WO2019003780A1 - 電解液、電気化学デバイス、二次電池及びモジュール - Google Patents

電解液、電気化学デバイス、二次電池及びモジュール Download PDF

Info

Publication number
WO2019003780A1
WO2019003780A1 PCT/JP2018/020793 JP2018020793W WO2019003780A1 WO 2019003780 A1 WO2019003780 A1 WO 2019003780A1 JP 2018020793 W JP2018020793 W JP 2018020793W WO 2019003780 A1 WO2019003780 A1 WO 2019003780A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
compound
fluorinated
carbonate
Prior art date
Application number
PCT/JP2018/020793
Other languages
English (en)
French (fr)
Inventor
知哉 日高
謙三 高橋
雅量 木下
穣輝 山崎
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US16/626,755 priority Critical patent/US11631894B2/en
Priority to CN201880023665.0A priority patent/CN110495040B/zh
Priority to KR1020197034858A priority patent/KR102337069B1/ko
Priority to EP18823919.8A priority patent/EP3627610A4/en
Priority to JP2019526724A priority patent/JP7090079B2/ja
Publication of WO2019003780A1 publication Critical patent/WO2019003780A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution, an electrochemical device, a secondary battery, and a module.
  • lithium ion secondary batteries having high energy density has been promoted.
  • the field of application of lithium ion secondary batteries is expanded, there is a demand for improvement of battery characteristics.
  • battery characteristics become increasingly important.
  • Patent Document 1 includes a non-aqueous electrolyte together with a positive electrode and a negative electrode, and the positive electrode includes an electrode compound which occludes and releases an electrode reactant at a potential of 4.5 V or more (vs. lithium potential), the non-aqueous electrolyte Is one or more silicon oxygen-containing groups (SiR 3 -O-: each of three R's is a monovalent hydrocarbon group and any of its halogenated groups) is an atom other than silicon
  • SiR 3 -O- silicon oxygen-containing groups
  • Patent Document 2 discloses a lithium salt, a non-aqueous solvent, and a formula (I) (Wherein, R 1 , R 2 , and R 3 are each independently a substituted or unsubstituted C 1 to C 20 alkyl group, a substituted or unsubstituted C 1 to C 20 alkenyl group, a substituted or unsubstituted It is selected from the group consisting of C 1 -C 20 alkynyl groups, and substituted and unsubstituted C 5 -C 20 aryl groups, X is nitrogen or oxygen, Y is a hydride group, a halo group, a hydroxy group, Thio group, alkyl group, alkenyl group, alkynyl group, aryl group, iminyl group, alkoxy group, alkenoxy group, alkynoxy group, aryloxy group, carboxy group, alkyl carbonyloxy group, alkenyl carbonyloxy group, alkynyl
  • Patent Document 3 0.01% by mass to 15% by mass of an organosilicon compound represented by the following general formula [1] and 0.1 mol / l to 3 mol / l of a fluorine-containing alkali metal salt which is an electrolyte And the content of the fluorinated organosilicon compound formed by the reaction of the organosilicon compound and the fluorine-containing alkali metal salt is 0.2% by mass or less.
  • a water electrolyte is described.
  • R 1 represents an alkyloxy group having 1 to 11 carbon atoms, a silyloxy group, or an alkylsilyloxy group having 1 to 11 carbon atoms.
  • n represents the number of R 1 bound to M, and is an oxidation number of M ⁇ 1 or an oxidation number of M ⁇ 3. When n is 2 or more, R 1 may be the same or different.
  • R 2 to R 4 each independently represent an alkyl group having 1 to 11 carbon atoms, an alkenyl group having 1 to 11 carbon atoms, an alkyloxy group having 1 to 11 carbon atoms, or an aryl group having 6 to 11 carbon atoms . ]
  • Patent Document 4 describes an electrolyte for a lithium secondary battery, which comprises a compound represented by the following chemical formula 1; a lithium salt; and a non-aqueous organic solvent.
  • Patent Document 5 describes a non-aqueous electrolyte for a lithium secondary battery comprising a non-aqueous solvent containing the compound represented by the general formula [1] and an electrolyte.
  • M represents a metal element, phosphorus or boron.
  • R 1 represents an alkyloxy group having 1 to 11 carbon atoms, or a silyloxy group, and when n is 2 or more, R 1 is the same or different.
  • R 2 , R 3 and R 4 which may be the same or different, each represents an alkyl group having 1 to 11 carbon atoms, an alkenyl group, an aryl group or an alkyloxy group, and n is It represents the number of R 1 bound to M, and the oxidation number of M is -1.
  • the present invention was made in view of the above-mentioned present situation, and even when electrochemical devices such as lithium ion secondary batteries are stored at high temperature, the capacity retention ratio is high, and elution of metal from the positive electrode is suppressed, and gas It is an object of the present invention to provide an electrolytic solution which is difficult to generate
  • Another object of the present invention is to provide an electrochemical device, such as a lithium ion secondary battery, which has a high capacity retention rate, is less likely to elute metal from the positive electrode, and is less likely to generate gas even when stored at high temperatures. .
  • the present invention provides a compound (I) represented by the general formula (I), a compound (a) represented by the general formula (a), a compound (b) represented by the general formula (b), and a general formula (c) And at least one compound selected from the group consisting of a compound (c) represented by the general formula (d) and a compound (d) represented by the general formula (d): It is an electrolytic solution to be used.
  • R 12 and R 13 independently represent a halogen atom, or a halogen atom, an alkyl group having 1 to 3 carbon atoms which may contain a substituent or a hetero atom, or a halogen atom, a substituent or a hetero atom And an alkylene group having 1 to 3 carbon atoms which bond to each other to form a ring with a boron atom)
  • R f 12 is a fluorine atom or an alkyl group having 1 to 6 carbon atoms which may contain a fluorine atom
  • R 14 is an alkyl group of 1 to 3 carbon atoms containing a fluorine atom or a halogen atom
  • the electrolytic solution preferably further contains a solvent.
  • the above solvents include non-fluorinated saturated cyclic carbonate (with the exception of compound (b)), fluorinated saturated cyclic carbonate (with the exception of compound (b)), non-fluorinated linear carbonate, fluorinated linear carbonate, It is preferable to include at least one selected from the group consisting of non-fluorinated linear esters and fluorinated linear esters.
  • the content of the compound (I) in the electrolytic solution is preferably 0.001 to 10% by mass with respect to the solvent.
  • the content of the compound (II) in the electrolytic solution is preferably 0.001 to 10% by mass with respect to the solvent.
  • Compound (I) has the formula: It is preferable that it is shown.
  • the above-mentioned electrolytic solution further contains an electrolyte salt (excluding the compound (a)).
  • the present invention is also an electrochemical device comprising the above-mentioned electrolytic solution.
  • the present invention is also a secondary battery comprising the above-mentioned electrolytic solution.
  • the present invention is also a module comprising the above-described electrochemical device or the above-described secondary battery.
  • the electrolytic solution of the present invention even when the electrochemical device is stored at high temperature, the capacity of the electrochemical device is maintained, the elution of metal from the positive electrode is suppressed, and it is difficult to generate gas.
  • the electrochemical device provided with the electrolytic solution of the present invention has a high capacity retention rate even when stored at high temperature, hardly causes metal elution from the positive electrode, and hardly generates gas.
  • the electrolytic solution of the present invention is characterized by containing a compound (I) and a compound (II).
  • the compound (I) is represented by the general formula (I).
  • the alkyl group as R 11 may be linear or branched.
  • the alkyl group as R 11 does not contain a double bond.
  • R 11 a tert-butyl group, an n-butyl group, a sec-butyl group, an isobutyl group, an isopropyl group or an ethyl group is preferable.
  • the compound (II) is at least one selected from the group consisting of compound (a), compound (b), compound (c) and compound (d).
  • the compound (a) is represented by the general formula (a).
  • R 12 and R 13 independently represent a halogen atom, or a halogen atom, an alkyl group having 1 to 3 carbon atoms which may contain a substituent or a hetero atom, or a halogen atom, a substituent or a hetero atom And an alkylene group having 1 to 3 carbon atoms which bond to each other to form a ring with a boron atom)
  • halogen atom as R 12 and R 13, a fluorine atom is preferable.
  • the halogen atom an alkyl group may contain as R 12 and R 13, a fluorine atom is preferable.
  • the hetero atom which the alkyl group as R 12 and R 13 may contain may be inserted between carbon-carbon atoms or may be directly bonded to a boron atom.
  • the hetero atom is preferably an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom.
  • R 12 and R 13 are an alkylene group
  • the alkylene group of R 12 and the alkylene group of R 13 bond to each other to form a ring (heterocycle) with the bonding boron atom.
  • the number of carbon atoms contained in the ring is the sum of the number of carbon atoms in R 12 and the number of carbon atoms in R 13 and can be 2 to 6.
  • the halogen atom alkylene group may contain as R 12 and R 13, a fluorine atom is preferable. Examples of the substituent which may contain an alkylene group represented by R 12 and R 13, methylidene group or ethylidene group.
  • the hetero atom which the alkylene group as R 12 and R 13 may contain may be inserted between carbon-carbon atoms or may be directly bonded to a boron atom.
  • the hetero atom is preferably an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom.
  • R 12 and R 13 each represent a halogen atom, or an alkylene group having 1 to 3 carbon atoms which contains a substituent and a hetero atom and which is bonded to each other to form a ring with a boron atom preferable.
  • the compound (a) at least one selected from the group consisting of the following compounds is preferable.
  • the compound (b) is represented by the general formula (b).
  • the alkyl group as R f 11 does not contain an oxygen atom between carbon and carbon atoms, and does not contain an oxygen atom directly bonded to a ring.
  • the alkyl group may be linear or branched.
  • an alkyl group having 2 to 6 carbon atoms containing a fluorine atom is preferable, and -CH 2 CF 2 CF 3 , -CH 2 CF (CF 3 ) 2 , -CH 2 CF 2 CF 2 CF 2 CF 3 , -CH 2 CF 3, -CF 2 CF 3, -CF 2 CF 2 H, -CF 2 CFH 2, -CF 2 CH 3, -CF 2 CF 2 CF 3, -CF 2 CF 2 CF 2 CF 3, -CF 2 CF 2 CF 2 H, -CF 2 CF 2 CF 2 H, -CF 2 CF 2 CF 2 CFH 2, or, are -CF 2 CF 2 CH 3 and more preferably.
  • the compound (b) is preferably at least one selected from the group consisting of the following compounds.
  • At least one selected from the group consisting of the following compounds is more preferable.
  • the compound (c) is represented by the general formula (c).
  • R f 12 is a fluorine atom or an alkyl group having 1 to 6 carbon atoms which may contain a fluorine atom
  • the alkyl group as R f 12 may be linear or branched.
  • the compound (d) is represented by the general formula (d).
  • R 14 is an alkyl group of 1 to 3 carbon atoms containing a fluorine atom or a halogen atom
  • the alkyl group as R 14 may be linear or branched.
  • a fluorine atom is preferable.
  • R 14 a fluorine atom or a trifluoromethyl group is preferable.
  • the electrolytic solution of the present invention preferably contains a solvent.
  • the content of the compound (I) is preferably 0.001 to 10% by mass with respect to the solvent.
  • 0.01 mass% or more is more preferable, 0.1 mass% or more is still more preferable, 5 mass% or less is more preferable, 1 mass% or less is still more preferable.
  • the content of the compound (II) is preferably 0.001 to 10% by mass with respect to the solvent.
  • 0.01 mass% or more is more preferable, 0.1 mass% or more is still more preferable, 5 mass% or less is more preferable, 1 mass% or less is still more preferable.
  • As content of the said solvent in the said electrolyte solution 90 volume% or more is preferable with respect to the said electrolyte solution, 95 volume% or more is more preferable, and 99.9 volume% or less may be sufficient.
  • the above solvents include non-fluorinated saturated cyclic carbonate (with the exception of compound (b)), fluorinated saturated cyclic carbonate (with the exception of compound (b)), non-fluorinated linear carbonate, fluorinated linear carbonate, It is preferable to include at least one selected from the group consisting of non-fluorinated linear esters and fluorinated linear esters.
  • the solvent is at least one cyclic group selected from the group consisting of the above non-fluorinated saturated cyclic carbonate (with the exception of compound (b)) and the above fluorinated saturated cyclic carbonate (with the exception of compound (b)).
  • the volume ratio of the cyclic carbonate to the chain compound in the solvent is preferably 10/90 to 90/10, more preferably 20/80 or more, still more preferably 25/75 or more, and still more preferably 70/30 or less. 50/50 or less is more preferable.
  • the solvent is selected from the group consisting of the non-fluorinated saturated cyclic carbonate (excluding the compound (b)), the non-fluorinated linear carbonate, and the non-fluorinated linear ester. It is also preferable to include a fluorinated chain compound. This combination is suitable for use in an electrochemical device operating at a relatively low voltage.
  • the volume ratio of the non-fluorinated saturated cyclic carbonate (excluding the compound (b)) and the non-fluorinated chain compound in the solvent is preferably 10/90 to 90/10, and more than 20/80. 25/75 or more is more preferable, 70/30 or less is more preferable, and 50/50 or less is still more preferable.
  • the solvent is at least one fluorinated chain selected from the group consisting of the fluorinated saturated cyclic carbonate (but excluding the compound (b)), the fluorinated chain carbonate, and the fluorinated chain ester. It is also preferred to include a compound. This combination is suitable for use in an electrochemical device operating at a relatively high voltage.
  • the volume ratio of the fluorinated saturated cyclic carbonate (excluding the compound (b)) and the fluorinated chain compound in the solvent is preferably 10/90 to 90/10, more preferably 20/80 or more. 25/75 or more is more preferable, 70/30 or less is more preferable, and 50/50 or less is still more preferable.
  • non-fluorinated saturated cyclic carbonate examples include ethylene carbonate (EC) and propylene carbonate (PC).
  • the non-fluorinated saturated cyclic carbonate is preferably at least one compound selected from the group consisting of ethylene carbonate and propylene carbonate in that the dielectric constant is high and the viscosity is suitable.
  • the non-fluorinated saturated cyclic carbonate 1 type of the compound mentioned above may be used, and 2 or more types may be used together.
  • the fluorinated saturated cyclic carbonate (except for the compound (b)) is a saturated cyclic carbonate to which a fluorine atom is added, and specifically, the following general formula (A):
  • X 1 to X 4 are the same or different and each is —H, —CH 3 , —C 2 H 5 , —F, a fluorinated alkyl group which may have an ether bond, or an ether bond
  • the like except for the compound (b).
  • ether bond is a bond represented by —O—.
  • one or two of X 1 to X 4 may have -F, a fluorinated alkyl group which may have an ether bond, or an ether bond It is preferable that it is a fluorinated alkoxy group.
  • X 1 to X 4 are —H, ⁇ F, a fluorinated alkyl group (a), an ether bond, because a decrease in viscosity at low temperatures, an increase in flash point, and an increase in solubility of electrolyte salts can be expected. It is preferable that it is a fluorinated alkyl group (b) or a fluorinated alkoxy group (c).
  • the said fluorinated alkyl group (a) is what substituted at least 1 of the hydrogen atom which an alkyl group has with a fluorine atom.
  • the carbon number of the fluorinated alkyl group (a) is preferably 1 to 20, more preferably 1 to 17, still more preferably 1 to 7, and particularly preferably 1 to 5. If the number of carbons is too large, the low temperature characteristics may deteriorate or the solubility of the electrolyte salt may decrease. If the number of carbons is too small, the solubility of the electrolyte salt may decrease, the discharge efficiency may decrease, and further An increase in viscosity etc. may be observed.
  • one having 1 carbon atom includes CFH 2- , CF 2 H-and CF 3- .
  • CF 2 H— or CF 3 — is preferable in terms of high temperature storage characteristics.
  • those having 2 or more carbon atoms include those represented by the following general formula (a-1): R 1 -R 2- (a-1) (Wherein, R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; however, R 1 and The fluorinated alkyl group represented by at least one of R 2 s having a fluorine atom can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R 1 and R 2 may further have other atoms than carbon atoms, hydrogen atoms and fluorine atoms.
  • R 1 is an alkyl group having one or more carbon atoms which may have a fluorine atom.
  • R 1 a linear or branched alkyl group having 1 to 16 carbon atoms is preferable.
  • the number of carbon atoms of R 1 is more preferably 1 to 6, and still more preferably 1 to 3.
  • R 1 specifically, as a linear or branched alkyl group, CH 3- , CH 3 CH 2- , CH 3 CH 2 CH 2- , CH 3 CH 2 CH 2 CH 2- ,
  • R 1 is a linear alkyl group having a fluorine atom, CF 3- , CF 3 CH 2- , CF 3 CF 2- , CF 3 CH 2 CH 2- , CF 3 CF 2 CH 2- , CF 3 CF 2 CF 2 - , CF 3 CH 2 CF 2 -, CF 3 CH 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 -, CF 3 CF 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CF 2- , CF 3 CF 2 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- ,
  • R 1 is a branched alkyl group having a fluorine atom
  • Etc. are preferably mentioned. However, since the viscosity is likely to be high when having a branch such as CH 3 -or CF 3- , it is more preferable that the number thereof is small (one) or zero.
  • R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R 2 may be linear or branched.
  • An example of the minimum structural unit which comprises such a linear or branched alkylene group is shown below.
  • R 2 is composed of these alone or in combination.
  • R 2 is linear, it consists only of the above-mentioned linear minimum structural unit, and in particular, —CH 2 —, —CH 2 CH 2 — or —CF 2 — is preferable.
  • -CH 2 -or -CH 2 CH 2 - is more preferable because the solubility of the electrolyte salt can be further improved.
  • R 2 When R 2 is branched, it contains at least one of the branched minimum structural units described above, and has a general formula of-(CX a X b )-(X a is H, F , CH 3 or CF 3;.
  • X b is CH 3 or CF 3 provided that when X b is CF 3, X a is one represented by H or CH 3) it can be preferably exemplified. In particular, these can further improve the solubility of the electrolyte salt.
  • Preferred fluorinated alkyl group (a) for example CF 3 CF 2 -, HCF 2 CF 2 -, H 2 CFCF 2 -, CH 3 CF 2 -, CF 3 CHF-, CH 3 CF 2 -, CF 3 CF 2 CF 2- , HCF 2 CF 2 CF 2- , H 2 CFCF 2 CF 2- , CH 3 CF 2 CF 2- ,
  • the fluorinated alkyl group (b) having an ether bond is one in which at least one of the hydrogen atoms of the alkyl group having an ether bond is substituted with a fluorine atom.
  • the fluorinated alkyl group (b) having an ether bond preferably has 2 to 17 carbon atoms. If the number of carbon atoms is too large, the viscosity of the fluorinated saturated cyclic carbonate becomes high, and the number of fluorine-containing groups increases. Therefore, the solubility of the electrolyte salt is reduced due to the reduction of the dielectric constant, and the compatibility with other solvents May be seen. From this viewpoint, the carbon number of the fluorinated alkyl group (b) having an ether bond is more preferably 2 to 10, still more preferably 2 to 7.
  • the alkylene group constituting the ether portion of the fluorinated alkyl group (b) having an ether bond may be a linear or branched alkylene group. Examples of the minimum structural unit constituting such a linear or branched alkylene group are shown below.
  • the alkylene group may be composed of these minimum structural units alone, and linear (i), branched (ii) or linear (i) and branched (ii) It may be configured by a combination. Preferred specific examples will be described later.
  • fluorinated alkyl group (b) having an ether bond include general formula (b-1): R 3- (OR 4 ) n 1-(b-1) (Wherein, R 3 may have a fluorine atom, preferably an alkyl group having 1 to 6 carbon atoms; R 4 may have a fluorine atom, preferably an alkylene having 1 to 4 carbon atoms And n1 is an integer of 1 to 3, provided that at least one of R 3 and R 4 has a fluorine atom.
  • R 3 and R 4 include the following, which can be combined as appropriate to form a fluorinated alkyl group (b) having an ether bond represented by the above general formula (b-1). Not limited to these.
  • R 3 a general formula: X c 3 C- (R 5 ) n 2- (wherein three X c are the same or different, each is H or F; R 5 is a C 1-5 fluorine atom Alkylene group which may be possessed; n2 is preferably an alkyl group represented by 0 or 1).
  • R 3 includes CH 3- , CF 3- , HCF 2 -and H 2 CF-.
  • n2 is 1, as R 3 is linear, CF 3 CH 2- , CF 3 CF 2- , CF 3 CH 2 CH 2- , CF 3 CF 2 CH 2- , CF 3 CF 2 CF 2 -, CF 3 CH 2 CF 2 -, CF 3 CH 2 CH 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 -, CF 3 CF 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CF 2- , CF 3 CF 2 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH
  • n2 is 1 and R 3 is a branched chain
  • R 3 is linear.
  • n1 is an integer of 1 to 3, preferably 1 or 2.
  • R 4 may be the same or different.
  • R 4 As preferable specific examples of R 4 , the following linear or branched ones can be exemplified.
  • the said fluorinated alkoxy group (c) substitutes at least one of the hydrogen atoms which an alkoxy group has with a fluorine atom.
  • the fluorinated alkoxy group (c) preferably has 1 to 17 carbon atoms. More preferably, it has 1 to 6 carbon atoms.
  • the fluorinated alkoxy group (c) may be represented by the general formula: X d 3 C- (R 6 ) n 3 -O- (wherein three X d are the same or different and each is H or F; R 6 preferably has carbon atoms Particularly preferred is a fluorinated alkoxy group represented by an alkylene group which may have 1 to 5 fluorine atoms; n3 is 0 or 1; provided that any of three X d 's contains a fluorine atom.
  • fluorinated alkoxy group (c) examples include a fluorinated alkoxy group in which an oxygen atom is bonded to the end of the alkyl group exemplified as R 1 in the general formula (a-1).
  • the fluorine content of the fluorinated alkyl group (a) in the fluorinated saturated cyclic carbonate, the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) is preferably 10% by mass or more. If the fluorine content is too low, the viscosity lowering effect at low temperatures and the flash point raising effect may not be sufficiently obtained. From this viewpoint, the fluorine content is more preferably 12% by mass or more, and still more preferably 15% by mass or more. The upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) is ⁇ (number of fluorine atoms based on the structural formula of each group It is the value computed by x19) / formula weight of each group ⁇ x 100 (%).
  • the fluorine content of the entire fluorinated saturated cyclic carbonate is preferably 10% by mass or more, and more preferably 15% by mass or more.
  • the upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated saturated cyclic carbonate is determined by ⁇ (number of fluorine atoms ⁇ 19) / molecular weight of fluorinated saturated cyclic carbonate ⁇ ⁇ 100 (%) based on the structural formula of fluorinated saturated cyclic carbonate It is a calculated value.
  • fluorinated saturated cyclic carbonate examples include the following.
  • Etc. can also be used.
  • fluorinated saturated cyclic carbonate in which at least one of X 1 to X 4 is a fluorinated alkyl group (a) and the rest are all —H are as follows:
  • fluorinated saturated cyclic carbonate in which at least one of X 1 to X 4 is a fluorinated alkyl group (b) having an ether bond or a fluorinated alkoxy group (c) and the rest is all -H.
  • the fluorinated saturated cyclic carbonate is preferably any of the following compounds.
  • the fluorinated saturated cyclic carbonate is more preferably at least one selected from the group consisting of fluoroethylene carbonate, difluoroethylene carbonate and trifluoromethylethylene carbonate.
  • non-fluorinated linear carbonates examples include CH 3 OCOOCH 3 (dimethyl carbonate: DMC), CH 3 CH 2 OCOOCH 2 CH 3 (diethyl carbonate: DEC), CH 3 CH 2 OCOOCH 3 (ethyl methyl carbonate: EMC) And hydrocarbon-based chain carbonates such as CH 3 OCOOCH 2 CH 2 CH 3 (methyl propyl carbonate), methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate and the like. Among them, at least one selected from the group consisting of ethyl methyl carbonate, diethyl carbonate and dimethyl carbonate is preferable.
  • Rf 2 OCOOR 6 (B) (Wherein, R f 2 is a fluorinated alkyl group having 1 to 7 carbon atoms, and R 6 is an alkyl group having 1 to 7 carbon atoms which may contain a fluorine atom) It can be mentioned.
  • the electrolytic solution of the present invention preferably contains the above-mentioned fluorinated linear carbonate in that it can be suitably used even under high voltage.
  • Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms
  • R 6 is an alkyl group which may contain a fluorine atom having 1 to 7 carbon atoms.
  • the said fluorinated alkyl group substitutes at least one of the hydrogen atoms which an alkyl group has with a fluorine atom.
  • R 6 is an alkyl group containing a fluorine atom, it is a fluorinated alkyl group.
  • Rf 2 and R 6 preferably have 2 to 7 carbon atoms, and more preferably 2 to 4 carbon atoms. If the number of carbons is too large, the low temperature characteristics may deteriorate or the solubility of the electrolyte salt may decrease. If the number of carbons is too small, the solubility of the electrolyte salt may decrease, the discharge efficiency may decrease, and further An increase in viscosity etc. may be observed.
  • fluorinated alkyl group having 1 carbon atom examples include CFH 2- , CF 2 H-, and CF 3- .
  • CF 2 H— or CF 3 — is preferable in terms of high temperature storage characteristics.
  • Examples of the fluorinated alkyl group having 2 or more carbon atoms include the following general formula (d-1): R 1 -R 2- (d-1) (Wherein, R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; however, R 1 and The fluorinated alkyl group represented by at least one of R 2 s having a fluorine atom can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R 1 and R 2 may further have other atoms than carbon atoms, hydrogen atoms and fluorine atoms.
  • R 1 is an alkyl group having one or more carbon atoms which may have a fluorine atom.
  • R 1 a linear or branched alkyl group having 1 to 6 carbon atoms is preferable.
  • the number of carbon atoms of R 1 is more preferably 1 to 6, and still more preferably 1 to 3.
  • R 1 specifically, as a linear or branched alkyl group, CH 3- , CH 3 CH 2- , CH 3 CH 2 CH 2- , CH 3 CH 2 CH 2 CH 2- ,
  • R 1 is a linear alkyl group having a fluorine atom, CF 3- , CF 3 CH 2- , CF 3 CF 2- , CF 3 CH 2 CH 2- , CF 3 CF 2 CH 2- , CF 3 CF 2 CF 2 - , CF 3 CH 2 CF 2 -, CF 3 CH 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 -, CF 3 CF 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CF 2- , CF 3 CF 2 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2- ,
  • R 1 is a branched alkyl group having a fluorine atom
  • Etc. are preferably mentioned. However, since the viscosity is likely to be high when having a branch such as CH 3 -or CF 3- , it is more preferable that the number thereof is small (one) or zero.
  • R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R 2 may be linear or branched.
  • An example of the minimum structural unit which comprises such a linear or branched alkylene group is shown below.
  • R 2 is composed of these alone or in combination.
  • R 2 is linear, it consists only of the above-mentioned linear minimum structural unit, and in particular, —CH 2 —, —CH 2 CH 2 — or —CF 2 — is preferable.
  • -CH 2 -or -CH 2 CH 2 - is more preferable because the solubility of the electrolyte salt can be further improved.
  • R 2 When R 2 is branched, it contains at least one of the branched minimum structural units described above, and has a general formula of-(CX a X b )-(X a is H, F , CH 3 or CF 3;.
  • X b is CH 3 or CF 3 provided that when X b is CF 3, X a is one represented by H or CH 3) it can be preferably exemplified. In particular, these can further improve the solubility of the electrolyte salt.
  • fluorinated alkyl groups are, for example, CF 3 CF 2- , HCF 2 CF 2- , H 2 CFCF 2- , CH 3 CF 2- , CF 3 CH 2- , CF 3 CF 2 CF 2- , HCF 2 CF 2 CF 2- , H 2 CFCF 2 CF 2- , CH 3 CF 2 CF 2- ,
  • fluorinated alkyl groups of Rf 2 and R 6 CF 3- , CF 3 CF 2- , (CF 3 ) 2 CH-, CF 3 CH 2- , C 2 F 5 CH 2- , CF 3 CF 2 CH 2 -, HCF 2 CF 2 CH 2 -, CF 3 CFHCF 2 CH 2 - are preferred, high flame retardancy, rate characteristic and oxidation-resistant viewpoint of satisfactory, CF 3 CH 2 -, CF 3 CF 2 CH 2 -, HCF 2 CF 2 CH 2 - is more preferable.
  • R 6 is an alkyl group not containing a fluorine atom, it is an alkyl group having 1 to 7 carbon atoms. From the viewpoint of low viscosity, R 6 preferably has 1 to 4 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • Examples of the above-mentioned alkyl group not containing a fluorine atom include CH 3- , CH 3 CH 2- , (CH 3 ) 2 CH-, C 3 H 7- and the like. Among them, CH 3 -and CH 3 CH 2 -are preferable in terms of low viscosity and good rate characteristics.
  • the fluorinated linear carbonate preferably has a fluorine content of 20 to 70% by mass.
  • the fluorine content is in the above-mentioned range, the compatibility with the solvent and the solubility of the salt can be maintained. 30 mass% or more is more preferable, 35 mass% or more is further more preferable, 60 mass% or less is more preferable, and 50 mass% or less is still more preferable.
  • the fluorine content is based on the structural formula of the above-mentioned fluorinated linear carbonate, ⁇ (Number of fluorine atoms ⁇ 19) / molecular weight of fluorinated linear carbonate ⁇ ⁇ 100 (%) Is a value calculated by
  • the fluorinated linear carbonate is preferably any of the following compounds in view of low viscosity.
  • non-fluorinated linear ester examples include those having 3 to 7 carbon atoms in the structural formula. Specifically, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, isobutyrate-n- Propyl, isopropyl isobutyrate and the like can be mentioned.
  • Rf 31 COORf 32 (Wherein, R f 31 is a fluorinated alkyl group having 1 to 4 carbon atoms, and R f 32 is an alkyl group optionally containing a fluorine atom having 1 to 4 carbon atoms) From the viewpoint of good compatibility with these compounds and oxidation resistance.
  • Rf 31 examples include HCF 2- , CF 3- , CF 3 CF 2- , HCF 2 CF 2- , CH 3 CF 2- , CF 3 CH 2- and the like, and among them, HCF 2- , CF 3- -, CF 3 CF 2- , and CF 3 CH 2 -are particularly preferable from the viewpoint of good viscosity and oxidation resistance.
  • Rf 32 for example, CH 3- , C 2 H 5- , CF 3- , CF 3 CF 2- , (CF 3 ) 2 CH-, CF 3 CH 2- , CF 3 CH 2 CH 2- , CF 3 3 CFHCF 2 CH 2 -, C 2 F 5 CH 2 -, CF 2 HCF 2 CH 2 -, C 2 F 5 CH 2 CH 2 -, CF 3 CF 2 CH 2 -, CF 3 CF 2 CF 2 CH 2 -
  • CH 3- , C 2 H 5- , CF 3 CH 2- , and CF 3 CH 2 CH 2 - are particularly preferable because of their good compatibility with other solvents.
  • the electrolyte solution of this invention contains electrolyte salt (however, except a compound (a)).
  • electrolyte salt include alkali metal salts, alkaline earth metal salts, metal salts having aluminum as a cation, ammonium salts, liquid salts (ionic liquids), inorganic polymer type salts, organic polymer type Any salt that can be used for the electrolyte can be used, such as salts of
  • an alkali metal salt is preferable and a lithium salt is more preferable.
  • Arbitrary things can be used as said lithium salt, The following are mentioned specifically.
  • LiPO 3 F, fluoro lithium phosphate such as LiPO 2 F 2;
  • Lithium tungstates such as LiWOF 5 ; HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 Carboxylic acid lithium salts such as CO 2 Li, CF 3 CF 2 CF 2 CO 2 Li;
  • LiPF a (C n F 2n + 1) 6-a for example, LiPF 3 (CF 3) 3 , LiPF 3 (C 2 F 5) 3, LiPF 3 (C 3 F 7) 3 , LiPF 3 (C 4 F 9 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (C 3 F 7 ) 2 , LiPF 4 (C 4 F 9 ) 2 (wherein And the alkyl group represented by C 3 F 7 or C 4 F 9 in the formula may be linear or branched, and the like.
  • lithium salts may be used alone or in combination of two or more.
  • the combined use of LiPF 6 and FSO 3 Li, LiPF 6 and LiPO 2 F 2 is preferable because the effect is remarkable, and among them, the combined use of LiPF 6 and LiPO 2 F 2 is remarkable effect by the addition of a small amount Are particularly preferred for expression.
  • the blending amount of LiBF 4 or FSO 3 Li with respect to 100% by mass of the whole electrolyte is not limited, and optional as long as the effects of the present invention are not significantly impaired.
  • the content is usually 0.01% by mass or more, preferably 0.1% by mass or more, and the upper limit thereof is usually 30% by mass or less, preferably 20% by mass or less.
  • CF 3 SO 3 Li LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 Lithium cyclic 1,2-perfluoroethanedisulfonyl imide lithium cyclic 1,3-perfluoropropane disulfonyl imide LiC (FSO 2 ) 3 LiC (CF 3 SO 2 ) 3 LiC (C 2 F 5 SO 2 ) 2 ) 3 , lithium tetrafluoro oxalato phosphate, lithium difluoro bis oxalato phosphate, LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F
  • the ratio of the organic lithium salt to the total 100% by mass of the electrolyte is preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and preferably 30% by mass or less, particularly preferably Preferably it is 20 mass% or less.
  • the concentration of these lithium salts in the electrolyte is not particularly limited as long as the effects of the present invention are not impaired.
  • the total molar concentration of lithium in the electrolytic solution is preferably 0.3 mol / L or more, and more preferably 0.4 mol / L, in order to set the electric conductivity of the electrolytic solution in a good range and to ensure good battery performance.
  • the amount is more preferably 0.5 mol / L or more, preferably 3 mol / L or less, more preferably 2.5 mol / L or less, and still more preferably 2.0 mol / L or less.
  • the electrical conductivity of the electrolyte may be insufficient.
  • the concentration is too high, the electrical conductivity may decrease due to the increase in viscosity, and the battery performance may decrease. May.
  • ammonium salt is preferable as the electrolyte salt of the electrolytic solution for an electric double layer capacitor.
  • ammonium salt include the following (IIa) to (IIe).
  • (IIa) Tetraalkyl quaternary ammonium salt General formula (IIa):
  • R 1a , R 2a , R 3a and R 4a are the same or different and each may be an alkyl group containing an ether bond of 1 to 6 carbon atoms; X - is an anion)
  • Preferred are quaternary ammonium salts.
  • those in which a part or all of hydrogen atoms of this ammonium salt is substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms are also preferable from the viewpoint of improving the oxidation resistance.
  • R 5a is an alkyl group having 1 to 6 carbon atoms
  • R 6a is a divalent hydrocarbon group having 1 to 6 carbon atoms
  • R 7a is an alkyl group having 1 to 4 carbon atoms
  • z is 1 or 2
  • An alkyl ether group-containing trialkyl ammonium salt represented by X - is an anion Etc. The viscosity can be reduced by introducing an alkyl ether group.
  • the anion X ⁇ may be an inorganic anion or an organic anion.
  • the inorganic anion include AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , TaF 6 ⁇ , I ⁇ , and SbF 6 ⁇ .
  • the organic anion include CF 3 COO ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , and (C 2 F 5 SO 2 ) 2 N ⁇ .
  • BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , and SbF 6 ⁇ are preferable from the viewpoint of good oxidation resistance and ion dissociation.
  • Preferred specific examples of the tetraalkyl quaternary ammonium salt include Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N ( CF 3 SO 2 ) 2 N, Et 4 NC 4 F 9 SO 3 , Et 3 MeNBF 4 , Et 3 MeNClO 4 , Et 3 MeNPF 6 , Et 3 MeNAsF 6 , Et 3 MeNSbF 6 , Et 3 MeNCF 3 SO 3 , Et 3 3 MeN (CF 3 SO 2 ) 2 N, Et 3 MeNC 4 F 9 SO 3 , N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium salt and the like, and in particular, Et 4 NBF 4, Et 4 NPF 6, Et 4 NSbF 6, Et 4 NAsF 6, Et 3 MeNBF 4, N, N Diethyl -N- methyl -
  • R 8a and R 9a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n 1 is an integer of 0 to 5; n 2 is an integer of 0 to 5) Spirocyclic Bipyrrolidinium Salt, General Formula (IIb-2):
  • R 10a and R 11a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n 3 is an integer of 0 to 5; n 4 is an integer of 0 to 5) Spirocyclic bipyrrolidinium salts, or general formula (IIb-3):
  • R 12a and R 13a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n 5 is an integer of 0 to 5; n 6 is an integer of 0 to 5)
  • Spirocyclic bipyrrolidinium salts are preferably mentioned.
  • those in which part or all of hydrogen atoms of this spirocyclic bipyrrolidinium salt is substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms are also preferable from the viewpoint of improving the oxidation resistance.
  • Anion X - of the preferred embodiment are the same as for (IIa). Among them, high dissociative, terms the internal resistance is low under a high voltage, BF 4 -, PF 6 - , (CF 3 SO 2) 2 N - or (C 2 F 5 SO 2) 2 N - is preferable.
  • Preferred specific examples of the spirocyclic bipyrrolidinium salt include, for example, Etc.
  • the spirocyclic bipyrrolidinium salt is excellent in solubility in solvents, oxidation resistance, and ion conductivity.
  • R 14a and R 15a are the same or different, and each is an alkyl group having 1 to 6 carbon atoms; X - is an anion)
  • the imidazolium salt shown by these can be illustrated preferably.
  • those in which part or all of the hydrogen atoms of this imidazolium salt are substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms are also preferable from the viewpoint of improving the oxidation resistance.
  • Anion X - of the preferred embodiment is the same as (IIa).
  • This imidazolium salt is excellent in that it has low viscosity and good solubility.
  • N-alkyl pyridinium salt represented by can be preferably exemplified. Further, it is also preferable from the viewpoint that the oxidation resistance is improved, in which part or all of the hydrogen atoms of this N-alkylpyridinium salt is substituted by a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • Anion X - of the preferred embodiment is the same as (IIa).
  • This N-alkylpyridinium salt is excellent in that it has low viscosity and good solubility.
  • N, N-dialkyl pyrrolidinium salt represented by can be preferably exemplified.
  • oxidation resistance is also improved in the case where part or all of hydrogen atoms of this N, N-dialkylpyrrolidinium salt is substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms. It is preferable from the point of view.
  • Anion X - of the preferred embodiment is the same as (IIa).
  • This N, N-dialkylpyrrolidinium salt is excellent in that it has low viscosity and good solubility.
  • ammonium salts (IIa), (IIb) and (IIc) are preferable in terms of good solubility, oxidation resistance and ion conductivity, and further preferred
  • a lithium salt may be used as an electrolyte salt for an electric double layer capacitor.
  • the lithium salt LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiN (SO 2 C 2 H 5) 2 is preferred.
  • Magnesium salts may be used to further improve the capacity.
  • the magnesium salt e.g., Mg (ClO 4) 2, Mg (OOC 2 H 5) 2 and the like are preferable.
  • the concentration is preferably 0.6 mol / l or more. If the amount is less than 0.6 mol / liter, not only the low temperature characteristics deteriorate, but also the initial internal resistance increases.
  • the concentration of the electrolyte salt is more preferably 0.9 mol / l or more.
  • the above concentration is preferably 3.0 mol / l or less, more preferably 2.0 mol / l or less, in terms of low temperature characteristics.
  • the concentration is preferably 0.8 to 1.9 mol / l in terms of excellent low temperature characteristics.
  • SBPBF 4 spirobipyrrolidinium tetrafluoride
  • it is preferably 0.7 to 2.0 mol / liter.
  • the electrolytic solution of the present invention preferably further contains polyethylene oxide having a weight average molecular weight of 2000 to 4000 and having -OH, -OCOOH or -COOH at the end.
  • polyethylene oxide having a weight average molecular weight of 2000 to 4000 and having -OH, -OCOOH or -COOH at the end.
  • polyethylene oxide monool, polyethylene oxide carboxylic acid, polyethylene oxide diol, polyethylene oxide dicarboxylic acid, polyethylene oxide triol, polyethylene oxide tricarboxylic acid etc. are mentioned, for example. These may be used alone or in combination of two or more. Among them, a mixture of polyethylene oxide monool and polyethylene oxide diol, and a mixture of polyethylene oxide carboxylic acid and polyethylene oxide dicarboxylic acid are preferable in that the properties of the electrochemical device become better.
  • the weight average molecular weight of the above-mentioned polyethylene oxide is too small, there is a possibility that it is easy to be oxidatively decomposed.
  • the weight average molecular weight is more preferably 3,000 to 4,000.
  • the said weight average molecular weight can be measured by polystyrene conversion by gel permeation chromatography (GPC) method.
  • the content of the polyethylene oxide is preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 mol / kg in the electrolytic solution. If the content of the polyethylene oxide is too high, the properties of the electrochemical device may be impaired.
  • the content of the polyethylene oxide is more preferably 5 ⁇ 10 ⁇ 6 mol / kg or more.
  • the electrolytic solution of the present invention may further contain an unsaturated cyclic carbonate (except for the compound (c)), an overcharge inhibitor, other known auxiliary agents and the like. Thereby, the deterioration of the characteristics of the electrochemical device can be suppressed.
  • the above unsaturated cyclic carbonate (excluding compound (c)) is a cyclic carbonate containing an unsaturated bond, that is, a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule .
  • unsaturated cyclic carbonates vinylene carbonates (with the exception of compound (c)), ethylene carbonates substituted with an aromatic ring or a substituent having a carbon-carbon double bond or a carbon-carbon triple bond, phenyl carbonate And vinyl carbonates, allyl carbonates, catechol carbonates and the like.
  • vinylene carbonates examples include vinylene carbonate, 4,5-dimethylvinylene carbonate, 4,5-diethylvinylene carbonate, phenylvinylene carbonate, 4,5-diphenylvinylene carbonate, vinylvinylene carbonate 4,5-Divinylvinylene carbonate, allylvinylene carbonate, 4,5-diallylvinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-phenylvinylene carbonate, 4-fluoro-5-vinylvinylene carbonate And 4-allyl-5-fluorovinylene carbonate and the like.
  • ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon double bond or a carbon-carbon triple bond include vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, 4-methyl-5- Vinyl ethylene carbonate, 4-allyl-5-vinyl ethylene carbonate, ethynyl ethylene carbonate, 4,5-diethynyl ethylene carbonate, 4-methyl-5-ethynyl ethylene carbonate, 4-vinyl-5-ethynyl ethylene carbonate, 4-allyl -5-ethynyl ethylene carbonate, phenyl ethylene carbonate, 4,5-diphenyl ethylene carbonate, 4-phenyl-5-vinyl ethylene carbonate, 4-allyl-5-phenyl ethylene carbonate, allyl ethylene carbonate 4,5 diallyl carbonate, 4-methyl-5-allyl carbonate and the like.
  • vinylene carbonate, vinyl ethylene carbonate and ethynyl ethylene carbonate are particularly preferable because they form a more stable surface protective film.
  • the molecular weight of the unsaturated cyclic carbonate (except for the compound (c)) is not particularly limited, and is arbitrary unless the effects of the present invention are significantly impaired.
  • the molecular weight is preferably 50 or more and 250 or less. Within this range, the solubility of the unsaturated cyclic carbonate in the electrolytic solution can be easily secured, and the effects of the present invention can be sufficiently exhibited.
  • the molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more, and more preferably 150 or less.
  • the method for producing the unsaturated cyclic carbonate (except for the compound (c)) is not particularly limited, and any known method can be selected for production.
  • the unsaturated cyclic carbonates (with the exception of the compound (c)) may be used alone or in any combination and ratio of two or more.
  • the content of the above-mentioned unsaturated cyclic carbonate (excluding the compound (c)) is not particularly limited, and is arbitrary unless the effects of the present invention are significantly impaired.
  • the content of the unsaturated cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.1% by mass or more in 100% by mass of the solvent in the present invention.
  • the content is preferably 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less.
  • the unsaturated cyclic carbonate in addition to the non-fluorinated unsaturated cyclic carbonate as described above (with the exception of the compound (c)), fluorinated unsaturated cyclic carbonate (with the exception of the compound (c))
  • the compound (c) can be suitably used.
  • the fluorinated unsaturated cyclic carbonate is a cyclic carbonate having an unsaturated bond and a fluorine atom.
  • the number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate (excluding the compound (c)) is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and one or two are most preferable.
  • the fluorinated unsaturated cyclic carbonate includes a fluorinated vinylene carbonate derivative (with the exception of the compound (c)), a substituted aromatic ring or a substituent having a carbon-carbon double bond Fluorinated ethylene carbonate derivatives and the like.
  • a fluorinated vinylene carbonate derivative with the exception of the compound (c)
  • Fluorinated ethylene carbonate derivatives and the like 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-phenylvinylene carbonate, 4-allyl-5-fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate as the fluorinated vinylene carbonate derivative (however, except for the compound (c)) And fluoro-5-vinylvinylene carbonate and the like.
  • fluorinated ethylene carbonate derivative substituted by a substituent having an aromatic ring or a carbon-carbon double bond 4-fluoro-4-vinyl ethylene carbonate, 4-fluoro-4-allyl ethylene carbonate, 4-fluoro-5 -Vinyl ethylene carbonate, 4-fluoro-5-allyl ethylene carbonate, 4,4-difluoro-4-vinyl ethylene carbonate, 4,4-difluoro-4-allyl ethylene carbonate, 4,5-difluoro-4-vinyl ethylene carbonate 4,5-Difluoro-4-allyl ethylene carbonate, 4-fluoro-4,5-divinyl ethylene carbonate, 4-fluoro-4,5-diallyl ethylene carbonate, 4,5-difluoro-4,5-divinyl ethylene carbonate , 4,5-Diful 4- 4, 5-diallyl ethylene carbonate, 4-fluoro 4-phenyl ethylene carbonate, 4- fluoro 5- phenyl ethylene carbonate, 4, 4-fluor
  • the molecular weight of the fluorinated unsaturated cyclic carbonate (except for the compound (c)) is not particularly limited, and is arbitrary unless the effects of the present invention are significantly impaired.
  • the molecular weight is preferably 50 or more and 500 or less. Within this range, the solubility of the fluorinated unsaturated cyclic carbonate in the electrolytic solution can be easily secured, and the effects of the present invention can be easily exhibited.
  • the method for producing the fluorinated unsaturated cyclic carbonate (with the exception of the compound (c)) is not particularly limited, and any known method can be selected for production.
  • the molecular weight is more preferably 100 or more, and more preferably 200 or less.
  • the fluorinated unsaturated cyclic carbonates may be used alone or in any combination of two or more in any proportion. Further, the content of the fluorinated unsaturated cyclic carbonate (except for the compound (c)) is not particularly limited, and is optional unless the effects of the present invention are significantly impaired.
  • the content of the fluorinated unsaturated cyclic carbonate (excluding the compound (c)) is usually 0.01% by mass or more, more preferably 0.1% by mass or more, in 100% by mass of the electrolytic solution.
  • the content is preferably 0.5% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass or less.
  • an electrochemical device using an electrolytic solution is likely to exhibit a sufficient cycle characteristics improvement effect, and also the high temperature storage characteristics deteriorate, the gas generation amount increases, and the discharge capacity retention rate decreases. It is easy to avoid such situations.
  • an overcharge preventing agent can be used to effectively suppress the battery from bursting / ignition when the electrochemical device using the electrolytic solution becomes overcharged or the like.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran and the like; 2-fluorobiphenyl, Partially fluorinated products of the above aromatic compounds such as o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene, etc .; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole, etc.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, a partially hydrogenated product of terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran and the like are preferable. These may be used alone or in combination of two or more.
  • a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene biphenyl, alkylbiphenyl, terphenyl, a partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene,
  • the combined use of at least one selected from oxygen-free aromatic compounds such as t-amyl benzene and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether and dibenzofuran is an overcharge preventing property and high temperature storage characteristics From the point of balance of
  • auxiliary agents can be used in the electrolytic solution of the present invention.
  • Other assistants include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate, etc .; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, anhydride Carboxylic anhydrides such as itaconic acid, diglycolic anhydride, cyclohexanedicarboxylic acid anhydride, cyclopentanetetracarboxylic acid dianhydride and phenylsuccinic anhydride; 2,4,8,10-tetraoxaspiro [5.5 Spiro compounds such as undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; ethylene sulfite, 1,3-propane sultone, 1-fluoro-1,3-
  • the amount of the other auxiliary agent is not particularly limited, and is optional unless the effects of the present invention are significantly impaired.
  • the other auxiliary agent is preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the electrolytic solution. Within this range, the effects of the other auxiliary agents can be sufficiently exhibited, and situations in which battery characteristics such as high load discharge characteristics are degraded can be easily avoided.
  • the compounding amount of the other auxiliary agent is more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and more preferably 3% by mass or less, still more preferably 1% by mass or less .
  • the electrolytic solution of the present invention can contain an acid anhydride having a succinic acid backbone.
  • an acid anhydride having a succinic acid skeleton succinic anhydride, maleic anhydride, citraconic acid, 2-methylsuccinic acid, 2,3-dimethylsuccinic acid, 2-fluorosuccinic acid, 2,3-difluorosuccinic acid, etc.
  • succinic anhydride or maleic anhydride is preferred.
  • the content of the acid anhydride having a succinic acid skeleton is preferably 0.1 to 10% by mass in the electrolytic solution, more preferably 0.5% by mass or more, and more preferably 5% by mass or less.
  • the electrolytic solution of the present invention can contain a cyclic sulfonic acid compound.
  • the cyclic sulfonic acid compounds include 1,3-propane sultone, 1,4-butane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, and 3-fluoro-1 And 3-propane sultone.
  • the electrolytic solution of the present invention preferably contains 1,3-propane sultone and / or 1,4-butane sultone in that high temperature characteristics can be improved.
  • the content of the cyclic sulfonic acid compound in the electrolytic solution is preferably 0.1 to 10% by mass, more preferably 0.5% by mass or more, and more preferably 5% by mass or less.
  • the electrolytic solution of the present invention is a cyclic carboxylic acid ester, an ether compound, a nitrogen-containing compound, a boron-containing compound, an organic silicon-containing compound, an incombustible (flame retardant) agent, a surfactant, to the extent that the effects of the present invention are not impaired.
  • the composition may further contain high dielectric additives, cycle characteristics and rate characteristics improvers, and the like.
  • Examples of the cyclic carboxylic acid ester include those having 3 to 12 carbon atoms in total in the structural formula.
  • gamma butyrolactone, gamma valerolactone, gamma caprolactone, epsilon caprolactone and the like can be mentioned.
  • gamma-butyrolactone is particularly preferable from the viewpoint of the improvement of the characteristics of the electrochemical device derived from the improvement of the lithium ion dissociation degree.
  • the compounding amount of the cyclic carboxylic acid ester is usually 0.1% by mass or more, preferably 1% by mass or more, in 100% by mass of the solvent. Within this range, the electrical conductivity of the electrolytic solution can be improved, and the large current discharge characteristics of the electrochemical device can be easily improved. Moreover, the compounding quantity of cyclic carboxylic acid ester becomes like this. Preferably it is 10 mass% or less, More preferably, it is 5 mass% or less. By setting the upper limit in this way, the viscosity of the electrolytic solution is made into an appropriate range, the decrease of the electric conductivity is avoided, the increase of the negative electrode resistance is suppressed, and the large current discharge characteristics of the electrochemical device is made into a good range. Make it easy.
  • fluorinated cyclic carboxylic acid ester (fluorine-containing lactone) can also be used suitably.
  • fluorine-containing lactone for example, the following formula (E):
  • X 15 to X 20 are the same or different, and each is —H, —F, —Cl, —CH 3 or a fluorinated alkyl group; provided that at least one of X 15 to X 20 is a fluorinated alkyl group
  • fluorine-containing lactones represented by
  • fluorinated alkyl group in X 15 to X 20 for example, -CFH 2 , -CF 2 H, -CF 3 , -CH 2 CF 3 , -CF 2 CF 3 , -CH 2 CF 2 CF 3 , -CF (CF 3 ) 2 and the like, and from the viewpoint of high oxidation resistance and safety improving effect, —CH 2 CF 3 and —CH 2 CF 2 CF 3 are preferable.
  • X 15 to X 20 is a fluorinated alkyl group
  • -H, -F, -Cl, -CH 3 or a fluorinated alkyl group is substituted at only one position of X 15 to X 20 and It may be replaced with a plurality of places.
  • it is preferably one to three, and more preferably one to two.
  • X 17 and / or X 18 is, in particular X 17 or X 18 is a fluorinated alkyl group, inter alia -CH 2 CF 3 And —CH 2 CF 2 CF 3 is preferable.
  • X 15 to X 20 other than the fluorinated alkyl group are —H, —F, —Cl or CH 3 , and in particular, —H is preferable from the viewpoint of good solubility of the electrolyte salt.
  • the ether compound is preferably a C3-C10 linear ether and a C3-C6 cyclic ether.
  • a C3-C10 linear ether diethylether, di-n-butylether, dimethoxymethane, methoxyethoxymethane, diethoxymethane, dimethoxyethane, methoxyethoxyethane, diethoxyethane, ethylene glycol di-n-propyl Ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether and the like can be mentioned.
  • a fluorinated ether can also be used suitably.
  • said fluorinated ether the following general formula (K): Rf 1 -O-Rf 2 (K) (Wherein, R f 1 and R f 2 are the same or different and are an alkyl group of 1 to 10 carbon atoms or a fluorinated alkyl group of 1 to 10 carbon atoms, provided that at least one of R f 1 and R f 2 is fluorine And fluorinated ethers (K) represented by By containing the fluorinated ether (K), the flame retardancy of the electrolytic solution is improved, and the stability and safety at high temperature and high voltage are improved.
  • At least one of Rf 1 and Rf 2 may be a fluorinated alkyl group having 1 to 10 carbon atoms, but the flame retardancy of the electrolytic solution, stability at high temperature and high voltage, safety From the viewpoint of further improving the properties, it is preferable that both Rf 1 and Rf 2 be a fluorinated alkyl group having 1 to 10 carbon atoms. In this case, Rf 1 and Rf 2 may be the same or may be different from each other.
  • Rf 1 and Rf 2 are the same or different, and Rf 1 is a fluorinated alkyl group having 3 to 6 carbon atoms, and Rf 2 is a fluorinated alkyl group having 2 to 6 carbon atoms More preferable.
  • the fluorinated ether (K) preferably has a fluorine content of 40 to 75% by mass. When it has a fluorine content in this range, the balance between incombustibility and compatibility becomes particularly excellent. Moreover, it is preferable also from the point whose oxidation resistance and safety are favorable.
  • the lower limit of the fluorine content is more preferably 45% by mass, further preferably 50% by mass, and particularly preferably 55% by mass.
  • the upper limit is more preferably 70% by mass, and still more preferably 66% by mass.
  • the fluorine content of the fluorinated ether (K) is ⁇ (number of fluorine atoms ⁇ 19) / molecular weight of fluorinated ether (K) ⁇ ⁇ 100 (%) based on the structural formula of fluorinated ether (K) It is a value calculated by
  • R f 1 for example, CF 3 CF 2 CH 2- , CF 3 CFHCF 2- , HCF 2 CF 2 CF 2- , HCF 2 CF 2 CH 2- , CF 3 CF 2 CH 2 CH 2- , CF 3 CFHCF 2 CH 2- , HCF 2 CF 2 CF 2 CF 2- , HCF 2 CF 2 CH 2- , HCF 2 CF 2 CH 2 CH 2- , HCF 2 CF (CF 3 ) CH 2- and the like.
  • Rf 2 for example, CF 3 CF 2 CH 2 - , CF 3 CFHCF 2 -, CF 2 HCF 2 CF 2 -, CF 2 HCF 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, CF 3 CFHCF 2 CH 2 -, CF 2 HCF 2 CF 2 CF 2 -, CF 2 HCF 2 CH 2 CH 2 -, CF 2 HCF (CF 3) CH 2 -, CF 2 HCF 2- , CF 2 HCH 2- , CH 3 CF 2- and the like can be mentioned.
  • fluorinated ether for example, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3, CF 3 CF 2 CH 2 OCF 2 CFHCF 3 , C 6 F 13 OCH 3 , C 6 F 13 OC 2 H 5 , C 8 F 17 OCH 3 , C 8 F 17 OC 2 H 5 , CF 3 CFHCF 2 CH (CH 3 ) OCF 2 CFHCF 3 , HCF 2 CF 2 OCH (C 2 H 5 ) 2 , HCF 2 CF 2 OC 4 H 9 , HCF 2 CF 2 OCH 2 CH (C 2 H 5 ) 2 , HCF 2 CF 2 OCH 2 CH (CH 3 ) 2 and the like.
  • one containing HCF 2 — or CF 3 CFH— at one end or both ends is excellent in polarizability, and a fluorinated ether (K) having a high boiling point can be provided.
  • the boiling point of the fluorinated ether (K) is preferably 67 to 120 ° C.
  • the temperature is more preferably 80 ° C. or more, still more preferably 90 ° C. or more.
  • Such fluorinated ether (K) for example, CF 3 CH 2 OCF 2 CFHCF 3, CF 3 CF 2 CH 2 OCF 2 CFHCF 3, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3, HCF 2 CF 2 CH 2 OCH 2 CF 2 CF 2 H, CF 3 CFHCF 2 CH 2 OCF 2 CFHCF 3 , HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, or the like The above is mentioned.
  • HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 106 ° C.), CF 3 CF 2 CH, which is advantageous in that it has high boiling point, compatibility with other solvents and good solubility of electrolyte salt.
  • 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1,4-dioxane etc., and fluorinated compounds thereof can be mentioned.
  • dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high ability to solvate lithium ions and improve the degree of ion dissociation.
  • dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are particularly preferable because of their low viscosity and high ionic conductivity.
  • nitrogen-containing compound examples include nitriles, fluorine-containing nitriles, carboxylic acid amides, fluorine-containing carboxylic acid amides, sulfonic acid amides and fluorine-containing sulfonic acid amides.
  • nitrogen-containing compound examples include nitriles, fluorine-containing nitriles, carboxylic acid amides, fluorine-containing carboxylic acid amides, sulfonic acid amides and fluorine-containing sulfonic acid amides.
  • 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxaziridinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide can also be used.
  • boron-containing compound examples include borate esters such as trimethyl borate and triethyl borate, borate ethers, and alkyl borates.
  • Examples of the organic silicon-containing compound include (CH 3 ) 4 -Si and (CH 3 ) 3 -Si-Si (CH 3 ) 3 .
  • non-combustible (flame-retardant) agent examples include phosphoric acid esters and phosphazene compounds.
  • phosphoric acid ester examples include fluorine-containing alkyl phosphoric acid esters, non-fluorinated alkyl phosphoric acid esters, and aryl phosphoric acid esters. Among them, fluorine-containing alkyl phosphates are preferable in that they can exhibit the non-combustible effect in a small amount.
  • fluorine-containing alkyl phosphoric acid ester examples include fluorine-containing dialkyl phosphoric acid esters described in JP-A-11-233141, and cyclic alkyl phosphoric acid esters described in JP-A-11-283669. And / or fluorine-containing trialkyl phosphate esters and the like.
  • the surfactant may be any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant, but from the viewpoint of favorable cycle characteristics and rate characteristics, a fluorine atom. Is preferable.
  • a surfactant containing a fluorine atom for example, the following formula: Rf 1 COO - M + (Wherein R f 1 is a fluorinated alkyl group which may contain an ether bond of 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different) And a fluorine-containing carboxylic acid salt represented by the following formula: Rf 2 SO 3 - M + (Wherein R f 2 is a fluorinated alkyl group which may contain an ether bond of 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different) And fluorine-containing sulfonates and the like, each of which is H or an alkyl group having 1 to 3 carbon atoms).
  • the content of the surfactant is preferably 0.01 to 2% by mass in the electrolytic solution, from the viewpoint of being able to reduce the surface tension of the electrolytic solution without deteriorating the charge-discharge cycle characteristics.
  • high dielectric additives examples include sulfolane, methylsulfolane, ⁇ -butyrolactone, ⁇ -valerolactone, acetonitrile, propionitrile and the like.
  • cycle characteristics and rate characteristics improver examples include methyl acetate, ethyl acetate, tetrahydrofuran, 1,4-dioxane and the like.
  • electrolytic solution of the present invention may be further combined with a polymer material to form a gel (plasticized) gel electrolytic solution.
  • polymer materials conventionally known polyethylene oxide and polypropylene oxide, modified products thereof (Japanese Patent Laid-Open Nos. 8-222270 and 2002-100405); polyacrylate polymers, polyacrylonitrile, polyvinylidene fluoride and the like And fluorine resins such as vinylidene fluoride-hexafluoropropylene copolymer (JP-A-4-506726, JP-A-8-507407, JP-A-10-294131); those fluororesins and hydrocarbon-based resins Composites with resins (JP-A-11-35765, JP-A-11-86630) and the like can be mentioned.
  • the electrolytic solution of the present invention may also contain the ion conductive compound described in Japanese Patent Application No. 2004-301934.
  • This ion conductive compound has the formula (1-1): A- (D) -B (1-1) [Wherein, D is the formula (2-1): -(D1) n- (FAE) m- (AE) p- (Y) q- (2-1) (Wherein, D1 is the formula (2a):
  • R f is a fluorine-containing ether group which may have a crosslinkable functional group
  • R 10 is a group or a bond which bonds the main chain with R f
  • an ether having a fluorine-containing ether group in the side chain unit
  • the FAE is represented by the formula (2b):
  • R 13 has a hydrogen atom, an alkyl group which may have a crosslinkable functional group, an aliphatic cyclic hydrocarbon group which may have a crosslinkable functional group, or a crosslinkable functional group An aromatic hydrocarbon group which may be substituted;
  • R 12 represents an ether unit represented by R 13 and a group or a bond connecting the main chain with R 13 ;
  • Y is any of the formulas (2d-1) to (2d-3):
  • a and B are the same or different, and are a hydrogen atom, a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group, a fluorine atom and / or a phenyl group which may contain a crosslinkable functional group, -COOH Group, -OR (R is a hydrogen atom or a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group), an ester group or a carbonate group (provided that the terminal of D is an oxygen atom, -COOH group, It is an amorphous fluorine-containing polyether compound having a flu
  • additives may be further added to the electrolytic solution of the present invention as required.
  • additives include metal oxides and glasses.
  • the electrolytic solution of the present invention preferably contains 0.5 to 70 ppm of HF.
  • HF By containing HF, the film formation of the additive can be promoted.
  • the content of HF is too low, the film forming ability of the additive on the negative electrode tends to be reduced, and the characteristics of the electrochemical device tend to be deteriorated.
  • the HF content is too high, the oxidation resistance of the electrolytic solution tends to decrease due to the influence of HF.
  • the electrolytic solution of the present invention does not lower the high temperature storability recovery capacity rate of the electrochemical device even if it contains HF in the above range.
  • content of HF 1 ppm or more is more preferable, and 2.5 ppm or more is still more preferable.
  • the content of HF is more preferably 60 ppm or less, further preferably 50 ppm or less, and particularly preferably 30 ppm or less.
  • the content of HF can be measured by neutralization titration.
  • the electrolytic solution of the present invention may be prepared by any method using the components described above.
  • the electrolytic solution of the present invention can be suitably applied to, for example, electrochemical devices such as secondary batteries, lithium ion secondary batteries and electric double layer capacitors.
  • electrochemical devices such as secondary batteries, lithium ion secondary batteries and electric double layer capacitors.
  • An electrochemical device provided with such an electrolytic solution of the present invention is also one of the present invention.
  • electrochemical devices include lithium ion secondary batteries, capacitors (electric double layer capacitors), radical batteries, solar cells (especially dye-sensitized solar cells), fuel cells, various electrochemical sensors, electrochromic elements, electrochemical switching A device, an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, etc. are mentioned, A lithium ion secondary battery and an electric double layer capacitor are suitable.
  • a module provided with the above-mentioned electrochemical device is also one of the present invention.
  • the present invention is also a secondary battery comprising the electrolytic solution of the present invention.
  • the secondary battery may be a lithium ion secondary battery.
  • the case of a lithium ion secondary battery or an electric double layer capacitor will be described.
  • the lithium ion secondary battery may include a positive electrode, a negative electrode, and the above-described electrolyte solution.
  • the positive electrode is composed of a positive electrode active material layer containing a positive electrode active material and a current collector.
  • the positive electrode active material is not particularly limited as long as it can electrochemically store and release lithium ions.
  • a material containing lithium and at least one transition metal is preferable.
  • Specific examples thereof include lithium-containing transition metal complex oxides and lithium-containing transition metal phosphate compounds.
  • a lithium-containing transition metal complex oxide that produces a high voltage is particularly preferable as the positive electrode active material.
  • transition metal of the lithium-containing transition metal complex oxide V, Ti, Cr, Mn, Fe, Co, Ni, Cu, etc. are preferable.
  • lithium cobalt complex oxide such as LiCoO 2 , LiNiO 2 etc.
  • Lithium-manganese complex oxides such as LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 4 and the like, and a part of the transition metal atoms as the main component of these lithium transition metal complex oxides, Na, Substitution with other elements such as K, B, F, Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, W, etc.
  • LiNi 0.5 Mn 0.5 O 2, LiNi 0.85 Co 0.10 Al 0.05 O 2, LiNi 0.5 Co 0.2 Mn 0.3 O 2, LiNi 0.6 Co 0.2 Mn 0.2 O 2, LiNi 0.33 Co 0.33 Mn 0.33 O 2, LiNi 0.45 Co 0.10 Al 0.45 O 2, LiMn 1. 8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like can be mentioned.
  • lithium-containing transition metal complex oxide LiMn 1.5 Ni 0.5 O 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , which have high energy density even at high voltage. LiNi 0.6 Co 0.2 Mn 0.2 O 2 is preferred.
  • transition metal of the lithium-containing transition metal phosphate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and as a specific example, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and a part of transition metal atoms which become main components of these lithium transition metal phosphate compounds Al, Ti, V, Cr, Mn What is substituted by other elements, such as Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si, etc. are mentioned.
  • lithium-containing transition metal composite oxide examples include Formula: Li a Mn 2-b M 1 b O 4 (wherein, 0.9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, Lithium-manganese spinel composite oxide represented by at least one metal selected from the group consisting of V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge) Formula: LiNi 1-c M 2 c O 2 (wherein, 0 ⁇ c ⁇ 0.5; M 2 is Fe, Co, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, A lithium-nickel complex oxide represented by at least one metal selected from the group consisting of Sr, B, Ga, In, Si and Ge, or Formula: LiCo 1-d M 3 d O 2 (wherein 0 ⁇ d ⁇ 0.5; M 3 is Fe, Ni, Mn, Cu, Zn, Al, Sn,
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferred.
  • LiFePO 4 LiNi 0.8 Co 0.2 O 2, Li 1.2 Fe 0.4 Mn 0.4 O 2, LiNi 0.5 Mn 0.5 O 2, LiV 3 O 6 etc. may be mentioned.
  • lithium phosphate in the positive electrode active material because continuous charge characteristics are improved.
  • the lower limit of the amount of lithium phosphate used is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.5% by mass, based on the total of the positive electrode active material and lithium phosphate. %, And the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 5% by mass or less.
  • the substance of the composition different from this adhered on the surface of the said positive electrode active material As surface adhesion substances, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate, and carbon.
  • surface adhesion substances aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate, and carbon.
  • surface adhesion substances are, for example, dissolved or suspended in a solvent and impregnated and added to the positive electrode active material and dried, or the surface adhesion substance precursor is dissolved or suspended in a solvent and impregnated into the positive electrode active material It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding it to the positive electrode active material precursor and simultaneously baking it. In addition, when making carbon adhere, the method of making carbon quality adhere mechanically later, for example, in the form of activated carbon etc. can also be used.
  • the amount of the surface adhering substance is preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and preferably 20% or less as an upper limit, based on the mass of the positive electrode active material. Is used at 10% or less, more preferably 5% or less.
  • the surface adhesion substance can suppress the oxidation reaction of the electrolytic solution on the surface of the positive electrode active material, and the battery life can be improved. However, when the adhesion amount is too small, the effect is not sufficiently expressed. If it is too high, the resistance may increase to inhibit the lithium ion ingress and egress.
  • the shape of the particles of the positive electrode active material may, for example, be a block, a polyhedron, a sphere, an oval sphere, a plate, a needle, or a column as conventionally used.
  • primary particles may be aggregated to form secondary particles.
  • the tap density of the positive electrode active material is preferably 0.5 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and still more preferably 1.0 g / cm 3 or more.
  • the tap density of the positive electrode active material is below the above lower limit, the necessary amount of dispersion medium increases at the time of forming the positive electrode active material layer, and the required amount of the conductive material and the binder increases, and the positive electrode to the positive electrode active material layer
  • the filling rate of the active material may be limited, and the battery capacity may be limited.
  • a composite oxide powder with a high tap density a high density positive electrode active material layer can be formed.
  • the tap density is preferably as high as possible, and there is no particular upper limit.
  • the tap density is determined by placing 5 to 10 g of the positive electrode active material powder in a 10 ml glass measuring cylinder and tapping the powder packing density (tap density) g / cm 3 when tapping 200 times with a stroke of about 20 mm. Ask as.
  • the median diameter d50 of the particles of the positive electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably Is preferably 0.8 ⁇ m or more, most preferably 1.0 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 27 ⁇ m or less, still more preferably 25 ⁇ m or less, most preferably 22 ⁇ m or less. Below the lower limit, high tap density products may not be obtained.
  • the median diameter d50 is measured by a known laser diffraction / scattering type particle size distribution measuring apparatus.
  • LA-920 manufactured by HORIBA is used as a particle size distribution analyzer
  • a 0.1 mass% sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
  • the average primary particle diameter of the positive electrode active material is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and still more preferably 0.
  • the upper limit is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, still more preferably 3 ⁇ m or less, and most preferably 2 ⁇ m or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder packing property or significantly lowers the specific surface area, which may increase the possibility that battery performance such as output characteristics may be degraded. is there. On the other hand, if the lower limit is exceeded, usually problems such as poor reversibility of charge and discharge may occur due to underdeveloped crystals.
  • the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000, the longest value of the intercept by the left and right boundary lines of the primary particle with respect to the straight line in the horizontal direction is obtained for any 50 primary particles, and the average value is obtained Be
  • BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, still more preferably 0.3 m 2 / g or more, and preferably 50 m 2 / It is at most g, more preferably at most 40 m 2 / g, even more preferably at most 30 m 2 / g. If the BET specific surface area is smaller than this range, the battery performance tends to be deteriorated, and if the BET specific surface area is large, it is difficult to increase the tap density, and a problem may easily occur in the coatability when forming the positive electrode active material layer.
  • the BET specific surface area is determined by using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken Co., Ltd.) and predrying the sample for 30 minutes at 150 ° C. under nitrogen flow. It is defined as a value measured by a nitrogen adsorption BET one-point method by a gas flow method using a nitrogen-helium mixed gas which is accurately adjusted so that the value of the relative pressure of nitrogen to the atmospheric pressure is 0.3.
  • a surface area meter for example, a fully automatic surface area measuring device manufactured by Okura Riken Co., Ltd.
  • the particles of the positive electrode active material mainly consist of secondary particles.
  • the particles of the positive electrode active material preferably contain 0.5 to 7.0% by volume of fine particles having an average particle diameter of secondary particles of 40 ⁇ m or less and an average primary particle diameter of 1 ⁇ m or less.
  • a general method is used as a manufacturing method of an inorganic compound.
  • various methods can be considered to form spherical or elliptical spherical active materials.
  • a transition metal source material is dissolved or pulverized in a solvent such as water, and the pH is adjusted while stirring.
  • Spherical precursor is collected and dried, if necessary, added with a Li source such as LiOH, Li 2 CO 3 or LiNO 3 and calcined at high temperature to obtain an active material. .
  • the above-mentioned positive electrode active material may be used alone, or two or more of different compositions may be used in any combination or ratio.
  • a combination of LiCoO 2 and LiMn 2 O 4 such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 or a part of this Mn substituted with another transition metal etc.
  • a combination of LiCoO 2 or a part of this Co substituted with another transition metal or the like may be used alone, or two or more of different compositions may be used in any combination or ratio.
  • a combination of LiCoO 2 and LiMn 2 O 4 such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 or a part of this Mn substituted with another transition metal etc.
  • a combination of LiCoO 2 or a part of this Co substituted with another transition metal or the like may be used alone, or two or more of different compositions may be used in any combination or ratio.
  • the content of the positive electrode active material is preferably 50 to 99% by mass, and more preferably 80 to 99% by mass, of the positive electrode mixture in view of high battery capacity.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, Preferably it is 99 mass% or less, More preferably, it is 98 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electrical capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
  • the positive electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder any material can be used as long as it is a material safe to the solvent and the electrolyte used in the production of the electrode.
  • polyvinylidene fluoride polytetrafluoroethylene, polyethylene, polypropylene , SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose, NBR (Acrylonitrile-butadiene rubber), fluororubber, ethylene-propylene rubber, styrene / butadiene / styrene block copolymer or a hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / Tadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or a hydrogenated product thereof, syn
  • the content of the binder is usually 0.1% by mass or more, preferably 1% by mass or more, and more preferably 1.5% by mass or more, as a ratio of the binder in the positive electrode active material layer. Usually, it is 80% by mass or less, preferably 60% by mass or less, more preferably 40% by mass or less, and most preferably 10% by mass or less. If the proportion of the binder is too low, the positive electrode active material can not be sufficiently retained, and the mechanical strength of the positive electrode is insufficient, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, it may lead to a decrease in battery capacity and conductivity.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof.
  • One type may be used alone, or two or more types may be used in any combination and ratio.
  • the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and usually 5% by mass or less, preferably 3 It is a range of not more than mass%, more preferably not more than 2 mass%. Below this range, the coatability may be significantly reduced. If it exceeds, the proportion of the active material in the positive electrode active material layer may be reduced, which may cause a problem of a decrease in battery capacity or an increase in resistance between the positive electrode active materials.
  • a well-known conductive material can be used arbitrarily as said conductive material.
  • Specific examples thereof include metal materials such as copper and nickel, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and usually 50% by mass or less, preferably 30% by mass, in the positive electrode active material layer. % Or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water and mixed solvents of alcohol and water.
  • organic solvents include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone and cyclohexanone Esters such as methyl acetate and methyl acrylate; Amines such as diethylenetriamine and N, N-dimethylaminopropylamine; Ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) And amides such as dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphaamide and dimethylsulfoxide.
  • aliphatic hydrocarbons such as hexane
  • aromatic hydrocarbons such as benzene, toluene, xylene
  • Examples of the material of the current collector for the positive electrode include metals such as metals such as aluminum, titanium, tantalum, stainless steel and nickel, or alloys thereof; and carbon materials such as carbon cloth and carbon paper. Among them, metal materials, particularly aluminum or its alloy are preferable.
  • Examples of the shape of the current collector include metal foils, metal cylinders, metal coils, metal coils, metal plates, metal thin films, expanded metals, punched metals, foamed metals and the like in the case of metal materials, and in the case of carbon materials, carbon plates and carbons A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred.
  • the thin film may be formed in a mesh shape as appropriate.
  • the thickness of the thin film is arbitrary, but is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
  • the conductive support agent is apply
  • the conductive aid include carbon, and noble metals such as gold, platinum and silver.
  • the ratio of the thickness of the current collector to the thickness of the positive electrode active material layer is not particularly limited, but the value of (thickness of positive electrode active material layer on one side immediately before electrolyte injection) / (thickness of current collector) is 20 It is preferably the following, more preferably 15 or less, most preferably 10 or less, and preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. If this range is exceeded, the current collector may generate Joule heat during high current density charge and discharge. Below this range, the volume ratio of the current collector to the positive electrode active material may increase, and the capacity of the battery may decrease.
  • the production of the positive electrode may be performed according to a conventional method.
  • the binder, thickener, conductive material, solvent and the like described above are added to the above-mentioned positive electrode active material to form a slurry-like positive electrode mixture, which is applied to a current collector, dried and pressed.
  • the densification can be performed by a hand press, a roller press or the like.
  • the density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more, more preferably 2 g / cm 3 or more, still more preferably 2.2 g / cm 3 or more, and preferably 5 g / cm 3 or less. More preferably, it is 4.5 g / cm 3 or less, more preferably 4 g / cm 3 or less. If this range is exceeded, the permeability of the electrolyte to the vicinity of the current collector / active material interface may be reduced, and in particular, the charge / discharge characteristics at high current densities may be reduced, and a high output may not be obtained. On the other hand, if it is lower than that, the conductivity between the active materials may be reduced, and the battery resistance may be increased to fail to obtain a high output.
  • the area of the positive electrode active material layer is larger than the outer surface area of the battery case from the viewpoint of enhancing the stability at high output and high temperature.
  • the sum of the electrode area of the positive electrode and the surface area of the exterior of the secondary battery is preferably 15 or more, and more preferably 40 or more, in area ratio.
  • the external surface area of the battery outer case is, in the case of a rectangular shape with a bottom, the total area obtained by calculation from the dimensions of the length, width, and thickness of the case portion filled with the power generation element excluding the protruding portion of the terminal.
  • the sum of the electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure formed by forming the positive electrode mixture layer on both sides via the current collector foil. , The sum of the area to calculate each face separately.
  • the thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the mixture layer obtained by subtracting the metal foil thickness of the core material is preferably set as the lower limit to one side of the current collector. Is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less.
  • the substance of the composition different from this adhered on the surface of the said positive electrode plate may be used as surface adhesion substances.
  • surface adhesion substances aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate, and carbon.
  • the negative electrode is composed of a negative electrode active material layer containing a negative electrode active material, and a current collector.
  • the negative electrode active material a carbonaceous material capable of absorbing and desorbing lithium such as thermal decomposition products of organic matter and artificial graphite and natural graphite under various thermal decomposition conditions; and desorbing and releasing lithium such as tin oxide and silicon oxide Possible metal oxide materials; lithium metal; various lithium alloys; lithium-containing metal complex oxide materials and the like can be mentioned. These negative electrode active materials may be used as a mixture of two or more.
  • carbonaceous materials capable of storing and releasing lithium artificial graphite or purified natural graphite produced by high temperature treatment of graphitizable pitch obtained from various raw materials, or surface treatment of these graphites with pitch or other organic substances
  • the material is preferably obtained by carbonization after application of carbon, a carbonaceous material obtained by heat-treating natural graphite, artificial graphite, artificial carbonaceous material and artificial graphitic material at a temperature of 400
  • a carbonaceous material comprising at least two or more kinds of different crystalline carbonaceous materials and / or having an interface in which the different crystalline carbonaceous materials are in contact, and at least two or more different orientations of the negative electrode active material layer
  • the material selected from carbonaceous materials having an interface in contact with the carbonaceous material is more preferable because the balance between the initial irreversible capacity and the high current density charge / discharge characteristics is good.
  • these carbon materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • a single lithium, a single metal and an alloy forming a lithium alloy, or oxidation thereof It may be any of compounds such as carbides, nitrides, silicides, sulfides or phosphides, and is not particularly limited.
  • the single metal and alloy forming the lithium alloy is preferably a material containing Group 13 and Group 14 metal / metalloid elements, more preferably aluminum, silicon and tin (hereinafter referred to as “specific metal elements”. And metals or alloys or compounds containing these atoms. One of these may be used alone, or two or more of these may be used in any combination and ratio.
  • a negative electrode active material having at least one kind of atom selected from specific metal elements, a metal simple substance of any one kind of specific metal element, an alloy composed of two or more kinds of specific metal elements, one kind or two kinds or more of specification Alloy consisting of metal element and one or more other metal elements, compound containing one or more specified metal elements, and oxide, carbide, nitride, silicide of the compound And complex compounds such as sulfides and phosphides.
  • bonded with several types of elements such as a simple metal, an alloy, or a nonmetallic element, etc. is also mentioned.
  • an alloy of these elements and a metal which does not operate as a negative electrode can be used.
  • tin a complex compound containing five to six elements in combination of a metal other than tin and silicon that acts as a negative electrode, a metal that does not act as a negative electrode, and a nonmetallic element is also used it can.
  • a composite material containing Si or Sn as the first constituent element and additionally containing the second and third constituent elements can be mentioned.
  • the second constituent element is, for example, at least one of cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium and zirconium.
  • the third constituent element is, for example, at least one of boron, carbon, aluminum and phosphorus.
  • silicon or tin alone may contain a trace amount of impurities
  • SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), Si—Co—C composite, Si—Ni—C composite, Sn—Co—C composite, and Sn—Ni—C composite are preferable.
  • the lithium-containing metal complex oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a material containing titanium and lithium is preferable in terms of high current density charge and discharge characteristics, More preferably, a lithium-containing composite metal oxide material containing titanium is preferable, and a composite oxide of lithium and titanium (hereinafter abbreviated as "lithium-titanium composite oxide”) is more preferable. That is, when a lithium titanium composite oxide having a spinel structure is used by being contained in a negative electrode active material for an electrolyte battery, the output resistance is greatly reduced, which is particularly preferable.
  • lithium titanium complex oxide general formula: Li x Ti y M z O 4 [Wherein, M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn and Nb. ] It is preferable that it is a compound represented by these.
  • Particularly preferable representative compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (i), Li 1 Ti 2 O 4 in (ii), and Li 4/5 Ti 11/5 O in (iii). 4
  • Li 4/3 Ti 4/3 Al 1/3 O 4 is mentioned as a preferable one.
  • the negative electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • the binding agent examples include the same as the binding agent that can be used for the positive electrode described above.
  • the ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less, 15 Mass% or less is more preferable, 10 mass% or less is more preferable, and 8 mass% or less is particularly preferable.
  • the binder ratio in which the amount of the binder does not contribute to the battery capacity may increase, which may result in a decrease in the battery capacity. Moreover, if it is less than the said range, strength reduction of a negative electrode may be caused.
  • the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, and preferably 0.5% by mass or more. 0.6% by mass or more is more preferable, and usually 5% by mass or less, 3% by mass or less is preferable, and 2% by mass or less is more preferable.
  • the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and 3% by mass or more Moreover, it is 15 mass% or less normally, 10 mass% or less is preferable, and 8 mass% or less is more preferable.
  • the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 5% by mass or less. 3 mass% or less is preferable, and 2 mass% or less is more preferable.
  • the ratio of the thickener to the negative electrode active material is below the above range, the coatability may be significantly reduced. If the above range is exceeded, the proportion of the negative electrode active material in the negative electrode active material layer may be reduced, and the battery capacity may be reduced or the resistance between the negative electrode active material may be increased.
  • Examples of the conductive material of the negative electrode include metal materials such as copper and nickel; and carbon materials such as graphite and carbon black.
  • a solvent capable of dissolving or dispersing a negative electrode active material, a binder, a thickener used as needed, and a conductive material can be particularly selected.
  • a solvent capable of dissolving or dispersing a negative electrode active material, a binder, a thickener used as needed, and a conductive material can be particularly selected.
  • an aqueous solvent or an organic solvent may be used.
  • aqueous solvent examples include water, alcohol and the like
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylacetamide, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N- Dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethylether, dimethylacetamide, hexamethylphosphaamide, dimethylsulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane and the like.
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • methylacetamide methylacetamide
  • cyclohexanone examples include methyl acetate, methyl acrylate, diethyltriamine, N, N- Dimethylaminopropylamine,
  • Examples of the material of the current collector for the negative electrode include copper, nickel, and stainless steel. Among them, copper is preferable in terms of easy processing into a thin film and cost.
  • the thickness of the current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low. Conversely, if the thickness is too thin, the handling may be difficult.
  • the production of the negative electrode may be performed according to a conventional method.
  • the above-mentioned negative electrode material may be added with the above-mentioned binder, thickener, conductive material, solvent and the like to form a slurry, which is coated on a current collector, dried and then pressed to obtain high density.
  • the method of forming the thin film layer (negative electrode active material layer) containing the above-mentioned negative electrode active material by methods such as a vapor deposition method, a sputtering method, and a plating method, is also used.
  • the electrode structure when making the negative electrode active material into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g ⁇ cm ⁇ 3 or more, and 1.2 g ⁇ cm ⁇ 3 or more Is more preferable, 1.3 g ⁇ cm ⁇ 3 or more is particularly preferable, and 2.2 g ⁇ cm ⁇ 3 or less is preferable, 2.1 g ⁇ cm ⁇ 3 or less is more preferable, and 2.0 g ⁇ cm ⁇ 3 or less More preferably, it is particularly preferably 1.9 g ⁇ cm ⁇ 3 or less.
  • the density of the negative electrode active material present on the current collector exceeds the above range, the negative electrode active material particles are destroyed, and the initial irreversible capacity is increased, and the electrolyte solution near the current collector / negative electrode active material interface In some cases, the high current density charge / discharge characteristics may be deteriorated due to the decrease in the permeability of the If the above range is exceeded, the conductivity between the negative electrode active materials may be reduced, the battery resistance may be increased, and the capacity per unit volume may be reduced.
  • the thickness of the negative electrode plate is designed according to the positive electrode plate to be used and is not particularly limited, but the thickness of the mixture layer obtained by subtracting the metal foil thickness of the core material is usually 15 ⁇ m or more, preferably 20 ⁇ m or more More preferably, it is 30 ⁇ m or more, and usually 300 ⁇ m or less, preferably 280 ⁇ m or less, more preferably 250 ⁇ m or less.
  • the substance of the composition different from this adhered on the surface of the said negative electrode plate may be used as surface adhesion substances.
  • surface adhesion substances aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate; and carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
  • the lithium ion secondary battery preferably further includes a separator.
  • the material and shape of the separator are not particularly limited as long as they are stable to the electrolytic solution and excellent in liquid retention, and known materials can be used. Among these, resins, glass fibers, inorganic substances, etc., which are formed of a material stable to the electrolytic solution of the present invention, are used, and porous sheet or non-woven fabric-like articles etc. excellent in liquid retention are used. preferable.
  • polyolefins such as polyethylene and a polypropylene, aromatic polyamide, polytetrafluoroethylene, polyether sulfone, a glass filter etc.
  • One of these materials such as polypropylene / polyethylene two-layer film, polypropylene / polyethylene / polypropylene three-layer film may be used alone, or two or more thereof may be used in any combination and ratio.
  • the separator is preferably a porous sheet or a non-woven fabric or the like that uses a polyolefin such as polyethylene or polypropylene as a raw material in that the permeability of the electrolytic solution and the shutdown effect are good.
  • the thickness of the separator is arbitrary but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, and more preferably 30 ⁇ m or less. If the separator is thinner than the above range, the insulation and mechanical strength may be reduced. If the thickness is more than the above range, not only the battery performance such as rate characteristics may be reduced, but also the energy density of the entire electrolyte battery may be reduced.
  • the porosity of the separator is optional, but is usually 20% or more, preferably 35% or more, and more preferably 45% or more, Also, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less.
  • the porosity is smaller than the above range, the film resistance tends to be increased and the rate characteristic tends to be deteriorated.
  • it is larger than the said range it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.
  • the average pore diameter of the separator is also optional, but is usually 0.5 ⁇ m or less, preferably 0.2 ⁇ m or less, and usually 0.05 ⁇ m or more.
  • the average pore size exceeds the above range, a short circuit is likely to occur. If the above range is exceeded, the film resistance may increase and the rate characteristics may deteriorate.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used. Used.
  • a thin film such as a non-woven fabric, a woven fabric and a microporous film is used.
  • the thin film shape one having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m is suitably used.
  • a separator can be used in which a composite porous layer containing particles of the above-mentioned inorganic substance is formed on the surface layer of the positive electrode and / or the negative electrode using a resin binder.
  • alumina particles having a 90% particle size of less than 1 ⁇ m may be formed on both sides of the positive electrode to form a porous layer using a fluorine resin as a binder.
  • the electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate described above are intervened by the separator, and a structure in which the positive electrode plate and the negative electrode plate are spirally wound through the separator. Any one may be used.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less .
  • the battery capacity decreases. Further, when the above range is exceeded, the void space is small, the battery becomes high temperature, the members expand, the vapor pressure of the liquid component of the electrolyte becomes high, and the internal pressure rises, and the charge and discharge repetition performance as the battery Or, the characteristics such as high temperature storage may be lowered, and furthermore, a gas release valve may be actuated to release the internal pressure to the outside.
  • the current collecting structure is not particularly limited, in order to more effectively realize the improvement of the charge and discharge characteristics of the high current density by the electrolytic solution of the present invention, the structure of reducing the resistance of the wiring portion and the bonding portion may be used. preferable. When the internal resistance is thus reduced, the effect of using the electrolytic solution of the present invention is exhibited particularly well.
  • the electrode group has the above-described laminated structure
  • a structure formed by bundling metal core portions of the respective electrode layers and welding them to terminals is suitably used.
  • the internal resistance increases, so it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance.
  • the electrode group has the above-described wound structure, the internal resistance can be lowered by providing a plurality of lead structures on the positive electrode and the negative electrode and bundling them in the terminals.
  • the material of the outer case is not particularly limited as long as the material is stable to the electrolyte used. Specifically, a nickel-plated steel sheet, metals such as stainless steel, aluminum or aluminum alloy, magnesium alloy or the like, or a laminated film (laminated film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, metals of aluminum or aluminum alloy and laminate films are preferably used.
  • the metals are welded to form a hermetically sealed structure by laser welding, resistance welding, ultrasonic welding, or a caulking structure is formed using the above metals via a resin gasket.
  • a resin gasket In the outer case using metals, the metals are welded to form a hermetically sealed structure by laser welding, resistance welding, ultrasonic welding, or a caulking structure is formed using the above metals via a resin gasket. The thing is mentioned.
  • those having a sealing and sealing structure by thermally fusing the resin layers to each other may be mentioned.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • the metal and the resin are joined, and therefore, a resin having a polar group or a modification having a polar group introduced as an intervening resin Resin is preferably used.
  • the shape of the lithium ion secondary battery is arbitrary, and examples thereof include cylindrical, square, laminate, coin, and large shapes.
  • the shapes and configurations of the positive electrode, the negative electrode, and the separator can be changed and used according to the shapes of the respective batteries.
  • a module provided with the above-described secondary battery is also one of the present invention.
  • a positive electrode, a negative electrode, and the above-described electrolyte solution wherein the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material, and the positive electrode active material includes Mn.
  • a secondary battery to be used is also one of the preferred embodiments. Since the positive electrode active material layer containing the positive electrode active material containing Mn is provided, the secondary battery is further excellent in high-temperature storage characteristics.
  • LiMn 1.5 Ni 0.5 O 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, LiNi 0.6 Co 0.2 Mn 0.2 O 2 is preferred.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electrical capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
  • the positive electrode active material layer may further contain a conductive material, a thickener and a binder.
  • any material can be used as long as it is a material safe to the solvent and the electrolyte used in the production of the electrode.
  • the content of the binder is usually 0.1% by mass or more, preferably 1% by mass or more, and more preferably 1.5% by mass or more, as a ratio of the binder in the positive electrode active material layer. Usually, it is 80% by mass or less, preferably 60% by mass or less, more preferably 40% by mass or less, and most preferably 10% by mass or less. If the proportion of the binder is too low, the positive electrode active material can not be sufficiently retained, and the mechanical strength of the positive electrode is insufficient, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, it may lead to a decrease in battery capacity and conductivity.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof.
  • One type may be used alone, or two or more types may be used in any combination and ratio.
  • the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and usually 5% by mass or less, preferably 3 It is a range of not more than mass%, more preferably not more than 2 mass%. Below this range, the coatability may be significantly reduced. If it exceeds, the proportion of the active material in the positive electrode active material layer may be reduced, which may cause a problem of a decrease in battery capacity or an increase in resistance between the positive electrode active materials.
  • a well-known conductive material can be used arbitrarily as said conductive material.
  • Specific examples thereof include metal materials such as copper and nickel, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and usually 50% by mass or less, preferably 30% by mass, in the positive electrode active material layer. % Or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
  • the positive electrode current collector is preferably made of a valve metal or an alloy thereof in order to further improve the high temperature storage characteristics.
  • a valve metal aluminum, titanium, a tantalum, chromium etc. are mentioned. More preferably, the positive electrode current collector is made of aluminum or an alloy of aluminum.
  • the portion in contact with the electrolytic solution among the portions electrically connected to the positive electrode current collector is also made of a valve metal or an alloy thereof. Is preferred.
  • the portion electrically connected to the positive electrode current collector and in contact with the non-aqueous electrolyte is a valve metal or It is preferable to comprise the alloy. Stainless steel coated with valve metal or its alloy may be used.
  • the method for producing the positive electrode is as described above.
  • the above-mentioned binder, thickener, conductive material, solvent and the like are added to the above-mentioned positive electrode active material to obtain a slurry-like positive electrode mixture,
  • the configuration of the negative electrode is as described above.
  • the electric double layer capacitor may include a positive electrode, a negative electrode, and the above-described electrolytic solution.
  • at least one of the positive electrode and the negative electrode is a polarizable electrode, and the following electrodes described in detail in JP-A-9-7896 can be used as the polarizable electrode and the nonpolarizable electrode.
  • the polarizable electrode mainly composed of activated carbon used in the present invention preferably contains non-activated carbon having a large specific surface area and a conductive agent such as carbon black which imparts electron conductivity.
  • the polarizable electrode can be formed in various ways.
  • a polarizable electrode composed of activated carbon and carbon black can be formed by mixing activated carbon powder, carbon black and a phenolic resin, and after press molding, firing and firing in an inert gas atmosphere and a water vapor atmosphere.
  • the polarizable electrode is joined to the current collector with a conductive adhesive or the like.
  • activated carbon powder, carbon black and a binder may be kneaded in the presence of alcohol to form a sheet, which may be dried to form a polarizable electrode.
  • a polarizable electrode For example, polytetrafluoroethylene is used as the binder.
  • activated carbon powder, carbon black, a binder and a solvent are mixed to form a slurry, and the slurry is coated on a metal foil of a current collector and dried to form a polarizable electrode integrated with the current collector. it can.
  • a polarizable electrode mainly composed of activated carbon may be used as an electrical double layer capacitor for both electrodes
  • a nonpolarizable electrode may be used on one side, for example, a positive electrode mainly composed of a battery active material such as metal oxide, and activated carbon
  • a positive electrode mainly composed of a battery active material such as metal oxide such as metal oxide
  • activated carbon A combination of the polarizable electrode and the negative electrode of the main component, the negative electrode mainly of the carbon material capable of reversibly absorbing and desorbing lithium ions, or the negative electrode of lithium metal or lithium alloy and the active carbon as the main component
  • a configuration combining a positive pole is also possible.
  • a carbonaceous material such as carbon black, graphite, expanded graphite, porous carbon, carbon nanotube, carbon nanohorn, ketjen black may be used.
  • the non-polarizable electrode preferably, a carbon material capable of reversibly absorbing and desorbing lithium ions is mainly used, and the carbon material in which lithium ions are occluded is used for the electrode.
  • a lithium salt is used as the electrolyte. According to the electric double layer capacitor of this configuration, a withstand voltage higher than 4 V can be obtained.
  • the solvent used for the preparation of the slurry in the preparation of the electrode is preferably one which dissolves the binder, and depending on the kind of binder, N-methylpyrrolidone, dimethylformamide, toluene, xylene, isophorone, methyl ethyl ketone, ethyl acetate, methyl acetate, phthalate
  • N-methylpyrrolidone dimethylformamide
  • toluene toluene
  • xylene isophorone
  • methyl ethyl ketone ethyl acetate
  • methyl acetate phthalate
  • the acid dimethyl, ethanol, methanol, butanol or water are chosen accordingly.
  • activated carbon used for the polarizable electrode examples include phenol resin-based activated carbon, coconut-based activated carbon, and petroleum coke-based activated carbon. Among these, it is preferable to use petroleum coke-based activated carbon or phenol resin-based activated carbon in that a large capacity can be obtained. Further, as the activation treatment method of activated carbon, there are a steam activation treatment method, a molten KOH activation treatment method and the like, and it is preferable to use activated carbon by the molten KOH activation treatment method in that a larger capacity can be obtained.
  • Preferred conductive agents used for the polarizable electrode include carbon black, ketjen black, acetylene black, natural graphite, artificial graphite, metal fibers, conductive titanium oxide and ruthenium oxide.
  • the mixing amount of a conductive agent such as carbon black used for the polarizable electrode is 1 to 10% of the total amount with the activated carbon to obtain good conductivity (low internal resistance) or reduce the capacity of the product when too large. It is preferable to set it as 50 mass%.
  • activated carbon used for the polarizable electrode activated carbon having an average particle diameter of 20 ⁇ m or less and a specific surface area of 1500 to 3000 m 2 / g is used so that a large capacity and low internal resistance electric double layer capacitor can be obtained. Is preferred.
  • preferable carbon materials for constituting an electrode composed mainly of a carbon material capable of reversibly absorbing and desorbing lithium ions natural graphite, artificial graphite, graphitized mesocarbon small spheres, graphitized whiskers, gas layer Examples thereof include grown carbon fibers, baked products of furfuryl alcohol resin, and baked products of novolac resin.
  • the current collector may be any one that is chemically and electrochemically corrosion resistant.
  • Stainless steel, aluminum, titanium or tantalum can be preferably used as the current collector of the polarizable electrode mainly composed of activated carbon.
  • stainless steel or aluminum is a particularly preferable material in terms of both the properties and the cost of the obtained electric double layer capacitor.
  • stainless steel, copper or nickel is used as a current collector of an electrode composed mainly of a carbon material capable of reversibly absorbing and desorbing lithium ions.
  • a powdery lithium is mixed with a carbon material capable of reversibly absorbing and desorbing lithium ions
  • a lithium foil is placed on an electrode formed of a carbon material capable of reversibly absorbing and desorbing lithium ions and a binder, and the electrode is a lithium salt in a state of being in electrical contact with the electrode.
  • Lithium is ionized by immersing in a molten electrolyte and lithium ions are incorporated into the carbon material, (3) formed by the carbon material and the binder capable of reversibly absorbing and desorbing lithium ions
  • the electrode is placed on the negative side, lithium metal is placed on the positive side, and it is immersed in an electrolyte containing lithium salt as the electrolyte, and an electric current is applied to electrochemically A method of incorporating um in the ionized state.
  • the electric double layer capacitor As the electric double layer capacitor, a wound type electric double layer capacitor, a laminate type electric double layer capacitor, a coin type electric double layer capacitor and the like are generally known, and the above electric double layer capacitor can also be in these types. .
  • a positive electrode and a negative electrode composed of a laminate (electrode) of a current collector and an electrode layer are wound via a separator to produce a wound element, and this wound element is made of aluminum Etc., and filled with an electrolytic solution, preferably a non-aqueous electrolytic solution, and then sealed by sealing with a rubber sealing body.
  • separator those of conventionally known materials and constitutions can be used.
  • polyethylene porous membrane, polypropylene fiber or glass fiber, non-woven fabric of cellulose fiber, etc. may be mentioned.
  • a laminate type electric double layer capacitor in which sheet-like positive and negative electrodes are stacked via an electrolytic solution and a separator by a known method, or a gasket is fixed to make the positive and negative electrodes coin-shaped through the electrolytic solution and the separator.
  • a coin-type electric double layer capacitor can also be configured.
  • the electrolytic solution of the present invention is useful as an electrolytic solution for a large-sized lithium ion secondary battery for a hybrid automobile or a dispersed power source, and for an electric double layer capacitor.
  • Table 1 and Table 2 respectively represent the following compounds.
  • the mixing ratio of the solvent described in Table 1 and Table 2 is the volume ratio (volume%) of each component in the solvent, and the mixing ratio of the additive is each additive with respect to the mass of the solvent in the electrolytic solution Mass ratio (mass%).
  • Ethylene carbonate B Ethyl methyl carbonate C Dimethyl carbonate
  • Ethyl propionate E Fluoroethylene carbonate F CH 3 OCOOCH 2 CF 3 G CHF 2 COOCH 3 H CF 3 CH 2 COOCH 3 I vinylene carbonate J tris tert-butyldimethylsilyl phosphite K trifluoromethyl ethylene carbonate
  • L 4- (2,2,3,3,3-pentafluoropropyl) 1,3-dioxolan-2-one
  • M 4- ( 2,3,3,3-Tetrafluoro-2-trifluoromethylpropyl) 1,3-dioxolane-2-one
  • N trifluoromethylmaleic anhydride
  • O fluorovinylene carbonate Li bis oxalato borate
  • Q lithium difluoro oxalato Borate
  • Each component is mixed so as to become the composition described in Table 1 in the embodiment and comparative example described in Table 1, to which LiPF 6 is added so as to have a concentration of 1.0 mol / l, and non-aqueous An electrolytic solution was obtained.
  • a battery element was produced by laminating the negative electrode, the positive electrode and the polyethylene separator produced as described above in the order of the negative electrode, the separator and the positive electrode.
  • the battery element was inserted into a bag made of a laminated film in which both sides of an aluminum sheet (40 ⁇ m in thickness) were coated with a resin layer, with the terminals of the positive electrode and the negative electrode protruding.
  • Each solution was poured into a bag and vacuum-sealed to prepare a sheet-like lithium ion secondary battery.
  • the secondary battery manufactured above is charged with constant current to constant voltage up to 4.2 V at a current corresponding to 0.5 C at 25 ° C. in a state of being sandwiched and pressurized with a plate (hereinafter referred to as CC / CV charging After (0.1 C cut), the battery was discharged to 3 V with a constant current of 0.5 C, and this was taken as one cycle, and the initial discharge capacity was determined from the discharge capacity at the third cycle.
  • 1C represents a current value that discharges the reference capacity of the battery in one hour, and, for example, 0.5C represents a half of the current value.
  • a 200 cycle cycle test was conducted at an operating voltage of 3.0-4.2V. The capacity retention rate was calculated as the value after 200 cycles, assuming that the initial discharge capacity in the third cycle is 100%.
  • the metal content was measured using a battery charged to a voltage of 4.2 V and stored in an open circuit state at a temperature of 85 ° C. for 3 days. After discharging the battery, the battery was disassembled, and the negative electrode was washed with DMC and dried. The negative electrode was cut to a diameter of 2525 and immersed in a 5% nitric acid aqueous solution for 24 hours, and then the nitric acid aqueous solution was filtered and measured by ICP emission spectrometry.
  • Each component is mixed so as to become the composition described in Table 2 in the embodiment and comparative example described in Table 2, to which LiPF 6 is added so as to have a concentration of 1.0 mol / l, and non-aqueous An electrolytic solution was obtained.
  • (Fabrication of positive electrode 2) LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) as a positive electrode active material, acetylene black as a conductive material, N-methyl-2-pyrrolidone dispersion of polyvinylidene fluoride (PVdF) as a binder
  • a positive electrode mixture slurry was prepared in which the solid content ratio of the active material, the conductive material, and the binder was 92/3/5 (mass% ratio).
  • the obtained positive electrode material mixture slurry was uniformly coated on a 20 ⁇ m thick aluminum foil current collector, dried, and compression molded using a press to obtain a positive electrode.
  • a battery element was produced by laminating the negative electrode, the positive electrode and the polyethylene separator produced as described above in the order of the negative electrode, the separator and the positive electrode.
  • the battery element was inserted into a bag made of a laminated film in which both sides of an aluminum sheet (40 ⁇ m in thickness) were coated with a resin layer with the terminals of the positive electrode and the negative electrode protruding, and then electrolysis was performed with the composition shown in Table 2. Each solution was poured into a bag and vacuum-sealed to prepare a sheet-like lithium ion secondary battery.
  • the secondary battery manufactured above is charged with constant current to constant voltage up to 4.6 V at a current corresponding to 0.5 C at 25 ° C. in a state of being sandwiched and pressurized with a plate (hereinafter referred to as CC / CV charging After (0.1 C cut), the battery was discharged to 3 V with a constant current of 0.5 C, and this was taken as one cycle, and the initial discharge capacity was determined from the discharge capacity at the third cycle.
  • 1C represents a current value that discharges the reference capacity of the battery in one hour, and, for example, 0.5C represents a half of the current value.
  • a 200 cycle cycle test was conducted at an operating voltage of 3.0-4.6V. The capacity retention rate was calculated as the value after 200 cycles, assuming that the initial discharge capacity in the third cycle is 100%.
  • the metal content was measured using a battery charged to a voltage of 4.6 V and stored for 3 days at a temperature of 85 ° C. in an open circuit state. After discharging the battery, the battery was disassembled, and the negative electrode was washed with DMC and dried. The negative electrode was cut to a diameter of 2525 and immersed in a 5% nitric acid aqueous solution for 24 hours, and then the nitric acid aqueous solution was filtered and measured by ICP emission spectrometry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

高温でリチウムイオン二次電池等の電気化学デバイスを保存した場合でも、容量維持率が高く、正極からの金属の溶出を抑制し、ガスを発生させにくい電解液を提供する。一般式(I)で示される化合物(I)、及び、特定の化合物(II)からなる群より選択される少なくとも1種を含むことを特徴とする電解液である(式中、R11は炭素数2~6のアルキル基)。

Description

電解液、電気化学デバイス、二次電池及びモジュール
本発明は、電解液、電気化学デバイス、二次電池、及び、モジュールに関する。
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度をもつリチウムイオン二次電池の開発が進められている。また、リチウムイオン二次電池の適用分野が拡大するにつれて電池特性の改善が要望されている。特に今後、車載用にリチウムイオン二次電池が使われた場合、電池特性はますます重要となる。
特許文献1には、正極および負極と共に非水電解液を備え、前記正極は、4.5V以上の電位(対リチウム電位)において電極反応物質を吸蔵放出する電極化合物を含み、前記非水電解液は、1または2以上のケイ素酸素含有基(SiR-O-:3つのRのそれぞれは、1価の炭化水素基およびそのハロゲン化基のうちのいずれかである。)がケイ素以外の原子に結合されたシリル化合物を含む、二次電池が記載されている。
特許文献2には、リチウム塩と、非水溶媒と、式(I)
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、およびRは、それぞれ独立に、置換および無置換のC~C20アルキル基、置換および無置換のC~C20アルケニル基、置換および無置換のC~C20アルキニル基、ならびに置換および無置換のC~C20アリール基からなる群より選択され、Xは、窒素または酸素であり、Yは、水素化物基、ハロ基、ヒドロキシ基、チオ基、アルキル基、アルケニル基、アルキニル基、アリール基、イミニル基、アルコキシ基、アルケノキシ基、アルキノキシ基、アリールオキシ基、カルボキシ基、アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、アルキルチオ基、アルケニルチオ基、アルキニルチオ基、アリールチオ基、シアノ基、N-置換アミノ基、アルキルカルボニルアミノ基、N-置換アルキルカルボニルアミノ基、アルケニルカルボニルアミノ基、N-置換アルケニルカルボニルアミノ基、アルキニルカルボニルアミノ基、N-置換アルキニルカルボニルアミノ基、アリールカルボニルアミノ基、およびN-置換アリールカルボニルアミノ基、ホウ素含有基、アルミニウム含有基、ケイ素含有基、リン含有基、および硫黄含有基からなる群より選択される。)で表される化合物と、を含み、高電圧電池において約4.2V超の電圧での電気化学的安定性を特徴とする、高電圧電池用電解液が記載されている。
特許文献3には、下記一般式[1]で表される有機ケイ素化合物0.01質量%~15質量%と、電解質であるフッ素含有アルカリ金属塩0.1モル/リットル~3モル/リットルと、を含有し、前記有機ケイ素化合物と前記フッ素含有アルカリ金属塩との反応により生成するフッ素化有機ケイ素化合物の含有量が0.2質量%以下であることを特徴とするリチウム二次電池用非水電解液が記載されている。
Figure JPOXMLDOC01-appb-C000008
[一般式[1]中、Mは、金属原子、リン原子、ホウ素原子、又はP=Oを表わす。Rは、炭素数1~11のアルキルオキシ基、シリルオキシ基、又は炭素数1~11のアルキルシリルオキシ基を表わす。nは、Mに結合するRの個数を表わし、Mの酸化数-1又はMの酸化数-3である。nが2以上の場合、Rは同一でも異なってもよい。R~Rは、それぞれ独立に、炭素数1~11のアルキル基、炭素数1~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。]
特許文献4には、下記の化学式1で示される化合物と;リチウム塩と;非水性有機溶媒と;を含むことを特徴とする、リチウム二次電池用電解質が記載されている。
A-[OSi(C2m+1・・・[化学式1]
(上記化学式1で、Aは、リン(P)またはホウ素(B)であり、mは0~6の整数である)
特許文献5には、一般式[1]で表される化合物を含有する非水溶媒と電解質とからなることを特徴とするリチウム二次電池用非水電解液が記載されている。
Figure JPOXMLDOC01-appb-C000009
(ここで、Mは金属元素、リンまたはホウ素を表わす。Rは炭素数が1~11のアルキルオキシ基、または、シリルオキシ基を表わし、nが2以上の場合Rは同一でも異なっていてもよい。R、R、Rは、互いに同一であっても異なっていてもよく、炭素数が1~11のアルキル基、アルケニル基、アリール基またはアルキルオキシ基を表わす。nは、Mに結合するRの個数を表わし、Mの酸化数-1である。)
特開2015-133278号公報 特表2014-522078号公報 特許第5274563号公報 特開2008-130544号公報 特開2001-57237号公報
しかしながら、従来の電解液では、リチウムイオン二次電池等の電気化学デバイスに用いた場合、上記電気化学デバイスを高温で保存すると、充分な容量を維持できず、正極から金属が溶出しやすく、ガスが多量に発生する問題があった。
本発明は、上記現状に鑑みてなされたものであり、高温でリチウムイオン二次電池等の電気化学デバイスを保存した場合でも、容量維持率が高く、正極からの金属の溶出を抑制し、ガスを発生させにくい電解液を提供することを目的とする。
また、本発明は、高温で保存した場合でも、容量維持率が高く、正極から金属が溶出しにくく、ガスが発生しにくいリチウムイオン二次電池等の電気化学デバイスを提供することを目的とする。
本発明は、一般式(I)で示される化合物(I)、並びに、一般式(a)で示される化合物(a)、一般式(b)で示される化合物(b)、一般式(c)で示される化合物(c)及び一般式(d)で示される化合物(d)からなる群より選択される少なくとも1種の化合物(II)からなる群より選択される少なくとも1種を含むことを特徴とする電解液である。
一般式(I):
Figure JPOXMLDOC01-appb-C000010
(式中、R11は炭素数2~6のアルキル基)
一般式(a):
Figure JPOXMLDOC01-appb-C000011
(式中、R12及びR13は、独立に、ハロゲン原子、又は、ハロゲン原子、置換基若しくはヘテロ原子を含んでもよい炭素数1~3のアルキル基、又は、ハロゲン原子、置換基若しくはヘテロ原子を含んでもよく、お互いに結合してホウ素原子と共に環を形成する炭素数1~3のアルキレン基)
一般式(b):
Figure JPOXMLDOC01-appb-C000012
(式中、Rf11は、フッ素原子を含んでもよい炭素数2~6のアルキル基)
一般式(c)
Figure JPOXMLDOC01-appb-C000013
(式中、Rf12は、フッ素原子又はフッ素原子を含んでもよい炭素数1~6のアルキル基)
一般式(d)
Figure JPOXMLDOC01-appb-C000014
(式中、R14は、フッ素原子又はハロゲン原子を含む炭素数1~3のアルキル基)
上記電解液は、更に、溶媒を含むことが好ましい。
上記溶媒は、非フッ素化飽和環状カーボネート(但し、化合物(b)を除く)、フッ素化飽和環状カーボネート(但し、化合物(b)を除く)、非フッ素化鎖状カーボネート、フッ素化鎖状カーボネート、非フッ素化鎖状エステル、及び、フッ素化鎖状エステルからなる群より選択される少なくとも1種を含むことが好ましい。
上記電解液において、化合物(I)の含有量が上記溶媒に対して0.001~10質量%であることが好ましい。
上記電解液において、化合物(II)の含有量が上記溶媒に対して0.001~10質量%であることが好ましい。
化合物(I)は、式:
Figure JPOXMLDOC01-appb-C000015
で示されるものであることが好ましい。
上記電解液は、更に、電解質塩(但し、化合物(a)を除く)を含むことが好ましい。
本発明は、上述の電解液を備えることを特徴とする電気化学デバイスでもある。
本発明は、上述の電解液を備えることを特徴とする二次電池でもある。
本発明は、上述の電気化学デバイス、又は、上述の二次電池を備えることを特徴とするモジュールでもある。
本発明の電解液によれば、上記電気化学デバイスを高温で保存した場合でも、上記電気化学デバイスの容量を維持し、正極からの金属の溶出を抑制し、ガスを発生させにくい。
本発明の電解液を備える電気化学デバイスは、高温で保存した場合でも、容量維持率が高く、正極から金属が溶出しにくく、ガスが発生しにくい。
以下、本発明を具体的に説明する。
本発明の電解液は、化合物(I)、及び、化合物(II)を含むことを特徴とする。
化合物(I)は、一般式(I)で示される。
一般式(I):
Figure JPOXMLDOC01-appb-C000016
(式中、R11は炭素数2~6のアルキル基)
11としてのアルキル基は、直鎖状又は分岐鎖状であってよい。R11としてのアルキル基は、二重結合を含まない。R11としては、tert-ブチル基、n-ブチル基、sec-ブチル基、イソブチル基、イソプロピル基又はエチル基が好ましい。
化合物(I)としては、式:
Figure JPOXMLDOC01-appb-C000017
で示される化合物が特に好ましい。
化合物(II)は、化合物(a)、化合物(b)、化合物(c)及び化合物(d)からなる群より選択される少なくとも1種である。
化合物(a)は、一般式(a)で示される。
一般式(a):
Figure JPOXMLDOC01-appb-C000018
(式中、R12及びR13は、独立に、ハロゲン原子、又は、ハロゲン原子、置換基若しくはヘテロ原子を含んでもよい炭素数1~3のアルキル基、又は、ハロゲン原子、置換基若しくはヘテロ原子を含んでもよく、お互いに結合してホウ素原子と共に環を形成する炭素数1~3のアルキレン基)
12及びR13としてのハロゲン原子としては、フッ素原子が好ましい。
12及びR13としてのアルキル基が含み得るハロゲン原子としては、フッ素原子が好ましい。
12及びR13としてのアルキル基が含み得るヘテロ原子は、炭素-炭素原子間に挿入されていても、ホウ素原子に直接結合していてもよい。上記ヘテロ原子としては、酸素原子、窒素原子、硫黄原子又はリン原子が好ましい。
12及びR13がアルキレン基である場合、R12のアルキレン基とR13のアルキレン基とがお互いに結合して、これらの結合するホウ素原子と共に環(ヘテロ環)を形成する。上記環が含む炭素数は、R12の炭素数とR13の炭素数との合計であり、2~6となり得る。
12及びR13としてのアルキレン基が含み得るハロゲン原子としては、フッ素原子が好ましい。
12及びR13としてのアルキレン基が含み得る置換基としては、メチリデン基又はエチリデン基が好ましい。
12及びR13としてのアルキレン基が含み得るヘテロ原子は、炭素-炭素原子間に挿入されていても、ホウ素原子に直接結合していてもよい。上記ヘテロ原子としては、酸素原子、窒素原子、硫黄原子又はリン原子が好ましい。
12及びR13としては、いずれもハロゲン原子であるか、又は、置換基及びヘテロ原子を含み、お互いに結合してホウ素原子と共に環を形成する炭素数1~3のアルキレン基であることが好ましい。
化合物(a)としては、次の化合物からなる群より選択される少なくとも1種が好ましい。
Figure JPOXMLDOC01-appb-C000019
化合物(b)は、一般式(b)で示される。
一般式(b):
Figure JPOXMLDOC01-appb-C000020
(式中、Rf11は、フッ素原子を含んでもよい炭素数2~6のアルキル基)
Rf11としてのアルキル基は、炭素-炭素原子間に酸素原子を含まず、環に直接結合する酸素原子も含まない。上記アルキル基は、直鎖状又は分岐鎖状であってよい。上記アルキル基としては、フッ素原子を含む炭素数2~6のアルキル基が好ましく、-CHCFCF、-CHCF(CF、-CHCFCFCFCF、-CHCF、-CFCF、-CFCFH、-CFCFH、-CFCH、-CFCFCF、-CFCFCFCF、-CFCFCFH、-CFCFCFCFH、-CFCFCFH、又は、-CFCFCHがより好ましい。
化合物(b)としては、次の化合物からなる群より選択される少なくとも1種が好ましい。
Figure JPOXMLDOC01-appb-C000021
なかでも、次の化合物からなる群より選択される少なくとも1種がより好ましい。
Figure JPOXMLDOC01-appb-C000022
化合物(c)は、一般式(c)で示される。
一般式(c)
Figure JPOXMLDOC01-appb-C000023
(式中、Rf12は、フッ素原子又はフッ素原子を含んでもよい炭素数1~6のアルキル基)
Rf12としてのアルキル基は、直鎖状又は分岐鎖状であってよい。Rf12としては、フッ素原子が好ましい。
化合物(d)は、一般式(d)で示される。
一般式(d)
Figure JPOXMLDOC01-appb-C000024
(式中、R14は、フッ素原子又はハロゲン原子を含む炭素数1~3のアルキル基)
14としてのアルキル基は、直鎖状又は分岐鎖状であってよい。上記ハロゲン原子としては、フッ素原子が好ましい。R14としては、フッ素原子又はトリフルオロメチル基が好ましい。
本発明の電解液は、溶媒を含むことが好ましい。
本発明の電解液が溶媒を含む場合、化合物(I)の含有量が前記溶媒に対して0.001~10質量%であることが好ましい。上記含有量としては、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。
本発明の電解液が溶媒を含む場合、化合物(II)の含有量が前記溶媒に対して0.001~10質量%であることが好ましい。上記含有量としては、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。
上記電解液中の上記溶媒の含有量としては、上記電解液に対して、90体積%以上が好ましく、95体積%以上がより好ましく、99.9体積%以下であってよい。
上記溶媒は、非フッ素化飽和環状カーボネート(但し、化合物(b)を除く)、フッ素化飽和環状カーボネート(但し、化合物(b)を除く)、非フッ素化鎖状カーボネート、フッ素化鎖状カーボネート、非フッ素化鎖状エステル、及び、フッ素化鎖状エステルからなる群より選択される少なくとも1種を含むことが好ましい。
上記溶媒は、上記非フッ素化飽和環状カーボネート(但し、化合物(b)を除く)及び上記フッ素化飽和環状カーボネート(但し、化合物(b)を除く)からなる群より選択される少なくとも1種の環状カーボネートと、上記非フッ素化鎖状カーボネート、上記フッ素化鎖状カーボネート、上記非フッ素化鎖状エステル、及び、上記フッ素化鎖状エステルからなる群より選択される少なくとも1種の鎖状化合物とを含むことも好ましい。
上記溶媒における上記環状カーボネートと上記鎖状化合物と体積比としては、10/90~90/10が好ましく、20/80以上がより好ましく、25/75以上が更に好ましく、70/30以下がより好ましく、50/50以下が更に好ましい。
上記溶媒は、上記非フッ素化飽和環状カーボネート(但し、化合物(b)を除く)と、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状エステルからなる群より選択される少なくとも1種の非フッ素化鎖状化合物とを含むことも好ましい。この組み合わせは、上記電解液を比較的低電圧で作動する電気化学デバイスに用いる場合に好適である。
上記溶媒における上記非フッ素化飽和環状カーボネート(但し、化合物(b)を除く)と上記非フッ素化鎖状化合物との体積比としては、10/90~90/10が好ましく、20/80以上がより好ましく、25/75以上が更に好ましく、70/30以下がより好ましく、50/50以下が更に好ましい。
上記溶媒は、上記フッ素化飽和環状カーボネート(但し、化合物(b)を除く)と、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状エステルからなる群より選択される少なくとも1種のフッ素化鎖状化合物とを含むことも好ましい。この組み合わせは、上記電解液を比較的高電圧で作動する電気化学デバイスに用いる場合に好適である。
上記溶媒における上記フッ素化飽和環状カーボネート(但し、化合物(b)を除く)と上記フッ素化鎖状化合物との体積比としては、10/90~90/10が好ましく、20/80以上がより好ましく、25/75以上が更に好ましく、70/30以下がより好ましく、50/50以下が更に好ましい。
上記非フッ素化飽和環状カーボネート(但し、化合物(b)を除く)としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等を挙げることができる。
なかでも、上記非フッ素化飽和環状カーボネートとしては、誘電率が高く、粘度が好適となる点で、エチレンカーボネート、及び、プロピレンカーボネートからなる群より選択される少なくとも1種の化合物であることが好ましい。
上記非フッ素化飽和環状カーボネートとして、上述した化合物の1種を用いてもよいし、2種以上を併用してもよい。
上記フッ素化飽和環状カーボネート(但し、化合物(b)を除く)は、フッ素原子が付加した飽和環状カーボネートであり、具体的には、下記一般式(A):
Figure JPOXMLDOC01-appb-C000025
(式中、X~Xは同じか又は異なり、それぞれ-H、-CH、-C、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X~Xの少なくとも1つは、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基である。)で示される化合物(但し、化合物(b)を除く)が挙げられる。
上記フッ素化飽和環状カーボネートを含むと、本発明の電解液をリチウムイオン二次電池等に適用した場合に、負極に安定な被膜を形成することができ、負極での電解液の副反応を充分に抑制することができる。その結果、極めて安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
誘電率、耐酸化性が良好な点から、X~Xの1つ又は2つが、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましい。
低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X~Xは、-H、-F、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
上記フッ素化アルキル基(a)は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。フッ素化アルキル基(a)の炭素数は、1~20が好ましく、1~17がより好ましく、1~7が更に好ましく、1~5が特に好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
上記フッ素化アルキル基(a)のうち、炭素数が1のものとしては、CFH-、CFH-、CF-が挙げられる。特に、CFH-又はCF-が高温保存特性上好ましい。
上記フッ素化アルキル基(a)のうち、炭素数が2以上のものとしては、下記一般式(a-1):
-R- (a-1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1~16の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1~6がより好ましく、1~3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000026
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000029
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基(a)としては、例えばCFCF-、HCFCF-、HCFCF-、CHCF-、CFCHF-、CHCF-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
等が挙げられる。
上記エーテル結合を有するフッ素化アルキル基(b)は、エーテル結合を有するアルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記エーテル結合を有するフッ素化アルキル基(b)は、炭素数が2~17であることが好ましい。炭素数が多過ぎると、上記フッ素化飽和環状カーボネートの粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点から上記エーテル結合を有するフッ素化アルキル基(b)の炭素数は2~10がより好ましく、2~7が更に好ましい。
上記エーテル結合を有するフッ素化アルキル基(b)のエーテル部分を構成するアルキレン基は直鎖状又は分岐鎖状のアルキレン基でよい。そうした直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000032
アルキレン基は、これらの最小構造単位単独で構成されてもよく、直鎖状(i)同士、分岐鎖状(ii)同士、又は、直鎖状(i)と分岐鎖状(ii)との組み合わせにより構成されてもよい。好ましい具体例は、後述する。
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
更に好ましいエーテル結合を有するフッ素化アルキル基(b)としては、一般式(b-1):
-(ORn1-       (b-1)
(式中、Rはフッ素原子を有していてもよい、好ましくは炭素数1~6のアルキル基;Rはフッ素原子を有していてもよい、好ましくは炭素数1~4のアルキレン基;n1は1~3の整数;ただし、R及びRの少なくとも1つはフッ素原子を有している)で示されるものが挙げられる。
及びRとしては以下のものが例示でき、これらを適宜組み合わせて、上記一般式(b-1)で表されるエーテル結合を有するフッ素化アルキル基(b)を構成することができるが、これらのみに限定されるものではない。
(1)Rとしては、一般式:X C-(Rn2-(3つのXは同じか又は異なりいずれもH又はF;Rは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n2は0又は1)で表されるアルキル基が好ましい。
n2が0の場合、Rとしては、CH-、CF-、HCF-及びHCF-が挙げられる。
n2が1の場合の具体例としては、Rが直鎖状のものとして、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCHCH-、FCHCF-、FCHCFCH-、CHCF-、CHCH-、CHCFCH-、CHCFCF-、CHCHCH-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCHCHCH-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCHCFCFCHCH-、CHCFCHCFCHCH-等が例示できる。
n2が1であり、かつRが分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000033
等が挙げられる。
ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、Rが直鎖状のものがより好ましい。
(2)上記一般式(b-1)の-(ORn1-において、n1は1~3の整数であり、好ましくは1又は2である。なお、n1=2又は3のとき、Rは同じでも異なっていてもよい。
の好ましい具体例としては、次の直鎖状又は分岐鎖状のものが例示できる。
直鎖状のものとしては、-CH-、-CHF-、-CF-、-CHCH-、-CFCH-、-CFCF-、-CHCF-、-CHCHCH-、-CHCHCF-、-CHCFCH-、-CHCFCF-、-CFCHCH-、-CFCFCH-、-CFCHCF-、-CFCFCF-等が例示できる。
分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000034
等が挙げられる。
上記フッ素化アルコキシ基(c)は、アルコキシ基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記フッ素化アルコキシ基(c)は、炭素数が1~17であることが好ましい。より好ましくは、炭素数1~6である。
上記フッ素化アルコキシ基(c)としては、一般式:X C-(Rn3-O-(3つのXは同じか又は異なりいずれもH又はF;Rは好ましくは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n3は0又は1;ただし3つのXのいずれかはフッ素原子を含んでいる)で表されるフッ素化アルコキシ基が特に好ましい。
上記フッ素化アルコキシ基(c)の具体例としては、上記一般式(a-1)におけるRとして例示したアルキル基の末端に酸素原子が結合したフッ素化アルコキシ基が挙げられる。
上記フッ素化飽和環状カーボネートにおけるフッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は10質量%以上が好ましい。フッ素含有率が低過ぎると、低温での粘性低下効果や引火点の上昇効果が充分に得られないおそれがある。この観点から上記フッ素含有率は12質量%以上がより好ましく、15質量%以上が更に好ましい。上限は通常76質量%である。
フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
また、誘電率、耐酸化性が良好な点からは、上記フッ素化飽和環状カーボネート全体のフッ素含有率は10質量%以上が好ましく、15質量%以上がより好ましい。上限は通常76質量%である。
なお、上記フッ素化飽和環状カーボネートのフッ素含有率は、フッ素化飽和環状カーボネートの構造式に基づいて、{(フッ素原子の個数×19)/フッ素化飽和環状カーボネートの分子量}×100(%)により算出した値である。
上記フッ素化飽和環状カーボネートとしては、具体的には、例えば、以下が挙げられる。
~Xの少なくとも1つが-Fであるフッ素化飽和環状カーボネートの具体例として、
Figure JPOXMLDOC01-appb-C000035
等が挙げられる。これらの化合物は、耐電圧が高く、電解質塩の溶解性も良好である。
他に、
Figure JPOXMLDOC01-appb-C000036
等も使用できる。
~Xの少なくとも1つがフッ素化アルキル基(a)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000037
等が挙げられる。
~Xの少なくとも1つが、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
等が挙げられる。
なかでも、上記フッ素化飽和環状カーボネートとしては、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
上記フッ素化飽和環状カーボネートとしては、なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート及びトリフルオロメチルエチレンカーボネートからなる群より選択される少なくとも1種がより好ましい。
上記非フッ素化鎖状カーボネートとしては、例えば、CHOCOOCH(ジメチルカーボネート:DMC)、CHCHOCOOCHCH(ジエチルカーボネート:DEC)、CHCHOCOOCH(エチルメチルカーボネート:EMC)、CHOCOOCHCHCH(メチルプロピルカーボネート)、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート等の炭化水素系鎖状カーボネートが挙げられる。なかでも、エチルメチルカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも1種であることが好ましい。
上記フッ素化鎖状カーボネートとしては、一般式(B):
RfOCOOR     (B)
(式中、Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。)で示される化合物を挙げることができる。
本発明の電解液は、高電圧下でも好適に使用できる点で、上記フッ素化鎖状カーボネートを含むことが好ましい。
Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。
上記フッ素化アルキル基は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。Rがフッ素原子を含むアルキル基である場合、フッ素化アルキル基となる。
Rf及びRは、低粘性である点で、炭素数が2~7であることが好ましく、2~4であることがより好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
炭素数が1のフッ素化アルキル基としては、CFH-、CFH-、CF-等が挙げられる。特に、CFH-又はCF-が高温保存特性上好ましい。
炭素数が2以上のフッ素化アルキル基としては、下記一般式(d-1):
-R- (d-1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1~6がより好ましく、1~3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000046
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000049
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基としては、具体的には、例えば、CFCF-、HCFCF-、HCFCF-、CHCF-、CFCH-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
等が挙げられる。
なかでも、RfとRのフッ素化アルキル基としては、CF-、CFCF-、(CFCH-、CFCH-、CCH-、CFCFCH-、HCFCFCH-、CFCFHCFCH-が好ましく、難燃性が高く、レート特性や耐酸化性が良好な点から、CFCH-、CFCFCH-、HCFCFCH-がより好ましい。
がフッ素原子を含まないアルキル基の場合は炭素数1~7のアルキル基である。Rは、低粘性である点で、炭素数が1~4であることが好ましく、1~3であることがより好ましい。
上記フッ素原子を含まないアルキル基としては、例えば、CH-、CHCH-、(CHCH-、C-等が挙げられる。なかでも、粘度が低く、レート特性が良好な点から、CH-、CHCH-が好ましい。
上記フッ素化鎖状カーボネートは、フッ素含有率が20~70質量%であることが好ましい。フッ素含有率が上述の範囲であると、溶剤との相溶性、塩の溶解性を維持することができる。上記フッ素含有率は、30質量%以上がより好ましく、35質量%以上が更に好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。
なお、本発明においてフッ素含有率は、上記フッ素化鎖状カーボネートの構造式に基づいて、
{(フッ素原子の個数×19)/フッ素化鎖状カーボネートの分子量}×100(%)
により算出した値である。
上記フッ素化鎖状カーボネートとしては、低粘性である点で、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000052
上記非フッ素化鎖状エステルとしては、その構造式中の全炭素数が3~7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、プロピオン酸-n-ブチル、プロピオン酸イソブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル、酪酸-n-プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸-n-プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が粘度低下によるイオン伝導度の向上の点から好ましい。
上記フッ素化鎖状エステルとしては、一般式(3):
Rf31COORf32
(式中、Rf31は炭素数1~4のフッ素化アルキル基、Rf32は炭素数1~4のフッ素原子を含んでいてもよいアルキル基)で示されるフッ素化鎖状エステルが、他溶媒との相溶性や耐酸化性が良好な点から好ましい。
Rf31としては、例えばHCF-、CF-、CFCF-、HCFCF-、CHCF-、CFCH-等が例示でき、なかでもHCF-、CF-、CFCF-、CFCH-が粘度、耐酸化性が良好な点から特に好ましい。
Rf32としては、例えば、CH-、C-、CF-、CFCF-、(CFCH-、CFCH-、CFCHCH-、CFCFHCFCH-、CCH-、CFHCFCH-、CCHCH-、CFCFCH-、CFCFCFCH-等が例示でき、なかでもCH-、C-、CFCH-、CFCHCH-が、他溶媒との相溶性が良好な点から特に好ましい。
上記フッ素化鎖状エステルの具体例としては、例えばCFCHC(=O)OCH、HCFC(=O)OCH、CFC(=O)OCHCHCF、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CF等の1種又は2種以上が例示でき、なかでもCFCHC(=O)OCH、HCFC(=O)OCH、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CFが、他溶媒との相溶性及びレート特性が良好な点から特に好ましい。
本発明の電解液は、電解質塩(但し、化合物(a)を除く)を含むことが好ましい。
上記電解質塩としては、アルカリ金属塩、アルカリ土類金属塩、アルミウムをカチオンとする金属塩、アンモニウム塩のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩等、電解液に使用することができる任意のものを用いることができる。
リチウムイオン二次電池用電解液の電解質塩としては、アルカリ金属塩が好ましく、リチウム塩がより好ましい。
上記リチウム塩として任意のものを用いることができ、具体的には以下のものが挙げられる。例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiPOF、LiPO等のフルオロリン酸リチウム類;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩(例えばLiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等)の含フッ素有機リチウム塩類;等が挙げられる。
なかでも、LiPF、LiBF、LiSbF、LiTaF、LiPO、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、LiBFCF、LiBF、及び、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩からなる群より選択される少なくとも1種であることが好ましい。
式:LiPF(C2n+16-aで表される塩としては、例えば、LiPF(CF、LiPF(C、LiPF(C、LiPF(C、LiPF(CF、LiPF(C、LiPF(C、LiPF(C(ただし、式中のC、Cで表されるアルキル基は、直鎖、分岐構造のいずれであってもよい。)等が挙げられる。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi、LiPFとLiPO等の併用であり、負荷特性やサイクル特性を向上させる効果がある。
これらの中では、LiPFとFSOLi、LiPFとLiPOの併用がその効果が顕著である理由から好ましく、その中でもLiPFとLiPOの併用が微量の添加で著しい効果が発現する為に特に好ましい。
LiPFとLiBF、LiPFとFSOLiを併用する場合、上記電解液全体100質量%に対するLiBF或いはFSOLiの配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、上記電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、一方その上限は通常30質量%以下、好ましくは20質量%以下である。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。
有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等であるのが好ましい。
この場合には、電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り特に制限されない。
電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、更に好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、更に好ましくは2.0mol/L以下である。
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
電気二重層キャパシタ用電解液の電解質塩としては、アンモニウム塩が好ましい。
上記アンモニウム塩としては、以下(IIa)~(IIe)が挙げられる。
(IIa)テトラアルキル4級アンモニウム塩
一般式(IIa):
Figure JPOXMLDOC01-appb-C000053
(式中、R1a、R2a、R3a及びR4aは同じか又は異なり、いずれも炭素数1~6のエーテル結合を含んでいてもよいアルキル基;Xはアニオン)で示されるテトラアルキル4級アンモニウム塩が好ましく例示できる。また、このアンモニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
具体例としては、一般式(IIa-1):
Figure JPOXMLDOC01-appb-C000054
(式中、R1a、R2a及びXは前記と同じ;x及びyは同じか又は異なり0~4の整数で、かつx+y=4)で示されるテトラアルキル4級アンモニウム塩、一般式(IIa-2):
Figure JPOXMLDOC01-appb-C000055
(式中、R5aは炭素数1~6のアルキル基;R6aは炭素数1~6の2価の炭化水素基;R7aは炭素数1~4のアルキル基;zは1又は2;Xはアニオン)で示されるアルキルエーテル基含有トリアルキルアンモニウム塩、
などがあげられる。アルキルエーテル基を導入することにより、粘性の低下を図ることができる。
アニオンXは、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、例えばAlCl 、BF 、PF 、AsF 、TaF 、I、SbF が挙げられる。有機アニオンとしては、例えばCFCOO、CFSO 、(CFSO、(CSOなどが挙げられる。
これらのうち、耐酸化性やイオン解離性が良好な点から、BF 、PF 、AsF 、SbF が好ましい。
テトラアルキル4級アンモニウム塩の好適な具体例としては、EtNBF、EtNClO、EtNPF、EtNAsF、EtNSbF、EtNCFSO、EtN(CFSON、EtNCSO、EtMeNBF、EtMeNClO、EtMeNPF、EtMeNAsF、EtMeNSbF、EtMeNCFSO、EtMeN(CFSON、EtMeNCSO、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム塩等が挙げられ、特に、EtNBF、EtNPF、EtNSbF、EtNAsF、EtMeNBF、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム塩などが挙げられる。
(IIb)スピロ環ビピロリジニウム塩
一般式(IIb-1):
Figure JPOXMLDOC01-appb-C000056
(式中、R8a及びR9aは同じか又は異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n1は0~5の整数;n2は0~5の整数)で示されるスピロ環ビピロリジニウム塩、一般式(IIb-2):
Figure JPOXMLDOC01-appb-C000057
(式中、R10a及びR11aは同じか又は異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n3は0~5の整数;n4は0~5の整数)で示されるスピロ環ビピロリジニウム塩、又は、一般式(IIb-3):
Figure JPOXMLDOC01-appb-C000058
(式中、R12aおよびR13aは同じかまたは異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n5は0~5の整数;n6は0~5の整数)で示されるスピロ環ビピロリジニウム塩が好ましく挙げられる。また、このスピロ環ビピロリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)の場合と同じである。なかでも、解離性が高く、高電圧下での内部抵抗が低い点から、BF 、PF 、(CFSOまたは(CSOが好ましい。
スピロ環ビピロリジニウム塩の好ましい具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000059
などが挙げられる。
このスピロ環ビピロリジニウム塩は溶媒への溶解性、耐酸化性、イオン伝導性の点で優れている。
(IIc)イミダゾリウム塩
一般式(IIc):
Figure JPOXMLDOC01-appb-C000060
(式中、R14a及びR15aは同じか又は異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)
で示されるイミダゾリウム塩が好ましく例示できる。また、このイミダゾリウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000061
等が挙げられる。
このイミダゾリウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IId):N-アルキルピリジニウム塩
一般式(IId):
Figure JPOXMLDOC01-appb-C000062
(式中、R16aは炭素数1~6のアルキル基;Xはアニオン)
で示されるN-アルキルピリジニウム塩が好ましく例示できる。また、このN-アルキルピリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000063
などが挙げられる。
このN-アルキルピリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IIe)N,N-ジアルキルピロリジニウム塩
一般式(IIe):
Figure JPOXMLDOC01-appb-C000064
(式中、R17a及びR18aは同じか又は異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)
で示されるN,N-ジアルキルピロリジニウム塩が好ましく例示できる。また、このN,N-ジアルキルピロリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
などが挙げられる。
このN,N-ジアルキルピロリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
これらのアンモニウム塩のうち、(IIa)、(IIb)及び(IIc)が溶解性、耐酸化性、イオン伝導性が良好な点で好ましく、さらには
Figure JPOXMLDOC01-appb-C000067
(式中、Meはメチル基;Etはエチル基;X、x、yは式(IIa-1)と同じ)が好ましい。
また、電気二重層キャパシタ用電解質塩として、リチウム塩を用いてもよい。リチウム塩としては、例えば、LiPF、LiBF、LiAsF、LiSbF、LiN(SOが好ましい。
更に容量を向上させるために、マグネシウム塩を用いてもよい。マグネシウム塩としては、例えば、Mg(ClO、Mg(OOC等が好ましい。
電解質塩が上記アンモニウム塩である場合、濃度は、0.6モル/リットル以上であることが好ましい。0.6モル/リットル未満であると、低温特性が悪くなるだけでなく、初期内部抵抗が高くなってしまう。上記電解質塩の濃度は、0.9モル/リットル以上であることがより好ましい。
上記濃度は、低温特性の点で、3.0モル/リットル以下であることが好ましく、2.0モル/リットル以下であることがより好ましい。
上記アンモニウム塩が、4フッ化ホウ酸トリエチルメチルアンモニウム(TEMABF)の場合、その濃度は、低温特性に優れる点で、0.8~1.9モル/リットルであることが好ましい。
また、4フッ化ホウ酸スピロビピロリジニウム(SBPBF)の場合は、0.7~2.0モル/リットルであることが好ましい。
本発明の電解液は、更に、重量平均分子量が2000~4000であり、末端に-OH、-OCOOH、又は、-COOHを有するポリエチレンオキシドを含有することが好ましい。
このような化合物を含有することにより、電極界面の安定性が向上し、電気化学デバイスの特性を向上させることができる。
上記ポリエチレンオキシドとしては、例えば、ポリエチレンオキシドモノオール、ポリエチレンオキシドカルボン酸、ポリエチレンオキシドジオール、ポリエチレンオキシドジカルボン酸、ポリエチレンオキシドトリオール、ポリエチレンオキシドトリカルボン酸等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
なかでも、電気化学デバイスの特性がより良好となる点で、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールの混合物、及び、ポリエチレンオキシドカルボン酸とポリエチレンオキシドジカルボン酸の混合物であることが好ましい。
上記ポリエチレンオキシドの重量平均分子量が小さすぎると、酸化分解されやすくなるおそれがある。上記重量平均分子量は、3000~4000がより好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により測定することができる。
上記ポリエチレンオキシドの含有量は、電解液中1×10-6~1×10-2mol/kgであることが好ましい。上記ポリエチレンオキシドの含有量が多すぎると、電気化学デバイスの特性を損なうおそれがある。
上記ポリエチレンオキシドの含有量は、5×10-6mol/kg以上であることがより好ましい。
本発明の電解液は、更に、不飽和環状カーボネート(但し、化合物(c)を除く)、過充電防止剤、その他の公知の助剤等を含有していてもよい。これにより、電気化学デバイスの特性の低下を抑制することができる。
上記不飽和環状カーボネート(但し、化合物(c)を除く)は、不飽和結合を含む環状カーボネート、すなわち、環状カーボネートであって、分子内に炭素-炭素不飽和結合を少なくとも1つ有するものである。不飽和環状カーボネートとしては、ビニレンカーボネート類(但し、化合物(c)を除く)、芳香環又は炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
ビニレンカーボネート類(但し、化合物(c)を除く)としては、ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、4-アリル-5-エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5-ジフェニルエチレンカーボネート、4-フェニル-5-ビニルエチレンカーボネート、4-アリル-5-フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート等が挙げられる。
なかでも、不飽和環状カーボネートとしては、ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネートが好ましい。また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートは更に安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネート(但し、化合物(c)を除く)の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
不飽和環状カーボネート(但し、化合物(c)を除く)の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネート(但し、化合物(c)を除く)は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記不飽和環状カーボネート(但し、化合物(c)を除く)の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。上記不飽和環状カーボネートの含有量は、本発明における溶媒100質量%中0.001質量%以上が好ましく、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上である。また、上記含有量は、5質量%以下が好ましく、より好ましくは4質量%以下、更に好ましくは3質量%以下である。上記範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
また、不飽和環状カーボネート(但し、化合物(c)を除く)としては、上述のような非フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)の他、フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)も好適に用いることができる。フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)は、不飽和結合とフッ素原子とを有する環状カーボネートである。
フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)が有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)としては、フッ素化ビニレンカーボネート誘導体(但し、化合物(c)を除く)、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体(但し、化合物(c)を除く)としては、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート等が挙げられる。
なかでも、フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)としては、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)の分子量は特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、500以下である。この範囲であれば、電解液に対するフッ素化不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
上記フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
フッ素化不飽和環状カーボネート(但し、化合物(c)を除く)の含有量は、通常、電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上であり、また、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。
この範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
本発明の電解液においては、電解液を用いた電気化学デバイスが過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。
中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。
これらは1種を単独で用いても、2種以上を併用してもよい。
2種以上併用する場合は、特に、シクロヘキシルベンゼンとt-ブチルベンゼン又はt-アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
本発明の電解液には、公知のその他の助剤を用いることができる。
その他の助剤としては、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-プロペン-1,3-スルトン、1-フルオロ-1-プロペン-1,3-スルトン、2-フルオロ-1-プロペン-1,3-スルトン、3-フルオロ-1-プロペン-1,3-スルトン、1,4-ブタンスルトン、1-ブテン-1,4-スルトン、3-ブテン-1,4-スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2-ビス(ビニルスルホニロキシ)エタン等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等の含窒素化合物;亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド等の含燐化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。
これらは1種を単独で用いても、2種以上を併用してもよい。
これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
その他の助剤は、電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。
この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。
その他の助剤の配合量は、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
本発明の電解液は、コハク酸骨格を持つ酸無水物を含むことができる。上記コハク酸骨格を持つ酸無水物としては、無水コハク酸、無水マレイン酸、シトラコン酸、2-メチルコハク酸、2,3-ジメチルコハク酸、2-フルオロコハク酸、2,3-ジフルオロコハク酸等が挙げられる。このうち、無水コハク酸又は無水マレイン酸が好ましい。
上記コハク酸骨格を持つ酸無水物の含有量は、電解液中0.1~10質量%であることが好ましく、0.5質量%以上がより好ましく、5質量%以下がより好ましい。
本発明の電解液は、環状スルホン酸化合物を含むことができる。上記環状スルホン酸化合物としては、例えば、1,3-プロパンスルトン、1,4-ブタンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン等が挙げられる。なかでも、高温特性を向上させることができる点で、本発明の電解液は、1,3-プロパンスルトン、及び/又は、1,4-ブタンスルトンを含有することが好ましい。
上記環状スルホン酸化合物の含有量は、電解液中0.1~10質量%であることが好ましく、0.5質量%以上がより好ましく、5質量%以下がより好ましい。
本発明の電解液は、本発明の効果を損なわない範囲で、環状カルボン酸エステル、エーテル化合物、窒素含有化合物、ホウ素含有化合物、有機ケイ素含有化合物、不燃(難燃)化剤、界面活性剤、高誘電化添加剤、サイクル特性及びレート特性改善剤等を更に含有してもよい。
上記環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3~12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電気化学デバイスの特性向上の点から特に好ましい。
環状カルボン酸エステルの配合量は、通常、溶媒100質量%中、好ましくは0.1質量%以上、より好ましくは1質量%以上である。この範囲であると、電解液の電気伝導率を改善し、電気化学デバイスの大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは10質量%以下、より好ましくは5質量%以下である。このように上限を設定することにより、電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、電気化学デバイスの大電流放電特性を良好な範囲としやすくする。
また、上記環状カルボン酸エステルとしては、フッ素化環状カルボン酸エステル(含フッ素ラクトン)も好適に用いることができる。含フッ素ラクトンとしては、例えば、下記式(E):
Figure JPOXMLDOC01-appb-C000068
(式中、X15~X20は同じか又は異なり、いずれも-H、-F、-Cl、-CH又はフッ素化アルキル基;ただし、X15~X20の少なくとも1つはフッ素化アルキル基である)で示される含フッ素ラクトンが挙げられる。
15~X20におけるフッ素化アルキル基としては、例えば、-CFH、-CFH、-CF、-CHCF、-CFCF、-CHCFCF、-CF(CF等が挙げられ、耐酸化性が高く、安全性向上効果がある点から-CHCF、-CHCFCFが好ましい。
15~X20の少なくとも1つがフッ素化アルキル基であれば、-H、-F、-Cl、-CH又はフッ素化アルキル基は、X15~X20の1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。好ましくは、電解質塩の溶解性が良好な点から1~3箇所、更に好ましくは1~2箇所である。
フッ素化アルキル基の置換位置は特に限定されないが、合成収率が良好なことから、X17及び/又はX18が、特にX17又はX18がフッ素化アルキル基、なかでも-CHCF、-CHCFCFであることが好ましい。フッ素化アルキル基以外のX15~X20は、-H、-F、-Cl又はCHであり、特に電解質塩の溶解性が良好な点から-Hが好ましい。
含フッ素ラクトンとしては、上記式で示されるもの以外にも、例えば、下記式(F):
Figure JPOXMLDOC01-appb-C000069
(式中、A及びBはいずれか一方がCX2627(X26及びX27は同じか又は異なり、いずれも-H、-F、-Cl、-CF、-CH又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキレン基)であり、他方は酸素原子;Rf12はエーテル結合を有していてもよいフッ素化アルキル基又はフッ素化アルコキシ基;X21及びX22は同じか又は異なり、いずれも-H、-F、-Cl、-CF又はCH;X23~X25は同じか又は異なり、いずれも-H、-F、-Cl又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0又は1)で示される含フッ素ラクトン等も挙げられる。
式(F)で示される含フッ素ラクトンとしては、下記式(G):
Figure JPOXMLDOC01-appb-C000070
(式中、A、B、Rf12、X21、X22及びX23は式(F)と同じである)で示される5員環構造が、合成が容易である点、化学的安定性が良好な点から好ましく挙げられ、更には、AとBの組合せにより、下記式(H):
Figure JPOXMLDOC01-appb-C000071
(式中、Rf12、X21、X22、X23、X26及びX27は式(F)と同じである)で示される含フッ素ラクトンと、下記式(I):
Figure JPOXMLDOC01-appb-C000072
(式中、Rf12、X21、X22、X23、X26及びX27は式(F)と同じである)で示される含フッ素ラクトンがある。
これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000073
等が挙げられる。
フッ素化環状カルボン酸エステルを含有させることにより、イオン伝導度の向上、安全性の向上、高温時の安定性向上といった効果が得られる。
上記エーテル化合物としては、炭素数3~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
炭素数3~10の鎖状エーテルとしては、ジエチルエーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、ジエトキシメタン、ジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
また、上記エーテル化合物としては、フッ素化エーテルも好適に用いることができる。
上記フッ素化エーテルとしては、下記一般式(K):
Rf-O-Rf       (K)
(式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフッ素化アルキル基である。ただし、Rf及びRfの少なくとも一方は、フッ素化アルキル基である。)で表されるフッ素化エーテル(K)が挙げられる。フッ素化エーテル(K)を含有させることにより、電解液の難燃性が向上するとともに、高温高電圧での安定性、安全性が向上する。
上記一般式(K)においては、Rf及びRfの少なくとも一方が炭素数1~10のフッ素化アルキル基であればよいが、電解液の難燃性及び高温高電圧での安定性、安全性を一層向上させる観点から、Rf及びRfが、ともに炭素数1~10のフッ素化アルキル基であることが好ましい。この場合、Rf及びRfは同じであってもよく、互いに異なっていてもよい。
なかでも、Rf及びRfが、同じか又は異なり、Rfが炭素数3~6のフッ素化アルキル基であり、かつ、Rfが炭素数2~6のフッ素化アルキル基であることがより好ましい。
RfおよびRfの合計炭素数が少な過ぎるとフッ素化エーテルの沸点が低くなりすぎ、また、Rf又はRfの炭素数が多過ぎると、電解質塩の溶解性が低下し、他の溶媒との相溶性にも悪影響が出始め、また粘度が上昇するためレート特性が低減する。Rfの炭素数が3又は4、Rfの炭素数が2又は3のとき、沸点およびレート特性に優れる点で有利である。
上記フッ素化エーテル(K)は、フッ素含有率が40~75質量%であることが好ましい。この範囲のフッ素含有率を有するとき、不燃性と相溶性のバランスに特に優れたものになる。また、耐酸化性、安全性が良好な点からも好ましい。
上記フッ素含有率の下限は、45質量%がより好ましく、50質量%が更に好ましく、55質量%が特に好ましい。上限は70質量%がより好ましく、66質量%が更に好ましい。
なお、フッ素化エーテル(K)のフッ素含有率は、フッ素化エーテル(K)の構造式に基づいて、{(フッ素原子の個数×19)/フッ素化エーテル(K)の分子量}×100(%)により算出した値である。
Rfとしては、例えば、CFCFCH-、CFCFHCF-、HCFCFCF-、HCFCFCH-、CFCFCHCH-、CFCFHCFCH-、HCFCFCFCF-、HCFCFCFCH-、HCFCFCHCH-、HCFCF(CF)CH-等が挙げられる。
また、Rfとしては、例えば、CFCFCH-、CFCFHCF-、CFHCFCF-、CFHCFCH-、CFCFCHCH-、CFCFHCFCH-、CFHCFCFCF-、CFHCFCFCH-、CFHCFCHCH-、CFHCF(CF)CH-、CFHCF-、CFHCH-、CHCF-等が挙げられる。
上記フッ素化エーテル(K)の具体例としては、例えばHCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CH等が挙げられる。
なかでも、片末端又は両末端にHCF-又はCFCFH-を含むものが分極性に優れ、沸点の高いフッ素化エーテル(K)を与えることができる。フッ素化エーテル(K)の沸点は、67~120℃であることが好ましい。より好ましくは80℃以上、更に好ましくは90℃以上である。
このようなフッ素化エーテル(K)としては、例えば、CFCHOCFCFHCF、CFCFCHOCFCFHCF、HCFCFCHOCFCFHCF、HCFCFCHOCHCFCFH、CFCFHCFCHOCFCFHCF、HCFCFCHOCFCFH、CFCFCHOCFCFH等の1種又は2種以上が挙げられる。
なかでも、高沸点、他の溶媒との相溶性や電解質塩の溶解性が良好な点で有利なことから、HCFCFCHOCFCFHCF(沸点106℃)、CFCFCHOCFCFHCF(沸点82℃)、HCFCFCHOCFCFH(沸点92℃)及びCFCFCHOCFCFH(沸点68℃)からなる群より選択される少なくとも1種であることが好ましく、HCFCFCHOCFCFHCF(沸点106℃)及びHCFCFCHOCFCFH(沸点92℃)からなる群より選択される少なくとも1種であることがより好ましい。
炭素数3~6の環状エーテルとしては、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等、及びこれらのフッ素化化合物が挙げられる。中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコール-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離度を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
上記窒素含有化合物としては、ニトリル、含フッ素ニトリル、カルボン酸アミド、含フッ素カルボン酸アミド、スルホン酸アミド及び含フッ素スルホン酸アミド等が挙げられる。また、1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサジリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等も使用できる。
上記ホウ素含有化合物としては、例えば、トリメチルボレート、トリエチルボレート等のホウ酸エステル、ホウ酸エーテル、及び、ホウ酸アルキル等が挙げられる。
上記有機ケイ素含有化合物としては、例えば、(CH-Si、(CH-Si-Si(CH等が挙げられる。
上記不燃(難燃)化剤としては、リン酸エステルやホスファゼン系化合物が挙げられる。上記リン酸エステルとしては、例えば、含フッ素アルキルリン酸エステル、非フッ素系アルキルリン酸エステル、アリールリン酸エステル等が挙げられる。なかでも、少量で不燃効果を発揮できる点で、含フッ素アルキルリン酸エステルであることが好ましい。
上記含フッ素アルキルリン酸エステルとしては、具体的には、特開平11-233141号公報に記載された含フッ素ジアルキルリン酸エステル、特開平11-283669号公報に記載された環状のアルキルリン酸エステル、又は、含フッ素トリアルキルリン酸エステル等が挙げられる。
上記不燃(難燃)化剤としては、(CHO)P=O、(CFCHO)P=O、(HCFCHO)P=O、(CFCFCHP=O、(HCFCFCHP=O等が好ましい。
上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、サイクル特性、レート特性が良好となる点から、フッ素原子を含むものであることが好ましい。
このようなフッ素原子を含む界面活性剤としては、例えば、下記式:
RfCOO
(式中、Rfは炭素数3~10のエーテル結合を含んでいてもよいフッ素化アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもH又は炭素数が1~3のアルキル基)である)で表される含フッ素カルボン酸塩や、下記式:
RfSO
(式中、Rfは炭素数3~10のエーテル結合を含んでいてもよいフッ素化アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもHまたは炭素数が1~3のアルキル基)である)で表される含フッ素スルホン酸塩等が好ましい。
上記界面活性剤の含有量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させることができる点から、電解液中0.01~2質量%であることが好ましい。
上記高誘電化添加剤としては、例えば、スルホラン、メチルスルホラン、γ-ブチロラクトン、γ-バレロラクトン、アセトニトリル、プロピオニトリル等が挙げられる。
上記サイクル特性及びレート特性改善剤としては、例えば、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
また、本発明の電解液は、更に高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8-222270号公報、特開2002-100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素樹脂(特表平4-506726号公報、特表平8-507407号公報、特開平10-294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11-35765号公報、特開平11-86630号公報)等が挙げられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。
そのほか、本発明の電解液は、特願2004-301934号明細書に記載されているイオン伝導性化合物も含んでいてもよい。
このイオン伝導性化合物は、式(1-1):
A-(D)-B (1-1)
[式中、Dは式(2-1):
-(D1)-(FAE)-(AE)-(Y)- (2-1)
(式中、D1は、式(2a):
Figure JPOXMLDOC01-appb-C000074
(式中、Rfは架橋性官能基を有していてもよい含フッ素エーテル基;R10はRfと主鎖を結合する基又は結合手)で示される側鎖に含フッ素エーテル基を有するエーテル単位;
FAEは、式(2b):
Figure JPOXMLDOC01-appb-C000075
(式中、Rfaは水素原子、架橋性官能基を有していてもよいフッ素化アルキル基;R11はRfaと主鎖を結合する基又は結合手)で示される側鎖にフッ素化アルキル基を有するエーテル単位;
AEは、式(2c):
Figure JPOXMLDOC01-appb-C000076
(式中、R13は水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基を有していてもよい脂肪族環式炭化水素基又は架橋性官能基を有していてもよい芳香族炭化水素基;R12はR13と主鎖を結合する基又は結合手)で示されるエーテル単位;
Yは、式(2d-1)~(2d-3):
Figure JPOXMLDOC01-appb-C000077
の少なくとも1種を含む単位;
nは0~200の整数;mは0~200の整数;pは0~10000の整数;qは1~100の整数;ただしn+mは0ではなく、D1、FAE、AE及びYの結合順序は特定されない);
A及びBは同じか又は異なり、水素原子、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基、フッ素原子及び/又は架橋性官能基を含んでいてもよいフェニル基、-COOH基、-OR(Rは水素原子又はフッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基)、エステル基又はカーボネート基(ただし、Dの末端が酸素原子の場合は-COOH基、-OR、エステル基及びカーボネート基ではない)]で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
本発明の電解液には必要に応じて、さらに他の添加剤を配合してもよい。他の添加剤としては、例えば、金属酸化物、ガラス等が挙げられる。
本発明の電解液は、HFを0.5~70ppm含有することが好ましい。HFを含有することにより、添加剤の被膜形成を促進させることができる。HFの含有量が少なすぎると、負極上での添加剤の被膜形成能力が下がり、電気化学デバイスの特性が低下する傾向がある。また、HF含有量が多すぎると、HFの影響により電解液の耐酸化性が低下する傾向がある。本発明の電解液は、上記範囲のHFを含有しても、電気化学デバイスの高温保存性回復容量率を低下させることがない。
HFの含有量は、1ppm以上がより好ましく、2.5ppm以上が更に好ましい。HFの含有量はまた、60ppm以下がより好ましく、50ppm以下が更に好ましく、30ppm以下が特に好ましい。
HFの含有量は、中和滴定法により測定することができる。
本発明の電解液は、上述した成分を用いて、任意の方法で調製するとよい。
本発明の電解液は、例えば、二次電池、リチウムイオン二次電池や電気二重層キャパシタ等の電気化学デバイスに好適に適用することができる。このような本発明の電解液を備えた電気化学デバイスもまた、本発明の一つである。
電気化学デバイスとしては、リチウムイオン二次電池、キャパシタ(電気二重層キャパシタ)、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池、各種電気化学センサー、エレクトロクロミック素子、電気化学スイッチング素子、アルミニウム電解コンデンサ、タンタル電解コンデンサ等が挙げられ、リチウムイオン二次電池、電気二重層キャパシタが好適である。
上記電気化学デバイスを備えたモジュールも本発明の一つである。
本発明はまた、本発明の電解液を備える二次電池でもある。上記二次電池は、リチウムイオン二次電池であってよい。以下に、本発明の電気化学デバイス又は二次電池の例として、リチウムイオン二次電池又は電気二重層キャパシタの場合を説明する。
上記リチウムイオン二次電池は、正極、負極、及び、上述の電解液を備えていてよい。
<正極>
正極は、正極活物質を含む正極活物質層と、集電体とから構成される。
上記正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム含有遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。なかでも、正極活物質としては、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物が好ましい。
リチウム含有遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をNa、K、B、F、Al、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の元素で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.33Co0.33Mn0.33、LiNi0.45Co0.10Al0.45、LiMn1.8 Al0.2、LiMn1.5Ni0.5等が挙げられる。
なかでも、上記リチウム含有遷移金属複合酸化物としては、高電圧にした場合でもエネルギー密度が高いLiMn1.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2が好ましい。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
上記リチウム含有遷移金属複合酸化物としては、例えば、
式:LiMn2-b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、
式:LiNi1-c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、又は、
式:LiCo1-d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が挙げられる。
なかでも、エネルギー密度が高く、高出力なリチウムイオン二次電池を提供できる点から、LiCoO、LiMnO、LiNiO、LiMn、LiNi0.8Co0.15Al0.05、またはLiNi1/3Co1/3Mn1/3が好ましい。
その他の上記正極活物質として、LiFePO、LiNi0.8Co0.2、Li1.2Fe0.4Mn0.4、LiNi0.5Mn0.5、LiV等が挙げられる。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、さらに好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、さらに好ましくは3.5g/cm以下である。
なお、本発明では、タップ密度は、正極活物質粉体5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cmとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、さらに好ましくは0.3m/g以上であり、また、好ましくは50m/g以下、より好ましくは40m/g以下、さらに好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本発明では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
上記リチウムイオン二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33などのLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤の50~99質量%が好ましく、80~99質量%がより好ましい。また、正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
上記正極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、エチレン-プロピレンゴム、スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物、シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体、フッ素化ポリフッ化ビニリデン、テトラフルオロエチレン・エチレン共重合体、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系溶媒としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
上記高密度化は、ハンドプレス、ローラープレス等により行うことができる。正極活物質層の密度は、好ましくは1.5g/cm以上、より好ましくは2g/cm以上、さらに好ましくは2.2g/cm以上であり、また、好ましくは5g/cm以下、より好ましくは4.5g/cm以下、さらに好ましくは4g/cm以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
本発明の電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。電池外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合剤層に対向する正極合剤層の幾何表面積であり、集電体箔を介して両面に正極合剤層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合剤層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
<負極>
負極は、負極活物質を含む負極活物質層と、集電体とから構成される。
上記負極活物質としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金;リチウム含有金属複合酸化物材料等を挙げることができる。これらの負極活物質は、2種以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛もしくは精製天然黒鉛、又は、これらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましく、天然黒鉛、人造黒鉛、人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料、負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、負極活物質層が少なくとも2種以上の異なる配向性の炭素質が接する界面を有している炭素質材料、から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよくより好ましい。また、これらの炭素材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記の人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料としては、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素剤、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-ヘキサン等の低分子有機溶剤に溶解させた溶液及びこれらの炭化物等が挙げられる。
上記負極活物質として用いられる金属材料(但し、リチウムチタン複合酸化物を除く)としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として作動しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
具体的には、Si単体、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、LiSiOあるいはスズ単体、SnSiO、LiSnO、MgSn、SnO(0<w≦2)が挙げられる。
また、SiまたはSnを第一の構成元素とし、それに加えて第2、第3の構成元素を含む複合材料が挙げられる。第2の構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム及びジルコニウムのうち少なくとも1種である。第3の構成元素は、例えば、ホウ素、炭素、アルミニウム及びリンのうち少なくとも1種である。
特に、高い電池容量および優れた電池特性が得られることから、上記金属材料として、ケイ素またはスズの単体(微量の不純物を含んでよい)、SiO(0<v≦2)、SnO(0≦w≦2)、Si-Co-C複合材料、Si-Ni-C複合材料、Sn-Co-C複合材料、Sn-Ni-C複合材料が好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらにリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記)が好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
上記リチウムチタン複合酸化物としては、一般式:
LiTi
[式中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
で表される化合物であることが好ましい。
上記組成の中でも、
(i)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(ii)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(iii)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(i)ではLi4/3Ti5/3、(ii)ではLiTi、(iii)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
上記負極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。負極活物質に対する結着剤の割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対する結着剤の割合が、上記範囲を上回ると、結着剤量が電池容量に寄与しない結着剤割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
負極の導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
スラリーを形成するための溶媒としては、負極活物質、結着剤、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる
負極用集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。なかでも、薄膜に加工しやすいという点、及び、コストの点から銅が好ましい。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚すぎると、電池全体の容量が低下し過ぎることがあり、逆に薄すぎると取扱いが困難になることがある。
負極の製造は、常法によればよい。例えば、上記負極材料に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。また、合金材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がさらに好ましく、1.3g・cm-3以上が特に好ましく、また、2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合剤層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
<セパレータ>
上記リチウムイオン二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。なかでも、本発明の電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
<電池設計>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は、特に制限されないが、本発明の電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の電解液を使用した効果は特に良好に発揮される。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
上記リチウムイオン二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
また、上述の二次電池を備えたモジュールも本発明の一つである。
また、正極、負極、及び、上述の電解液を備え、上記正極は、正極集電体及び正極活物質を含む正極活物質層を備えており、上記正極活物質は、Mnを含むことを特徴とする二次電池も、好適な態様の一つである。Mnを含む正極活物質を含む正極活物質層を備えることから、上記二次電池は、高温保存特性により一層優れる。
上記Mnを含む正極活物質としては、エネルギー密度が高く、高出力な二次電池を提供できる点から、LiMn1.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2が好ましい。
上記正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
上記正極活物質層は、更に、導電材、増粘剤及び結着剤を含んでもよい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、エチレン-プロピレンゴム、スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物、シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体、フッ素化ポリフッ化ビニリデン、テトラフルオロエチレン・エチレン共重合体、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
上記正極集電体は、高温保存特性がより一層改善することから、弁金属又はその合金で構成されていることが好ましい。上記弁金属としては、アルミニウム、チタン、タンタル、クロム等が挙げられる。上記正極集電体は、アルミニウム又はアルミニウムの合金で構成されていることがより好ましい。
上記二次電池は、高温保存特性がより一層改善することから、上記正極集電体と電気的に接続されている部分のうち電解液と接触する部分についても、弁金属又はその合金で構成されていることが好ましい。特に、電池外装ケース、及び、上記電池外装ケースに収容されるリード線や安全弁などのうち正極集電体と電気的に接続されていて、かつ非水電解液と接触する部分は、弁金属又はその合金で構成することが好ましい。弁金属又はその合金により被覆したステンレスを使用してもよい。
上記正極の製造方法は、上述したとおりであり、例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを上記正極集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
上記負極の構成は上述したとおりである。
上記電気二重層キャパシタは、正極、負極、及び、上述の電解液を備えていてよい。
上記電気二重層キャパシタでは、正極及び負極の少なくとも一方は分極性電極であり、分極性電極及び非分極性電極としては特開平9-7896号公報に詳しく記載されている以下の電極が使用できる。
本発明で用いる活性炭を主体とする分極性電極は、好ましくは大比表面積の不活性炭と電子伝導性を付与するカーボンブラック等の導電剤とを含むものである。分極性電極は種々の方法で形成することができる。例えば、活性炭粉末とカーボンブラックとフェノール系樹脂を混合し、プレス成形後不活性ガス雰囲気中及び水蒸気雰囲気中で焼成、賦活することにより、活性炭とカーボンブラックからなる分極性電極を形成できる。好ましくは、この分極性電極は集電体と導電性接着剤などで接合する。
また、活性炭粉末、カーボンブラック及び結合剤をアルコールの存在下で混練してシート状に成形し、乾燥して分極性電極とすることもできる。この結合剤には、例えばポリテトラフルオロエチレンが用いられる。また、活性炭粉末、カーボンブラック、結合剤及び溶媒を混合してスラリーとし、このスラリーを集電体の金属箔にコートし、乾燥して集電体と一体化された分極性電極とすることもできる。
活性炭を主体とする分極性電極を両極に用いて電気二重層キャパシタとしてもよいが、片側に非分極性電極を用いる構成、例えば、金属酸化物等の電池活物質を主体とする正極と、活性炭を主体とする分極性電極の負極とを組合せた構成、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする負極、又はリチウム金属やリチウム合金の負極と、活性炭を主体とする分極性の正極とを組合せた構成も可能である。
また、活性炭に代えて又は併用して、カーボンブラック、グラファイト、膨張黒鉛、ポーラスカーボン、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラックなどの炭素質材料を用いてもよい。
非分極性電極としては、好ましくはリチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とするものとし、この炭素材料にリチウムイオンを吸蔵させたものを電極に使用する。この場合、電解質にはリチウム塩が使用される。この構成の電気二重層キャパシタによれば、さらに高い4Vを超える耐電圧が得られる。
電極の作製におけるスラリーの調製に用いる溶媒は結合剤を溶解するものが好ましく、結合剤の種類に合わせ、N-メチルピロリドン、ジメチルホルムアミド、トルエン、キシレン、イソホロン、メチルエチルケトン、酢酸エチル、酢酸メチル、フタル酸ジメチル、エタノール、メタノール、ブタノール又は水が適宜選択される。
分極性電極に用いる活性炭としては、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭などがある。これらのうち大きい容量を得られる点で石油コークス系活性炭又はフェノール樹脂系活性炭を使用するのが好ましい。また、活性炭の賦活処理法には、水蒸気賦活処理法、溶融KOH賦活処理法などがあり、より大きな容量が得られる点で溶融KOH賦活処理法による活性炭を使用するのが好ましい。
分極性電極に用いる好ましい導電剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人造黒鉛、金属ファイバ、導電性酸化チタン、酸化ルテニウムがあげられる。分極性電極に使用するカーボンブラック等の導電剤の混合量は、良好な導電性(低い内部抵抗)を得るように、また多すぎると製品の容量が減るため、活性炭との合計量中1~50質量%とするのが好ましい。
また、分極性電極に用いる活性炭としては、大容量で低内部抵抗の電気二重層キャパシタが得られるように、平均粒径が20μm以下で比表面積が1500~3000m/gの活性炭を使用するのが好ましい。また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極を構成するための好ましい炭素材料としては、天然黒鉛、人造黒鉛、黒鉛化メソカーボン小球体、黒鉛化ウィスカ、気層成長炭素繊維、フルフリルアルコール樹脂の焼成品又はノボラック樹脂の焼成品があげられる。
集電体は化学的、電気化学的に耐食性のあるものであればよい。活性炭を主体とする分極性電極の集電体としては、ステンレス、アルミニウム、チタン又はタンタルが好ましく使用できる。これらのうち、ステンレス又はアルミニウムが、得られる電気二重層キャパシタの特性と価格の両面において特に好ましい材料である。リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極の集電体としては、好ましくはステンレス、銅又はニッケルが使用される。
また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料にあらかじめリチウムイオンを吸蔵させるには、(1)粉末状のリチウムを、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料に混ぜておく方法、(2)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極上にリチウム箔を載せ、電極と電気的に接触させた状態で、この電極をリチウム塩を溶かした電解液中に浸漬することによりリチウムをイオン化させ、リチウムイオンを炭素材料中に取り込ませる方法、(3)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極をマイナス側に置き、リチウム金属をプラス側に置いてリチウム塩を電解質とする電解液中に浸漬し、電流を流して電気化学的に炭素材料中にリチウムをイオン化した状態で取り込ませる方法がある。
電気二重層キャパシタとしては、巻回型電気二重層キャパシタ、ラミネート型電気二重層キャパシタ、コイン型電気二重層キャパシタなどが一般に知られており、上記電気二重層キャパシタもこれらの形式とすることができる。
例えば巻回型電気二重層キャパシタは、集電体と電極層の積層体(電極)からなる正極及び負極を、セパレータを介して巻回して巻回素子を作製し、この巻回素子をアルミニウム製などのケースに入れ、電解液、好ましくは非水系電解液を満たしたのち、ゴム製の封口体で封止して密封することにより組み立てられる。
セパレータとしては、従来公知の材料と構成のものが使用できる。例えば、ポリエチレン多孔質膜、ポリプロピレン繊維やガラス繊維、セルロース繊維の不織布などがあげられる。
また、公知の方法により、電解液とセパレータを介してシート状の正極及び負極を積層したラミネート型電気二重層キャパシタや、ガスケットで固定して電解液とセパレータを介して正極及び負極をコイン型に構成したコイン型電気二重層キャパシタとすることもできる。
本発明の電解液は、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池用や、電気二重層キャパシタ用の電解液として有用である。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
表1及び表2に記載の略号は、それぞれ、次の化合物を表す。また、表1及び表2に記載の溶媒の混合割合は、溶媒中の各成分の体積の割合(体積%)であり、添加剤の混合割合は、電解液中の溶媒の質量に対する各添加剤の質量の割合(質量%)である。
A エチレンカーボネート
B エチルメチルカーボネート
C ジメチルカーボネート
D プロピオン酸エチル
E フルオロエチレンカーボネート
F CHOCOOCHCF
G CHFCOOCH
H CFCHCOOCH
I ビニレンカーボネート
J 亜リン酸トリスtert-ブチルジメチルシリル
K トリフルオロメチルエチレンカーボネート
L 4-(2,2,3,3,3-ペンタフルオロプロピル)1,3-ジオキソラン-2-オン
M 4-(2,3,3,3-テトラフルオロ-2-トリフルオロメチルプロピル)1,3-ジオキソラン-2-オン
N トリフルオロメチルマレイン酸無水物
O フルオロビニレンカーボネート
P リチウムビスオキサラトボレート
Q リチウムジフルオロオキサラトボレート
表1に記載の実施例及び比較例
表1に記載の組成になるように、各成分を混合し、これにLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。
(正極の作製1)
正極活物質としてLiNi0.5Mn0.3Co0.2、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN-メチル-2-ピロリドンディスパージョンを用い、活物質、導電材、結着剤の固形分比が92/3/5(質量%比)になるよう混合した正極合剤スラリーを準備した。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、活物質、増粘剤、結着剤の固形分比が97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表1に記載の組成を有する電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(容量維持率の測定)
上記で製造した二次電池を、板で挟み加圧した状態で、25℃において、0.5Cに相当する電流で4.2Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.5Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表わし、例えば、0.5Cとはその1/2の電流値を表わす。前記と同様の条件で、200サイクルのサイクル試験を3.0-4.2Vの作動電圧で実施した。容量維持率は3サイクル目の初期放電容量を100%として200サイクル後の値を算出した。
(金属(Ni)量の測定)
金属量の測定は4.2Vの電圧まで充電し、開回路状態で85℃の温度で3日間保存した電池を用いて行った。前記電池を放電させた後、解体し、負極をDMCで洗浄し、乾燥させた。前記負極をΦ25に切り取って、5%硝酸水溶液で24時間浸した後、前記硝酸水溶液を濾過し、ICP発光分光分析法にて測定した。
(ガス量の測定)
作製したリチウムイオン二次電池の体積と、200サイクル後のリチウムイオン二次電池の体積とを測り、次式によりガス発生量(ml)を求めた。
200サイクル後の体積-初期の体積=ガス発生量(ml)
結果を表1に示す。
Figure JPOXMLDOC01-appb-T000078
表2に記載の実施例及び比較例
表2に記載の組成になるように、各成分を混合し、これにLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。
(正極の作製2)
正極活物質としてLiNi0.8Co0.15Al0.05(NCA)、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN-メチル-2-ピロリドンディスパージョンを用い、活物質、導電材、結着剤の固形分比が92/3/5(質量%比)になるよう混合した正極合剤スラリーを準備した。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、活物質、増粘剤、結着剤の固形分比が97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表2に記載の組成を有する電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(容量維持率の測定)
上記で製造した二次電池を、板で挟み加圧した状態で、25℃において、0.5Cに相当する電流で4.6Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.5Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表わし、例えば、0.5Cとはその1/2の電流値を表わす。前記と同様の条件で、200サイクルのサイクル試験を3.0-4.6Vの作動電圧で実施した。容量維持率は3サイクル目の初期放電容量を100%として200サイクル後の値を算出した。
(金属(Ni)量の測定)
金属量の測定は4.6Vの電圧まで充電し、開回路状態で85℃の温度で3日間保存した電池を用いて行った。前記電池を放電させた後、解体し、負極をDMCで洗浄し、乾燥させた。前記負極をΦ25に切り取って、5%硝酸水溶液で24時間浸した後、前記硝酸水溶液を濾過し、ICP発光分光分析法にて測定した。
(ガス量の測定)
作製したリチウムイオン二次電池の体積と、200サイクル後のリチウムイオン二次電池の体積とを測り、次式によりガス発生量(ml)を求めた。
200サイクル後の体積-初期の体積=ガス発生量(ml)
結果を表2に示す。
Figure JPOXMLDOC01-appb-T000079

Claims (10)

  1. 一般式(I)で示される化合物(I)、並びに、一般式(a)で示される化合物(a)、一般式(b)で示される化合物(b)、一般式(c)で示される化合物(c)及び一般式(d)で示される化合物(d)からなる群より選択される少なくとも1種の化合物(II)からなる群より選択される少なくとも1種を含むことを特徴とする電解液。
    一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R11は炭素数2~6のアルキル基)
    一般式(a):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R12及びR13は、独立に、ハロゲン原子、又は、ハロゲン原子、置換基若しくはヘテロ原子を含んでもよい炭素数1~3のアルキル基、又は、ハロゲン原子、置換基若しくはヘテロ原子を含んでもよく、お互いに結合してホウ素原子と共に環を形成する炭素数1~3のアルキレン基)
    一般式(b):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rf11は、フッ素原子を含んでもよい炭素数2~6のアルキル基)
    一般式(c)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rf12は、フッ素原子又はフッ素原子を含んでもよい炭素数1~6のアルキル基)
    一般式(d)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R14は、フッ素原子又はハロゲン原子を含む炭素数1~3のアルキル基)
  2. 更に、溶媒を含む請求項1記載の電解液。
  3. 前記溶媒は、非フッ素化飽和環状カーボネート(但し、化合物(b)を除く)、フッ素化飽和環状カーボネート(但し、化合物(b)を除く)、非フッ素化鎖状カーボネート、フッ素化鎖状カーボネート、非フッ素化鎖状エステル、及び、フッ素化鎖状エステルからなる群より選択される少なくとも1種を含む請求項2記載の電解液。
  4. 化合物(I)の含有量が前記溶媒に対して0.001~10質量%である請求項2又は3記載の電解液。
  5. 化合物(II)の含有量が前記溶媒に対して0.001~10質量%である請求項2、3又は4記載の電解液。
  6. 化合物(I)は、式:
    Figure JPOXMLDOC01-appb-C000006
    で示される請求項1、2、3、4又は5記載の電解液。
  7. 更に、電解質塩(但し、化合物(a)を除く)を含む請求項1、2、3、4、5又は6記載の電解液。
  8. 請求項1、2、3、4、5、6又は7記載の電解液を備えることを特徴とする電気化学デバイス。
  9. 請求項1、2、3、4、5、6又は7記載の電解液を備えることを特徴とする二次電池。
  10. 請求項8記載の電気化学デバイス、又は、請求項9記載の二次電池を備えることを特徴とするモジュール。
PCT/JP2018/020793 2017-06-30 2018-05-30 電解液、電気化学デバイス、二次電池及びモジュール WO2019003780A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/626,755 US11631894B2 (en) 2017-06-30 2018-05-30 Electrolytic solution, electrochemical device, secondary cell, and module
CN201880023665.0A CN110495040B (zh) 2017-06-30 2018-05-30 电解液、电化学器件、二次电池和组件
KR1020197034858A KR102337069B1 (ko) 2017-06-30 2018-05-30 전해액, 전기 화학 디바이스, 이차 전지 및 모듈
EP18823919.8A EP3627610A4 (en) 2017-06-30 2018-05-30 ELECTROLYTIC SOLUTION, ELECTROCHEMICAL DEVICE, SECONDARY BATTERY, AND MODULE
JP2019526724A JP7090079B2 (ja) 2017-06-30 2018-05-30 電解液、電気化学デバイス、二次電池及びモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128996 2017-06-30
JP2017128996 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003780A1 true WO2019003780A1 (ja) 2019-01-03

Family

ID=64741334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020793 WO2019003780A1 (ja) 2017-06-30 2018-05-30 電解液、電気化学デバイス、二次電池及びモジュール

Country Status (6)

Country Link
US (1) US11631894B2 (ja)
EP (1) EP3627610A4 (ja)
JP (1) JP7090079B2 (ja)
KR (1) KR102337069B1 (ja)
CN (1) CN110495040B (ja)
WO (1) WO2019003780A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017685A1 (ja) * 2021-08-12 2023-02-16 株式会社村田製作所 二次電池用電解液および二次電池
WO2024158010A1 (ja) 2023-01-25 2024-08-02 ダイキン工業株式会社 電解液、並びに、それを用いた電気化学デバイス及び二次電池
WO2024158009A1 (ja) 2023-01-25 2024-08-02 ダイキン工業株式会社 電解液、並びに、それを用いた電気化学デバイス及び二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003780A1 (ja) 2017-06-30 2019-01-03 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池及びモジュール
WO2019003776A1 (ja) 2017-06-30 2019-01-03 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池及びモジュール

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506726A (ja) 1990-03-29 1992-11-19 ドウティー エレクトロニック コンポーネンツ リミテッド 電池及びその製造方法
JPH086630A (ja) 1994-06-21 1996-01-12 Kobe Steel Ltd 生産スケジュール作成装置
JPH08507407A (ja) 1993-03-05 1996-08-06 ベル コミュニケーションズ リサーチ インコーポレーテッド ハイブリッド重合体電解質を用いた再充電可能リチウム挿入電池
JPH08222270A (ja) 1994-12-13 1996-08-30 Japan Energy Corp イオン伝導体
JPH097896A (ja) 1995-06-16 1997-01-10 Asahi Glass Co Ltd 電気二重層キャパシタ
JPH10294131A (ja) 1997-04-18 1998-11-04 Asahi Glass Co Ltd ポリマー電解質を有するリチウム電池
JPH1135765A (ja) 1997-07-24 1999-02-09 Sharp Corp 高分子固体電解質とその製造方法
JP2001057237A (ja) 1999-08-19 2001-02-27 Mitsui Chemicals Inc リチウム二次電池用非水電解液およびそれを用いたリチウム二次電池
JP2002100405A (ja) 2000-09-20 2002-04-05 Hitachi Chem Co Ltd ゲル状高分子固体電解質用樹脂組成物およびゲル状高分子固体電解質
JP2004301934A (ja) 2003-03-28 2004-10-28 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置の製造方法
JP2008130544A (ja) 2006-11-20 2008-06-05 Samsung Sdi Co Ltd リチウム二次電池用電解質及びこれを含むリチウム二次電池
JP5274563B2 (ja) 2008-08-06 2013-08-28 三井化学株式会社 リチウム二次電池用非水電解液、リチウム二次電池及びその製造方法、並びにリチウム二次電池用混合型非水電解液
JP2014522078A (ja) 2011-10-04 2014-08-28 旭化成株式会社 電池電解質用材料および使用方法
JP2015133278A (ja) 2014-01-15 2015-07-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2015146685A1 (ja) * 2014-03-28 2015-10-01 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274563A (en) 1975-12-11 1977-06-22 Furukawa Electric Co Ltd Method of forming connecting end of double spiral metal pipe
JP2001057236A (ja) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
CN110061283A (zh) * 2005-10-20 2019-07-26 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
KR101147240B1 (ko) 2009-11-10 2012-05-21 삼성에스디아이 주식회사 리튬 이차 전지
US20120231325A1 (en) 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
US9350048B2 (en) * 2011-03-23 2016-05-24 Samsung Sdi Co., Ltd. Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
TW201308718A (zh) 2011-03-31 2013-02-16 Daikin Ind Ltd 電解液
US20120315534A1 (en) 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for Battery Electrolytes and Methods for Use
CN102637894B (zh) * 2012-04-06 2014-11-05 宁德新能源科技有限公司 一种非水电解液二次电池
CN104685693B (zh) 2012-09-28 2018-08-31 大金工业株式会社 电解液、电化学器件、锂电池以及模块
CN103094616A (zh) * 2013-01-30 2013-05-08 江西优锂新材股份有限公司 一种电解液添加剂和含有该电解液添加剂的高电压电解液及锂离子电池
JP6311465B2 (ja) * 2013-06-06 2018-04-18 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
US9666906B2 (en) * 2014-05-15 2017-05-30 Nano And Advanced Materials Institute Limited High voltage electrolyte and lithium ion battery
KR20160049077A (ko) * 2014-10-24 2016-05-09 전자부품연구원 실릴 포스파이트계 소재를 함유하는 전해질 및 그를 포함하는 리튬 이차 전지
JP6787401B2 (ja) 2016-07-22 2020-11-18 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール
PL3849009T3 (pl) 2016-07-22 2022-11-21 Daikin Industries, Ltd. Roztwór elektrolitu, urządzenie elektrochemiczne, bateria akumulatorowa oraz moduł
WO2019003780A1 (ja) 2017-06-30 2019-01-03 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池及びモジュール
WO2019003776A1 (ja) 2017-06-30 2019-01-03 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池及びモジュール

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506726A (ja) 1990-03-29 1992-11-19 ドウティー エレクトロニック コンポーネンツ リミテッド 電池及びその製造方法
JPH08507407A (ja) 1993-03-05 1996-08-06 ベル コミュニケーションズ リサーチ インコーポレーテッド ハイブリッド重合体電解質を用いた再充電可能リチウム挿入電池
JPH086630A (ja) 1994-06-21 1996-01-12 Kobe Steel Ltd 生産スケジュール作成装置
JPH08222270A (ja) 1994-12-13 1996-08-30 Japan Energy Corp イオン伝導体
JPH097896A (ja) 1995-06-16 1997-01-10 Asahi Glass Co Ltd 電気二重層キャパシタ
JPH10294131A (ja) 1997-04-18 1998-11-04 Asahi Glass Co Ltd ポリマー電解質を有するリチウム電池
JPH1135765A (ja) 1997-07-24 1999-02-09 Sharp Corp 高分子固体電解質とその製造方法
JP2001057237A (ja) 1999-08-19 2001-02-27 Mitsui Chemicals Inc リチウム二次電池用非水電解液およびそれを用いたリチウム二次電池
JP2002100405A (ja) 2000-09-20 2002-04-05 Hitachi Chem Co Ltd ゲル状高分子固体電解質用樹脂組成物およびゲル状高分子固体電解質
JP2004301934A (ja) 2003-03-28 2004-10-28 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置の製造方法
JP2008130544A (ja) 2006-11-20 2008-06-05 Samsung Sdi Co Ltd リチウム二次電池用電解質及びこれを含むリチウム二次電池
JP5274563B2 (ja) 2008-08-06 2013-08-28 三井化学株式会社 リチウム二次電池用非水電解液、リチウム二次電池及びその製造方法、並びにリチウム二次電池用混合型非水電解液
JP2014522078A (ja) 2011-10-04 2014-08-28 旭化成株式会社 電池電解質用材料および使用方法
JP2015133278A (ja) 2014-01-15 2015-07-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2015146685A1 (ja) * 2014-03-28 2015-10-01 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627610A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017685A1 (ja) * 2021-08-12 2023-02-16 株式会社村田製作所 二次電池用電解液および二次電池
WO2024158010A1 (ja) 2023-01-25 2024-08-02 ダイキン工業株式会社 電解液、並びに、それを用いた電気化学デバイス及び二次電池
WO2024158009A1 (ja) 2023-01-25 2024-08-02 ダイキン工業株式会社 電解液、並びに、それを用いた電気化学デバイス及び二次電池

Also Published As

Publication number Publication date
CN110495040A (zh) 2019-11-22
US11631894B2 (en) 2023-04-18
CN110495040B (zh) 2022-11-01
JP7090079B2 (ja) 2022-06-23
US20200127332A1 (en) 2020-04-23
JPWO2019003780A1 (ja) 2019-12-12
KR102337069B1 (ko) 2021-12-08
EP3627610A4 (en) 2021-05-05
KR20190137922A (ko) 2019-12-11
EP3627610A1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6547816B2 (ja) 電解液及び硫酸エステル塩の製造方法
KR101710246B1 (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈
KR101685271B1 (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈
JP5757374B1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6269817B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6123912B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6696591B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7090079B2 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JPWO2018016246A1 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP2017004692A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP7058652B2 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JPWO2018116730A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2016039118A1 (ja) 電解液及び新規なフッ素化リン酸エステル
JP2014194866A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール、及び、環状n−アシルスルホンアミド化合物
JP2018106979A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2017179468A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2018116652A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2018101535A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2018181657A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2018181656A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526724

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197034858

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823919

Country of ref document: EP

Effective date: 20191218