WO2019008820A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2019008820A1
WO2019008820A1 PCT/JP2018/006989 JP2018006989W WO2019008820A1 WO 2019008820 A1 WO2019008820 A1 WO 2019008820A1 JP 2018006989 W JP2018006989 W JP 2018006989W WO 2019008820 A1 WO2019008820 A1 WO 2019008820A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall surface
rotor core
diameter side
magnet
hole
Prior art date
Application number
PCT/JP2018/006989
Other languages
English (en)
French (fr)
Inventor
純士 北尾
朋平 高橋
裕輔 木本
義浩 深山
中野 正嗣
勇弥 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018003438.0T priority Critical patent/DE112018003438T5/de
Priority to JP2019528347A priority patent/JP6815510B2/ja
Priority to US16/614,607 priority patent/US11283332B2/en
Priority to CN201880044041.7A priority patent/CN110832755B/zh
Publication of WO2019008820A1 publication Critical patent/WO2019008820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotating electrical machine having a rotor in which permanent magnets are embedded, and more particularly to a cooling structure of permanent magnets.
  • the magnet housing hole 30 has a first inner wall surface 30a and a second inner wall surface 30b which are parallel to each other, and is formed to penetrate the rotor core 22 in the axial direction with the hole direction as the axial direction.
  • the two magnet housing holes 30 are arranged in a V-shape which is symmetrical with respect to a plane including the axial center of the shaft 21 in which the second inner wall surfaces 30b face each other and the distance gradually wides to the outer diameter side.
  • the V-shaped pairs of magnet housing holes 30 are arranged at a constant pitch in the circumferential direction by the number of poles of the rotor 20.
  • the third outer wall surface 23c and the fourth outer wall surface 23d are in contact with the outer diameter side magnet holding portion 34 and the inner diameter side magnet holding portion 32, and movement in the longitudinal direction of the second inner wall surface 30b is restricted.
  • the second outer wall surface 23b is fixed to the second inner wall surface 30b by the adhesive 43.
  • a first gap 44 is formed between the first inner wall surface 30 a of the magnet housing hole 30 and the first outer wall surface 23 a of the permanent magnet 23.
  • the outer diameter side flux barrier 33 and the rotor core cooling hole 35 communicate with each other by the first gap 44.
  • Two permanent magnets 23 housed in a pair of magnet housing holes 30 arranged in a V-shape have magnetization directions orthogonal to the first and second outer wall surfaces 23a and 23b, and the same poles face each other Is magnetized to constitute one pole.
  • the pairs of permanent magnets 23 constituting one pole are arranged in the circumferential direction at a constant pitch by the number of poles of the rotor 20 by alternately changing the polarity on the outer diameter side of the pair.
  • Permanent magnets 23 are inserted into the magnet housing hole 45, and is fixed by an adhesive 43 to the wall formed by the long sides of the outer diameter side of the rectangular cross section of the magnet housing hole 45.
  • the permanent magnet 23 held in the magnet housing hole 45 is magnetized so that the polarity on the outer diameter side is the same as the polarity of the opposite surface of the V-shaped permanent magnet 23.
  • one pole is constituted by three permanent magnets 23.
  • the other configuration is the same as that of the first embodiment.
  • a communication passage 47 is provided from the inner end face of the load side end plate 24A to the rotor core cooling hole 35, and further from the inner end face of the load side end plate 24A to the inner side flux barrier 31A.
  • the load side opening of the outer diameter side flux barrier 33 is closed by the load side end plate 24A.
  • the load-side opening of the first gap 44 communicating the outer diameter side flux barrier 33 with the rotor core cooling hole 35 is closed by the load side end plate 24A.
  • the hole shape including the magnet housing hole 30, the inner diameter side flux barrier 31A, the outer diameter side flux barrier 33, and the rotor core cooling hole 35 is constant in the axial direction. Therefore, also in the fourth embodiment, the same effect as that of the first embodiment can be obtained.
  • the opening on the non-load side of the outer diameter side flux barrier 33 is closed by the non-load side end plate 25B.
  • the load side openings of the inner diameter side flux barrier 31B and the rotor core cooling hole 35A are closed by the load side end plate 24B.
  • the openings on the load side and the reverse load side of the first gap 44a and the second gap 44b are closed by the load end plate 24B and the non-load end plate 25B.
  • the other configuration is the same as that of the first embodiment.
  • the cooling oil 9 is supplied from the rotor core cooling hole 35A to the second gap 44b, but the cooling oil 9 is supplied from the inner diameter side flux barrier 31B to the second gap 44b. Therefore, the rotor core cooling holes 35A may be omitted.
  • the first rotor core cooling hole 35a is formed by projecting the inner diameter side end portion of the first inner wall surface 30aa of the first magnet housing hole 30Aa and the vicinity thereof in the direction away from the second inner wall surface 30ba.
  • the cooling oil 9 that has flowed into the first gap 44 between the second magnet storage hole 30Bb and the third magnet storage hole 30Bc flows axially along the first outer wall surface 23a of the permanent magnet 23 to store the first magnet. It joins with the cooling oil 9 which flowed into the 1st crevice 44 of hole 30Ba.
  • FIG. 16 is a longitudinal sectional view showing a rotary electric machine according to Embodiment 8 of the present invention. Arrows in FIG. 16 indicate the flow of the cooling oil.

Abstract

この発明による回転電機においては、磁石収納穴は、第1内壁面の軸方向と直交する長さ方向が、半径方向に対して周方向に傾斜しており、永久磁石は、第1外壁面と上記第1内壁面との間に第1隙間を確保して、かつ第3外壁面を径方向外方に向けて、上記磁石収納穴に収納されており、ロータコア冷却穴が、上記第1内壁面の長さ方向の中央部より内径側の位置で上記第1隙間に連結された状態でロータコアに形成され、外径側冷媒流路が、上記第1隙間の外径側端部に連結された状態で、上記永久磁石の上記第3外壁面に沿って上記ロータコアに形成され、連通路が、第1端板の内端面から上記ロータコア冷却穴に至るように上記第1端板に形成され、排出路が、上記外径側冷媒流路と外部とを連通するように第2端板に形成されている。

Description

回転電機
 この発明は、永久磁石が埋設された回転子を有する回転電機に関し、特に、永久磁石の冷却構造に関するものである。
 産業用モータ、電気自動車、ハイブリッド自動車などに適用される回転電機には、小型化・高出力が求められ、ネオジム磁石が埋設された回転子を有する回転電機が広く用いられている。しかし、磁石自身の渦損、さらにはロータコアやステータコイルからの受熱によって、磁石温度が高くなる。磁石温度が高くなると、保持力が低下して減磁しやすくなる。特に、電気自動車やハイブリッド自動車では、高温環境下で使用されるため、磁石の減磁対策が必要となる。そこで、高温でも保持力を維持するために、ジスプロシウム(Dysprosium)などを添加する対策がとられていた。しかし、ジスプロシウムなどのレアアースは高価であり、磁石コストが高くなってしまう課題があった。
 このような状況を鑑み、磁石の冷却構造が種々提案されている。
 例えば、特許文献1に記載の従来の回転電機では、ロータコア保持部の内径側に設けられたオイル貯留部に貯留されたオイルを、遠心力により、第1オイル通路を介して永久磁石の背面に沿って軸方向に延びる第2オイル通路に供給し、永久磁石を冷却していた。
 また、特許文献2に記載の従来の回転電機では、シャフトの軸心位置に供給されたオイルを、端板に形成された連絡油路を介してロータコアのフラックスバリアに供給し、永久磁石を冷却していた。
特開2016-158365号公報 特開2012-105487号公報
 しかしながら、特許文献1に記載の従来の回転電機では、ロータコア保持部の外径が大きくなる。そこで、ロータコアの内径部まで活用する用途では、ロータコア保持部の体積が小さくなるので、そのような用途には、適用が困難であった。
 特許文献2に記載の従来の回転電機では、オイルがフラックスバリアに露呈する永久磁石の矩形断面の1つの短辺により構成される壁面に沿って流れることになる。そこで、永久磁石の冷却面積が小さくなり、永久磁石を効果的に冷却できなかった。
 この発明は、上記課題を解決するためになされたもので、永久磁石の冷却面積を大きくして永久磁石を効果的に冷却し、永久磁石の冷却性能を高めることができるとともに、ロータコアの内径部まで活用する用途に適用できる回転電機を得ることを目的とする。
 この発明に係る回転電機は、シャフトに固着され、軸方向に貫通する磁石収納穴が周方向に複数形成されたロータコア、上記ロータコアの軸方向の両端面に接する状態で上記シャフトに取り付けられた第1端板および第2端板、および上記磁石収納穴のそれぞれに収納された永久磁石を有するロータと、上記ロータの外周側に、上記ロータと同軸に配置されたステータと、を備える。上記磁石収納穴は、相対する互いに平行な第1内壁面と第2内壁面とを有し、上記第1内壁面の軸方向と直交する長さ方向が、半径方向に対して周方向に傾斜しており、上記永久磁石は、断面矩形に作製され、断面矩形の一対の長辺により構成される第1外壁面および第2外壁面と、断面矩形の一対の短辺により構成される第3外壁面および第4外壁面と、を有し、上記第1外壁面と上記第1内壁面との間に第1隙間を確保して、かつ上記第3外壁面を径方向外方に向けて、上記磁石収納穴に収納されており、ロータコア冷却穴が、上記第1内壁面の上記長さ方向の中央部より内径側の位置で上記第1隙間に連結された状態で、軸方向に貫通するように上記ロータコアに形成され、外径側冷媒流路が、上記第1隙間の外径側端部に連結された状態で、上記永久磁石の上記第3外壁面に沿って軸方向に貫通するように上記ロータコアに形成され、連通路が、上記第1端板の内端面から上記ロータコア冷却穴に至るように上記第1端板に形成され、排出路が、上記外径側冷媒流路と外部とを連通するように上記第2端板に形成され、上記シャフトには、圧力源から冷媒を上記連通路に供給する冷媒供給路が形成されている。
 この発明によれば、連通路からロータコア冷却穴に供給された冷媒が、ロータコア冷却穴を流れて第1隙間に流入し、ついで第1隙間を流れて外径側冷媒流路に流入し、ついで外径側冷媒流路を流れた後、排出路から排出される。このように、冷媒が永久磁石の第1外壁面と第3外壁面に沿って流れるので、永久磁石の冷却面積が増大し、永久磁石が効果的に冷却され、永久磁石の冷却性能が向上される。
 また、第1端板に形成された連通路を介して冷媒をロータコア冷却穴に供給しているので、ロータコアの内径部まで活用する用途にも適用できる。
この発明の実施の形態1に係る回転電機を示す縦断面図である。 この発明の実施の形態1に係る回転電機におけるロータコアの磁石収納穴周りを示す横断面図である。 この発明の実施の形態2に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。 この発明の実施の形態3に係る回転電機におけるコータコアの磁石収納穴周りを示す要部横断面図である。 この発明の実施の形態4に係る回転電機を示す縦断面図である。 この発明の実施の形態4に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。 この発明の実施の形態5に係る回転電機を示す縦断面図である。 この発明の実施の形態5に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。 この発明の実施の形態6に係る回転電機を示す縦断面図である。 この発明の実施の形態6に係る回転電機におけるロータコアを構成する第1ロータコアの磁石収納穴周り示す要部横断面図である。 この発明の実施の形態6に係る回転電機におけるロータコアを構成する第2ロータコアの磁石収納穴周り示す要部横断面図である。 この発明の実施の形態7に係る回転電機を示す縦断面図である。 この発明の実施の形態7に係る回転電機におけるロータコアを構成する第1ロータコアの磁石収納穴周り示す要部横断面図である。 この発明の実施の形態7に係る回転電機におけるロータコアを構成する第2ロータコアの磁石収納穴周り示す要部横断面図である。 この発明の実施の形態7に係る回転電機におけるロータコアを構成する第3ロータコアの磁石収納穴周り示す要部横断面図である。 この発明の実施の形態8に係る回転電機を示す縦断面図である。
 実施の形態1.
 図1はこの発明の実施の形態1に係る回転電機を示す縦断面図、図2はこの発明の実施の形態1に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。なお、縦断面図とは、シャフトの軸心を含む断面を示す断面図であり、横断面図とはシャフトの軸心と直交する断面を示す断面図である。図1および図2において、矢印は冷媒である冷却油の流れを示している。図2では、1極分のみを示している。図2では、説明の便宜上、一方の永久磁石23が省略されている。
 図1および図2において、回転電機100は、ハウジング1と、ハウジング1内に回転可能に配置されたロータ20と、ロータ20を囲繞してロータ20と同軸に配置されて、ハウジング1に保持されたステータ10と、を備えている。ここでは、ハウジング1は、円環状のフレーム2と、負荷側ブラケット3と、反負荷側ブラケット4と、に3分割されている。また、ステータ10とロータ20との間には、磁気的空隙部が形成されている。
 ステータ10は、円環状のステータコア11と、ステータコア11に装着されたステータコイル12と、を備える。ステータ10は、ステータコア11を圧入、焼き嵌めなどによりフレーム2内に挿入、保持されて、フレーム2内に配置されている。
 負荷側ブラケット3と反負荷側ブラケット4は、軸方向両側からフレーム2を挟み込むように配置され、例えば、締着ボルト(図示せず)の締着力により、一体化される。そして、ロータ20のシャフト21が、負荷側ブラケット3と反負荷側ブラケット4に保持された負荷側ベアリング5と反負荷側ベアリング6に支持されている。
 ロータ20は、例えば電磁鋼板から打ち抜かれた磁性薄板を積層して構成され、軸心位置を貫通するシャフト21に固着されたロータコア22と、ロータコア22を軸方向に貫通するように埋設された永久磁石23と、ロータコア22の軸方向の両端に配置されて、ロータコア22や永久磁石23の脱落を防止する負荷側端板24および反負荷側端板25と、を備える。ここでは、負荷側端板24が第2端板、反負荷側端板25が第1端板となる。
 磁石収納穴30は、相対して平行な第1内壁面30aと第2内壁面30bとを有し、穴方向を軸方向として、ロータコア22を軸方向に貫通するように形成されている。2つの磁石収納穴30は、第2内壁面30b同士が相対し、かつ間隔が外径側に漸次広くなる、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。このようにV字形に配置された磁石収納穴30の対が、一定のピッチで周方向に、ロータ20の極数分配置されている。ここで、第2内壁面30bの軸方向と直交する方向を長さ方向とすると、磁石収納穴30の対の第2内壁面30bの長さ方向は、半径方向に対して周方向の逆側に傾斜している。
 内径側フラックスバリア31が、磁石収納穴30の第2内壁面30bの長さ方向の内径側に連なって、ロータコア22を軸方向に貫通するように形成されている。そして、内径側磁石保持部32が、磁石収納穴30の第1内壁面30aの内径側端部に第2内壁面30b側に突出するように形成されている。
 外径側冷媒流路である外径側フラックスバリア33が、磁石収納穴30の第1内壁面30aの長さ方向の外径側に連なって、ロータコア22を軸方向に貫通するように形成されている。そして、外径側磁石保持部34が、磁石収納穴30の第2内壁面30bの外径側端部に第1内壁面30a側に突出するように形成されている。
 ロータコア冷却穴35が、磁石収納穴30の第1内壁面30aの内径側端部およびその近傍を、第2内壁面30bから離反する方向に突出させて形成されている。
 なお、V字形に配置された磁石収納穴30に連通する内径側フラックスバリア31、外径側フラックスバリア33およびロータコア冷却穴35も、シャフト21の軸心を含む平面に関して面対称となっている。
 永久磁石23は、ロータコア22の軸方向長さを有する直方体に作製されている。すなわち、永久磁石23は、断面矩形の一対の長辺により構成される第1外壁面23aおよび第2外壁面23bと、断面矩形の一対の短辺により構成される第3外壁面23cおよび第4外壁面23dと、の4面を有する。永久磁石23は、第1外壁面23aを第1内壁面30aに相対させ、第3外壁面23cを外径側に向けて、磁石収納穴30の対に収納される。各永久磁石23は、負荷側端板24側に寄せて配置され、負荷側端板24に接している。各永久磁石23は、第3外壁面23cおよび第4外壁面23dが外径側磁石保持部34および内径側磁石保持部32に接して、第2内壁面30bの長さ方向の移動を規制された状態で、第2外壁面23bを第2内壁面30bに接着剤43により固定されている。磁石収納穴30の第1内壁面30aと永久磁石23の第1外壁面23aとの間には、第1隙間44が形成されている。外径側フラックスバリア33とロータコア冷却穴35とが、第1隙間44により連通されている。
 V字形に配置された磁石収納穴30の対に収納されている2つの永久磁石23は、第1および第2外壁面23a,23bに直交する方向を着磁方向とし、同極が相対するように着磁され、1極を構成している。このように1極を構成する永久磁石23の対が、対の外径側の極性を交互に変えて、一定のピッチで周方向に、ロータ20の極数分配置されている。
 連通路38が、反負荷側端板25の内端面からロータコア冷却穴35に至るように、さらに反負荷側端板25の内端面から内径側フラックスバリア31に至るように、設けられている。外径側フラックスバリア33の反負荷側の開口は反負荷側端板25により塞がれている。また、外径側フラックスバリア33とロータコア冷却穴35とを連通する第1隙間44の反負荷側の開口は反負荷側端板25により塞がれている。
 排出路39が、外径側フラックスバリア33と負荷側端板24の外径側とを連通し、内径側フラックスバリア31と負荷側端板24の外径側とを連通するように、設けられている。ロータコア冷却穴35の負荷側の開口は、負荷側端板24により塞がれている。また、外径側フラックスバリア33とロータコア冷却穴35とを連通する第1隙間44の負荷側の開口は負荷側端板24により塞がれている。
 第1シャフト冷媒路36が、シャフト21の軸心位置に、反負荷側の端部から反負荷側端板25の配置位置に至るように形成されている。第2シャフト冷媒路37が、それぞれ、流路方向を径方向として、第1シャフト冷媒路36から分岐して連通路38に至るようにシャフト21に形成されている。なお、第1シャフト冷媒路36と第2シャフト冷媒路37が、冷却油9を連通路38に供給する冷媒供給路となる。
 軸方向連通路40が、フレーム2の鉛直方向の下端部に、ステータコア11の軸方向の両側を連通するように設けられている。
 冷媒排出口42が、ハウジング1の内部空間の鉛直方向の下端側と外部とを連通するように、反負荷側端板25に形成されている。なお、第1シャフト冷媒路36の開口が、冷媒供給口41となる。
 このように構成された回転電機100における永久磁石23の冷却方法について図1および図2を参照しつつ説明する。
 冷却油9が、圧力源である外部のポンプ7により冷媒供給口41から第1シャフト冷媒路36に圧送され、第2シャフト冷媒路37から連通路38に流入する。連通路38に流入した冷却油9の一部は、内径側フラックスバリア31に流入し、永久磁石23の第4外壁面23dに沿って軸方向に流れ、排出路39を通って径方向外方に排出される。
 連通路38に流入した冷却油9の残部は、ロータコア冷却穴35に流入し、ロータコア冷却穴35内を軸方向に流れる。ロータコア冷却穴35の負荷側の開口は塞がれているので、ロータコア冷却穴35内を軸方向に流れる冷却油9は、ポンプ7の圧送力とロータ20の回転に起因する遠心力とにより、第1隙間44に流入する。第1隙間44に流入した冷却油9は、永久磁石23の第1外壁面23aに沿って流れて、外径側フラックスバリア33に流入する。外径側フラックスバリア33内に流入した冷却油9は、永久磁石23の第3外壁面23cに沿って軸方向に流れ、排出路39を通って径方向外方に排出される。
 排出路39から排出された冷却油9は、遠心力により飛散し、ステータコイル12の負荷側コイルエンドを冷却した後垂下し、ハウジング1の内部空間の鉛直方向の下端側に溜まる。ハウジング1の内部空間の鉛直方向の下端側に溜まった冷却油9は、冷媒排出口42から排出され、オイルクーラー8を通って、ポンプ7に戻される。このとき、ステータ10の負荷側に溜まった冷却油9は、軸方向連通路40を通って、ステータ10の反負荷側に移動する。
 なお、内径側フラックスバリア31を流通して排出路39に至る経路と、ロータコア冷却穴35、第1隙間44、および外径側フラックスバリア33を流通して排出路39に至る経路とは、互いに独立している。
 実施の形態1によれば、内径側フラックスバリア31とロータコア冷却穴35とが隔離され、内径側フラックスバリア31を流通する流路と、ロータコア冷却穴35、第1隙間44および外径側フラックスバリア33を流通する流路と、が独立した流路となる。これにより、冷却油9が、永久磁石23の第1外壁面23a、第3外壁面23cおよび第4外壁面23dの3つの壁面に沿って流れる。そこで、永久磁石23の冷却面積が増大し、永久磁石23を効果的に冷却することができ、永久磁石23の冷却性能を向上させることができる。その結果、ジスプロシウムなどのレアアースの添加量を低減することができ、磁石コストを低減できる。
 また、冷却油9を、反負荷側端板25に形成された連通路38から磁石収納穴30に沿って設けられた内径側フラックスバリア31およびロータコア冷却穴35に供給しているので、従来必要であったロータコア保持部が不要となる。その結果、回転電機100は、ロータコア22の内径部まで活用するような用途にも、適用できる。
 ロータコア冷却穴35が、磁石収納穴30の第1内壁面30aの内径側端部およびその近傍を、第2内壁面30bから離反する方向に突出させて形成されている。そこで、永久磁石23の第1外壁面23aのほぼ全面に沿って冷却油9を流通させることができ、永久磁石23を効果的に冷却することができる。
 磁石収納穴30、内径側フラックスバリア31、外径側フラックスバリア33およびロータコア冷却穴35からなる穴形状が、軸方向に関して一定となっている。そこで、電磁鋼板から打ち抜かれた磁性薄板を積層してロータコア22を作製する際に、電磁鋼板から打ち抜かれる磁性薄板の形状が1種類となり、ロータコア22の加工コストを削減できる。
 なお、上記実施の形態1では、ロータコア冷却穴35、第1隙間44および外径側フラックスバリア33からなる流路を構成し、永久磁石23の第1外壁面23aと第3外壁面23cの2つの壁面に沿って冷却油9を流通させている。これにより、永久磁石23の冷却面積を大きくとることができ、永久磁石23の十分な冷却性能が得られるので、内径側フラックスバリア31内への冷却油9の流通を省略してもよい。この場合、連通路38および排出路39の簡略化が図られ、反負荷側端板25および負荷側端板24の加工コストを削減できる。
 また、上記実施の形態1では、排出路39は、外径側フラックスバリア33と負荷側端板24の外径側とを連通し、内径側フラックスバリア31と負荷側端板24の外径側とを連通するように、設けられているが、排出路39は、外径側フラックスバリア33と負荷側端板24の軸方向外方とを連通し、内径側フラックスバリア31と負荷側端板24の軸方向外方とを連通するように設けてもよい。
 また、上記実施の形態1では、連通路38は、冷却油9を内径側フラックスバリア31とロータコア冷却穴35に供給するように構成されているが、さらに、連通路38は、反負荷側端板25の外部、例えば径方向外方に開口するようにしてもよい。これにより、冷却油9が遠心力により連通路38から飛散し、ステータコイル12の反負荷側コイルエンドを冷却することができる。
 実施の形態2.
 図3はこの発明の実施の形態2に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。なお、図3中、矢印は冷却油の流れを示している。図3では、1極分のみを示している。
 図3において、磁石収納穴30の対は、第1内壁面30a同士が相対し、かつ間隔が外径側に漸次広くなる、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。内径側フラックスバリア31が、磁石収納穴30の第2内壁面30bの長さ方向の内径側に連なって、ロータコア22を軸方向に貫通するように形成されている。そして、内径側磁石保持部32が、磁石収納穴30の第1内壁面30aの内径側端部に第2内壁面30b側に突出するように形成されている。
 外径側冷媒流路である外径側フラックスバリア33が、磁石収納穴30の第1内壁面30aの長さ方向の外径側に連なって、ロータコア22を軸方向に貫通するように形成されている。そして、外径側磁石保持部34が、磁石収納穴30の第2内壁面30bの外径側端部に第1内壁面30a側に突出するように形成されている。
 ロータコア冷却穴35が、磁石収納穴30の第1内壁面30aの内径側端部およびその近傍を、第2内壁面30bから離反する方向に突出させて形成されている。
 なお、V字形に配置された磁石収納穴30に連通する内径側フラックスバリア31、外径側フラックスバリア33およびロータコア冷却穴35は、シャフト21の軸心を含む平面に関して面対称となっている。
 永久磁石23は、第1外壁面23aを第1内壁面30aに相対させ、第3外壁面23cを外径側に向けて。磁石収納穴30の対に収納される。各永久磁石23は、第3外壁面23cおよび第4外壁面23dが外径側磁石保持部34および内径側磁石保持部32に接して、第2内壁面30bの長さ方向の移動を規制された状態で、第2外壁面23bを第2内壁面30bに接着剤43により固定されている。磁石収納穴30の第1内壁面30aと永久磁石23の第1外壁面23aとの間には、第1隙間44が形成されている。外径側フラックスバリア33とロータコア冷却穴35とが、第1隙間44により連通されている。
 なお、他の構成は上記実施の形態1と同様に構成されている。
 実施の形態2においても、内径側フラックスバリア31とロータコア冷却穴35とが隔離され、内径側フラックスバリア31を流通する流路と、ロータコア冷却穴35、第1隙間44および外径側フラックスバリア33を流通する流路と、が独立した流路となる。そこで、冷却油9が、永久磁石23の第1外壁面23a、第3外壁面23cおよび第4外壁面23dの3つの壁面に沿って流れる。また、ロータコア冷却穴35が、磁石収納穴30の第1内壁面30aの内径側端部およびその近傍を、第2内壁面30bから離間する方向に突出させて形成されている。さらに、磁石収納穴30、内径側フラックスバリア31、外径側フラックスバリア33およびロータコア冷却穴35からなる穴形状が、軸方向に関して一定となっている。したがって、実施の形態2においても、上記実施の形態1と同様の効果が得られる。
 実施の形態3.
 図4はこの発明の実施の形態3に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。なお、図4中、矢印は冷却油の流れを示している。図4では、1極分のみを示している。
 図4において、断面矩形の穴形状の磁石収納穴45が、断面矩形の長辺により構成される壁面をシャフトの軸心を含む平面と直交させて、ロータコア22を軸方向に貫通するように形成されている。磁石収納穴45は、V字形に配置された磁石収納穴30の各対間の中央に、かつロータコア22内の外径側に配置されている。一対のフラックスバリア46が、磁石収納穴45の断面矩形の短辺により構成される側壁を、磁石収納穴45の矩形断面の長辺の長さ方向外方に突出させて形成されている。永久磁石23は、磁石収納穴45に挿入され、磁石収納穴45の断面矩形の外径側の長辺により構成される壁面に接着剤43により固定されている。磁石収納穴45に保持された永久磁石23は、その外径側の極性が、V字形に配置された永久磁石23の相対する面の極性と同極となるように着磁されている。これにより、1極が3つの永久磁石23により構成されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 実施の形態3では、V字形に配置された永久磁石23に対する冷却構造が上記実施の形態1と同様に構成されている。さらに、磁石収納穴30,45、内径側フラックスバリア31、外径側フラックスバリア33、ロータコア冷却穴35、フラックスバリア46などからなる穴形状が、軸方向に関して一定となっている。したがって、実施の形態3においても、上記実施の形態1と同様の効果が得られる。
 実施の形態4.
 図5はこの発明の実施の形態4に係る回転電機を示す縦断面図、図6はこの発明の実施の形態4に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。なお、図5および図6中、矢印は冷却油の流れを示している。図6では、1極分のみを示している。
 図6において、磁石収納穴30が、第2内壁面30bを外径側に向け、第2内壁面30bの長さ方向を半径方向に対して周方向に傾斜させて、穴方向を軸方向として、軸方向に貫通するようにロータコア22に形成されている。磁石収納穴30は、一定のピッチで周方向に、ロータ20の極数分配置されている。
 内径側フラックスバリア31Aが、磁石収納穴30の第2内壁面30bの長さ方向の内径側に連なって、ロータコア22を軸方向に貫通するように形成されている。また、内径側フラックスバリア31Aは、第2内壁面30bと直交する方向、かつ第1内壁面30aから離間する方向に延びている。そして、内径側磁石保持部32が、磁石収納穴30の第1内壁面30aの内径側端部に第2内壁面30b側に突出するように形成されている。
 外径側冷媒流路である外径側フラックスバリア33が、磁石収納穴30の第2内壁面の長さ方向の外径側に連なって、ロータコア22を軸方向に貫通するように形成されている。そして、外径側磁石保持部34が、磁石収納穴30の第2内壁面30bの外径側端部に第1内壁面30a側に突出するように形成されている。
 ロータコア冷却穴35が、磁石収納穴30の第1内壁面30aの内径側端部およびその近傍を、第2内壁面30bから離反する方向に突出させて形成されている。
 永久磁石23は、磁石収納穴30に挿入され、第4外壁面23dおよび第3外壁面23cが内径側磁石保持部32および外径側磁石保持部34に接する状態で、第2外壁面23bを第2内壁面30bに接着剤43により固定されている。磁石収納穴30の第1内壁面30aと永久磁石23の第1外壁面23aとの間には、第1隙間44が形成されている。外径側フラックスバリア33とロータコア冷却穴35とが、第1隙間44により連通されている。また、内径側フラックスバリア31Aとロータコア冷却穴35とは、隔離されている。
 周方向に配列された永久磁石23は、それぞれ、第1および第2外壁面23a,23bと直交する方向を着磁方向とし、外径側の極性が周方向に交互に変わるように、着磁されている。1つの永久磁石23が、1極を構成している。
 図5において、連通路47が、負荷側端板24Aの内端面からロータコア冷却穴35に至るように、さらに負荷側端板24Aの内端面から内径側フラックスバリア31Aに至るように、設けられている。外径側フラックスバリア33の負荷側の開口は負荷側端板24Aにより塞がれている。また、外径側フラックスバリア33とロータコア冷却穴35とを連通する第1隙間44の負荷側の開口は負荷側端板24Aにより塞がれている。
 排出路48が、外径側フラックスバリア33と反負荷側端板25Aの外径側とを連通し、内径側フラックスバリア31Aと反負荷側端板25Aの外径側とを連通するように、設けられている。ロータコア冷却穴35の反負荷側の開口は反負荷側端板25Aにより塞がれている。また、外径側フラックスバリア33とロータコア冷却穴35とを連通する第1隙間44の反負荷側の開口は反負荷側端板25Aにより塞がれている。ここでは、負荷側端板24Aが第1端板、反負荷側端板25Aが第2端板となる。
 第1シャフト冷媒路36が、シャフト21の軸心位置に、反負荷側の端部から負荷側端板24Aの配置位置に至るように形成されている。第2シャフト冷媒路37が、それぞれ、流路方向を径方向として、第1シャフト冷媒路36から分岐して連通路47に至るようにシャフト21に形成されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 このように構成された回転電機101における永久磁石23の冷却方法について説明する。
 冷却油9が、外部のポンプ7により冷媒供給口41から第1シャフト冷媒路36に圧送され、第2シャフト冷媒路37から連通路47に流入する。連通路47に流入した冷却油9の一部は、内径側フラックスバリア31Aに流入し、永久磁石23の第4外壁面23dに沿って軸方向に流れ、排出路48から径方向外方に排出される。
 連通路47に流入した冷却油9の残部は、ロータコア冷却穴35に流入し、ロータコア冷却穴35内を軸方向に流れる。ロータコア冷却穴35の反負荷側の開口は塞がれているので、ロータコア冷却穴35内を軸方向に流れる冷却油9は、ポンプ7の圧送力とロータ20の回転に起因する遠心力とにより、第1隙間44に流入する。第1隙間44に流入した冷却油9は、永久磁石23の第1外壁面23aに沿って流れて、外径側フラックスバリア33に流入する。外径側フラックスバリア33内に流入した冷却油9は、永久磁石23の第3外壁面23cに沿って軸方向に流れ、排出路48から径方向外方に排出される。
 排出路48から排出された冷却油9は、遠心力により飛散し、ステータコイル12の反負荷側コイルエンドを冷却した後垂下し、ハウジング1の内部空間の鉛直方向の下端側に溜まる。ハウジング1の内部空間の鉛直方向の下端側に溜まった冷却油9は、冷媒排出口42から排出され、オイルクーラー8を通って、ポンプ7に戻される。このとき、ステータ10の負荷側に溜まった冷却油9は、軸方向連通路40を通って、ステータ10の反負荷側に移動する。
 実施の形態4においても、内径側フラックスバリア31Aとロータコア冷却穴35とが隔離され、内径側フラックスバリア31Aを流通する流路と、ロータコア冷却穴35、第1隙間44および外径側フラックスバリア33を流通する流路と、が独立した流路となる。そこで、冷却油9が、永久磁石23の第1外壁面23a、第3外壁面23cおよび第4外壁面23dに沿って流れる。また、ロータコア冷却穴35が、磁石収納穴30の第1内壁面30aの内径側端部およびその近傍を、磁石収納穴30の第2内壁面30bと反対側に突出させて形成されている。さらに、磁石収納穴30、内径側フラックスバリア31A、外径側フラックスバリア33およびロータコア冷却穴35からなる穴形状が、軸方向に関して一定となっている。したがって、実施の形態4においても、上記実施の形態1と同様の効果が得られる。
 なお、上記実施の形態4では、永久磁石23が固着される第2内壁面30bが磁石収納穴30の外径側内壁面としているが、永久磁石23が固着される第2内壁面30bを磁石収納穴30の内径側内壁面としてもよい。この場合、内径側フラックスバリア31A、内径側磁石保持部32、外径側フラックスバリア33、外径側磁石保持部34およびロータコア冷却穴35は、実施の形態2と同様の位置関係に形成される。
 また、上記実施の形態4では、ロータコア冷却穴35、第1隙間44および外径側フラックスバリア33からなる流路を構成し、永久磁石23の第1外壁面23aと第3外壁面23cの2つの壁面に沿って冷却油9を流通させている。これにより、永久磁石23の冷却面積を大きくとることができ、永久磁石23の十分な冷却性能が得られるので、内径側フラックスバリア31A内への冷却油9の流通を省略してもよい。
 また、上記実施の形態4では、排出路48が、外径側フラックスバリア33と反負荷側端板25Aの外径側とを連通し、内径側フラックスバリア31Aと反負荷側端板25Aの外径側とを連通するように、設けられているが、排出路48が、外径側フラックスバリア33と反負荷側端板25Aの軸方向外方とを連通し、内径側フラックスバリア31Aと反負荷側端板25Aの軸方向外方とを連通するように、設けられてもよい。
 また、上記実施の形態4では、連通路47が冷却油9を内径側フラックスバリア31Aとロータコア冷却穴35に供給するように構成されているが、さらに、連通路47を負荷側端板24Aの外部、例えば径方向外方に開口するようにしてもよい。これにより、冷却油9が遠心力により連通路47から飛散し、ステータコイル12の負荷側コイルエンドを冷却することができる。
 また、上記実施の形態1から4では、ロータコア冷却穴35が磁石収納穴30の第1内壁面30aの内径側端部に形成されているが、ロータコア冷却穴35の形成位置は、第1内壁面30aの長さ方向の中央部より内径側であればよい。
 実施の形態5.
 図7はこの発明の実施の形態5に係る回転電機を示す縦断面図、図8はこの発明の実施の形態5に係る回転電機におけるロータコアの磁石収納穴周りを示す要部横断面図である。なお、図7および図8中、矢印は冷却油の流れを示している。図8では、1極分のみを示している。
 図8において、2つの磁石収納穴30は、第2内壁面30b同士が相対し、かつ間隔が外径側に漸次広くなる、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。このようにV字形に配置された磁石収納穴30の対が、一定のピッチで周方向に、ロータ20の極数分配置されている。ここで、磁石収納穴30の対の第2内壁面30bの長さ方向は、半径方向に対して周方向の逆側に傾斜している。
 内径側フラックスバリア31Bが、磁石収納穴30の第2内壁面30bの長さ方向の内径側に連なって、ロータコア22を軸方向に貫通するように形成されている。さらに、内径側フラックスバリア31Bは、第1内壁面30aの内径側端部およびその近傍を第2内壁面30bと反対側に突出させて、ロータコアを軸方向に貫通するように形成されている。ここで、内径側フラックスバリア31Bが第1ロータコア冷却穴を兼用している。
 外径側冷媒流路である外径側フラックスバリア33が、磁石収納穴30の第1内壁面30aの長さ方向の外径側に連なって、ロータコア22を軸方向に貫通するように形成されている。
 ロータコア冷却穴35Aが、磁石収納穴30の第2内壁面30bの長さ方向の中央部より内径側の部位を、第1内壁面と反対側に突出させ、ロータコア22を軸方向に貫通するように形成されている。
 なお、V字形に配置された磁石収納穴30に連通する内径側フラックスバリア31B、外径側フラックスバリア33およびロータコア冷却穴35Aは、シャフト21の軸心を含む平面に関して面対称となっている。
 図7に示されるように、磁石保持溝49が、反負荷側端板25Bのロータコア22側の磁石収納穴30に相対する位置を窪ませて形成されている。連通路38が、第2シャフト冷媒路37とロータコア冷却穴35Aとを連通し、第2シャフト冷媒路37と内径側フラックスバリア31Bとを連通するように、反負荷側端板25Bに設けられている。
 磁石保持溝49が、負荷側端板24Bのロータコア22側の磁石収納穴30に相対する位置を窪ませて形成されている。排出路39が、外径側フラックスバリア33と負荷側端板24の外径側とを連通し、内径側フラックスバリア31Bと負荷側端板24Bの外径側とを連通するように、設けられている。
 永久磁石23は、両端部を負荷側端板24Bと反負荷側端板25Bとに形成された磁石保持溝49に保持された状態で磁石収納穴30に挿入されている。磁石収納穴30の第1内壁面30aと永久磁石23の第1外壁面23aとの間には、第1隙間44aが形成されている。磁石収納穴30の第2内壁面30bと永久磁石23の第2外壁面23bとの間には、第2隙間44bが形成されている。そして、外径側フラックスバリア33と内径側フラックスバリア31Bとロータコア冷却穴35Aとが、第1隙間44aおよび第2隙間44bにより連通されている。
 外径側フラックスバリア33の反負荷側の開口は、反負荷側端板25Bにより塞がれている。内径側フラックスバリア31Bおよびロータコア冷却穴35Aの負荷側の開口は負荷側端板24Bにより塞がれている。さらに、第1隙間44aおよび第2隙間44bの負荷側および反負荷側の開口は、負荷側端板24Bおよび反負荷側端板25Bにより塞がれている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 このように構成された回転電機102における永久磁石23の冷却方法について説明する。
 冷却油9が、外部のポンプ7により冷媒供給口41から第1シャフト冷媒路36に圧送され、第2シャフト冷媒路37から連通路38に流入する。連通路38に流入した冷却油9の一部は、内径側フラックスバリア31Bに流入し、永久磁石23の第1外壁面23aの内径側および第4外壁面23dに沿って軸方向に流れる。内径側フラックスバリア31Bの負荷側の開口は塞がれているので、内径側フラックスバリア31B内を軸方向に流れる冷却油9の一部は、ポンプ7の圧送力とロータ20の回転に起因する遠心力とにより、第1隙間44aに流入する。第1隙間44aに流入した冷却油9は、永久磁石23の第1外壁面23aに沿って流れて、外径側フラックスバリア33に流入する。
 内径側フラックスバリア31B内を軸方向に流れる冷却油9の残部が、ポンプ7の圧送力とロータ20の回転に起因する遠心力とにより、第2隙間44bに流入する。
 連通路38に流入した冷却油9の残部は、ロータコア冷却穴35Aに流入し、ロータコア冷却穴35A内を軸方向に流れる。ロータコア冷却穴35Aの負荷側の開口は塞がれているので、ロータコア冷却穴35A内を軸方向に流れる冷却油9は、ポンプ7の圧送力とロータ20の回転に起因する遠心力とにより、第2隙間44bに流入する。ロータコア冷却穴35Aから第2隙間44bに流入した冷却油9は、内径側フラックスバリア31Bから第2隙間44bに流入した冷却油9と合流し、永久磁石23の第2外壁面23bに沿って流れて、外径側フラックスバリア33に流入する。
 第1隙間44aを通って外径側フラックスバリア33内に流入した冷却油9は、第2隙間44bを通って外径側フラックスバリア33内に流入した冷却油9と合流し、永久磁石23の第3外壁面23cに沿って軸方向に流れ、排出路39から径方向外方に排出される。
 排出路39から排出された冷却油9は、遠心力により飛散し、ステータコイル12の負荷側コイルエンドを冷却した後垂下し、ハウジング1の内部空間の鉛直方向の下端側に溜まる。ハウジング1の内部空間の鉛直方向の下端側に溜まった冷却油9は、冷媒排出口42から排出され、オイルクーラー8を通って、ポンプ7に戻される。このとき、ステータ10の負荷側に溜まった冷却油9は、軸方向連通路40を通って、ステータ10の反負荷側に移動する。
 実施の形態5によれば、内径側フラックスバリア31Bを流通する流路と、ロータコア冷却穴35Aを流通する流路、第1および第2隙間44a,44bを流通する流路、および外径側フラックスバリア33を流通する流路が構成される。そこで、冷却油9が、永久磁石23の断面矩形の4辺により構成される4つの壁面に沿って流れるので、永久磁石23の冷却面積が増大し、永久磁石23の冷却性能を向上できる。
 また、磁石収納穴30、内径側フラックスバリア31B、外径側フラックスバリア33およびロータコア冷却穴35Aからなる穴形状が、軸方向に関して一定となっている。そこで、電磁鋼板から打ち抜かれた磁性薄板を積層してロータコア22を作製する際に、電磁鋼板から打ち抜かれる磁性薄板の形状が1種類となり、ロータコア22の加工コストを削減できる。
 なお、上記実施の形態5では、ロータコア冷却穴35Aから第2隙間44bに冷却油9を供給するようにしているが、冷却油9は、内径側フラックスバリア31Bから第2隙間44bに供給されるので、ロータコア冷却穴35Aを省略してもよい。
 また、上記実施の形態5では、排出路48が、外径側フラックスバリア33と負荷側端板24Bの外径側とを連通するように、設けられているが、排出路48が、外径側フラックスバリア33と負荷側端板24Bの軸方向外方とを連通するように設けられてもよい。
 また、上記実施の形態5では、連通路38が冷却油9を内径側フラックスバリア31Bとロータコア冷却穴35Aに供給するように構成されているが、さらに、連通路38を反負荷側端板25Bの外部、例えば径方向外方に開口するようにしてもよい。これにより、冷却油9が遠心力により連通路38から飛散し、ステータコイル12の反負荷側コイルエンドを冷却することができる。
 また、上記実施の形態5では、永久磁石23は、両端部を、負荷側端板24Bと反負荷側端板25bとに形成された磁石保持溝49に保持されているが、第2外壁面23bが第2内壁面30bに接着剤43により固定される構造と組み合わせてもよい。
 実施の形態6.
 図9は、この発明の実施の形態6に係る回転電機を示す縦断面図、図10は、この発明の実施の形態6に係る回転電機におけるロータコアを構成する第1ロータコアの磁石収納穴周り示す要部横断面図、図11は、この発明の実施の形態6に係る回転電機におけるロータコアを構成する第2ロータコアの磁石収納穴周り示す要部横断面図である。なお、図9および図11中の矢印は、冷媒の流れを示している。図10および図11は、1磁極分のみを示している。図10および図11では、説明の便宜上、一方の永久磁石が省略されている。
 図9において、ロータコア22Aは、3つの第1ロータコア22Aaと、2つの第2ロータコア22Abと、を備え、第1ロータコア22Aaと第2ロータコア22Abとを軸方向に互いに接して、交互に配列して構成されている。第1ロータコア22Aaおよび第2ロータコア22Abは、それぞれ、電磁鋼板から打ち抜かれた磁性薄板を積層して構成されている。つまり、ロータコア22Aは、2種類の磁性薄板を軸方向に積層して構成されている。
 第1磁石収納穴30Aaは、図10に示されるように、相対して平行な第1内壁面30aaと第2内壁面30baとを有し、穴方向を軸方向として、第1ロータコア22Aaを軸方向に貫通するように形成されている。軸方向に延びる突起60が、第1磁石収納穴30Aaの第1内壁面30aaに、径方向に離間して、2列に配列されている。突起60の軸方向長さは、第1ロータコア22Aaの軸方向長さより短い。そして、突起60の軸方向の両端は、第1ロータコアAaの軸方向の両端より軸方向内方に位置している。2つの第1磁石収納穴30Aaは、第2内壁面30ba同士が相対し、かつ間隔が外径側に漸次広くなる、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。このようにV字形に配置された第1磁石収納穴30Aaの対が、一定のピッチで周方向に、ロータ20Aの極数分配置されている。
 第1内径側フラックスバリア31aが、第1磁石収納穴30Aaの第2内壁面30baの長さ方向の内径側に連なって、第1ロータコア22Aaを軸方向に貫通するように形成されている。そして、第1内径側磁石保持部32aが、第1磁石収納穴30Aaの第1内壁面30aaの内径側端部に第2内壁面30ba側に突出するように形成されている。
 第1外径側フラックスバリア33aが、第1磁石収納穴30Aaの第1内壁面30aaの長さ方向の外径側に連なって、第1ロータコア22Aaを軸方向に貫通するように形成されている。そして、第1外径側磁石保持部34aが、第1磁石収納穴30Aaの第2内壁面30baの外径側端部に第1内壁面30aa側に突出するように形成されている。
 第1ロータコア冷却穴35aが、第1磁石収納穴30Aaの第1内壁面30aaの内径側端部およびその近傍を、第2内壁面30baから離反する方向に突出させて形成されている。
 第2磁石収納穴30Abは、図11に示されるように、相対して平行な第1内壁面30abと第2内壁面30bbとを有し、穴方向を軸方向として、第2ロータコア22Abを軸方向に貫通するように形成されている。2つの第2磁石収納穴30Abは、第2内壁面30bb同士が相対し、かつ間隔が外径側に漸次広くなる、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。このようにV字形に配置された第2磁石収納穴30Abの対が、一定のピッチで周方向に、ロータ20の極数分配置されている。
 第1内径側フラックスバリア31aが、第2磁石収納穴30Abの第2内壁面30bbの長さ方向の内径側に連なって、第2ロータコア22Abを軸方向に貫通するように形成されている。そして、第2内径側磁石保持部32bが、第2磁石収納穴30Abの第1内壁面30abの内径側端部に第2内壁面30bb側に突出するように形成されている。
 第2外径側フラックスバリア33bが、第2磁石収納穴30Abの第1内壁面30aaの長さ方向の外径側に連なって、第2ロータコア22Abを軸方向に貫通するように形成されている。そして、第2外径側磁石保持部34bが、第2磁石収納穴30Abの第2内壁面30bbの外径側端部に第1内壁面30ab側に突出するように形成されている。
 第2ロータコア冷却穴35bが、第2磁石収納穴30Abの第1内壁面30abの内径側端部およびその近傍を、第2内壁面30bbから離反する方向に突出させて形成されている。
 ここで、第1ロータコア22Aaは、突起60が形成されている点を除いて、第2ロータコア22Abと同形状に構成されている。ロータコア22Aにおいては、第1磁石収納穴30Aaと第2磁石収納穴30Abとが軸方向に連なって、磁石収納穴を構成している。第1内径側フラックスバリア31aと第2内径側フラックスバリア31bとが軸方向に連なって、内径側フラックスバリアを構成している。第1内径側磁石保持部32aと第2内径側磁石保持部32bとが軸方向に連なって、内径側磁石保持部を構成している。第1外径側フラックスバリア33aと第2外径側フラックスバリア33bとが軸方向に連なって、外径側フラックスバリア33を構成している。第1外径側磁石保持部34aと第2外径側磁石保持部34bとが軸方向に連なって、外径側磁石保持部を構成している。第1ロータコア冷却穴35aと第2ロータコア冷却穴35bとが軸方向に連なって、ロータコア冷却穴35を構成している。
 永久磁石23は、ロータコア22Aの軸方向長さを有する直方体に作製されている。永久磁石23は、第1外壁面23aを第1内壁面30aa,30abに相対させ、第3外壁面23cを外径側に向けて、磁石収納穴の対に収納される。各永久磁石23は、第3外壁面23cおよび第4外壁面23dが、第1および第2外径側磁石保持部34a,34bおよび第1および第2内径側磁石保持部32a,32bに接して、第2内壁面30ba,30bbの長さ方向の移動を規制された状態で、第2外壁面23bを第2内壁面30baに突起60により固定されている。磁石収納穴の第1内壁面30aa,30abと永久磁石23の第1外壁面23aとの間には、第1隙間44が形成されている。外径側フラックスバリア33とロータコア冷却穴35とが、第1隙間44により連通されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 このように構成された回転電機103における永久磁石23の冷却方法について図9から図11を参照しつつ説明する。
 冷却油9が、圧力源である外部のポンプ7により冷媒供給口41から第1シャフト冷媒路36に圧送され、第2シャフト冷媒路37から連通路38に流入する。連通路38に流入した冷却油9の一部は、内径側フラックスバリアに流入し、永久磁石23の第4外壁面23dに沿って軸方向に流れ、排出路39を通って径方向外方に排出される。
 連通路38に流入した冷却油9の残部は、ロータコア冷却穴35に流入し、ロータコア冷却穴35内を軸方向に流れる。ロータコア冷却穴35の負荷側の開口は、塞がれているので、ロータコア冷却穴35内を軸方向に流れる冷却油9は、ポンプ7の圧送力とロータ20Aの回転に起因する遠心力とにより、第1磁石収納穴30Aaおよび第2磁石収納穴30Abの第1隙間44に流入する。
 第2磁石収納穴30Abの第1隙間44に流入した冷却油9は、永久磁石23の第1外壁面23aに沿って流れて、外径側フラックスバリア33に流入する。外径側フラックスバリア33内に流入した冷却油9は、永久磁石23の第3外壁面23cに沿って軸方向に流れ、排出路39を通って径方向外方に排出される。一方、第1磁石収納穴30Aaの第1隙間44に流入した冷却油9は、突起60に沿って軸方向に流れ、第2磁石収納穴30Abの第1隙間44に流入して永久磁石23の第1外壁面23aに沿って流れる冷却油9に合流する。
 排出路39から排出された冷却油9は、遠心力により飛散し、ステータコイル12の負荷側コイルエンドを冷却した後垂下し、ハウジング1の内部空間の鉛直方向の下端側に溜まる。ハウジング1の内部空間の鉛直方向の下端側に溜まった冷却油9は、冷媒排出口42から排出され、オイルクーラー8を通って、ポンプ7に戻される。このとき、ステータ10の負荷側に溜まった冷却油9は、軸方向連通路40を通って、ステータ10の反負荷側に移動する。
 なお、第1および第2内径側フラックスバリア31a,32bを流通して排出路39に至る経路と、ロータコア冷却穴35、第1隙間44、および外径側フラックスバリア33を流通して排出路39に至る経路とは、互いに独立している。
 したがって、実施の形態6においても、上記実施の形態1と同様の効果が得られる。
 実施の形態6によれば、永久磁石23の第2外壁面23bが突起60により第2内壁面30baに固定されて、永久磁石23が磁石収納穴内に保持されている。そこで、永久磁石23を固定するための接着剤43が不要となり、コストを低減することができる。
 なお、上記実施の形態6では、第1ロータコア22Aaの軸方向長さで軸方向に延びる突起60が、第1内壁面30aaに径方向に2列に配列されているが、突起は、永久磁石23の第2外壁面23bを第2内壁面30baに固定できる高さを有していればよく、例えば、複数の島状の突起を第1内壁面30aaに分散配置してもよい。
 実施の形態7.
 図12は、この発明の実施の形態7に係る回転電機を示す縦断面図、図13は、この発明の実施の形態7に係る回転電機におけるロータコアを構成する第1ロータコアの磁石収納穴周り示す要部横断面図、図14は、この発明の実施の形態7に係る回転電機におけるロータコアを構成する第2ロータコアの磁石収納穴周り示す要部横断面図、図15は、この発明の実施の形態7に係る回転電機におけるロータコアを構成する第3ロータコアの磁石収納穴周り示す要部横断面図である。なお、図12中の矢印は、冷媒の流れを示している。図13から図15は、1磁極分のみを示している。図13から図15では、説明の便宜上、一方の永久磁石が省略されている。
 図12において、ロータコア22Bは、第1ロータコア22Baと、第2ロータコア22Bbと、第3ロータコア22Bcと、を備え、第1ロータコア22Baと第2ロータコア22Bbと第3ロータコア22Bcとを軸方向に互いに接して配列して構成されている。第1ロータコア22Ba、第2ロータコア22Bbおよび第3ロータコア22Bcは、それぞれ、電磁鋼板から打ち抜かれた磁性薄板を積層して構成されている。すなわち、ロータコア22Bは、3種類の磁性薄板を軸方向に積層して構成されている。
 第1磁石収納穴30Baは、図13に示されるように、相対して平行な第1内壁面30aaと第2内壁面30baとを有し、穴方向を軸方向として、第1ロータコア22Baを軸方向に貫通するように形成されている。軸方向に延びる突起60が、第1磁石収納穴30Baの第1内壁面30aaの長さ方向の中央に配置されている。突起60の軸方向長さは、第1ロータコア22Baの軸方向長さと同じ長さである。2つの第1磁石収納穴30Baは、第2内壁面30ba同士が相対し、かつ間隔が外径側に漸次広くなる、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。このようにV字形に配置された第1磁石収納穴30Baの対が、一定のピッチで周方向に、ロータ20Bの極数分配置されている。
 第1内径側フラックスバリア31aが、第1磁石収納穴30Baの第2内壁面30baの長さ方向の内径側に連なって、第1ロータコア22Baを軸方向に貫通するように形成されている。そして、第1内径側磁石保持部32aが、第1磁石収納穴30Baの第1内壁面30aaの内径側端部に第2内壁面30ba側に突出するように形成されている。
 第1外径側フラックスバリア33aが、第1磁石収納穴30Baの第1内壁面30aaの長さ方向の外径側に連なって、第1ロータコア22Baを軸方向に貫通するように形成されている。そして、第1外径側磁石保持部34aが、第1磁石収納穴30Baの第2内壁面30baの外径側端部に第1内壁面30aa側に突出するように形成されている。
 第1ロータコア冷却穴35aが、第1磁石収納穴30Baの第1内壁面30aaの内径側端部およびその近傍を、第2内壁面30baから離反する方向に突出させて形成されている。
 第2磁石収納穴30Bbは、図14に示されるように、相対して平行な第1内壁面30abと第2内壁面30bbとを有し、穴方向を軸方向として、第2ロータコア22Bbを軸方向に貫通するように形成されている。軸方向に延びる突起60が、第2磁石収納穴30Bbの第1内壁面30abの長さ方向の中央、内径側および外径側の3箇所に配置されている。突起60の軸方向長さは、第2ロータコア22Bbの軸方向長さと同じ長さである。2つの第2磁石収納穴30Bbが、第1磁石収納穴30Baと同様に、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。このようにV字形に配置された第2磁石収納穴30Bbの対が、一定のピッチで周方向に、ロータ20Bの極数分配置されている。
 なお、第2内径側フラックスバリア31b、第2内径側磁石保持部32b、第2外径側フラックスバリア33b、第2外径側磁石保持部34bおよび第2ロータコア冷却穴35bは、第1ロータコア22Baに形成された第1内径側フラックスバリア31a、第1内径側磁石保持部32a、第1外径側フラックスバリア33a、第1外径側磁石保持部34aおよび第1ロータコア冷却穴35aと同様に、第2ロータコア22Bbに形成されている。
 第3磁石収納穴30Bcは、図15に示されるように、相対して平行な第1内壁面30acと第2内壁面30bcとを有し、穴方向を軸方向として、第3ロータコア22Bcを軸方向に貫通するように形成されている。軸方向に延びる突起60が、第3磁石収納穴30Bcの第1内壁面30acの長さ方向の内径側と外径側との2箇所に配置されている。突起60の軸方向長さは、第3ロータコア22Bcの軸方向長さと同じ長さである。2つの第3磁石収納穴30Bcが、第1磁石収納穴30Baと同様に、シャフト21の軸心を含む平面に関して面対称のV字形に配置されている。このようにV字形に配置された第3磁石収納穴30Bcの対が、一定のピッチで周方向に、ロータ20Cの極数分配置されている。
 なお、第3内径側フラックスバリア31c、第3内径側磁石保持部32c、第3外径側フラックスバリア33c、第3外径側磁石保持部34cおよび第3ロータコア冷却穴35cは、第1ロータコア22Baに形成された第1内径側フラックスバリア31a、第1内径側磁石保持部32a、第1外径側フラックスバリア33a、第1外径側磁石保持部34aおよび第1ロータコア冷却穴35aと同様に、第3ロータコア22Bcに形成されている。
 ここで、第1ロータコア22Ba、第2ロータコア22Bbおよび第3ロータコア22Bcは、突起60の個数、配置が異なる点を除いて、同形状に構成されている。ロータコア22Bにおいては、第1磁石収納穴30Ba、第2磁石収納穴30Bbおよび第3磁石収納穴30Bcが軸方向に連なって、磁石収納穴を構成している。第1内径側フラックスバリア31a、第2内径側フラックスバリア31bおよび第3内径側フラックスバリア31cが軸方向に連なって、内径側フラックスバリアを構成している。第1内径側磁石保持部32a、第2内径側磁石保持部32bおよび第3内径側磁石保持部32cが軸方向に連なって、内径側磁石保持部を構成している。第1外径側フラックスバリア33a、第2外径側フラックスバリア33bおよび第3外径側フラックスバリア33cが軸方向に連なって、外径側フラックスバリア33を構成している。第1外径側磁石保持部34a、第2外径側磁石保持部34bおよび第3外径側磁石保持部34cが軸方向に連なって、外径側磁石保持部を構成している。第1ロータコア冷却穴35a、第2ロータコア冷却穴35bおよび第3ロータコア冷却穴35cが軸方向に連なって、ロータコア冷却穴35を構成している。
 永久磁石23は、ロータコア22Bの軸方向長さを有する直方体に作製されている。永久磁石23は、第1外壁面23aを第1内壁面30aa,30ab,30acに相対させ、第3外壁面23cを外径側に向けて、磁石収納穴の対に収納される。各永久磁石23は、第3外壁面23cおよび第4外壁面23dが第1から第3外径側磁石保持部34a,34b,34cおよび第1から第3内径側磁石保持部32a,32b、32cに接して、第2内壁面30ba,30bb,30bcの長さ方向の移動を規制された状態で、第2外壁面23bを第2内壁面30ba,30bb,39bcに突起60により固定されている。磁石収納穴の第1内壁面30aa,30ab,30acと永久磁石23の第1外壁面23aとの間には、第1隙間44が形成されている。外径側フラックスバリア33とロータコア冷却穴35とが、第1隙間44により連通されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 このように構成された回転電機103における永久磁石23の冷却方法について図9から図11を参照しつつ説明する。
 冷却油9が、圧力源である外部のポンプ7により冷媒供給口41から第1シャフト冷媒路36に圧送され、第2シャフト冷媒路37から連通路38に流入する。連通路38に流入した冷却油9の一部は、内径側フラックスバリアに流入し、永久磁石23の第4外壁面23dに沿って軸方向に流れ、排出路39を通って径方向外方に排出される。
 連通路38に流入した冷却油9の残部は、ロータコア冷却穴35に流入し、ロータコア冷却穴35内を軸方向に流れる。ロータコア冷却穴35の負荷側の開口は塞がれているので、ロータコア冷却穴35内を軸方向に流れる冷却油9は、ポンプ7の圧送力とロータ20Bの回転に起因する遠心力とにより、第1磁石収納穴30Ba、第2磁石収納穴30Bbおよび第3磁石収納穴30Bcの第1隙間44に流入する。
 第1磁石収納穴30Baの第1隙間に流入した冷却油9は、突起60に沿って反負荷側に流れ、第2磁石収納穴30Bbの内径側と中央の突起60間の第1隙間44に流入する。第2磁石収納穴30Bbの第1隙間44に流入した冷却油9は、第3磁石収納穴30Bcの2本の突起60間の第1隙間44に流入する。第3磁石収納穴30Bcの2本の突起60間の第1隙間44に流入した冷却油9は、折り返されて、負荷側に流れ、第2磁石収納穴30Bbの中央と外径側の突起60間の第1隙間44に流入する。第2磁石収納穴30Bbの第1隙間44に流入した冷却油9は、第1磁石収納穴30Baの突起60の外径側の第1隙間44に流入する。このように、冷却油9は、図12に矢印で示されるように、永久磁石23の第1外壁面23aに沿って、負荷側方向の流れと反負荷側方向の流れとを交互に繰り返して流れて、外径側フラックスバリア33に流入する。外径側フラックスバリア33内に流入した冷却油9は、永久磁石23の第3外壁面23cに沿って軸方向に流れ、排出路39を通って径方向外方に排出される。一方、第2磁石収納穴30Bbと第3磁石収納穴30Bcの第1隙間44に流入した冷却油9は、永久磁石23の第1外壁面23aに沿って軸方向に流れて、第1磁石収納穴30Baの第1隙間44に流入した冷却油9と合流する。
 排出路39から排出された冷却油9は、遠心力により飛散し、ステータコイル12の負荷側コイルエンドを冷却した後垂下し、ハウジング1の内部空間の鉛直方向の下端側に溜まる。ハウジング1の内部空間の鉛直方向の下端側に溜まった冷却油9は、冷媒排出口42から排出され、オイルクーラー8を通って、ポンプ7に戻される。このとき、ステータ10の負荷側に溜まった冷却油9は、軸方向連通路40を通って、ステータ10の反負荷側に移動する。
 なお、第1から第3内径側フラックスバリア31a,31b,31cを流通して排出路39に至る経路と、ロータコア冷却穴35、第1隙間44、および外径側フラックスバリア33を流通して排出路39に至る経路とは、互いに独立している。
 したがって、実施の形態7においても、上記実施の形態1と同様の効果が得られる。
 実施の形態7によれば、永久磁石23の第2外壁面23bが突起60により第2内壁面30ba,30bb,30bcに固定されて、永久磁石23が磁石収納穴内に保持されている。そこで、永久磁石23を固定するための接着剤が不要となり、コストを低減することができる。
 実施の形態7によれば、第1から第3磁石収納穴30Ba,Bb,Bcの第1内壁面30aa,30ab,30acに形成された突起60により、負荷側に流れる流路と反負荷側に流れる流路とが第1内壁面30aa,30ab,30acの長さ方向に交互に繰り返される蛇行した冷媒流路が構成されている。これにより、永久磁石23の第1外壁面23aに沿って流れる冷却油9の流路長さが長くなり、永久磁石23での発熱を効果的に放熱することができる。
 なお、上記実施の形態6,7では、ロータコアを軸方向に5分割あるいは3分割しているが、ロータコアの分割数は、これに限定されない。
 また、上記実施の形態6,7では、実施の形態1におけるロータコアを軸方向に5分割あるいは3分割しているが、実施の形態2-5におけるロータコアを軸方向に5分割あるいは3分割してもよい。
 実施の形態8.
 図16は、この発明の実施の形態8に係る回転電機を示す縦断面図である。なお、図16中矢印は、冷却油の流れを示している。
 図16において、永久磁石23Aは、6つの磁石ブロック50を軸方向に互いに接して配列して、ロータコア22の軸方向長さを有する直方体に構成されている。6つの磁石ブロック50は、反負荷側に寄せて、反負荷側端板25に接するように、磁石収納穴30内に配置される。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 例えば、反負荷側端板25と永久磁石2Aとの間に隙間が形成されていると、ポンプ7の圧送力とロータ20Cの回転に起因する遠心力とにより、冷却油9が、負荷側端板24と永久磁石2Aとの間に隙間に流入する。このように冷却油9が、負荷側端板24と永久磁石2Aとの間に隙間に流入するので、永久磁石23Aの第1外壁面23aに沿って流れる冷却油9の流量が少なくなる。
 このように構成された回転電機105では、6つの磁石ブロック50が、反負荷側に寄せて、反負荷側端板25に接するように、磁石収納穴30内に配置される。そこで、永久磁石23Aが、寸法公差の範囲内で、ロータコア22の軸方向長さより短く作製された場合にも、永久磁石23Aは、反負荷側端板25に接している。これにより、負荷側端板24と永久磁石23Aとの間には、隙間が形成されるが、反負荷側端板25と永久磁石23Aとの間には、隙間が形成されない。したがって、ロータコア冷却穴35内を軸方向に流れる冷却油9は、ポンプ7の圧送力とロータ20Cの回転に起因する遠心力とにより、第1隙間44に流入する。これにより、永久磁石23Aの第1外壁面23aに沿って流れる冷却油9の流量が確保され、永久磁石23Aの冷却性の低下が抑制される。永久磁石23Aが軸方向に分割されているので、永久磁石23Aの渦電流損失を低減できる。
 なお、上記実施の形態8では、 実施の形態1における回転電機において、永久磁石を軸方向に複数の磁石ブロックに分割しているが、実施の形態2-7における回転電機において、永久磁石を軸方向に複数の磁石ブロックに分割してもよい。
 また、上記各実施の形態では、積層鉄心で構成されたロータコアについて説明しているが、ロータコアは塊状鉄心で構成されてもよい。
 また、上記実施の形態6,7では、ロータコアが軸方向に複数分割されているが、分割された複数のロータコアは、全てを積層鉄心又は塊状鉄心で構成してもよく、分割された複数のロータコアは、積層鉄心と塊状鉄心とを混在させてもよい。
 7 ポンプ(圧力源)、9 冷却油(冷媒)、10 ステータ、20,20A,20B,20C ロータ、21 シャフト、22,22A,22B ロータコア、23,23A 永久磁石、23a 第1外壁面、23b 第2外壁面、23c 第3外壁面、23d 第4外壁面、24,24A,24B 負荷側端板、25,25A,25B 反負荷側端板、30 磁石収納穴、30a 第1内壁面、30b 第2内壁面、31,31A 内径側フラックスバリア、31B 内径側フラックスバリア(第1ロータコア冷却穴)、32 内径側磁石保持部、33 外径側フラックスバリア(外径側冷媒流路)、34 外径側磁石保持部、35、35A ロータコア冷却穴、36 第1シャフト冷媒路(冷媒供給路)、37 第2シャフト冷媒路(冷媒供給路)、38 連通路、39 排出路、50 磁石ブロック。

Claims (14)

  1.  シャフトに固着され、軸方向に貫通する磁石収納穴が周方向に複数形成されたロータコア、上記ロータコアの軸方向の両端面に接する状態で上記シャフトに取り付けられた第1端板および第2端板、および上記磁石収納穴のそれぞれに収納された永久磁石を有するロータと、
     上記ロータの外周側に、上記ロータと同軸に配置されたステータと、を備える回転電機において、
     上記磁石収納穴は、相対する互いに平行な第1内壁面と第2内壁面とを有し、上記第1内壁面の軸方向と直交する長さ方向が、半径方向に対して周方向に傾斜しており、
     上記永久磁石は、断面矩形に作製され、断面矩形の一対の長辺により構成される第1外壁面および第2外壁面と、断面矩形の一対の短辺により構成される第3外壁面および第4外壁面と、を有し、上記第1外壁面と上記第1内壁面との間に第1隙間を確保して、かつ上記第3外壁面を径方向外方に向けて、上記磁石収納穴に収納されており、
     ロータコア冷却穴が、上記第1内壁面の上記長さ方向の中央部より内径側の位置で上記第1隙間に連結された状態で、軸方向に貫通するように上記ロータコアに形成され、
     外径側冷媒流路が、上記第1隙間の外径側端部に連結された状態で、上記永久磁石の上記第3外壁面に沿って軸方向に貫通するように上記ロータコアに形成され、
     連通路が、上記第1端板の内端面から上記ロータコア冷却穴に至るように上記第1端板に形成され、
     排出路が、上記外径側冷媒流路と外部とを連通するように上記第2端板に形成され、
     上記シャフトには、圧力源から冷媒を上記連通路に供給する冷媒供給路が形成されている回転電機。
  2.  上記ロータコア冷却穴が、上記第1隙間の内径側端部に連結されている請求項1記載の回転電機。
  3.  上記永久磁石の上記第2外壁面が、上記磁石収納穴の上記第2内壁面に固定されている請求項1又は請求項2記載の回転電機。
  4.  上記外径側冷媒流路は、上記磁石収納穴の上記第1内壁面の上記長さ方向の外径側に連なって、上記ロータコアを軸方向に貫通するように形成された外径側フラックスバリアである請求項3記載の回転電機。
  5.  外径側磁石保持部が、上記第2内壁面の外径側端部から突出し、上記永久磁石の上記第3外壁面の上記第2外壁面側の端部に接している請求項4記載の回転電機。
  6.  上記ロータコア冷却穴は、上記磁石収納穴の上記第1内壁面の上記長さ方向の外径側に連なって、上記ロータコアを軸方向に貫通するように形成された内径側フラックスバリアである請求項3から請求項5のいずれか1項に記載の回転電機。
  7.  内径側フラックスバリアが、上記磁石収納穴の上記第2内壁面の上記長さ方向の内径側に連なって、上記ロータコアを軸方向に貫通するように形成され、
     内径側磁石保持部が、上記第1内壁面の内径側端部から突出し、上記永久磁石の上記第4外壁面の上記第1外壁面側の端部に接しており、
     上記内径側フラックスバリアが、上記連通路と上記排出路とに連結されている請求項3から請求項5のいずれか1項に記載の回転電機。
  8.  上記永久磁石は、上記第1端板に接している請求項1から請求項7のいずれか1項に記載の回転電機。
  9.  上記永久磁石は、軸方向の両端部が、上記第1端板と上記第2端板とに保持されて、上記磁石収納穴に収納されている請求項1から請求項8のいずれか1項に記載の回転電機。
  10.  上記永久磁石は、磁石ブロックを互いに接して軸方向に配列して構成され、上記第1端板と接し、かつ上記第2端板と離間している請求項8又は請求項9記載の回転電機。
  11.  上記第1内壁面の上記長さ方向が、半径方向に対して周方向の逆側に傾斜して、周方向の距離が径方向外方に向かって漸次広くなるV字形に配置された上記磁石収納穴の対が、周方向に等角ピッチで配列されており、
     1極が、上記磁石収納穴の対に収納された上記永久磁石により構成されている請求項1から請求項10のいずれか1項に記載の回転電機。
  12.  上記ロータコアは、1種類の磁性薄板を軸方向に積層して構成されている請求項1から請求項11のいずれか1項に記載の回転電機。
  13.  上記第1内壁面には、上記永久磁石に接する突起が形成されている請求項1から請求項11のいずれか1項に記載の回転電機。
  14.  上記ロータコアは、複数種類の磁性薄板を軸方向に積層して構成されている請求項13記載の回転電機。
PCT/JP2018/006989 2017-07-05 2018-02-26 回転電機 WO2019008820A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018003438.0T DE112018003438T5 (de) 2017-07-05 2018-02-26 Rotierende elektrische Maschine
JP2019528347A JP6815510B2 (ja) 2017-07-05 2018-02-26 回転電機
US16/614,607 US11283332B2 (en) 2017-07-05 2018-02-26 Rotating electric machine
CN201880044041.7A CN110832755B (zh) 2017-07-05 2018-02-26 旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-131896 2017-07-05
JP2017131896 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019008820A1 true WO2019008820A1 (ja) 2019-01-10

Family

ID=64950774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006989 WO2019008820A1 (ja) 2017-07-05 2018-02-26 回転電機

Country Status (5)

Country Link
US (1) US11283332B2 (ja)
JP (1) JP6815510B2 (ja)
CN (1) CN110832755B (ja)
DE (1) DE112018003438T5 (ja)
WO (1) WO2019008820A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120425A (ja) * 2019-01-18 2020-08-06 本田技研工業株式会社 ロータ
WO2021130470A1 (en) * 2019-12-23 2021-07-01 Dyson Technology Limited A motor core
JPWO2021019692A1 (ja) * 2019-07-30 2021-09-27 三菱電機株式会社 回転電機
WO2021205713A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 回転電機
WO2022054470A1 (ja) * 2020-09-09 2022-03-17 日立Astemo株式会社 回転電機
WO2023106338A1 (ja) * 2021-12-08 2023-06-15 株式会社小松製作所 モータ
WO2023136117A1 (ja) * 2022-01-11 2023-07-20 三菱電機株式会社 回転電機

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3091060B1 (fr) * 2018-12-20 2020-12-04 Safran Helicopter Engines Machine électrique avec dispositif de démagnétisation forcée des aimants permanents
US11476733B2 (en) * 2019-11-01 2022-10-18 GM Global Technology Operations LLC Electric machine with forced convection-based rotor cooling of rotor magnets
FR3111029B1 (fr) * 2020-05-29 2023-06-30 Novares France Rotor pour moteur électrique muni d’un circuit de refroidissement
FR3115946A1 (fr) * 2020-11-05 2022-05-06 IFP Energies Nouvelles Rotor de machine électrique avec masque d’obturation dans une barrière de flux
CN113346678B (zh) * 2021-06-09 2022-06-07 哈尔滨理工大学 具有多级轴流-离心式通风冷却系统的混合励磁汽轮发电机
DE102021207594A1 (de) * 2021-07-16 2023-01-19 Magna powertrain gmbh & co kg Elektrische Maschine
KR20240025399A (ko) * 2022-08-18 2024-02-27 엘지전자 주식회사 모터의 회전자 코어 구조물 및 이를 포함하는 모터의 회전자

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171785A (ja) * 2008-01-18 2009-07-30 Toyota Motor Corp 回転電機
JP2010220340A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 回転電機
JP2011091917A (ja) * 2009-10-21 2011-05-06 Ihi Corp 回転機の出力調節方法および回転機
JP2012105487A (ja) * 2010-11-11 2012-05-31 Komatsu Ltd 電動モータの冷却装置
JP2014183602A (ja) * 2013-03-18 2014-09-29 Nissan Motor Co Ltd 回転電機
JP2014197970A (ja) * 2013-03-29 2014-10-16 株式会社小松製作所 電動機
JP2015130774A (ja) * 2014-01-09 2015-07-16 株式会社日立製作所 永久磁石式回転電機
JP2016158365A (ja) * 2015-02-24 2016-09-01 三菱自動車工業株式会社 モータ
JP2017005961A (ja) * 2015-06-16 2017-01-05 トヨタ自動車株式会社 回転電機のロータ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705503B2 (en) 2005-09-07 2010-04-27 Kabushiki Kaisha Toshiba Rotating electrical machine
CN101305510B (zh) * 2005-11-09 2011-08-10 株式会社东芝 旋转电机用转子及旋转电机
JP4560067B2 (ja) * 2007-07-19 2010-10-13 トヨタ自動車株式会社 回転電機
CN102906969B (zh) * 2010-04-23 2015-05-13 株式会社Ihi 旋转机械
JP5738007B2 (ja) 2011-03-02 2015-06-17 株式会社小松製作所 電動機の冷却構造及び電動機
JP2013017297A (ja) * 2011-07-04 2013-01-24 Toyota Motor Corp 回転電機のロータ
JP5773196B2 (ja) * 2011-07-19 2015-09-02 アイシン・エィ・ダブリュ株式会社 回転電機
US9954419B2 (en) * 2013-04-15 2018-04-24 Mitsubishi Electric Corporation Rotating electrical machine
WO2015019402A1 (ja) * 2013-08-05 2015-02-12 三菱電機株式会社 永久磁石埋込型回転電機
JP5962632B2 (ja) * 2013-11-15 2016-08-03 株式会社デンソー 回転電機のロータ及びその製造方法
WO2015087445A1 (ja) 2013-12-13 2015-06-18 三菱電機株式会社 永久磁石埋込型回転電機
WO2015146210A1 (ja) * 2014-03-24 2015-10-01 日立オートモティブシステムズ株式会社 永久磁石式回転電機及びその製造方法
WO2014171558A2 (ja) * 2014-06-06 2014-10-23 株式会社小松製作所 電動機
JP2016049005A (ja) 2014-08-28 2016-04-07 株式会社小松製作所 電動機
US10658895B2 (en) 2015-05-15 2020-05-19 Mitsubishi Electric Corporation Rotary electric machine
CN206164237U (zh) * 2016-09-22 2017-05-10 浙江迪贝电气股份有限公司 一种永磁直流电机转子的固定结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171785A (ja) * 2008-01-18 2009-07-30 Toyota Motor Corp 回転電機
JP2010220340A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 回転電機
JP2011091917A (ja) * 2009-10-21 2011-05-06 Ihi Corp 回転機の出力調節方法および回転機
JP2012105487A (ja) * 2010-11-11 2012-05-31 Komatsu Ltd 電動モータの冷却装置
JP2014183602A (ja) * 2013-03-18 2014-09-29 Nissan Motor Co Ltd 回転電機
JP2014197970A (ja) * 2013-03-29 2014-10-16 株式会社小松製作所 電動機
JP2015130774A (ja) * 2014-01-09 2015-07-16 株式会社日立製作所 永久磁石式回転電機
JP2016158365A (ja) * 2015-02-24 2016-09-01 三菱自動車工業株式会社 モータ
JP2017005961A (ja) * 2015-06-16 2017-01-05 トヨタ自動車株式会社 回転電機のロータ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120425A (ja) * 2019-01-18 2020-08-06 本田技研工業株式会社 ロータ
JPWO2021019692A1 (ja) * 2019-07-30 2021-09-27 三菱電機株式会社 回転電機
JP7126557B2 (ja) 2019-07-30 2022-08-26 三菱電機株式会社 回転電機
WO2021130470A1 (en) * 2019-12-23 2021-07-01 Dyson Technology Limited A motor core
WO2021205713A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 回転電機
JP6987310B1 (ja) * 2020-04-07 2021-12-22 三菱電機株式会社 回転電機
WO2022054470A1 (ja) * 2020-09-09 2022-03-17 日立Astemo株式会社 回転電機
JP7430129B2 (ja) 2020-09-09 2024-02-09 日立Astemo株式会社 回転電機
WO2023106338A1 (ja) * 2021-12-08 2023-06-15 株式会社小松製作所 モータ
WO2023136117A1 (ja) * 2022-01-11 2023-07-20 三菱電機株式会社 回転電機

Also Published As

Publication number Publication date
JPWO2019008820A1 (ja) 2019-11-07
CN110832755B (zh) 2023-02-17
US20200186007A1 (en) 2020-06-11
DE112018003438T5 (de) 2020-04-16
JP6815510B2 (ja) 2021-01-20
US11283332B2 (en) 2022-03-22
CN110832755A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
JP6815510B2 (ja) 回転電機
JP6297216B2 (ja) 回転電機
US8080908B2 (en) Cooling structure for rotor core in electric rotating machine
US20130221772A1 (en) Cooling structure of rotor for rotary electric machine, and rotary electric machine
JP6083523B2 (ja) ロータおよびモータ
KR20130112922A (ko) 회전기
JP2005020981A (ja) クローポール型モータのステータ
CN110247497B (zh) 旋转电机的转子
US10749411B2 (en) Rotary electric machine
JP2013183481A (ja) 回転電機用ロータの冷却構造、および、回転電機
JP2012235546A (ja) ロータおよび回転電機
WO2015045517A1 (ja) 磁気誘導子型電動機
JP2012161134A (ja) 回転電機
JP6402739B2 (ja) 回転電機
US20220140676A1 (en) Rotor for rotary electric machine
JP2019161999A (ja) 回転電機
JP2013051805A (ja) 回転電機の冷却構造
CN113541348A (zh) 旋转电机
JP2006174552A (ja) アキシャルギャップ型回転電機のロータ構造
US20230336040A1 (en) Rotating electric machine
JP2006174550A (ja) ディスク型回転電機のステータ構造
JP2020120425A (ja) ロータ
JPWO2019123962A1 (ja) ロータおよびモータ
JP2023050327A (ja) ロータ、回転電機及び駆動装置
JP2021093879A (ja) ロータ及び回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528347

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18827878

Country of ref document: EP

Kind code of ref document: A1