WO2019008620A1 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
WO2019008620A1
WO2019008620A1 PCT/JP2017/024319 JP2017024319W WO2019008620A1 WO 2019008620 A1 WO2019008620 A1 WO 2019008620A1 JP 2017024319 W JP2017024319 W JP 2017024319W WO 2019008620 A1 WO2019008620 A1 WO 2019008620A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
marker
flat plate
image
subject
Prior art date
Application number
PCT/JP2017/024319
Other languages
English (en)
French (fr)
Inventor
拓真 新坂
泰行 欅
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201780090704.4A priority Critical patent/CN110621985B/zh
Priority to US16/605,551 priority patent/US11002690B2/en
Priority to EP17917158.2A priority patent/EP3620778A4/en
Priority to PCT/JP2017/024319 priority patent/WO2019008620A1/ja
Priority to JP2019528189A priority patent/JP7164524B2/ja
Priority to TW107122978A priority patent/TWI680293B/zh
Publication of WO2019008620A1 publication Critical patent/WO2019008620A1/ja
Priority to JP2021187680A priority patent/JP7251602B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing

Definitions

  • the present invention relates to an X-ray CT apparatus that nondestructively observes the internal structure of various products and measures a three-dimensional shape.
  • a rotary stage on which an object such as an industrial product is placed is disposed between an X-ray source and an X-ray detector which are disposed to face each other.
  • the internal structure of the subject is three-dimensionally observed (see Patent Document 1). Due to the nature of being able to capture such a three-dimensional structure of an object, in recent years, X-ray CT apparatuses have been used for three-dimensional shape measurement as well as observation applications.
  • the tomographic image is reconstructed by back projecting the projection image on the basis of the X-ray focal point at the CT scan, the subject, and the geometric information of the detector.
  • an error generated in the geometric information causes a spatial distortion in the reconstructed image and causes a reduction in the dimension measurement accuracy.
  • the X-ray focal point always fluctuates during X-ray irradiation due to thermal expansion of the X-ray tube, deterioration of the target, and the like. For example, assuming that the X-ray focal point has shifted by 10 ⁇ m, a 100 ⁇ magnified projection image detected by the X-ray detector has an error of 1 mm.
  • the position of the X-ray focal point in the CT scan is three-dimensionally It is necessary to detect and correct information necessary for reconstructing a tomographic image or to suppress variation in X-ray focus.
  • Patent Document 2 Patent Document 3 and Non-patent Document 1 describe a technique for obtaining a two-dimensional focus movement amount from a projection image of a marker as a method for detecting the position of an X-ray focus in a CT scan.
  • Patent Document 4 an X-ray source is accommodated in a housing, and X-ray source is supplied by supplying temperature-controlled gas in a housing.
  • Non-Patent Document 1 In the position detection of the X-ray focal point described in Non-Patent Document 1, a marker is placed in the vicinity of the rotation stage on which the subject is placed so as not to obstruct the field of view of the subject, and the marker is imaged simultaneously with the subject.
  • the position of the X-ray focal point can always be detected.
  • the position of the X-ray focal point to be detected is only in two directions on the detector plane.
  • the X-ray source is accommodated and fixed in a housing, and the housing is further Adopting a structure connected to the cooling device increases the production cost of the device.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to three-dimensionally detect the focal position of X-rays which fluctuate during a CT scan of an object and reconstruct a tomographic image without spatial distortion.
  • An object of the present invention is to provide an X-ray CT apparatus.
  • the invention according to claim 1 is an X-ray CT apparatus which reconstructs a tomographic image of the subject based on projection data acquired by irradiating the subject with X-rays from a plurality of angles, and generates the X-ray.
  • a control unit that performs arithmetic processing based on projection data of the subject detected by the X-ray detector, a flat plate provided with at least two markers, and a support unit that supports the flat plate A position between the rotation stage and the X-ray source, wherein the marker is within the detection range of the X-ray detector during execution of a CT scan, and the flat plate is the It is placed at a position that does not overlap with the projected image of the subject A marker member, and the control device processes the projected image of the marker with a feature point at which
  • the marker member is fixed so that the installation angle of the flat plate with respect to the X-ray detector does not change.
  • the unit three-dimensionally calculates the movement amount of the focal point of the X-ray source using the installation angle information of the flat plate.
  • the invention according to a third aspect is the X-ray CT apparatus according to the first aspect, wherein the marker member is disposed such that the flat plate is in proximity to an X-ray irradiation port of the X-ray source.
  • the invention according to claim 4 is the X-ray CT apparatus according to claim 1, wherein the marker feature point detection unit performs image processing on a projected image of the marker to obtain a luminance gravity center point, and the luminance gravity center point Let it be the coordinates of the feature point.
  • the invention described in claim 5 is the X-ray CT apparatus according to claim 1, wherein the flat plate in the marker member is made of a material that attenuates X-rays.
  • the invention according to claim 6 is the X-ray CT apparatus according to claim 5, wherein the marker is a cavity provided in the flat plate, or a through hole or a recess formed in the flat plate.
  • the invention according to claim 7 is the X-ray CT apparatus according to claim 5, wherein the marker is a cylindrical or truncated cone-shaped member made of a material for attenuating X-rays disposed on the surface of the flat plate. is there.
  • the marker member has a flat plate provided with at least two markers for detecting the X-ray focal position, and at least two markers are superimposed on the projection image of the subject.
  • the X-ray focal position in the CT scan is detected three-dimensionally, and the coordinate system at the time of reconstructing the tomographic image is corrected based on the focal displacement of the X-ray source. It is possible to reconstruct a tomographic image without spatial distortion. Therefore, high dimensional measurement accuracy can be realized for three-dimensional shape measurement.
  • the position of the X-ray focal point in the CT scan is fixed by fixing the installation angle of the flat plate with respect to the X-ray detector and adding the installation angle as a calculation parameter of the focus movement amount of the X-ray. Can be determined more accurately.
  • the marker member is disposed close to the X-ray irradiation port of the X-ray source, the magnification ratio of the marker in the projected image can be increased. This makes it possible to reduce the size of the marker provided on the flat plate.
  • the luminance gravity center point is made to be the coordinates of the feature point by performing image processing on the projection image of the marker, even when the projection image of the marker is deformed, Coordinates can be determined accurately.
  • the marker can be easily formed on the flat plate.
  • FIG. 1 is a schematic view of an X-ray CT apparatus according to the present invention.
  • FIG. 7 is a schematic view illustrating the position of a marker M on the detection surface of the X-ray detector 12; It is a block diagram explaining the main control systems of the X-ray CT apparatus concerning this invention. It is a flowchart which shows the processing from acquisition of the projection image of the marker M to CT image reconstruction.
  • FIG. 1 is a schematic view of an X-ray CT apparatus according to the present invention.
  • FIG. 2 is a schematic view illustrating the position of the marker M on the detection surface of the X-ray detector 12.
  • FIG. 3 is a block diagram for explaining the main control system of the X-ray CT apparatus according to the present invention.
  • the X-ray CT apparatus comprises an X-ray source 11 for generating X-rays, an X-ray detector 12 disposed opposite to the X-ray source 11, a rotation stage 13 for mounting an object W thereon, an X-ray CT apparatus
  • a control device 30 is provided to perform overall control.
  • the control device 30 includes a personal computer 40, an X-ray controller 31, and a stage controller 32.
  • the X-ray source 11 and the X-ray detector 12 are fixed to the platen 16 by a support mechanism (not shown). Between the X-ray source 11 and the X-ray detector 12, a rotation stage 13 rotating about a rotation axis R is disposed. The rotary stage 13 is moved on the surface plate 16 by the stage moving mechanism 15 in the direction along the X-ray optical axis. By changing the distance between the rotation stage 13 and the X-ray source 11 by the stage moving mechanism 15, the enlargement ratio of the projection image of the subject W detected by the X-ray detector 12 is changed.
  • FIG. 1 As described in FIG.
  • the X axis is a horizontal direction along the X-ray optical axis
  • the Z axis is a vertical (vertical) direction
  • the Y axis is an X axis It is a direction orthogonal to the Z axis.
  • the X-ray source 11 has an X-ray tube which conically emits X-rays toward the X-ray detector 12.
  • the tube voltage and tube current supplied to the X-ray tube are controlled by the X-ray controller 31 in accordance with the material and X-ray transmission characteristics of the subject W.
  • the X-ray controller 31 is under control of the personal computer 40.
  • the transmission X-ray image detected by the X-ray detector 12 is taken into the personal computer 40.
  • a tomographic image sliced in a plane along an XY plane orthogonal to the rotation axis R is constructed by the CT image reconstruction unit 53 (see FIG. 3).
  • the rotation stage 13 and the stage moving mechanism 15 have independent drive motors, which are controlled by drive signals supplied from the stage controller 32.
  • the stage controller 32 is under control of the personal computer 40.
  • a marker member 20 composed of a flat plate 21 on which the marker M is formed and a support portion 22 for supporting the flat plate 21 is disposed.
  • the marker member 20 is disposed at a position closer to the X-ray source 11 than the rotation stage 13.
  • the flat plate 21 is made of a thin plate having a thickness that does not deform in a state of being supported by the support portion 22.
  • the flat plate 21 is provided with markers M at two locations.
  • the marker M is a through-hole drilled at symmetrical positions of the rectangular flat plate 21.
  • a cylinder or a truncated cone made of a material that attenuates X-rays similar to the material of the flat plate 21 may be disposed on the surface of the flat plate 21 as the marker M.
  • the shape of the through hole is not limited to the cylindrical hole, but may be a tapered hole in which the inner surface of the hole is inclined.
  • the marker M may be formed by forming a recess in the flat plate 21 instead of the through hole, and the marker M may be formed by providing a void in the flat plate depending on the material of the flat plate 21. That is, it is sufficient that the marker M has a thickness different from that of the flat plate 21 so that the contrast with the flat plate 21 can be obtained in the projected image.
  • the shape of the marker M is the plate portion of the flat plate 21 and the marker What is necessary is just to produce a clear difference in the X-ray transmission intensity with the part. Further, in this embodiment, two markers M are provided, but the number of markers M may be further increased.
  • the flat plate 21 is fixed to the support portion 22 so that the installation angle does not change.
  • the marker M is included within the detection range of the X-ray detector 12.
  • the position of the marker member 20 is fixed to the side close to the X-ray source 11.
  • the flat plate 21 is fixed at a position close to the front of the X-ray irradiation port of the X-ray source 11.
  • the length of the support portion 22 defining the position of the flat plate 21 is the X-ray detector 12 in which the projection image of the flat plate 21 including the marker M does not overlap the projection image of the subject W as shown in FIG.
  • the flat plate 21 on which the marker M is formed is fixed at a fixed position independently of the casing of the X-ray source 11. Can.
  • the formation position of the markers M on the flat plate 21 is such that the separation distance between the markers M becomes long in a range in which none of the markers M overlaps the projection image of the subject, whereby the three-dimensional X-ray focal point described later is generated.
  • the calculation accuracy of the movement amount is improved.
  • the X-ray detector 12 detects X-rays that are irradiated in a conical shape from the X-ray focal point and transmitted through the subject W on the flat plate 21 and the rotary stage 13, and the detection data is input to the personal computer 40.
  • the personal computer 40 includes a memory 41 such as a RAM and a ROM, an arithmetic device 42 such as a CPU that executes various arithmetic processes, a storage device 43 such as an HDD that stores projection data acquired by CT scanning, and X-rays.
  • a communication unit 44 for transmitting control signals to the controller 31 and the stage controller 32 is provided.
  • the memory 41, the arithmetic unit 42, the storage unit 43, and the communication unit 44 are connected by an internal bus 61 that enables mutual data communication.
  • the memory 41 stores a program for operating the arithmetic device 42 to realize the function.
  • the program installed in the personal computer 40 is shown as a functional block.
  • a marker feature point detection unit 51 In this embodiment, a marker feature point detection unit 51, a focus movement amount calculation unit 52, and a CT image reconstruction unit 53 are provided as functional blocks.
  • the personal computer 40 also has a display unit 48 for displaying a tomographic image and the like constructed by the operation of the arithmetic unit 42, and an input unit 49 such as a mouse and a keyboard for giving various commands to the unit. Connected through.
  • FIG. 4 is a flowchart showing processing from acquisition of a projection image of the marker M to CT image reconstruction.
  • the marker member 20 is fixed to the surface plate 16 such that the flat plate 21 on which the marker M is formed is disposed immediately in front of the X-ray irradiation port of the X-ray source 11 (step S11).
  • the marker member 20 is fixed so that the detection surface of the X-ray detector 12 and the plate surface of the flat plate 21 become parallel.
  • the position of the marker M and the installation angle of the flat plate 21 with respect to the detection surface of the X-ray detector 12 are fixed.
  • an X-ray focal point position (reference focal point position) to be a reference of the X-ray focal point is determined (step S12).
  • the X-ray focal position is a position where thermal electrons collide with the target to generate X-rays, and is regarded as one point in this specification.
  • the projection image of the marker M at the reference focal position is obtained (step S13), and the feature point of the marker M is detected from the obtained projection image (step S14). That is, before starting the CT scan on the subject W, the position of the feature point (reference marker feature point) of the marker M at the reference X-ray focal point position before thermal deformation of the X-ray tube occurs is acquired.
  • the feature point of the marker M is a point at which a straight line passing the X-ray focal point and the marker M intersects the detection surface of the X-ray detector 12.
  • the luminance barycentric point of the projected image of the marker M determined by performing image processing on the projected image obtained by the X-ray detector 12 is used as the coordinates of the feature point.
  • the luminance gravity center point of the projected image of the marker M is a point on the two-dimensional X-ray image, and the movement of the characteristic point of the marker M is on the uv plane coordinates which is the detection plane of the X-ray detector 12 Represented by a vector.
  • the circular marker M formed on the flat plate 21 is deformed into an elliptical shape in the projection image in relation to the incident angle of the X-ray to the marker M Even in this case, the coordinates of the feature point of the marker M can be accurately determined.
  • the subject W and the marker M are scanned while being imaged simultaneously (step S15).
  • the X-ray source 11 emits X-rays while rotating the rotary stage 13 on which the subject W is placed, and the X-ray detector 12 is input to the personal computer 40 at a predetermined rotation angle.
  • the projection image is stored in the storage device 43 as frame data.
  • the frame data is data for one screen of the projection image, and is stored in the storage device 43 in the order of the obtained times.
  • a feature point of the marker M is detected by performing image processing on the obtained projection image (step S16).
  • the CT scan projection data corresponding to a sampling pitch corresponding to the number of views set in the set scan mode is acquired.
  • the subject W is irradiated with X-rays from a plurality of angles, but since the position of the flat plate 21 with respect to the X-ray detector 12 is fixed, the projection image of the marker M can be obtained from each frame .
  • the X-ray focal position moves due to thermal deformation of the X-ray tube or the like with the progress of the scan, it is observed as the movement of the feature point of the marker M on the uv plane coordinates on the detection surface of the X-ray detector 12 it can.
  • Image processing is performed on frame data to detect feature points of markers M of two different frames (step S16).
  • the detection of the feature points of the marker M may be performed on all frame data, or may be performed on frame data extracted at predetermined intervals. That is, it suffices to be able to calculate how much the feature point of the marker M has moved between two different frames in step S17 described later.
  • the detection of the feature point of the marker M in steps S14 and S16 is realized by the arithmetic unit 42 executing a program read from the marker feature point detection unit 51 in the memory 41.
  • the feature point is obtained from the vector of the feature point of the marker M when the X-ray focus is at the reference position obtained in step S14 and the vector of the feature point of the marker M of a certain frame in the CT scan obtained in step S16. It is determined how much and in which direction the movement has been made (step S17). That is, from the change in the coordinate position of the feature point of the marker M after a certain period of time, it is calculated in which amount and in which direction the X-ray focal point has moved in that period.
  • the calculation of the X-ray focus movement amount is realized by the arithmetic unit 42 executing a program read from the focus movement amount calculation unit 52 in the memory 41.
  • the positions of the feature points of the two markers M are obtained, and from the positional relationship between the two markers M and the movement amount of the feature points of each marker M, the X-ray optical axis of the X-ray focal point is taken along Movement in the direction (X direction) can also be calculated.
  • the amount of movement of the X-ray focal point within the time is calculated three-dimensionally including the direction of movement. can do.
  • the plate surface of the flat plate 21 is disposed substantially parallel to the detection surface of the X-ray detector 12 during the CT scan. Therefore, when calculating the movement amount of the X-ray focus, the movement amount of the X-ray focus during the CT scan can be calculated without particularly setting the installation angle information as a parameter.
  • the installation angle of the flat plate 21 with respect to the detection surface of the X-ray detector 12 can be added as a parameter.
  • the installation angle of the flat plate 21 with respect to the detection surface of the X-ray detector 12 deviates from parallel, the distance between each of the two markers M and the detection surface of the X-ray detector 12 is different. Will be different.
  • the detection accuracy of the X-ray focal point movement can be further improved by using the installation angle information acquired in advance as known parameters for detecting the spatial movement of the X-ray focal point.
  • the installation angle of the flat plate 21 with respect to the detection surface of the X-ray detector 12 may be acquired using, for example, a laser displacement meter or the like when the marker member 20 is fixed to the surface plate 16.
  • a laser displacement meter or the like As in this X-ray CT apparatus, the positions of the X-ray source 11 and the X-ray detector 12 are fixed, and the position of the marker member 20 during CT scan is fixed to the surface plate 16.
  • the installation angle does not change when the X-ray CT apparatus is used, so acquisition of installation angle information using a laser displacement meter or the like is performed once. It will be enough.
  • the coordinate system of CT image reconstruction is corrected based on the focus movement amount (step S18).
  • the focal position of the X-ray is one of the geometrical information necessary for the reconstruction of the tomographic image, and the error of the geometrical information during the CT scan by correcting the coordinate system of the CT image reconstruction based on the focal displacement. Is corrected.
  • CT image reconstruction is performed (step S19), and a tomographic image of the subject W is reconstructed.
  • the correction of the coordinate system for CT image reconstruction (step S18) and the execution of the CT image reconstruction (step S19) are performed by executing the program read from the CT image reconstructing unit 53 in the memory 41 by the arithmetic device 42. To be realized.
  • the X-ray CT apparatus of the present invention CT scanning is performed while imaging at least two markers M simultaneously with the subject W, and feature points of the markers M are detected on the same time axis as projection data of the subject W
  • the X-ray focal point position during CT scan is detected three-dimensionally. This makes it possible to reflect the movement of the X-ray focal point during CT scanning in the reconstruction of the tomographic image, and thus to reconstruct the tomographic image without spatial distortion. Therefore, the X-ray CT apparatus of the present invention can also be used for three-dimensional shape measurement where high dimensional measurement accuracy is required.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

X線源と回転ステージ13との間には、マーカMが形成された平板21と、平板21を支持する支持部22から成るマーカ部材が配置されている。平板21におけるマーカMの形成位置は、X線検出器12の検出範囲内において、マーカMのいずれもが被写体の投影像と重畳しない領域、かつ、X線焦点の移動があっても常に検出範囲内に含まれる領域の中で、マーカM同士の距離が最も離れる位置としている。また、支持部22の長さは、投影像において、平板21およびマーカMが被写体Wに重畳することがないX線検出器の検出範囲の側端の位置となる長さに調整される。

Description

X線CT装置
 この発明は、各種製品の内部構造の観察および3次元形状の測定を非破壊で行うX線CT装置に関する。
 産業用のX線CT装置は、互いに対向配置させたX線源とX線検出器との間に、工業製品等の被写体を載置する回転ステージを配置し、被写体の周囲の各方向からのX線投影データを収集して断層画像を再構成することにより、その被写体の内部構造を3次元的に観察するものである(特許文献1参照)。このような被写体の3次元構造を捉えることができる性質から、近年では、観察用途だけでなく、3次元形状測定にX線CT装置が用いられている。
 断層画像は、CTスキャン時のX線焦点、被写体、検出器の幾何的な情報を基に投影像を逆投影して再構成される。このため、3次元形状測定用のX線CT装置においては、幾何情報に生じた誤差が、再構成像に空間的な歪みを生じさせ、寸法測定精度を低下させる原因となる。特にX線焦点は、X線照射中にX線管の熱膨張やターゲットの劣化等により常に変動する。例えば、X線焦点が10μm変動したと仮定すると、X線検出器で検出される100倍に拡大された投影像では、1mmの誤差となる。3次元形状測定用としてX線CT装置が満たすべき寸法測定精度を実現できるように被写体の断層画像を空間歪みなく再構成するためには、CTスキャン中のX線焦点の位置を3次元的に検出して、断層画像の再構成に必要な情報を補正する、あるいは、X線焦点の変動を抑制する必要がある。
 特許文献2、特許文献3および非特許文献1には、CTスキャン中のX線焦点の位置を検出する手法として、マーカの投影像から2次元の焦点移動量を求める技術が記載されている。また、特許文献4には、装置の温度変化の影響による検出精度の低下を抑制するために、X線源をハウジングに収容し、ハウジング内に温度調節された気体を供給することでX線源を含むハウジングの熱を冷却する構造が記載されている。
特開2005-351879号公報 国際公開2009/036983号 特許第3743594号 特許第5850059号
Frederik Vogeler、Wesley Verheecke、Andre Voet、Jean-Pierre Kruth、Wim Dewulf、Positinal Stability of 2D X-ray Images for Computer Tomography、International Symposium on Digital Industrial Radiology and Computed Tomography-Mo.3.3
 特許文献2に記載のX線焦点の位置検出では、検出器を介して得られるマーカの投影像が大きく、被写体の撮像視野がマーカにより阻害されるため、被写体とマーカを同時に撮像することができない。このため、被写体をスキャンするときには、マーカを退避させている。また、マーカを撮像するときには、マーカと検出器との位置関係が同じになるようにマーカの基準位置への配置を再現する必要がある。このため、精度の高いマーカの位置決め機構が必要となり、製作面での負担が大きくなる。
 非特許文献1に記載のX線焦点の位置検出では、被写体を載置する回転ステージの近傍に被写体の視野を阻害しないようマーカを設置し、マーカを被写体と同時に撮像することでCTスキャン中のX線焦点の位置を常時検出できる。しかしながら、検出するX線焦点の位置は検出器面上の2方向のみである。
 特許文献3に記載のX線焦点の位置検出では、マーカを被写体に貼設することでマーカと被写体の投影像を同時に得ることができ、CTスキャン中のX線焦点の位置を常時検出することができる。しかしながら、検出器を介して得られる投影像は、被写体にマーカが重なったものとなるため、マーカの検出精度が低下するとともに、被写体の断層画像にマーカの影響が及ぶ。
 また、X線焦点の変動を抑制するために、X線源側の温度を制御するとしても、特許文献4に記載のように、X線源をハウジングに収容して固定し、そのハウジングをさらに冷却装置に接続する構造を採用すると、装置の制作コストが高くなる。
 この発明は、上記課題を解決するためになされたものであり、被写体のCTスキャン中に変動するX線の焦点位置を3次元的に検出し、断層画像を空間歪なく再構成することが可能なX線CT装置を提供することを目的とする。
 請求項1に記載の発明は、被写体に複数の角度からX線を照射して取得した投影データに基づいて前記被写体の断層画像を再構成するX線CT装置であって、X線を発生するX線源と、前記X線源に対向配置されるX線を検出するためのX線検出器と、前記X線源と前記X線検出器との間に配置される前記被写体を載置するための回転ステージと、前記X線検出器が検出した前記被写体の投影データに基づいて演算処理を実行する制御装置と、マーカが少なくとも2か所設けられた平板と、前記平板を支持する支持部とから成り、前記回転ステージと前記X線源との間の位置であって、CTスキャンの実行中に前記マーカが前記X線検出器の検出範囲内に含まれる位置、かつ、前記平板が前記被写体の投影像に重畳しない位置に配置されるマーカ部材と、を備え、前記制御装置は、前記X線源の焦点と前記マーカとを通る直線が前記X線検出器と交差する点である特徴点を、前記マーカの投影像を画像処理することにより検出し、2次元X線画像上の前記特徴点の座標を求めるマーカ特徴点検出部と、前記マーカ特徴点検出部により求めた2つの異なるフレームの前記特徴点の座標を用いて、前記X線源の焦点が前記2つの異なるフレームが得られる間に移動した量を3次元的に算出する焦点移動量算出部と、を備え、前記X線源の焦点移動量に基づいて前記被写体の断層画像を再構成するときの座標系を修正することを特徴とする。
 請求項2に記載の発明は、請求項1に記載のX線CT装置において、前記マーカ部材は、前記X線検出器に対する前記平板の設置角度が変化しないように固定され、前記焦点移動量算出部は、前記平板の設置角度情報を利用して、前記X線源の焦点の移動量を3次元的に算出する。
 請求項3に記載の発明は、請求項1に記載のX線CT装置において、前記マーカ部材は、前記平板を前記X線源のX線照射口に近接させて配置される。
 請求項4に記載の発明は、請求項1に記載のX線CT装置において、前記マーカ特徴点検出部は、前記マーカの投影像を画像処理して輝度重心点を求め、前記輝度重心点を前記特徴点の座標とする。
 請求項5に記載の発明は、請求項1に記載のX線CT装置において、前記マーカ部材における前記平板は、X線を減衰させる材料から成る。
 請求項6に記載の発明は、請求項5に記載のX線CT装置において、前記マーカは、前記平板内に設けられた空洞、あるいは、前記平板に形成された貫通孔または凹部である。
 請求項7に記載の発明は、請求項5に記載のX線CT装置において、前記マーカは、前記平板の表面に配設されたX線を減衰させる材料から成る円柱または円錐台形状の部材である。
 請求項1から請求項7に記載の発明によれば、X線焦点位置を検出するためのマーカを少なくとも2カ所設けた平板を有するマーカ部材を備え、少なくとも2つのマーカを被写体の投影像に重畳させることなく同時にスキャンして、CTスキャン中のX線焦点位置を3次元的に検出し、X線源の焦点移動量に基づいて断層画像を再構成する際の座標系を補正することから、断層画像を空間歪なく再構成することが可能となる。このため、3次元形状測定用として高い寸法測定精度を実現することができる。
 請求項2に記載の発明によれば、X線検出器に対する平板の設置角度を固定し、設置角度をX線の焦点移動量の算出パラメータとして加えることにより、CTスキャン中のX線焦点の位置を、より正確に求めることが可能となる。
 請求項3に記載の発明によれば、マーカ部材は、平板をX線源のX線照射口に近接させて配置されることから、投影像におけるマーカの拡大率を大きくすることができる。これにより、平板に設けるマーカの大きさを小さくすることが可能となる。
 請求項4に記載の発明によれば、マーカの投影像を画像処理することにより、輝度重心点を特徴点の座標とすることから、マーカの投影像が変形している場合でも、特徴点の座標を正確に決めることができる。
 請求項5から請求項7に記載の発明によれば、平板の厚みと異なる厚みを持つマーカを設けることで、投影像において平板の板部分とマーカ部分とでX線透過強度に明確な差を生じさせ、画像処理による特徴点の検出を容易に行うことができる。
 請求項6に記載の発明によれば、平板にマーカを容易に形成することができる。
この発明に係るX線CT装置の概要図である。 X線検出器12の検出面におけるマーカMの位置を説明する概要図である。 この発明に係るX線CT装置の主要な制御系を説明するブロック図である。 マーカMの投影像の取得からCT画像再構成に至る処理を示すフローチャートである。
 この発明の実施の形態を、図面に基づいて説明する。図1は、この発明に係るX線CT装置の概要図である。図2は、X線検出器12の検出面におけるマーカMの位置を説明する概要図である。図3は、この発明に係るX線CT装置の主要な制御系を説明するブロック図である。
 X線CT装置は、X線を発生させるX線源11と、X線源11に対向配置されたX線検出器12と、被写体Wを載置するための回転ステージ13と、X線CT装置全体の制御を行う制御装置30を備える。制御装置30は、パーソナルコンピュータ40と、X線コントローラ31と、ステージコントローラ32とから構成される。
 X線源11とX線検出器12は、図示を省略した支持機構により定盤16に固定されている。X線源11とX線検出器12との間には、回転軸Rを中心に回転する回転ステージ13が配置されている。回転ステージ13は、ステージ移動機構15により定盤16上をX線光軸に沿う方向に移動する。回転ステージ13とX線源11との距離をステージ移動機構15により変更することで、X線検出器12で検出される被写体Wの投影像の拡大率が変更される。なおここで、本明細書では、図2に記載されているように、X軸はX線光軸に沿う水平方向であり、Z軸は上下(鉛直)方向であり、Y軸はX軸とZ軸に直交する方向である。
 X線源11は、X線検出器12に向けてX線を円錐状に照射するX線管を有する。被写体Wの材質やX線透過特性に応じて、X線管に供給する管電圧、管電流をX線コントローラ31により制御する。X線コントローラ31は、パーソナルコンピュータ40の制御下に置かれている。X線検出器12により検出された透過X線像は、パーソナルコンピュータ40に取り込まれる。パーソナルコンピュータ40では、投影データに基づいてCT画像再構成部53(図3参照)により回転軸Rに直交するX-Y平面に沿った面でスライスした断層画像が構築される。
 回転ステージ13およびステージ移動機構15は、それぞれ独立の駆動モータを有し、それらの駆動モータは、ステージコントローラ32から供給される駆動信号によって制御される。ステージコントローラ32は、パーソナルコンピュータ40の制御下に置かれている。
 また、X線源11と回転ステージ13との間には、マーカMが形成された平板21と、平板21を支持する支持部22から成るマーカ部材20が配置されている。マーカ部材20は、回転ステージ13よりもX線源11に近い位置に配置される。
 平板21は、支持部22で支持した状態で変形することがない厚みを持つ薄板により作成される。そして、平板21には、2カ所にマーカMが設けられている。この実施形態では、マーカMは、矩形状の平板21の左右対称な位置に穿設された貫通孔である。なお、貫通孔に代えて、平板21の材料と同様のX線を減衰させる材料により作成された円柱や円錐台形状の部材を平板21の表面に配設してマーカMとしてもよい。また、貫通孔の形状も、円柱孔に限らず、孔の内面が傾斜しているテーパ孔であってもよい。さらに、貫通孔ではなく、平板21に凹部を形成することでマーカMとしてもよく、平板21の材質によっては、平板内に空洞(ボイド)を設けることでマーカMとしてもよい。すなわち、マーカMは、平板21の厚みと異なる厚みを持つことで、投影像において平板21とのコントラストを得ることができるものであればよく、マーカMの形状は、平板21の板部分とマーカ部分とでX線透過強度に明確な差を生じさせるものであればよい。また、この実施形態では、マーカMを2カ所設けているが、マーカMの数をさらに増やしてもよい。
 平板21は、支持部22に固定されており、設置角度が変化しないようになっている。X線源11の焦点からX線を照射して被写体Wの投影データを取得する際には、図2に示すように、マーカMがX線検出器12の検出範囲内に含まれるように、マーカ部材20の位置をX線源11に近い側に固定する。これにより、X線源11のX線照射口の前の近接した位置に平板21が固定される。なお、平板21の位置を規定する支持部22の長さは、図2に示すように、マーカMを含む平板21の投影像が被写体Wの投影像と重畳することがないX線検出器12の検出範囲の側端の位置となる長さとなっている。このように、支持部22を介しマーカ部材20を定盤16に配置することで、マーカMが形成された平板21を、X線源11の筐体とは独立して定位置に固定することができる。
 平板21におけるマーカMの形成位置は、マーカMのいずれもが被写体の投影像と重畳しない範囲でマーカM同士の離間距離が長くなるようにすることで、後述するX線焦点の3次元的な移動量の算出精度がよくなる。
 X線焦点から円錐状に照射され、平板21および回転ステージ13上の被写体Wを透過したX線は、X線検出器12により検出され、検出データはパーソナルコンピュータ40に入力される。
 パーソナルコンピュータ40は、RAM、ROMなどのメモリ41と、各種の演算処理を実行するCPUなどの演算装置42と、CTスキャンにより取得された投影データを保存するHDDなどの記憶装置43と、X線コントローラ31やステージコントローラ32に制御信号を送信するための通信部44を備える。メモリ41、演算装置42、記憶装置43および通信部44は、相互のデータ通信を可能とする内部バス61により接続されている。メモリ41には、演算装置42を動作させて機能を実現するプログラムが格納されている。図3においては、パーソナルコンピュータ40にインストールされているプログラムを機能ブロックとして示している。この実施形態では、機能ブロックとして、マーカ特徴点検出部51と、焦点移動量算出部52と、CT画像再構成部53とを備える。また、パーソナルコンピュータ40には、演算装置42の動作により構築された断層画像などを表示する表示装置48と、各種指令を装置に与えるためのマウスやキーボードなどの入力装置49が、通信部44を介して接続されている。
 次に、上述した構成のX線CT装置によりCTスキャンを実行する際に、スキャン中のX線の焦点位置を検出する手順について説明する。断層画像は、CTスキャン時のX線焦点、被写体W、検出器の位置関係を含む幾何情報を基に、投影像を逆投影して再構成される。したがって、この発明では、断層画像の再構成に必要な幾何情報の一つであるX線の焦点位置の移動を追跡し、移動量を断層画像の再構成に反映するようにしている。図4は、マーカMの投影像の取得からCT画像再構成に至る処理を示すフローチャートである。
 まず、マーカMが形成された平板21がX線源11のX線照射口の直前に配置されるように、マーカ部材20を定盤16に固定する(ステップS11)。このとき、X線検出器12の検出面と平板21の板面とが平行になるように、マーカ部材20を固定する。これにより、マーカMの位置、平板21のX線検出器12の検出面に対する設置角度が固定される。そして、X線焦点の基準となるX線焦点位置(基準焦点位置)を決める(ステップS12)。なお、X線焦点位置は、X線源11におけるX線管において、熱電子がターゲットに衝突してX線を発生させる位置であって、この明細書では一つの点であると見なしている。
 基準焦点位置でのマーカMの投影像を取得し(ステップS13)、得られた投影像からマーカMの特徴点を検出する(ステップS14)。すなわち、被写体WへのCTスキャンを開始する前に、X線管の熱変形が起こる前の基準となるX線焦点位置でのマーカMの特徴点(基準マーカ特徴点)の位置を取得する。
 マーカMの特徴点は、X線焦点とマーカMを通る直線がX線検出器12の検出面と交差する点である。X線検出器12より得られた投影像を画像処理して決定したマーカMの投影像の輝度重心点を、特徴点の座標としている。なお、マーカMの投影像の輝度重心点は、2次元X線画像上の点であり、マーカMの特徴点の移動は、このX線検出器12の検出面であるu-v平面座標におけるベクトルで表される。また、マーカMの特徴点の座標を輝度重心点とすることで、マーカMへのX線の入射角との関係で、平板21に形成された円形のマーカMが投影像では楕円形に変形しても、マーカMの特徴点の座標を正確に求めることができる。
 続いて、被写体WとマーカMとを同時に撮像しながらスキャンする(ステップS15)。CTスキャンに際しては、X線源11からX線を照射しながら、被写体Wを載置した回転ステージ13を回転させて、所定の回転角度ごとにX線検出器12からパーソナルコンピュータ40に入力された投影像が、フレームデータとして記憶装置43に記憶される。なお、フレームデータとは投影像の1画面分のデータのことであり、得られた時刻の順番にしたがって記憶装置43に記憶されるものである。
 得られた投影像を画像処理することにより、マーカMの特徴点を検出する(ステップS16)。CTスキャンでは、設定されたスキャンモードで設定されたビュー数に応じたサンプリングピッチに対応する投影データが収集される。スキャン中は、被写体Wには複数の角度からX線が照射されるが、X線検出器12に対する平板21の位置は固定されていることから、各フレームから、マーカMの投影像が得られる。スキャンの経過に伴い、X線管の熱変形などによりX線焦点位置が移動すると、それは、X線検出器12の検出面におけるu-v平面座標上でのマーカMの特徴点の移動として観察できる。フレームデータに対して画像処理を実行することで、異なる2つのフレームのマーカMの特徴点を検出する(ステップS16)。なお、マーカMの特徴点の検出は、全てのフレームデータに対して実行してもよく、所定の間隔で抽出したフレームデータに対して行ってもよい。すなわち、後述するステップS17で、2つの異なるフレーム間で、どれだけマーカMの特徴点が移動したかを計算することができればよい。
 なお、ステップS14およびステップS16におけるマーカMの特徴点の検出は、演算装置42がメモリ41におけるマーカ特徴点検出部51から読み込んだプログラムを実行することにより実現される。
 ステップS14で得られたX線焦点が基準位置にあるときのマーカMの特徴点のベクトルと、ステップS16で得られたCTスキャン中のあるフレームのマーカMの特徴点のベクトルから、特徴点がどれだけどの方向に移動したかを求める(ステップS17)。すなわち、ある時間経過後のマーカMの特徴点の座標位置の変化から、その時間内に、X線焦点がどれだけの量どの方向に移動したかが算出される。このX線焦点移動量の算出は、演算装置42がメモリ41における焦点移動量算出部52から読み込んだプログラムを実行することにより実現される。
 なお、この実施形態では、2つのマーカMの特徴点の位置を求めており、2つのマーカMの位置関係と各マーカMの特徴点の移動量から、X線焦点のX線光軸に沿う方向(X方向)の移動も計算することができる。このように、少なくとも2つのマーカMの2つの異なるフレームで検出した特徴点の座標を用いて、X線の焦点が当該時間内で移動した量を、移動した方向も含めて3次元的に算出することができる。
 このX線CT装置では、CTスキャン中のX線検出器12の検出面に対して平板21の板面をほぼ平行に設置している。このため、X線焦点の移動量を算出する際に、特に設置角度情報をパラメータとして設定しなくても、CTスキャン中のX線焦点の移動量を算出することができる。
 一方、X線焦点の移動量の3次元的算出において、X線検出器12の検出面に対する平板21の設置角度をパラメータとして加えることもできる。X線検出器12の検出面に対する平板21の設置角度が平行からずれるほど、2つのマーカMの各々とX線検出器12の検出面との距離に差が生じ、投射像における両者の拡大率が異なることになる。X線焦点の空間移動の検出に、既知パラメータとして予め取得しておいた設置角度情報を利用することで、X線焦点移動の検出精度をさらに向上させることができる。
 X線検出器12の検出面に対する平板21の設置角度は、例えば、マーカ部材20を定盤16に固定したときに、レーザ変位計などを使用して取得しておけばよい。なお、このX線CT装置のようにX線源11とX線検出器12の位置が固定されており、CTスキャン中のマーカ部材20の位置が定盤16に固定されているに等しい状態の装置では、X線検出器12とマーカ部材20を配置して以降、X線CT装置の使用時においてこの設置角度が変わることがないため、レーザ変位計などを使用した設置角度情報の取得は一度で済むことになる。
 X線の焦点移動量が求まると、その焦点移動量に基づいて、CT画像再構成の座標系を修正する(ステップS18)。X線の焦点位置は、断層画像の再構成に必要な幾何情報の一つであり、焦点移動量に基づいてCT画像再構成の座標系を修正することで、CTスキャン中の幾何情報の誤差が修正される。しかる後、CT画像再構成を実行し(ステップS19)、被写体Wの断層画像を再構成する。なお、CT画像再構成の座標系の修正(ステップS18)およびCT画像再構成の実行(ステップS19)は、演算装置42がメモリ41におけるCT画像再構成部53から読み込んだプログラムを実行することにより実現される。
 上述したように、この発明のX線CT装置では、少なくとも2つのマーカMを被写体Wと同時に撮像しながらCTスキャンし、被写体Wの投影データと同じ時間軸でマーカMの特徴点を検出することで、CTスキャン中のX線焦点位置を3次元的に検出している。これにより、CTスキャン中のX線焦点の移動を断層画像の再構成に反映できることから、断層画像を空間歪みなく再構成すること可能となる。したがって、この発明のX線CT装置を高い寸法測定精度が要求される3次元形状測定用に使用することも可能となる。
 11   X線源
 12   X線検出器
 13   回転ステージ
 15   ステージ移動機構
 16   定盤
 20   マーカ部材
 21   平板
 22   支持部
 30   制御装置
 31   X線コントローラ
 32   ステージコントローラ
 40   パーソナルコンピュータ
 41   メモリ
 42   演算装置
 43   記憶装置
 44   通信部
 48   表示装置
 49   入力装置
 51   マーカ特徴点検出部
 52   焦点移動量算出部
 53   CT画像再構成部
 M   マーカ
 W   被写体

Claims (7)

  1.  被写体に複数の角度からX線を照射して取得した投影データに基づいて前記被写体の断層画像を再構成するX線CT装置であって、
     X線を発生するX線源と、
     前記X線源に対向配置されるX線を検出するためのX線検出器と、
     前記X線源と前記X線検出器との間に配置される前記被写体を載置するための回転ステージと、
     前記X線検出器が検出した前記被写体の投影データに基づいて演算処理を実行する制御装置と、
     マーカが少なくとも2か所設けられた平板と、前記平板を支持する支持部とから成り、前記回転ステージと前記X線源との間の位置であって、CTスキャンの実行中に前記マーカが前記X線検出器の検出範囲内に含まれる位置、かつ、前記平板が前記被写体の投影像に重畳しない位置に配置されるマーカ部材と、
     を備え、
     前記制御装置は、
     前記X線源の焦点と前記マーカとを通る直線が前記X線検出器と交差する点である特徴点を、前記マーカの投影像を画像処理することにより検出し、2次元X線画像上の前記特徴点の座標を求めるマーカ特徴点検出部と、
     前記マーカ特徴点検出部により求めた2つの異なるフレームの前記特徴点の座標を用いて、前記X線源の焦点が前記2つの異なるフレームが得られる間に移動した量を3次元的に算出する焦点移動量算出部と、
     を備え、
     前記X線源の焦点移動量に基づいて前記被写体の断層画像を再構成するときの座標系を修正することを特徴とするX線CT装置。
  2.  請求項1に記載のX線CT装置において、
     前記マーカ部材は、前記X線検出器に対する前記平板の設置角度が変化しないように固定され、
     前記焦点移動量算出部は、前記平板の設置角度情報を利用して、前記X線源の焦点の移動量を3次元的に算出するX線CT装置。
  3.  請求項1に記載のX線CT装置において、
     前記マーカ部材は、前記平板を前記X線源のX線照射口に近接させて配置されるX線CT装置。
  4.  請求項1に記載のX線CT装置において、
     前記マーカ特徴点検出部は、前記マーカの投影像を画像処理して輝度重心点を求め、前記輝度重心点を前記特徴点の座標とするX線CT装置。
  5.  請求項1に記載のX線CT装置において、
     前記マーカ部材における前記平板は、X線を減衰させる材料から成るX線CT装置。
  6.  請求項5に記載のX線CT装置において、
     前記マーカは、前記平板内に設けられた空洞、あるいは、前記平板に形成された貫通孔または凹部であるX線CT装置。
  7.  請求項5に記載のX線CT装置において、
     前記マーカは、前記平板の表面に配設されたX線を減衰させる材料から成る円柱または円錐台形状の部材であるX線CT装置。
PCT/JP2017/024319 2017-07-03 2017-07-03 X線ct装置 WO2019008620A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780090704.4A CN110621985B (zh) 2017-07-03 2017-07-03 X线计算机断层装置
US16/605,551 US11002690B2 (en) 2017-07-03 2017-07-03 X-ray CT device
EP17917158.2A EP3620778A4 (en) 2017-07-03 2017-07-03 X-RAY CT DEVICE
PCT/JP2017/024319 WO2019008620A1 (ja) 2017-07-03 2017-07-03 X線ct装置
JP2019528189A JP7164524B2 (ja) 2017-07-03 2017-07-03 X線ct装置
TW107122978A TWI680293B (zh) 2017-07-03 2018-07-03 X線電腦斷層裝置
JP2021187680A JP7251602B2 (ja) 2017-07-03 2021-11-18 X線ct装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024319 WO2019008620A1 (ja) 2017-07-03 2017-07-03 X線ct装置

Publications (1)

Publication Number Publication Date
WO2019008620A1 true WO2019008620A1 (ja) 2019-01-10

Family

ID=64949871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024319 WO2019008620A1 (ja) 2017-07-03 2017-07-03 X線ct装置

Country Status (6)

Country Link
US (1) US11002690B2 (ja)
EP (1) EP3620778A4 (ja)
JP (1) JP7164524B2 (ja)
CN (1) CN110621985B (ja)
TW (1) TWI680293B (ja)
WO (1) WO2019008620A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186913A (ja) * 2019-05-09 2020-11-19 株式会社リガク X線ct装置、及びct画像再構成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422099B2 (en) 2017-09-28 2022-08-23 Saki Corporation Inspection position identification method, three-dimensional image generation method, and inspection device
JP7143567B2 (ja) * 2018-09-14 2022-09-29 株式会社島津テクノリサーチ 材料試験機および放射線ct装置
JP7116407B2 (ja) 2019-02-26 2022-08-10 国立大学法人静岡大学 X線撮像装置
CN111449668B (zh) * 2020-04-23 2023-06-23 深圳市安健科技股份有限公司 三维扫描重建中实时几何校正的标记装置、方法及系统
CN111812130A (zh) * 2020-07-15 2020-10-23 深圳市金园智能科技有限公司 一种基于x射线的材料内部3d成像方法及装置
CN112842373A (zh) * 2020-12-31 2021-05-28 太丛信息科技(上海)有限公司 一种满足不同体型动物的cbct采集装置及其采集方法
CN114280086B (zh) * 2021-11-16 2024-01-23 中国电子科技集团公司第三十八研究所 一种ct成像装置
CN114199905B (zh) * 2021-12-13 2024-02-20 中国航发南方工业有限公司 一种机匣内部缺陷的空间定位方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850059B2 (ja) 1977-02-04 1983-11-08 日本電気株式会社 受信信号制御回路
JPS62284250A (ja) * 1986-05-31 1987-12-10 Toshiba Corp 産業用ctスキヤナ
JPH10295680A (ja) * 1997-04-25 1998-11-10 Toshiba Corp X線断層撮影装置
JP2000298105A (ja) * 1999-04-14 2000-10-24 Toshiba Fa Syst Eng Corp コンピュータ断層撮影装置
JP2004340630A (ja) * 2003-05-13 2004-12-02 Sony Corp コンピュータ断層撮像方法及び装置
JP2005270297A (ja) * 2004-03-24 2005-10-06 Canon Inc 放射線ct撮影装置及び放射線ct撮影システム及びそれを用いた放射線ct撮影方法
JP2005351879A (ja) 2004-05-14 2005-12-22 Shimadzu Corp X線ct装置
JP3743594B2 (ja) 1998-03-11 2006-02-08 株式会社モリタ製作所 Ct撮影装置
WO2009036983A1 (de) 2007-09-13 2009-03-26 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur bestimmung eines korrekturwerts einer brennfleckposition einer röntgenquelle einer messanordnung sowie eine messandordnung zum erzeugen von durchstrahlungsbildern
JP2013233267A (ja) * 2012-05-08 2013-11-21 Institute Of Physical & Chemical Research イメージングマーカーおよびその利用
JP2015232453A (ja) * 2014-06-09 2015-12-24 株式会社島津製作所 X線検査装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333408A (ja) * 2001-05-08 2002-11-22 Hitachi Medical Corp 産業用x線ct装置
WO2003020114A2 (en) * 2001-08-31 2003-03-13 Analogic Corporation Image positioning method and system for tomosynthesis in a digital x-ray radiography system
DE10206190A1 (de) * 2002-02-14 2003-09-04 Siemens Ag Verfahren und Vorrichtung zur Erzeugung eines Volumendatensatzes
US7310404B2 (en) * 2004-03-24 2007-12-18 Canon Kabushiki Kaisha Radiation CT radiographing device, radiation CT radiographing system, and radiation CT radiographing method using the same
US7344307B2 (en) * 2004-11-12 2008-03-18 General Electric Company System and method for integration of a calibration target into a C-arm
DE102005021020A1 (de) * 2005-05-06 2006-11-16 Siemens Ag Verfahren zur Berechnung einer Orthogonal-Röntgenabschwächung eines Objekts anhand einer gemessenen Referenz-Röntgenabschwächung sowie zugehörige Vorrichtung
JP4601571B2 (ja) * 2006-03-20 2010-12-22 ラトックシステムエンジニアリング株式会社 X線検査装置
WO2008038283A2 (en) * 2006-09-25 2008-04-03 Mazor Surgical Technologies Ltd. C-arm computerized tomography system
US7835811B2 (en) * 2006-10-07 2010-11-16 Voxelogix Corporation Surgical guides and methods for positioning artificial teeth and dental implants
WO2008062474A2 (en) * 2006-10-23 2008-05-29 Hirdesh Sahni An image guided whole body stereotactic needle placement device with falling arc
CN101398397B (zh) * 2007-09-30 2012-05-30 首都师范大学 多次扫描模式的ct成像方法
RU2526877C2 (ru) * 2008-08-13 2014-08-27 Конинклейке Филипс Электроникс Н.В. Способ калибровки на основе алгоритма нахождения центра вращения для коррекции кольцевых артефактов в неидеальных изоцентрических трехмерных вращательных рентгеновских сканирующих системах с использованием калибровочного фантома
WO2010064287A1 (ja) * 2008-12-01 2010-06-10 株式会社 島津製作所 放射線撮像装置
JP5400546B2 (ja) * 2009-09-28 2014-01-29 株式会社日立メディコ X線ct装置
EP2570080A4 (en) * 2010-05-11 2016-10-12 Takara Telesystems Corp RADIATION IMAGING DEVICE AND PHANTOM USED THEREFOR
CN102652674B (zh) * 2011-03-04 2014-02-19 首都师范大学 一种消除ct图像中的几何伪影的方法和系统
WO2013016286A2 (en) * 2011-07-23 2013-01-31 Broncus Medical Inc. System and method for automatically determining calibration parameters of a fluoroscope
DE102011083416A1 (de) * 2011-09-26 2013-03-28 CT Imaging GmbH Röntgengerät
JP5850059B2 (ja) 2011-10-04 2016-02-03 株式会社ニコン X線を用いた形状測定装置、形状計測方法、及び構造物の製造方法
WO2015111728A1 (ja) * 2014-01-23 2015-07-30 株式会社ジョブ X線検査装置及びx線検査方法
JP2015215218A (ja) 2014-05-09 2015-12-03 株式会社島津製作所 放射線検査装置
US10514345B2 (en) * 2014-10-14 2019-12-24 Rigaku Corporation X-ray thin film inspection device
JP2017086816A (ja) * 2015-11-17 2017-05-25 東芝メディカルシステムズ株式会社 X線コンピュータ断層撮影装置
CN106361367B (zh) * 2016-12-01 2019-10-08 上海联影医疗科技有限公司 一种检测器的校正方法和使用该校正方法的装置及设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850059B2 (ja) 1977-02-04 1983-11-08 日本電気株式会社 受信信号制御回路
JPS62284250A (ja) * 1986-05-31 1987-12-10 Toshiba Corp 産業用ctスキヤナ
JPH10295680A (ja) * 1997-04-25 1998-11-10 Toshiba Corp X線断層撮影装置
JP3743594B2 (ja) 1998-03-11 2006-02-08 株式会社モリタ製作所 Ct撮影装置
JP2000298105A (ja) * 1999-04-14 2000-10-24 Toshiba Fa Syst Eng Corp コンピュータ断層撮影装置
JP2004340630A (ja) * 2003-05-13 2004-12-02 Sony Corp コンピュータ断層撮像方法及び装置
JP2005270297A (ja) * 2004-03-24 2005-10-06 Canon Inc 放射線ct撮影装置及び放射線ct撮影システム及びそれを用いた放射線ct撮影方法
JP2005351879A (ja) 2004-05-14 2005-12-22 Shimadzu Corp X線ct装置
WO2009036983A1 (de) 2007-09-13 2009-03-26 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur bestimmung eines korrekturwerts einer brennfleckposition einer röntgenquelle einer messanordnung sowie eine messandordnung zum erzeugen von durchstrahlungsbildern
JP2013233267A (ja) * 2012-05-08 2013-11-21 Institute Of Physical & Chemical Research イメージングマーカーおよびその利用
JP2015232453A (ja) * 2014-06-09 2015-12-24 株式会社島津製作所 X線検査装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FREDERIK VOGELERWESLEY VERHEECKEANDRE VOETJEAN-PIERRE KRUTHWIM DEWULF: "Positional Stability of 2D X-ray Images for Computer Tomography", INTERNATIONAL SYMPOSIUM ON DIGITAL INDUSTRIAL RADIOLOGY AND COMPUTED TOMOGRAPHY - MO. 3.3
See also references of EP3620778A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186913A (ja) * 2019-05-09 2020-11-19 株式会社リガク X線ct装置、及びct画像再構成方法

Also Published As

Publication number Publication date
JP7164524B2 (ja) 2022-11-01
TWI680293B (zh) 2019-12-21
CN110621985A (zh) 2019-12-27
TW201907154A (zh) 2019-02-16
JPWO2019008620A1 (ja) 2020-02-27
EP3620778A1 (en) 2020-03-11
EP3620778A4 (en) 2020-08-19
US11002690B2 (en) 2021-05-11
CN110621985B (zh) 2022-03-11
US20200124545A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2019008620A1 (ja) X線ct装置
JP2019128163A (ja) 計測用x線ct装置、及び、その校正方法
JP2015518765A (ja) X線ctイメージの動き層分解較正
US9157874B2 (en) System and method for automated x-ray inspection
JP2009152120A (ja) 電子線トモグラフィ法及び電子線トモグラフィ装置
US20200008759A1 (en) Image display device, image display method, and image display program
JP4818695B2 (ja) 放射線画像撮像条件の補正装置
CN117871557A (zh) 检查装置、以及检查区域的确定方法
JP4561990B2 (ja) X線撮影装置
KR20170005781A (ko) 마이크로칩 x선 단층촬영 시스템 및 이를 이용한 검사방법
JP7251602B2 (ja) X線ct装置
JP2012112790A (ja) X線ct装置
JP6394082B2 (ja) X線検査装置
JP2021050937A (ja) 計測用x線ct装置の校正方法、測定方法、及び、計測用x線ct装置
US11022570B2 (en) X-ray transmission inspection apparatus and X-ray transmission inspection method
JP5569061B2 (ja) X線検査方法、x線検査装置およびx線検査プログラム
JP4095091B2 (ja) コンピュータ断層撮影装置並びに回転中心位置を求める方法及びプログラム
JP4058523B2 (ja) 校正器、及び、校正方法
JP4479503B2 (ja) 断層撮影装置
JP2009276142A (ja) 放射線検査システム及び放射線検査の撮像方法
JP6805200B2 (ja) 移動制御装置、移動制御方法および移動制御プログラム
JP2006292462A (ja) コンピュータ断層撮影装置
JP2020186913A (ja) X線ct装置、及びct画像再構成方法
JP6783702B2 (ja) X線断層撮影装置
JP2010169636A (ja) 形状測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528189

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017917158

Country of ref document: EP

Effective date: 20191205

NENP Non-entry into the national phase

Ref country code: DE