlichen Schwindung ausgesetzt. Durch physikalische Effekte deformiert sich der Verbund dann in einer Richtung, die nicht mit der Richtung der Schwindung zusammenfällt.
Der„Grauwert" bezeichnet die in das Pulver eingedruckte Absorbermenge. Dabei können erfindungsgemäß verschiedene Grauwerte auf das Baufeld aufgedruckt werden, um unterschiedliche Erwärmungsgrade zu erzielen.
„Spektrumswandler" im Sinne der Erfindung ist ein Mittel, das eine Strahlung aufnimmt, z. B. elektromagnetische Wärmestrahlung, und einen oder mehrere definierte Wellenlängenbereiche abstrahlt oder abgibt; hierbei wird der Spektrumswandler von einem Emitter einer elektromagnetischen Wärmestrahlung (kurzwellige oder langwellige Strahlung), d.h. von einer Lampe oder einem Strahler, z.B. ein Overheadstrahler oder eine Sinteraggregat, angestrahlt und gibt dann eine definierte elektromagnetische Wärmestrahlung ab.
„Filter" oder „filtern" im Sinne der Erfindung ist ein Ausblenden von Teilbereichen eines elektromagnetischen Strahlungsspektrums, wobei das gewünschte elektromagnetischen Strahlungsspektrums auf einer Zielfläche, z.B. ein Baufeldoberfläche, auftrifft.
„Temperaturfenster" oder„Temperaturbereich" im Sinne der Erfindung ist ein definierter Temperaturbereich, der unterhalb oder im Sinterbereich des verwendeten Partikelmaterials liegt.
Ein„aufgestrahltes Spektrum eines oder mehrerer Wellenlängenbereiche" im Sinne der Erfindung ist entspricht dem abgestrahlten Spektrum des Spektrumwandlers.
Ein „Diffusor" im Sinne der Erfindung ist ein Mittel, das auftreffende elektromagnetische Strahlung streut, z.B. homogen oder/und gleichmäßig oder/und richtungsunabhängig.
„Basistemperatur" im Sinne der Erfindung bezeichnet die Temperatur, auf die das Partikelmaterial aufgeheizt wird und die geringer ist als die Schmelztemperatur oder/und die Sintertemperatur. Die Erfindung wird im Weiteren näher ausgeführt, wobei jeder der Aspekte und Merkmale der Erfindung jeweils miteinander kombiniert werden können auch wenn dies nicht explizit bei jedem Merkmal ausgeführt wird.
Die der Anmeldung zugrunde liegende Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum Herstellen von 3D-Formteilen, wobei partikelförmiges Baumaterial in einer definierten Schicht mittels Beschichter auf ein Baufeld aufgetragen wird, selektiv eine oder mehrere Flüssigkeiten oder Parti kelmaterial eines oder mehrerer Absorber aufgebracht werden, ein Energieeintrag mittels Strahler erfolgt, wobei die Bereiche mit selektiv aufgebrachtem Absorber selektiv verfestigen , das Baufeld um eine Schichtstärke abgesenkt oder der Beschichter um eine Schichtstärke angehoben wird, diese Schritte wiederholt werden bis das gewünschte 3D-Formteilen erzeugt ist, dadurch gekennzeichnet, dass das Verfahren mindestens einen Spektrumswandler verwendet.
Die Erfindung stellt somit ein Verfahren bereit, bei dem vorteilhafterweise die Temperaturfenster der wiederkehrenden Verfahrensschritte präziser eingestellt werden können. Damit sind in der Folge weitere signifikante Verbesserungen der Verfahrensführung, der Produktqualität, der Recyclingquote der Materialien, ökologische Vorteile und Kostenvorteile verbunden.
Des Weiteren ist die Verfahrensführung schonender für die verwendeten Maschinen und darin vorhandenen Bauteile. Die Wärmeentwicklung ist auch teilweise geringer und jedenfalls präziser steuerbar. Weiterhin wird das Verfahren dadurch energieeffizienter.
In dem erfindungsgemäßen Verfahren kann ein Spektrumswandler verwendet werden, der mindestens ein Filter ist, der kurzwellige oder langwellige Strahlung filtert.
Weiterhin kann in dem erfindungsgemäßen Verfahren der gefilterte Strahlungsbereich so ausgewählt werden, dass er mit dem Spektrum des verwendeten Partikelmaterials kompatibel ist. Dabei wird der Filter so ausgewählt, dass vorzugsweise das auf das Partikelmaterial aufgestrahlte Spektrum eine Wellenlänge von 8 - 3,5 mikrometer hat. Hierbei kann der oder die Filter so gewählt werden, dass die Wellenlängen der Strahlung für die Aufheizphase oder/und die Sinterphase optimiert werden und somit verbesserte Temperaturfenster an der Materialschicht selbst auf dem Baufeld erreicht werden.
In dem erfindungsgemäßen Verfahren kann jedes mit den Verfahrensparametern kompatible Material eingesetzt und verwendet werden. Beispielsweise kann als Pulvermaterial ein Polyamidpulver, ein thermoplastisches Elastomer auf Polyamidbasis oder ein thermoplastisches Elastomer auf Urethanbasis verwendet werden. Dabei können dann die Filter und Temperaturfenster entsprechend angepasst werden, um eine vorteilhafte Verfahrensführung und Vorteile für u.a. die Produktparameter und Recyclingquote zu erzielen.
Beispielsweise ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass die aufgebrachte Pulverschicht durch einen ersten Aufheizschritt auf eine Basistemperatur des Pulvers ohne Absorber, welches sich innerhalb des Sinterfensters des Pulvermaterials befindet, erwärmt wird und ein zweiter Sinterschritt durch Wärmezufuhr zu einer selektiven Verfestigung der mit Absorber bedruckten Bereiche bei einer Sintertemperatur oberhalb der Schmelztemperatur des Pulvers führt, wobei die Bereiche mit selektiv aufgebrachtem Absorber im ersten Schritt stärker erhitzen als die Bereiche ohne Absorber und somit eine Temperaturdifferenz zwischen Bereichen mit und ohne Absorber eingestellt wird.
Des weiteren wird die Aufgabe erfindungsgemäß gelöst durch eine Vorrichtung geeignet zum Herstellen von 3D-Formteilen, umfassend alle für ein Pulver-basiertes Druckverfahren nötigen Komponenten, dadurch gekennzeichnet, dass sie mindestens einen Spektrumswandler aufweist, der vorzugsweise Kühlschlitze, Kühlvertiefungen, Kühlrillen oder/und Kühlbohrungen aufweist. Eine erfindungsgemäße Vorrichtung erreicht vorteilhafter Weise, dass Nachteile bekannter Vorrichtungen und Verfahren vermindert werden oder im Wesentlichen vermieden werden können.
Mit der erfindungsgemäßen Vorrichtung wird es möglich die Temperaturfenster in definiertere Bereiche zu verschieben und somit optimalere Temperaturbereiche in Hinblick auf die eingesetzten Materialien zu erreichen. Damit verbunden sind weitere Vorteile in Hinblick auf die Qualität der Zwischenprodukte und Produkte. Weiterhin kann somit die Recyclingrate des Pulvermaterials erhöht werden, womit u.a. eine Kosten red uktion und somit niedrigere Produktionskosten erreicht werden können.
Eine erfindungsgemäße Vorrichtung ist dadurch gekennzeichnet, dass der Spektrumswandler mindestens ein Filter ist, der einen ausgewählten Wellenlängenbereich definiert und diesen Wellenlängenbereich filtert.
Es können weiterhin alle für die angestrebten Verfahrensbedingungen geeigneten Spektrumwandler bzw. Filter verwendet werden, bspw. ist der Filter eine Borosilikatscheibe.
In einem Aspekt der Erfindung ist es wichtig, dass der ausgewählte Wellenlängenbereich ausgewählt ist aus langwelliger oder kurzwelliger Infrarotstrahlung, vorzugsweise im Wellenlängenbereich von 8μιη - 3,5pm bzw. 3,5μιη - 0,5pm.
In der erfindungsgemäßen Vorrichtung können die Spektrumswandler in jeder geeigneten Weise angeordnet werden. Vorteilhaft kann sein, wenn mindestens zwei Spektrumswandler im Wesentlichen übereinander angeordnet sind, vorzugsweise sich ein Hohlraum zwischen den mindestens zwei Spektrumswandlern befindet.
Eine erfindungsgemäße Vorrichtung weist alle für ein High-Speed- Sintering-Verfahren notwendigen und bekannten Bauteile, die deshalb hier nicht ausführlich beschrieben werden müssen. Für das erfindungsgemäße Verfahren geeignete Bauteile sind Komponenten ausgewählt aus Bauplattform, Seitenwände, Jobbox, Beschichter (Recoater), Druckkopf, Keramikfolie, Energieeintragsmittel, vorzugsweise mindestens ein Strahler, vorzugsweise ein Overheadstrahler oder/und ein Sinterstrahleraggregat.
Wie oben ausgeführt ist ein wesentlicher Aspekt der vorliegenden Erfindung die Wellenlängenbereiche bzw. die Temperaturfenster des Verfahrens zu steuern und das Druckverfahren in definierten Bereichen durchzuführen.
Vorteilhaft ist es deshalb, dass der Overheadstrahler einen Wellenlängenberich von 8-3, 5pm oder/und das Sinterstrahleraggregat, vorzugsweise einschließlich Filter, einen Wellenlängenberich von 3,5- 0,5pm abstrahlt, der auf das Partikelmaterial und/oder die Baufläche aufgestrahlt wird.
Weiterhin kann es vorteilhaft sein, wenn die erfindungsgemäße Vorrichtung dadurch gekennzeichnet ist, dass die Vorrichtung weiter aufweist eine oder mehrere Komponenten ausgewählt aus der Gruppe umfassend einen fluidgekühlten Radiator, einen Ventilator, eine Isolierung des Baubehälters, eine Isolierung der Bauplattform, eine Widerstandsheizung, einen Heizwendel, eine Widerstandsheizung des Beschichters, ein Pyrometer, einen Diffusor und einen Infrarot-Strahler.
Weitere Aspekte der Erfindung werden im Folgenden ausgeführt.
Im Allgemeinen wird die Aufgabe dadurch gelöst, dass Strahlungsquellen als Sinterstrahler eingesetzt werden, die herkömmlichen, kostengünstigen IR- bzw. Trocknungsstrahlern entsprechen, deren Anteil am langwelligen IR-Spektrum jedoch mittels eines im Strahlengang eingebrachten Filters von der Pulveroberfläche fern gehalten wird. Diese Filter können spezielle Gläser sein, die eine geeignete Absorptionscharakteristik aufweisen. Auch eine Filterung mittels nicht-solider Stoffe wie z.B. eine Flüssigkeits- oder Gasschicht ist möglich. Die absorbierte, nicht transmittierte Strahlungsenergie kann ohne großen Aufwand weggekühlt werden, da ein Luftstrom auf die Pulveroberfläche verhindert wird, der diese auskühlen und den Sintervorgang unterbrechen würde. Die größere Fläche im Vergleich zur Röhre eines Nahinfrarot- Strahlers begünstigt die Effektivität einer Luftkühlung, die aufgrund dessen technisch sehr einfach und kostengünstig ausgeführt werden kann. Bei kleineren Ausführungen reicht ein Ausnutzen der konvektiven Luftbewegungen aus, sodass diese gänzlich ohne elektrisch betriebenem Aggregat, wie z.B. einem Motor-Lüfter auskommen.
Ebenso ist der Einsatz zweier oder mehrerer hinter einander positionierter Filter möglich. Dadurch lässt sich die effektive Kühlfläche weiter erhöhen. Eine dadurch ebenso erreichbare Verbesserung der Filtercharakteristik ermöglicht eine sparsame Ausführung.
Filter auf Basis eines nicht-soliden Stoffes können gleichermaßen Filter- und Kühlmedium entsprechen.
Die Entfernung der langwelligen Infrarotstrahlung zieht zahlreiche weitere Vorteile nach sich. So erhöht sich weiterhin die Auswahl an für die Strahlung transparenter Materialien. Dies schließt marktübliche Materialien mit ein, die als Diffusor eingesetzt werden können, um damit die Strahlungsgleichmäßigkeit zu maximieren. Eine Verkleinerung der Sinterlampe und damit der Prozesskammer ist dadurch möglich, was einer einfacheren Temperaturführung des Prozesses zu Gute kommt.
Die Beleuchtung mit höherer Strahlungsintensität ist dadurch zugänglich, was den Verbund der einzelnen im Schichtaufbauverfahren teilgeschmolzenen Flächen steigert. Dies kommt der Festigkeit der herzustellenden Formen zu Gute. Der Einsatz beschriebener Strahlungsquellen ermöglicht nicht nur die Reduzierung des Strahlerabstandes zur Fläche, sondern auch der Strahlergröße, wodurch sich kompaktere Maschinengeometrien realisieren lassen und sich die Energieeffizienz in erheblichen Maße steigern lässt. Da die einsetzbare Strahlerleistung von der Emission langwelliger Strahlung entkoppelt ist, kann die Leistung der Vorrichtung problemlos gesteigert werden. Der Prozess an sich bleibt davon nahezu unberührt. Eine Erhöhung der Prozessgeschwindigkeit ist dadurch erreichbar.
Umgekehrt kann eine Entkopplung von Wellenlänge und Heizstrahlertemperatur bei den Overhead-Aggregaten zum Einsatz kommen.
Mittels kurzwelliger Strahler kann eine in den Strahlengang eingebrachter Körper flächig erhitzt werden, sodass dieser selbst dazu angeregt wird, Strahlung im langwelligen Bereich anzugeben.
Wird der flächige Körper genügend dünn ausgeführt, und somit die absolute Wärmekapazität gering gehalten, kann auf abrupte Änderungen des Energieinhalts des Pulverkuchens, z.B. beim Drucken großflächiger Formkörper, in ausreichender Geschwindigkeit reagiert werden, um somit den Erstellvorgang des dreidimensionalen Formkörpers in einer wirtschaftlich sinnvollen Zeitspanne von einigen Stunden zu erzeugen, da pro gedruckter Schicht nicht pausiert werden muss, um den Emittern Zeit für die Temperierung der Pulveroberfläche durch Anpassung der Leistung geben zu können.
Beispiele
Kurze Beschreibung der verwendeten Mittel und ihre Wirkungen
Die zentrale Aufgabenstellung die jeweiligen Flächentypen gezielt zu erwärmen wird über den Einsatz kurzwelliger IR-Strahler mit Strahlungsfilter erreicht.
Das Verfahren nach dem Stand der Technik besteht aus den Schritten Schichterzeugen, Bedrucken, Belichten mit Strahlung und Absenken. Der erste Schritt ist analog zur Schichtbildung beim bekannten pulverbasierten-3D-Drucken. Pulver wird vor eine Klinge gebracht, auf eine Bauplattform aufgebracht und mit der Klinge glattgestrichen. Die Positionen der Bauplattform bei zwei aufeinanderfolgenden Beschichtungsvorgängen bestimmt dabei die Schichtstärke.
Im Anschluss wird die Schicht bedruckt. Beim hier genannten Verfahren werden Flüssigkeiten mit einem Tintenstrahldruckkopf aufgebracht. Ein Teil der Flüssigkeit ist ein Absorber, der bei Einwirkung einer Strahlung lokal eine Erwärmung des Pulvers verursacht.
Die so bedruckte Schicht wird jetzt mit einer Strahlungsquelle überstrichen und damit selektiv erwärmt. Bei Einsatz einer thermischen Strahlungsquelle ohne Filter wird das komplette Pulver stark erhitzt. Besonders aber in aktivierten Bereichen steigt die Temperatur derart an, dass die Partikel zu sintern beginnen. Bei Verwendung von Strahlern mit Filter kann dieser Prozess besser gesteuert werden und gezielt auf die jeweiligen Flächentypen eingewirkt werden.
Nach diesem Schritt wird das Baufeld um eine Schichtstärke abgesenkt. Dann werden alle oben genannten Schritte wiederholt bis das gewünschte Bauteil entstanden ist.
Das Baufeld oder die unbedruckten Flächen werden auf einer Temperatur nahe der Sintertemperatur gehalten. Zum einen ist dann die Zusatzenergie zur Sinterung des Pulvers gering und kann durch sanft wirkende Mittel eingebracht werden. Zum anderen ist die das Bauteil umgebende Temperatur so hoch, dass während des fortschreitenden Bauprozesses auch in den Randbereichen des Bauteils die Temperatur nicht unter die Rekristallisationstemperatur fällt und somit die Schichtbildung stört.
Zusätzlich zur Strahlungsquelle die das Baufeld überstreicht, kann optional eine zusätzliche stationäre Strahlungsquelle oberhalb des Baufeldes vorhanden sein. Sie wirkt jeweils, wenn das Baufeld nicht durch ein Aggregat, wie dem Beschichter oder dem Druckkopf, abgedeckt wird. Dieser sogenannte Overheadstrahler wird bevorzugt geregelt, sodass sich eine konstante Temperatur auf dem Baufeld einstellt. Beispielsweise kann ein Pyrometersensor verwendet werden, um den Temperatur-Istwert zu bestimmen. Der Overheadstrahler stellt in einer solchen Anordnung die zentrale Temperaturregelungskomponente dar.
Die Funktion des Overheadstrahlers ist die Regelung der Prozesstemperatur. Diese Regelung kann aber auch durch den Sinterstrahler realisiert werden. Dabei müssen für die Erwärmung von unbedruckten Flächen angepasste Strahler verwendet werden und deren Leistung gemäß der Erfordernisse des Prozesses geregelt werden. Ebenso müssen die bedruckten Bereiche mit einer Strahlung erwärmt werden, die für das Sintern und schwundarme Bauen notwendig sind.
Fällt die Regelung über den Overheadstrahler weg, können die Vorgänge Drucken und Beschichten nahezu ohne Zeitverzögerung aneinander gereiht werden.
Durch dieses Verfahren können ebenso statische Strahlungspanele realisiert werden, die die Funktion des Overhead- und des Sinterstrahlers vereinigen. Ist eine geometrische Bewegung der Strahlungsintensität geometrisch sinnvoll, können diese aus schaltbaren Blöcken zusammengesetzt werden. Beispielsweise können feldweise Strahler abgeschaltet werden um z.B. empfindliche Komponenten wie den Druckkopf bei dessen Fahrt zu schonen.
Die Abschirmung von langwelliger Infrarot-Strahlung und die durch den nun kostengünstig ermöglichten Bau geschlossener Aggregate verbesserte Kühlung führen zu niedrigeren Temperaturen in der Vorrichtung. Dies ist von Vorteil um empfindliche Komponenten zu schonen.
Weitere beispielhafte Ausführungen der Erfindung
Allgemeine, detaillierte Beschreibung zur Vorrichtung
Die zur Ausführung der Erfindung notwendige Vorrichtung ist eng an einen 3D-Drucker für das pulverbasierte Drucken angelehnt. Zusätzlich werden weitere Prozesseinheiten für das Temperieren und das Eindrucken der Prozessflüssigkeiten eingesetzt.
Zu Beginn des Verfahrens wird die gesamte Vorrichtung aufgeheizt. Dazu werden alle Heizelemente zur Steigerung der Temperatur benutzt. Die Aufheizphase ist abgeschlossen, wenn die Temperatur an allen Messstellen des Systems konstant bleibt.
Die einzelnen Heizsysteme einer bevorzugten Ausführung der Erfindung werden gemäß Fig. 1 im Folgenden aufgeführt:
Die Bauplattform (102), auf der das Parti kelmaterial im Prozess abgelegt wird und mit deren Hilfe die Schichtstärke der Schichten (107) eingestellt wird, kann über verschiedene Systeme beheizt werden. In einer bevorzugten Ausführung kommt eine elektrische Widerstandsheizung (104) zum Einsatz. Diese wird ebenso bevorzugt, auf Grund von Überlegungen zur Homogenität der Heizwirkung als flächige Heizfolie ausgeführt. Die Wirkung dieser Heizung wird über einen Sensor erfasst und geregelt. Der Sensor ist direkt mit der Bauplattform verbunden. Diese selbst ist zielführend aus Metall, vorzugsweise Aluminium, hergestellt. Eine Isolierung (106) deckt die Bauplattform (102) nach unten ab.
Ebenso kann die Bauplattform durch ein Fluid erhitzt werden. Dazu sind unterhalb der bevorzugt metallischen Bauplattform Heizwendel (104) verbaut. Wiederum unterhalb befindet sich eine Isolierung (106) zur Homogenisierung der Heizwirkung.
Die Heizwendel werden beispielsweise von einem Temperieröl durchströmt. Die Vorwahl der Öltemperatur ermöglicht eine exakte Einstellung der Temperatur. Ist der Durchfluss hoch genug und die Leistung angepasst, können auf diese Wiese sehr hohe Regelgüten der Temperatur erzielt werden.
Die Bauplattform (102) wird im sogenannten Baubehälter (110) bewegt. Dieser ist je nach Ausführung der Vorrichtung aus der Vorrichtung entnehmbar. Dadurch kann ein hoher zeitlicher Maschinennutzungsgrad erzielt werden, da während des Entpackens der Bauteile ein zweiter Baubehälter in der Vorrichtung verwendet werden kann.
Der Baubehälter (110) wird ebenso erhitzt. Es können die gleichen Techniken für die Bauplattform verwendet werden. Der Behälter selbst ist bevorzugt wieder aus Metall ausgeführt. Für eine gute Wärmeleitung bevorzugt Aluminium. Die eigentlich aktive Heizung (104) ist wieder mit einer Isolierung (105) hinterlegt. Damit kann die Wirkung gesteigert werden und die Homogenität erhöht werden.
Zwischen der Vorrichtung und dem Baubehälter gibt es zur Leistungsanbindung bevorzugt ein Stecksystem. Dies kann eine elektrische Verbindung beinhalten oder Steckverbinder für Flüssigkeiten.
Das nächste wesentliche Heizsystem einer erfindungsgemäßen Vorrichtung ist der Overheadstrahler (108). Sie ist erfindungsgemäß bevorzugt oberhalb des Baufeldes angebracht und strahlt senkrecht auf das Baufeld. Ebenso bevorzugt sind seitlich angebrachte Strahler, die in einem gewissen Winkel auf das Baufeld strahlen. Eine solche Konstruktion wird bevorzugt um die Abschattung durch den Beschichter oder den Druckkopf zu minimieren.
Der Overheadstrahler (108) kann erfindungsgemäß mit thermischen Strahlern ausgestattet sein. Diese sollten eine möglichst geringe Selektivität aufweisen. Beispielweise können Keramikstrahler mit extrem großer Wellenlänge verwendet werden. Auch der Einsatz von sog. mittelwelligen Quarz-Wolfram-Strahlern ist denkbar. Die gezielte Erwärmung der unterschiedlichen Flächentypen erfolgt dann durch den Sinterstrahler (109).
Verfahrensbedingt günstig ist es den Overheadstrahler (108) geregelt zu betreiben. Dazu kann bevorzugt ein Pyrometer (112) als Sensor verwendet werden. Das Pyrometer wird auf einen - durch die Steuerung sichergestellt nicht mit Absorber bedruckten Randbereich - des Baufeldes gerichtet. Das eigentliche Sintern wird in einer bevorzugten Ausführung der Erfindung durch eine mit dem Beschichter mitgeführten Sinterstrahler (109) ausgeführt. Dieser erwärmt das Baufeld während des Überfahrens. Er kann verwendet werden, um das frisch bedruckte Pulver oder eine bereits überdeckte Pulverschicht zu erwärmen. Hier wird erfindungsgemäß nach Fig. 2a eine kurzwellige Strahlungsquelle (201) mit vorgesetztem Filter (202) verwendet, die, erfindungsgemäß optional, auch mehrere Filter aufweisen kann. Eine Verschachtelte Bauweise mehrerer Filter (202) mit Abstand zueinander (205) ist zu bevorzugen, um die Kühlung der Filter sicher zu stellen, wie in Fig. 2b dargestellt.
Das Pulver wird in einer bevorzugten Ausführung der Vorrichtung vor dem Aufbringen auf die schon bestehende Pulveroberfläche vorgewärmt, damit die Schicht nicht zu stark abgekühlt wird. Für diese Pulvervorwärmung eignet sich ebenso eine elektrische Widerstandsheizung (111) im Beschichter (101).
Grundsätzlich können alle Aggregate, die über Kontaktheizungen erwärmt werden, auch indirekt über Infrarotstrahlung erwärmt werden. Besonders vorteilhaft kann es sein den Beschichter mit Strahlung zu erwärmen, wenn in der Vorrichtung starke Vibrationen aufgrund des verwendeten Pulver erforderlich sind.
Bevorzugt wird mit der Vorrichtung nach der Aufheizphase folgende Reihenfolge von Verfahrensschritten realisiert: Auf der Bauplattform wird eine Pulverschicht vom Beschichter (101) erzeugt (Fig. 3a). Optional kann die neue Schicht je nach Bauform der Maschine dabei zusätzlich mit dem Sinterstrahler (109) erhitzt werden. Im Anschluss wird diese Schicht von einem (100) oder mehreren Tintenstrahldruckköpfen (100) (Fig. 3b) bedruckt. Nun wird die bedruckte Schicht mit der Sinterlampe (109) aufgewärmt und anschließend wieder mit Pulver abgedeckt (Fig. 3c). Dann wird die Bauplattform (102) abgesenkt (Fig. 3d).
Dieser Vorgang wird solange wiederholt, bis die Bauteile (103) im Baubehälter (110) fertiggestellt sind. Im Anschluss folgt die Abkühlphase. Diese findet bevorzugt im Baubehälter statt, der dann außerhalb der Vorrichtung mit Energie versorgt wird.
Fig. 4 gibt Temperaturdiagramme wieder. Dabei zeigt Figur 4a schematisch den Verlauf der vom Pulver abgegebenen Energie, wenn es in einem Zyklus erhitzt und wieder abkühlt wird. Bei der Aufheizung zeigt sich bei einer gewissen Temperatur eine starke Aufnahme von Energie. Hier schmilzt oder sintert das Material (Sintertemperatur). Für lasersintergeeignetes Polyamid 12 liegt diese Temperatur bei ca. 185°C. Bei der Abkühlung gibt es ebenfalls eine signifikante Stelle wesentlich unterhalb der Sintertemperatur (Rekristallisationstemperatur). Hier erstarrt das geschmolzene Material.
Den Verlauf von den Temperaturen während eines Prozesslaufes nach einem Verfahren gemäß dem Stand der Technik geben die Figuren 4b und 4c wieder. Figur 4b zeigt dabei den Verlauf der Temperatur auf der unbedruckten Fläche. Durch den Einsatz der Sinterstrahlungsquelle entstehen im eigentlich konstanten Verlauf Aufheiz- und Abkühlphasen. Im unbedruckten Bereich erreicht die Temperatur niemals die Sintertemperatur.
Figur 4c zeigt den Verlauf im bedruckten Bereich. Hier sind die Schwankungen stärker. Der Prozess wird mindestens so geführt, dass kurzzeitig die Sintertemperatur überschritten wird und so ein Teil des Pulvers aufgeschmolzen wird und aufgeschmolzen bleibt. Wird zu stark erhitzt, schmilzt sämtliches Pulver in diesem Bereich und es kommt zu massiven Verzug. Eine zu starke Abkühlung des bedruckten Bereiches muss ebenfalls vermieden werden, da sonst die Rekristallisation einsetzt und dann sämtliche Schwindungen auf Grund der jetzt möglichen Kraftübertragung zu einem geometrischen Verzug (Warping bzw. Curling) führen, der unter Umständen den weiteren Prozess unmöglich macht.
Die genaue Einhaltung dieses „Prozessfensters" zwischen der Schmelztemperatur und der Rekristallisationstemperatur ist für die Güte der Bauteile maßgeblich. Dabei gelten für die bedruckten und die unbedruckten Bereich verschiedene Randbedingungen. Der Einsatz gefilterter kurzwelliger IR-Strahlungsquellen erleichtert die Temperaturführung zwischen den beiden Temperaturen erheblich.
Insbesondere in den Ausführungsbespielen wird beschrieben, wie die Vorteile dieser Strahlungsquellen bei beschriebenem Prozess genutzt werden können.
Weitere Ausführungsbeispiele
Beispiell: Vorrichtung mit einer Sinterlampe, die kurzwellige IR-Strahler mit Strahlungsfilter enthält, und eine thermische Overheadlampe aufweist
Gemäß Fig. 3a) beginnt der Bauprozess oder Prozesszyklus mit dem Beschichten der Bauplattform mit einer Pulverlage einer Schichtdicke von beispielsweises ΙΟΟμιτι. Schon während des Beschichtens durch den Beschichter (101) wird das Pulver durch den Overheadstrahler (108), sofern von Beschichter (101) oder Druckkopf (100) optisch nicht abgedeckt, erwärmt. Bei Verwendung von PA12, hier PA2200 des Herstellers EOS, auf 168°C. Der Sinterstrahler (109), der nur die Strahlung liefert, die gut die bedruckte Fläche heizt, ist in diesem Schritt nicht eingeschaltet.
Der Overheadstrahler (108) enthält zur Regelung der Oberflächentemperatur des Baufeldes eine Messeinrichtung. Idealerweise ist die Messeinrichtung als Miniatur-Pyrometer (112) ausgeführt, das die Temperatur berührungsfrei ermitteln kann. Die Regelung muss berücksichtigen, dass die Messeinrichtung immer wieder durch den Druckkopf (100) und den Beschichter (101) abgeschattet wird. Dies kann durch Abschalten der Messwertgewinnung oder durch unempfindliche Regelkreisparameter erfolgen.
In einem zweiten Schritt wird der Absorber, beispielhaft Carbon Black, durch den Druckkopf (100) aufgebracht, der genau auf die Wellenlänge der Strahlungsquelle abgestimmt ist. Das Bild, das vom Druckkopf (100) auf das Partikelmaterial aufgebracht wird, entspricht dem aktuellen Formkörperquerschnitt.
Der dritte Schritt ist die Sinterfahrt. Hierbei wird die Strahlungsquelle des Sinterstrahleraggregats (109) eingeschaltet und über das Baufeld geführt. Die Leistung der Strahlungsquelle und die Geschwindigkeit bestimmen die Bestrahlungsleistung auf dem Baufeld. Im Gegensatz zum Stand der Technik erwärmt der Sinterstrahler (109) mit Strahlungsfilter aus beispielhaft Borosilikatglas einer Dicke von 2 mm des Hersteller GVB GmbH während dieser Fahrt unbedruckte Flächen nicht. Die Temperatur der bedruckten Bereiche steigt also an, während unbedruckte Bereiche nicht beeinflusst werden. Dabei wird der langwellige Teil der von der Strahlungsquelle emittierten Strahlung, die sich an die Wellenlängenverteilung eines schwarzen Strahlers annähert und eine Peakwellenlänge von 1,2 μιτι aufweist, ab einer Wellenlänge von 3 μιη durch den Strahlungsfilter absorbiert.
Der vierte Schritt ist das Absenken der Bauplattform (102) um die Stärke einer Pulverschicht (107). Während dieses Vorganges ist das Baufeld zum Overheadstrahler (108) frei und die Temperatur kann nachgeregelt werden. Danach beginnt der Prozesszyklus wieder von vorne mit dem Beschichtungsprozess.
Fig. 1 beschreibt eine Vorrichtung die den im Beispiel genannten Prozess realisieren kann. Der Overheadstrahler (108) ist als lang- bis mittelwelliger thermischer Strahlungsquelle ausgeführt. Der Baubehälterboden und die Bauplattform werden über Widerstandheizungen (104) temperiert. Bei der beispielhaften Vorrichtung sind der Beschichter (101) und das Sinterstrahleraggregat (109) verbunden. Diese Einheit und der Druckkopf (100) können, müssen aber nicht separat über das Baufeld bewegt werden.
Der Sinterstrahler (109) ist wie Fig. 2a entnehmbar mit einem kurzwelligen Strahler (201) und vorgesetzem Filter (202) ausgestattet. Die vom kurzwelligen Strahler erzeugten langwelligen Anteile (203) werden vom Filter absorbiert, sodass nur noch kurzwellige Anteile die Pulveroberfläche (204) erreichen können.
Beispiel 2: Vorrichtung einer Sinterlampe, ausgestattet mit Kühlungsfunktion
Dargestellt in Fig. 2b und Fig. 2c ist eine Ausführung der Sinterlampe mit integrierter Kühlung. Die Strahlungsfilter sind hierbei beispielhaft in zweifacher Ausführung skizziert (202a, 202b). Dabei befinden sich beide Elemente nicht im Kontakt, sondern weisen einen gewissen Abstand (205) zueinander auf. In diesem Aufbau wird der Großteil der erzeugten langwelligen Infrarot-Strahlung vom Filter (202a) absorbiert, welcher dem kurzwelligen Strahler (201) am nächsten ist. Durch die langwellige Infrarot-Strahlung wird dieser aufgeheizt, lässt jedoch die kurzwellige Strahlung passieren. Somit wird der zweite Filter (202b), welcher der Partikeloberfläche gemäß Fig. 1 zugewandt ist, nicht durch diese langwellige Wärmestrahlung erwärmt. Auch der zweite Filter lässt die kurzwellige Strahlung unbeeinflusst, sodass diese dazu verwendet werden kann die mit dem Druckkopf (100) benetze Fläche des Partikelmaterials über dessen Schmelztemperatur zu erhitzen. Durch die nun weitaus geringeren Temperaturen des zweiten Filters wird verhindert, dass durch den Beschichtungsvorgang (Fig. 3a) aufgewirbeltes Parti kelmaterial an dessen Oberfläche festschmilzt und verklebt, wodurch der Strahlungsfluss blockiert würde.
Die Kühlung des ersten Filters (202a), kann dabei konvektiv (Fig. 2b) mittels Öffnungen im Gehäuse des Aggregats (206) oder mittels Kühlaggregat (Fig. 2c) erfolgen. Eine Ausführung mittels Kühlaggregat bietet sich bei größeren Ausführungen der Sinterlampe an. Hierbei bezeichnet (207) einen mittels eines Kühlfluids, bevorzugt Wasser, durchströmten Kühlkörper. Für Konvektion im Aggregat sorgt ein Ventilator (208), welcher sich auf dem Kühlkörper befindet. Bei dieser Ausführung schließt der erste Filter (202a) mit der Gehäusewand des Aggregats ab. Beispiel 3: Vorrichtung einer Sinterlampe, ausgestattet mit Kühlungsfunktion und Diffusor
Wie in Fig. 2d angedeutet eine Ausführung des in Beispiel 2 beschriebenen Filters (202b) als Diffusor sinnvoll (202c), um die gesamte Oberfläche des auf der Bauplattform befindlichen Partikelmaterials bei Überfahrt mit der Sinterlampe gleichmäßig zu bestrahlen (204b). Somit ist sichergestellt, dass auch an den Randbereichen der Bauplattform eine genügend hohe Festigkeit des zu erstellenden Formkörpers erreicht werden kann. Als Diffusor eignet sich in diesem Beispiel Kryolithglas, weißes Opalglas des Herstellers Edmund Optics.
Beispiel 4: Vorrichtung einer Sinterlampe, ausgestattet mit zwei kurzwelligen Strahlern, jeweils mit und ohne Strahlungsfilter
Gemäß Fig. 5 beginnt der Bauprozess oder Prozesszyklus mit dem Beschichten der Bauplattform (102) mit einer Pulverlage. Der Sinterstrahler ohne Filter (501) des Aggregats (109), der auch die Strahlung liefert, die gut die unbedruckte Fläche heizt, ist in diesem Schritt eingeschaltet und erwärmt das Pulver auf eine Grundtemperatur unterhalb der Schmelztemperatur aber Oberhalb der Rekristallisationstemperatur. Die Energiezufuhr wird dabei über die Leistung und die Verfahrgeschwindigkeit gesteuert. Günstiger weise wird die erzeugte Temperatur erfasst und auch eingeregelt.
In einem zweiten Schritt wird der Absorber aufgebracht, der genau auf durch den Filter hindurchgelassenen Wellenlängen der Strahlungsquelle (502) für die bedruckten Bereiche abgestimmt ist. Das Bild, das vom Druckkopf ( 100) auf das Pulver aufgebracht, wird entspricht dem aktuellen Formkörperquerschnitt. Der dritte Schritt ist die Sinterfahrt. Hierbei wird das Sinteraggregat (109) eingeschaltet und über das Baufeld geführt. Die Leistung der Strahlungsquelle und die Geschwindigkeit bestimmen die Bestrahlungsleistung auf dem Pulverbett. Im Gegensatz zum Stand der Technik kann das Aggregat mit zwei Spektren (501,502) während dieser Fahrt unbedruckte und bedruckte Flächen gezielt beeinflussen. Die Temperatur der bedruckten Bereiche steigt also an, während in unbedruckten Bereichen der Energieverlust durch Strahlung ausgeglichen werden kann.
Der vierte Schritt ist das Absenken der Bauplattform (102) um eine Schichtstärke und wird bei diesem beispielhaften Prozess extrem kurz gehalten. Hier wird nicht geregelt und jede Verzögerung führt zu Energieverlust durch Wärmestrahlung. In der Darstellung wird dieser Schritt deshalb nicht aufgeführt.
Bei einer genügend schnellen Ausführung des Prozesszyklus kann auf einen Overheadstrahler verzichtet werden.
Beispiel 5: Vorrichtung einer Overheadlampe, ausgestattet mit kurzwelligen Strahlern und Absorberfläche
Gemäß Fig. 6 wird die Overheadlampe (108) mittels kurzwelliger Strahler mit Peakwellenlänge im Bereich von 1,2μηη (601) ausgeführt, welche einen im Strahlengang (602) zwischen IR-Emitter und Pulveroberfläche befindlichen Absorber (603) flächig erhitzen. Dieser sendet dadurch selbst wiederum Infrarot-Strahlung (604) aus, allerdings im wesentlich längerwelligen Spektrum, bevorzugt mit Peakwellenlängen um 4 μητι. Die Ausführung des Absorbers erfolgt in möglichst geringer Dicke von einigen Millimetern, um die Wärmekapazität des Materials klein zu halten und somit die Reaktionszeit der ausgesandten langwelligen Strahlung zu minimieren. Als Material eignet sich bevorzugt Alunit, eine Nichtoxidkeramik aus Aluminiumnitrid des Herstellers Ceramtec, da dieses eine hohe Wärmeleitfähigkeit von ca. 200 W/mK aufweist und damit im Aufbau eine schnelle Reaktionszeit erlaubt. Bezugszeichenliste
100 Druckkopf
101 Beschichter
102 Bauplattform
103 Bauteile
107 Schichten
108 Overheadstrahler
109 Sinterstrahleraggregat
110 Baubehälter
105 Isolierung Baubehälter
104 Widerstandsheizung bzw. Heizwendel
106 Isolierung Bauplattform nach unten
111 Widerstandsheizung Beschichter
112 Pyrometer
201 Kurzwelliger IR-Strahler
202 Filter
202a Filter, dem kurzwelligen Infrarotstrahler am nächsten
202b Filter, der Bauoberfläche am nächsten
202c Diffusor
203 Infrarot-Strahlung mit langwelligen Anteilen
204 Infrarot-Strahlung ohne langwellige Anteile
204b Infrarot-Strahlung ohne langwellige Anteile, nicht gerichtet 205 Hohlraum zwischen zwei Strahl ungsfiltern
206 Kühlschlitze
207 Fluidgekühlter Radiator
208 Ventilator
501 Sinterstrahler ohne Strahlungsfilter
502 Sinterstrahler ausgeführt mit Strahlungsfilter
601 kurzwelliger Infrarotstrahler
602 breitbandige Infrarotstrahlung
603 Absorber
604 vom Absorber emittierte langwellige Infrarotstrahlung
701 Typisches Strahlungsspektrum herkömmlicher Strahler mit Sekundärpeak
702 Spektrum herkömmlicher Strahler bei geringerer Leistung
703 Absorptionsspektrum Borosilikatglasscheibe
704 Emittiertes Spektrum herkömmlicher Strahler bei hoher Leistung
705 Transmittiertes Spektrum
706 Blockierter Wellenlängenbereich

Claims

Ansprüche
1. Verfahren zum Herstellen von 3D-Formteilen, wobei partikelförmiges Baumaterial in einer definierten Schicht mittels Beschichter auf ein Baufeld aufgetragen wird, selektiv eine oder mehrere Flüssigkeiten oder Partikelmaterial eines oder mehrerer Absorber aufgebracht werden, ein Energieeintrag mittels Strahler erfolgt, wobei die Bereiche mit selektiv aufgebrachtem Absorber selektiv verfestigen, das Baufeld um eine Schichtstärke abgesenkt oder der Beschichter um eine Schichtstärke angehoben wird, diese Schritte wiederholt werden bis das gewünschte 3D-Formteilen erzeugt ist, dadurch gekennzeichnet, dass das Verfahren mindestens einen Spektrumswandler verwendet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Spektrumswandler mindestens ein Filter ist, der kurzwellige oder langwellige Strahlung filtert.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der gefilterte Strahlungsbereich so ausgewählt wird, dass er mit dem Spektrum des verwendeten Partikelmaterials kompatibel ist, vorzugsweise das auf das Partikelmaterial aufgestrahlte Spektrum eine Wellenlänge von 8 - 3,5 μιτι hat, vorzugsweise dadurch gekennzeichnet, dass als Pulvermaterial ein Polyamidpulver, ein thermoplastisches Elastomer auf Polyamidbasis oder ein thermoplastisches Elastomer auf Urethanbasis verwendet wird.
4. Verfahren nach Anspruch 1, 2, oder 3, dadurch gekennzeichnet, dass die aufgebrachte Pulverschicht durch einen ersten Aufheizschritt auf eine Basistemperatur des Pulvers ohne Absorber, welche sich innerhalb des Sinterfensters des Pulvermaterials befindet, erwärmt wird und ein zweiter Sinterschritt durch Wärmezufuhr zu einer selektiven Verfestigung der mit Absorber bedruckten Bereiche bei einer Sintertemperatur oberhalb der Schmelztemperatur des Pulvers führt, wobei die Bereiche mit selektiv aufgebrachtem Absorber im ersten Schritt stärker erhitzen als die Bereiche ohne Absorber und somit eine Temperaturdifferenz zwischen Bereichen mit und ohne Absorber eingestellt wird.
5. Vorrichtung zum Herstellen von 3D-Formteilen, umfassend alle für ein Pulver-basiertes Druckverfahren nötigen Komponenten, dadurch gekennzeichnet, dass sie mindestens einen Spektrumswandler aufweisen, der vorzugsweise Kühlschlitze, Kühlvertiefungen, Kühlrillen oder/und Kühlbohrungen aufweist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Spektrumswandler mindestens ein Filter ist, der einen ausgewählten Wellenlängenbereich definiert und diesen Wellenlängenbereich filtert, vorzugsweise dadurch gekennzeichnet, dass der Filter eine Borosilikatscheibe ist.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der ausgewählte Wellenlängenbereich ausgewählt ist aus langwelliger oder kurzwelliger Infrarotstrahlung, vorzugsweise im Wellenlängenbereich von 8μητι - 3,5μιη bzw. 3,5μηη - 0,5pm, vorzugsweise dadurch gekennzeichnet, dass mindestens zwei Spektrumswandler im Wesentlichen übereinander angeordnet sind, vorzugsweise sich ein Hohlraum zwischen den mindestens zwei Spektrumswandlern befindet.
8. Vorrichtung nach einem der Ansprüche 5 - 7, dadurch gekennzeichnet, dass die Komponenten ausgewählt sind aus Bauplattform, Seitenwände, Jobbox, Beschichter (Recoater), Druckkopf, Keramikfolie, Energieeintragsmittel, vorzugsweise mindestens ein Strahler, vorzugsweise ein Overheadstrahler oder/und ein Sinterstrahleraggregat.
9. Vorrichtung nach einem der Ansprüche 5 - 8, dadurch gekennzeichnet, dass der Overheadstrahler einen Wellenlängenbereich von 8-3,5μηι oder/und das Sinterstrahleraggregat, vorzugsweise einschließlich Filter, einen Wellenlängenbereich von 3,5-0,5μιη abstrahlt, der auf das Parti kelmaterial und/oder die Baufläche aufgestrahlt wird.
10. Vorrichtung nach einem der Ansprüche 5 - 9, dadurch gekennzeichnet, dass die Vorrichtung weiter aufweist eine oder mehrere Komponenten ausgewählt aus der Gruppe umfassend einen fluidgekühlten Radiator, einen Ventilator, eine Isolierung des Baubehälters, eine Isolierung der Bauplattform, eine Widerstandsheizung, einen Heizwendel, eine Widerstandsheizung des Beschichters, ein Pyrometer, einen Diffusor und einen Infrarot-Strahler.
PCT/DE2018/000205 2017-07-21 2018-07-09 Verfahren und vorrichtung zum herstellen von 3d-formteilen mit spektrumswandler WO2019015707A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207001896A KR102615544B1 (ko) 2017-07-21 2018-07-09 스펙트럼 변환기를 사용하여 3d 성형품을 제조하는 방법 및 장치
JP2020502707A JP2020527491A (ja) 2017-07-21 2018-07-09 スペクトル変換器を用いて3d成形部品を製造する方法及び装置
US16/629,107 US11279087B2 (en) 2017-07-21 2018-07-09 Process and apparatus for producing 3D moldings comprising a spectrum converter
CN201880048291.8A CN110944824B (zh) 2017-07-21 2018-07-09 包括光谱转换器的用于制作3d模制品的工艺和设备
EP18756365.5A EP3655234A1 (de) 2017-07-21 2018-07-09 Verfahren und vorrichtung zum herstellen von 3d-formteilen mit spektrumswandler
US17/673,419 US11731361B2 (en) 2017-07-21 2022-02-16 Process and apparatus for producing 3D moldings comprising a spectrum converter
US18/229,534 US20240025118A1 (en) 2017-07-21 2023-08-02 Process and apparatus for producing 3d moldings comprising a radiation filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017006860.7 2017-07-21
DE102017006860.7A DE102017006860A1 (de) 2017-07-21 2017-07-21 Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/629,107 A-371-Of-International US11279087B2 (en) 2017-07-21 2018-07-09 Process and apparatus for producing 3D moldings comprising a spectrum converter
US17/673,419 Division US11731361B2 (en) 2017-07-21 2022-02-16 Process and apparatus for producing 3D moldings comprising a spectrum converter

Publications (1)

Publication Number Publication Date
WO2019015707A1 true WO2019015707A1 (de) 2019-01-24

Family

ID=63259348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/000205 WO2019015707A1 (de) 2017-07-21 2018-07-09 Verfahren und vorrichtung zum herstellen von 3d-formteilen mit spektrumswandler

Country Status (7)

Country Link
US (3) US11279087B2 (de)
EP (1) EP3655234A1 (de)
JP (1) JP2020527491A (de)
KR (1) KR102615544B1 (de)
CN (1) CN110944824B (de)
DE (1) DE102017006860A1 (de)
WO (1) WO2019015707A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580040A (en) * 2018-12-19 2020-07-15 Xaar 3D Ltd Heater arrangements and apparatus for layer-by-layer formation of three-dimensional objects
CN111844739A (zh) * 2020-08-14 2020-10-30 广州云也科技有限公司 一种智能激光快速成型的3d打印机
KR102233764B1 (ko) * 2020-05-14 2021-04-02 한국생산기술연구원 잔류응력저감을 위해 부가열원을 구비한 3d 프린팅 장치 및 이를 이용한 3d 프린팅 방법
WO2021069003A1 (de) * 2019-10-11 2021-04-15 Voxeljet Ag Verfahren und vorrichtung zum herstellen von 3d-formteilen mittels hochleistungsstrahler
JP2021094715A (ja) * 2019-12-13 2021-06-24 谷口 秀夫 3次元造形装置及び3次元造形装置用の造形ステージ
KR102280594B1 (ko) * 2020-05-27 2021-07-27 한국생산기술연구원 잔류응력저감을 위해 레이저 스캐닝 시간을 보상하는 3d 프린팅 장치 및 이를 이용한 3d 프린팅 방법
JP2022535913A (ja) * 2019-06-07 2022-08-10 エクスワン ゲーエムベーハー 3d印刷による少なくとも1つの部品の製造方法および3dプリンタ
CN115003489A (zh) * 2019-11-22 2022-09-02 戴弗根特技术有限公司 具有用于热管理的热源的粉末床熔融重涂覆器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
EP3679316B1 (de) * 2017-09-08 2023-08-02 Hexagon Metrology, Inc Umwandlungsvorrichtung und -kit für additives drucken für koordinatenmessmaschinen
DE102018006473A1 (de) 2018-08-16 2020-02-20 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
WO2020237161A1 (en) * 2019-05-23 2020-11-26 General Electric Company Additive manufacturing apparatuses and methods
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
US11331857B2 (en) * 2020-06-01 2022-05-17 Raytheon Company Heating fixtures for 5-axis printing
GB2604143A (en) * 2021-02-25 2022-08-31 Stratasys Powder Production Ltd Methods of manufacture of three-dimensional objects and controller and apparatus therefor
DE102021213053A1 (de) 2021-11-19 2023-05-25 Volkswagen Aktiengesellschaft Herstellung eines dreidimensionalen Bauteils nach einem pulverbasierten additiven 3D-Druck-Verfahren sowie Vorrichtung zur Durchführung des Verfahrens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431924B1 (de) 1989-12-08 1996-01-31 Massachusetts Institute Of Technology Dreidimensionale Drucktechniken
EP1740367B1 (de) 2004-04-27 2009-11-04 Evonik Degussa GmbH Verfahren zur herstellung von dreidimensionalen objekten mittels elektromagnetischer strahlung und auftragen eines absorbers per inkjet-verfahren
EP1648686B1 (de) 2003-07-25 2009-12-02 Loughborough University Enterprises Limited Verfahren und vorrichtung zum selektiven sintern von teilchenmaterial
US20150268099A1 (en) * 2014-03-24 2015-09-24 James Eldon Craig Additive manufacturing temperature controller/sensor apparatus and method of use thereof
US20170113415A1 (en) * 2014-06-20 2017-04-27 Carbon, Inc. Three-Dimensional Printing Method Using Increased Light Intensity and Apparatus Therefore

Family Cites Families (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247508B1 (en) 1979-12-03 1996-10-01 Dtm Corp Molding process
DE3221357A1 (de) 1982-06-05 1983-12-08 Plasticonsult GmbH Beratungsgesellschaft für Kunststoff- und Oberflächentechnik, 6360 Friedberg Verfahren zur herstellung von formen und kernen fuer giesszwecke
US4665492A (en) 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
JPS62275734A (ja) 1986-05-26 1987-11-30 Tokieda Naomitsu 立体形成方法
US4752352A (en) 1986-06-06 1988-06-21 Michael Feygin Apparatus and method for forming an integral object from laminations
HUT56018A (en) 1986-10-17 1991-07-29 Univ Texas Method and apparatus for producing workpieces by selective sintering
US5017753A (en) 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4944817A (en) 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5155324A (en) 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
US4752498A (en) 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification
US5047182A (en) 1987-11-25 1991-09-10 Ceramics Process Systems Corporation Complex ceramic and metallic shaped by low pressure forming and sublimative drying
IL109511A (en) 1987-12-23 1996-10-16 Cubital Ltd Three-dimensional modelling apparatus
US5772947A (en) 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
CA1337955C (en) 1988-09-26 1996-01-23 Thomas A. Almquist Recoating of stereolithographic layers
WO1990003893A1 (en) 1988-10-05 1990-04-19 Michael Feygin An improved apparatus and method for forming an integral object from laminations
US5637175A (en) 1988-10-05 1997-06-10 Helisys Corporation Apparatus for forming an integral object from laminations
GB2233928B (en) 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
US5248456A (en) 1989-06-12 1993-09-28 3D Systems, Inc. Method and apparatus for cleaning stereolithographically produced objects
US5134569A (en) 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
JPH0336019A (ja) 1989-07-03 1991-02-15 Brother Ind Ltd 三次元成形方法およびその装置
AU643700B2 (en) 1989-09-05 1993-11-25 University Of Texas System, The Multiple material systems and assisted powder handling for selective beam sintering
US5284695A (en) 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering
US5156697A (en) 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
DE3930750A1 (de) 1989-09-14 1991-03-28 Krupp Medizintechnik Gusseinbettmasse, einbettmassenmodell, gussform und verfahren zur verhinderung des aufbluehens von einbettmassenmodellen und gussformen aus einer gusseinbettmasse
US5136515A (en) 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
DE3942859A1 (de) 1989-12-23 1991-07-04 Basf Ag Verfahren zur herstellung von bauteilen
US5127037A (en) 1990-08-15 1992-06-30 Bynum David K Apparatus for forming a three-dimensional reproduction of an object from laminations
US5126529A (en) 1990-12-03 1992-06-30 Weiss Lee E Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition
DE4102260A1 (de) 1991-01-23 1992-07-30 Artos Med Produkte Vorrichtung zur herstellung beliebig geformter koerper
US5740051A (en) 1991-01-25 1998-04-14 Sanders Prototypes, Inc. 3-D model making
US6175422B1 (en) 1991-01-31 2001-01-16 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5252264A (en) 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
US5342919A (en) 1992-11-23 1994-08-30 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5352405A (en) 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
DE4300478C2 (de) 1993-01-11 1998-05-20 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US6146567A (en) 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
DE4305201C1 (de) 1993-02-19 1994-04-07 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objekts
US5433261A (en) 1993-04-30 1995-07-18 Lanxide Technology Company, Lp Methods for fabricating shapes by use of organometallic, ceramic precursor binders
DE4325573C2 (de) 1993-07-30 1998-09-03 Stephan Herrmann Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung
US5398193B1 (en) 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
US5518680A (en) 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
DE4400523C2 (de) 1994-01-11 1996-07-11 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US5518060A (en) 1994-01-25 1996-05-21 Brunswick Corporation Method of producing polymeric patterns for use in evaporable foam casting
DE4440397C2 (de) 1994-11-11 2001-04-26 Eos Electro Optical Syst Verfahren zum Herstellen von Gußformen
DE59508261D1 (de) 1994-05-27 2000-06-08 Eos Electro Optical Syst Verfahren für den einsatz in der giessereitechnik
US5503785A (en) 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US6048954A (en) 1994-07-22 2000-04-11 The University Of Texas System Board Of Regents Binder compositions for laser sintering processes
US5639402A (en) 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
JPH0894516A (ja) * 1994-09-28 1996-04-12 Tokyo Gas Co Ltd 赤外線放射パネル組立体およびガス検知装置
US5555176A (en) 1994-10-19 1996-09-10 Bpm Technology, Inc. Apparatus and method for making three-dimensional articles using bursts of droplets
US5717599A (en) 1994-10-19 1998-02-10 Bpm Technology, Inc. Apparatus and method for dispensing build material to make a three-dimensional article
WO1996023647A2 (en) 1995-02-01 1996-08-08 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
GB9501987D0 (en) 1995-02-01 1995-03-22 Butterworth Steven Dissolved medium rendered resin (DMRR) processing
DE19511772C2 (de) 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE29506204U1 (de) 1995-04-10 1995-06-01 Eos Gmbh Electro Optical Systems, 82152 Planegg Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE19514740C1 (de) 1995-04-21 1996-04-11 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE19515165C2 (de) 1995-04-25 1997-03-06 Eos Electro Optical Syst Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie
DE19528215A1 (de) 1995-08-01 1997-02-06 Thomas Dipl Ing Himmer Verfahren zur Herstellung von dreidimensionalen Modellen und Formen
DE19530295C1 (de) 1995-08-11 1997-01-30 Eos Electro Optical Syst Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern
US6270335B2 (en) 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
AU7376696A (en) 1995-09-27 1997-04-17 3D Systems, Inc. Method and apparatus for data manipulation and system control in a selective deposition modeling system
US6305769B1 (en) 1995-09-27 2001-10-23 3D Systems, Inc. Selective deposition modeling system and method
US5943235A (en) 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US5749041A (en) 1995-10-13 1998-05-05 Dtm Corporation Method of forming three-dimensional articles using thermosetting materials
DE19545167A1 (de) 1995-12-04 1997-06-05 Bayerische Motoren Werke Ag Verfahren zum Herstellen von Bauteilen oder Werkzeugen
US5660621A (en) 1995-12-29 1997-08-26 Massachusetts Institute Of Technology Binder composition for use in three dimensional printing
AU1673797A (en) 1996-02-20 1997-09-10 Mikuni Corporation Method for producing granulated material
AU720255B2 (en) 1996-03-06 2000-05-25 BioZ, L.L.C Method for formation of a three-dimensional body
US6596224B1 (en) 1996-05-24 2003-07-22 Massachusetts Institute Of Technology Jetting layers of powder and the formation of fine powder beds thereby
GB9611582D0 (en) 1996-06-04 1996-08-07 Thin Film Technology Consultan 3D printing and forming of structures
US5824250A (en) 1996-06-28 1998-10-20 Alliedsignal Inc. Gel cast molding with fugitive molds
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
US7332537B2 (en) 1996-09-04 2008-02-19 Z Corporation Three dimensional printing material system and method
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US6989115B2 (en) 1996-12-20 2006-01-24 Z Corporation Method and apparatus for prototyping a three-dimensional object
US7037382B2 (en) 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
DE29701279U1 (de) 1997-01-27 1997-05-22 Eos Gmbh Electro Optical Systems, 82152 Planegg Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element
CA2288201A1 (en) 1997-03-31 1998-10-08 Therics, Inc. Method for dispensing of powders
US5940674A (en) 1997-04-09 1999-08-17 Massachusetts Institute Of Technology Three-dimensional product manufacture using masks
DE19715582B4 (de) 1997-04-15 2009-02-12 Ederer, Ingo, Dr. Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten
NL1006059C2 (nl) 1997-05-14 1998-11-17 Geest Adrianus F Van Der Werkwijze en inrichting voor het vervaardigen van een vormlichaam.
JP3578590B2 (ja) * 1997-05-26 2004-10-20 株式会社アズマ工機 ランプを用いた光造形装置
DE19723892C1 (de) 1997-06-06 1998-09-03 Rainer Hoechsmann Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
DE19727677A1 (de) 1997-06-30 1999-01-07 Huels Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten
US5989476A (en) 1998-06-12 1999-11-23 3D Systems, Inc. Process of making a molded refractory article
JP3518726B2 (ja) 1998-07-13 2004-04-12 トヨタ自動車株式会社 積層造形方法及び積層造形用レジン被覆砂
DE19846478C5 (de) 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-Sintermaschine
US20030114936A1 (en) 1998-10-12 2003-06-19 Therics, Inc. Complex three-dimensional composite scaffold resistant to delimination
DE19853834A1 (de) 1998-11-21 2000-05-31 Ingo Ederer Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
US6259962B1 (en) 1999-03-01 2001-07-10 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
US6405095B1 (en) 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system
US6165406A (en) 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
DE19928245B4 (de) 1999-06-21 2006-02-09 Eos Gmbh Electro Optical Systems Einrichtung zum Zuführen von Pulver für eine Lasersintereinrichtung
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
JP3449308B2 (ja) * 1999-08-31 2003-09-22 ウシオ電機株式会社 光処理装置
US6658314B1 (en) 1999-10-06 2003-12-02 Objet Geometries Ltd. System and method for three dimensional model printing
DE19948591A1 (de) 1999-10-08 2001-04-19 Generis Gmbh Rapid-Prototyping - Verfahren und - Vorrichtung
DE60008778T2 (de) 1999-11-05 2005-02-10 Z Corp., Burlington Verfahren für dreidimensionales drucken
EP1415792B1 (de) 1999-11-05 2014-04-30 3D Systems Incorporated Verfahren und Zusammenstellungen für dreidimensionales Drucken
GB9927127D0 (en) 1999-11-16 2000-01-12 Univ Warwick A method of manufacturing an item and apparatus for manufacturing an item
DE19957370C2 (de) 1999-11-29 2002-03-07 Carl Johannes Fruth Verfahren und Vorrichtung zum Beschichten eines Substrates
TWI228114B (en) 1999-12-24 2005-02-21 Nat Science Council Method and equipment for making ceramic work piece
DE19963948A1 (de) 1999-12-31 2001-07-26 Zsolt Herbak Verfahren zum Modellbau
US7300619B2 (en) 2000-03-13 2007-11-27 Objet Geometries Ltd. Compositions and methods for use in three dimensional model printing
ATE278535T1 (de) 2000-03-24 2004-10-15 Generis Gmbh Verfahren und vorrichtung zur herstellung eines strukturbauteils mittels einer mehrschicht- auftragstechnik, und form oder kern herstellbar durch dieses verfahren
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
JP2001334583A (ja) 2000-05-25 2001-12-04 Minolta Co Ltd 三次元造形装置
DE10026955A1 (de) 2000-05-30 2001-12-13 Daimler Chrysler Ag Materialsystem zur Verwendung beim 3D-Drucken
SE520565C2 (sv) 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Sätt och apparat vid framställning av föremål genom FFF
US6619882B2 (en) 2000-07-10 2003-09-16 Rh Group Llc Method and apparatus for sealing cracks in roads
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
DE10047615A1 (de) 2000-09-26 2002-04-25 Generis Gmbh Wechselbehälter
DE10047614C2 (de) 2000-09-26 2003-03-27 Generis Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE10049043A1 (de) 2000-10-04 2002-05-02 Generis Gmbh Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern
DE10053741C1 (de) 2000-10-30 2002-02-21 Concept Laser Gmbh Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung
US20020111707A1 (en) 2000-12-20 2002-08-15 Zhimin Li Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers
US20020090410A1 (en) 2001-01-11 2002-07-11 Shigeaki Tochimoto Powder material removing apparatus and three dimensional modeling system
US6896839B2 (en) 2001-02-07 2005-05-24 Minolta Co., Ltd. Three-dimensional molding apparatus and three-dimensional molding method
DE10105504A1 (de) 2001-02-07 2002-08-14 Eos Electro Optical Syst Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE20122639U1 (de) 2001-02-07 2006-11-16 Eos Gmbh Electro Optical Systems Vorrichtung zum Herstellen eines dreidimensionalen Objekts
GB0103752D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-Dimensional printing
GB0103754D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-dimensional structured printing
US6939489B2 (en) 2001-03-23 2005-09-06 Ivoclar Vivadent Ag Desktop process for producing dental products by means of 3-dimensional plotting
DE10117875C1 (de) 2001-04-10 2003-01-30 Generis Gmbh Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung
US20020155254A1 (en) 2001-04-20 2002-10-24 Mcquate William M. Apparatus and method for placing particles in a pattern onto a substrate
GB0112675D0 (en) 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
DE10128664A1 (de) 2001-06-15 2003-01-30 Univ Clausthal Tech Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern
JP2003052804A (ja) 2001-08-09 2003-02-25 Ichiro Ono インプラントの製造方法およびインプラント
US6841116B2 (en) 2001-10-03 2005-01-11 3D Systems, Inc. Selective deposition modeling with curable phase change materials
JP2003136605A (ja) 2001-11-06 2003-05-14 Toshiba Corp 製品の作成方法及びその製品
GB2382798A (en) 2001-12-04 2003-06-11 Qinetiq Ltd Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon
SE523394C2 (sv) 2001-12-13 2004-04-13 Fcubic Ab Anordning och förfarande för upptäckt och kompensering av fel vid skiktvis framställning av en produkt
US6713125B1 (en) 2002-03-13 2004-03-30 3D Systems, Inc. Infiltration of three-dimensional objects formed by solid freeform fabrication
DE10216013B4 (de) 2002-04-11 2006-12-28 Generis Gmbh Verfahren und Vorrichtung zum Auftragen von Fluiden
DE10222167A1 (de) 2002-05-20 2003-12-04 Generis Gmbh Vorrichtung zum Zuführen von Fluiden
DE10224981B4 (de) 2002-06-05 2004-08-19 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US20060159896A1 (en) 2002-06-18 2006-07-20 Rolf Pfeifer Laser sintering method with increased process precision, and particles used for the same
WO2003106148A1 (de) 2002-06-18 2003-12-24 Daimlerchrysler Ag Partikel und verfahren für die herstellung eines dreidimensionalen gegenstandes
DE10227224B4 (de) 2002-06-18 2005-11-24 Daimlerchrysler Ag Verwendung eines Granulates zum Herstellen eines Gegenstandes mit einem 3D-Binderdruck-Verfahren
US6986654B2 (en) 2002-07-03 2006-01-17 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
DE10235434A1 (de) 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens
US20040038009A1 (en) 2002-08-21 2004-02-26 Leyden Richard Noel Water-based material systems and methods for 3D printing
JP4069245B2 (ja) 2002-08-27 2008-04-02 富田製薬株式会社 造形法
US7087109B2 (en) 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US20040112523A1 (en) 2002-10-15 2004-06-17 Crom Elden Wendell Three dimensional printing from two dimensional printing devices
US6742456B1 (en) 2002-11-14 2004-06-01 Hewlett-Packard Development Company, L.P. Rapid prototyping material systems
US7153454B2 (en) 2003-01-21 2006-12-26 University Of Southern California Multi-nozzle assembly for extrusion of wall
US7497977B2 (en) 2003-01-29 2009-03-03 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer
WO2004073961A2 (de) 2003-02-18 2004-09-02 Daimlerchrysler Ag Beschichtete pulverpartikel für die herstellung von dreidimensionalen körpern mittels schichtaufbauender verfahren
DE602004023667D1 (de) 2003-03-10 2009-12-03 Kuraray Co Binderfasern aus polyvinylalkohol und diese fasern enthaltendes papier und vliesstoff
KR101148770B1 (ko) 2003-05-21 2012-05-24 3디 시스템즈 인코오퍼레이티드 3d 인쇄 시스템으로부터의 외관 모형용 열가소성 분말 물질 시스템
JP2007503342A (ja) 2003-05-23 2007-02-22 ズィー コーポレイション 三次元プリント装置及び方法
US7435072B2 (en) 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE10327272A1 (de) 2003-06-17 2005-03-03 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US20050012247A1 (en) 2003-07-18 2005-01-20 Laura Kramer Systems and methods for using multi-part curable materials
US7120512B2 (en) 2003-08-25 2006-10-10 Hewlett-Packard Development Company, L.P. Method and a system for solid freeform fabricating using non-reactive powder
US20050074511A1 (en) 2003-10-03 2005-04-07 Christopher Oriakhi Solid free-form fabrication of solid three-dimesional objects
US7220380B2 (en) 2003-10-14 2007-05-22 Hewlett-Packard Development Company, L.P. System and method for fabricating a three-dimensional metal object using solid free-form fabrication
US7348075B2 (en) 2003-10-28 2008-03-25 Hewlett-Packard Development Company, L.P. System and method for fabricating three-dimensional objects using solid free-form fabrication
US7455805B2 (en) 2003-10-28 2008-11-25 Hewlett-Packard Development Company, L.P. Resin-modified inorganic phosphate cement for solid freeform fabrication
US7381360B2 (en) 2003-11-03 2008-06-03 Hewlett-Packard Development Company, L.P. Solid free-form fabrication of three-dimensional objects
FR2865960B1 (fr) 2004-02-06 2006-05-05 Nicolas Marsac Procede et machine pour realiser des objets en trois dimensions par depot de couches successives
US7608672B2 (en) 2004-02-12 2009-10-27 Illinois Tool Works Inc. Infiltrant system for rapid prototyping process
DE102004008168B4 (de) 2004-02-19 2015-12-10 Voxeljet Ag Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung
DE102004014806B4 (de) 2004-03-24 2006-09-14 Daimlerchrysler Ag Rapid-Technologie-Bauteil
US7435763B2 (en) 2004-04-02 2008-10-14 Hewlett-Packard Development Company, L.P. Solid freeform compositions, methods of application thereof, and systems for use thereof
US20050280185A1 (en) 2004-04-02 2005-12-22 Z Corporation Methods and apparatus for 3D printing
DE102004025374A1 (de) 2004-05-24 2006-02-09 Technische Universität Berlin Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels
JP4239915B2 (ja) 2004-07-16 2009-03-18 セイコーエプソン株式会社 マイクロレンズの製造方法およびマイクロレンズの製造装置
GB2422344B (en) * 2005-01-24 2008-08-20 Univ Montfort Rapid prototyping method using infrared sintering
ITMI20050459A1 (it) 2005-03-21 2006-09-22 Montangero & Montangero S R L Dispositivo di movimentazione al suolo di un corpo
ITPI20050031A1 (it) 2005-03-22 2006-09-23 Moreno Chiarugi Metodo e dispositivo per la realizzazione automatica di strutture di edifici in conglomerato
US7357629B2 (en) 2005-03-23 2008-04-15 3D Systems, Inc. Apparatus and method for aligning a removable build chamber within a process chamber
US7790096B2 (en) 2005-03-31 2010-09-07 3D Systems, Inc. Thermal management system for a removable build chamber for use with a laser sintering system
US20080003390A1 (en) 2005-04-27 2008-01-03 Nahoto Hayashi Multi-Layer Structure and Process for Production Thereof
DE102005022308B4 (de) 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
US20060257579A1 (en) 2005-05-13 2006-11-16 Isaac Farr Use of a salt of a poly-acid to delay setting in cement slurry
US20060254467A1 (en) 2005-05-13 2006-11-16 Isaac Farr Method for making spray-dried cement particles
US20070045891A1 (en) 2005-08-23 2007-03-01 Valspar Sourcing, Inc. Infiltrated Articles Prepared by a Laser Sintering Method and Method of Manufacturing the Same
JP2009508723A (ja) 2005-09-20 2009-03-05 ピーティーエス ソフトウェア ビーブイ 三次元物品を構築する装置及び三次元物品を構築する方法
DE102006040305A1 (de) 2005-09-20 2007-03-29 Daimlerchrysler Ag Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie damit hergestellter Gegenstand
US7296990B2 (en) 2005-10-14 2007-11-20 Hewlett-Packard Development Company, L.P. Systems and methods of solid freeform fabrication with translating powder bins
DE102005056260B4 (de) 2005-11-25 2008-12-18 Prometal Rct Gmbh Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material
US20070126157A1 (en) 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
JP4247501B2 (ja) 2005-12-27 2009-04-02 富田製薬株式会社 型の製造方法
WO2007114895A2 (en) 2006-04-06 2007-10-11 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
KR101537494B1 (ko) 2006-05-26 2015-07-16 3디 시스템즈 인코오퍼레이티드 3d 프린터 내에서 재료를 처리하기 위한 인쇄 헤드 및 장치 및 방법
EP2032345B1 (de) * 2006-06-20 2010-05-05 Katholieke Universiteit Leuven Verfahren und vorrichtung zur in-situ-überwachung und rückkopplungssteuerung selektiver laserpulverbearbeitung
DE102006029298B4 (de) 2006-06-23 2008-11-06 Stiftung Caesar Center Of Advanced European Studies And Research Materialsystem für das 3D-Drucken, Verfahren zu seiner Herstellung, Granulat hergestellt aus dem Materialsystem und dessen Verwendung
DE102006030350A1 (de) 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Verfahren zum Aufbauen eines Schichtenkörpers
US20080018018A1 (en) 2006-07-20 2008-01-24 Nielsen Jeffrey A Solid freeform fabrication methods and systems
US8187521B2 (en) 2006-07-27 2012-05-29 Arcam Ab Method and device for producing three-dimensional objects
DE102006038858A1 (de) 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen
DE102006040182A1 (de) 2006-08-26 2008-03-06 Mht Mold & Hotrunner Technology Ag Verfahren zur Herstellung eines mehrschichtigen Vorformlings sowie Düse hierfür
DE202006016477U1 (de) 2006-10-24 2006-12-21 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE102006053121B3 (de) 2006-11-10 2007-12-27 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial
DE102006055053A1 (de) * 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
DE102006055326A1 (de) 2006-11-23 2008-05-29 Voxeljet Technology Gmbh Vorrichtung und Verfahren zur Förderung von überschüssigem Partikelmaterial beim Aufbau von Modellen
EP2089215B1 (de) 2006-12-08 2015-02-18 3D Systems Incorporated Dreidimensionales druckmaterialsystem
WO2008086033A1 (en) 2007-01-10 2008-07-17 Z Corporation Three-dimensional printing material system with improved color, article performance, and ease of use
JP4869155B2 (ja) 2007-05-30 2012-02-08 株式会社東芝 物品の製造方法
DE102007033434A1 (de) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Bauteile
US20100279007A1 (en) 2007-08-14 2010-11-04 The Penn State Research Foundation 3-D Printing of near net shape products
DE102007040755A1 (de) 2007-08-28 2009-03-05 Jens Jacob Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern
ITPI20070108A1 (it) 2007-09-17 2009-03-18 Enrico Dini Metodo perfezionato per la realizzazione automatica di strutture di conglomerato
DE102007047326B4 (de) 2007-10-02 2011-08-25 CL Schutzrechtsverwaltungs GmbH, 96215 Vorrichtung zum Herstellen eines dreidimensionalen Objektes
DE102007049058A1 (de) 2007-10-11 2009-04-16 Voxeljet Technology Gmbh Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils
DE102007050679A1 (de) 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
JP5146010B2 (ja) 2008-02-28 2013-02-20 東レ株式会社 セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法
WO2009145069A1 (ja) 2008-05-26 2009-12-03 ソニー株式会社 造形装置および造形方法
DE102008058378A1 (de) 2008-11-20 2010-05-27 Voxeljet Technology Gmbh Verfahren zum schichtweisen Aufbau von Kunststoffmodellen
EP2191922B1 (de) 2008-11-27 2011-01-05 MTT Technologies GmbH Träger- und Pulverauftragsvorrichtung für eine Anlage zur Herstellung von Werkstücken durch Beaufschlagen von Pulverschichten mit elektromagnetischer Strahlung oder Teilchenstrahlung
US8545209B2 (en) 2009-03-31 2013-10-01 Microjet Technology Co., Ltd. Three-dimensional object forming apparatus and method for forming three-dimensional object
JP5364439B2 (ja) 2009-05-15 2013-12-11 パナソニック株式会社 三次元形状造形物の製造方法
DE102009030113A1 (de) 2009-06-22 2010-12-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen
US20100323301A1 (en) 2009-06-23 2010-12-23 Huey-Ru Tang Lee Method and apparatus for making three-dimensional parts
EP2289462B1 (de) 2009-08-25 2012-05-30 BEGO Medical GmbH Vorrichtung und Verfahren zur kontinuierlichen, generativen Fertigung
DE202009012628U1 (de) * 2009-09-17 2009-12-10 Eos Gmbh Electro Optical Systems Vorrichtung zum generativen Herstellen eines dreidimensionalen Objektes
DE102009055966B4 (de) 2009-11-27 2014-05-15 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102009056696B4 (de) 2009-12-02 2011-11-10 Prometal Rct Gmbh Baubox für eine Rapid-Prototyping-Anlage
US8211226B2 (en) 2010-01-15 2012-07-03 Massachusetts Institute Of Technology Cement-based materials system for producing ferrous castings using a three-dimensional printer
EP2526463B1 (de) * 2010-01-22 2016-07-13 DSM IP Assets B.V. Verfahren zur herstellung eines dreidimensionalen artikels mit selektiven visuellen effekten
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013733A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
DE102010027071A1 (de) 2010-07-13 2012-01-19 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik
US8282380B2 (en) 2010-08-18 2012-10-09 Makerbot Industries Automated 3D build processes
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
US9757801B2 (en) 2011-06-01 2017-09-12 Bam Bundesanstalt Für Material Forschung Und Prüfung Method for producing a moulded body and device
DE102011105688A1 (de) 2011-06-22 2012-12-27 Hüttenes-Albertus Chemische Werke GmbH Verfahren zum schichtweisen Aufbau von Modellen
GB2493398B (en) * 2011-08-05 2016-07-27 Univ Loughborough Methods and apparatus for selectively combining particulate material
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102011053205B4 (de) 2011-09-01 2017-05-24 Exone Gmbh Verfahren zum herstellen eines bauteils in ablagerungstechnik
DE102011119338A1 (de) 2011-11-26 2013-05-29 Voxeljet Technology Gmbh System zum Herstellen dreidimensionaler Modelle
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
TWI633342B (zh) * 2012-03-22 2018-08-21 日本觸媒股份有限公司 Light selective transmission filter, resin sheet and solid-state imaging element
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US8888480B2 (en) 2012-09-05 2014-11-18 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US20140079912A1 (en) * 2012-09-17 2014-03-20 The Boeing Company Ir absorbing coatings comprisiing fluorinated nanoparticles
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
DE102012024266A1 (de) 2012-12-12 2014-06-12 Voxeljet Ag Reinigungsvorrichtung zum Entfernen von an Bauteilen oder Modellen anhaftendem Pulver
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
US9403725B2 (en) 2013-03-12 2016-08-02 University Of Southern California Inserting inhibitor to create part boundary isolation during 3D printing
DE102013005855A1 (de) 2013-04-08 2014-10-09 Voxeljet Ag Materialsystem und Verfahren zum Herstellen dreidimensionaler Modelle mit stabilisiertem Binder
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102013019716A1 (de) 2013-11-27 2015-05-28 Voxeljet Ag 3D-Druckverfahren mit Schlicker
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
DE102013021091A1 (de) 2013-12-18 2015-06-18 Voxeljet Ag 3D-Druckverfahren mit Schnelltrockenschritt
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
DE102013021891A1 (de) 2013-12-23 2015-06-25 Voxeljet Ag Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
DE102014215218A1 (de) * 2014-08-01 2016-02-04 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Stereolithografieeinheit mit homogenisiertem Strahlengang
EP3174651B1 (de) 2014-08-02 2020-06-17 voxeljet AG Verfahren und gussform, insbesondere zur verwendung in kaltgussverfahren
DE102014011544A1 (de) 2014-08-08 2016-02-11 Voxeljet Ag Druckkopf und seine Verwendung
DE102014014895A1 (de) 2014-10-13 2016-04-14 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren
DE102014018579A1 (de) 2014-12-17 2016-06-23 Voxeljet Ag Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
JP6676051B2 (ja) * 2015-07-06 2020-04-08 株式会社Fuji 造形装置および造形方法
DE102015008860A1 (de) 2015-07-14 2017-01-19 Voxeljet Ag Vorrichtung zum Justieren eines Druckkopfes
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
US10642023B2 (en) * 2015-09-25 2020-05-05 Hewlett-Packard Development Company, L.P. Filtering system for electromagnetic radiations
DE102015014964A1 (de) 2015-11-20 2017-05-24 Voxeljet Ag Verfahren und Vorrichtung für 3D-Druck mit engem Wellenlängenspektrum
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
DE102015016464B4 (de) 2015-12-21 2024-04-25 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen
US20180319082A1 (en) * 2016-01-29 2018-11-08 Hewlett-Packard Development Company, L.P. Additive manufacturing with irradiation filter
DE102016002777A1 (de) 2016-03-09 2017-09-14 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
WO2018199925A1 (en) * 2017-04-25 2018-11-01 Hewlett-Packard Development Company, L.P. Additive manufacturing machine optical filter
US20210291450A1 (en) * 2017-12-19 2021-09-23 Hewlett-Packard Development Company, L.P. Fusing in three-dimensional (3d) printing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431924B1 (de) 1989-12-08 1996-01-31 Massachusetts Institute Of Technology Dreidimensionale Drucktechniken
EP1648686B1 (de) 2003-07-25 2009-12-02 Loughborough University Enterprises Limited Verfahren und vorrichtung zum selektiven sintern von teilchenmaterial
EP1740367B1 (de) 2004-04-27 2009-11-04 Evonik Degussa GmbH Verfahren zur herstellung von dreidimensionalen objekten mittels elektromagnetischer strahlung und auftragen eines absorbers per inkjet-verfahren
US20150268099A1 (en) * 2014-03-24 2015-09-24 James Eldon Craig Additive manufacturing temperature controller/sensor apparatus and method of use thereof
US20170113415A1 (en) * 2014-06-20 2017-04-27 Carbon, Inc. Three-Dimensional Printing Method Using Increased Light Intensity and Apparatus Therefore

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580040A (en) * 2018-12-19 2020-07-15 Xaar 3D Ltd Heater arrangements and apparatus for layer-by-layer formation of three-dimensional objects
GB2580040B (en) * 2018-12-19 2022-01-19 Stratasys Powder Production Ltd Heater arrangements and apparatus for layer-by-layer formation of three-dimensional objects
JP2022535913A (ja) * 2019-06-07 2022-08-10 エクスワン ゲーエムベーハー 3d印刷による少なくとも1つの部品の製造方法および3dプリンタ
JP7344320B2 (ja) 2019-06-07 2023-09-13 エクスワン ゲーエムベーハー 3d印刷による少なくとも1つの部品の製造方法および3dプリンタ
WO2021069003A1 (de) * 2019-10-11 2021-04-15 Voxeljet Ag Verfahren und vorrichtung zum herstellen von 3d-formteilen mittels hochleistungsstrahler
CN115003489A (zh) * 2019-11-22 2022-09-02 戴弗根特技术有限公司 具有用于热管理的热源的粉末床熔融重涂覆器
JP2021094715A (ja) * 2019-12-13 2021-06-24 谷口 秀夫 3次元造形装置及び3次元造形装置用の造形ステージ
JP7285559B2 (ja) 2019-12-13 2023-06-02 秀夫 谷口 3次元造形装置及び3次元造形装置用の造形ステージ
KR102233764B1 (ko) * 2020-05-14 2021-04-02 한국생산기술연구원 잔류응력저감을 위해 부가열원을 구비한 3d 프린팅 장치 및 이를 이용한 3d 프린팅 방법
KR102280594B1 (ko) * 2020-05-27 2021-07-27 한국생산기술연구원 잔류응력저감을 위해 레이저 스캐닝 시간을 보상하는 3d 프린팅 장치 및 이를 이용한 3d 프린팅 방법
CN111844739A (zh) * 2020-08-14 2020-10-30 广州云也科技有限公司 一种智能激光快速成型的3d打印机

Also Published As

Publication number Publication date
EP3655234A1 (de) 2020-05-27
KR20200031105A (ko) 2020-03-23
CN110944824A (zh) 2020-03-31
DE102017006860A1 (de) 2019-01-24
CN110944824B (zh) 2022-11-18
JP2020527491A (ja) 2020-09-10
US20240025118A1 (en) 2024-01-25
KR102615544B1 (ko) 2023-12-19
US11279087B2 (en) 2022-03-22
US20200130263A1 (en) 2020-04-30
US20220168956A1 (en) 2022-06-02
US11731361B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2019015707A1 (de) Verfahren und vorrichtung zum herstellen von 3d-formteilen mit spektrumswandler
EP3377321B1 (de) Verfahren für 3d-druck mit engem wellenlängenspektrum
EP3393762B1 (de) Verfahren und vorrichtung zum herstellen von 3d-formteilen mit schichtaufbautechnik
EP3237181B1 (de) Verfahren zum herstellen von 3d-formteilen mittels schichtaufbautechnik
EP2340925B1 (de) Verfahren zum generativen Herstellen eines dreidimensionalen Objekts mit kontinuierlicher Wärmezufuhr
EP3036086B1 (de) Vorrichtung zum herstellen dreidimensionaler objekte
EP3099469B1 (de) Verfahren und vorrichtung zur verbesserten steuerung des energieeintrags in einem generativen schichtbauverfahren
EP1517779B1 (de) Vorrichtung und verfahren zum herstellen von dreidimensionalen objekten mittels eines generativen fertigungsverfahrens
DE102012012344B4 (de) Verfahren und Vorrichtung zur Herstellung von Werkstücken durch Strahlschmelzen pulverförmigen Materials
DE102014208565A1 (de) Schnellprototypenbau-Modell, Pulver-Schnellprototypenbau-Vorrichtung und Pulver-Schnellprototypenbau-Verfahren
EP2200797B1 (de) Verfahren zum herstellen eines faserverbundbauteils
DE102015108131A1 (de) Verfahren und Vorrichtung zur additiven Fertigung
DE102007057450A1 (de) Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes aus einem verfestigbaren Material
EP3069804B1 (de) Verfahren zur additiven fertigung eines formkörpers
DE102016226322A1 (de) Verfahren und Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
EP4061617A2 (de) 3d-druckvorrichtung mit vorteilhafter bauraumgeometrie
DE102016010918A1 (de) Verfahren und Vorrichtung zur Herstellung eines porösen Körpers
EP3578364A1 (de) Vorrichtung und verfahren zur herstellung dreidimensionaler strukturen
EP4065344A1 (de) Verfahren und vorrichtung zum herstellen von 3d-formteilen mittels hochleistungsstrahler
DE102019007863A1 (de) Partikelmaterialvorwärmvorrichtung und Verwendung in 3D-Verfahren
DE102006044044A1 (de) Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes aus einem verfestigbaren Material
DE102016211787A1 (de) Vorrichtung und Verfahren zum generativen Herstellen eines Werkstücks
WO2019219939A1 (de) Verfahren zur generativen herstellung eines bauteils, vorrichtung zur durchführung des verfahrens und kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502707

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018756365

Country of ref document: EP

Effective date: 20200221