WO2019006825A1 - 柔性oled阵列基板的制作方法、oled显示面板 - Google Patents

柔性oled阵列基板的制作方法、oled显示面板 Download PDF

Info

Publication number
WO2019006825A1
WO2019006825A1 PCT/CN2017/097750 CN2017097750W WO2019006825A1 WO 2019006825 A1 WO2019006825 A1 WO 2019006825A1 CN 2017097750 W CN2017097750 W CN 2017097750W WO 2019006825 A1 WO2019006825 A1 WO 2019006825A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
forming
oxygen barrier
water
drain
Prior art date
Application number
PCT/CN2017/097750
Other languages
English (en)
French (fr)
Inventor
卜呈浩
方宏
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/556,572 priority Critical patent/US20190013369A1/en
Publication of WO2019006825A1 publication Critical patent/WO2019006825A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating a flexible OLED array substrate, and an OLED display panel.
  • AMOLED Active-matrix organic light emitting Dimensions
  • LCD active matrix organic light-emitting diodes
  • the flexible AMOLED display screens currently appearing on the market are only slightly bent at the edges, or curved at a fixed radius of curvature, which is not much different from the traditional rigid OLED display, and does not reach the true It is foldable in the sense, can be curled and can be repeatedly bent into any shape.
  • the technical problem to be solved by the present invention is to provide a method for fabricating a flexible OLED array substrate and an OLED display panel, which can improve the flexibility and bending performance of the array substrate.
  • a technical solution adopted by the present invention is to provide a method for fabricating a flexible OLED array substrate, the method comprising: providing a first substrate; and forming a water and oxygen barrier layer on the first substrate; wherein, the water The oxygen barrier layer is made of a graphene-like two-dimensional material; a TFT functional layer is formed on the water-oxygen barrier layer; and a flat layer, an electrode layer, and a pixel defining layer are sequentially formed on the TFT functional layer.
  • a flexible OLED array substrate including a first substrate, a water and oxygen barrier layer, a TFT functional layer, a flat layer, and an electrode layer. And a pixel defining layer; wherein the water oxygen barrier layer is made of a graphene-like two-dimensional material.
  • another technical solution adopted by the present invention is to provide an OLED display panel, including an OLED array substrate, wherein the OLED array substrate is fabricated by the method provided by the above technical solution, or the OLED array
  • the substrate is a flexible OLED array substrate provided by the above technical solution.
  • the flexibility and bending properties of the array substrate can be improved.
  • FIG. 1 is a schematic structural view of an embodiment of a flexible OLED array substrate provided by the present invention.
  • FIG. 2 is a schematic flow chart of an embodiment of a method for fabricating a flexible OLED array substrate provided by the present invention
  • FIG. 3 is a schematic flow chart of S22 in an embodiment of a method for fabricating a flexible OLED array substrate provided by the present invention
  • FIG. 4 is a schematic diagram of S222 in an embodiment of a method for fabricating a flexible OLED array substrate provided by the present invention
  • FIG. 5 is a schematic structural diagram of S23 in an embodiment of a method for fabricating a flexible OLED array substrate according to the present invention
  • FIG. 10 is a schematic structural diagram of S24 in an embodiment of a method for fabricating a flexible OLED array substrate provided by the present invention.
  • FIG. 11 is a schematic structural view of an embodiment of an OLED display panel provided by the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a flexible OLED array substrate according to the present invention.
  • the array substrate includes a stacked first substrate 10, a water and oxygen barrier layer 11, a TFT functional layer, and a flat layer 19.
  • the water and oxygen barrier layer is made of a graphene-like two-dimensional material.
  • the water-oxygen barrier layer is obtained by laminating a plurality of two-dimensional planar atomic layers, and the two-dimensional planar atomic layer is hexagonal boron nitride (h-BN).
  • the TFT functional layer includes a first insulating layer 12, an active layer 13, a second insulating layer 14, a gate 15, a buffer layer 16, an organic filling layer 17, a source 181, and a drain 182 which are stacked.
  • the active layer 13 specifically includes a source region and a drain region.
  • the source 181 is connected to the source region through the first via, and the drain 182 is connected to the drain region through the second via.
  • the array substrate further includes a third via hole, and the organic material of the organic filling layer 17 is filled in the third via hole, and the third via hole acts as a stress release hole to reduce the bending stress when the panel is bent.
  • FIG. 1 the structure not shown in FIG. 1 can be referred to FIG. 5 to FIG. 10 which will be described later.
  • FIG. 2 is a schematic flow chart of an embodiment of a method for fabricating a flexible OLED array substrate provided by the present invention, where the manufacturing method includes:
  • the first substrate may be made of a suitable flexible material, such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), but this embodiment Not limited to this.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a graphene-like two-dimensional material refers to a two-dimensional (2D) periodic honeycomb lattice structure that maintains a nanometer scale, one or several atomic layer thicknesses in one dimension, and an infinitely similar carbon six-membered ring in a two-dimensional plane. .
  • the water-oxygen barrier layer has good chemical and thermal stability, excellent water-oxygen barrier properties, and the flexibility and flexibility of the material is greatly increased due to the structure of its monoatomic layer. .
  • the graphene two-dimensional material may be a hexagonal boron nitride (h-BN), a hexagonal boron nitride (h-BN) or the like having a single-layer graphite six-membered ring structure, and has good lubricity. , electrical insulation, thermal conductivity and chemical resistance, with neutron absorption capacity. The chemical stability is inert to all molten metal chemistry, and the shaped article is easy to machine and has high moisture resistance.
  • h-BN hexagonal boron nitride
  • h-BN hexagonal boron nitride
  • the step S22 may specifically include:
  • S221 forming a two-dimensional planar atomic layer on the second substrate by using a graphene-like two-dimensional material.
  • steps S221 and S222 are repeated to form a plurality of layers of two-dimensional planar atomic layers on the first substrate to obtain a water-oxygen barrier layer.
  • CVD Chemical Vapor
  • h-BN hexagonal boron nitride
  • the boron (h-BN) film is transferred from the second substrate 20 onto the first substrate 10, and the transfer step is repeated several times to complete the transfer of the h-BN film of the multilayer monoatomic layer to form several atomic layers of h-
  • the BN film forms a dense structure between several atomic layer h-BN films, and the tight bonding between the layers and the layers can complement the point defects generated during the transfer process to achieve a good water-blocking oxygen effect, h-BN material. It is a two-dimensional monoatomic layer material, which has good bending resistance and is not prone to cracks or defects during bending.
  • a TFT functional layer is formed on the water and oxygen barrier layer.
  • Step S23 will be described below with reference to Figs.
  • a buffer layer 12 is formed on the water-oxygen barrier layer 11; an active layer 13 is formed on the buffer layer 12, and the active layer 13 is doped to form a source region on the active layer 13. 131 and drain region 132; forming a first insulating layer 14 on the active layer 13; forming a first metal layer on the first insulating layer 14, and patterning the metal layer to form the gate electrode 15; A second insulating layer 16 is formed on the pole.
  • the buffer layer 12, the first insulating layer 14, and the second insulating layer 16 are all inorganic materials.
  • SiOx, SiNx, or a mixture of SiOx and SiNx may be used, which is not required herein.
  • the active layer 13 can be specifically prepared by depositing an amorphous silicon (a-si) layer and converting the amorphous silicon layer into polycrystalline silicon (poly-Si) by an excimer laser annealing (ELA) process.
  • the layer is patterned by the polysilicon layer and ion doped to form the active layer 13 including the source region 131 and the drain region 132.
  • the first via 161, the second via 162, and the third via 163 are formed by using a mask etching; wherein, the first via 161, the second via 162, and the third via 163
  • the bottom of the hole is located in the water oxygen barrier layer 12, the first via 161 exposes the source region 131 in the active layer 13, and the second via 162 exposes the drain region 132 in the active layer 13, the third via 163 does not pass through the active layer 13 and the gate 15.
  • the first via 161 and the second via 162 do not pass through the gate 15 .
  • an organic material is coated on the second insulating layer 16, and the organic material is filled in the first via 161, the second via 162, and the third via 163 to form the organic filling layer 17.
  • the organic material in the first via 161 and the second via 162 is removed, and the source region 131 and the drain region 132 are again exposed.
  • the organic material in the first via 161 and the second via 162 when the organic material in the first via 161 and the second via 162 is removed, the organic material filled in the via may be completely removed, or may only be removed to expose the source region 131 and the drain. Up to the polar region 132, that is, the organic material in the via holes in the buffer layer can be retained.
  • a source 181 and a drain 182 are formed on the organic filling layer 17; wherein the source 181 is connected to the source region 131 through the first via 161, and the drain 182 is connected to the drain through the second via 162. Area 162.
  • the second metal layer may be formed on the organic filling layer 17 and the second metal layer may be patterned to form the source electrode 181 and the drain electrode 182.
  • the first via 161 may also be referred to as a source contact hole
  • the second via 162 may also be referred to as a drain contact hole
  • the third via 163 may be referred to as a stress relief hole due to water and oxygen.
  • the barrier layer 11 is a two-dimensional atomic layer of h-BN material, and has good bending resistance. Therefore, the three via holes do not need to etch away the water oxygen barrier layer 11, that is, the bottom of the via hole to the water and oxygen barrier layer.
  • the surface is ok, and the three via etch depths can be set to the same, so a mask can be shared, reducing process complexity.
  • the organic material in the third via hole 163 (stress release via hole) remains, and when the panel is bent, the bending can occur at the stress release hole, thereby reducing the stress between the films and increasing the panel. Resistance to bending.
  • a stress relief via is taken as an example.
  • a plurality of stress relief vias may be disposed.
  • a flat layer, an electrode layer, and a pixel defining layer are sequentially formed on the TFT functional layer.
  • a flat layer 19 is formed on the organic filling layer 17; a fourth via (not labeled) is formed on the flat layer 19 to expose one of the source 181 or the drain 182; in the flat layer 19 Forming a third metal layer thereon, and patterning the third metal layer to form the electrode layer 32; wherein the electrode layer 32 is connected to the source electrode 181 or the drain electrode 182 through the third via hole; and is formed on the third metal layer
  • the pixel defines layer 34.
  • the electrode layer 32 therein may be an anode or a cathode, which is not required here.
  • the functional layer and the metal layer can be fabricated by physical vapor deposition or chemical vapor deposition, such as physical sputtering, spin coating, inkjet, slit coating, or photolithography.
  • physical vapor deposition or chemical vapor deposition such as physical sputtering, spin coating, inkjet, slit coating, or photolithography.
  • One or more of the methods are not limited in this embodiment.
  • the water-oxygen barrier layer in the panel is made of a graphene-like two-dimensional material, which can improve the flexibility and bending performance of the array substrate; on the other hand, the stress relief hole can be disposed in the panel.
  • the stress relief hole can be disposed in the panel.
  • FIG. 11 is a schematic structural diagram of an OLED display panel according to an embodiment of the present invention.
  • the display panel includes an OLED array substrate 50 , a light emitting device 60 , and an upper substrate 70 .
  • the OLED array substrate 50 is an array substrate provided by the above embodiments, or is fabricated by using the manufacturing method provided in the above embodiments.
  • the array substrate comprises an electrode layer which can serve as the first electrode layer.
  • a second electrode layer is further disposed on the upper substrate, and if the first electrode layer is an anode, the second electrode layer 70 is a cathode; and if the first electrode layer is a cathode, the second electrode layer 70 is an anode.
  • the hole injection layer and the hole transport layer may be further included between the array substrate 50 and the light emitting device 60, and the upper substrate 70 and the light emitting device 60
  • An electron injecting layer and an electron transporting layer may also be included.
  • the electron injection layer and the electron transport layer may be further included between the array substrate 50 and the light emitting device 60, and the upper substrate 70 and the light emitting device 60 are further A hole injection layer and a hole transport layer may be included.
  • the OLED display panel may further include a package cover plate, a filled inert gas, and the like, which are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性OLED阵列基板的制作方法及OLED显示面板,其中,该制作方法包括:提供第一基板(10);在第一基板(10)上制作水氧阻隔层(11);其中,水氧阻隔层(11)采用类石墨烯二维材料制作得到;在水氧阻隔层(11)上制作TFT功能层;在TFT功能层上依次制作平坦层(19)、电极层(32)以及像素定义层(34)。通过上述方式,能够提高阵列基板的柔韧度和弯折性能。

Description

柔性OLED阵列基板的制作方法、OLED显示面板
【技术领域】
本发明涉及显示技术领域,特别是涉及柔性OLED阵列基板的制作方法、OLED显示面板。
【背景技术】
随着AMOLED(Active-matrix organic light emitting diode,有源矩阵有机发光二极体)显示屏技术在产业界越来越成熟,便携式电子器件对于显示屏的需求也逐渐成为了对于柔性AMOLED显示屏的需求。柔性OLED显示屏具有更加轻薄,功耗更低,可以弯折成任意形状以满足市场对可穿戴设备的需求等优点。
然而,目前市场上出现的柔性AMOLED显示屏更多的只是在边缘轻微弯折,或者以固定的曲率半径弯折呈曲面屏,和传统的刚性OLED显示屏并无太大差别,并没有达到真正意义上的可折叠,可卷曲及可反复弯折成任意的形状。
【发明内容】
本发明主要解决的技术问题是提供柔性OLED阵列基板的制作方法、OLED显示面板,能够提高阵列基板的柔韧度和弯折性能。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种柔性OLED阵列基板的制作方法,该制作方法包括:提供第一基板;在第一基板上制作水氧阻隔层;其中,水氧阻隔层采用类石墨烯二维材料制作得到;在水氧阻隔层上制作TFT功能层;在TFT功能层上依次制作平坦层、电极层以及像素定义层。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种柔性OLED阵列基板,该OLED阵列基板包括层叠设置的第一基板、水氧阻隔层、TFT功能层、平坦层、电极层以及像素定义层;其中,水氧阻隔层采用类石墨烯二维材料制作得到。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种OLED显示面板,包括OLED阵列基板,其中,该OLED阵列基板是采用上述技术方案提供的方法制作得到的,或该OLED阵列基板是上述技术方案提供的柔性OLED阵列基板
本发明的有益效果是:区别于现有技术的情况,本发明提供的柔性OLED阵列基板的制作方法包括:提供第一基板;在第一基板上制作水氧阻隔层;其中,水氧阻隔层采用类石墨烯二维材料制作得到;在水氧阻隔层上制作TFT功能层;在TFT功能层上依次制作平坦层、电极层以及像素定义层。通过上述方式,能够提高阵列基板的柔韧度和弯折性能。
【附图说明】
图1是本发明提供的柔性OLED阵列基板一实施例的结构示意图
图2是本发明提供的柔性OLED阵列基板的制作方法一实施例的流程示意图;
图3是本发明提供的柔性OLED阵列基板的制作方法一实施例中S22的流程示意图;
图4是本发明提供的柔性OLED阵列基板的制作方法一实施例中S222的示意图;
图5-图9是本发明提供的柔性OLED阵列基板的制作方法一实施例中S23的结构示意图;
图10是本发明提供的柔性OLED阵列基板的制作方法一实施例中S24的结构示意图;
图11是本发明提供的OLED显示面板一实施例的结构示意图。
【具体实施方式】
参阅图1,图1是本发明提供的柔性OLED阵列基板一实施例的结构示意图,该阵列基板包括层叠设置的层叠设置的第一基板10、水氧阻隔层11、TFT功能层、平坦层19、电极层32以及像素定义层34。
其中,水氧阻隔层采用类石墨烯二维材料制作得到。具体地,水氧阻隔层是采用多层二维平面原子层层叠得到的,二维平面原子层为六方氮化硼(h-BN)。
其中,TFT功能层包括层叠设置的第一绝缘层12、有源层13、第二绝缘层14、栅极15、缓冲层16、有机填充层17、源极181和漏极182。
其中,有源层13具体包括源极区域和漏极区域,源极181通过第一过孔连接源极区域,漏极182通过第二过孔连接漏极区域。
其中,该阵列基板还包括第三过孔,有机填充层17的有机材料填充于第三过孔中,第三过孔作为应力释放孔可以在面板弯折的时候减小弯折应力。
值得注意的是,图1中未标识的结构可以参见后述的图5-图10。
下面,将介绍一实施例对上述阵列基板的制作方法进行详细介绍。
参阅图2,图2是本发明提供的柔性OLED阵列基板的制作方法一实施例的流程示意图,该制作方法包括:
S21:提供第一基板。
其中,作为柔性OLED中的基板,第一基板可采用适当的柔性材料制成,例如聚对苯二甲酸乙二酯(PET)或者聚萘二甲酸乙二醇酯(PEN),但本实施例并不限制于此。
S22:在第一基板上制作水氧阻隔层;其中,水氧阻隔层采用类石墨烯二维材料制作得到。
类石墨烯二维材料是指在一个维度上维持纳米尺度,一个或几个原子层厚度,而在二维平面内具有无限类似碳六元环组成的两维(2D)周期蜂窝状点阵结构。
采用这种材料制作,使得水氧阻隔层具有良好的化学和热稳定性、极好的水氧阻隔性,同时,由于其单原子层的结构也使得该材料的柔韧性和弯折性大大增加。
可选的,该类石墨烯二维材料可以是六方氮化硼(h-BN),六方氮化硼(h-BN)等具有类似单层石墨六元环结构的材料,有良好的润滑性、电绝缘性、导热性和耐化学腐蚀性,具有中子吸收能力。化学性质稳定对所有熔融金属化学呈惰性,成型制品便于机械加工,有很高的耐湿性。
下面以六方氮化硼(h-BN)为例,对水氧阻隔层的制作进行介绍,参阅图3,该步骤S22可以具体包括:
S221:采用类石墨烯二维材料在第二基板上制作一层二维平面原子层。
S222:将二维平面原子层转移到第一基板上。
重复上述步骤S221和S222,以在第一基板上形成多层二维平面原子层,以得到水氧阻隔层。
具体地,同时结合图4,可以使用CVD(Chemical Vapor Deposition,化学气相沉积)在第二基板20(例如,可以使用铜箔)上生长二维原子层材料六方氮化硼(h-BN)薄膜,并利用湿法转移技术将单层的六方氮化硼(h-BN)薄膜从第二基板20上转移到第一基板10上,该转移步骤重复几次,完成多层单原子层的h-BN薄膜的转移,形成几个原子层的h-BN薄膜,几个原子层的h-BN薄膜之间形成致密的结构,并且层与层间的紧密结合可以互相补充转移过程中产生的点缺陷,达到良好的阻水氧效果,h-BN材料为二维单原子层材料,其耐弯折性能良好,在弯折过程中不易出现裂纹或缺陷。
S23:在水氧阻隔层上制作TFT功能层。
下面结合图5-图9,对步骤S23进行说明。
如图5所示,在水氧阻隔层11上制作缓冲层12;在缓冲层12上制作有源层13,并对有源层13进行掺杂,以在有源层13上形成源极区域131和漏极区域132;在有源层13上制作第一绝缘层14;在第一绝缘层14上制作第一金属层,并对金属层进行图案化处理,以形成栅极15;在栅极上制作第二绝缘层16。
其中,缓冲层12、第一绝缘层14、第二绝缘层16均为无机材料,可选的,可以采用SiOx、SiNx,或者SiOx和SiNx的混合物,这里不作要求。
其中,有源层13的制作可以具体如下:先沉积非晶硅(a-si)层,再通过准分子激光退火(ELA)工艺将所述非晶硅层转化结晶为多晶硅(poly-Si) 层,再将所述多晶硅层进行图案化处理,并进行离子掺杂,形成包括源极区域131和漏极区域132的有源层13。
如图6所示,采用一道光罩蚀刻形成第一过孔161、第二过孔162以及第三过孔163;其中,第一过孔161、第二过孔162和第三过孔163的孔底均位于水氧阻隔层12,第一过孔161使有源层13中的源极区域131裸露,第二过孔162使有源层13中的漏极区域132裸露,第三过孔163不经过有源层13和栅极15。其中,第一过孔161和第二过孔162不经过栅极15。
如图7所示,在第二绝缘层16上涂覆有机材料,且有机材料填充于第一过孔161、第二过孔162以及第三过孔163中,形成有机填充层17。
如图8所示,去除第一过孔161以及第二过孔162中的有机材料,重新裸露出源极区域131和漏极区域132。
可以理解的,在去除第一过孔161以及第二过孔162中的有机材料时,可以将过孔中填充的有机材料全部去除,也可以仅仅是去除到能够裸露出源极区域131和漏极区域132为止,即缓冲层中过孔中的有机材料可以保留。
如图9所示,在有机填充层17上制作源极181和漏极182;其中,源极181通过第一过孔161连接源极区域131,漏极182通过第二过孔162连接漏极区域162。
具体地,在制作源极181和漏极182时,可以在有机填充层17上先制作第二金属层,并对第二金属层进行图案化处理,以形成源极181和漏极182。
值得注意的是,在本步骤中,第一过孔161也可以叫做源极接触孔,第二过孔162也可以叫做漏极接触孔,第三过孔163可以叫做应力释放孔,由于水氧阻隔层11为二维原子层的h-BN材料,耐弯折性能较好,因此,三个过孔不需要刻蚀掉水氧阻隔层11,即过孔的底部到水氧阻隔层的上表面即可,并且三个过孔刻蚀深度可以设置为一样,因此可以共用一道光罩,降低了制程复杂性。
可以理解的,第三过孔163(应力释放过孔)中的有机材料保留,面板弯折时,弯折可以发生在应力释放孔处,从而减小了薄膜间的应力,增大了面板的耐弯折性能。
可选的,本实施例中以一个应力释放过孔为例,在其他实施例中,应力释放过孔也可以设置多个,多个应力释放过孔的结构和设置步骤可以参考上述实施例,这里不再赘述。
S24:在TFT功能层上依次制作平坦层、电极层以及像素定义层。
如图10所示,在有机填充层17上制作平坦层19;在平坦层19上制作第四过孔(未标识),以使源极181或漏极182中的一个裸露;在平坦层19上制作第三金属层,并对第三金属层进行图案化处理,以形成电极层32;其中,电极层32通过第三过孔连接源极181或漏极182;在第三金属层上制作像素定义层34。
可以理解的,其中的电极层32可以是阳极或者阴极,这里不作要求。
可以理解的,上述各个实施例中,制作功能层、金属层可以采用物理气相沉积或化学气相沉积的方法来制作,例如物理溅射、旋涂、喷墨、狭缝涂布或者光刻工艺等方法中的一种或多种,本实施例不作限定。
通过上述的方式,一方面,将面板中的水氧阻隔层采用类石墨烯二维材料制作,能够提高阵列基板的柔韧度和弯折性能;另一方面,在面板中设置应力释放孔,能够在面板弯折发生在应力释放孔处时,减小薄膜间的应力,增大面板的耐弯折性能。
参阅图11,图11是本发明提供的OLED显示面板一实施例的结构示意图,该显示面板包括OLED阵列基板50、发光器件60以及上基板70。
其中,该OLED阵列基板50是如上述各个实施例提供的阵列基板,或者是采用如上述各个实施例提供的制作方法制作得到。
可以理解的,参阅上述提供的实施例,其中的阵列基板包括电极层,其可以作为第一电极层。另外,在上基板上还设置有第二电极层,如果第一电极层为阳极,则第二电极层70为阴极;如果第一电极层为阴极,则第二电极层70为阳极。
可选的,在第一电极层为阳极、第二电极层为阴极时,阵列基板50和发光器件60之间还可以包括空穴注入层和空穴传输层,上基板70和发光器件60之间还可以包括电子注入层和电子传输层。
可选的,在第一电极层为阴极、第二电极层为阳极时,阵列基板50和发光器件60之间还可以包括电子注入层和电子传输层,上基板70和发光器件60之间还可以包括空穴注入层和空穴传输层。
另外,该OLED显示面板还可以包括封装盖板、填充的惰性气体等等,这里不再赘述。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种柔性OLED阵列基板的制作方法,其中,包括:
    提供第一基板;
    在所述第一基板上制作水氧阻隔层;其中,所述水氧阻隔层采用类石墨烯二维材料制作得到;
    在所述水氧阻隔层上依次制作缓冲层、有源层、第一绝缘层、栅极以及第二绝缘层;
    采用一道光罩蚀刻形成第一过孔、第二过孔以及第三过孔;其中,所述第一过孔、第二过孔和第三过孔的孔底均位于所述水氧阻隔层,所述第一过孔使所述有源层中的源极区域裸露,所述第二过孔使所述有源层中的漏极区域裸露,所述第三过孔不经过所述有源层和所述栅极;
    在所述第二绝缘层上涂覆有机材料,且所述有机材料填充于所述第一过孔、所述第二过孔以及所述第三过孔中,形成有机填充层;
    去除所述第一过孔以及所述第二过孔中的有机材料,重新裸露出所述源极区域和所述漏极区域;
    在所述有机填充层上制作源极和漏极;其中,所述源极通过所述第一过孔连接所述源极区域,所述漏极通过所述第二过孔连接所述漏极区域;
    在所述TFT功能层上制作平坦层;
    在所述平坦层上制作第四过孔,以使所述源极或所述漏极中的一个裸露;
    在所述平坦层上制作第三金属层,并对所述第三金属层进行图案化处理,以形成电极层;其中,所述电极层通过所述第三过孔连接所述源极或所述漏极;
    在所述第三金属层上制作像素定义层。
  2. 根据权利要求1所述的制作方法,其中,
    所述在所述第一基板上制作水氧阻隔层,包括:
    采用类石墨烯二维材料在第二基板上制作一层二维平面原子层;
    将所述二维平面原子层转移到所述第一基板上;
    重复上述步骤,以在所述第一基板上形成多层所述二维平面原子层,以得到所述水氧阻隔层。
  3. 根据权利要求2所述的制作方法,其中,
    所述类石墨烯二维材料为六方氮化硼(h-BN)。
  4. 根据权利要求1所述的制作方法,其中,
    所述在所述水氧阻隔层上依次制作缓冲层、有源层、第一绝缘层、栅极以及第二绝缘层,包括:
    在所述水氧阻隔层上制作缓冲层;
    在所述缓冲层上制作有源层,并对所述有源层进行掺杂,以在所述有源层上形成源极区域和漏极区域;
    在所述有源层上制作第一绝缘层;
    在所述第一绝缘层上制作第一金属层,并对所述金属层进行图案化处理,以形成栅极;
    在所述栅极上制作第二绝缘层。
  5. 根据权利要求1所述的制作方法,其中,
    所述在所述有机填充层上制作源极和漏极,包括:
    在所述有机填充层上制作第二金属层,并对所述第二金属层进行图案化处理,以形成源极和漏极。
  6. 一种柔性OLED阵列基板的制作方法,其中,包括:
    提供第一基板;
    在所述第一基板上制作水氧阻隔层;其中,所述水氧阻隔层采用类石墨烯二维材料制作得到;
    在所述水氧阻隔层上制作TFT功能层;
    在所述TFT功能层上依次制作平坦层、电极层以及像素定义层。
  7. 根据权利要求6所述的制作方法,其中,
    所述在所述第一基板上制作水氧阻隔层,包括:
    采用类石墨烯二维材料在第二基板上制作一层二维平面原子层;
    将所述二维平面原子层转移到所述第一基板上;
    重复上述步骤,以在所述第一基板上形成多层所述二维平面原子层,以得到所述水氧阻隔层。
  8. 根据权利要求7所述的制作方法,其中,
    所述类石墨烯二维材料为六方氮化硼(h-BN)。
  9. 根据权利要求6所述的制作方法,其中,
    所述在所述水氧阻隔层上制作TFT功能层,包括:
    在所述水氧阻隔层上依次制作缓冲层、有源层、第一绝缘层、栅极以及第二绝缘层;
    采用一道光罩蚀刻形成第一过孔、第二过孔以及第三过孔;其中,所述第一过孔、第二过孔和第三过孔的孔底均位于所述水氧阻隔层,所述第一过孔使所述有源层中的源极区域裸露,所述第二过孔使所述有源层中的漏极区域裸露,所述第三过孔不经过所述有源层和所述栅极;
    在所述第二绝缘层上涂覆有机材料,且所述有机材料填充于所述第一过孔、所述第二过孔以及所述第三过孔中,形成有机填充层;
    去除所述第一过孔以及所述第二过孔中的有机材料,重新裸露出所述源极区域和所述漏极区域;
    在所述有机填充层上制作源极和漏极;其中,所述源极通过所述第一过孔连接所述源极区域,所述漏极通过所述第二过孔连接所述漏极区域。
  10. 根据权利要求9所述的制作方法,其中,
    所述在所述水氧阻隔层上依次制作缓冲层、有源层、第一绝缘层、栅极以及第二绝缘层,包括:
    在所述水氧阻隔层上制作缓冲层;
    在所述缓冲层上制作有源层,并对所述有源层进行掺杂,以在所述有源层上形成源极区域和漏极区域;
    在所述有源层上制作第一绝缘层;
    在所述第一绝缘层上制作第一金属层,并对所述金属层进行图案化处理,以形成栅极;
    在所述栅极上制作第二绝缘层。
  11. 根据权利要求9所述的制作方法,其中,
    所述在所述有机填充层上制作源极和漏极,包括:
    在所述有机填充层上制作第二金属层,并对所述第二金属层进行图案化处理,以形成源极和漏极。
  12. 根据权利要求6所述的制作方法,其中,
    所述在所述TFT功能层上依次制作平坦层、电极层以及像素定义层,包括:
    在所述TFT功能层上制作平坦层;
    在所述平坦层上制作第四过孔,以使所述源极或所述漏极中的一个裸露;
    在所述平坦层上制作第三金属层,并对所述第三金属层进行图案化处理,以形成电极层;其中,所述电极层通过所述第三过孔连接所述源极或所述漏极;
    在所述第三金属层上制作像素定义层。
  13. 一种OLED显示面板,至少包括OLED阵列基板,其中,所述OLED阵列基板包括层叠设置的第一基板、水氧阻隔层、TFT功能层、平坦层、电极层以及像素定义层;
    其中,所述水氧阻隔层采用类石墨烯二维材料制作得到。
  14. 根据权利要求13所述的OLED显示面板,其中,
    所述水氧阻隔层是采用多层二维平面原子层层叠得到的,所述二维平面原子层为六方氮化硼(h-BN)。
  15. 根据权利要求13所述的OLED显示面板,其中,
    所述类石墨烯二维材料为六方氮化硼(h-BN)。
  16. 根据权利要求13所述的OLED显示面板,其中,
    所述TFT功能层包括在所述水氧阻隔层上依次制作得到的缓冲层、有源层、第一绝缘层、栅极、第二绝缘层、有机填充层、源极和漏极。
PCT/CN2017/097750 2017-07-06 2017-08-17 柔性oled阵列基板的制作方法、oled显示面板 WO2019006825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,572 US20190013369A1 (en) 2017-07-06 2017-08-17 Method for fabricating flexible oled array substrate, oled display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710546604.X 2017-07-06
CN201710546604.XA CN107302012B (zh) 2017-07-06 2017-07-06 一种柔性oled阵列基板及其制作方法、oled显示面板

Publications (1)

Publication Number Publication Date
WO2019006825A1 true WO2019006825A1 (zh) 2019-01-10

Family

ID=60136248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097750 WO2019006825A1 (zh) 2017-07-06 2017-08-17 柔性oled阵列基板的制作方法、oled显示面板

Country Status (2)

Country Link
CN (1) CN107302012B (zh)
WO (1) WO2019006825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103401A (zh) * 2020-09-27 2020-12-18 福建华佳彩有限公司 一种柔性显示屏封装结构及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231839A (zh) * 2017-12-27 2018-06-29 武汉华星光电半导体显示技术有限公司 柔性显示面板的弯折区结构及其制作方法
CN109671762B (zh) * 2018-12-21 2020-11-24 武汉华星光电半导体显示技术有限公司 柔性显示面板、其制造方法及柔性显示装置
CN109887935B (zh) * 2019-03-04 2021-08-31 厦门天马微电子有限公司 一种阵列基板、显示面板和显示装置
CN109830615B (zh) * 2019-03-15 2021-07-06 广东格瑞纳思薄膜科技有限公司 一种柔性oled封装用水氧阻隔膜结构
CN110047381A (zh) * 2019-03-27 2019-07-23 武汉华星光电半导体显示技术有限公司 显示面板及制作方法
KR20210027622A (ko) 2019-08-29 2021-03-11 삼성전자주식회사 집적회로 소자
CN110610948B (zh) * 2019-08-30 2021-05-07 武汉华星光电半导体显示技术有限公司 阵列基板及显示装置
CN112974198B (zh) * 2019-12-18 2022-07-26 京东方科技集团股份有限公司 电容式微机械超声换能单元及其制作方法和电容式微机械超声换能器
CN111416061B (zh) * 2020-04-27 2021-05-07 武汉华星光电半导体显示技术有限公司 显示面板以及显示装置
US11387303B2 (en) 2020-04-27 2022-07-12 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299265A (zh) * 2011-08-18 2011-12-28 电子科技大学 有机发光二极管照明器件及其散热封装层以及制备方法
CN104795403A (zh) * 2015-04-16 2015-07-22 京东方科技集团股份有限公司 一种柔性基板及其制作方法、显示装置
CN106409873A (zh) * 2016-10-12 2017-02-15 上海天马微电子有限公司 柔性显示装置及制造方法
CN106898705A (zh) * 2017-04-25 2017-06-27 京东方科技集团股份有限公司 一种显示面板及其修复方法
EP3188269A1 (en) * 2015-12-30 2017-07-05 LG Display Co., Ltd. Flexible organic light emitting diode display having edge bending structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299265A (zh) * 2011-08-18 2011-12-28 电子科技大学 有机发光二极管照明器件及其散热封装层以及制备方法
CN104795403A (zh) * 2015-04-16 2015-07-22 京东方科技集团股份有限公司 一种柔性基板及其制作方法、显示装置
EP3188269A1 (en) * 2015-12-30 2017-07-05 LG Display Co., Ltd. Flexible organic light emitting diode display having edge bending structure
CN106409873A (zh) * 2016-10-12 2017-02-15 上海天马微电子有限公司 柔性显示装置及制造方法
CN106898705A (zh) * 2017-04-25 2017-06-27 京东方科技集团股份有限公司 一种显示面板及其修复方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103401A (zh) * 2020-09-27 2020-12-18 福建华佳彩有限公司 一种柔性显示屏封装结构及其制备方法

Also Published As

Publication number Publication date
CN107302012B (zh) 2020-03-10
CN107302012A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
WO2019006825A1 (zh) 柔性oled阵列基板的制作方法、oled显示面板
WO2020155801A1 (zh) 阵列基板及其制作方法和显示面板
US20190013369A1 (en) Method for fabricating flexible oled array substrate, oled display panel
CN103236443B (zh) 一种金属氧化物薄膜晶体管及其制备方法
WO2019085065A1 (zh) 柔性 oled 显示面板及其制备方法
WO2018196124A1 (zh) 一种顶发射oled器件及制备方法、显示面板
WO2018000476A1 (zh) 像素结构、制作方法及显示面板
JP2008135740A5 (zh)
WO2017210923A1 (zh) Tft背板的制作方法及tft背板
WO2019000651A1 (zh) 一种柔性背板的制作方法、液晶显示面板以及oled显示面板
WO2013127220A1 (zh) 阵列基板、阵列基板的制备方法及显示装置
WO2021259361A1 (zh) 薄膜晶体管及其制备方法、阵列基板、显示面板
WO2019136872A1 (zh) 一种阵列基板、oled显示面板及oled显示器
WO2019041476A1 (zh) 一种阵列基板及其制作方法、显示面板
WO2019033578A1 (zh) 柔性oled显示面板的柔性基底及其制备方法
WO2018120309A1 (zh) Oled显示装置的阵列基板及其制作方法
WO2017219421A1 (zh) 一种tft阵列基板及其制作方法、液晶显示装置
KR101571351B1 (ko) 실리콘-그래핀 이종접합 태양전지의 제조방법 및 이에 의하여 제조된 실리콘-그래핀 이종접합 태양전지
WO2019010749A1 (zh) 显示面板及其制备方法、显示器
WO2019153430A1 (zh) Tft基板及其制作方法与oled基板
WO2019029007A1 (zh) 一种tft基板的制备方法、tft基板以及oled显示面板
WO2019056524A1 (zh) 一种oled显示面板及其制作方法
CN203674269U (zh) 薄膜晶体管、阵列基板及有机发光显示面板
WO2015168961A1 (zh) 薄膜晶体管阵列基板制造方法及薄膜晶体管阵列基板
WO2017152522A1 (zh) 金属氧化物薄膜晶体管及其制作方法、阵列基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916709

Country of ref document: EP

Kind code of ref document: A1